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Here we study the static and dynamic transport properties of a low-energy two-band model proposed previ-
ously in Martino et al. [PRL 122, 217402 (2019)], with an anisotropic in-plane linear momentum dependence
and a parabolic out-of-plane dispersion. The model is extended to include a negative band gap, which leads to
the emergence of a Weyl semimetal (WSM) state, as opposed to the gapped semimetal (GSM) state when the
band gap is positive. We calculate and compare the zero- and finite-frequency transport properties of the GSM
and WSM cases. The DC properties that are calculated for the GSM and WSM cases are Drude spectral weight,
mobility, and resistivity. We determine their dependence on the Fermi energy and crystal direction. The in- and
out-of-plane optical conductivities are calculated in the limit of the vanishing interband relaxation rate for both
semimetals. The main common features are an ω1/2 in-plane and ω3/2 out-of-plane frequency dependence of the
optical conductivity. We seek particular features related to the charge transport that could unambiguously point
to one ground state over the other, based on the comparison with the experiment. Differences between the WSM
and GSM are in principle possible only at extremely low carrier concentrations and at low temperatures.

DOI: 10.1103/PhysRevB.102.125201

I. INTRODUCTION

Zirconium pentatelluride, ZrTe5, is a layered material
[1–4] which recently became a topic of intense research. This
was mainly due to the experimental evidence [5–7] of a 3D
Dirac (3DD)-like band structure in the vicinity of the � point
of the Brillouin zone, compared with the previously held
belief of paraboliclike valence bands [3]. One of the major
signatures of a 3DD-like band structure is the linearity in the
optical conductivity with respect to photon energy h̄ω above
the Pauli threshold [8]. However, for ZrTe5, recent optical
and magneto-optical measurements [9] suggest that the en-
ergy bands are not entirely linear but posses an out-of-plane
parabolic term as well.

As in many other topological semimetals, in ZrTe5 the
intrinsic energy scales are small. This makes it challenging to
experimentally distinguish between different possible ground
states [10]. The ambiguity of the band gap—whether it is
zero, finite, and positive or finite and negative—also opens a
possibility that ZrTe5 may be a Weyl semimetal (WSM) [11]
and not a Dirac semimetal as previously stated [12,13]. To
distinguish between these two options, it is of interest to see
how much their calculated charge transport quantities differ.
This begs the question of whether one could interpret the same
experimental data in different ways.

*zrukelj@phy.hr
†ana.akrap@unifr.ch

Based on the experiment and the ab initio calculation,
we had previously introduced a simple low-energy two-band
model for ZrTe5, which was identified as a gapped semimetal.
The main features of the proposed effective Hamiltonian are
the gapped and electron-hole symmetric eigenvalues. This is
accompanied by the anisotropic linearity of the bands along
the intralayer (x, y) directions and the parabolic dispersion
in the weakly dispersive out-of-plane z direction. This model
provided an explanation of experimental data [9,14], in partic-
ular the square-root dependence of the optical conductivity at
very low photon energies, in contrast to the linear dependence
found in 3DD semimetals [8,15,16]. It also allowed us to
estimate the energy interval in which the simple two-band
model applies.

In this paper, we identify under which circumstances it is
possible to distinguish between the gapped and WSM sce-
nario, specifically for ZrTe5. To do this, we generalize the
Hamiltonian model to allow for a negative band gap [17–19].
By this simple change of the sign of the band gap, we generate
a minimal 2 × 2 model Hamiltonian for WSM. And so, by
changing the sign of this parameter, we pass from a gapped
semimetal (GSM) to the WSM. The main difference lies in
the shape of the bands at low energies. Contrary to the GSM
case, the WSM case has a 3D linearlike bands in the close
vicinity of the two Weyl points.

In the ω = 0 case, corresponding to DC transport, we cal-
culate the total and the effective concentration of electrons.
Since the effective concentration is direction dependent, it
will explain the resistivity anisotropy as well as the carrier
mobility.
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FIG. 1. Ab initio calculated band structure of ZrTe5. The valence
and the conduction bands are drawn in blue and red, respectively.

All three spatial components of the real part of the inter-
band conductivity are evaluated for GSM and WSM cases, in
the limit of vanishing relaxation rate. We find that for both
the GSM and WSM, at high photon energies the (x, y) plane
conductivity has a (h̄ω)1/2 dependence, and in the z direction
it has a (h̄ω)3/2 dependence when the external field energies
are well above the band-gap value. For photon energies below
the band gap, the GSM optical conductivity is zero, while the
WSM shows a h̄ω dependence, similar to the 3DD case.

Finite temperatures, with kBT comparable to the Fermi
energy, significantly alter the shape of the optical conductivity.
This results in a linearlike optical conductivity, which can
easily be mistaken for a signature of a gapless 3DD dispersion.
Finite interband relaxation values only slightly modify the
general appearance of the real part of the conductivity, except
in the band-gap region where the conductivity acquires a finite
contribution proportional to the relaxation itself.

II. AB INITIO CALCULATIONS AND THE
MODEL HAMILTONIAN

We have performed ab initio band-structure calcula-
tions of the orthorhombic Cmcm phase of ZrTe5 using
density-functional theory (DFT) with the generalized gradient
approximation [20–22]. Once the unit cell is finalized with
the parameters a = 4.06 Å, b = 14.76 Å, and c = 13.97 Å, a
spin-orbit coupling is added to the electronic-structure calcu-
lations. The results are shown in Fig. 1 with the valence band
in blue and the conduction band in red.

At small energies, the material appears to be a semimetal
with a small band gap and the quasilinear features in the
vicinity of the � point in the Brillouin zone. The effec-
tive model considered in Ref. [9]—and used throughout the
present paper—is based on these basic features of the calcu-
lated band structure. We estimate that this two-band model
is valid in the energy interval of 60 meV above and below
the band gap. Outside this interval, the experimental optical
conductivity and the theoretical calculation no longer match.
However, the problem lies in the values of the ab initio calcu-
lated parameters in Table I. These parameters are obtained by
fitting the dispersions Eq. (2.2) to the DFT conduction band
up to 60 meV in all three directions (x, y, z). As seen from

TABLE I. The values of the parameters entering Hamiltonian
(2.1). The parameters � and εF are taken from the magneto-optical
measurements [9] while velocities and effective mass have been
calculated based on the comparison of the theoretical predictions of
the GSM model and the experimental values.

vx (m/s) vy(m/s) m∗/me 2�(meV) εF (meV)

exp 7 × 105 5 × 105 2 6 14
DFT 3 × 105 2 × 105 1 20 0

Table I, the DFT parameters deviate from the experimentally
determined parameters [9]. In particular, the band gap 2� is
off by a factor of 3, and in some references a factor of 10
or more [23–25]. The band gap is difficult to establish yet
it defines the ground state of ZrTe5. In this paper, we also
allow the possibility that ZrTe5 is a WSM, suggested by some
studies [11].

A. Effective two-band model

The 2 × 2 Hamiltonian matrix implements the electron-
hole symmetry of the valence bands, a positive energy band
gap 2� originating from the spin-orbit coupling, with the
assumption of a free-electron-like behavior in the z (or b axis)
direction and linear energy dependence in the x, y (a, c) plane.
Here we expand the model to account for the Weyl phase by
adding a negative band gap. The Hamiltonian is thus

Ĥν = h̄vxkxσx + h̄vykyσy + (
h̄2c2k2

z + ν�
)
σz, (2.1)

where the label ν differentiates between the GSM for the
value ν = +1, and the WSM for the value ν = −1. Further,
σx,y,z are Pauli matrices, vx,y are the velocities in the x and y
directions, and we introduce c2 = 1/2m∗ with m∗ being the
effective mass.

The diagonalization of Eq. (2.1) gives electron-hole sym-
metric eigenvalues

εc,v
ν (k) = ±

√
(h̄vxkx )2 + (h̄vyky)2 + (

h̄2c2k2
z + ν�

)2
, (2.2)

with the indices for the conduction (c) and valence (v)
bands. Although trivial, the change from � → −� signifi-
cantly alters the energies and single-particle properties. While
the GSM phase is always gapped in this model, the WSM
phase has two Weyl points in the Brillouin zone where the
energy vanishes, (kw

x , kw
y , kw

z ) = (0, 0,±√
�/h̄c). Expanding

the WSM eigenvalues around these two points gives linear
momentum eigenvalues,

εc,v
W (k − kw ) = ±

√
(h̄vxkx )2 + (h̄vyky)2 + (h̄vzkz )2, (2.3)

where we can formally identify

v2
z = 4�c2 = 2�/m∗. (2.4)

In a third, trivial phase, a zero gap phase occurs when the band
gap is set to zero, � = 0.

For � > 0, we have a gapped phase in which the gap is kz

dependent but never changes its sign. Therefore, there is no
interesting topology involved [26]. In contrast, for � < 0, we
obtain a minimal model for a WSM. This model is spin de-
generate simply because the Hamiltonian matrix is 2 × 2 and

125201-2



DISTINGUISHING THE GAPPED AND WEYL SEMIMETAL … PHYSICAL REVIEW B 102, 125201 (2020)

not 4 × 4. Spin degeneracy is ensured by the centrosymmetric
lattice of ZrTe5. Still, because we gain in simplicity, it is fitting
to call this � < 0 phase in a 2 × 2 Hamiltonian model a WSM
phase [17,27,28].

B. Density of states

Here we calculate the density of states (DOS) for the en-
ergy dispersion from Eq. (2.2) for the GSM and WSM cases.
By definition, the DOS per unit volume is

g(ε) = 2

V

∑
k

δ(ε − εk ). (2.5)

Given the shape of the dispersions in Eq. (2.2), the sum is
changed into an integral in a cylindrical coordinate system
by introducing the variables 	2 = (h̄vxkx )2 + (h̄vyky)2 and
z = h̄ckz,

gν (ε) = 2

(2π )3

1

h̄3

1

vxvyc

∫
	 d	

∫ 2π

0
dϕ

×
∫

dz δ(ε −
√

	2 + (z2 + ν�)2). (2.6)

First, the delta function in Eq. (2.6) is decomposed with re-
spect to the z variable into a sum:

δ(...) =
∑

z0

δ(z − z0)

∣∣∣∣∣∣
√

	2 + (
z2

0 + ν�
)2

2z0
(
z2

0 + ν�
)

∣∣∣∣∣∣. (2.7)

Here, z0 are the four roots of the argument within the δ func-

tion: z0 = ±
√

±
√

ε2 − 	2 − ν�. Due to the absolute value,
the outer set of ± points only brings a factor of 2 in Eq. (2.6).
The p = ±1 under the square root is relevant for further eval-
uation, as it will determine the upper limit of the integration
for 	. Inserting Eq. (2.7) in Eq. (2.6), and by noticing that

ε =
√

	2 + (z2
0 + ν�)2, we have

gν (ε) = 1

2π2

1

h̄3

ε

vxvyc

∑
p

∫
	 d	√
ε2 − 	2

√
p
√

ε2 − 	2 − ν�.

(2.8)

The upper limit of the 	 integration is determined by the
condition that the expression under the square root in Eq. (2.8)
be positive. The first obvious constraint is 	 < ε, and the
second depends on the sign p and on the type ν.

We solve the WSM case (ν = −1) first. For p = 1, the sub-
root expression is well defined if 	 < ε. For p = −1, we have
two additional constraints. If ε < �, then 0 < 	 < ε, or else if
ε > �, then

√
ε2 − �2 < 	 < ε. The integral in Eq. (2.8) for

the WSM case with the constraints on 	 can be most simply
written by introducing the variable u = √

ε2 − �2. Then

gW (ε) = 1

2π2

1

h̄3

ε

vxvyc
×

(∫ ε

0

du√
u + �

+
∫ ε

0

�(� − ε) du√−u + �
+

∫ �

0

�(ε − �) du√−u + �

)
,

(2.9)

FIG. 2. The density of states (DOS) as a function of ε/� in units
of g0�

3/2 [defined in Eq. (2.11)] is shown for three cases: Weyl
semimetal [Eq. (2.12)], gapped semimetal [Eq. (2.14)], and 3D Dirac
dispersion [Eq. (2.15)]. At ε � �, the DOS for the Weyl case and 3D
Dirac dispersion coincide.

where � is the Heaviside step function. If we introduce an
auxiliary function G (ε,�),

G (ε,�) = ε
√

ε − �, (2.10)

and the unit g0 as

g0 = 1

π2h̄3

1

vxvyc
, (2.11)

we can write the final result for DOS:

gW (ε) = g0[G (ε,−�) �(ε − �)

+ (G (ε,−�) + G (−ε,−�)) �(� − ε)]. (2.12)

The GSM case (ν = 1) follows similarly. Inspecting the
subroot function in Eq. (2.8), we see that p = −1 makes
the subroot expression negative and so we discard it. On the
other hand, p = +1 restricts 	 to 0 < 	 <

√
ε2 − �2. From

the upper limit, we conclude that ε > �. Using the same
substitution as in the WSM case, we have

gG(ε) = 1

2π2

1

h̄3

ε

vxvyc

∫ ε

�

du√
u + �

, (2.13)

which can be evaluated explicitly:

gG(ε) = g0 G (ε,�) �(ε − �). (2.14)

It is interesting to notice that the low-energy limit, ε � �,
of gW (ε) reduces to the 3DD case:

gW (ε � �) = g0
ε2

√
�

. (2.15)

The three densities of states, Eqs. (2.12), (2.14), and (2.15)
are shown in Fig. 2. The DOS in Eq. (2.15) is twice the value
of a single Dirac cone since in the low-energy Weyl picture,
there are two equal contributions of the Weyl points to the total
DOS. This can be seen from Fig. 3, where the Fermi surface is
shown for the WSM and GSM scenarios. When Fermi energy
is below �, Lifshitz transition takes place and the WSM Fermi
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FIG. 3. The ky = 0 cross section of the Fermi surface shown for
the Weyl semimetal and gapped semimetal case, at different Fermi
energy values. For the Weyl case, the orange curve separates the two
different Fermi surface topologies. The orange line corresponds to
the kink in the density of states.

surface contains two electron pockets which begin to merge at
the Fermi energy εF = �. This energy corresponds to the van
Hove discontinuity in the DOS, seen as a kink in Fig. 2.

The DOS for the zero gap case is most easily obtained by
setting � = 0 in Eq. (2.14). This gives

g(ε) = g0ε
3/2. (2.16)

Notice that the above value of the DOS is the high-energy
ε � � limit of Eqs. (2.14) and (2.12).

III. ZERO-TEMPERATURE DC QUANTITIES

Having evaluated the DOS, we can proceed to calculate the
often used transport quantities: the total concentration of con-
duction electrons n, the effective concentration of conducting
electrons nα , the resistivity 	α , and the electron mobility μα .
All calculations in this section are performed for T = 0 for
both the GSM and WSM cases.

A. Total electron concentration n

The total carrier concentration n is defined in the
usual way:

n = 2
∑

k

fk =
∫

g(ε) f (ε, μ)dε. (3.1)

At T = 0, the Fermi-Dirac function is f (ε, μ) = �(εF − ε)
and it simply modifies the upper integration limit. In integrat-
ing Eq. (3.1) with the DOS as defined in the previous section,
we define a second auxiliary function N (ε,�):

N (ε,�) = (3ε + 2�)(ε − �)3/2. (3.2)

In this way, we are able to write the total concentration of
electrons in the GSM case as

nG(εF ) = 2
15 g0N (εF ,�)�(εF − �), (3.3)

and similarly for the WSM case:

nW (εF ) = 2
15 g0[N (εF ,−�)�(εF − �)

+ (N (εF ,−�) − N (−εF ,−�))�(� − εF )].

(3.4)

The total concentration is plotted in Fig. 4(a) (full lines) for
the GSM and WSM cases as a function of εF /�, in unit of
concentration n0:

n0 = 2
15 g0|�|5/2. (3.5)

This unit has a value of n0 = 3.17 × 1014 cm−3 if the experi-
mental values from Table I are used.

B. Effective electron concentration nα

The effective concentration of the conduction electrons is
a direction dependent variable defined as [29,30]

nα = − 2

V

∑
k

me(vαk )2(∂ fk/∂εk ). (3.6)

Here, α is a Cartesian component, me is the electron bare
mass, and vαk = (1/h̄) ∂εk/∂kα is the electron group velocity.
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FIG. 4. (a) The total electron concentrations for the gapped semimetal, Eq. (3.3), Weyl semimetal, Eq. (3.4), and a low-energy limit of
Weyl semimetal, which is a 3DD, Eq. (3.10), are shown by the full lines. For the first two cases, the effective concentration in z direction
is also shown by dashed lines, as given by Eqs. (3.12) and (3.13). All concentrations are plotted in units of n0, Eq. (3.5). (b) The effective
concentration for gapped semimetal and Weyl semimetal cases, in the x and z directions, nx and nz, respectively, plotted as a function of the
total concentration n. The nx concentrations are multiplied by A−1 ≈ 0.001 to fit into the same figure. The blue dot represents the concentration
n = 2

√
2n0 at which the states of the WSM are filled up to εF = �, corresponding to the orange line in Fig. 3.
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At T = 0, ∂ fk/∂εk = −δ(εk − εF ), which excludes all states
except those at the Fermi level. The expression in Eq. (3.6)
forms a part of the Drude formula,

σα (ω) = ie2

me

nα

ω + i/τ
, (3.7)

where nα defines the Drude spectral weight related to the
plasmon frequency, which is most easily seen in a reflectiv-
ity measurement. A common feature of the dispersions in
Eq. (2.2) is the similar shape of their electron velocity in the
α = (x, y) direction, vν

αk = h̄v2
αkα/εν

k. We have inserted this
velocity in Eq. (3.6), so we can evaluate nν

x for GSM and
WSM cases using the approach outlined in Sec. II B. The
result for the GSM is

nG
x (εF ) = mev

2
x

�

�

εF
nG(εF ), (3.8)

and similarly for the WSM:

nW
x (εF ) = mev

2
x

�

�

εF
nW (εF ). (3.9)

Both concentrations, Eqs. (3.8) and (3.9), have the same high-
energy limit, when εF � �. For energies below �, only nW

x
remains finite,

nW
x (εF ) = 2

3π2h̄3

mev
2
x

vxvyvz
ε2

F , (3.10)

and gives the same result as found for the 3DD dispersion
[8,15] once we substitute Eq. (2.4) in Eq. (3.9). The α = y
case is obtained by a simple exchange x → y in Eqs. (3.8)
and (3.9).

A different behavior is anticipated for the nν
z , primar-

ily because of the different velocity dependence vν
zk =

2h̄c2kz(h̄2c2k2
z + ν�)/εν

k. Solving for nz calls for the defini-
tion of yet another auxiliary function,

M (ε,�) = (15ε2 + 12ε� + 8�2)(ε − �)3/2, (3.11)

which then yields

nG
z (εF ) = 4

105
g0

mec2

εF
M (εF ,�)�(εF − �), (3.12)

and

nW
z (εF ) = 4

105
g0

mec2

εF
[M (εF ,−�)�(εF − �)

+ (M (εF ,−�) − M (−εF ,−�))�(� − εF )].

(3.13)

From Table I, we see that mec2 = 1/4, allowing us to plot
both concentrations, Eqs. (3.12) and (3.13), in Fig. 4(a) in
units of n0 as a function of the ratio εF /�. What we see
from Fig. 4(a) is that both the total and the effective electron
concentrations are very similar in shape for the GSM and
WSM at Fermi energies above εF = �, where the nν > nν

z .
This trend is reversed for low Fermi energies, εF < �, where
only the WSM concentrations remain finite. In addition, the
effective electron concentration for the Weyl case, Eq. (3.13),
has a weak hump at εF = �. This is produced by a kink in the
DOS. The effective concentrations for the gapped, Eq. (3.8),

and the Weyl case, Eq. (3.9), in comparison to the total carrier
concentrations, Eqs. (3.3) and (3.4), are A = mev

2
x /� = 930

times larger if we take the values from the Table I. The pa-
rameter A is used in plotting the concentrations in Fig. 4(b).
Experimentally, it is natural to express the transport quantities
as functions of the doping or the total carrier concentration n.
This procedure is carried out numerically by expressing εF /�

as a function of the total concentration, Eq. (3.3) for the WSM
and Eq. (3.4) for the GSM, and then inserting this into the
effective concentrations, Eqs. (3.8) through (3.13).

Figure 4(b) shows the effective GSM and WSM carrier
concentrations, nν

α , as a function of the total carrier concen-
tration nν . The WSM case (red lines) is visibly different form
the GSM case (green lines). Through this difference we might
obtain insight on how to distinguish the GSM case from
the WSM case, at zero temperature, based on the resistivity
anisotropy. This is done in the following section.

The zero gap case follows trivially from Eq. (3.3) which,
after setting � = 0, gives the total concentration:

n(εF ) = 2
5 g0ε

5/2
F . (3.14)

Setting � = 0 may also be applied to all other effective con-
centrations.

C. Mobility and resistivity

The conduction electron mobility μ is defined through the
following relation [31]:

σ ν
α (0) = eμν

αnν . (3.15)

Through comparison with Eq. (3.7), we conclude

μν
α = eτ

me

nν
α

nν
. (3.16)

Based on the results for WSM and GSM cases for in-plane
effective concentrations, α = (x, y), we have

μν
α = eτ

me

mev
2
α

�

�

εF
. (3.17)

The large ratio A = 930 is key in the above expression, mean-
ing that a very large intralayer carrier mobility in ZrTe5,
reaching up to 0.45 × 106 cm2/(Vs), is related to a high Fermi
velocity (Table I).

For the z direction, the limit of εF � � gives the identical
mobility for the WSM and GSM cases:

μν
z = 5

14

eτ

me
. (3.18)

For the GSM, μG
z = 2ec2τ = eτ/m∗ when the Fermi level εF

hits just above �. This is a usual result for a paraboliclike dis-
persion with an effective mass m∗, but interestingly it comes
with a different numerical prefactor than the high-energy limit
of carrier mobility [Eq. (3.18)]. The εF � � WSM case is

μz = eτ

me

�

εF
, (3.19)

which is equivalent to Eq. (3.17) once we use the substitution
in Eq. (2.4).
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FIG. 5. Resistivity anisotropy defined as Rαβ = 	α/	β and eval-
uated at T = 0 as a function of total carrier concentration for gapped
semimetal and Weyl semimetal cases. While Rxy is constant, RG

zx

strongly increases at low carrier concentration and RW
zx has a peak.

Note that RG
zx and RW

zx are scaled down by a factor of 1/A = 1/930.

The direction-dependent resistivity anisotropy is best seen
through the resistivity ratio Rαβ , where (α, β ) ∈ (x, y, z) de-
fined from the Drude formula [Eq. (3.7)] for the GSM and
WSM cases:

Rν
αβ = 	ν

α

	ν
β

= nν
β

nν
α

. (3.20)

The in-plane resistivity ratio is straightforward and equal for
the GSM and WSM cases. Using Eqs. (3.8), (3.9), and Table I,
we get

Ryx = v2
x /v

2
y = 1.96. (3.21)

This constant value is shown in Fig. 5 in blue, and it is very
close to the experimentally obtained value Rexpt

yx ≈ 2 [14].
In contrast to Eq. (3.21), the out-of-plane anisotropy Rzx

strongly depends on the total concentration of electrons n.
This is seen in Fig. 5 where Rzx is plotted for the WSM and
GSM cases as a function of n/n0. The upper limit of the
plot is 100 n0. For � = 3 meV (Table I), this corresponds to
a Fermi energy of εG

F = 13.4 meV [Eq. (3.3)] in the GSM
and εW

F = 11.4 meV [Eq. (3.4)] in the WSM case. In the
low-concentration limit, RG

zx and RW
zx are visibly different.

While RG
zx decreases monotonically from the maximal value

of 2A; RW
zx increases to a maximum located at 7.3 n0, only to

start decreasing for larger doping. This qualitatively different
behavior of Rzx as a function of n is the key to distinguish
the GMS from the WSM in DC transport, under the condition
that the samples can be chemically or electrostatically doped.
Experimentally, one can measure the anisotropy Rzx, for ex-
ample, using microfabricated samples [14]. Using expressions
for effective carrier concentrations, Eqs. (3.7)–(3.9) gives in
the high concentration limit n � n0:

Rν
zx ≈ 14

5

mev
2
x

�

[(
n

3n0

)2/5

+ ν
2

15

]−1

. (3.22)

This is shown in Fig. 5, where the splitting between the
GSM and WSM follows from Eq. (3.22). In the opposite,

low-energy limit when εF � �, the resistivity anisotropy is
only meaningful in the WSM case where it is given by

RW
zx ≈ v2

x

v2
z

. (3.23)

The resistivity anisotropies containing z and y directions fol-
low analogously.

In the zero-gap case, Ryx is the same as Eq. (3.21),
while Rzx is

Rzx = 14

5

mev
2
x

εF
∝ n−2/5, (3.24)

an exact result over the entire range of concentration n. Con-
trary to the GSM and WSM cases, both of which have finite
values in the n → 0 limit as seen in Fig. 5, the zero gap resis-
tivity anisotropy, Eq. (3.24), diverges for small concentrations.
This makes it a valuable indicator about the possible nature of
the ground state.

IV. OPTICAL CONDUCTIVITY

When dealing with the optical response of an insulator
or a semimetal, we normally use a conductivity formula
containing a phenomenological interband relaxation rate �.
This interband � is different from the intraband or Drude
relaxation rate 1/τ . In the two-band model, the interband
conductivity is [32]

Re σα (�, T ) = 2ih̄

V

∑
k

∣∣Jvc
αk

∣∣2

εc
k − εv

k

f v
k − f c

k

� − εc
k − εv

k + i�
+ c � v.

(4.1)

In Eq. (4.1), we introduced � = h̄ω and the α-dependent
interband current vertices Jvc

αk [33] which are calculated in the
Appendix for the WSM and GSM cases. Here we limit our
discussion to the interband conductivity, knowing that a Drude
term will always be present for a finite carrier density.

We analytically evaluate the real part of the conductivity
tensor [Eq. (4.1)] in the limit � → 0. Considering only � >

0, the above expression Eq. (4.1) becomes

Re σα (�, T ) = 2h̄π

V

∑
k

∣∣Jvc
αk

∣∣2 f v
k − f c

k

εc
k − εv

k

δ
(
� − εc

k + εv
k

)
.

(4.2)

The Fermi-Dirac distributions in the above expression are
simplified by taking into account the symmetry of the bands
εc

k = −εv
k and the fact that the expression Eq. (4.2) is finite

only for � = εc
k − εv

k. We can then write the distribution
function as

F (�, T ) = f v
k − f c

k = sinh(β�/2)

cosh(βμ) + cosh(β�/2)
. (4.3)

In the T = 0 case, the above expression simplifies to
F (�, 0) = �(� − 2εF ), which describes the suppression of
the interband transitions due to the Pauli blocking.

Calculation of Re σx(�, T ) follows analogously to the
procedure outlined in previous sections. First we insert the
interband current vertex, Eq. (A9), into Eq. (4.2). The new
variables are 2h̄vxkx = x, 2h̄vyky = y and

√
2h̄ckz = z. After
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FIG. 6. The optical conductivity of gapped semimetal [Eq. (4.8)]
and Weyl semimetal [Eq. (4.14)] are plotted in full lines in the
case of εF = 0 in units of σ x

0 . The dashed lines represent the op-
tical conductivity at zero εF , but using the approximate expression
Eq. (4.6) within Eqs. (4.8) and (4.14). The zero gap (ZG) phase
optical conductivity [Eq. (4.18)] is shown in orange.

the transformation into the cylindrical system, we have

Re σ ν
x (�, T ) = 1

16
√

2π

e2

h̄2

v2
x

vxvyc

F (�, T )

�

∫
	d	

∫
dz

× δ(� −
√

	2 + (z2 + ν2�)2)

×
(

1 + (z2 + ν2�)2

�2

)
. (4.4)

The solution to Eq. (4.4) will be facilitated by introducing yet
another auxiliary function:

D (�,�) = √
� − 2�

(
1 + 3�2 + 8�� + 32�2

15�2

)
. (4.5)

Here we mention briefly some of the properties of D (�,�).
For � just above 2�, Eq. (4.5) reduces to D (�,�) ≈
2
√

� − 2�. In the opposite limit (� � �), we have
D (�,�) ≈ (6/5)

√
�. In all cases of interest, function

D (�,�) can be well enough approximated by

D (�,�) ≈ (6/5)
√

� − 2�. (4.6)

To simplify our optical expressions, we define the units of
conductivity, σα

0 . They depend on the component α ∈ (x, y, z):

σα
0 = e2

8
√

2π h̄2

1

vxvyc

(
v2

x δα,x + v2
y δα,y + 2c2δα,z

)
. (4.7)

In continuation, we determine the optical conductivities
separately for the GSM and WSM cases.

A. Optical conductivity for gapped semimetal case

The real part of the x component of the interband conduc-
tivity is given for the GSM (ν = +1) case by

Re σ G
x (�, T ) = σ x

0 F (�, T )D (�,�). (4.8)

Figure 6 shows the optical conductivity determined from
Eq. (4.8) for the intrinsic case where εF = 0, in other

words F (�, T ) = 1. If an approximate expression shown in
Eq. (4.6) is used in Eq. (4.8), it leads to a simplified version of
the interband conductivity:

Re σ G
x (�, T = 0) ≈ σ x

0
6
5

√
� − 2� �(� − 2εF ). (4.9)

This approximate result is also shown in Fig. 6 with a dashed
line, and it is rather close to the exact expression in Eq. (4.8).

Figure 7 shows the real part of the optical conduc-
tivity determined from Eq. (4.8) for various tempera-
tures given in units of Fermi temperature, kBTF = εF .
We consider two cases. In the first case, we neglect
the temperature variation of the electron chemical poten-
tial by fixing εF = μ(T = 0). In the second case, we
include the temperature dependence of the chemical po-
tential μ(T ), and we calculate μ(T ) self-consistently from
the relation Eq. (3.1) inserted into Eq. (4.3). The differ-
ence between using μ(T ) or εF diminishes at T � TF ,
and at high temperatures, T > TF . The reason for this is
that at low temperatures μ ≈ εF , and at high temperatures
the Fermi-Dirac distribution is smeared beyond the temper-
ature dependence of μ(T ). Interestingly, in the intermediate
temperature range where T ∼ TF , the optical conductivity
develops a linear-like energy dependence. This quasilinear op-
tical response of Re σ G

x (�, T > TF ) shown in Fig. 7 can easily
be mistaken for a sign of a 3DD-like band structure. In fact,
the apparent linearity only represents a crossover regime be-
tween the low-temperature convex and the high-temperature
concave behavior of optical conductivity. Such progression of
the optical conductivity from low to high temperatures can be
seen in experiments, for example in Fig. 2(d) of Ref. [9].

The derivation of Re σ G
y (�) is essentially the same, the

only difference arising from the current vertex which changes
the ratio of the electronic velocities. The resulting real part of
the optical conductivity is

Re σ G
y (�, T ) = σ

y
0 D (�,�)F (�, T ). (4.10)

The differences are, just like in the DC transport, addressed in
Sec. III, in the z direction. This is a result of a different current
vertex Jvc

zk [Eq. (A10)]. Introducing the fifth and final auxiliary
function Z (�,�),

Z (�) = 8

105

1

�2

√
� − 2� (� − 2�)2(5� + 2�), (4.11)

we can write the z component of the optical conductivity in a
more compact way:

Re σ G
z (�, T ) = σ z

0F (�, T )Z (�,�). (4.12)

Energy properties of Eq. (4.12) are determined by the
function Z (�,�), whose limit Z (� � 2�,�) ∼ �3/2 de-
termines the high-energy z components of the real part of the
conductivity:

Re σ G
z (�, T ) ∝ �3/2. (4.13)

This function is plotted in Fig. 8 and is visibly different
from the xy plane conductivity [Fig. 7(a)], which behaves as
∝ �1/2. However, the z-axis optical conductivity is experi-
mentally much less accessible due to the sample morphology.
No reflective surface of single crystals of ZrTe5 contains
the z axis.
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FIG. 7. The x component of the real part of the optical conductivity is shown for (a) the gapped semimetal [Eq. (4.8)] is and (b) the Weyl
semimetal [Eq. (4.14)]. The optical conductivity is shown at various temperatures. Both conductivities are given in units of σ x

0 , as a function
of � which is scaled to the gap parameter � for a particular value of Fermi energy, εF = 3�. The full lines are optical conductivity calculated
using μ(T ), while the dashed lines are calculated using constant μ(T ) = μ(0) = εF . The F (�, T ) = 1 case is represented by dotted lines in
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B. Optical conductivity for Weyl semimetal case

Similar analysis applies to the WSM case. Once again, us-
ing the shorthand introduced in Eq. (4.5), the real component
of the optical conductivity along x axis is

Re σW
x (�, T ) = σ x

0 F (�, T )[D (�,−�)�(� − 2�)

+ (D (�,−�) − D (−�,−�))�(2� − �)].

(4.14)

The basic features of this function are displayed in Fig. 6,
where Eq. (4.14) is plotted for the case that F (�, T ) = 1
and taking the full expression Eq. (4.5), shown in a full line,
versus the approximation Eq. (4.6), shown in a dashed line.
The linearity of Re σW

x (�, T ) is clearly seen for � < 2�. By
expanding Eq. (4.14) for small energies �, we have indeed,

Re σW
x (� � 2�, T ) ≈ e2

6π h̄2

v2
x

vxvyvz
�F (�, T ), (4.15)
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FIG. 8. The real part of the optical conductivity as calculated in
the z direction for gapped semimetal, Eq. (4.12), and Weyl semimetal
case, Eq. (4.17), plotted in units of σ z

0 . The 3DD dispersion case,
Eq. (4.15), is added for comparison.

in accordance with the 3DD spectrum [8]. At the energy � =
2�, a direct transition between two hyperbolic points in the
energies of Eq. (2.2) occurs, and manifests itself as a kink in
the curve, just as it did in the DOS. In the case of � � 2�,
the optical conductivity becomes

Re σW
x (�, T = 0) ≈ σ x

0
6
5

√
� + 2� �(� − 2εF ). (4.16)

Figure 7(b) shows the WSM optical conductivity from
Eq. (4.14) plotted for various temperatures TF . As in the
previous calculation, the case of constant εF = μ(T = 0) and
the μ(T ) have been addressed. The μ(T ) was calculated
self-consistently from Eq. (3.1). In addition to the similar
temperature-dependent features like in the GSM case, we see
a persistent kink at 2� at all temperatures. This kink comes
from the merging of the Weyl cones and the related direct
transitions between van Hove points.

The z component is

Re σW
z (�, T )

= σ z
0F (�, T )[Z (�,−�)�(� − 2�)

+ (Z (�,−�) − Z (−�,−�))�(2� − �)], (4.17)

with the Re σz(�, T ) ∝ �3/2 in the high � limit, like for the
GSM in Eq. (4.13). In the low-energy limit, the above relation,
Eq. (4.17), reduces to the expression in Eq. (4.15), with vx

replaced by vz.

C. Optical conductivity for zero gap case

In the zero gap phase, the GSM and WSM expressions
from the previous two sections reduce to the same result.
Since D (�,� = 0) = (6/5)

√
�, for the α = x, y compo-

nents of the conductivity, we get

Re σα (�, T ) = σα
0

6
5

√
� F (�, T ). (4.18)

The above conductivity is shown in Fig. 6. In a similar way,
the z component of the real part of the optical conductivity
is obtained by setting � = 0 in Eq. (4.12), which makes
Eq. (4.13) an exact result.
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D. Optical conductivity anisotropy

The ratio of the x [Eq. (4.8)] and y [Eq. (4.10)] components
of the real part of the optical conductivity is very much analo-
gous to the analysis followed in Sec. III C. For both the GSM
and WSM, the optical conductivity anisotropy is identical,

Re σ ν
x (�, T )

Re σ ν
y (�, T )

= v2
x

v2
y

, (4.19)

and given by an expression analogous to the resistivity
anisotropy in Eq. (3.20). For the majority of anisotropic Dirac
systems, the velocity ratio is vx/vy ∼ 1 [34–36], and ZrTe5 is
no exception with its vx/vy = 1.4. In some systems, this ratio
was reported to be an order of magnitude larger [37]. Another
equally important parameter responsible for the amplitude of
the optical conductivity is the effective mass m∗, hidden in
vz [Eq. (2.4)], which should be very large, m∗ � me for the
model described in Eq. (2.1) to be applicable. The effective
mass m∗ plays a role in the following ratio which involves the
z-component conductivity:

Re σ ν
z (�, T )

Re σ ν
x (�, T )

≈ 2

3

�

m∗v2
x

(
�

2�
− ν

)
. (4.20)

Similar to the DC case [Eq. (3.22)], because of the very large
characteristic energy m∗v2

x � 1 eV, the above ratio is ex-
tremely small in the energy range where the model [Eq. (2.1)]
is valid.

It is worth mentioning that Re σ ν
x,y are nicely described by

the approximative function, Eq. (4.6), compared to the exact
one in Eq. (4.5), as can be seen from Fig. 6. If we go back
to Sec. II B, we may notice that Re σ ν

x,y with Eq. (4.6) is in
fact proportional to gν (�, 2�)/�. This is in accordance with
the usual rule-of-thumb derivation of the optical conductivity
[30], where the interband current vertex is assumed to be a
constant in Eq. (A11). While this simplification works well
for the (x, y) case, it utterly fails for the z direction [see
Eq. (A10)].

We emphasize that our model, Eq. (2.1), is restricted
in calculating the optical response of the ZrTe5. As previ-
ously stated, experimental data agrees with the predictions of
Eq. (4.9) up to photon energy h̄ω ≈ 120 meV. The upper Pauli
edge given by Eq. (4.3) is twice the critical Fermi energy εc

F .
Below the energy εc

F , the electron dispersions are indeed given
by Eq. (2.2). Since we take � = 3 meV in the calculations in
this section, the results in Fig. (6)–(8) fall well into the interval
of the model’s applicability. The problem lies in the results
for WSM and GSM optical conductivity for energies larger
than 2�. They both have a similar ∼ω1/2 dependence. This
similarity makes it difficult to distinguish between the two
cases, unless the Pauli edge is very low, less than 2�. For such
a low Pauli edge—which corresponds to a very low impurity
doping—one could detect the kink in the optical response, if
ZrTe5 was a WSM.

E. Finite interband relaxation rate � and finite temperature
effects in the GSM case

Finite interband relaxation � contribution to the
Re σx(�, T ) is calculated numerically from the expression
Eq. (4.2). Finite � modifies the onset of the single-particle

FIG. 9. Real part of the static interband conductivity, Re σ G
x (� =

0, T )/�, as a function of temperature T , plotted for several values of
interband relaxation �. The maximum located at T ∗ (colored circles)
slowly shifts to lower values with increasing �. The inset of the
picture shows Re σ G

x (� = 0) as a function of �/εF at T = 0.

excitation in comparison with the analytical result in Eq. (4.4),
which then gives a nonzero value of the static interband
conductivity Re σx(0, 0) in the band gap region, even at zero
temperatures.

The increase of the static interband conductivity can be
clearly seen in the inset of Fig. 9, where Re σ G

x (0) is shown
as a function of �. Deriving this functional dependence is
straightforward in the case of a 3DD dispersion [15]. In the
GSM case, we can find the result numerically:

Re σx(0, 0) ∝
√

� arctan (
√

�/2εF ). (4.21)

The above expression shows a linear increase of the � = 0
interband conductivity for the interband damping � < εF , and
a stronger deviation for higher values of �.

The temperature dependence of Re σ G
x (� = 0, T )/� is

plotted in Fig. 9 for various values of the interband relaxation
�. The strong increase of the static T = 0 value of the con-
ductivity is noteworthy. This has already been addressed and
is shown in the inset of Fig. 9. At finite temperatures, there is
a maximum located at T ∗ ≈ 0.4 TF , which can be traced back
to the smearing of the Fermi-Dirac function with increasing
T . The maximum T ∗ slowly shifts toward lower values as we
increase �.

This calculation is also relevant in the intrinsic case, when
εF = 0. In the absence of a Drude component, the interband
contribution will then dominate the response. We emphasize
that the Drude component is not considered anywhere in
Sec. IV, although it is present and may be large at finite
temperatures or finite carrier densities.

V. CONCLUSIONS

In this paper, we have addressed the static and dynamic
transport properties of the Weyl and GSM described by an
effective two-band model of the valence electrons. The model
implements a linear dispersion in the in-plane directions and
a parabolic dispersion in the out-of-plane direction, coupled
to a positive band gap in the gapped case or a negative band
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gap in the Weyl case. The transport properties in the static
limit, such as the direction dependent resistivity and mobility,
are predominately influenced by large values of intralayer
electron velocities. The transport properties are similar in the
Weyl and gapped cases at high values of Fermi energy. For
energies lower than the band gap, only the Weyl phase has
a finite contribution, and this limit corresponds to the well-
known 3DD dispersion case.

In the limit of low concentrations, we show how to distin-
guish between Weyl phase, finite gap, or zero gap phase, using
resistivity anisotropy in the out-of-plane direction.

The interband conductivity shows a ω1/2 dependence on
photon energy in the in plane and a ω3/2 dependence in the
out-of-plane direction for both GSM and WSM cases. The
model predicts that the in-plane conductivity anisotropy is
equal to the squared Fermi velocity ratio, just like it is the
case for the DC transport. The model also shows out-of-plane
conductivity anisotropy, although proportional to ω, is in-
significantly small due to the comparatively large velocity vx,
within the energy interval where the two-band model applies.
The effects of a finite interband relaxation constant give a
finite contribution to the interband conductivity as well as a
maximum in temperature at T ∗, associated with the smearing
of the Fermi-Dirac distribution at high temperatures and small
Fermi energies.

Finally, we showed that it is not possible to distinguish
WSM and GSM at higher temperatures and/or higher carrier
concentrations, within our effective model. At high tempera-
tures, both of these cases strongly resemble 3DD semimetal.
This means that the measurement of optical conductivity
alone should not be used to classify the topological nature of
the ground state if εF > 2� at zero temperature. A similar
conclusion is valid for DC transport. If the doping is high,
there is no way to distinguish between WSM and GSM.

At very low doping, DC transport gives different ratios of
the interlayer and intralayer resistivities for the gapped and
Weyl cases. In the case of ZrTe5, it remains an experimental
challenge how to reach such low carrier concentrations.

Note added: Recently, we became aware of the work of
Wang and Li [38], whose results are in agreement with our
findings for T = 0 interband conductivity of our model.
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APPENDIX: CURRENT VERTICIES

In the general form of the 2 × 2 Hamiltonian,

H =
(

bk ak
a∗

k dk

)
, (A1)

the interband L �= L current vertices can be shown to be [33]

JLL
αk =

∑
��′

e

h̄

∂H ��′
k

∂kα

Uk(�, L)U ∗
k (�′, L), (A2)

where Uk(�, L) are the elements of unitary matrix defined as
UĤU−1 = E,

Uk(�, L) =
(

eiϕk cos(ϑk/2) eiϕk sin(ϑk/2)

− sin(ϑk/2) cos(ϑk/2)

)
, (A3)

with the definitions

ak = |ak|eiϕk , tan ϕk = Im ak

Re ak
, tan ϑk = 2|ak|

bk − dk
. (A4)

Therefore, in the general case of Eq. (A1), Eq. (A2) gives

h̄

e
Jvc
αk = tan ϑk

2
√

1 + tan2 ϑk

∂ (bk − dk )

∂kα

+ i|ak|∂ϕk

∂kα

+ 1√
1 + tan2 ϑk

∂|ak|
∂kα

. (A5)

Now we can determine the above derivations for the Hamilto-
nian in Eq. (2.1). We obtain

∂|ak|
∂kα

= h̄
v2

x kxδα,x + v2
y kyδα,y√

(vxkx )2 + (vyky)2

h̄2c2k2
z + ν�∣∣εν

k

∣∣ (A6)

and

∂ϕk

∂kα

= vxvy(kxδα,y − kyδα,x )

(vxkx )2 + (vyky)2
, (A7)

and, trivially,

∂ (bk − dk )

∂kα

= 4h̄2c2kzδα,z. (A8)

In the specific case of ν for the x component of Eq. (A5),

h̄2

e2

∣∣Jvc
xk

∣∣2 = h̄2v2
x

(vxkx )2 + (vyky)2

×
(

v2
y k2

y + v2
x k2

x

(
h̄2c2k2

z + ν�
)2∣∣εν

k

∣∣2

)
, (A9)

and analogously for the α = y component. The z component
is rather different from Eq. (A9) and is

h̄2

e2

∣∣Jvc
zk

∣∣2 = 4h̄4c4k2
z

(h̄vxkx )2 + (h̄vyky)2∣∣εν
k

∣∣2 . (A10)

In the close vicinity of the � point in the Brillouin zone
(kx, ky, kz ) → 0, and thus tan ϑk → 0/� = 0. Then, inserting
Eq. (A6) in Eq. (A5) for α = x, y we have∣∣Jvc

αk

∣∣2 ≈ e2v2
α, (A11)

while the z component stays the same as Eq. (A10). Ex-
panding Eqs. (A9) and (A10) around Weyl points, we again
end with ∣∣Jvc

αk

∣∣2 = e2v2
α, (A12)

where now α = (x, y, z) with v2
z = 4�c2.
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