
Pairing vibrations in the interacting boson model
based on density functional theory

Nomura, Kosuke; Vretenar, Dario; Li, Z. P.; Xiang, J.

Source / Izvornik: Physical Review C, 2020, 102

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.1103/PhysRevC.102.054313

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:018070

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-12-19

Repository / Repozitorij:

Repository of the Faculty of Science - University of 
Zagreb

https://doi.org/10.1103/PhysRevC.102.054313
https://urn.nsk.hr/urn:nbn:hr:217:018070
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://repozitorij.unizg.hr/islandora/object/pmf:9033
https://dabar.srce.hr/islandora/object/pmf:9033


PHYSICAL REVIEW C 102, 054313 (2020)

Pairing vibrations in the interacting boson model based on density functional theory

K. Nomura ,1,* D. Vretenar,1,2 Z. P. Li,3 and J. Xiang3,4

1Department of Physics, Faculty of Science, University of Zagreb, HR-10000 Zagreb, Croatia
2State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China

3School of Physical Science and Technology, Southwest University, Chongqing 400715, China
4School of Physics and Electronic, Qiannan Normal University for Nationalities, Duyun 558000, China

(Received 22 September 2020; accepted 26 October 2020; published 10 November 2020)

We propose a method to incorporate the coupling between shape and pairing collective degrees of freedom
in the framework of the interacting boson model (IBM), based on the nuclear density functional theory. To
account for pairing vibrations, a boson-number nonconserving IBM Hamiltonian is introduced. The Hamiltonian
is constructed by using solutions of self-consistent mean-field calculations based on a universal energy density
functional and pairing force, with constraints on the axially symmetric quadrupole and pairing intrinsic de-
formations. By mapping the resulting quadrupole-pairing potential energy surface onto the expectation value
of the bosonic Hamiltonian in the boson condensate state, the strength parameters of the boson Hamiltonian
are determined. An illustrative calculation is performed for 122Xe, and the method is further explored in
a more systematic study of rare-earth N = 92 isotones. The inclusion of the dynamical pairing degree of
freedom significantly lowers the energies of bands based on excited 0+ states. The results are in quantitative
agreement with spectroscopic data, and are consistent with those obtained using the collective Hamiltonian
approach.

DOI: 10.1103/PhysRevC.102.054313

I. INTRODUCTION

Pairing correlations are among the most prominent features
of the nuclear many-body system [1–4] and, to a large ex-
tent, determine the structure of low-energy nuclear spectra.
Pairing vibrations [4–7], in particular, play an important role
in fundamental processes such as neutrinoless ββ decay [8]
and spontaneous fission [9–12]. The relevance of pairing vi-
brations in structure phenomena has been investigated using
a variety of nuclear models. Here we particularly refer to
theoretical studies since the early 2000s, that have used the ge-
ometrical collective Hamiltonian [13–16], the time-dependent
Hartree-Fock-Bogoliubov approaches [17], the nuclear shell
model [18], the quasiparticle random-phase approximation
[19,20], and the generator coordinate methods (GCM) [8,21].

Nuclear density functional theory (DFT) is at present the
most reliable framework for the description of low-energy
structure of medium-heavy and heavy nuclei. Both the rel-
ativistic [22–24] and nonrelativistic [25–27] energy density
functionals (EDFs) have been successfully implemented the
self-consistent mean-field (SCMF) studies of static and dy-
namical properties of finite nuclei. Within this framework,
the calculation of excitation spectra requires the restoration
of broken symmetries and configuration mixing, e.g., using
the generator coordinate method (GCM) [3]. However, when
multiple collective coordinates need to be taken into account,
this type of calculation becomes computationally excessive.

*knomura@phy.hr

In the recent work of Ref. [16], the coupling between shape
and pairing degrees of freedom has been considered us-
ing a quadrupole plus pairing collective Hamiltonian based
on the relativistic mean-field plus Bardeen-Cooper-Schrieffer
(RMF+BCS) scheme. It has been shown that the inclusion
of the pairing degree of freedom significantly improves the
description of low-lying 0+ states in rare-earth nuclei. The
current implementation of this approach is, however, re-
stricted to axially symmetric shapes.

Nuclear spectroscopy is also studied with a theoretical
method that consists in mapping the solutions of the DFT
SCMF calculation onto the interacting-boson Hamiltonian
[28,29]. The interacting boson model (IBM) [30,31], origi-
nally introduced by Arima and Iachello, is a model in which
correlated pairs of valence nucleons with spin and parity
0+ and 2+ are approximated by effective bosonic degrees
of freedom (s and d bosons, respectively) [31,32]. In the
DFT-to-IBM mapping procedure of Ref. [28], the strength
parameters of the IBM Hamiltonian are completely deter-
mined by mapping a SCMF potential energy surface (PES),
obtained from constrained SCMF calculations with a choice
of the EDF and pairing force, onto the expectation value
of the Hamiltonian in the boson coherent state [33]. The
method has been successfully applied in studies of a variety
of interesting nuclear structure phenomena, such as shape
coexistence [34,35], octupole collective excitations [36–39],
quantum phase transitions in odd-mass and odd-odd nuclei
[40–42], and β decay [43,44].

Considering the microscopic basis of the IBM in which the
bosons represent valence nucleon pairs [31,32,45], one might
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attempt to implement also pairing vibrational modes in the
IBM. In Refs. [46–49] additional monopole boson degrees
of freedom, different from the standard s boson, were intro-
duced in the IBM to reproduce low-lying excited 0+ energies.
Because of the inclusion of new building blocks, however,
the number of free parameters increases in such an approach.
Except for the references above, very little progress has been
made in explicitly including pairing vibrations in the IBM
framework.

In this work, we develop a method to incorporate both
shape and pairing vibrations in the IBM. To account for the
pairing degree of freedom, we introduce a version of the IBM
(denoted hereafter by pv-IBM) in which the number of bosons
is not conserved but is allowed to change by one. Subse-
quently the boson space consists of three subspaces that differ
in boson number by one. The three subspaces are mixed by a
specific monopole pair transfer operator. The strength param-
eters of the pv-IBM Hamiltonian are completely determined
by the mapping of the SCMF (β, α) potential energy sur-
face, obtained from RMF+BCS calculations, onto the bosonic
counterpart. We demonstrate that the inclusion of dynamical
pairing in the IBM framework significantly lowers the ener-
gies of excited 0+ states, in very good agreement with data.

The paper is organized as follows. In Sec. II we briefly
review the underlying SCMF calculations. In Sec. III the
pv-IBM model is introduced, and a method for mapping the
SCMF onto bosonic deformation energy surfaces is described.
The model is illustrated using as an example the excitation
spectrum of the nucleus 122Xe in Sec. IV. In Sec. V the newly
developed method is further explored in a study of low-energy
Kπ = 0+ bands in four axially symmetric N = 92 rare-earth
isotones. Section VI presents a summary of the main results
and an outlook for future study.

II. QUADRUPOLE- AND PAIRING-CONSTRAINED
SCMF CALCULATION

In a first step, constrained self-consistent mean-field
(SCMF) calculations are performed within the framework
of the relativistic mean-field plus BCS (RMF+BCS) model.
In the present study, the particle-hole channel of the effec-
tive inter-nucleon interaction is determined by the universal
energy density functional PC-PK1 [50], while the particle-
particle channel is modeled in the BCS approximation using
a separable pairing force [51]. A more detailed description of
the RMF+BCS framework combined with the separable pair-
ing force can be found in Ref. [52]. The constraints imposed
in the SCMF calculation are on the expectation values of
axial quadrupole Q̂20 and monopole pairing P̂0 operators. The
quadrupole operator Q̂20 is defined as Q̂20 = 2z2 − x2 − y2,
and its expectation value corresponds to the dimensionless
axial deformation parameter β:

β =
√

5π

3r2
0A5/3

〈Q̂20〉 , (1)

with r0 = 1.2 fm. If one does not consider “pairing rotations,”
that is, quasirotational bands that correspond to ground states
of neighboring even-even nuclei, the monopole pairing oper-

FIG. 1. The potential energy surface (PES) of 122Xe in the (β, α)
plane, calculated by the constrained RMF+BCS with the PC-PK1
energy density functional and separable pairing interaction. All ener-
gies (in MeV) in the PES are normalized with respect to the binding
energy of the absolute minimum. The contours join points on the
surface with the same energies, and energy difference between the
neighboring contours is 200 keV.

ator takes a simple form:

P̂0 = 1

2

∑
k>0

(ckck̄ + c†
k̄
c†

k ), (2)

where k and k̄ denote the single-nucleon and the corre-
sponding time-reversed states, respectively. c†

k and ck are the
single-nucleon creation and annihilation operators. The ex-
pectation value of the pairing operator in a BCS state

|α〉 =
∏
k>0

(uk + vkc†
k̄
c†

k ) |0〉 , (3)

corresponds to the intrinsic pairing deformation parameter α,

α = 〈α|P̂0|α〉 =
∑

τ

∑
k>0

uτ
k v

τ
k , (4)

which can be related to the pairing gap �. The sum runs
over both proton τ = π and neutron τ = ν single-particle
states. The quadrupole shape deformation Eq. (1) and pairing
deformation Eq. (4) represent the collective coordinates for
constrained SCMF calculations [16]. As an example, in Fig. 1
we display the SCMF deformation energy surface for the nu-
cleus 122Xe in the plane of the axial quadrupole β and pairing
α deformation variables. The global minimum is found at
β ≈ 0.32 and α ≈ 10, and we note that the energy surface is
rather soft with respect to the pairing variable α.

III. PAIRING VIBRATIONS IN THE IBM

A. The Hamiltonian

In the next step we introduce a model that relates the SCMF
(β, α) potential energy surface (PES) to an equivalent system
of interacting bosons. The boson space comprises monopole
s and quadrupole d bosons, which represent correlated L =
0+ and 2+ pairs of valence nucleons [31,32,45]. In the
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conventional IBM, the number of bosons, denoted as n, is
conserved for a given nucleus, i.e., n = ns + nd , where ns

and nd stand for the s and d boson number, respectively. The
boson number is equal to half the number of valence nucleons
counted from the nearest closed shells and, in the illustrative
case 122Xe, the boson core nucleus is 132Sn and hence n = 9.
We do not distinguish between neutron and proton degrees
freedom in the boson space. Considering the underlying mi-
croscopic structure, the monopole pair transfer operator in the
bosonic system should be expressed, to a good approximation,
in terms of the s boson degree of freedom, i.e., P̂ ∝ s† + s.
Hence, the s boson is expected to be the most relevant for a
description of the pairing vibration mode.

To take explicitly into account the pairing vibration mode,
the boson configuration space is extended in such a way
that the total number of bosons is no longer conserved, but
is allowed to change in the boson number by one, that is,
8 � n � 10 for the illustrative case of 122Xe. The following
IBM Hamiltonian is employed:

Ĥ =
∑

n

P̂n(ε0
s n̂s + ε0

d n̂d + κQ̂ · Q̂ + κ ′L̂ · L̂)P̂n

+
∑
n �=n′

P̂nts(s
† + s)P̂n′ , (5)

where P̂n is the projection operator onto the subspace [n]. The
parameters for the Hamiltonian could differ between different
configuration spaces, but here the same parameters are used
for the three configurations. Therefore, for brevity, in the
following the operator P̂n will be omitted, unless otherwise
specified. The first and second terms in Eq. (5) are the s and
d boson-number operators with n̂s = s† · s and n̂d = d† · d̃ . ε0

s
and ε0

d are absolute values of the single s and d boson ener-
gies. The third term is the quadrupole-quadrupole interaction
with the boson quadrupole operator Q̂ = s†d̃ + d†s + χ (d† ×
d̃ )(2). The fourth term, with the boson angular momentum op-
erator L̂ = √

10(d† × d̃ )(1), makes a significant contribution
to the moments of inertia of the Kπ = 0+ bands. The last
term with strength ts in the above Hamiltonian represents the
one s-boson (monopole pair) transfer operator. It is the boson-
number nonconserving term, and thus mixes the subspaces
[n − 1], [n], and [n + 1]. For later convenience, and since
the total boson number operator is given as n̂ = n̂s + n̂d , the
above Hamiltonian is rewritten in the form

Ĥ = ε0
s n̂ + εd n̂d + κQ̂ · Q̂ + κ ′L̂ · L̂ + ts(s

† + s), (6)

where εd is the d-boson energy relative to the s boson one,
i.e., εd = ε0

d − ε0
s . The first term ε0

s n̂ does not contribute to
the relative excitation spectra, and is thus neglected in most
IBM calculations. In the present framework, however, since
we allow for the boson number to vary, this global term is
expected to play an important role, especially for excitation
energies of the 0+ states.

The Hamiltonian Eq. (6) is diagonalized in the following
M-scheme basis with M = 0, expressed as a direct sum of the
bases for the three configurations:

|�〉 = [|(sd )n−1〉 ⊕ |(sd )n〉 ⊕ |(sd )n+1〉]M=0, (7)

where M denotes the z-projection of the total angular momen-
tum I . The value of I for a given eigenstate is identified by
calculating the expectation value of the angular momentum
operator squared, which should give the eigenvalue I (I + 1).

The present computational scheme is formally similar
to IBM configuration-mixing calculations that describe the
phenomenon of shape coexistence [35]. In the conventional
configuration-mixing IBM framework, several different bo-
son Hamiltonians are allowed to mix [53]. Each of these
independent (unperturbed) Hamiltonians is associated with a
2m-particle-2m-hole (m ∈ Z) excitation from a given major
shell to the next and, since in the IBM there is no distinction
between particles and holes, differ in boson number by two.
The configuration-mixing IBM thus does not conserve the
boson number, similar to the present case. Here, however, the
model space comprises a single major shell, and the boson
number conservation is violated not by the contribution from
next major shell (i.e., pair transfer across the shell closure),
but by pairing vibrations.

B. The boson condensate

The IBM analog of the (β, α) PES is formulated analyt-
ically by taking the expectation value of the Hamiltonian of
Eq. (5) in the boson coherent state |�(�α)〉 [33,54,55]:

|�(�α)〉 = |�(n − 1, �α)〉 ⊕ |�(n, �α)〉 ⊕ |�(n + 1, �α)〉 , (8)

where �α represents variational parameters. Since here the IBM
model space comprises three different boson-number config-
urations, the above trial wave function is expressed as a direct
sum of three independent coherent states. Each of them is
given by

|�(n, �α)〉 = 1√
n!

(b+
c )n |0〉 , (9)

and the condensate boson bc is defined as

bc = (
α2

0 + α2
2

)−1/2
(α0s + α2d0), (10)

where the amplitudes α0 and α2 should be related to the
pairing deformation α and the axial deformation parameter
β in the SCMF calculation, respectively. The variable α2

can be considered as the shape deformation parameter in the
collective model:

α2 = β̄, (11)

where β̄ is the IBM analog of the axially symmetric SCMF
deformation parameter. We propose to perform the following
coordinate transformation for the variable α0:

α0 = cosh (ᾱ − ᾱmin). (12)

The new coordinate ᾱ is equivalent to the pairing deformation
α. ᾱmin stands for the ᾱ value corresponding to the global
minimum on the IBM PES. We assume the following relations
that relate the amplitudes β̄ and ᾱ in the boson system to the
β and α coordinates of the SCMF model:

β̄ = Cββ, ᾱ = Cαα. (13)

The dimensionless coefficients of proportionality Cβ and Cα

are additional scale parameters determined by the mapping.
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Since our model space comprises three subspaces with
different number of bosons, the PES of the boson system is
expressed in a matrix form [56]:[En−1,n−1(ᾱ, β̄ ) En−1,n(ᾱ, β̄ ) 0

En,n−1(ᾱ, β̄ ) En,n(ᾱ, β̄ ) En,n+1(ᾱ, β̄ )
0 En+1,n(ᾱ, β̄ ) En+1,n+1(ᾱ, β̄ )

]
. (14)

In the limit in which boson number is conserved, only the di-
agonal element En,n is considered. The energy-surface matrix
of Eq. (14) is diagonalized at each point on the surface (β̄, ᾱ),
resulting in three energy surfaces [56]. The usual procedure in
most IBM calculations with configuration mixing is to retain
only the lowest energy eigenvalue at each deformation.

The analytical expressions for the diagonal and nondiago-
nal elements of the matrix Eq. (14) are obtained by calculating
expectation values of the Hamiltonian Eq. (6) in the coherent
state Eq. (10), with the amplitudes defined in Eqs. (11) and
(12). The right-hand side of Eq. (12) is Taylor expanded:
cosh ᾱ′ = 1 + ᾱ′2/2 + O(ᾱ′4), and thus cosh2 ᾱ′ = 1 + ᾱ′2 +
O(ᾱ′4), where ᾱ′ ≡ ᾱ − ᾱmin. Terms of the order of O(ᾱ′4)
and higher are hereafter neglected. The resulting analytical
expressions for the matrix elements in Eq. (14) read

En,n(ᾱ, β̄ ) = ε0
s n + n[5κ + (εd + 6κ ′ + κ (1 + χ2))β̄2]

1 + ᾱ′2 + β̄2

+ κn(n − 1)

(1 + ᾱ′2 + β̄2)2

[
4(1 + ᾱ′2)β̄2

− 4

√
2

7
χβ̄3 + 2

7
χ2β̄4

]
, (15)

for the diagonal elements, and

En,n′ (ᾱ, β̄ ) = En′,n(ᾱ, β̄ ) = ts
2
√

n + 1√
1 + ᾱ′2 + β̄2

, (16)

for the nondiagonal elements with n > n′. The term propor-
tional to ᾱ′2β̄3 in the numerator of the third term of Eq. (15),
and the term quadratic in ᾱ′ in the numerator of Eq. (16) are
neglected.

The functional forms in Eqs. (15) and (16), in particular
the norm factor N = 1 + ᾱ′2 + β̄2 that depends quadratically
on ᾱ, most effectively produce an α-deformed equilibrium
state that is consistent with the SCMF PES. The form of the
norm factor N ensures that no divergence occurs at β̄ ≈ 0
and ᾱ′ ≈ 0. In the limit ᾱ → ᾱmin(= Cααmin), the expression
for En,n(ᾱ, β̄ ) reduces to the one used in standard sd-IBM
calculations [31,33].

C. Mapping the boson Hamiltonian

The pv-IBM Hamiltonian in Eq. (6) is constructed in the
following steps:

(1) The strength parameters that appear in the boson num-
ber conserving part of the Hamiltonian: εd , κ , and χ ,
as well as the scale factor Cβ , are determined so that
the diagonal matrix element En,n(ᾱ, β̄ ) reproduces the
SCMF PES at α = αmin.

TABLE I. Strength parameters of the boson Hamiltonian Eq. (6)
determined by mapping the SCMF (β, α) energy surface to the boson
space. The parameters χ , Cβ , and Cα are dimensionless, while the
others are in units of MeV.

ε0
s εd κ χ κ ′ ts Cβ Cα

2.19 0.611 −0.102 −0.4 −0.029 0.18 2.75 0.045

(2) The strength κ ′ of the rotational L̂ · L̂ term is deter-
mined separately so that the bosonic moment of inertia
calculated in the intrinsic frame [57] at the global mini-
mum, should equal the Inglis-Belyaev [58,59] moment
of inertia at the corresponding configuration on the
SCMF energy surface. The details of this procedure
can be found in Ref. [60].

(3) The s boson energy ε0
s and mixing strength ts, as well

as the scale factor Cα , are determined in the (β̄, ᾱ)
plane so that the lowest eigenvalue of the energy sur-
face matrix Eq. (14) reproduces the topology of the
SCMF PES in the neighborhood of the equilibrium
minimum.

The values of the resulting parameters of the IBM
Hamiltonian are listed in Table I, and the corresponding IBM
PES is shown in Fig. 2. Consistent with the SCMF PES, the
equilibrium minimum of the IBM PES is found at β ≈ 0.32
and α ≈ 10. The potential energy surfaces exhibit a similar
topography except for the fact that, away from the global
minimum, the IBM surface tends to be softer than the DFT
one obtained using the constrained SCMF method. This is a
common characteristic of the IBM [28] that arises because of
the more restricted boson model space as compared to the
SCMF approach based on the Kohn-Sham DFT. The former
is built only from the valence nucleons, while the latter model
space contains all nucleons. Therefore, the boson Hamiltonian
parameters are determined by the mapping procedure that is
carried out in the neighborhood of the global minimum, as
this region is most relevant for low-energy excitations. The

FIG. 2. Same as in the caption to Fig. 1 but for the IBM energy
surface.
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FIG. 3. Excitation spectra for the unperturbed boson configura-
tions [n − 1], [n] and [n + 1], and the final one obtained after mixing
the three configurations.

Hamiltonian Eq. (6) is diagonalised in the M-scheme basis of
Eq. (7).

IV. ILLUSTRATIVE EXAMPLE: 122Xe

A. Energy spectra

Figure 3 depicts the calculated excitation spectra corre-
sponding to the unperturbed boson configurations [n − 1], [n]
and [n + 1], and the spectrum obtained by mixing the three
different configurations. Without mixing, the 0+ ground states
for the three configurations cluster together within a small
energy range, and the first excited 0+ states are also found
in a narrow interval around 3 MeV. This is, of course, easy
to understand because the spaces in which the Hamiltonian

is diagonalized only differ by �n = 1 in the boson number.
Allowing for configuration mixing [boson-number noncon-
serving term in the Hamiltonian Eq. (6)], states with the same
spin repel and the two lowest 0+ excited states are found at
excitation energies Eexc ≈ 1 MeV and above 2 MeV. This
shows that, using only a single configuration and fixed boson
number, the model cannot reproduce the excitation energies of
low-lying 0+ states. Mixing configurations that correspond to
different boson numbers will be essential for the description
of low-energy 0+ excitations.

Figure 4 compares the excitation spectra for 122Xe calcu-
lated using the IBM with a single configuration [n], where the
boson number n = 9 is conserved and the effect of the pairing
vibration is not taken into account [left-hand panel, Fig. 4],
with those obtained with the IBM that includes pairing-
vibrations [pv-IBM, shown in the central panel, Fig. 4]. Part
of the available experimental energy spectra [61,62] is also
shown in the right-hand panel of Fig. 4. The theoretical states
are grouped into bands according to the sequence of calculated
E2 strength values. Since we aim to describe excited 0+ states,
only bands that are built on a 0+ state and that follow the
�I = 2 E2 transition systematics are shown in the figure. The
remarkable result is that the Kπ = 0+ bands built on the 0+

2
and 0+

3 states are dramatically lowered in energy by taking
into account configuration mixing, that is, by the inclusion
of pairing vibrations. The resulting excitation spectrum is in
much better agreement with experiment.

B. Structure of wave functions

To shed more light upon the nature of excited states cal-
culated in the pv-IBM, we show in Fig. 5 the probabilities
of the three different boson-space configurations [n − 1], [n],
and [n + 1] in the lowest five 0+, 2+, and 4+ states of 122Xe.
Let us consider, for example, the 0+ states. Only half the wave

FIG. 4. Excitation spectra of 122Xe resulting from the IBM calculation with a single boson-number configuration [n = 9] (left panel), and
including configuration mixing between [n = 8], [n = 9], and [n = 10] boson spaces (pv-IBM). Experimental states are from Refs. [61,62]
(right panel). The 0+ band-head states of the Kπ = 0+ bands are highlighted with thick lines.
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FIG. 5. Probabilities of the [n − 1], [n], and [n + 1] components
in the wave functions of the five lowest-energy 0+, 2+, and 4+ states
in 122Xe.

function of the ground state 0+
1 is accounted for by the [n] con-

figuration, while the rest is equally shared by the [n − 1] and
[n + 1] configurations. The 0+

2 state exhibits a structure that
is completely different from the ground state. The dominant
contributions come from the [n − 1] and [n + 1] configura-
tions, both with probabilities of nearly 50%, whereas there is
almost no contribution from the [n] configuration space. The
structure of the 0+

3 state is very similar to that of the 0+
1 . The

state 0+
4 appears to be different from the lower ones in that

the three configurations are more equally mixed: the [n] and
[n − 1] components are found with approximately 40% prob-
ability each, and the remaining 20% belongs to the [n + 1]
configuration space. The content of the 0+

5 wave function is
similar to that of 0+

2 . A corresponding structure is also found
for the 2+ and 4+ states. The only exception is perhaps the
fourth lowest state of 2+ and 4+, nevertheless in each state
0+

4 , 2+
4 , and 4+

4 the largest contribution to their wave function
comes from the [n] configuration.

C. Mixing matrix elements

Figure 6 displays the matrix elements of the mixing in-
teraction | 〈I+

k |Ĥmix|I+
k 〉 | (I even, k = 1, 2, 3), with Ĥmix =

ts(s† + s), that couple the unperturbed [n − 1] and [n] config-
urations, and the unperturbed [n] and [n + 1] configurations.
For all of the unperturbed I1,2,3 states, the mixing between

FIG. 6. Matrix elements of the monopole pair transfer operator
Ĥmix [last term in Eq. (6)] between the unperturbed [n − 1] and [n]
configurations, and between the unperturbed [n] and [n + 1] config-
urations, for the lowest three even-spin states up to I = 8+.

the [n − 1] and [n] configurations is almost identical to the
coupling between the [n] and [n + 1] configurations. In both
cases the mixing is generally stronger between states with
lower spin, and gradually decreases in magnitude as the an-
gular momentum increases.

D. Electromagnetic transitions

The electric quadrupole (E2) and monopole (E0) transition
rates can also be analyzed in the pv-IBM. The corresponding
operators are defined as

T̂ E2 = eBQ̂, (17)

T̂ E0 = ξ n̂d + ηn̂, (18)

with eB is the E2 boson effective charge, and ξ and η are
parameters. The B(E2) and ρ2(E0) transition rates are then
calculated using the relations

B(E2; Ii → I ′
j ) = 1

2Ii + 1
| 〈I ′

j‖T̂ E2‖Ii〉 |2, (19)

ρ2(E0; Ii → I j ) = Z2

e2r4
0A4/3

1

2Ii + 1
| 〈I j‖T̂ E0‖Ii〉 |2 . (20)
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TABLE II. B(E2; Ii → I ′
j ) values in Weisskopf units, calculated

in the IBM and pv-IBM. The experimental values are taken from
ENSDF database.

IBM pv-IBM Experiment

B(E2; 2+
1 → 0+

1 ) 80 79 78(4)
B(E2; 4+

1 → 2+
1 ) 113 114 114(6)

B(E2; 6+
1 → 4+

1 ) 121 124 1.1 × 102(4)
B(E2; 2+

K=0+
2

→ 0+
K=0+

2
) 46 79

B(E2; 4+
K=0+

2
→ 2+

K=0+
2

) 57 111

B(E2; 6+
K=0+

2
→ 4+

K=0+
2

) 64 119

In Table II we compare the B(E2) values calculated with
(pv-IBM) and without (IBM) the inclusion of dynamical pair-
ing. A typical value for the E2 effective charge eB = 0.11eb is
used both in the IBM and pv-IBM calculations. The B(E2)
transitions between the yrast states do not change by the
inclusion of the pairing degree of freedom. The results of both
calculations are consistent with the experimental values [61].
In the pv-IBM calculation, the E2 transitions in the 0+

2 -based
band display a more pronounced collectivity, comparable to
that in the ground state band. As shown in Fig. 5, in the pv-
IBM wave functions we find a rather large contribution from
the [n + 1] configurations to the 0+

2 band, and this accounts for
the enhanced B(E2) strengths within this sequence of states.

Since there are no data for the E0 transitions in 122Xe, in
Table III we compare the calculated reduced matrix elements
of the n̂d and n̂ operators, which constitute the E0 operator of
Eq. (18). Note that in the number-conserving IBM only the n̂d

term contributes. From Table III one notices that the reduced
matrix elements 〈I j‖n̂d‖Ii〉 in the pv-IBM calculation are
systematically smaller in magnitude than the corresponding
quantity in the IBM, most notably for the 0+

3 → 0+
1 transition.

The matrix element 〈I j‖n̂‖Ii〉 is generally of equal magnitude
as that of n̂d and, therefore, one expects that it will give a
sizable contribution to the ρ2(E0) values in pv-IBM.

V. APPLICATION TO N = 92 ISOTONES

For a more detailed analysis, we apply the pv-IBM the-
oretical framework to a study of the structure of the axially
symmetric N = 92 rare-earth isotones. For nuclei in this re-

TABLE III. Reduced matrix elements of the d-boson number
operator n̂d and the total boson number operator n̂ for E0 transitions
between the lowest three IBM and pv-IBM states 0+ and 2+ of 122Xe.

IBM pv-IBM

I+
i I+

j 〈Ij‖n̂d‖Ii〉 〈Ij‖n̂d‖Ii〉 〈Ij‖n̂‖Ii〉
0+

2 0+
1 −1.166 0.473 0.721

0+
3 0+

1 −1.139 0.006 0.017
0+

3 0+
2 −0.431 0.451 0.687

2+
2 2+

1 −0.503 −0.947 −1.609
2+

3 2+
1 2.714 −0.482 0.084

2+
3 2+

2 0.752 −0.173 −0.017

FIG. 7. Same as in the caption to Fig. 1 but for the N = 92
isotones 152Nd, 154Sm, 156Gd, and 158Dy.

gion of the nuclear chart, an unexpectedly large number of
low-energy excited 0+ states have been observed [63,64].
From a theoretical point of view, they have been interpreted
in terms of pairing vibrations [16], contributions of intruder
orbitals [46], and excitations of double octupole phonons
[65,66]. The occurrence of low-lying excited 0+ states also
characterizes the quantum shape-phase transition from spher-
ical to axially deformed nuclear systems [67].

A. (β, α) potential energy surfaces

In Fig. 7 we plot the SCMF deformation energy surfaces in
the (β, α) plane for the N = 92 isotones: 152Nd, 154Sm, 156Gd,

FIG. 8. Same as in the caption to Fig. 7, but for the IBM energy
surfaces.
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TABLE IV. Same as the caption Table I, but for the N = 92
isotones.

ε0
s εd κ χ κ ′ ts Cβ Cα

152Nd 1.40 0.478 −0.045 −1.1 −0.0130 0.16 2.85 0.035
154Sm 1.37 0.626 −0.043 −1.1 −0.0126 0.16 2.90 0.040
156Gd 1.30 0.530 −0.040 −0.9 −0.0083 0.14 2.80 0.045
158Dy 1.32 0.533 −0.038 −0.85 −0.0054 0.12 2.75 0.050

and 158Dy. Note that this is the same as Fig. 7 in Ref. [16], in
which the coupling of shape and pairing vibrations was ana-
lyzed using a collective Hamiltonian based on nuclear DFT.
Pronounced axially symmetric global minima are calculated
at β ≈ 0.35. The deformation surfaces are much softer with
respect to the pairing deformation α, and the minima extend
in a rather large interval 5 � α � 15. As already noted in
Ref. [16], this softness is reduced with the increase of the pro-
ton number, while simultaneously the energy surfaces become
more soft in the quadrupole collective deformation.

The corresponding bosonic energy surfaces in the (β, α)
plane are drawn in Fig. 8. They exhibit a nonzero α global
minimum, consistent with the microscopic SCMF PESs. As
already noted above in the case of 122Xe, the IBM PESs are
considerably softer than the SCMF ones, especially far from
the global minimum. This is due to the more restricted boson
model space, that is, the restricted space of valence nucleons
from which the bosons are built does not contain the high-
energy configurations that contribute to the SCMF solutions
far from the equilibrium minimum. The strength parameters
of the boson Hamiltonian in Eq. (5), determined by mapping
the SCMF energy surfaces to the expectation values of the
Hamiltonian in the boson condensate, are listed in Table IV for
the N = 92 isotones. The large negative values of the derived
parameter χ parameter, close to the SU(3) limit of the IBM

χSU(3) = −√
7/2, reflect the pronounced axially symmetric

prolate quadrupole deformation of these nuclei.

B. Low-energy excitation spectra

Figures 9, 10, 11, and 12 compare the three-lowest Kπ =
0+ bands of four N = 92 isotones: 152Nd, 154Sm, 156Gd, and
158Dy, respectively, computed using the IBM and pv-IBM and
IBM. In addition to the corresponding data, we also include
the results of our recent study that has used the newly devel-
oped quadrupole-pairing collective Hamiltonian (QPCH) to
analyze the low-energy spectra of these nuclei [16]. A detailed
description of the QPCH model can be found Ref. [16]. All
three Hamiltonians (IBM, pv-IBM, and QPCH) used here
are based on the same energy density functional and pairing
interaction. The excitation spectra shown in Figs. 9–12 clearly
illustrate the striking effect of the coupling between shape
and pairing degrees of freedom. The inclusion of dynamical
pairing significantly lowers the bands based on excited 0+
states. The bands calculated with pv-IBM and QPCH are in
much better agreement with experiment, especially the band
based on 0+

2 . We note that the overall quality of the pv-IBM
description of Kπ = 0+ bands is comparable to that of the
fully microscopic QPCH model.

Even though we only show the Kπ = 0+ bands in
Figs. 9–12, the Kπ = 2+ (or γ -) bands are also observed
experimentally for the N = 92 isotones. The IBM models
can be used to compute these states but, since this study is
restricted to axial symmetry, the focus is on Kπ = 0+ bands.
For completeness, the K = 2+

1 bandhead is calculated to be
2.248 (2.315), 2.330 (2.451), 2.102 (2.114), and 2.085 (2.099)
MeV, for 152Nd, 154Sm, 156Gd, and 158Dy in the pv-IBM
(IBM) calculations, respectively. Thus, in the axial case, the
energies of the γ band are hardly affected by the inclu-
sion of the pairing degree of freedom. The corresponding

FIG. 9. Low-energy Kπ = 0+ bands of 152Nd, calculated using the IBM without and with the dynamical pairing degree of freedom, in
comparison to available data [61]. The corresponding spectrum obtained with the quadrupole-pairing collective Hamiltonian (QPCH) model
is included for comparison.
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FIG. 10. Same as described in the caption to Fig. 9, but for 154Sm.

experimental 2+
γ energies for 154Sm, 156Gd, and 158Dy are:

1.440 [68], 1.154 [63], 0.946 MeV [64], respectively, whereas
no γ band has been identified in 152Nd. Therefore we note
that, for a quantitative comparison with data, the theoretical
framework should be extended with the γ degree of freedom
(nonaxial shapes).

C. Structure of the wave functions

In Fig. 13 we plot the probabilities of the three different
boson configurations [n − 1], [n], and [n + 1] in the pv-IBM
wave functions of the four lowest-energy 0+ states. In all four
N = 92 isotones nearly half of the wave function of the 0+

1
ground state (a) is accounted for by the [n] configuration. The
structure of wave function for the 0+

2 state is based mainly
on the [n − 1] and [n + 1] configurations, with almost no
contribution from the states of the [n]-boson model space.

The 0+
3 state is mainly composed of [n]-boson configurations,

similar to the 0+
1 ground state. The wave function of the 0+

4
state (d) somewhat differs in structure from the lower-energy
0+ states: each of the [n] and [n − 1] configurations takes
approximately 40% of the wave function, and the remaining
20% consists of the [n + 1] configuration.

D. Transition rates

The B(E2) and ρ2(E0) values calculated with the pv-IBM,
IBM, and QPCH models are compared to available data in
Tables V and VI, respectively, The effective boson charge in
the E2 operator is eB = 0.14 e · b. The parameters of the E0
operators: ξ = 0.095 and η = 0.11 fm2 for the pv-IBM, and
ξ = 0.075 fm2 for the IBM, are adjusted to obtain the best
agreement with the experimental ρ2(E0) values for 156Gd,
and kept unchanged for all four N = 92 isotones. There are

FIG. 11. Same as described in the caption to Fig. 9, but for 156Gd.
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FIG. 12. Same as described in the caption to Fig. 9, but for 158Dy.

no adjustable parameters for the calculation of transition rates
in the QPCH model. Note that there are no E2 transitions
related to the γ band with Kπ = 2+ in the QPCH model since,
as pointed out above, the present version of QPCH does not
include the triaxial degree of freedom.

As shown in Table V, the B(E2) transition strengths within
the ground state bands are reproduced very nicely by all the
models. There is no significant difference between the B(E2)
values calculated with the IBM and pv-IBM. Many experi-
mental results are available for the transition rates of 154Sm
and, generally, they are well reproduced by all three models.
In 156Gd the theoretical results reproduce the data, except for
an overestimate of the experimental B(E2; 2+

K=0+
2

→ 0+
K=0+

2
)

value of 52 ± 23 W.u. Very good results are also obtained for
158Dy.

FIG. 13. Probabilities of the [n − 1], [n], and [n + 1] compo-
nents in the pv-IBM wave functions of the four lowest 0+ states in
the N = 92 isotones.

The calculated ρ2(E0) values are generally in satisfactory
agreement with available data (Table VI), except in the case
of 154Sm, in which both the IBM and QPCH approaches
considerably overestimate the measured [68] upper limits of
the ρ2(E0; 2+

2 → 2+
1 ) and ρ2(E0; 4+

2 → 4+
1 ) values. It ap-

pears that the IBM and pv-IBM models reproduce the data
somewhat better than QPCH, but this comes at the expense of
additional adjustable parameters in the E0 operator.

VI. CONCLUSION AND OUTLOOK

We have developed a model that incorporates the coupling
between nuclear shape and pairing degrees of freedom in the
framework of the IBM, based on nuclear DFT. To account
for pairing vibrations, a boson-number nonconserving IBM
Hamiltonian is introduced. The boson model space is then
extended from the usual one in which the boson number
equals half the number of valence nucleons, to include three
subspaces that differ in boson number by one. The three
subspaces are mixed by a specific monopole pair transfer
operator. In a first step of the construction of the IBM Hamil-
tonian, a set of constrained SCMF calculation is performed
for a specific choice of the universal EDF and pairing force,
and with the constraints on the expectation values of the ax-
ial mass quadrupole operator and monopole pairing operator.
These calculations produce a potential energy surface (PES)
in the plane of the axial quadrupole β and pairing α col-
lective coordinates. The energy surface is then mapped onto
the expectation value of the IBM Hamiltonian in the boson
condensate state. The mapping determines the strength param-
eters of the IBM Hamiltonian, and from the corresponding
eigenvalue equation excitation energy spectra and transition
rates are obtained.

As a first application of the newly developed model, this
work has focused on the excitation spectrum of 122Xe. By the
inclusion of the dynamical pairing degree of freedom in the
IBM and the resulting boson-number configuration mixing, it
has been shown that the excitation energies of the 0+

2 and 0+
3

054313-10



PAIRING VIBRATIONS IN THE INTERACTING BOSON … PHYSICAL REVIEW C 102, 054313 (2020)

TABLE V. B(E2; Ii → I ′
j ) values (in Weisskopf units) for 152Nd,

154Sm, 156Gd, and 158Dy. Experimental values [61,63,69] are com-
pared to results of the pv-IBM, IBM, and QPCH model calculations.

Expt pv-IBM IBM QPCH

152Nd 2+
1 → 0+

1 173 ± 10 160 162 162
4+

1 → 2+
1 226 ± 11 225 227 231

6+
1 → 4+

1 218+51
−35 240 241 253

154Sm 2+
1 → 0+

1 176 ± 1 184 186 197
4+

1 → 2+
1 245 ± 6 260 262 282

6+
1 → 4+

1 289 ± 8 280 281 310
8+

1 → 6+
1 319 ± 17 283 281 324

0+
K=0+

2
→ 2+

1 11.2 ± 2.1 6.0 5.0 5.9

2+
K=0+

2
→ 0+

1 0.32 ± 0.04 0.7 1.7 1.1

2+
K=0+

2
→ 2+

1 0.72 ± 0.09 1.4 2.0 1.6

2+
K=0+

2
→ 4+

1 1.32 ± 0.15 3.7 0.6 3.1

4+
K=0+

2
→ 2+

1 0.32 ± 0.11 0.7 0.9 1.5

4+
K=0+

2
→ 4+

1 0.57 ± 0.18 1.2 1.3 1.4

4+
K=0+

2
→ 6+

1 0.66 ± 0.21 3.7 1.9 2.7

2+
γ → 0+

1 1.9 ± 0.2 0.1 0.3
2+

γ → 2+
1 3.2 ± 0.3 2.4 1.8

2+
γ → 4+

1 0.36 ± 0.05 2.4 2.8
156Gd 2+

1 → 0+
1 189 ± 3 195 197 205

4+
1 → 2+

1 264 ± 4 276 279 293
6+

1 → 4+
1 295 ± 8 299 300 322

8+
1 → 6+

1 320 ± 17 304 303 335
10+

1 → 8+
1 314 ± 14 299 296 342

0+
K=0+

2
→ 2+

1 8+4
−7 4.9 4.3 2.5

2+
K=0+

2
→ 0+

1 0.63 ± 0.06 0.6 0.8 1.8

2+
K=0+

2
→ 0+

K=0+
2

52 ± 23 196 136 236

2+
K=0+

2
→ 2+

1 3.3 ± 0.3 1.2 0.5 2.5

2+
K=0+

2
→ 4+

1 4.1 ± 0.4 3.0 2.9 4.2

4+
K=0+

2
→ 2+

K=0+
2

330+110
−130 276 180 337

4+
K=0+

2
→ 2+

1 1.3+0.5
−0.7 0.7 0.8 2.6

4+
K=0+

2
→ 6+

1 2.1+0.7
−1.1 3.0 3.3 3.4

0+
K=0+

3
→ 2+

1 1.6+2.3
−0.8 0.02 0.02 2.6

2+
γ → 0+

1 4.68 ± 0.16 2.4 2.4
2+

γ → 2+
1 7.24 ± 0.25 6.3 5.8

2+
γ → 4+

1 0.77 ± 0.04 0.2 0.2
158Dy 2+

1 → 0+
1 186 ± 4 218 220 199

4+
1 → 2+

1 266 ± 15 309 311 284
6+

1 → 4+
1 3.4 × 102(4) 335 337 312

8+
1 → 6+

1 3.4 × 102(7) 342 342 326
2+

γ → 0+
1 5.9 ± 1.2 3.1 3.1

2+
γ → 2+

1 19 ± 4 7.2 6.7
2+

γ → 4+
1 2.1 ± 0.8 0.3 0.3

2+
K=0+

2
→ 0+

1 2.1 ± 0.5 0.6 0.8 1.6

2+
K=0+

2
→ 2+

1 3.5 ± 0.8 1.1 0.6 1.8

2+
K=0+

2
→ 4+

1 12 ± 3 2.8 2.9 2.0

states and the bands built on them, are dramatically lowered
by a factor of two or three, thus bringing the theoretical spec-
trum in quantitative agreement with experiment. The validity

TABLE VI. Same as described in the caption to Table V but for
the ρ2(E0; Ii → Ij ) × 103 values. The experimental ρ2(E0) are from
Refs. [61,64,68,70–73].

Expt pv-IBM IBM QPCH

154Sm 0+
2 → 0+

1 96 ± 42 43 39 54
2+

2 → 2+
1 � 9.4 ± 1.5 41 36 53

4+
2 → 4+

1 8.2+12.0
−8.2 38 28 53

156Gd 0+
2 → 0+

1 42 ± 21 42 43 73
0+

3 → 0+
1 1.2+1.9

−0.6 0.2 1.8 13
0+

3 → 0+
2 18+27

−9 41 40 97
0+

4 → 0+
1 2.9+2.7

−1.4 54 0.07 3.4
0+

4 → 0+
3 6.3+5.7

−3.0 0.6 5.6 34
2+

K=0+
2

→ 2+
1 54 ± 4 40 41 72

2+
K=0+

3
→ 2+

1 0.2+0.6
−0.2 0.05 0.4 13

4+
K=0+

2
→ 4+

1 50+25
−16 38 34 72

4+
K=0+

3
→ 4+

1 <15 4 × 10−5 0.08 13
158Dy 2+

K=0+
2

→ 2+
1 27 ± 12 40 48 75

of the method has been further examined in a more systematic
study of the axially symmetric N = 92 rare-earth isotones.
The microscopic coupling between shape and pairing degrees
of freedom leads to a boson Hamiltonian that, when compared
to the standard IBM, significantly lowers the Kπ = 0+ bands
based on excited 0+ states in 152Nd, 154Sm, 156Gd, and 158Dy.
The calculated excitation spectra are in an excellent agreement
with experiment, and are fully consistent with the results of
the corresponding quadrupole-pairing collective Hamiltonian
model [16]. Both models also reproduce the empirical E2 and
E0 transition properties with a reasonable accuracy.

The present study has shown a new interesting possibility
for extending the DFT-to-IBM mapping method. By incor-
porating explicitly the dynamical pairing degree of freedom
in the IBM, this model can be used to describe pairing vi-
brational modes and quantitatively reproduce the excitations
of low-energy 0+ states. Here we have only considered the
coupling of the pairing degree of freedom with the axial shape
deformation. A more challenging case, but also more realistic,
will be the coupling between the pairing and triaxial (β, γ )
shape degrees of freedom. This will be particularly important
in γ -soft nuclei and systems that exhibit shape coexistence.
In principle, such an extension is also possible in the QPCH
approach, however this generates additional terms in the col-
lective Schrödinger equation that represent the couplings of
the β-γ and γ -α variables. In contrast, it is rather straightfor-
ward to extend the present IBM framework to triaxial nuclei,
since there is no need for new building blocks in the boson
Hamiltonian. Work in this direction is in progress, and will be
reported in a forthcoming article.
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