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The measurement of the deuteron and anti-deuteron production in the rapidity range −1 < y < 0 as 
a function of transverse momentum and event multiplicity in p–Pb collisions at √sNN = 5.02 TeV is 
presented. (Anti-)deuterons are identified via their specific energy loss dE/dx and via their time-of-
flight. Their production in p–Pb collisions is compared to pp and Pb–Pb collisions and is discussed 
within the context of thermal and coalescence models. The ratio of integrated yields of deuterons to 
protons (d/p) shows a significant increase as a function of the charged-particle multiplicity of the event 
starting from values similar to those observed in pp collisions at low multiplicities and approaching those 
observed in Pb–Pb collisions at high multiplicities. The mean transverse particle momenta are extracted 
from the deuteron spectra and the values are similar to those obtained for p and � particles. Thus, 
deuteron spectra do not follow mass ordering. This behaviour is in contrast to the trend observed for 
non-composite particles in p–Pb collisions. In addition, the production of the rare 3He and 3He nuclei 
has been studied. The spectrum corresponding to all non-single diffractive p-Pb collisions is obtained in 
the rapidity window −1 < y < 0 and the pT-integrated yield dN/dy is extracted. It is found that the 
yields of protons, deuterons, and 3He, normalised by the spin degeneracy factor, follow an exponential 
decrease with mass number.

© 2019 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The energy densities reached in the collisions of ultra-
relativistic particles lead to a significant production of complex 
(anti-)(hyper-)nuclei. The high yield of anti-quarks produced in 
these reactions has led to the first observation of the anti-alpha 
particle [1] as well as of the anti-hyper-triton [2] by the STAR 
collaboration, and to detailed measurements by the ALICE collab-
oration [3–6] at energies reached at the CERN LHC. However, the 
production mechanism is not fully understood. In a more general 
context, these measurements also provide input for the back-
ground determination in searches for anti-nuclei in space. Such 
an observation of anti-deuterons or 3He of cosmic origin could 
carry information on the existence of large amounts of anti-matter 
in our universe or provide a signature of the annihilation of dark 
matter particles [7–11].

Recent data in pp and in heavy-ion collisions provide evidence 
for an interesting observation regarding the production mechanism 
of (anti-)nuclei [3,5,6,12,13]: in Pb–Pb interactions, the d/p ratio 
does not vary with the collision centrality and the value agrees 
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with expectations from thermal-statistical models which feature a 
common chemical freeze-out temperature of all hadrons around 
156 MeV [3,14,15]. In inelastic pp collisions, the corresponding 
ratio is a factor 2.2 lower than in Pb–Pb collisions [3,12]. With 
respect to these measurements, the results of d and 3He produced 
in p–Pb collisions at 

√
sNN = 5.02 TeV, being a system in between 

the two extremes of pp and Pb–Pb collisions, are of prominent in-
terest and they are the subject of this letter. While deuterons have 
been measured differentially in multiplicity, the 3He (3He) spec-
trum was only obtained inclusively for all non-single diffractive 
events because of their low production rate.

In addition to the evolution of the integrated d/p ratio for var-
ious multiplicity classes, the question whether the transverse mo-
mentum distribution of deuterons is consistent with a collective 
radial expansion together with the non-composite hadrons is of 
particular interest. Such behaviour has been observed for light nu-
clei in Pb–Pb collisions [3,5]. The presence of collective effects in 
p–Pb collisions at LHC energies has recently been supported by 
several experimental findings (see for instance [16–22] and re-
cent reviews in [23,24]). These include a clear mass ordering of 
the mean transverse momenta of light flavoured hadrons in p–Pb 
collisions as expected from hydrodynamical models [18].

https://doi.org/10.1016/j.physletb.2019.135043
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2. Analysis

The results presented here are based on a low pile-up p–Pb 
data sample collected with the ALICE detector during the LHC run-
ning campaign at 

√
sNN= 5.02 TeV in 2013. A detailed description 

of the detector is available in [25–29]. The main detectors used in 
this analysis are the Inner Tracking System (ITS) [30], the Time 
Projection Chamber (TPC) [31], and the Time-Of-Flight detector 
(TOF) [32,33]. The two innermost layers of the ITS consist of Sil-
icon Pixel Detectors (SPD), followed by two layers of Silicon Drift 
Detectors (SDD), and two layers of Silicon Strip Detectors (SSD). 
As the main tracking device, the TPC provides full azimuthal ac-
ceptance for tracks in the pseudo-rapidity region |ηlab| < 0.8. In 
addition, it provides particle identification via the measurement of 
the specific energy loss dE/dx. The TOF array is located at about 
3.7 m from the beam line and provides particle identification by 
measuring the particle speed with the time-of-flight technique. In 
p-Pb collisions, the overall time resolution is about 85 ps for high 
multiplicity events. In peripheral events, where multiplicities are 
similar to pp, it decreases to about 120 ps due to a worse start-
time (collision-time) resolution [34]. All detectors are positioned in 
a solenoidal magnetic field of B = 0.5 T.

The event sample used for the analysis presented in this letter 
was collected exclusively in the beam configuration where the pro-
ton travels towards negative ηlab. The minimum-bias trigger signal 
and the definition of the multiplicity classes was provided by the 
V0 detector consisting of two arrays of 32 scintillator tiles each 
covering the full azimuth within 2.8 < ηlab < 5.1 (V0A, Pb-beam 
direction) and −3.7 < ηlab < −1.7 (V0C, p-beam direction). The 
event selection was performed in a similar way to that described 
in Ref. [18]. A coincidence of signals in both V0A and V0C was 
required online in order to remove background from single diffrac-
tive and electromagnetic events. In the offline analysis, further 
background suppression was achieved by requiring that the arrival 
time of the signals in the two neutron Zero Degree Calorimeters 
(ZDC), which are located ±112.5 m from the interaction point, 
is compatible with a nominal p–Pb collision. The contamination 
from pile-up events was reduced to a negligible level (< 1%) by 
rejecting events in which more than one primary vertex was re-
constructed either from SPD tracklets or from tracks reconstructed 
in the whole central barrel. The position of the reconstructed pri-
mary vertex was required to be located within ±10 cm of the 
nominal interaction point in the longitudinal direction. In total, an 
event sample of about 100 million minimum-bias (MB) events af-
ter all selections was analysed. The corresponding integrated lumi-
nosity, Lint = NMB/σMB, where σMB is the MB trigger cross-section 
measured with van-der-Meer scans, amounts to 47.8 μb−1 with a 
relative uncertainty of 3.7% [35].

The final results are given normalised to the total number 
of non-single diffractive (NSD) events. Therefore, a correction of 
3.6% ± 3.1% [36] is applied to the minimum-bias results, which 
corresponds to the trigger and vertex reconstruction inefficiency 
for this selection. For the study of d and d, the sample is divided 
into five multiplicity classes, which are defined as percentiles of 
the V0A signal. This signal is proportional to the charged-particle 
multiplicity in the corresponding pseudo-rapidity region in the 
direction of the Pb-beam. Following the approach in [37], the 
multiplicity dependent results are normalized to the number of 
events Nev corresponding to the visible (triggered) cross-section. 
The event sample is corrected for the vertex reconstruction effi-
ciency. This correction is of the order of 4% for the lowest V0A 
multiplicity class (60-100%) and negligible (<1%) for the other 
multiplicity classes. The chosen selection and the corresponding 
charged-particle multiplicity at mid-rapidity are summarized in Ta-
ble 1.

Table 1
Multiplicity intervals and the correspond-
ing charged-particle multiplicities at mid-
rapidity. The uncertainties reported for the 
〈dNch/dηlab〉||ηlab |<0.5 are the systematic ones, 
statistical uncertainties are negligible. Values 
are taken from [18].

V0A Class 〈dNch/dηlab〉||ηlab |<0.5

0–10% 40.6 ± 0.9
10–20% 30.5 ± 0.7
20–40% 23.2 ± 0.5
40–60% 16.1 ± 0.4
60–100% 7.1 ± 0.2

In this analysis, the production of primary deuterons and 
3He-nuclei and that of their respective anti-particles are measured 
in a rapidity window −1 < y < 0 in the centre-of-mass system. 
Since the energy per nucleon of the proton beam is higher than 
that of the Pb beam, the nucleon-nucleon system moves in the 
laboratory frame with a rapidity of -0.465. Potential differences of 
the spectral shape or normalisation due to the larger y-range with 
respect to the measurement of π , K, and p [18] are found to be 
negligible for the (anti-)deuteron and 3He minimum-bias spectra 
with respect to the overall statistical and systematic uncertain-
ties. In order to select primary tracks of suitable quality, various 
track selection criteria are applied. At least 70 clusters in the TPC 
and two hits in the ITS (out of which at least one in the SPD) 
are required. These selections guarantee a track momentum res-
olution of 2% in the relevant pT-range and a dE/dx resolution of 
about 6% for minimum ionising particles. The maximum allowed 
Distance-of-Closest-Approach (DCA) to the primary collision vertex 
is 0.12 cm in the transverse (DCAxy) and 1.0 cm in the longitudi-
nal (DCAz) plane. Furthermore, it is required that the χ2 per TPC 
cluster is less than 4 and tracks of weak-decay products with kink 
topology are rejected [29], as they cannot originate from the tracks 
of primary nuclei.

The particle identification performance of the TPC and TOF de-
tectors in p–Pb collisions is shown in Fig. 1. For the mass deter-
mination with the TOF detector, the contribution of tracks with 
a wrongly assigned TOF cluster is largely reduced by a 3σ pre-
selection in the TPC dE/dx, where σ corresponds to the TPC dE/dx
resolution. Nevertheless, due to the small abundance of deuterons 
the background is still significant and it is removed using a fit 
to the squared mass distribution. An example of a fit for anti-
deuterons with transverse momenta 2.2 GeV/c < pT < 2.4 GeV/c
is shown in the right panel of Fig. 1. The squared rest mass of the 
deuteron has been subtracted to simplify the fitting function. The 
signal has a Gaussian shape with an exponential tail on the right 
side. This tail is necessary to describe the time-signal shape of the 
TOF detector [33]. For the background, the sum of two exponen-
tial functions is used. One of the exponential functions accounts 
for the mismatched tracks and the other accounts for the tail of 
the proton peak. For (anti-)3He nuclei, the dE/dx is sufficient for a 
clean identification using only this technique over the entire mo-
mentum range 1.5 GeV/c < pT < 5 GeV/c as the atomic number 
Z = 2 for 3He leads to a clear separation from other particles.

The tracking acceptance × efficiency determination is based on 
a Monte-Carlo simulation using the DPMJET event generator [38]
and a full detector description in GEANT3 [39]. As discussed in [3], 
the hadronic interaction of (anti-)nuclei with detector material is 
not fully described in GEANT3, therefore two additional correction 
factors are applied. Firstly, in order to account for the material be-
tween the collision vertex and the TPC, the track reconstruction 
efficiencies extracted from GEANT3 are scaled to match those from 
GEANT4 [40,41]. Secondly, for tracks which cross in addition the 
material between the TPC and the TOF detectors, a data-driven 
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Fig. 1. Energy loss dE/dx in the TPC and the corresponding expected energy loss from a parametrization of the Bethe-Bloch curve (left). Example of the fit to the squared 
TOF mass difference which shows separately the signal and the background from the exponential tail of protons and from mismatched tracks (right).

Fig. 2. Tracking acceptance × efficiency correction for (anti-)deuterons (left) and for 3He and 3He (right) in the minimum-bias class. The efficiencies for anti-nuclei are lower 
due to the larger cross-section for hadronic interactions.
correction factor has been evaluated by comparing the matching 
efficiency of tracks to TOF hits in data and Monte Carlo simula-
tion. Since the TRD was not fully installed in 2013, this study was 
repeated for regions in azimuth with and without installed TRD 
modules. The matching efficiencies for tracks crossing the TRD ma-
terial were then scaled such that the corrected yield agrees with 
the one obtained for tracks that are not crossing any TRD mate-
rial. This procedure results in a further reduction of the acceptance 
× efficiency of 6% for deuterons and 11% for anti-deuterons. The 
acceptance and efficiency corrections are found to be indepen-
dent of the event multiplicity and are shown in Fig. 2 for primary 
deuterons and anti-deuterons, with and without requiring a TOF 
match, as well as for 3He and 3He.

The raw yields of deuterons and 3He also include secondary 
particles which stem from the interactions of primary particles 
with the detector material. To subtract this contribution, a data-
driven approach as in [3,18] is used. The distribution of the DCAxy
is fitted with two distributions (called “templates” in the follow-
ing) obtained from Monte-Carlo simulations describing primary 
and secondary deuterons, respectively. The fit is performed in the 
range |DCAxy| < 0.5 cm which allows the contribution from mate-
rial to be constrained by the plateau of the distribution at larger 
distances (|DCAxy| > 0.15 cm). The contamination of secondaries 
amounts to about 45% to 55% in the lowest pT-interval and de-
creases exponentially towards higher pT until it becomes negligible 
(<1%) above 2 GeV/c. The limited number of 3He candidate tracks 
does not allow a background subtraction based on templates, in-

stead a bin counting procedure in the aforementioned DCAxy signal 
and background regions is used.

The systematic uncertainties of the measurement are sum-
marised for deuterons and 3He as well as for their antiparticles 
in Table 2. For deuterons, the uncertainty related to the secondary 
correction is estimated by repeating the template fit procedure un-
der a variation of the DCAz cut. The corresponding uncertainty 
for 3He nuclei is determined by varying the ranges in DCAxy for 
the signal and background regions in the bin counting procedure. 
For d and 3He the systematic uncertainty on the cross-section 
for hadronic interaction is determined by a systematic comparison 
of different propagation codes (GEANT3 and GEANT4). The mate-
rial between TPC and TOF needs to be considered only for the 
(anti-)deuteron spectrum and increases the uncertainty by addi-
tional 3% and 5% for deuterons and anti-deuterons, respectively. 
This corresponds to the half of the observed discrepancy in the 
TPC-TOF matching efficiencies evaluated in data and Monte Carlo. 
For both deuterons and anti-deuterons, the particle identification 
procedure introduces only a small uncertainty which slightly in-
creases at high pT and is estimated based on the variation of the 
nσ -cuts in the TPC dE/dx as well as on a variation of the signal 
extraction in the TOF with different fit functions. The PID related 
uncertainties for 3He and 3He remain negligible over the entire 
pT-range due to the background-free identification based on the 
TPC dE/dx. Feed-down from weakly decaying hyper-tritons (3

�H) is 
negligible for deuterons [3,4]. Since only about 4-8% of all 3

�H de-
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Table 2
Main sources of systematic uncertainties for deuterons and 3He as well as their anti-particles for low and high pT.

d d 3He 3He

pT (GeV/c) 0.9 2.9 0.9 2.9 2.2 5.0 1.8 5.0

Tracking (ITS-TPC matching) 5% 5% 5% 5% 6% 4% 6% 4%
Secondaries material 1% negl. negl. negl. 20% 1% negl. negl.
Secondaries weak decay negl. negl. negl. negl. 5% negl. 5% negl.
Material budget 3% 3% 3% 3% 3% 1% 3% 1%
Particle identification 1% 3% 1% 3% 3% 3% 3% 3%
Transport code 3% 3% 3% 3% 6% 6% 18% 11%
TPC-TOF matching 3% 3% 5% 5% – – – –

Total 7% 8% 8% 9% 23% 8% 20% 12%

Fig. 3. Transverse momentum distributions of deuterons (left) and anti-deuterons (right) for various multiplicity classes. The multiplicity class definition is based on the signal 
amplitude observed in the V0A detector located on the Pb-side. The vertical bars represent the statistical errors, the empty boxes show the systematic uncertainty. The lines 
represent individual fits using a mT-exponential function.
caying into 3He pass the track selection criteria for primary 3He, 
the remaining contamination has not been subtracted and the un-
certainty related to it was further investigated by a variation of 
the DCAxy-cut in data and a final uncertainty of 5% is assigned. The 
influence of uncertainties in the material budget on the reconstruc-
tion efficiency has been studied by simulating events varying the 
amount of material by ±10%. The estimates of the uncertainties 
related to the tracking and ITS-TPC matching are based on a vari-
ation of the track cuts and are found to be approximately 5%. The 
uncertainties related to tracking, transport code, material budget 
and TPC-TOF matching are fully correlated across different multi-
plicity intervals.

3. Results and discussion

3.1. Spectra and yields

The transverse momentum spectra of deuterons and anti-
deuterons in the rapidity range −1 < y < 0 are presented in 
Fig. 3 for several multiplicity classes. The spectra show a harden-
ing with increasing event multiplicity. This behaviour was already 
observed for lower mass particles in p–Pb collisions [18]. For the 
extraction of 〈pT〉 and pT-integrated yields dN/dy, the spectra are 
fitted individually using a mT-exponential function [42].

The values obtained for dN/dy for (anti-)deuterons are sum-
marized in Table 3. They have been calculated by summing up 

Table 3
Integrated yields dN/dy of (anti-)deuterons. The first value is the statistical and 
the second is the total systematic uncertainty which includes both the systematic 
uncertainty on the measured spectra and the uncertainty of the extrapolation to 
low and high pT.

Multiplicity classes dN/dy (d) dN/dy (d)

0-10% (2.86 ± 0.03 ± 0.30) × 10−3 (2.83 ± 0.03 ± 0.35) × 10−3

10-20% (2.08 ± 0.02 ± 0.22) × 10−3 (1.94 ± 0.03 ± 0.24) × 10−3

20-40% (1.43 ± 0.01 ± 0.15) × 10−3 (1.43 ± 0.02 ± 0.17) × 10−3

40-60% (8.93 ± 0.08 ± 0.93) × 10−4 (9.06 ± 0.15 ± 1.09) × 10−4

60-100% (2.89 ± 0.05 ± 0.30) × 10−4 (3.02 ± 0.07 ± 0.36) × 10−4

the pT-differential yield in the region where the spectrum is mea-
sured and by integrating the fit result in the unmeasured region 
at low and high transverse momenta. While the fraction of the 
extrapolated yield at high pT is negligible, the fraction at low pT
ranges from 23% at high to 38% at low multiplicities. The uncer-
tainty introduced by this extrapolation is estimated by comparing 
the result obtained with the mT-exponential fit to fit results from 
several alternative functional forms (Boltzmann, Blast-wave [43], 
and pT-exponential).

Fig. 4 shows the d/d ratios as a function of pT for all mul-
tiplicity intervals. The ratios are found to be consistent with unity 
within uncertainties. This behaviour is expected, since thermal and 
coalescence models predict that the d/d ratio is given by (p̄/p)2
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Fig. 4. Anti-deuteron to deuteron production ratio for the five multiplicity classes. 
All ratios are compatible with unity, indicated as a dashed grey line. The vertical 
bars represent the statistical errors while the empty boxes show the total systematic 
uncertainty.

(see for instance [15]) and the p̄/p ratio measured in p–Pb colli-
sions is consistent with unity for all multiplicity intervals [18].

The rare production of A > 2 nuclei only allows the extraction 
of minimum-bias spectra for 3He and 3He with the available statis-
tics and thus the result is normalised to all non-single diffractive 
(NSD) events. In total, 40 3He nuclei are observed, while about 
29400 tracks from d are reconstructed in the same data sample. 
The corresponding spectra are shown in Fig. 5 together with a 
mT-exponential fit which is used for the extraction of the dN/dy
and 〈pT〉 of the spectra. The fit is performed such that the residuals 
to both the 3He and 3He spectrum are minimised simultaneously. 
The fraction of the extrapolated yield corresponds to about 58%. 
The uncertainty introduced by this extrapolation is also estimated 
by comparing the result obtained with the mT-exponential fit to fit 
results from several alternative functional forms (Boltzmann, Blast-
wave [43], and pT-exponential). A pT-integrated yield of dN/dy=
(1.36 ± 0.16(stat) ± 0.52(syst)) × 10−6 and an average transverse 
momentum of 〈pT〉 = (1.78 ± 0.11(stat) ± 0.77(syst)) GeV/c are 
obtained.

The yields of p, d and 3He for NSD p–Pb events and normalised 
to their spin degeneracy are shown in Fig. 6 as a function of the 
mass number A together with results for inelastic pp collisions and 
central Pb-Pb collisions. An exponential decrease with increasing 
A is observed in all cases, yet with different slopes. The penalty 
factor, i.e. the reduction of the yield for each additional nucleon, 
is obtained from a fit to the data and a value of 635 ± 90 in p-Pb 
collisions is found which is significantly larger than the factor of 
359 ± 41 which was observed for central Pb–Pb collisions [3]. The 
penalty factor obtained for the inelastic pp collisions [12] is found 
to be 942 ± 107. Such an exponential decrease of the (anti-)nuclei 
yield with mass number has also been observed at lower incident 
energies in heavy-ion [1,44–46] as well as in p–A collisions [47].

3.2. Coalescence parameter

In the traditional coalescence model, deuterons and other light 
nuclei are formed by protons and neutrons, which are close in 

Fig. 5. Transverse momentum distribution of 3He and 3He for all NSD collisions 
(NNSD). The vertical bars represent the statistical errors while the empty boxes show 
the total systematic uncertainty. The line represents a χ2 fit with a mT-exponential 
function (see text for details).

Fig. 6. Production yield dN/dy normalised by the spin degeneracy as a function of 
the mass number for inelastic pp collisions, minimum-bias p-Pb and central Pb-Pb 
collisions [12,13,18,48,49]. The empty boxes represent the total systematic uncer-
tainty while the statistical errors are shown by the vertical bars. The lines represent 
fits with an exponential function.

phase space. In this picture, the deuteron momentum spectra are 
related to those of its constituent nucleons via [50,51]

Ed
d3Nd

dp3
d

= B2

(
Ep

d3Np

dp3
p

)2

, (1)

where the momentum of the deuteron is given by pd = 2pp. Since 
the neutron spectra are experimentally not accessible, they are ap-
proximated by the proton spectra. The value of B2 is computed 
as a function of event multiplicity and transverse momentum as 
the ratio between the deuteron yield measured at pT = pT,d and 
the square of the proton yield at pT,p = 0.5pT,d. The obtained 
B2-values are shown in Fig. 7. In its simplest implementation, the 
coalescence model for uncorrelated particle emission from a point-
like source predicts that the observed B2-values are independent 
of pT and of event multiplicity (called “simple coalescence” in the 
following). Within uncertainties and given the current width of the 
multiplicity classes, the observed pT dependence is still compatible 
with the expected flat behaviour (for a detailed discussion see [6]). 
Moreover, a decrease of the measured B2 parameter with increas-
ing event multiplicity for a fixed pT is observed. This effect is even 
more pronounced in Pb–Pb collisions [3] and a possible explana-
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Fig. 7. Coalescence parameter B2 as a function of pT for different V0A multiplicity 
classes. The vertical lines represent the statistical errors and the empty boxes show 
the total systematic uncertainty.

tion is an increasing source volume, which can effectively reduce 
the coalescence probability [7,51].

3.3. Mean transverse momenta

In Fig. 8 (left), the mean values of the transverse momenta of 
deuterons are compared with the corresponding results for π± , 
K± , p(p̄), and �(�) [18]. As for all other particles, the 〈pT〉 of 
deuterons shows an increase with increasing event multiplicity, 
which reflects the observed hardening of the spectra. However, 
it is striking that deuterons violate the mass ordering which was 
observed for non-composite particles [18,52]: despite their much 
larger mass, the 〈pT〉 values are similar to those of �(�) and only 
slightly higher than those of p(p̄).

Note that simple coalescence models give a significantly dif-
ferent prediction for the 〈pT〉 of deuterons with respect to hy-
drodynamical models. This can be best illustrated with two sim-
plifying requirements which are approximately fulfilled in data. 
Firstly, the coalescence parameter is assumed flat in pT and sec-
ondly the proton spectrum can be described by an exponential 
shape, i.e. C exp(−pT/T ) with two parameters C and T . In this 
case, the shape of the deuteron spectrum can be analytically cal-
culated based on the definition of B2. Due to the self-similarity 
feature of the exponential function, (exp(x/a))a = exp(x), the spec-
tral shape of the proton and the deuteron are then found to be 
identical:

1

2π pd
T

d2Nd

dy dpd
T

= B2

( 1

2π pp
T

d2N p

dy dpp
T

)2 = B2

(
C exp(− pp

T

T
)
)2

= B2

(
C exp(− pd

T

2T
)
)2 = B2 C2 exp(− pd

T

T
) . (2)

Thus, the same 〈pT〉 for both particles is expected and the be-
haviour observed in p–Pb collisions is well described by simple 
coalescence models. This finding can be even further substantiated 
by directly calculating the 〈pT〉 of deuterons assuming a constant 
value of B2 and using the measured proton spectrum as input. As 
shown in Fig. 8 (right), in this case, a good agreement with the 
data is found considering that a large fraction of the systematic un-
certainty is correlated among different multiplicity bins. The Blast-
Wave model [43] fails to describe the 〈pT〉 values for deuterons 
using the common kinetic freeze-out parameters from [18], which 
describe simultaneously the spectra of pions, kaons, and protons.

Fig. 8. Mean pT of various particle species as a function of the mean charged-
particle density at mid-rapidity for different V0A multiplicity classes. The empty 
boxes show the total systematic uncertainty while the shaded boxes indicate the 
contribution which is uncorrelated across multiplicity intervals (left). Comparison 
of 〈pT〉 of protons and deuterons with the simple coalescence and the Blast-Wave 
model expectations. The shaded areas show the expected 〈pT〉 for deuterons from a 
simple coalescence model assuming a pT-independent B2 as well as the calculated 
〈pT〉 for protons and deuterons from the Blast-Wave model [43] using the kinetic 
freeze-out parameters for pions, kaons, protons and � from [18] (right).

Fig. 9. Deuteron-over-proton ratio as a function of charged-particle multiplicity at 
mid-rapidity for pp, p–Pb and Pb–Pb collisions [3,6,12]. The empty boxes show the 
systematic uncertainty while the vertical lines represent the statistical uncertainty.

3.4. Deuteron-over-proton ratio

The deuteron-over-proton ratio is shown in Fig. 9 for three 
collision systems as a function of the charged-particle density at 
mid-rapidity. In Pb–Pb collisions it has been observed that the d/p 
ratio does not vary with centrality within uncertainties (red sym-
bols). Such a trend is consistent with a thermal-statistical approach 
and the magnitude of the measured values agree with freeze-out 
temperatures in the range of 150-160 MeV [3]. The d/p ratio ob-
tained in inelastic pp collisions increases with multiplicity [6]. The 
results in p–Pb collisions bridge the two measurements in terms of 
multiplicity and system size and show an increase of the d/p ratio 
with multiplicity. Here, the low (high) multiplicity value is com-
patible with the result from pp (Pb–Pb) collisions. Note that the 
experimental significance of this enhancement is further substan-
tiated by considering only the part of the systematic uncertainty 
which is uncorrelated across multiplicity intervals.

A similar rise with multiplicity is observed for the ratios of 
the yields of multi-strange particles to that of pions in p–Pb col-
lisions [53]. In this case the canonical suppression due to exact 
strangeness conservation in smaller systems gives a qualitative ex-
planation [54]. An interpretation of the d/p ratio within thermal 
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models is difficult, since the measured p/π ratio in these three 
systems is about the same [18]. Therefore, the available parameter 
space for a change in the freeze-out temperature or a suppres-
sion due to exact conservation of baryon number is limited [55]. 
Coalescence models are able to explain such an observation. The 
probability of forming a deuteron increases with the nucleon den-
sity and thus also with the charged-particle density. The results 
from pp and p–Pb collisions at low charged-particle density fit 
with this concept.

4. Conclusions

The production of deuterons and 3He and their antiparticles 
in p–Pb collisions at 

√
sNN = 5.02 TeV has been studied at mid-

rapidity. The results on deuteron production in p–Pb collisions 
exhibit a continuous evolution with multiplicity between pp and 
Pb–Pb collisions. The production of complex nuclei shows an ex-
ponential decrease with mass (number). The penalty factor (de-
crease of yield for each additional nucleon) is larger than the one 
observed in central Pb–Pb collisions and smaller than the one mea-
sured in pp collisions. The transverse momentum distributions of 
deuterons become harder with increasing multiplicity. Two intrigu-
ing observations that have been recently reported by ALICE [6] in 
high multiplicity pp collisions are confirmed in the present paper. 
Firstly, the 〈pT〉 values of deuterons are comparable to those of the 
much lighter � baryons and thus do not follow a mass ordering. 
This behaviour is observed for all multiplicity intervals and it is in 
contrast to the expectation from simple hydrodynamical models. 
These observations made in p–Pb collisions support a coalescence 
mechanism, while in Pb–Pb collisions the deuteron seems to fol-
low the collective expansion of the fireball. Secondly, the d/p ratio 
rises strongly with multiplicity, while this ratio remains approxi-
mately constant as a function of multiplicity in Pb–Pb collisions, 
where its value agrees with thermal-model predictions.
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