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Magnetic dipole (M1) excitations constitute not only a fundamental mode of nucleonic transitions, but
they are also relevant for nuclear astrophysics applications. We have established a theory framework for the
description of M1 transitions based on the relativistic nuclear energy density functional. For this purpose,
the relativistic quasiparticle random phase approximation (RQRPA) is established using density-dependent
point coupling interaction DD-PC1, supplemented with the isovector-pseudovector interaction channel in order
to study unnatural parity transitions. The introduced framework has been validated using the M1 sum rule
for core-plus-two-nucleon systems, and employed in studies of the spin, orbital, isoscalar, and isovector M1
transition strengths that relate to the electromagnetic probe in magic nuclei 48Ca and 208Pb and open shell nuclei
42Ca and 50Ti. In these systems, the isovector spin-flip M1 transition is dominant, mainly between one or two
spin-orbit partner states. It is shown that pairing correlations have a significant impact on the centroid energy
and major peak position of the M1 mode. The M1 excitations could provide an additional constraint to improve
nuclear energy density functionals in the future studies.

DOI: 10.1103/PhysRevC.102.044315

I. INTRODUCTION

Electromagnetic excitations in finite nuclei represent one
of the most important probes of relevance in nuclear structure
and dynamics, as well as in nuclear astrophysics. In particular,
various aspects of magnetic dipole (M1) mode have been
considered both in experimental and theoretical studies [1–8]
due to its relevance for diverse nuclear properties associated,
e.g., to unnatural parity states, spin-orbit splittings, and tensor
force effects. Specifically, M1 spin-flip excitations are analogs
of Gamow-Teller (GT) transitions, meaning that, at the op-
erator level, the dominant M1 isovector component is the
synonym for the zeroth component of GT transitions and can
serve as probe for calculations of inelastic neutrino-nucleus
cross section [9,10]. This process is hard to measure but it
is essential in supernova physics, as well as in the r-process
nucleosynthesis calculations [7,8,11,12]. The isovector spin-
flip M1 response is also relevant for applications related to
the design of nuclear reactors [13], for the understanding
of single-particle properties, spin-orbit interaction, and shell
closures from stable nuclei toward limits of stability [14–18],
as well as for the resolving the problem of quenching of the
spin-isopin response in nuclei that is necessary for a reli-
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able description of double-β decay matrix elements [19]. In
deformed nuclei, another type of M1 excitations has been
extensively studied, known as scissors mode, where the orbital
part of the M1 operator plays a dominant role in a way that
protons and neutrons oscillate with opposite phase around the
core [3,20–28].

In any nuclei undergoing experimental investigation, there
are simultaneously present Eλ and Mλ multipole excitations,
where the electric dipole (E1) and electric quadrupole (E2)
responses [29–34] dominate over the M1 response [35–43].
Thus, it is a rather challenging task to measure M1-related
observables in a whole energy range. Even for the nuclides
accessible by experiments, their full information on the M1
response has not been complete.

The M1 transitions have been studied in various theoret-
ical approaches. Various aspects of the M1 mode have been
investigated in the shell model [9,12,14,15,22,44,45], includ-
ing, e.g., scissors and unique-parity modes [22], tensor-force
effect [14], low-energy enhancement of radiation [44], and
the analogy with neutrino-nucleus scattering [9,12]. The M1
energy-weighted sum rule has been discussed from a per-
spective of the spin-orbit energy [46]. The Landau-Migdal
interaction has been one of the relevant topics in studies of
M1 excitations [47,48]. In order to reproduce a large frag-
mentation of the experimental M1 strength, the importance
of including complex couplings going beyond the RPA level
has also been addressed [26,47–50].

Recently, the M1 excitation has been investigated in the
framework based on the Skryme functionals [16–18], also
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extended to include tensor effects [51]. It has been shown
that the results for the spin-flip resonance obtained by using
different parametrizations do not appear as convincing inter-
pretation of the experimental results. Additional effects have
been explored in order to resolve this issue, e.g., the isovector-
M1 response versus isospin-mixed responses, and the role
of tensor and vector spin-orbit interactions [16,17]. In recent
analysis in Ref. [52], based on the Skyrme functionals, it has
been shown that while modern Skyrme parametrizations suc-
cessfully reproduce electric excitations, there are difficulties
to describing magnetic transitions. In addition, some Skyrme
sets result in the ambiguity that, by the same parametrization,
the model cannot simultaneously describe one-peak and two-
peak data for closed and open shell nuclei [16]. Thus, further
developments of the Skyrme functional in the spin channel are
called for [52]. Simultaneously, it is essential to explore the
M1 response from different theoretical approaches to achieve
a complete understanding of their properties, as well as to
assess the respective systematic uncertainties.

The aim of this work is to describe the properties of M1
excitations from a different perspective, by implementing a
theoretical framework derived from the relativistic nuclear
energy density functional. In the past, this framework has been
successfully employed to describe a variety of nuclear prop-
erties and astrophysically relevant processes [53–66]. In open
shell nuclei, the pairing correlations make non-negligible con-
tributions to the properties of M1 transitions [29,67], and thus
they are also included in model calculations.

The paper is organized as follows. In Sec. II, the overview
of the formalism of the relativistic quasiparticle random phase
approximation (QRPA) for magnetic transitions based on the
relativistic point-coupling interaction is given. Section II C
is devoted to display the benchmark result of our relativistic
QRPA scheme in comparison with the sum rule in Ref. [29].
The results of model calculations and comparison with the ex-
perimental studies are presented in Secs. III A and III B, while
the pairing effects are considered in Sec. III C. A summary of
the present work is given in Sec. IV.

II. FORMALISM

We study M1 excitations based on particle-hole (1p-1h)
(or in open shell nuclei two-quasiparticle) transitions from 0+
ground state (GS) to 1+ excited states of even-even nuclei
within the formalism of a relativistic nuclear energy density
functional (RNEDF), assuming the spherical symmetry [65].
More details about the RNEDF and its implementations are
given in Refs. [65,68]. In this work, the nuclear ground state
has been calculated by employing the self-consistent relativis-
tic Hartree-Bogoliubov (RHB) model [65], where the mean
field is derived for the relativistic point-coupling interaction
with density-dependent couplings. Many effects that go be-
yond the mean-field level are not explicitly included in the
RHB model, e.g., Fock terms, vacuum polarization effects,
and the short-range Brueckner-type correlations. Since the
parameters of the RNEDF are adjusted to the experimental
data which contain all these and other effects, it means that
effects beyond the mean-field level are implicitly included
in the RHB approach by adjusting the model parameters

to reproduce a selected empirical data set [53]. The no-sea
approximation is also employed for relativistic mean-field
calculations [53].

Here we briefly present the formalism of the relativistic
point coupling interaction starting from the Lagrangian den-
sity,

L = �̄N (iγ μ∂μ − m0N )�N

− 1

2
αS (ρ)(�̄N�N )(�̄N�N )

− 1

2
αV (ρ)(�̄Nγ ν�N )(�̄Nγν�N )

− 1

2
αTV (ρ)(�̄N �τγ ν�N )(�̄N �τγν�N )

− 1

2
δS (∂ν�̄N�N )(∂ν�̄N�N )

− e�̄N (γ νAν (�x))
1 − τ̂3

2
�N . (1)

The first term corresponds to the free nucleon field of Dirac
type, while the point coupling interaction terms include
isoscalar-scalar (Jπ = 0+), isoscalar-vector (Jπ = 1−), and
isovector-vector (Jπ = 1−) channels (where J denotes the
quantum number for the angular momentum and π denotes
the parity), coupling of protons to the electromagnetic field,
and the derivative term accounting for the leading effects of
finite-range interactions necessary for a quantitative descrip-
tion of nuclear density distribution and radii.

The density-dependent couplings in each channel, αS (ρ)
(isoscalar-scalar), αV (ρ) (isoscalar-vector), and αTV (ρ)
(isovector-vector), are modeled by the well-behaved func-
tional [65],

αi(ρ) = ai + (bi + cix)e−dix, (2)

where x = ρ

ρsat.
and ρsat. denotes nucleon density at saturation

point for the case of symmetric nuclear matter. The respective
parameters for each channel i = S,V, TV are denoted as ai,
bi, ci, and si, while δS denotes the strength of isoscalar-scalar
derivative term. In this work, the DD-PC1 parametrization is
used in model calculations [65]. The RHB model employed
in this study includes pairing correlations described by the
pairing part of the phenomenological Gogny interaction [53],

V pp(1, 2) =
∑
i=1,2

e[(r1−r2 )/μi]2
(Wi + BiP̂

σ −HiP̂
τ − MiP̂

σ P̂τ ),

(3)
where P̂σ and P̂τ indicate the exchanges of the spin and
isospin, respectively. The parameters μi, Wi, Bi, Hi, and Mi

(i = 1, 2) are given by the D1S set as in Ref. [69]. We
confirmed that, combined with the density dependent point
coupling DD-PC1 functional for the mean-field part, this
parametrization sufficiently reproduces the empirical pairing
gaps of open shell systems in this study.

For the M1 excitations of nuclei, we utilize the relativis-
tic quasiparticle random phase approximation (RQRPA) [70],
which is in this work developed for the implementation of the
relativistic point-coupling interaction, extended to describe
the unnatural-parity transitions of the M1 type. In the limit
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of small-amplitude oscillations, the RQRPA matrix equations
read (

AJ BJ

B∗J A∗J

)(
X ν,JM

Y ν,JM

)
= h̄ων

(1 0
0 −1

)(
X ν,JM

Y ν,JM

)
(4)

with h̄ων = Eν − E0, where E0 and Eν are the RHB ground
and excitation energies of the many-particle system, re-
spectively. The X ν and Y ν indicate the forward-scattering
and backward-scattering two-quasiparticle amplitudes. The
particle-hole channel of the residual RQRPA interaction, V ph,
has been calculated by the effective Lagrangian from Eq. (1),
but supplemented with the isovector-pseudovector interaction,
as we explain in the following section. The RQRPA particle-
particle correlations, V pp, is evaluated from the Gogny-D1S
force, which is commonly used in the RHB model.

The RHB calculations in this work are performed in the
computational framework developed in Refs. [65,68,70,71].
The ground state of spherical nucleus is solved in the model
space expanded in the harmonic oscillator (HO) basis, includ-
ing up to 20 shells. The cutoff energies for the configuration
space in the QRPA are selected to provide a sufficient conver-
gence in the M1 excitation strength.

A. Isovector-pseudovector interaction

In order to describe the unnatural parity excitations of
the M1 type (Jπ = 1+), the RQRPA residual interaction is
further extended by introducing the relativistic isovector-
pseudovector (IV-PV) contact interaction,

LIV-PV = − 1
2αIV-PV[�̄Nγ 5γ μ�τ�N ][�̄Nγ 5γμ�τ�N ]. (5)

This pseudovector type of interaction has been modeled as a
scalar product of two pseudovectors. The strength parameter
for this channel, αIV-PV, is considered as a parameter, which
is constrained by the experimental data on M1 transitions
of selected nuclei. We note that the IV-PV term does not
contribute in the RHB calculation of the ground state, and
thus its strength parameter cannot be constrained together
with other model parameters on the bulk properties of nuclear
ground state. The pseudovector type of interaction would lead
to the parity-violating mean field at the Hartree level for the
description of the 0+ nuclear ground state, and it contributes
only to the RQRPA equations for unnatural parity transitions,
i.e., 1+ excitation of the M1 type.

The coupling strength parameter αIV-PV is determined by
minimizing the standard deviation σ�(αIV-PV), where � is
the gap between the theoretically calculated centroid energy
and experimentally determined dominant peak position of
measured M1 transition strength in 208Pb [38] and 48Ca [37]
nuclei. It turns out that the optimal parameter value is αIV-PV =
0.53 MeVfm3 and in this case the energy gap � is less than
1 MeV both for 208Pb and 48Ca. In this way, all the parameters
employed in the present analysis are constrained and further
employed in the analysis of the properties of M1 excitations.

B. Transition strength for M1 excitations

In the following, we give an overview of the formal-
ism for the transition strength for M1 transitions, for the
implementation in the RQRPA. The transition strength for

magnetic multipole excitations B(MJ, ων ) can be distin-
guished to isoscalar strength B(IS)(MJ, ων ), isovector strength
B(IV)(MJ, ων ), as well as spin Bσ (MJ, ων ) and orbital
B�(MJ, ων ) strengths. From the transition strength distribu-
tion of interest, the energy weighted moment mk and centroid
energy Ē can be calculated.

Within the (Q)RPA framework, discrete spectrum
B(MJ, ων ) of excited states is obtained. For demonstration
purposes, this quantity is convoluted with the Lorentzian
distribution [70],

RMJ (E ) =
∑

ν

B(MJ, ων )
1

π

�/2

(E − h̄ων )2 + (�/2)2
, (6)

where the Lorentzian width is set as � = 1.0 MeV. The dis-
crete strength B(MJ, ων ) for the magnetic operator μ̂JM of
rank J is, within the spherical assumption, calculated by the
following expression [70],

B(MJ, ων ) =
∣∣∣∣∣
∑
κκ ′

(
X ν,J0

κκ ′ 〈κ||μ̂J ||κ ′〉

+ (−1) jκ− jκ′ +JY ν,J0
κκ ′ 〈κ ′||μ̂J ||κ〉)

× (uκvκ ′ + (−1)Jvκuκ ′ )

∣∣∣∣∣
2

, (7)

where κ and κ ′ are quantum numbers denoting single-particle
states in the canonical basis [70]. uκ and vκ are the RHB
occupation coefficients of single-particle states.

In the case of M1 excitations (0+ → 1+), the rank of the
transition operator is J = 1. The reduced matrix element for
the M1 operator μ̂, in mixed spin-isospin basis, is given by

〈 j f ; t f , tz f ||μ̂|| ji; ti, tzi〉

=
(

〈 j f ||μ̂(IS)|| ji〉〈t f ||1τ ||ti〉

− CM1√
2t f + 1

〈 j f ||μ̂(IV)|| ji〉〈t f ||�̂τ ||ti〉
)

, (8)

where the two resulting matrix elements correspond to the
transitions of isoscalar and isovector type. Here CM1 =
〈 1

2 tz; 10| 1
2 tz〉 denotes Clebsch-Gordan coefficient in isospin

space with convention tz = 1
2 for neutrons (CM1 = 1√

3
) and

tz = − 1
2 for protons (CM1 = − 1√

3
).

A complete expression of the M1 operator in the rela-
tivistic formalism which acts on Hilbert space with mixed
spin-isospin basis is given in a block diagonal form,

μ̂1ν =
A∑

k=1

(
μ̂

(IS)
1ν (11)k 0

0 μ̂
(IS)
1ν (22)k

)
⊗ 1τ

−
A∑

k=1

(
μ̂

(IV)
1ν (11)k 0

0 μ̂
(IV)
1ν (22)k

)
⊗ τ̂3, (9)

where 1τ and τ̂3 are units and Pauli’s 2 × 2 matrices in isospin
space. The μ̂

(IS)
1ν and μ̂

(IV)
1ν components correspond to the

isoscalar and isovector parts of the M1 operator for the kth
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nucleon, given by

μ̂
(IS,IV)
1ν (11)k = μ̂

(IS,IV)
1ν (22)k

= μN

h̄

(
gIS,IV

� �̂k + gIS,IV
s ŝk

) · ∇(rY1ν (�k )). (10)

The empirical gyromagnetic ratios for the bare proton (π )
and neutron (ν) are given as gπ (ν)

� = 1 (0) and gπ (ν)
s =

5.586 (−3.826) [36], where the units are given in nuclear
magnetons, μN = eh̄/(2mN).

In this work, so-called isoscalar and isovector gyromag-
netic ratios are determined separately for the orbital and spin
components [36,72]. That is,

gIS
� = gπ

� + gν
�

2
= 0.5, gIS

s = gπ
s + gν

s

2
= 0.880, (11)

and

gIV
� = gπ

� − gν
�

2
= 0.5, gIV

s = gπ
s − gν

s

2
= 4.706. (12)

This decomposition of the isoscalar and isovector M1 oper-
ators is consistent with the nonrelativistic formalism already
used in previous studies, e.g., Refs. [36,72]. More details are
given in the Appendix.

In the probe-independent consideration of nuclear excita-
tions, the IS and IV operators have equal weights. In this
manner, the IS or IV character is a structural feature of the
nucleus, and it is independent of the probe, which can be either
strong, electromagnetic, or weak [73]. In the present M1 case,
the gs factors in the IS and IV operators are different and
are probe dependent [73,74]. Convention given in Eqs. (11)
and (12) corresponds to the electromagnetic process [73]. As
pointed out in Ref. [73], for the electromagnetic processes,
the IS-spin g factor is considerably smaller than the IV one,
i.e., (gIS

s /gIV
s )2 ≈ 1/30, as one can see from the values given

above. Note also that, for the hadronic processes, the IS-spin
coupling is still smaller than the IV one, but with an enhance-
ment at intermediate energy [73,74].

Previous studies also addressed possible quenching ef-
fects on the M1 mode. Several theoretical descriptions of
the total M1 transition strength result in the overestimated
values, in comparison to the experiments (see review in
Ref. [22]). One phenomenological solution is to introduce
the in-medium effects by quenching the gyromagnetic factors,
gs, � [16,17,22]. In addition, experiments report the frag-
mented strength, which is, from a theoretical point of view,
a result of the couplings involving complex configurations,
e.g., of two-particle–two-hole (2p-2h) interactions as pointed
out, for example, in Ref. [75]. However, introduction of 2p-2h
effects is technically demanding task going beyond the scope
of this work, and we leave it for the future study. In this work,
we use the g factors of the bare nucleons; i.e., the quenching
effect has not been considered.

The reduced matrix elements for the isoscalar or isovector
component of the M1 operator in Eq. (9) are given by

〈 j f ||μ̂(X )|| ji〉 = Ilarge
〈(

1
2 , � f

)
j f ||μ̂(X )(11)||( 1

2 , �i
)

ji
〉

+ Ismall
〈(

1
2 , �̃ f

)
j f ||μ̂(X )(22)||( 1

2 , �̃i
)

ji
〉
, (13)

where X = IS or IV, respectively. Here the radial parts of these
matrix elements are given by the integrals

Ilarge =
∫ ∞

0
f ∗
n f j f

(r) fni ji (r)r2dr (14)

and

Ismall =
∫ ∞

0
g∗

n f j f
(r)gni ji (r)r2dr, (15)

where fn j (r) are large and gn j (r) small radial components of
the quasiparticle Dirac spinors for nucleons [65]. The labels
ji and j f denote total nucleon angular momenta of the initial
and final states, respectively. The orbital angular momenta that
correspond to large (li, l f ) and small (l̃ f , l̃i ) spinor compo-
nents are determined by the total angular momenta ( ji, j f ) and
parity (πi, π f ) of the initial and final states [65]. Thus, the M1
transition strength in the RQRPA formalism is given by

B(M1, E ) =
∣∣∣∣∣
∑
κκ ′

(
X ν,10

κκ ′ − (−1) jκ− jκ′Y ν,10
κκ ′

)

× (uκvκ ′ − vκuκ ′ )

〈
jκ ′ ;

1

2
tz||μ̂|| jκ ;

1

2
tz

〉∣∣∣∣∣
2

.

(16)

Similarly, following Eq. (8), the isovector transition strength
reads

B(IV)(M1, E ) =
∣∣∣∣∣ −

∑
κκ ′

CM1√
2t f + 1

〈
1

2
||�̂τ ||1

2

〉

× [
X ν,10

κκ ′ − (−) jκ− jκ′Y ν,10
κκ ′

]
× (uκvκ ′ − vκuκ ′ )〈 jκ ′ ||μ̂(IV)|| jκ〉

∣∣∣∣∣
2

, (17)

whereas the isoscalar strength is given by

B(IS)(M1, E ) =
∣∣∣∣∣
∑
κκ ′

〈
1

2
||1τ ||1

2

〉[
X ν,10

κκ ′ − (−) jκ− jκ′Y ν,10
κκ ′

]

× (uκvκ ′ − vκuκ ′ )〈 jκ ′ ||μ̂(IS)|| jκ〉
∣∣∣∣∣
2

. (18)

In the following calculations, we also refer to the spin-M1
transition strength,

Bσ (M1, E ) = B(M1, E )|g�=0, (19)

where the orbital gyromagnetic factors are set to zero. Simi-
larly, the orbital M1 strength is given as

B�(M1, E ) = B(M1, E )|gs=0. (20)

For the analysis of M1 transition strength, energy-weighted
moments mk of the discrete spectra are used:

mk =
∑

ν

B(MJ, ων )(Eν − E0)k . (21)

Two moments are often used in order to compare experimental
results with theoretical predictions, i.e., the non-energy-
weighted sum m0, which corresponds to the total strength
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FIG. 1. (Top) The M1 transition strength distributions for 18O
(upper panel) and 42Ca (lower panel) based on the RRPA calculations
with DD-PC1 parametrization. The result from the three-body model
without pairing from Ref. [29] is shown for comparison.

B(M1), and energy-weighted sum of the strength m1. A
quotient of two moments, Ē = m1/m0, corresponds to the
centroid energy which represents an average energy of dis-
crete strength distribution.

C. The M1 sum rule in core-plus-two-nucleon systems

For a consistency check of numerical calculations of nu-
clear excitations, such as giant resonances, the sum rules
related to the transition strength have provided in the past
useful guidance [76–81]. In this section, the M1 sum rule
introduced in Ref. [29] is utilized to test the validity of
the framework established in this work. In Ref. [29], the
non-energy-weighted sum (mk=0) of the M1 excitation was
evaluated for some specific systems, which consist of the
core with shell closure and two additional valence neutrons or
protons, e.g., 18O and 42Ca. If the pairing correlations between
the valence nucleons are neglected, one advantage of that sum
rule is that its non-energy-weighted sum-rule value (SRV)
is determined analytically for the corresponding system of
interest.

In this section, we perform the calculation of the M1 SRV
within the relativistic random phase approximation (RRPA),
based on the formalism given in Sec. II. The DD-PC1 func-
tional is used, supplemented with the IV-PV channel in
the RRPA residual interaction, with the strength parameter
αIV-PV = 0.53 fm2, in the natural system of units. Note that
in this sum rule test, the pairing correlations are neglected
in calculations. Figure 1 displays the M1-response function
R(E ) from Eq. (6) for 18O and 42Ca, obtained with the RRPA.
Our result shows the dominant single peak in each system.
Table I shows the non-energy-weighted sum (m0) results for
M1 transitions in 18O and 42Ca obtained from the RRPA. The

TABLE I. Non-energy-weighted sum (mk=0) of the M1 response
function for 18O and 42Ca obtained from the RRPA calculation. The
analytical SRV value from Ref. [29] is shown for comparison. The
unit is μ2

N.

m0 (This work) SRV [29]

18O 2.73 2.79
42Ca 2.91 2.99

m0 value is calculated from Eq. (21), using the M1 strength
distribution up to 50 MeV. For comparison, the respective
values introduced in Ref. [29] are also shown as “SRV.” The
RRPA accurately reproduces the SRVs for the two nuclei
under consideration. Namely, the relativistic framework to
describe the M1 transitions appears to be valid at the level
of no-pairing limit. The small deficiency of RRPA beyond the
SRV value is attributable to the cutoff energy.

As shown in Fig. 1, the RRPA excitation energy of the M1
mode appears different than in the case of three-body model
from Ref. [29]. This discrepancy originates from different
open shell structures produced by the two models. For further
improvement, one may adjust these models directly to the
M1-reference data, which have been, however, not precisely
obtained for 18O or 42Ca. Nevertheless, since the sum rule
does not depend on the excitation energy, the analysis of both
approaches confirms the expected M1-sum values and thus
justifies our RRPA implementation.

III. RESULTS

In the following, we present the results of M1 transi-
tions based on the RHB+R(Q)RPA framework introduced in
Sec. II. The functional DD-PC1 [65] is systematically used in
model calculations, supplemented with the pairing interaction
from the phenomenological Gogny-D1S force [69].

A. M1 transitions in 208Pb

As the first case for detailed analysis of M1 transitions in
the framework based on the RNEDF, we the consider 208Pb
nucleus. There is experimental data on this system available
[37–39,41–43], and thus, it is suitable for the first application.
Figure 2 shows the M1 response function RM1(E ) for 208Pb,
obtained using Eq. (6). Since it is a magic nucleus, pairing cor-
relations do not contribute to the nuclear ground-state energy,
and the RHB + RQRPA reduces to the relativistic Hartree
+ RRPA model. In addition to the full response RM1(E ), the
responses to the isoscalar and isovector operators, RIS

M1(E ) and
RIV

M1(E ), are shown separately. For comparison, the so-called
“unperturbed” response at the Hartree level is also shown,
corresponding to the limit when the residual RRPA interaction
is set to zero.

As shown in Fig. 2, the full M1 response is dominated
by the two peaks at 6.11 and 7.51 MeV. These two peaks
exhaust most of the total M1 strength up to 50-MeV energy. In
some experimental studies [37,38], a dominant peak of the M1
strength distribution around 7.0–7.5 MeV has been measured,
whereas the other bump could be found at ≈6.2 MeV [38].
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FIG. 2. The M1 transition strength distribution for 208Pb. The
results are obtained with the RRPA using the DD-PC1 functional:
RM1(E ) for full, R(IS)

M1 (E ) for isoscalar, and R(IV)
M1 (E ) for isovector

response functions. Unperturbed response at the Hartree level is also
shown.

However, the experimental data also show a more fine frag-
mentation of the M1 strength in 208Pb [37,38]. To reproduce
this fragmentation, the present RRPA may need to be im-
proved with, e.g., the two-particle–two-hole effect [75], which
is beyond the present scope. Even with the lack of detail,
our RRPA scheme reproduces the rough structure of the M1
distribution of 208Pb, especially its dominant two-peak struc-
ture. By comparing the full M1 response with the unperturbed
response at the Hartree level (Fig. 2), one can observe that
the full response is shifted to higher energies, demonstrating
the effect of the IV-PV residual interaction to establish M1
transitions as a genuine nuclear mode of excitation. This shift
is consistent to the selection rule of M1, since the IV-PV
interaction affects the Jπ = 1+ excited states.

In Fig. 2, one can observe that the isovector M1 response
is significantly larger than the isoscalar one, and both compo-
nents interfere. The dominance of isovector mode is visible
also from the M1 strength integrated up to 50 MeV: The
full strength amounts

∑
B(M1) = 41.99 μ2

N , whereas the
isoscalar strength is

∑
B(IS)(M1) = 0.43 μ2

N and the isovector
strength is

∑
B(IV)(M1) = 42.33 μ2

N . The main reason of the
isovector M1 dominance is a large difference in the respective
gyromagnetic ratios, gIS

s and gIV
s given in Eqs. (11) and (12).

For more details, see the Appendix.
The structure of the two pronounced M1 peaks is analyzed

in more detail. Table II shows the respective partial contribu-
tions bph to the B(M1) strength from the major proton and
neutron particle-hole (ph) configurations [see Eq. (7)]. That

TABLE II. Partial neutron and proton contributions (bν,π
ph ) to the

M1 transition strength for the two main peaks (Epeak), and respective
overall transition strengths B(M1) for 208Pb. Details about configu-
rations are given in the text.

E th.
peak [MeV] bν

ph [μN ] bπ
ph [μN ] B(M1) [μ2

N ]

6.11 −1.33 4.74 11.6
7.51 4.22 1.15 28.96
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FIG. 3. The same as Fig. 2, but with R(M1) full, Rσ
M1(E ) spin,

and R�
M1(E ) orbital response functions. Unperturbed response at the

Hartree level is also shown.

is, if single proton (p1h1) and neutron (p2h2) configurations
contribute to the M1 transition at excitation energy E ,

B(M1, E ) = ∣∣bν
p1h1

(E ) + bπ
p2h2

(E )
∣∣2

. (22)

For the state at 6.11 MeV, the major contribution comes
from the transitions between spin-orbit partner states for neu-
trons (ν1i−1

13/2 → ν1i11/2) and protons (π1h−1
11/2 → π1h9/2).

As shown in Table II, partial proton and partial neutron spin-
flip transitions interfere destructively. In the case of the state
at 7.51 MeV, the main transitions are (ν1i−1

13/2 → ν1i11/2) and

(π1h−1
11/2 → π1h9/2), with coherent contributions to the total

B(M1) strength, as shown in Table II.
Figure 3 shows the separation of the full M1 response

in 208Pb to the spin and orbital response functions, Rσ
M1(E )

and R�
M1(E ), evaluated by Eqs. (19) and (20), respectively.

One can observe considerably larger spin response in com-
parison to the orbital one; i.e., most of the overall B(M1)
strength is exhausted by the spin M1 response. The or-
bital M1 strength is mainly related to deformation and
almost disappears in the closed-shell nuclei [3]. The spin
and orbital responses interfere destructively, i.e., the full
response function is smaller than the spin response. The
corresponding sums of the strengths amount to 53.14 μ2

N
for the spin, 1.19 μ2

N for the orbital, and 41.99 μ2
N for

the full M1 transition. In the present study of 208Pb, the
overall M1 excitation strength is almost fully exhausted by
the two peaks, i.e., B(M1, E = 6.11 MeV) = 11.6 μ2

N and
B(M1, E = 7.51 MeV) = 28.96 μ2

N .
Over the past years, there have been several experimental

studies of M1 transitions in 208Pb. Several experimental re-
sults are summarized in a chronological order in Table III.
It turns out that the total measured strength lies between∑

B(M1) ∼= (35.0–47.5) μ2
N and it is in agreement with our

result. However, from recent experiments [37–39], it has also
been pointed out that the actual M1 sum could need to be
reduced, mainly due to the confusion with the electric-dipole
components in the old experiments. A recent theoretical
investigation based on the Skyrme functional [18] results
even in lower B(M1) strength in comparison to the mod-
ern experiments. Therefore, quantitative description of the

044315-6



MAGNETIC DIPOLE EXCITATIONS BASED … PHYSICAL REVIEW C 102, 044315 (2020)

TABLE III. A summary of reported experimental M1 excitation
energies and transition strengths in 208Pb. In Ref. [42], the symbol
(*) denotes experimental ambiguity due to parity assignment to the
quantum mechanical state with respect to M1 transitions.

(208Pb) Ex [MeV] BM1, ↑ [μ2
N ]

Ref. [43] (1977) (sum) 35.0
Ref. [41] (1977) (sum) 46.5
Ref. [42] (1979) 4.843 5.8∗

7.061 17.7∗

7.249 0.5
7.37–7.82 7.9

7.98 7.1∗

8.20–9.50 8.5
4.843–9.50

∑
B(M1, E )↑

= 47.5 (30.6∗)
Ref. [39] (1985) 5.8–7.4 10.7

�6.4 1.9
7.3 15.6

Ref. [38] (1988) 6.7–8.1 19.0
Ref. [37] (2016) 7.0–9.0 20.5

transition strengths for M1 modes remains an open question.
In comparison to Bohr and Mottelson’s independent particle
model (IPM), which estimates B(M1) = 36 μ2

N in Ref. [40],
the RRPA result is comparable but somewhat higher. In
Refs. [16–18], the similar calculation based on the Skyrme
functionals have been used, with the quenching factors in g
coefficients, �0.65, in order to reduce the transition strength.
When using the quenching, the total B(M1) strength for 208Pb
obtained for a set of Skyrme parametrizations amounts 14.8–
17.3 μ2

N [16].

B. M1 transitions in 48Ca

In the following, we extend our study to the lighter sys-
tem, the 48Ca nucleus, where several experimental data are
available [37,82,83]. In Fig. 4, the RRPA full, isoscalar, and
isovector B(M1) transition-strength distributions are shown
for 48Ca. The M1 strength distribution is composed from a
single dominant peak. The corresponding transition strength
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FIG. 4. The same as Fig. 2, but for 48Ca.
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FIG. 5. The same as Fig. 3 but for 48Ca. The spin and full re-
sponse functions coincide.

summed up to 50 MeV amounts to B(M1) = 10.38 μ2
N

(total), B(IS)(M1) = 0.11 μ2
N , and B(IV)(M1) = 12.52 μ2

N .
As in the case of 208Pb, the isovector strength is larger than
the isoscalar one. The centroid and peak energies of the full
response are Ē th. = 9.37 MeV and E th.

peak = 8.48 MeV, respec-
tively. On the other side, in the experimental investigation
of M1 spin-flip resonance from inelastic proton scattering
on 48Ca [37], the dominant peak locates at slightly higher
energy, E exp.

peak = 10.22 MeV. We note that the present IV-PV
interaction, which controls the M1 excited state of the 1+
configuration, is described with the simple, constant coupling.
By comparing the full response with the unperturbed one, the
RRPA residual interaction shifts the main peak toward higher
energy (Fig. 4). This is similar to the 208Pb case, demonstrat-
ing the effect of the residual RRPA interaction.

Figure 5 shows the full, spin, and orbital M1 transition
strength distributions for 48Ca. The corresponding B(M1)
values are 10.38 μ2

N , 10.40 μ2
N , and 5.35 × 10−3 μ2

N , respec-
tively. As in the case of heavy system 208Pb, the spin transition
strength dominates; i.e., it is four orders of magnitude larger
than the orbital strength, Bσ (M1) � B�(M1).

From the analysis of the major M1 state at 8.48 MeV,
we confirmed that it is composed mainly from the transi-
tion between the neutron spin-orbit partner states, (ν1 f −1

7/2 →
ν1 f5/2). The major partial neutron and proton contributions
to the B(M1) strength are presented in Table IV, showing the
dominance of the neutron spin-flip transitions over the proton
ones.

In the experimental investigation of M1 spin-flip resonance
from inelastic proton scattering on 48Ca [37], the dominant
peak at E exp.

peak = 10.22 MeV is of pure neutron character, dom-

inated by the transition (ν1 f −1
7/2 → ν1 f5/2). This character is

TABLE IV. Partial neutron and proton contributions (bν,π
ph ) to the

M1 transition strength and the full transition strength B(M1) for the
major peak at 8.48 MeV for 48Ca.

E th.
peak [MeV] bν

ph [μN ] bπ
ph [μN ] B(M1) [μ2

N ]

8.48 3.18 4.04 × 10−4 9.96

044315-7
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FIG. 6. The RHB + RQRPA response for M1 transitions in 42Ca
using the DD-PC1 parametrization and Gogny pairing correlations.
The response functions without pairing correlations (RRPA) and with
full pairing (RQRPA) are shown separately.

consistent with results obtained in the present study. The mea-
sured strength is obtained as

∑
B(M1) = 3.85–4.63 μ2

N [37].
In Ref. [37], the data on 48Ca(p, n) reaction [82] have also
been reanalyzed, resulting with

∑
B(M1) = 3.45–4.10 μ2

N .
Comparison with the RRPA results from the present anal-
ysis,

∑
B(M1) = 10.38 μ2

N , indicates the enhancement of
the theoretical prediction for the B(M1) transition strength.
We note that another experimental study, based on the (γ , n)
reaction [83], resulted in a value twice as large as that
in (p, p′) reaction [37], B(M1) = 6.8 ± 0.5 μ2

N . This mea-
surement is closer, but still below the result of our present
work. One possibility to remove this discrepancy is by
introducing the quenching factor η � 0.6–0.7 for the gs,� co-
efficients. In this case, our sum of the B(M1) strength changes
as

∑
B(M1) −→ η2 ∑

B(M1) � 3.7–5.1 μ2
N . Note that the

similar quenching factors have been utilized in several the-
oretical calculations [16,17]. For example, a study based on
Skyrme functionals results in B(M1) values 2.5–4.8 μ2

N [16].

C. Pairing effects on M1 transitions

In this section, we apply the complete RHB + RQRPA
framework adopted for the description of M1 transitions in
open-shell nuclei, by consistent implementation of the pairing
correlations in the nuclear ground state and in the RQRPA
residual interaction. The main purpose here is to explore the
role of the pairing correlations on the properties of the M1
response. The sensitivity of the M1 transitions on pairing
correlations has previously been addressed in the study based
on the three-body model [29]. In the present study, we discuss
the same aspect but utilize a microscopic RNEDF approach.

As the first open-shell system, we study 42Ca, which is
already considered in its no-pairing limit in Sec. II C in order
to verify the M1 sum rule in the core-plus-two-nucleon system
[29]. In Fig. 6, the results of the full RHB + RQRPA calcu-
lation are shown, in comparison to the limit without pairing
correlations both in the ground state (GS) and in the residual
interaction. The full-RQRPA M1 response shows one major
peak at 11.32 MeV that is composed mainly by a single-

TABLE V. The peak energies E th.
peak and corresponding B(M1)

values for 42Ca and 50Ti in this work.

Nuclides Method E th.
peak [MeV] B(M1) [μ2

N ]

42Ca RRPA 7.95 2.92
RQRPA 11.32 2.12

50Ti RRPA 8.82 13.86
RQRPA 8.58 8.53

11.57 3.88

neutron 2qp transition, (ν1 f −1
7/2 → ν1 f5/2). In comparison to

the peak obtained in RRPA calculation without pairing cor-
relations, the pairing interaction shifts the resonant peak by
several MeV to higher energies and reduces its strength. This
shift by the pairing correlations at the quantitative level can
also be seen in Table V. The present result is consistent with
that in Ref. [29]: The pairing interaction, which promotes the
spin-singlet pairing between the valence nucleons, shifts the
M1 excitation energy toward higher region, with a reduction
of the strength, B(M1). We note that the pairing effect in the
particle-particle channel of the residual RQRPA interaction is
finite but very small for the M1 transition from the 0+ GS to
1+ excited states. The major pairing effects originate from the
properties of the GS. The same effect has been theoretically
observed for the surface δ interaction applied on the M1
excitations in the particle-particle channel [84].

Next we move to the 50Ti nucleus, where the M1 exci-
tations from its GS have been measured [85]. These data
can be utilized as reference to infer the present accuracy and
drawback of the RQRPA calculations. In Fig. 7, our result is
presented in the case of calculations with and without pairing
correlations. The respective properties of M1 transitions are
tabulated in Table V. In the 50Ti case, the pairing interaction
causes the main peak to split into two: E th.

peak = 8.58 and
11.57 MeV. This two-peak structure has been confirmed in
the experiments at E exp.

peak
∼= 8.7 and 10.2 MeV [85]. Thus,

the RQRPA reasonably reproduces the general structure of
M1 excitation spectrum. Considering the deviation of calcu-
lated energies from the empirical values, further development
and/or optimization of the RNEDF is required. Note also that,
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FIG. 7. The same as Fig. 6 but for 50Ti.
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as we discussed in the previous sections, the actual data from
experiments suggests a finer fragmentation, for which compli-
cated additional effects may need to be considered, e.g., the
meson-exchange current effect [3,22,26,49,50,86] and/or the
second-order (Q)RPA [75,87,88].

The RQRPA calculations show that the two main M1
peaks in 50Ti mainly originate from the proton transition
of (π1 f −1

7/2 → π1 f5/2) and neutron transition of (ν1 f −1
7/2 →

ν1 f5/2). This is because of the shell closure at Z = N = 20,
and thus the main M1 excitation components are attributed to
the valence, two protons, and eight neutrons in the 1 f7/2 orbit.

IV. SUMMARY

In this work, we have introduced an approach to describe
M1 transitions in nuclei, based on the RHB + RQRPA
framework with the relativistic point-coupling interaction,
supplemented with the pairing correlations described by the
pairing part of the Gogny force. In addition to the stan-
dard terms of the point coupling model with the DD-PC1
parametrization, the residual R(Q)RPA interaction has been
extended by the isovector-pseudovector contact type of in-
teraction that contributes to unnatural parity transitions. A
recently developed nonpairing M1 sum rule in core-plus-two-
nucleon systems [29] has been used as a consistency check
of the present theory framework. The sum of the M1 tran-
sition strength for 42Ca accurately reproduced the sum rule
value (SRV), thus validating the introduced formalism and
its numerical implementation for further exploration of M1
transitions.

The present framework is first benchmarked on M1 tran-
sitions for two magic nuclei, 48Ca and 208Pb. The response
functions B(M1, E ) have been explored in detail, including
their isoscalar and isovector components, that relate to the
electromagnetic probe, as well as contributions of the spin
and orbital components of the M1 transition operator. It is
confirmed that, in nuclei without deformation, the spin com-
ponent of the M1 transition strength dominates over the orbital
one. Because of the differences in the gyromagnetic ratios,
the isovector M1 transition strength is significantly larger
than the isoscalar one, and they interfere destructively. It is
shown that the major peaks of isovector spin-M1 transitions
are dominated mainly by a single ph configuration composed
of spin-orbit partner states.

One of our interests was to investigate the role of the pair-
ing correlations on the properties of M1 response functions
in open shell nuclei, which has been addressed in the study
of 42Ca and 50Ti. The RQRPA calculations show a significant
impact of pairing correlations on the major peak by shifting it
to the higher energies and, at the same time, by reducing the
transition strength. In the 50Ti case, this effect is essential to
reproduce the two-peak structure measured in the experiment
[85]. The main effect of the pairing correlations is observed
at the level of the ground-state calculation, while it is rather
small in the particle-particle channel of the residual RQRPA
interaction.

The M1 transition strengths from the present study ap-
pear larger than the values obtained from the experimental
data. Therefore, it remains an open question whether some

additional effects should be included at the theory side, or
some strength may be missing in the experimental data. In
addition, the M1 excitation energies of light systems, e.g.,
48Ca, still have some deviation from the reference data. In
order to resolve these open questions, further developments
are needed, e.g., resolving the quenching effects in g factors,
meson exchange effects, couplings with complex configura-
tions, etc. Because of its relation to the spin-orbit interaction,
M1 excitations could also provide guidance toward more ad-
vanced RNEDFs. Recently, a new relativistic energy density
functional has been constrained not only by the ground-state
properties of nuclei, but also by using the E1 excitation
properties (i.e., dipole polarizability) and giant monopole
resonance energy in 208Pb [66]. Similarly, M1 excitation prop-
erties in selected nuclei could also be exploited in the future
studies to improve the RNEDFs.
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APPENDIX: ISOSCALAR-ISOVECTOR (IS-IV)
DECOMPOSITION

In this Appendix, we give some details on the IS-IV
decomposition of the transition operator in a general consid-
eration that applies both to electric and magnetic transitions.
Namely, we consider the Xλμ transition, where X denotes E
or M for electric and magnetic transitions, respectively, and
(λ, − λ < μ < λ) denote the multipole quantum numbers.
The A-body operator of the Xλμ transition is given as

P̂ (Xλμ) =
A∑

i=1

Q̂(Xλμ; i), (A1)

where Q̂ is the general single-particle operator. Then, by
using the isospin τ3 = +1 (−1) for protons (neutrons), it is
expressed as

P̂ (Xλμ) =
∑
k∈Z

f π
XλŜ (Xλμ; rk ) +

∑
l∈N

f ν
XλŜ (Xλμ; rl ),

=
A∑

i=1

[
f π
Xλ

1 + τ̂3(i)

2
+ f ν

Xλ

1 − τ̂3(i)

2

]

× Ŝ (Xλμ; ri ), (A2)

where f π (ν)
Xλ indicates the charge (for Eλ) or gyromagnetic

factor (for Mλ) of the Xλ mode for protons (neutrons) and
Ŝ (Xλμ; ri ) is the transition operator. See Table VI for some
examples of E2 and M1 transitions [81].

From Eq. (A2), the IS-IV decomposition is derived:

P̂ (Xλμ) = P̂ IS(Xλμ) + P̂ IV(Xλμ)

= f IS
Xλ

A∑
i=1

Ŝ (Xλμ; ri ) + f IV
Xλ

A∑
i=1

Ŝ (Xλμ; ri )τ̂3(i).

(A3)
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TABLE VI. The transition operators and respective proportion-
ality factors for E2 and M1 (orbital and spin part) modes [81]. See
text for details.

Xλ ( f π , f ν ) ( f IS, f IV) Ŝ(r)

E2 (e, 0) (e/2, e/2) r2Y2μ(r̄)
M1, l (gπ

l , gν
l ) (gIS

l , gIV
l ) μN(l̂ · r/r)μ

= (1, 0) = (1/2, 1/2) ×√
3/4π

M1, s (gπ
s , gν

s ) (gIS
s , gIV

s ) μN(ŝ · r/r)μ
= (5.586, −3.826) = (0.880, 4.706) ×√

3/4π

Omitting the subscript Xλ for simplicity, the f IS and f IV

factors are determined as

f IS = f π + f ν

2
, f IV = f π − f ν

2
, (A4)

and equivalently, f π = f IS + f IV and f ν = f IS − f IV. It
is useful to check the relation between the proton-
neutron and IS-IV decompositions. That is, by using X̂ π =∑

k∈Z Ŝ (Xλμ; k) and X̂ ν = ∑
l∈N Ŝ (Xλμ; l ),

P̂ IS(Xλμ) = f IS[X̂ π + X̂ ν],

P̂ IV(Xλμ) = f IV[X̂ π − X̂ ν], (A5)

where we have implemented τ3 = −1 for neutrons in the last
term. Then, it is worthwhile to consider some special cases as
follows.

First, we assume that only the neutron component is active
for the transition, namely, 〈 f | X̂ π | i〉 ∼= 0 and 〈 f | X̂ ν | i〉 �= 0,
like as the 48Ca result in the main text. In this case, if f IS �
f IV, likely as spin M1, the corresponding IV mode becomes
dominant. That is,

|〈 f | P̂ IS | i〉|2 � |〈 f | P̂ IV | i〉|2
∼= | f IV|2|〈 f | X̂ ν | i〉|2. (A6)

Otherwise, if f IS ∼= f IV likely as E2 and orbit M1,

|〈 f | P̂ IS | i〉|2 ∼= |〈 f | P̂ IV | i〉|2. (A7)

Note also that, by considering the IS+IV response,

〈 f | P̂ IS + P̂ IV | i〉 = f π 〈 f | X̂ π | i〉 + f ν〈 f | X̂ ν | i〉
∼= 0 + f ν〈 f | X̂ ν | i〉, (A8)

then, this response vanishes when f ν = 0, as in the E2 and or-
bit M1 cases. In Fig. 5 for 48Ca, indeed the orbit M1 response
is zero, and the total and spin M1 results coincide.

Next, when the proton and neutron excitations occur in the
same phase, it means

〈 f | X̂ ν | i〉 ∝ (+)〈 f | X̂ π | i〉, (A9)

and thus,

|〈 f | X̂ π − X̂ ν | i〉|2 � |〈 f | X̂ π + X̂ ν | i〉|2. (A10)

In this case, as long as f IS ∼= f IV, the IS mode is obviously
dominant. Otherwise, the result can depend on the compe-
tition of the f IS/ f IV ratio against the weightless amplitudes
in Eq. (A10). Note also that, for this problem, the quantities
〈 f | X̂ π | i〉 and 〈 f | X̂ ν | i〉 noticeably depend on the number
of protons and neutrons, as well as the specific form of the
transition operator. In our results in the main text, for the
spin M1 mode, the IV component is concluded as dominant
commonly for the nuclides discussed. This result is mainly
attributed to that the factor f IV = gIV

s is sufficiently larger than
f IS = gIS

s .
Finally, when the proton and neutron excitations occur in

the opposite phase, 〈 f | X̂ ν | i〉 ∝ (−)〈 f | X̂ π | i〉, and thus

|〈 f | X̂ π − X̂ ν | i〉|2 � |〈 f | X̂ π + X̂ ν | i〉|2. (A11)

In this case, the IV transition becomes dominant in the E2,
orbit M1, and spin M1 cases, anyway.
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