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Nuclear density functional theory (DFT) plays a prominent role in the understanding of nuclear structure,
being the approach with the widest range of applications. Hohenberg and Kohn theorems warrant the existence
of a nuclear energy density functional (EDF), yet its form is unknown. Current efforts to build a nuclear EDF
are hindered by the lack of a strategy for systematic improvement. In this context, alternative approaches should
be pursued and, so far, an unexplored avenue is that related to the inverse DFT problem. DFT is based on
the one-to-one correspondence between Kohn-Sham (KS) potentials and densities. The exact EDF produces
the exact density, so that from the knowledge of experimental or ab initio densities one may deduce useful
information through reverse engineering. The idea has already been proved to be useful in the case of electronic
systems. The general problem should be dealt with in steps, and the objective of the present work is to focus
on testing algorithms to extract the Kohn-Sham potential within the simplest ansatz from the knowledge of the
experimental neutron and proton densities. We conclude that, while robust algorithms exist, the experimental
densities present some critical aspects. Finally, we provide some perspectives for future works.

DOI: 10.1103/PhysRevC.101.024315

I. INTRODUCTION

Density functional theory (DFT) has become gradually one
of the best tools of choice for the study of nuclear structure
[1,2], trying to follow the path that led to the success of elec-
tronic DFT [3,4]. There are analogies and differences between
the two cases. One can expect that building an energy density
functional (EDF) for nuclei is harder than doing the same for
electronic systems, in keeping with the more involved, and
less well known, underlying nucleon-nucleon (NN) interac-
tion. This interaction is strongly spin- and isospin-dependent,
while momentum-dependent, spin-orbit, and tensor terms are
far from being negligible and there are also three-body (NNN)
components; all this is at variance with the Coulomb case.

DFT is grounded in the Hohenberg-Kohn theorems
(HKTs), stating that a universal EDF must exist and yet not
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providing any guidance on how to build its terms [5]. The most
used and well-established nuclear EDFs like the Skyrme and
Gogny ones (we do not discuss covariant functionals which,
though very successful, are outside our scope here) include
terms that have their origin in central two-body forces and
have a form proportional to the square of the total number
density (ρ2) and repulsive terms which depend on a larger
power of ρ to mimic short-range repulsion, besides the terms
that have been mentioned in the previous paragraph and ac-
count for spin forces, spin-orbit forces, etc. They contain pa-
rameters that are fitted on experimental properties of selected
nuclei, can be dubbed as phenomenological, and lack from the
beginning a clear mechanism for systematic improvement.

Recently, several groups have undertaken important steps
to build more general EDFs, in which one starts from ρ-
dependent terms, and include other terms that depend on
gradients �∇ρ up to a given order (see [6], as well as [7]
and references therein). The systematic construction of all
possible densities and their gradients has been described in
the past [8,9], together with the systematic classification of all
possible terms that should enter a nuclear EDF [10]. These
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terms are all the scalar quantities that can be built out of
densities and that are invariant under parity, time-reversal, ro-
tational, translational, and isospin transformations. Obviously,
the number of such terms can be very large, and fitting too
general EDFs may become either technically prohibitive or
impractical due to the lack of experimental input, or both.

Other attempts have been made to derive the nuclear EDFs
from fundamental approaches. In this regard, general ideas
and perspectives can be found in Ref. [11]. Whereas in
Refs. [12–14] attempts have been made to derive nonrelativis-
tic EDFs from Brückner-Hartree-Fock calculations in uniform
matter, a hybrid approach has been followed in Refs. [15–17],
in which the long-range, pion exchange-like part of the EDF
has been derived from chiral forces and short-range coupling
constants are left to be fitted against phenomenological data.
While trying to derive EDFs from ab initio theories, or to
generalize their structure, may produce some breakthroughs,
perhaps new mathematical or computational techniques are
also worth attempting.

The present work is based on the Kohn-Sham (KS) realiza-
tion of the HKTs [18]. We define the direct problem as the one
in which, given a KS functional and the associated effective
potential, we deduce the density that can be compared to
experiment as well as the total ground-state energy. We define
the inverse problem as the one in which, starting from a
given (supposedly exact) density, we deduce the effective KS
potential. Solving the inverse problem is obviously appealing
as it can constrain the phenomenological KS potential and the
phenomenological EDF at its basis. In the case of electronic
systems there have been several attempts to attack the inverse
KS (IKS) problem. In this work, we closely follow some of the
inversion methods reviewed in Ref. [19], in which some basic
concepts and techniques are discussed in detail. Hence, the
current work is motivated by the idea that if the density is the
basic variable to describe fermionic systems, as guaranteed by
the HKTs, the nuclear densities should contain, in principle,
all the relevant information to constrain the nuclear EDF.

The structure of the present paper is as follows. In Sec. II,
we introduce the KS realization of the HKTs as well as the
inverse problem, highlighting the specific aspects of the nu-
clear case as we have just mentioned. In Sec. III, we describe
the two adopted computational approaches. In Sec. IV, we
test the numerical methods presented in Sec. III by using
theoretical densities generated from a mean-field approach.
In Sec. V, we deduce from experiment the KS potential for
protons in 40Ca and for neutrons and protons for 208Pb. Our
conclusions will be presented in Sec. VI, together with some
future perspectives for this work.

II. INVERSE KOHN-SHAM PROBLEM

As is well known, the KS method is the most practical
way to implement DFT. This method is based on the idea that
solving the problem of the interacting system under study is
equivalent to solving a system of independent particles subject
to an effective potential, provided the density is the same.
In fact, the ground-state number density can be expressed as
the sum over a number Norb of KS single-particle orbitals φi,

namely

ρ(�r) =
Norb∑

i

|φi(�r)|2. (1)

In addition, it is assumed that the kinetic energy T has the
same form as in the independent particle case. Then, the EDF
is written as

E [ρ] =
∑

i

∫
d3r φ∗

i (�r)

(
− h̄2

2m

)
∇2φi(�r) + F [ρ], (2)

and its minimization leads to the well-known Kohn-Sham
equations of the type

(
− h̄2

2m
∇2 + δF [ρ]

δρ

)
φi(�r) = εiφi(�r), (3)

where εi are the so-called Kohn-Sham eigenvalues. The quan-
tity δF [ρ]

δρ
plays the role of an effective potential and will be

hereafter denoted by U [ρ]. If F is assumed, U is given and the
density can be found. In this context, the IKS problem consists
of reversing the procedure and deriving the effective potential
U [ρ] given the knowledge of ρ. As already mentioned, in
the present work only neutron and proton densities will be
considered. That is, we will assume that the KS potential is
a function of space coordinates through the dependence on
the local densities only. This potential is determined except
for a constant shift. In KS-DFT, eigenvalues and orbitals are
auxiliary quantities which, strictly speaking, have no physical
meaning. The exception is the energy of the last occupied
orbital, that coincides with the ionization energy in atomic
systems [20,21] or with the neutron/proton separation energy
in nuclear systems. This provides a unique way to set the
absolute value of the KS potential, that goes to zero at large
distances as it should.

In the literature, one finds several formulations of the IKS
problem for the case of electronic systems, (see, e.g., [19]
for a recent review and [22] for early references). The two
approaches that we discuss below were originally introduced
in Refs. [19,23]. The IKS problem has been solved in the case
of the He atom, where an exact analytic solution for wave
functions and densities is available [24], and this has allowed
testing various approximate methods [25]. Among recent
papers, we also would like to mention Refs. [26,27], that
deal with the time-dependent inverse problem, and Ref. [28],
that shows the connection between different IKS strategies.
References [29,30] should also be highlighted. This list is not
meant to be exhaustive. In nuclear physics, some groups have
tried to deduce a heavy-ion potential from time-dependent
Hartree-Fock calculations [31]. Anyway, to the best of our
knowledge, ours is the first attempt to address the IKS prob-
lem in the nuclear case. Therefore, we discuss some specific
issues in what follows.

Is the IKS problem well posed? One finds ample discussion
in the literature regarding the question of whether or not
the IKS is well-posed, according to the definition given by
Hadamard [32]. As reported in [19], according to Hadamard a
problem is well posed if a solution exists, it is unique, and
it depends continuously on the data. If any of these three
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properties is violated then the problem is ill posed. We miss a
formal proof of the fact that IKS is well posed, except for the
case of discretized systems [33], but this does not mean that
the IKS problem is necessarily ill posed. Still, its numerical
solution is a very delicate matter. From a theoretical point of
view, the existence of a Kohn-Sham potential for a given ex-
perimental density is not guaranteed, although the uniqueness
of the solution is guaranteed if a method converges (see, e.g.,
the discussion of not v-representable densities in [34]). Fur-
thermore, uncertainties and lack of completeness in the input
density data can lead to violations of the Hadamard conditions
that we have just mentioned. Some of the pathologies inherent
to experimental nuclear densities will be discussed in Sec. V.

EDF from KS potential. Going one step back from the
effective potential U [ρ(�r)] to the functional F [ρ(�r)] is also
possible. In electronic systems (cf., e.g., Ref. [35]), it has been
shown with concrete examples that the exchange-correlation
functional Exc can be reconstructed starting from the knowl-
edge of the associated exchange-correlation potential vxc. The
basic formula to achieve this goal was introduced by van
Leeuwen and Baerends in Ref. [36], and reads

Exc[ρ] =
∫ 1

0
dt

∫
d3r vxc[ρt ]

∂ρt

∂t
. (4)

Here, ρt is a continuously parametrized density such that
Exc[ρ0] = 0 and ρ1 = ρ(�r). This equation implies the knowl-
edge of the potential along a path of densities which, as we
mentioned above, is not obtainable from any experimental
input but only from ab initio calculations. For example, cal-
culations of systems of few nucleons confined in an external
harmonic oscillator potential (the so-called neutron drops)
may provide a path of densities as the confining potential can
be varied continuously. We shall try to elaborate on this in the
conclusions.

Different types of nuclear densities. In the nuclear case,
various kinds of densities must be used for a realistic EDF. In
fact, the classification of all possible local densities that may
(at least in principle) enter a local EDF, and the way to build
them, is discussed in detail in Refs. [1,8,9]. Consequently, our
current inversion of Eq. (3) is intended as a first step towards
more realistic applications, as we employ here neutron and
proton number densities alone. We shall need, in future, to
formulate the inverse KS problem also in terms of other
relevant nuclear densities. In this case, the implementation
will require the input from ab initio theories. We give just two
examples here. If we wish to include gradient terms in our
considerations, we could extract the density dependence from
uniform matter and formulate the IKS in finite nuclei to obtain
the gradient terms only. If we wish to include spin terms, we
can formulate the IKS having the spin density of odd nuclei
from ab initio calculations. We shall come back to this in the
conclusions.

Laboratory density and intrinsic density. A fundamental
difference between DFT in finite electronic systems and nu-
clei consists in the fact that in the former case the fixed
ion positions constrain the shape of the system in the labo-
ratory frame. In nuclei, that are self-bound systems, this is
not the case. The usual HK theorem, as argued by several
authors [37], is formulated for the laboratory density, while

experiments on nuclei probe the intrinsic density (relative to
the nuclear center of mass). Nonetheless, it has been proved
that, given an arbitrary Hermitian operator Q̂, one can build
an energy functional depending on Q(�r) ≡ 〈Q̂(�r)〉 that is
universal in the HK sense and has its minimum at the correct
value of Q with the correct energy (see for example Sec. II of
Ref. [37] as well as Refs. [38,39]). In this respect, being the
intrinsic density an Hermitian operator, one can replace the
laboratory density with the intrinsic density in the HK theorem
[40,41].

III. INVERSE KOHN-SHAM PROBLEM:
TWO DIFFERENT METHODS

We start from Eq. (3) and assume that the effective poten-
tial U [ρ] is only position dependent, in keeping with the KS
ansatz described in Sec. II. Thus, within this ansatz, nonlocal
effects and the spin-orbit potential are not explicitly taken into
account. The latter approximation should not impact much
the KS potential since spin-orbit effects are not expected to
markedly change the KS orbitals. Consequently, from Eq. (1),
the density should be almost untouched. Nonlocality could
be accounted for via gradients of the density but, as we have
said above, we leave this for future improvements. As for the
Coulomb interaction between protons, we implicitly assume a
local form within U [ρ] in Eq. (3). This is known to work well
for the description of the total binding energy and density in
nuclei [42,43].

We use two different methods to extract the KS potential
U [ρ] from the neutron and proton densities. The first one is
based on an iterative procedure and was introduced by van
Leeuwen and Baerends [23]; it will be called the vLB method.
The second method consists instead of the constrained min-
imization of the kinetic energy T , in the spirit of KS that
introduces an auxiliary system of independent particles with
the same density as the system under study; this method
will be called the constrained variational, or CV, method. In
choosing the notation vLB and CV, we follow Ref. [19]. In
both cases we will use ρ̃ to denote the target density, that
is, the density to be reproduced. We will restrict ourselves to
doubly magic, spherical systems.

A. The vLB method

The aim of this procedure is to bring the calculated density
as close as possible to the given target density by iteration.
That is, by starting from an initial guess of U [ρ], one im-
plements the vLB algorithm [23] to calculate the new U [ρ]
and repeats it until U [ρ] is stable. The derivation of the vLB
algorithm is very simple so we outline it in what follows.

Let us start by writing the direct formulation of the KS
equation (3) in spherical symmetry,

[
− h̄2

2m

d2

dr2
+ h̄2l (l + 1)

2mr2
+ U (r)

]
ui(r) = εiui(r), (5)

where ui(r) are the reduced radial wave functions and U (r) ≡
U [ρ(r)] is the effective Kohn-Sham potential that has been
introduced already. In the case of spherical nuclei, i stands for
n, l, j, which denote the principal quantum number, the orbital
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angular momentum, and the total angular momentum. The full
wave function reads φi(�r) ≡ unl j (r)

r [Yl (θ, φ) ⊗ χ1/2] jm, where
m denotes the projection of the angular momentum on the z
axis. We do not use specific notations for protons and neutrons
as the iterative procedure is carried out independently for the
two species. As already stressed, we assume here that the spin-
orbit potential does not change significantly the shape of the
radial wave function, so that ui(r) is effectively the same for
the spin-orbit partners j = l + 1/2 and j = l − 1/2.

The boundary conditions at the origin associated with
Eq. (5) are well known,

lim
r→0

u(r) = rl+1, (6a)

lim
r→0

u′(r) = (l + 1)rl , (6b)

and these allow one to solve the direct Kohn-Sham equation
(5) by means of a shooting algorithm. Thus, we find the energy
eigenvalues and the eigenfunctions and derive the density ρ(r)
as

ρ(r) = 1

4πr2

Norb∑
i=0

niu
2
i (r), (7)

where ni is the occupation factor of the orbital i. In prin-
ciple, ni could be taken as a fractional particle number (cf.
Ref. [20]). However, we assume here ni = 2 j + 1 since we
limit ourselves to closed shell nuclei. We have checked that,
not having implemented any spin-orbit effect in Eq. (5),
working within the uncoupled l and s or coupled j = l + s
scheme provides identical results.

The vLB inverse algorithm introduced in Ref. [23] (as well
as a slightly different algorithm [22] that is not discussed
here) can be obtained by algebraic manipulation of Eq. (5).
Specifically, by multiplying Eq. (5) by niui(r) on both sides,
summing over i, and dividing by 4πr2ρ(r), one finds

U (r) = 1

4πr2ρ(r)

Norb∑
i=0

[
niui(r)

(
h̄2

2m

d2

dr2
− Ul

)
ui + εiniu

2
i

]
,

(8)

where Ul is a shorthand notation for the centrifugal poten-
tial. Now we need to define the iterative process from that
equation. Denoting iteration numbers by superscripts, a guess
for the new potential U (k+1) can be obtained by substituting
ρ with ρ̃(r) in the denominator at the right-hand side of
Eq. (8), and realizing that the rest of the right-hand side in the
same equation corresponds to the potential times the density
determined in the previous iteration, or 4πr2ρ (k)(r)U (k). That
is,

U (k+1)(r) = 1

4πr2ρ̃(r)

Norb∑
i=0

[
niu

(k)
i (r)

(
h̄2

2m

d2

dr2
− Ul

)
u(k)

i

+εini
(
u(k)

i

)2
]

= ρ (k)(r)

ρ̃(r)
U (k)(r). (9)

It is important to note that Eq. (9) has a simple meaning.
In regions where the density at the kth step is larger than the
target density the potential is increased in absolute value, and

vice versa. This makes sense for repulsive potentials as in the
electronic case, but, in the case of the attractive potentials
needed in nuclear physics, the opposite should happen. To
avoid this problem, we have adopted a modified algorithm
proposed in Ref. [19]:

U k+1(r) = U (k)(r) + γ
ρ (k)(r) − ρ̃(r)

ρ̃(r)
. (10)

This algorithm works equally well for attractive and repul-
sive potentials and is invariant under an arbitrary shift of
the potential, providing a convenient numerical alternative.
Furthermore, we have found that the simple choice γ = 1
MeV leads to consistent results.

In short, our choice has been that of assuming a starting
potential U (k=1)(r), calculating the eigenstates u(k=1)(r) from
Eq. (5) together with the density (7), then finding a new
potential by applying Eq. (10). The procedure is repeated
until convergence. The convergence condition used to stop the
iterative procedure is set in terms of the absolute variation of
the potential, that is,

�U (k) ≡ max
r

|U (k+1)(r) − U (k)(r)| < α. (11)

Remarkably, despite its simplicity, the algorithm has proved
to be robust enough to converge to the same results, assuming
U (k=1)(r) to be equal either to a realistic Woods-Saxon poten-
tial or to a simple constant.

B. The CV method

In the CV method, the IKS problem is formulated as a
variational problem. The formulation is in keeping with the
KS ansatz, that asserts that for any interacting Fermi system
one can always postulate an independent particle system with
the same density. Accordingly, in the CV method one writes
down the kinetic energy functional of the N fermions with
the purpose of minimizing it. Therefore, in what follows, we
shall use the name “objective functional” for the expectation
value of the kinetic energy associated with the wave function
of N independent particles as in Eq. (2). The minimization is
subject to the following constraints:

(1) the single-particle orbitals φi(�r) must be orthonormal;
(2) the density of the system ρ(�r) must be equal to the

target density ρ̃(�r), for each value of �r.

Let us start from the same assumptions as in the previous
subsection. We assume that we have Norb single-particle states
and that each of them has occupancy ni. We prefer here to
write the equation without going immediately to the spheri-
cally symmetric case, as the CV method is more apt for the
generalization to the case in which this symmetry is totally or
partially broken. The objective functional reads

Ts[{φi}] =
Norb∑
i=1

ni

∫
d3r φ∗

i (�r)

(
− h̄2

2m

)
∇2φi(�r). (12)

The orthonormality of the orbitals is the first constraint and is
expressed by

Gi j[{φi}] =
∫

d3r φ∗
i (�r)φ j (�r) = δi j . (13)
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The equality of the density to the target density represents the
second constraint [see Eq. (14)]. We introduce Lagrange mul-
tipliers that correspond to these constraints. Those associated
with the constraints (13) are indicated as εi j , while we write
the constraint associated with the density as U (�r). The con-
strained minimization of the objective functional is rewritten
as the free minimization of the functional that includes the
Lagrange multipliers, which is named the cost functional [44].
This cost functional reads

J[{φi};U (�r), {εi j}] = Ts[{φi}] +
∫

d3r U (�r)ρ(�r)

−
Norb∑
i=1

i∑
j=1

εi j

∫
d3r φ∗

i (�r)φ j (�r), (14)

and the CV method consists of solving the equation

δJ[{φi};U (�r), {εi j}] = 0. (15)

It is important to note that, as explained on p. 146 of
Ref. [45], the optimization of the cost functional (15) leads
to a nondiagonal form of the KS equations. In other terms,
the wave functions φi that are solutions of (15) are not
eigenfunctions of the KS equations, and εii do not correspond
to the KS eigenvalues. Nevertheless, the set φi and the matrix
εi j are related to the orbitals that solve the KS equation and to
the diagonal matrix with the KS eigenvalues, respectively, by
a unitary transformation. At the same time, the very form of
Eq. (14) tells us that the extracted Lagrange multiplier U (�r)
is the Kohn-Sham potential, up to a constant shift. In this
respect, the CV method is a direct formulation of the IKS.

Minimizing the cost functional J[{φi};U (�r), {εi j}] means
to find the set of orbitals φi, defined on a given domain,
that gives the minimum value for the functional respecting
the two constraints at the same time. Hence, an unrestricted
three-dimensional formulation is technically involved. In or-
der to compare to our results obtained with the vLB method
presented in Sec. III A, we have limited ourselves to the case
of spherical nuclei, as already discussed, so that the problem
becomes one-dimensional, and the orbitals depend only on r.
In spherical symmetry, Eq. (14) becomes

J[{u j};U (r), {εi j}] = Ts[{u j}] + 4π

∫ ∞

0
U (r)ρ(r)r2 dr

−
Norb∑
i=1

i∑
j=1

εi jδli l j δ ji j j

∫ ∞

0
ui(r)u j (r) dr.

(16)

The CV method has been implemented following some im-
portant modifications suggested in Ref. [19]. First, a new set
of variables, viz., the rescaled orbitals fi(r) that are defined by

ui(r) =
√

4πρ̃(r) r fi(r), (17)

have been introduced. The rationale behind this substitution
is that we expect that u2

i (r) ≈ 4πr2ρ̃(r), so that the rescaling
will produce new functions fi(r) of the order of ≈1,
characterized by a milder behavior as compared to ui(r).
This helps in reducing the rounding errors that appear when

operating with quantities of different orders of magnitude.
The CV iterative procedure starts with a guess for the wave
functions, and not for the KS potential, at variance with the
vLB procedure. Also in the case of the CV method, we have
checked that the starting guess is not influencing the result of
the minimization. Indeed, starting either from constant wave
functions or from harmonic oscillator orbitals (with the usual
h̄ω = 41 A−1/3 MeV), we obtain satisfactory results.

The optimization of Eq. (15) is performed employing the
IPOPT library [46,47]. Two main conditions determine the
convergence of the algorithm:

(1) The relative tolerance on the violation of the con-
straints. This means that, at each step during the op-
timization, there is a test of the condition

max
i

∣∣∣∣gi − ci

gi

∣∣∣∣ < ε, (18)

where the constraints are denoted by ci, and the quan-
tities subject to the constraints are denoted by gi.

(2) The tolerance on the value of the objective function
f . The algorithm stops if the change in value of the
objective function between two successive iterations k
and k − 1 is smaller than a given tolerance δ, namely

| f (k) − f (k−1)| < δ. (19)

Notice that while the CV method checks the convergence
of the objective function f [Eq. (19)], that is, of the rescaled
radial wave functions ui(r), the convergence criterion of the
vLB method [Eq. (11)] is based on the change of the KS
potential U [ρ].

The transformation in Eq. (17), that ensures numerical
stability and accuracy in the solution of Eq. (15), has the effect
that the Lagrange multipliers obtained with IPOPT have lost
their direct and clear connection with U (�r) and εi j . Therefore,
in a second step, we have written explicitly the differential
equations that correspond to the variation of the cost func-
tional. Since at this stage the auxiliary wave functions at the
constrained minimum are known, the equations become a set
of algebraic equations that is easily solved to obtain U (�r) and
εi j (cf. Ref. [19]).

IV. TEST OF THE NUMERICAL METHODS

In this section, we test the two methods described in
Sec. III by using target densities produced by Hartree-Fock
(HF) calculations in the doubly magic nuclei 40Ca and 208Pb.
The HF calculations have been carried out by using the
Skyrme interaction SkX [48]. In the case of the Skyrme inter-
actions the HF equations differ from the direct KS equations
for the presence of the spin-orbit potential and of the effective
mass m∗(r). The nonlocalities introduced through effective
masses are very mild in the case of the SkX interaction. For
instance, the ratio m∗/m in 208Pb lies between 0.92 and 1 and
between 1 and 1.08, for protons and neutrons respectively. We
then expect that the inverse KS algorithms lead to potentials
which are similar to the SkX-HF potentials.

In Fig. 1, the neutron (left panels) and the proton (right
panels) target densities from the HF calculations (black
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FIG. 1. Left figure: The neutron density, ρn(r), and the proton density, ρp(r), in 40Ca are displayed as a function of the radial coordinate,
in linear scale (top panels) and in logarithmic scale (bottom panels). The target densities obtained from HF calculations based on the SkX
functional [48] (black solid line) are compared with the densities resulting from the two inversion methods discussed in the main text, namely
vLB (red dashed line) and CV (blue dot-dashed line). Right figure: The same for the nucleus 208Pb.

solid lines) in 40Ca (left figure) and 208Pb (right figure) are
shown. Upper panels show the different densities in a linear
scale while the lower panels show the same quantities in
a logarithmic scale. The logarithmic scale is important to
check the asymptotics of the densities. The results of the
inversion methods vLB (red dashed lines) and CV (blue
dash-dotted lines) reproduce in very much detail the target
HF densities. The maximum and average values (with respect
to the radial coordinate) of the absolute differences are shown
in Table I. In short, the reproduction of the target densities is
fully satisfactory, for both neutrons and protons, with either
method, in these two doubly magic nuclei. Nevertheless, the
convergence criteria in the CV method are more restrictive in
these calculations, as is evident from the same table.

The Kohn-Sham potentials obtained with the two inversion
methods are shown in Fig. 2. As mentioned, the potentials are
obtained up to an arbitrary constant. As explained in Sec. II,
it is enough to shift the potential obtained through IKS so
that the last occupied KS eigenvalue coincides with the last
occupied HF eigenvalue to obtain such a constant.

Despite numerical errors, the results for the effective po-
tentials appear to be rather satisfactory. The absolute value
of the resulting difference �U with respect to the HF poten-
tials is smaller than 2.5 MeV both for protons and neutrons
(cf. the upper panels in Fig. 2). This appears to be a quite
reasonable agreement. We note that again the CV method
seems to perform slightly better than the vLB method. The
reason stems from the different convergence criteria. The

TABLE I. Maximum (Max.) and average (Aver.) differences
between the target HF (SkX) and KS neutron (n) and proton (p)
densities from the two inversion methods for the cases of 40Ca and
208Pb. Numerical values are all in 10−6 fm−3.

vLB CV

Nucleus Max. Aver. Max. Aver.

40Ca (p) 8.0 1.3 1.0 0.2
40Ca (n) 8.7 1.4 1.0 0.2
208Pb (p) 2.6 0.3 0.4 0.1
208Pb (n) 8.7 3.6 7.5 2.1

spin-orbit energy splittings, which exist in HF and are not
taken care of in our procedure, have been checked to have
no special influence (it is well known that spin-orbit shifts
do not affect wave functions and densities, as a rule). We
recall here that there is another source of difference between
the HF eigenvalues and the KS eigenvalues. While the former
contain some effects due to the effective mass m∗/m � 1, the
latter assumes m∗/m = 1. Thus, we note a small deviation
of the KS potentials in their asymptotic behavior [21] for
r → ∞.

We now focus on the convergence of the procedures. The
two algorithms behave in a quite different way. As explained
in Sec. III A, the vLB method iterates the potential according
to Eq. (10) and stops when the condition (11) is satisfied;
in the present case, we set α = 20 keV, and the iteration
procedure is stopped when �U (k) � 20 keV. In Fig. 3, we
display the evolution of the quantity �U (k) as a function of
the number of iterations for the case of the neutrons in 208Pb,
on a linear scale (left panel) and on a logarithmic scale (right
panel). For the sake of clarity, only a representative point
every 150 iterations is shown. The values of �U (k) obtained
with the vLB method (shown by red diamonds) decrease
rapidly from 1 to about 10−1 during the first 500 iterations;
subsequently, the decrease continues but at a much slower
pace. The results from the CV method (shown by blue dots)
should be seen under a different light. The procedure does not
use the quantity �U (k) as a convergence criterion, but attempts
to minimize the value of the kinetic energy taking into account
the tolerance with which constraints should be fulfilled. Then,
the values of �U (k) corresponding to different iterations do
not, and should not be expected to, decrease with a monotonic
trend. They show instead an oscillatory behavior, which can
be observed by looking at the right panel in logarithmic scale.
With this caveat we nevertheless observe that the quantity
�U (k) shows an overall decreasing trend as the iteration
process goes on, becoming small enough to conclude that the
final result for the potential is indeed reliable.

V. RESULTS FOR EXPERIMENTAL DENSITIES

In this section, we extract KS potentials from the
experimental densities. As case studies, we use the
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FIG. 2. Left figure: The Kohn-Sham potentials for neutrons and protons obtained with the vLB (red dashed lines) and CV (blue dot-dashed
lines) inversion methods in 40Ca are displayed in the bottom panels as a function of the radial coordinate. The benchmark HF calculations
based on the SkX functional [48] are also shown (black solid lines). In the top panels, the differences �U ≡ Umethod − UHF between the vLB
and CV potential and the HF potential are shown. Right figure: The same, for the nucleus 208Pb.

proton density of 40Ca and the proton and neutron densities
of 208Pb. Specifically, the proton densities come from the
electron scattering data of Ref. [49], while the neutron density
of 208Pb has been extracted from proton scattering measure-
ments in Ref. [50]. In both references, a parametrization
of the electromagnetic charge and neutron densities based
on a sum of Gaussian functions (SoG) can be found. This
method was first introduced in Ref. [51] to extract nuclear
charge densities from elastic electron scattering data with-
out using model distributions but a basis of well behaved
functions.
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FIG. 3. Convergence test of the inversion methods, using as
target density the results of a HF calculation with the SkX inter-
action. The absolute difference �U (k) [cf. Eq. (11)] between the
neutron Kohn-Sham potentials for 208Pb calculated at two successive
iterations is shown at different iteration steps on a linear scale
(left panel) and on a logarithmic scale (right panel). Results of the
inversion method vLB and CV are shown by red diamonds and
blue circles respectively. The value of 20 keV associated with the
convergence criterion of the vLB method, discussed in the main text,
is highlighted.

The charge density distribution expressed as SoG can be
written as

ρcharge(r) =
∑

i

A(charge)
i

(
e−( r−Ri

γ
)2 + e−( r+Ri

γ
)2)

. (20)

The coefficients A(charge)
i are given by

A(charge)
i = ZeQi

2π
3
2 γ 3

(
1 + 2R2

i
γ 2

) , (21)

where Qi is the fraction of total charge that is associated with
the integral of the ith Gaussian. Accordingly, the normaliza-
tion condition

∑
i Qi = 1 holds. The Gaussians are centered

at different points Ri, whereas the widths are characterized by
a common value γ . Sometimes, the value of γ is taken to be
close to the width of the narrowest peak that one finds when
inspecting the square of typical Hartree-Fock or Woods-Saxon
wave functions for the nucleus under study. The reason why
the SoG parametrization (20) is chosen is that, if the sum
contains enough terms, it corresponds to a model-independent
representation of the actual data points. In principle, this
would require a very large number of Gaussian terms if the
experimental data could cover the full momentum transfer
range, that is from 0 to infinity. In practice this is not the
case and, thus, a manageable number of terms, of the order of
10–15, has been proved to be stable against small changes. As
can be easily understood, this representation may suffer from
the fact that experimental data is scarce or does not cover a
wide enough range of beam energies and scattering angles.

In order to extract the proton densities from the charge
densities, we have neglected the small effects due to the
electromagnetic spin-orbit and the neutron electromagnetic
finite size (see for example Sec. II B of Ref. [52]). Hence, we
have extracted the proton densities from the charge densities
as

ρcharge(�r) =
∫

d3r′ f (�r′)ρp(�r − �r′), (22)
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FIG. 4. The proton density for the case of 40Ca is displayed as a
function of the radial coordinate on a linear scale (top left panel) and
on a logarithmic scale (bottom left panel). The target experimental
density [49] labeled SoG—sum of Gaussians—(black solid lines) is
compared with those obtained with the inversion methods vLB (red
dashed lines) and CV (blue dot-dashed lines). In the bottom right
panel, the Kohn-Sham potentials obtained within the two inversion
methods are compared, and in the top right panel their difference
�U = UCV − UvLB is shown.

using the approximate electric proton form factor

f (�r) = qe

π3/2α3
e−( r

α )2

, (23)

where qe is the proton charge, α has been taken as
√

2/3Rp

and the value Rp = 0.87 fm has been assumed for the r.m.s.
proton radius. Small changes to the chosen value for Rp will
not appreciably change our results. The deconvolution that

leads to the proton charge density is performed using the
regular product in Fourier space. Due to the properties of
the Gaussian functions, the result in coordinate space can be
analytically written assuming spherical symmetry as

ρp(r) =
∑

i

γ 3Ai

eβr

[(
r − Ri

β2
+ Ri

γ 2

)
e−( r−Ri

β
)2

+
(

r + Ri

β2
− Ri

γ 2

)
e−( r+Ri

β
)2
]
, (24)

where β =
√

γ 2 − α2.
In the case of neutrons, such a procedure is not needed, as

Ref. [50] provides the neutron density in the form of Eq. (20)
directly. These data have been obtained via proton elastic
scattering. Protons interact via the strong interaction with both
neutrons and protons. So if the proton density is known, one
can derive the neutron density compatible with the experimen-
tal cross section. This procedure is not model independent,
at variance with the case of electron elastic scattering used
to determine the electromagnetic charge density. In fact, the
proton-nucleus interaction at intermediate incident energy is
relatively well known but has some uncertainty.

We have implemented the same procedure described in
Sec. III in order to solve the IKS problem with the input of
the experimental densities. We have converged to KS densities
that display a good agreement with the experimental densities.
The agreement can be seen in the left panels of Fig. 4 for
40Ca and Fig. 5 for 208Pb. The relative differences found

for the densities are of the same order of those found in the
previous section. Since the differences between the vLB and
CV densities and the target densities are not visible in detail
from the figures, the maximum and the average of the absolute
value of these differences are reported in Table II.
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FIG. 5. Left figure: The neutron and proton densities (left panels) for the case of 208Pb are displayed as a function of the radial coordinate,
on a linear scale (top panels) and on a logarithmic scale (bottom panels). The target experimental densities [49] labeled as SoG—sum of
Gaussians—(black solid lines) are compared with those obtained with the inversion methods vLB (red dashed lines) and CV (blue dot-dashed
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TABLE II. Maximum (Max.) and average (Aver.) differences
between the target experimental (SoG) and KS neutron (n) and
proton (p) densities from the two inversion methods for the cases
of 40Ca and 208Pb. Numerical values are in 10−6 fm−3.

vLB CV

Nucleus Max. Aver. Max. Aver.

40Ca (p) 14.5 1.6 0.9 0.2
208Pb (p) 5.0 1.1 0.2 0.04
208Pb (n) 17.1 1.3 0.4 0.1

The Kohn-Sham potentials, shifted by using the experi-
mental neutron and proton separation energies, obtained with
the vLB and CV methods, are also shown in Fig. 4 for 40Ca
and Fig. 5 for 208Pb. The agreement between the two inversion
methods is remarkable and of the same quality as that found in
Sec. IV for the HF test cases (see the right panels in Figs. 4 and
5). However, while the potentials in the inner part of the nuclei
look very reasonable, they oscillate and then tend to increase
without limit in the asymptotic region. That is, the asymptotic
behavior of the KS potentials at large distances is not the
expected one. This has to be attributed to the Gaussian tail of
the SoG density that both algorithms translate into a quadratic
(i.e., harmonic-oscillator-like) potential. To substantiate this
interpretation, the regions corresponding to r larger than the
radius of the outermost (second outermost) Gaussian in the
case of 208Pb ( 40Ca) are shown as shadowed areas in Figs. 4
and 5, respectively. The borders of these regions are clearly
correlated with the change in slope of the potentials. As a
consequence, our results for the experimentally derived KS
potentials cannot be regarded as reliable in the tail of the
potential.

We can conclude that the employed inversion procedure
remains robust when experimental SoG densities are input
and provides us with reliable information about the potential,
except for its tail.

VI. CONCLUSIONS AND PERSPECTIVES

We have addressed the inverse Kohn-Sham problem in
the case of the atomic nucleus for the first time, employing
two well-known inversion methods that have been used in
other fields in physics [19]. The first method is based on an
iterative procedure [23] (vLB) and the second consists of a
constrained minimization of the kinetic energy [19] (CV). We
have applied the inversion methods on the two closed shell,
spherical nuclei 40Ca and 208Pb. We first tested the numerical
algorithms, deriving the KS potential from a density obtained
by a HF calculation with a Skyrme interaction characterized
by an effective mass close to the bare mass. We verified
that the resulting KS potential is in good agreement with
the HF potential. We then applied the inversion methods to
the experimentally derived densities of protons in 40Ca and
208Pb and neutrons in 208Pb. The consistency between vLB

and CV remains remarkable, and the potentials obtained in the
interior and at the surface of the nucleus appear to be reliable.
On the other hand, the parametrization of the experimental
density as a sum of Gaussians (SoG) used in this work leads

to difficulties in the tails of the potentials. The nonphysical
Gaussian tails probed by the algorithm at large distances
translate into harmonic-oscillator-like potentials that diverge.

(i) Although attempting to use the outlined procedure
for a larger set of nuclei, including deformed ones,
might be of interest, it is quite clear from the start that
the mere experimental information about neutron and
proton densities is insufficient to deduce an effective
KS potential. In fact, as we mentioned in the text
above, we know that a realistic nuclear EDF depends
also on gradients of the densities, spin densities and
their combinations. These cannot be experimentally
determined, and we have to rely on ab initio calcula-
tions. As ab initio nuclear structure is progressing, the
first step to be undertaken should be to test the IKS
when densities from ab initio calculations are input.
This will allow one to formulate the IKS scheme in
a somehow more general manner. As we mentioned
in the text above, we envisage proceeding along at
least two directions. We will try to fix the equa-
tion of state (EoS) of uniform matter directly from
ab initio calculations, and formulate the IKS for finite
nuclei in such a way that only the gradient terms
need to be extracted. At the same time, we will try
to use the spin densities from ab initio calculations to
extract the spin part of the effective potential. We are
fully aware that in principle other kinds of densities
should enter the analysis, and further progress will
eventually be needed; however, at this first stage,
we will stick to gradual steps and take, for instance,
the spin-orbit and Coulomb parts of the EDF as
uncorrelated [13].

(ii) A specific aspect, yet related to the previous point,
is the issue of locality. There is no guarantee that a
purely local effective potential is the correct choice. In
nuclear physics, local EDFs produce local potentials
(as in the case of Skyrme EDFs) but nonlocal EDFs
and nonlocal potentials also exist (as in the case of
Gogny); however, there is a way to reparametrize non-
locality in terms of a power expansion in gradients, as
shown in Ref. [53]. Nonlocal densities from ab initio
calculations can be inspected to understand the degree
of nonlocality that is needed.

(iii) Last but most importantly, extracting an effective
potential from IKS is not enough to determine the
quantity of real interest, that is the EDF itself. As
shown by van Leeuwen and Baerends in Ref. [36],
knowing the effective potential along a path of den-
sities can give access to the EDF. In a few cases,
we can expect that ab initio calculations can explore
systems that are very close to each other in terms of
density distributions. One example is neutron drops
(see [54,55] and references therein): systems of neu-
trons confined by a harmonic oscillator potential. We
shall explore the possibility of other cases in which
ab initio calculations can be performed for systems
whose densities define a continuous path. Last but not
least, checking whether this idea is related to the one
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introduced in Ref. [56] is also to be considered a task
to deal with.

Most likely, the most promising path to follow is probably
the one in which the IKS is used in parallel with other
techniques to derive an EDF ab initio, as a way to fine tune
specific terms and not as a unique strategy. We envisage
starting soon to apply the IKS method to densities from

ab initio approaches and to understand how the current
scheme can be generalized.
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