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Boadilla del Monte, 28660 Madrid, Spain

4Departamento de Física Teórica, Universidad Autónoma de Madrid, E-28049 Madrid, Spain

(Received 4 December 2019; accepted 7 February 2020; published 21 February 2020)

The low-energy excitations and β decays of odd-A nuclei are studied within the interacting boson-fermion
model (IBFM), based on the Gogny-D1M nuclear energy density functional (EDF). The constrained Hartree-
Fock-Bogoliubov (HFB) approximation is employed to compute potential energy surfaces in terms of triaxial
quadrupole degrees of freedom for even-even Xe and Ba nuclei in the mass A ≈ 130 region. The mean field
approximation also provides spherical single-particle energies and occupation probabilities for the neighboring
odd-A nuclei. Those quantities represent a microscopic input for spectroscopic calculations in odd-A Xe, Ba, Cs
and La isotopes. The Gamow-Teller (GT) and Fermi (F) transition matrix elements needed to compute β-decay
log f t values are obtained without any phenomenological fitting. It is shown that both the low-lying states and β

decays of the studied odd-A systems are described reasonably well within the employed theoretical framework.

DOI: 10.1103/PhysRevC.101.024311

I. INTRODUCTION

Understanding the structure of the atomic nucleus is es-
sential to accurately model fundamental processes, such as
the β and ββ decays, and often provides useful insight into
other domains of physics; e.g., it has potential impact on the
search for new physics beyond the standard model of ele-
mentary particles. Experiments have already been performed
at major radioactive-ion-beam facilities around the world
to measure the β-decay half-lives of numerous neutron-rich
heavy nuclei [1–5]. Those experiments not only are useful
for a better understanding of nuclear structure phenomena
at extreme neutron-to-proton ratios N/Z , but are also instru-
mental to model the creation of chemical elements in various
astrophysical nucleosynthesis scenarios. In addition, β-decay
properties are expected to be sensitive to details of the wave
functions of low-lying states of both the parent and daughter
nuclei. Therefore, they also serve as a stringent test of vari-
ous nuclear structure models [6,7]. A number of theoretical
calculations have been performed to study β decay properties,
e.g., in terms of the quasiparticle random phase approximation
(QRPA) at various levels of sophistication [8–13], the large-
scale nuclear shell model [6,14–16], and the interacting boson
model [17–24].

The microscopic description of the spectroscopic prop-
erties of medium-heavy and heavy nuclei is a highly de-
manding computational task. In particular, an accurate de-
scription of the excitation spectra and transition rates in
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odd-mass and/or odd-odd nuclei stills remains a major chal-
lenge in today’s nuclear structure theory. What complicates
the microscopic description of nuclear systems with unpaired
nucleons are features such as, for example, the weaken-
ing of pairing correlations, the increase of level densities
around the Fermi level, polarization effects, and the break-
ing of time-reversal symmetry in the intrinsic wave func-
tions [25–28]. Spectroscopic studies of odd-mass and/or odd-
odd nuclei have also been carried out within the frame-
work of the symmetry-projected generator coordinate method
(GCM) [28,29]. However, from a computational point of view,
this kind of approach is very costly if not impossible to
apply in heavy nuclei, especially when many valence nucleons
are involved and/or multiple shape degrees of freedom need
to be taken into account in the symmetry-projected GCM
ansatz.

An alternative and numerically feasible EDF-based
particle-core coupling approach to the spectroscopy of odd-A
nuclei has been developed in previous works [30,31]. Within
this approach, the (β, γ ) potential energy surface (PES) of
a given even-even core nucleus is computed microscopically
using the constrained mean field approximation. The mean
field approximation also provides the spherical single-particle
energies and occupation numbers for unpaired nucleon(s) in
the neighboring odd-A or odd-odd nucleus. Those mean field
quantities represent an essential input to build the Hamilto-
nian of the interacting boson-fermion model (IBFM) [19,32].
Three coupling constants for the boson-fermion interaction
terms are determined so as to reproduce reasonably well
the experimental low-energy spectrum in a given odd-A sys-
tem. At the cost of having to determine these few coupling
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constants empirically, the method allows a detailed and simul-
taneous description of spectroscopy in even-even, odd-A, and
odd-odd nuclei [33].

It is then interesting to examine whether the IBFM frame-
work based on the microscopic EDF approach can provide
at the same time a consistent description of the low-lying
states and β-decay properties in heavy odd-A nuclei. In this
work, we study those β decays where only Gamow-Teller
(GT) and Fermi (F) transitions are involved, that is, the spin
of a parent nucleus changes according to �I = 0,±1 and
parity is conserved. The β decay log f t values require the
computation of the GT and F transition strengths which can
be obtained using the IBFM wave functions for the parent and
daughter odd-A nuclei. One of the advantages of our approach
is that the IBFM β decay calculations do not involve any free
parameter associated to the GT and F operators. Therefore, β

decay properties can be considered a very stringent test for the
IBFM wave functions.

In this work, we focus on the β decay of odd-A nuclei
in the A ≈ 130 mass region. In Ref. [34], we have already
applied the method to describe the γ -soft-to-near-spherical
shape phase transitions in odd-A Xe, Cs, Ba, and La isotopic
chains. This mass region is one of the most studied in the
nuclear chart in the context of the β decay. Moreover, nuclei
with A ≈ 130 exhibit a variety of nuclear structure phenom-
ena such as the relevance of triaxial deformations and the
existence of quantum phase transitions from prolate to γ -soft
(or O(6) limit of IBM [35]) and near spherical shapes as one
approaches the N = 82 neutron shell closure. The evolution
of shapes with neutron number might be expected to play a
role in the corresponding β-decay properties. Phenomenolog-
ical IBFM studies of the low-lying states [36] and β decay
properties [21,24] have already been performed in the same
mass region.

The paper is outlined as follows. In Sec. II, we briefly de-
scribe the procedures followed to build the IBFM Hamiltoni-
ans from the constrained Gogny-HFB calculations. We use the
parametrization D1M [37] of the Gogny-EDF [27,38] because
previous studies using the EDF-to-IBM mapping procedure,
have shown that the Gogny-D1M EDF provides a reasonable
description of the spectroscopic properties in medium-mass,
heavy odd-A, and odd-odd nuclei [31,33,34,39] in a wide
range of nuclei. In the same section, we also introduce
the β-decay operators. The results of our calculations for
the low-lying energy levels in the even-even Xe and Ba
nuclei are discussed in Sec. III. Spectroscopic results from
the IBFM calculations for the odd-A Xe, Cs, Ba, and La
isotopes are presented in Sec. IV. The log f t values ob-
tained for the β decays of the studied nuclei are discussed
in Sec. V. Finally, Sec. VI is devoted to the concluding
remarks.

II. THEORETICAL FRAMEWORK

A. Hamiltonian

Let us introduce the IBFM Hamiltonian for odd-A systems.
We use the IBMF-2 version of the IBFM (called IBFM-2)
and we differentiate between proton and neutron degrees of
freedom. In the following, we will simply denote the IBFM-2

as IBFM. The IBFM Hamiltonian reads

Ĥ = ĤB + Ĥ ν
F + Ĥπ

F + Ĥ ν
BF + Hπ

BF. (1)

The first term represents the neutron-proton IBM (IBM-
2) Hamiltonian [40] used to describe the even-even core
nucleus:

ĤB = ε
(
n̂dν

+ n̂dπ

) + κQ̂νQ̂π . (2)

Here n̂dρ
= d†

ρ d̃ρ (ρ = ν, π ) is the d-boson number opera-
tor, and Q̂ρ = d†

ρsρ + s†
ρ d̃†

ρ + χρ (d†
ρ d̃ρ )(2) is the quadrupole

operator. The parameters of the Hamiltonian are denoted by
ε, κ , χν , and χπ . The doubly magic nucleus 132Sn is taken as
the inert core for the boson space. The number of neutron Nν

and proton Nπ bosons equals the number of neutron-hole and
proton-particle pairs, respectively [40].

The second and third terms in Eq. (1) represent the Hamil-
tonians for the odd neutron and the odd proton, respectively.
Its generic form is

Ĥρ
F = −

∑
jρ

ε jρ

√
2 jρ + 1

(
a†

jρ
ã jρ

)(0)
(3)

with ε jρ being the single-particle energy of the odd nucleon.
Here, jρ stands for the angular momentum of the single
nucleon. On the other hand, a(†)

jρ
and ã jρ represent fermion

creation and annihilation operators, with ã jm = (−1) j−maj−m.
For the fermion valence space, we consider the full neutron
and proton major shell N, Z = 50–82, i.e., 3s1/2, 2d3/2, 2d5/2,
1g7/2, and 1h11/2 orbitals.

The fourth and fifth terms in Eq. (1) represent the coupling
of the odd neutron and of the odd proton to the IBM-2 core,
respectively:

Ĥρ
BF = �ρQ̂ρ ′ q̂ρ + �ρV̂ρ ′ρ + Aρ n̂dρ

n̂ρ, (4)

where ρ ′ �= ρ. The first, second, and third terms in the
equation above are the quadrupole dynamical, exchange, and
monopole terms, respectively. The strength parameters are
denoted by �ρ , �ρ , and Aρ . As in the previous studies [41,42],
we assume that both the dynamical and exchange terms are
dominated by the interaction between unlike particles (i.e.,
between the odd neutron and proton bosons and between the
odd proton and neutron bosons), and that, for the monopole
term, the interaction between like particles (i.e., between the
odd neutron and neutron bosons and between the odd proton
and proton bosons) plays a dominant role. In Eq. (4), Q̂ρ

is the same bosonic quadrupole operator as in the IBM-2
Hamiltonian in Eq. (2). The fermionic quadrupole operator
q̂ρ reads

q̂ρ =
∑
jρ j′ρ

γ jρ j′ρ

(
a†

jρ
ã j′ρ

)(2)
, (5)

where γ jρ j′ρ = (u jρ u j′ρ − v jρ v j′ρ )Qjρ j′ρ and Qjρ j′ρ = 〈l 1
2 jρ

||Y (2)||l ′ 1
2 j′ρ〉 represents the matrix element of the fermionic

quadrupole operator in the considered single-particle basis.
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TABLE I. The adopted parameters of the IBM-2 Hamiltonian ĤB

for the even-even-core nuclei 124−134Xe and 126−136Ba.

ε (MeV) κ (MeV) χν χπ

124Xe 0.45 −0.336 0.40 −0.50
126Xe 0.52 −0.323 0.25 −0.50
128Xe 0.62 −0.315 0.25 −0.55
130Xe 0.82 −0.308 0.38 −0.50
132Xe 0.90 −0.250 0.20 −0.55
134Xe 0.98 −0.190 0.20 −0.60
126Ba 0.28 −0.284 0.12 −0.49
128Ba 0.41 −0.286 0.12 −0.53
130Ba 0.52 −0.297 0.25 −0.55
132Ba 0.65 −0.288 0.25 −0.45
134Ba 0.84 −0.278 0.40 −0.45
136Ba 1.00 −0.278 0.40 −0.45

The exchange term V̂ρ ′ρ in Eq. (4) reads

V̂ρ ′ρ = −(s†
ρ ′ d̃ρ ′ )(2)

⎧⎨
⎩

∑
jρ j′ρ j′′ρ

√
10

Nρ (2 jρ + 1)
β jρ j′ρ β j′′ρ jρ

:
[(

d†
ρ ã j′′ρ

)( jρ )(
a†

j′ρ
s̃ρ

)( j′ρ )](2)
:

⎫⎬
⎭ + (H.c.), (6)

with β jρ j′ρ = (u jρ v j′ρ + v jρ u j′ρ )Qjρ j′ρ . In the second line of the
above equation, the notation : (· · · ) : indicates normal order-
ing. The definition of the number operator for the odd fermion
in the monopole interaction has already been introduced in
Eq. (3).

B. Procedure to build the IBFM Hamiltonian

To build the IBFM Hamiltonian, we first carry out con-
strained Hartree-Fock-Bogoliubov (HFB) calculations to ob-
tain the potential energy surface (PES), as a function of the
quadrupole deformation parameters β and γ , for a set of
even-even Xe and Ba nuclei. For each nucleus, the parameters
ε, κ , χν , and χπ of the boson IBM-2 Hamiltonian are fitted to
reproduce the HFB PES when the IBM-2 enery is computed
using the boson coherent state [43] (see Refs. [44,45], for
details).

Next, the single-particle energies ε jν (ε jπ ) and occupation
probabilities v2

jν (v2
jπ ) of the unpaired neutron and/or proton

are computed with the help of Gogny-D1M HFB calcula-
tions constrained to zero deformation [31]. These parame-
ters are used in the Ĥ ν

F (Ĥπ
F ) and Ĥ ν

BF (Ĥπ
BF) Hamiltonians,

respectively. The optimal values of the strength parameters
for the boson-fermion Hamiltonian Ĥ ν

BF (Ĥπ
BF), i.e., �ν , �ν ,

and Aν (�π , �π , and Aπ ), are determined separately for
positive- and negative-parity states, so as to reproduce the
experimental low-energy levels for each of the considered
odd-N Xe and Ba (odd-Z Cs and La) isotopes. The values
of the IBM-2 parameters and the IBFM strengths obtained
for the studied even-even and odd-A nuclei are given in
Tables I and II, respectively. The IBFM parameters, shown
in Table II, are exactly the same as the ones employed in

TABLE II. Strength parameters of the boson-fermion Hamilto-
nian Ĥρ

BF (in MeV) employed for the studied odd-A nuclei.

�ρ �ρ Aρ

123Xe 3.20 0.20 −0.14
125Xe 3.00 0.40 −0.12
127Xe 3.00 0.60 −0.28
129Xe 1.60 2.20 −0.30
131Xe 1.00 2.00 −0.30
133Xe 0.30 2.00 −0.30
125Ba 3.00 1.55 0.0
127Ba 3.00 0.60 −0.35
129Ba 1.60 1.50 −0.80
131Ba 1.20 1.80 −0.50
133Ba 1.00 1.60 −0.55
135Ba 0.30 1.60 −0.50
125Cs 0.80 0.51 −0.80
127Cs 0.80 0.40 −0.70
129Cs 1.00 0.40 −0.70
131Cs 1.20 0.55 −0.80
133Cs 1.20 0.58 −0.50
135Cs 0.80 1.00 −0.10
127La 1.00 1.50 −2.7
129La 0.80 1.76 −2.0
131La 0.80 1.92 −2.3
133La 1.00 2.00 −1.1
135La 1.50 0.81 −0.45
137La 2.00 1.45 0.0

Ref. [39]. The spherical single-particle energies and occu-
pation probabilities for these odd-A nuclei can be found in
Ref. [34].

The resulting IBFM Hamiltonian is then diagonalized in
the basis |[Lν ⊗ Lπ ](L) ⊗ jρ](I )〉, where Lρ is the angular
momentum of the neutron or proton boson system, L is the
total angular momentum of the boson system, and I represents
the total angular momentum of the coupled boson-fermion
system.

C. Electromagnetic transition operators

The electromagnetic transition rates in odd-A nuclei can
be computed using the eigenstates of the IBFM Hamilto-
nian. Here, we consider the electric quadrupole (E2) and
magnetic dipole (M1) properties. The E2 operator T̂ (E2)

reads [21,39]

T̂ (E2) = eB
ν Q̂ν + eB

π Q̂π − 1√
5

∑
ρ=ν,π

∑
jρ j′ρ

× (
u jρ u j′ρ − v jρ v j′ρ

)〈 j′ρ |
∣∣eF

ρr2Y (2)
∣∣| jρ〉

(
a†

jρ
ã j′ρ

)(2)
, (7)

where eB
ρ and eF

ρ are the effective charges for the boson
and fermion systems, respectively. We have used the fixed
values eB

ν = eB
π = 0.108 eb, and eF

ν = 0.5 eb and eF
π = 1.5 eb.

These values have already been employed in previous IBFM
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calculations [21] for the same mass region. The M1 transition
operator T̂ (M1) reads [21,39]

T̂ (M1) =
√

3

4π

⎧⎨
⎩gB

ν L̂B
ν + gB

π L̂F
π − 1√

3

∑
ρ=ν,π

∑
jρ j′ρ

× (
u jρ u j′ρ + v jρ v j′ρ

)〈 j′ρ |
∣∣gρ

l l + gρ
s s
∣∣| jρ〉

(
a†

jρ
ã j′ρ

)(1)

⎫⎬
⎭.

(8)

In this expression, gB
ν and gB

π are the g factors for the neutron
and proton bosons, respectively. The empirical values gB

ν =
0 μN and gB

π = 0.8 μN , taken from Ref. [21], are used for
all the studied odd-A nuclei. For the neutron (proton) g fac-
tors, the usual Schmidt values gν

l = 0 μN and gν
s = −3.82 μN

(gπ
l = 1.0 μN and gπ

s = 5.58 μN ) are used. The gs values, for
both protons and neutrons, have been quenched by 30%.

D. Gamow-Teller and Fermi transition operators

To obtain the β-decay log f t values, the Gamow-Teller
(GT) and Fermi (F) matrix elements using the wave functions
corresponding to the initial state (with spin |Ii〉) for the parent
nucleus and the final state (with spin |If〉) for the daughter
nucleus are needed. Those wave functions are obtained with
two independent IBFM calculations. The GT and F opera-
tors have to be defined in the boson-fermion space of the
IBFM. To this end, we introduce the one-fermion transfer
operators [17]:

A( j)†
m = ζ ja

†
jm +

∑
j′

ζ j j′s
†
ρ (d̃ρa†

j′ )
( j)
m (�n j = 1, �Nρ = 0)

(9)

and

B( j)†
m = θ j s

†
ρ ã jm +

∑
j′

θ j j′ (d
†
ρ ã j′ )

( j)
m (�n j = −1, �Nρ = 1).

(10)

Both operators increase the number of valence neutrons (pro-
tons) n j + 2Nρ by one. Note, that the index of jρ is omitted
for the sake of simplicity. The conjugate operators read

Ã( j)
m = (−1) j−m

{
A( j)†

−m

}†

= ζ ∗
j ã jm +

∑
j′

ζ ∗
j j′sρ (d†

ρ ã j′ )
( j)
m (�n j = −1, �Nρ = 0)

(11)

and

B̃( j)
m = (−1) j−m

{
B( j)†

−m

}†

= −θ∗
j sρa†

jm −
∑

j′
θ∗

j j′ (d̃ρa†
j′ )

( j)
m (�n j = 1, �Nρ = −1).

(12)

These operators decrease the number of valence neutrons
(protons) n j + 2Nρ by one.

The coefficients ζ j , ζ j j′ , θ j , and θ j j′ in Eqs. (8)–(11) are
given [19] by

ζ j = u j
1

K ′
j

, (13)

ζ j j′ = −v jβ j′ j

√
10

Nρ (2 j + 1)

1

KK ′
j

, (14)

θ j = v j√
Nρ

1

K ′′
j

, (15)

θ j j′ = u jβ j′ j

√
10

2 j + 1

1

KK ′′
j

. (16)

The parameters K , K ′
j , and K ′′

j read [17,19]

K =
⎛
⎝∑

j j′
β2

j j′

⎞
⎠

1/2

, (17a)

K ′
j =

[
1 + 2

(
v j

u j

)2
〈(

n̂sρ
+ 1

)
n̂dρ

〉
0+

1

Nρ (2 j + 1)

∑
j′ β

2
j′ j

K2

]1/2

, (17b)

K ′′
j =

[〈
n̂sρ

〉
0+

1

Nρ

+ 2

(
u j

v j

)2
〈
n̂dρ

〉
0+

1

2 j + 1

∑
j′ β

2
j′ j

K2

]1/2

. (17c)

Note that n̂sρ
is the number operator for the sρ boson and that

〈· · ·〉0+
1

represents the expectation value of a given operator in
the 0+

1 ground state of the considered even-even nucleus. For a
more detailed account, the reader is referred to Refs. [17,19].

With the previously defined building blocks, the IBFM
images of the Fermi(

∑
k t±

k ), and Gamow-Teller (
∑

k t±
k σk)

transition operators take the form

ÔF = −
∑

j

√
2 j + 1

(
P( j)

ν P( j)
π

)(0)
, (18)

ÔGT =
∑

j′ j

η j′ j
(
P( j′ )

ν P( j)
π

)(1)
, (19)

where

η j′ j = − 1√
3

〈
�′ 1

2
; j′

∥∥∥∥σ

∥∥∥∥�
1

2
; j

〉

= −δ�′�
√

2(2 j′ + 1)(2 j + 1)W

(
� j′

1

2
1;

1

2
j

)
, (20)

with W being a Racah coefficient. In the case of β+ decay,
P( j′ )

ν = B̃( j′ )
ν and P( j)

π = Ã( j)
π , while for β− decay P( j′ )

ν = B( j′ )†
ν

and P( j)
π = A( j)†

π . Then, the reduced Fermi B(F; Ii → If ) and
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FIG. 1. The low-lying excitation spectra, obtained for the even-
even nuclei 124–134Xe and 126–136Ba with the mapped IBM-2 Hamil-
tonian, are compared with the corresponding experimental data [47]
taken from the ENSDF database.

GT B(GT; Ii → If ) transition rates read

B(F; Ii → If ) = 1

2Ii + 1
|〈If ||ÔF||Ii〉|2, (21)

B(GT; Ii → If ) = 1

2Ii + 1
|〈If ||ÔGT||Ii〉|2. (22)

The log f t for the β decay Ii → If , can be computed as

log f t = log10

{
6163

B(F; Ii → If ) + g2
AB(GT; Ii → If )

}
. (23)

Here, gA is the ratio of the axial vector to vector coupling
constants, gA = GA/GV . We have employed the free nucleon
value gA = 1.2701(25) [46] for all the studied nuclei without
quenching.

III. EVEN-EVEN NUCLEI

The low-lying excitation spectra, obtained for Xe and Ba
nuclei with the mapped IBM-2 Hamiltonian, are compared
with the corresponding experimental data [47] in Fig. 1. As
can be seen from the figure, the predicted spectra reproduce
well the experimental ones for both the Xe and Ba isotopic
chain. Note that the IBM-2 description of the low-lying energy
levels in Xe and Ba nuclei obtained in this work is more

accurate than in Ref. [34], where no distinction was made
between neutron and proton degrees of freedom within the
IBM-1 model. From N = 70 to N ≈ 76, both the predicted
and empirical energy levels exhibit features of γ -soft nuclei
(such as the the R4/2 between the excitation energies of the
4+

1 and 2+
1 states close to 2.5, a low-lying 2+

2 level close in
energy to the 4+

1 level and a 0+
2 level close in energy to the

6+
1 one). The transition from γ -soft to vibrational spectra is

characterized by the behavior of the 0+
2 energy level. It starts

to decouple from the 6+
1 level from N = 76 to N = 78 (in Xe)

or from N = 78 to N = 80 (in Ba). Triplets are then formed
with the 4+

1 and 2+
2 levels, which is a typical feature of a

multiphonon spectrum.
The behavior of the excitation energies in even-even Xe

and Ba nuclei, as functions of the neutron number N , is
consistent with the gradual changes observed in the topology
of the underlying PESs, presented in Fig. 5 of Ref. [34].
Those PESs exhibit a prolate or γ -soft minimum for the nuclei
with N � 76 (in Xe) and 78 (in Ba), as well as transitions to
nearly spherical shapes for N � 78 (in Xe) and N � 80 (in
Ba). For a more detailed account, the reader is referred to
Ref. [34].

IV. ODD-A NUCLEI

The positive-parity low-energy excitation spectra, obtained
within the IBFM, for odd-N Xe and Ba as well as odd-Z Cs
and La nuclei are compared with the experimental spectra in
Figs. 2, 3, 4, and 5, respectively. As can be seen from the
figures, the overall description of the empirical energy levels
in each odd-A system is very reasonable, in spite of having
only used three fitted strength parameters to reproduce them.
The evolution of some low-lying states can be associated
with a shape transition. For instance, in the Xe isotopic chain
(Fig. 2), the ground-state spin switches from I = 1/2+ at
N = 75 to 3/2+ at N = 77. This correlates well with the
shape transitions observed in the neighboring even-even core
nuclei (see Fig. 1). Perhaps, the most notable discrepancy
between the calculated and experimental spectra is observed
in the case of the 1/2+

1 state in La isotopes. The predicted
energy levels are too low for N � 74, as compared with
their experimental counterparts. However, in most of the La
isotopes, the experimental 1/2+

1 energy level has not been
firmly established.

The B(E2) and B(M1) transition rates as well as the
electric quadrupole Q(I ) and magnetic dipole μ(I ) moments
corresponding to the lowest positive-parity states in all the
considered odd-A Xe, Ba, Cs, and La nuclei are compared
in Fig. 6 with the available experimental data [47]. The
electromagnetic transitions between the lowest-lying states
tend to be stronger as the number of valence neutrons (holes)
increases toward the middle of the major shell N ≈ 66. Con-
siderable differences between the computed and experimental
B(E2) and B(M1) values are observed for the lightest Xe
isotopes. In order to understand these deviations, it is useful
to decompose the IBFM wave functions for the relevant states
into the single-particle configurations involved. For instance,
the 1/2+

1 , 3/2+
1 , and 5/2+

1 states for 123Xe, where particu-
larly large discrepancies are observed between the calculated
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FIG. 2. The calculated positive-parity low-energy excitation spectra obtained for the odd-A isotopes 123–133Xe are compared with the
experimental data [47] taken from the ENSDF database. The non-yrast 3/2+

2 and 5/2+
2 energy levels are connected by broken lines.

and experimental B(E2) and B(M1) rates [see Figs. 6(a1)
and 6(b1)], can be expressed schematically in the following
way:

∣∣∣∣1

2

+

1

〉
= [0.68 |νs1/2〉 + 0.28 |νd5/2〉 + · · · ] ⊗ |124Xe〉 ,

∣∣∣∣3

2

+

1

〉
= [0.67 |νd3/2〉 + 0.16 |νg7/2〉 + · · · ] ⊗ |124Xe〉 ,

∣∣∣∣5

2

+

1

〉
= [0.45 |νs1/2〉 + 0.49 |νd5/2〉 + · · · ] ⊗ |124Xe〉 ,

(24)

where the components with amplitudes smaller than 0.1
have been omitted. The 1/2+

1 and 5/2+
1 states appear to be

similar in structure, i.e., they are mainly made of the 3s1/2

and 2d5/2 single-neutron configurations. The large overlap
between the states leads to the strong B(E2) transition that
follows the �I = 2 sequence of the weak coupling limit.
However, the 1/2+

1 and 3/2+
1 states have different structures

leading to the small B(E2) and B(M1) transition rates com-
puted between these states. As for the electric quadrupole and
magnetic dipole moments, shown in panels Figs. 6(c1)–6(c4)
and 6(d1)–6(d4), the calculations reproduce reasonably well
the experimental data, at least the correct sign, for most of the
considered nuclei.
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FIG. 3. The same as in Fig. 2, but for the odd-A isotopes 125–135Ba.
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FIG. 4. The same as in Fig. 2, but for the odd-A isotopes 125–135Cs.

V. β DECAY

A. Overall results

Having obtained a reasonable global description of the
energies and transition properties in the even-even and odd-A
nuclei, we now turn to the discussion of the β decay. We have
computed the log f t values of the β+ and β− decays of those
odd-A nuclei, for which the experimental data are available.
We will restrict our discussion to those β decays where only
GT and F transitions are involved, i.e., with �I = 0,±1 and
no parity change. Note that most of the observed β decays in
this region of the nuclear chart are of this type. In Fig. 7(a),
we have plotted the f t values corresponding to the β+ decay

of the odd-A nuclei 125–131Cs, 127–133Ba, and 129–135La as
well as the one corresponding to the β− decay of 133Xe. The
transitions shown in the figure are those from the ground state
of the parent nucleus to the lowest-energy state of daughter
nucleus, for which experimental data are available.

The theoretical to experimental ratio for the f t values,
f t th/ f t ex, is depicted in Fig. 7(b). The theoretical f t val-
ues f t th increase as the neutron shell closure N = 82 is
approached. In most of the cases, the computed β-decay
f t values underestimate the experimental ones, with the
largest deviation for the Cs −→ Xe decays. In our calculation,
the boson-core Hamiltonian, the single-particle energies, and
the occupation probabilities for the odd nucleon have been
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FIG. 5. The same as in Fig. 2, but for the odd-A isotopes 127–137La.
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FIG. 6. The B(E2) and B(M1) transition rates (in Weisskopf units) as well as the electric quadrupole Q(I ) (in eb) and magnetic dipole
μ(I ) (in nuclear magneton μN ) moments corresponding to the lowest positive-parity states in the studied Xe [panels (a1)–(d1)], Ba [panels
(a2)–(d2)], Cs [panels (a3)–(d3)], and La [panels (a4)–(d4)] nuclei are compared with the experimental data [47]. Those experimental B(E2)
and B(M1) values without error bars are the lower limits. For the B(E2) rates, the theoretical and experimental values for the odd-N Xe and Ba
(odd-Z Cs and La) nuclei are defined in panels (a1) and (a2) [panels (a3) and (a4)], respectively. The same rule applies to those other properties
shown in the figure.

obtained via (constrained) fully microscopic Gogny-D1M
HFB calculations. In addition, no phenomenological param-
eter has been introduced to compute the GT and F matrix
elements. In view of these, the description of the observed

log f t values by the present IBFM calculation is reasonably
good. Let us also stress that no normalization factor has been
introduced for the GT or the F matrix elements, as is usually
done, for example, in shell-model calculations.
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FIG. 7. The f t values corresponding to the β+ decay of the
odd-A nuclei 125–131Cs, 127–133Ba, and 129–135La as well as the one
corresponding to the β− decay of 133Xe are plotted in panel (a).
The theoretical (experimental) values are represented by open (filled)
symbols connected by solid (broken) lines. The ratios f t th/ f t ex of the
predicted to the experimental f t values are depicted in panel (b).

B. β decays of odd-A Cs and Xe nuclei

Let us now turn our attention to the detailed comparison
between the computed and experimental log f t values for the
β± decays of the odd-A Cs and Xe (Table III). In the case
of the odd-A Ba isotopes, the β+ decays or electron captures
(EC) are presented in Table IV. The corresponding results for
the odd-A La nuclei can be found in Tables V and VI. In
each table, we have included the computed log f t values for
transitions from an initial state to a selected set of final states
(up to five states with the lowest energies for a given spin).
There are uncertainties in the experimental determination of
the spin of many nearly degenerate excited states that make
difficult to establish a correspondence with the states obtained
in the calculation. In those cases, we use a footnote in the
experimental log f t value to indicate the possible spins and
parities.

For the β decays of the odd-A Cs and Xe nuclei, the
predicted log f t values in Table III are systematically smaller

TABLE III. The calculated and experimental log f t values for
the β+/EC (electron-capture) decay of the odd-A Cs into Xe nuclei.
Results are also included for the β− decay of 133Xe into 133Cs.
Experimental data are taken from Ref. [47].

log f t

Decay Ii → If Theory Experiment

125Cs → 125Xe 1/2+
1 → 1/2+

1 3.725 ≈5.60

1/2+
1 → 1/2+

2 4.608 ≈5.53a

1/2+
1 → 1/2+

3 6.393 ≈6.96b

1/2+
1 → 3/2+

1 5.871 ≈6.76

1/2+
1 → 3/2+

2 4.820 ≈5.53a

1/2+
1 → 3/2+

3 4.771 ≈6.38

1/2+
1 → 3/2+

4 5.278 ≈6.08

1/2+
1 → 3/2+

5 5.045 ≈6.96b

127Cs → 127Xe 1/2+
1 → 1/2+

1 3.711 6.53(6)

1/2+
1 → 1/2+

2 4.628 5.558(11)

1/2+
1 → 1/2+

3 5.151 7.305(18)c

1/2+
1 → 1/2+

4 5.984 8.02(3)d

1/2+
1 → 3/2+

1 8.405 6.791(24)

1/2+
1 → 3/2+

2 4.426 7.574(20)

1/2+
1 → 3/2+

3 5.127 8.83(10)

1/2+
1 → 3/2+

4 5.563 6.306(12)

1/2+
1 → 3/2+

5 5.417 6.988(18)
129Cs → 129Xe 1/2+

1 → 1/2+
1 4.318 6.27(6)

1/2+
1 → 1/2+

2 4.007 5.68(3)

1/2+
1 → 1/2+

3 4.201 6.80(4)e

1/2+
1 → 3/2+

1 6.728 7.3(2)

1/2+
1 → 3/2+

2 5.509 7.14(3)

1/2+
1 → 3/2+

3 4.694 6.50(3)

1/2+
1 → 3/2+

4 5.558 7.68(4)

1/2+
1 → 3/2+

5 6.403 6.80(4)e

131Cs → 131Xe 5/2+
1 → 3/2+

1 6.116 5.548(14)
133Xe → 133Cs 3/2+

1 → 3/2+
1 5.224 6.86(9)

3/2+
1 → 5/2+

1 5.656 5.619(12)

3/2+
1 → 5/2+

2 8.199 7.10(19)

a1/2(+), 3/2(+) level at 525 keV in 125Xe.
b1/2, 3/2 level at 1312 keV in 125Xe.
c1/2+, 3/2+ level at 1197 keV in 127Xe
d1/2, 3/2, 5/2+ level at 1558 keV in 127Xe
e1/2+ or 3/2+ level at 946 keV in 129Xe

than the experimental ones. The discrepancy could be ex-
plained by analyzing the dominant contributions to the GT and
F transition matrix elements. As an example, let us consider
the decay of the 1/2+

1 ground state of 125Cs to the 1/2+
1

ground state of 125Xe for which the experimental f t value
is underestimated by about a factor of 102 [see Eq. (22)].

The reduced GT transition matrix element for this de-
cay is 〈1/2+

1 ||ÔGT||1/2+
1 〉 = −1.194, and the largest con-

tributions come from terms proportional to sν[a†
νs1/2

ãπs1/2 ](1)

and [(a†
νs1/2

d̃ν )( j)ãπd5/2 ](1) (with j being the intermediate
angular momentum). The coefficients for these terms are
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TABLE IV. The same as in Table III, but for the β+/EC decays
of the odd-A Ba into Cs nuclei.

log f t

Decay Ii → If Theory Experiment

127Ba → 127Cs 1/2+
1 → 1/2+

1 6.575 5.182(24)

1/2+
1 → 1/2+

2 5.357 7.25(15)a

1/2+
1 → 1/2+

3 5.354 7.25(9)b

1/2+
1 → 3/2+

1 6.736 6.81(11)

1/2+
1 → 3/2+

2 5.630 5.40(7)

1/2+
1 → 3/2+

3 5.629 7.25(15)a

1/2+
1 → 3/2+

4 6.732 7.25(9)b

129Ba → 129Cs 1/2+
1 → 1/2+

1 6.514 5.63(3)

1/2+
1 → 1/2+

2 5.723 6.59(5)c

1/2+
1 → 1/2+

3 5.432 6.65(5)d

1/2+
1 → 3/2+

1 8.313 6.39(4)

1/2+
1 → 3/2+

2 6.483 5.91(3)

1/2+
1 → 3/2+

3 6.043 6.59(5)c

1/2+
1 → 3/2+

4 6.992 6.65(5)d

131Ba → 131Cs 1/2+
1 → 1/2+

1 6.262 8.58(16)

1/2+
1 → 1/2+

2 5.892 6.633(8)

1/2+
1 → 1/2+

3 5.305 6.66(17)e

1/2+
1 → 3/2+

1 6.360 7.404(11)

1/2+
1 → 3/2+

2 6.729 7.305(9)

1/2+
1 → 3/2+

3 6.117 8.156(19)

1/2+
1 → 3/2+

4 7.256 8.505(11)

1/2+
1 → 3/2+

5 8.046 9.78(7)f

133Ba → 133Cs 1/2+
1 → 1/2+

1 5.530 6.627(18)

1/2+
1 → 3/2+

1 6.768 8.020(15)

a1/2, 3/2 level at 568 keV in 127Cs.
b1/2, 3/2 level at 713 keV in 127Cs.
c(1/2, 3/2)+ level at 554 keV in 129Cs.
d(1/2, 3/2)+ level at 1165 keV in 129Cs.
e1/2, 3/2 level at 1342 keV in 131Cs.
f(3/2+, 3/2+) level at 920 keV in 131Cs.

−0.900 and −0.306, respectively. For the Fermi transition,
〈1/2+

1 ||ÔF||1/2+
1 〉 = −0.145, and the leading terms take the

forms sν[a†
νs1/2

ãπs1/2 ](0) and sν[a†
νd5/2

ãπd5/2 ](0). Thus, the 3s1/2

and 2d5/2 neutron and proton single-particle configurations
are dominant components in both the B(GT; 1/2+

1 → 1/2+
1 )

and B(F; 1/2+
1 → 1/2+

1 ) values for the 125Cs → 125Xe de-
cay. This agrees well, with the fact that the 1/2+

1 IBFM
ground state wave functions for the parent 125Cs and daugh-
ter 125Xe systems mainly consist of the 3s1/2 and 2d5/2

single-particle configurations. In particular, 31% (67%) and
49% (18%) of the 1/2+

1 wave function in 125Cs ( 125Xe)
are accounted for by the 3s1/2 and 2d5/2 configurations, re-
spectively. The similar wave function contents for the par-
ent and daughter nuclei could partly account for the too
large B(GT) and B(F) values and, therefore, for the smaller
β-decay log f t values as compared with the experimental
data.

TABLE V. The same as in Table III, but for the β+/EC decays of
the odd-A 129,131La nuclei.

log f t

Decay Ii → If Theory Experiment

129La → 129Ba 3/2+
1 → 1/2+

1 5.286 5.89(8)

3/2+
1 → 1/2+

2 6.559 5.55(2)

3/2+
1 → 1/2+

3 4.871 7.2(1)

3/2+
1 → 1/2+

4 5.477 6.83(7)

3/2+
1 → 1/2+

5 9.064 6.62(5)

3/2+
1 → 3/2+

1 4.713 5.90(5)

3/2+
1 → 3/2+

2 6.058 6.23(5)

3/2+
1 → 3/2+

3 6.856 5.59(3)

3/2+
1 → 3/2+

4 6.916 6.45(4)a

3/2+
1 → 3/2+

5 4.502 6.06(3)b

3/2+
1 → 5/2+

1 6.991 6.60(5)

3/2+
1 → 5/2+

2 6.149 7.3(1)

3/2+
1 → 5/2+

3 7.436 6.45(4)a

3/2+
1 → 5/2+

4 7.978 6.50(4)

3/2+
1 → 5/2+

5 5.426 6.06(3)b

131La → 131Ba 3/2+
1 → 1/2+

1 5.223 6.26(9)

3/2+
1 → 1/2+

2 6.710 5.82(3)

3/2+
1 → 1/2+

3 5.385 6.56(4)c

3/2+
1 → 1/2+

4 5.114 6.43(3)d

3/2+
1 → 3/2+

1 4.676 6.25(5)

3/2+
1 → 3/2+

2 5.857 6.34(4)

3/2+
1 → 3/2+

3 7.121 5.58(3)

3/2+
1 → 3/2+

4 5.345 6.18(3)e

3/2+
1 → 3/2+

5 6.077 6.56(4)c

3/2+
1 → 5/2+

1 7.193 6.85(5)

3/2+
1 → 5/2+

2 5.917 6.18(3)e

3/2+
1 → 5/2+

3 5.601 6.56(4)c

a(3/2+, 5/2+) level at 618 keV in 129Ba.
b(3/2, 5/2)+ level at 712 keV in 129Ba.
c1/2+, 3/2+, 5/2+ level at 719 keV in 131Ba.
d1/2+, 3/2+, 5/2+ level at 879 keV in 131Ba.
e3/2+, 5/2+ level at 562 keV in 131Ba.

C. β decays of odd-A Ba nuclei

As seen from Table IV, the log f t values predicted for the
decays of the odd-A Ba nuclei are, in general, larger than
those for the decays of odd-A Cs (considered in Table III).
The overall description of the experimental log f t values in
the cases of the Ba −→ Cs decays is, therefore, slightly better
than for the Cs −→ Xe decays.

We observe that, similar to the cases of the odd-A Cs
nuclei, the predicted log f t values of the odd-A Ba are
calculated to be systematically smaller than the empirical
values. There are, however, examples of β decays of the
odd-A Ba systems, for which the theory overestimates the ex-
periment. The largest deviation occurs, for example, in the
case of the 129Ba(1/2+

1 ) → 129Cs(3/2+
1 ) decay. In particu-

lar, the computed log f t is a factor of 1.3 larger than the
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TABLE VI. The same as in Table III, but for the β+/EC decays
of the odd-A 133,135La nuclei.

log f t

Decay Ii → If Theory Experiment

133La → 133Ba 5/2+
1 → 3/2+

1 5.495 5.51(4)

5/2+
1 → 3/2+

2 5.420 6.97(3)

5/2+
1 → 3/2+

3 7.293 6.89(3)

5/2+
1 → 3/2+

4 7.635 7.77(4)

5/2+
1 → 3/2+

5 9.694 8.48(9)a

5/2+
1 → 5/2+

1 5.621 7.26(5)

5/2+
1 → 5/2+

2 5.375 7.13(3)

5/2+
1 → 5/2+

3 5.192 7.80(6)b

5/2+
1 → 5/2+

4 5.490 6.71(4)

5/2+
1 → 5/2+

5 5.718 7.24(4)c

5/2+
1 → 7/2+

1 5.770 7.51(4)

5/2+
1 → 7/2+

2 5.671 8.13(5)

5/2+
1 → 7/2+

3 7.105 7.24(4)c

5/2+
1 → 7/2+

4 5.498 7.36(5)
135La → 135Ba 5/2+

1 → 3/2+
1 8.190 5.66(1)

5/2+
1 → 3/2+

2 5.577 7.88(7)

5/2+
1 → 3/2+

3 8.599 7.75(8)

5/2+
1 → 3/2+

4 5.634 8.25(9)d

5/2+
1 → 5/2+

1 4.961 7.01(7)

5/2+
1 → 5/2+

2 5.237 8.25(9)d

5/2+
1 → 7/2+

1 5.531 7.22(9)

a3/2, 5/2+ level at 1528 keV in 133Ba.
b3/2+, 5/2+ level at 676 keV in 133Ba.
c3/2+, 5/2+, 7/2+ level at 1112 keV in 133Ba.
d3/2+, 5/2+ level at 980 keV in 135Ba.

experimental one. Here, only the GT transition is involved.
The reduced GT matrix element is found to be as small as
0.0061, due to the cancellation of the many small compo-
nents that make the matrix element. The largest contribu-
tions come from terms of the type s†

νsπ [[d̃νa†
νs1/2

](3/2)ãπd5/2 ](1)

and s†
νsπ [[d̃νa†

νs1/2
](5/2)ãπd5/2 ](1). However, their coefficients

are 0.0447 and −0.0334, respectively. As a result, a small
B(GT) is obtained and this leads to a too large log f t value
as compared with the experiment. The 1/2+

1 ground state
IBFM wave function of the parent nucleus 129Ba is mainly
made of the νs1/2 (36%) and νd3/2 (47%) single-neutron
configurations while, the 3/2+

1 wave function corresponding
to the daughter system 129Cs is dominated by the πg7/2 (41%)
and πd3/2 (31%) configurations. This difference in the parent
and daughter states may partly account for the small GT
strength.

D. β decays of odd-A La nuclei

From Tables V and VI, one sees that the computed log f t
values for the β+ decays La −→ Ba are larger than the ones
obtained for the Cs ←→ Xe and Ba −→ Cs decays (see
Tables III and IV). However, the log f t values for some of

the La −→ Ba transitions are still too small as compared to
the experimental ones [47]. This mainly occurs (see Table V)
for the β decay with �I = 0, where the B(GT) as well as
the B(F) transition strengths are too large. A typical example
is the decay from the 5/2+

1 ground state of 135La to the
5/2+

1 state of 135Ba. For this transition, the theoretical result
underestimates the experimental f t value by a factor of ≈102

[see Table VI and Eq. (22)]. The dominant contribution to the
GT transition strength comes from the term sν[a†

νd3/2
ãπd5/2 ](1)

with a coefficient in front of 0.414. Here, the πd5/2 and
νd3/2 configurations play the dominant role for the parent
and daughter nuclei, respectively. The 5/2+

1 wave function
of 135La is mainly based on the πg7/2 configuration (89%)
while for 135Ba the 5/2+

1 excited state is mainly based on
the νd3/2 configuration (79%) with a νs1/2 component (19%).
Therefore, it is tempting to interpret the unexpectedly large
B(GT) value solely in terms of the relevant wave function
contents. It must be kept in mind, however, that the B(GT),
as well as the B(F), transition strengths also depend upon
the coefficients for the one-particle transfer operators [see
Eqs. (8)–(11)] and those depend on other factors such as the
occupation probabilities v2

j for the odd particle. In this par-
ticular example, the relevant coefficient is ην3/2,π5/2θν3/2ζπ5/2

[see Eqs. (12), (14), and (19)].
For those transitions, where the B(GT) and B(F) values

are found to be too small, i.e., the resulting log f t val-
ues are too large, cancellation seems to occur to a large
extent between different components of the operators. For
instance, for the transition 135La(5/2+

1 ) −→ 135Ba(3/2+
1 ),

the largest terms in the GT matrix element turn out to
be sνsπ [a†

νd3/2
(d†

π ãπg7/2 )5/2](1), sνsπ [a†
νd3/2

(d†
π ãπd3/2 )5/2](1), and

sν (a†
νd3/2

ãπd5/2 )(1). The corresponding coefficients (−0.0562,
−0.0246, and 0.0979) almost cancel each other. The IBFM
wave functions for the 5/2+

1 and 3/2+
1 states of 135La and

135Ba are mainly made of the πg7/2 and νd3/2 configurations.
Once more, the log f t value for this transition is not com-
pletely accounted for by simply looking at the compositions of
the wave functions. As we have already noted, the coefficients
for the fermion transfer operators are determined by various
factors such as the occupation probabilities v2

j and boson-
core wave functions. In turn, those factors are determined
microscopically from the Gogny-D1M mean-field results.

E. Sensitivity to the IBFM parameters

As already mentioned in previous sections, the predicted
B(GT) and B(F) values appear to be somewhat sensitive to the
details of the IBFM wave functions for the parent and daugh-
ter nuclei. In what follows, we study the dependence of the
computed β-decay log f t values on the strength parameters of
the IBFM.

As an example, let us consider the 127Cs −→ 127Xe decay.
We have performed additional IBFM calculations for 127Xe
with the strengths �ν = 1.6 MeV, �ν = 2.0 MeV, and Aν =
−0.0 MeV. We will refer to this set of parameters as set B
while the original strengths, shown in Table II, will be denoted
as set A. In Fig. 8, we have compared the energy spectra result-
ing from those two independent IBFM calculations with the
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FIG. 8. Level schemes for 127Xe. Results of two indepen-
dent IBFM calculations, employing different sets of boson-fermion
strengths, are compared with each other and with the experimental
energy spectrum. The original strength parameters, shown in Table II,
are denoted as set A while the modified strengths are denoted as set
B. For more details, see the main text.

experimental one. Both the set B and set A IBFM calculations
reproduce the experimental excitation energies of states in the
vicinity of the ground state with the same level of accuracy.

However, at higher excitation energy, the values obtained
with set B are much higher in energy than those with set A
mostly for levels with spin I � 9/2). The description of the
corresponding E2 and M1 transitions and moments is worse
with set B. However, the log f t values in the case of set B are
improved with respect to the ones obtained with set A. For
instance, with set B we have obtained log f t = 4.486 for the
1/2+

1 → 1/2+
1 transition from 127Cs to 127Xe. This is closer

to the experimental result log f t = 6.53 ± 0.06 than the value
log f t = 3.711 obtained with set A.

The difference in the predicted log f t values mainly comes
from the corresponding B(GT) rates. We have obtained the
reduced GT matrix element 〈1/2+

1 ||ÔGT||1/2+
1 〉 = −1.216

with set A. In this case, the largest contribution comes from
the term sν[a†

νs1/2
ãπs1/2 ](1) with the coefficient of −0.837. The

contributions from the νd3/2 → πd5/2 and νd5/2 → πd5/2

terms are non-negligible but enter with opposite signs and
therefore cancel each other. On the other hand, with set B, we
have obtained 〈1/2+

1 ||ÔGT||1/2+
1 〉 = 0.448 and the dominant

component is the term sν[a†
νs1/2

ãπs1/2 ](1) with the coefficient
0.520.

The 1/2+
1 ground state for 127Xe reads∣∣∣∣1

2

+

1

〉
= (0.29 |νs1/2〉 + 0.55 |νd3/2〉

+ 0.12 |νd5/2〉 + 0.04 |νg7/2〉) ⊗ |128Xe〉 . (25)

with set A while with set B it takes the form∣∣∣∣1

2

+

1

〉
= (0.62 |νs1/2〉 + 0.19 |νd3/2〉

+ 0.16 |νd5/2〉 + 0.02 |νg7/2〉) ⊗ |128Xe〉 . (26)

The two wave functions mainly differ in the amplitudes of the
νs1/2 and νd3/2 configurations.

The 2d3/2 single-particle orbital is the lowest in energy
among the ones employed for 127Xe (see Fig. 1 of Ref. [34]).
Of the three boson-fermion terms, the exchange term is par-
ticularly important in mixing different single-particle con-
figurations and the most significant difference, between the
parameters of set A and set B is perhaps the larger exchange
strength �ν used for set B. Because of this, the mixing of the
νs1/2 single-particle components into the 1/2+

1 ground state of
127Xe is stronger. On the other hand, the 1/2+

1 ground state of
the parent nucleus 127Cs can be decomposed as follows:∣∣∣∣1

2

+

1

〉
= (0.24 |πs1/2〉 + 0.08 |πd3/2〉

+ 0.66 |πd5/2〉 + 0.02 |πg7/2〉) ⊗ |126Xe〉 . (27)

which has a similar mixing amplitude for the s1/2 single-
proton configuration to the 1/2+

1 wave function for the daugh-
ter nucleus.

VI. SUMMARY AND CONCLUDING REMARKS

In this paper, we have presented a consistent description of
the low-energy excitation spectra and β decay of odd-A nuclei
within the IBFM based on input from realistic mean field
calculations. The (β, γ ) potential energy surfaces for even-
even nuclei, the spherical single-particle energies, and the oc-
cupation probabilities for the neighboring odd-A nuclei have
been computed microscopically within the constrained HFB
scheme based on the Gogny-D1M EDF. Those quantities are
used as microscopic input to access the spectroscopic proper-
ties in odd-A nuclei within the IBFM. Only the three coupling
constants for the boson-fermion interaction terms have been
fitted to experimental data as to reproduce reasonably well the
low-lying energy levels in each of the studied odd-A systems.
Having the IBFM wave functions for the parent and daughter
nuclei, the GT and F transition strengths have been computed
without any additional phenomenological parameter.

The low-lying, positive-parity excitation spectra are re-
produced reasonably well for the even-even Xe and Ba, the
neighboring odd-N Xe and Ba as well as the odd-Z Cs and
La nuclei. The isotopic dependence of the energy levels in the
studied odd-A nuclei, and in the corresponding even-even Xe
and Ba cores, points to an evolution from prolate to γ -soft and
to nearly spherical shapes. Electromagnetic properties, such
as the B(E2) transition rates and magnetic dipole moments,
are well reproduced. We have obtained β-decay log f t values
that are systematically smaller than the experimental ones.
Those log f t values mainly depend on the details of the IBFM
wave functions for the parent and daughter nuclei and, in
many cases, they lead to unexpectedly large B(GT) and/or
B(F) values. The same problem has been often observed
in other theoretical approaches suggesting the necessity of
a quenching factor for gA. On the other hand, we do not
introduce such a quenching in the present study. The results
for the β-decay log f t values serve as a sensitive test for
the employed theoretical method and may indicate certain
improvements of the method, including the descriptions of
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the low-lying structures for both the even-even core and
odd-mass parent and daughter nuclei. Possible ways to do
so are the inclusions of new terms in the IBM and IBFM
Hamiltonians or new degrees of freedom in the IBFM such as
an intruder orbital coming from a next major shell. Another
possibility to improve the description of the log f t values
is to incorporate the effects of higher order terms in the
one-particle transfer operators in Eqs. (8)–(11), as examined
in Ref. [24]. This paper presents an implementation of the
EDF-based IBFM approach in the description of β decay
and, therefore, those extensions of the method are beyond
the scope the present work and will be explored in the near
future.

In spite of the reduced number of empirical parameters in
the model, it is possible to describe the detailed excitation
spectra for even-even, odd-A, and odd-odd nuclear systems,
and β-decay properties simultaneously and with reasonable

computational time. Keeping all this in mind, we conclude
that our description of the low-lying states and β-decay prop-
erties of odd-A nuclei within the EDF-based IBFM approach
is fairly promising in the study of fundamental nuclear pro-
cesses.
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