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Introduction

Sparse representations are an area of study with signi cant applications in data compres-
sion, classi cation and even transformation (such as removing dead pixels from an image).
In this thesis, we will construct an overview of some methods for representing visual sig-
nals sparsely, as well as test their applications oredint data sets. We will explore the
applications and some common problems with sparse representations, as well as their so-
lutions. We will also include Python code for some of the algorithms discussed in the
paper.

Chapter L covers mechanisms for obtaining sparse representations - in other words,
nding sparse vectora which solve expressions of the formm= Ba given some signal
vectorxand a xedN K dictionary matrixB. We will focus on visual signals (images),
but the results and processes described herein have a wide range of applications. We will
show the compressive potential of Fourier and cosine transformations, cover the Matching
Pursuit and Basis pursuit algorithms, as well as explore the use of sparse representations in
classi cation tasks.

Chaptef 2 covers how to not only obtain the sparse representatinn also optimize
the dictionaryB, in order to get even sparser or more accurate representations. We will go
over a a few algorithms for the k-means clustering problem, recall some basics of singular-
value decomposition, and nally review the K-SVD algorithm for dictionary learning.

Finally chaptef B generalizes the discussed methods to the context of tensors, covering
tensor-based compressed sensing as well as tensor dictionary optimization.



Chapter 1

Sparse Representations

Sometimes, when observing naturally produced signals, it can be intuited that they exist in
a subspace of the set of all possible signals. More speci cally, let our signals have the form

that each column represents one signal. These could, for example, be black-and-white
image matrices, each unravelled into a vector of lemMgtiSuppose that each pixel on the
image could only assume the value 0 or 1. With a 166 pixel image, that meang®
possible con gurations. However, only a tiny fraction of those would reasonably represent
something like a cat, or a dog, or a human face. So the question we naturally ask ourselves
is - what is the 'natural image' subspace of the 'pixel con guration' vector space?

1.1 Sparse Recovery

show that, numerically, it is simpler to generatecarercompletelictionary, wherdk N,
but impose a sparsity requirement on the representation vectors. And so our problem can
be formulated as:

minjiX  BAje; Jialo S 1=12:00R (1.1)

called a code book), with each dictionary attyrhaving unit length. The rst term is a
measure of the error in our approximation, and the last term is the sparsity requirement
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imposed on each representation vector, wigre N - in other words, all representation
vectors ares-sparse. The sparsity mapping, sometimes called a '‘pseudo-norm’, is de ned
as the limit of the';, norm asp approaches 0. In short, it simply counts the number of
nonzero elements of a vector. It is technically not a norm (since it does not satisfy the
homogeneity requirement), however we will be using the notakiotk to signify this
mapping, as it is a natural continuation of the well-de ngdamily of norms.

Expression(1]1) is actually composed of several signi cant sub-problems. One of them
is more fundamental: for a given signal vecxpand a xed dictionaryB, nd its individual

minkx Bak,; kak, S: 1.2)
a

In other words, "minimize a cost function with a strict sparsity constraint imposed on the
solution space”. There is another, similar approach tg (1.2):

minkaky; Xx= Ba; (1.3)
a

"Find the sparsest solution to an under-determined system of linear equatjon$”. (1.2) and
(1.3) are not exactly the same problem, but their solution spaces overlap signi cantly, and
they often have the same minimum, so they are both worth considering. Additionally, they
are dealing with a similar issue - the problem wjth [1.2) is that the set 8fslarse vectors

is not convex, so many of the standard approaches to solving it numerically are inadequate.
(1.3) has the issue of its error function being discontinuous, so again most optimization
methods will not work. This makes both of these problems NP-hard ([18]). To solve this
issue, we will generally substitute the sparsity mapping in these problems withrthem.

The ", norm would not suit our purposes - given a particular solution space, which is an
(K N)-dimensional manifold irk dimensions, , norm would simply nd the solution
which is closest to the origin, and that does not guarantee any sp&rskyretrieves the
intersections of the manifold with basis axes (or at least, axis-spanned subspaceés), and
norm comes close to approximating that behavior.

We can illustrate this point in 2 dimensions, using 1-dimensional solution manifolds,
as is the case in d. TI]1: if our solution manifold were to take the shape of a 1-dimensional
line displaced from the origin in 2-dimensional space, we can see that minimizing with
respect to , norm yields the solution (@;0:8), which is the closest to the origin, but
minimizing with respect to, yields (Q 1) which is thesparsesbne. Additionally, we can
see by intuition that minimizing any 1-d manifold in 2-d space will yield either a sparse
solution (one that lies on an axis), or that the manifold will coincide perfectly with one
side of the colored square, in which case sparse solutions will at least be minimums, even
if they are not unique minimums.

And so we re-formulate (1.3) into a very similar, but much more solvable version:
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Figure 1.1: Minimal solution w.r.t., norm (left) and ; norm (right)

(0,1)

minkak;; x= Ba 1.4)
a
There is an important result that guarantees a solution for the above expression.

De nition 1.1.1. An m n complex matrix A is said to have the null-space property of
order S (NS B) if, for all index sets | with S= jIj n we have that

8 2Ker(A)nfog Kk |k <Kk cki;
where 8
25 02l
-BO; i <l;
and € is the complement of I.

Theorem 1.1.2.Let B be a m n complex matrix. Then every S-sparse signal @" is
the unique solution to thg-relaxation problem:

méin kak, : Ba = Ba (1.5)
if and only if A sats es the nullspace property with order S..

Proof. First, assume that the rst statement holds true, and,Ibe some arbitrary element
of Ker(A). Note that = | + ., so by linearity we have

AC ©)=A(r )=AC1) A()=A(1):
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Since | is the unique solution t¢ (11.5), it follows thiat k; < k |ck;.

Conversely, assume th& has the nullspace property, and &be S-sparse and
another, not necessarif+sparse, vector such that zandBb = Ba. De ne the nonzero
vector = a b. Note that 2 Ker(A). Let| be the support ch. Then, by the triangle
inequality,

kakl k a b|k1+kb|k1:k|k1+kb|k1<k|ckl+kb|k1:k b|ck1+kb|k1:kbk1:

Unfortunately, testing NSP is NP-hard ([17]). Fortunately, there is a similar property
with the same implication:

de ne the Srestricted isometry constants to be the smallest quantity such thatdbeys
(1 ok kBl (L+ g)kck;

for all index sets | such thgtj S and all real coe cients(c;)j». Matrix B is also
said to satisfy the Sestricted isometry propertgimilarly, we de ne the S, &estricted
orthogonality constantss.so for S+ S° j 1 to be the smallest quantity such that

B|C;B|(1:0 S;S0 kaICok
holds for all disjoint index sets 12kuch thaflj S,jlj S.

Theorem 1.1.4.Suppose S 1is such that
st st sps <1

and let a be a real vector supported on a set | wlih S. Let x;= Ba. Then a is the
unique minimizer to
minkdk,; Bd=x

The proof may be found in_[4]. Even though the restricted isometry property is also
NP-hard to test ([1]), random Gaussian, Bernoulli and partial Fourier matrices have been
shown to satisfy it with exponentially high probability ([9]).

Yet another reformulation of (1.1) is sometimes used, where the sparsity restraint is
relaxed, and converted into an error factor for the cost function:

X
n;iykx BAKk: + kajk; ; (1.6)

i=1
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where is some arbitrary coecient that governs the importance of sparsity in the solution.

If a signhal domain can be sparsely represented (‘sparsi ed’), the rstlogical application
arises naturally in data compression. If a seNeflimensional vectors can be adequately
represented using onfyvariables, we can immediately reduce storage space requirements
by approximately a factor di—S (e.g. ifN = 100,S = 20, we can store the data using 80%
less space). Another application can be found in solving classi cation problems. More on
that in sectiol_116.

Several signal domains have already been thoroughly analyzed and sparsi ed. One
such domain is visual signals, orimages represented as pixel tensors. We will describe here
several methods for sparsifying pixel data: discrete cosine transforms, wavelet transforms
and the ubiquitous discrete Fourier transform.

1.2 Discrete Fourier Transform

The Fourier Transform is a method for decomposing a functiamto a set of underlying
frequencies represented therein - it is a spectral decomposition:
z 1
f()y= f(xe?™dx (1.7)
1
Here, f( ) tells us how strongly the frequencyis represented in the functioh Once
we obtain the Fourier decomposition, we can losslessly reconstruct the original function,
using the inverse Fourier transform:
Z 1
f=  f()ee™d:
1
If we discretize the functions in question, such théx) = f; f( ) = f, we get the
Discrete Fourier Transform (DFT) and its inverse:

fo= f, ek (1.8)
n=0
X,
=y ek (1.9)
k=0

Two more steps are necessary in order to cement the DFT as a cornerstone of modern
telecommunications technology. As it stands, the DFT can be re-written in matrix form,
using a Vandermonde matrix:
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(1.10)

N

1
f==

NFf
Iy =e 27N

Finally, this formulation leads to the crucial method of performing DFT: the Fast Fourier
Transform.

Fast Fourier Transform

A matrix-vector multiplication, using a full matrix such as the one[in|(1.2) G&s?)
complexity, becausbl? multiplications need to be completed to calculate the result. This
causes problems if we try to apply it to truly large problems, witeoan be in the millions
or even bhillions. In 1965, J. W. Cooley and John Tukey published a divide-and-conquer
algorithm which reduces this complexity to on@®(N log(N)). Fig. [1.2 illustrates the
di erence in computation time with this kind of reduction in complexity. We can see that
even with relatively light-weight data witN = 1; 000, FFT represents a 300-fold decrease
in time requirement. WittN = 1; 000, 000, the decrease factor would be ove?.10

FFT makes the DFT not only highly accurate, but also computationally cheap, which
why it is now ubiquitous in modern telecommunications.

DFT-based compression and other applications

DFT is a fundamentally important result in numerical mathematics. It sees uses in a variety
of applications - from data compression to solving partiakdential equations. Its use in

data compression is very easy to see - since usually only low frequencies are present in
signals, a signal can be spectrally decomposed, and all high frequencies discarded with-
out major data loss. Then this truncated data vector may be stored or transported, and the
inverse DFT is applied when the signal needs to be analyzed in its natural form. Alterna-
tively, many operations can be executed in the spectral domain itself, which often means
sparse variables, making calculations faster. To illustrate the compressive potential of DFT,
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Figure 1.2: A logarithmic scale representation of theedence in computation time be-
tween a DFT implementation using matrix multiplication and the FFT

oo { —— N=2
Niog(N)

we can look at g 1.B, and see that even with 95% of the frequency values truncated (dis-
carded), the image is essentially indistinguishable from the original. In practice, instead of
using a cuto like that, we would simply truncate everything outside of a small circle or
square in the center of the coeients, since that is easier to communicate to the receiver
of our signal.

1.3 Discrete Cosine Transform (DCT)

The DCT is based on the Fourier Transform - we assume that a signal is periodic in nature,
and attempt to replicate it using a basis of cosine waves witardnt periodicities. With
1-dimensional signals, our basis might look something like this:

E)i "R! [ Ci;Ci]
bi(x) := C; cos( xi);

being considered. This function would naturally be quantized intN-@aimensional, nor-
malized vector with:
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Figure 1.3: DFT-compressed picture of a dog. The top row shows a logarithmic represen-
tation of the corresponding frequency magnitudes (DFT adents), with some fraction

of them being truncated to 0 (each cagent with absolute value smaller than some cuto
point). The bottom row represents the reconstructed image using the inverse DFT opera-
tion.

truncate 0.0% truncate 90.0% truncate 95.0% truncate 93.0%

whereh is some discretization factor used to quantize a domain such &k [0
Arrangingb; as columns into a matrix, we would obtain a diction&y Then, given

x = Ba More on exactly how to obtain these coeients in sectioh 1]5. Fi§. 1.4 illustrates
some bases that might be used in 1-d DCT (before normalization).

2D-DCT

Images, however, are inherently 2-dimensional signals, so the question of how to employ
these 1-dimensional bases to represent them presents itself naturally, and the answer is
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Figure 1.4: Some basis functions for 1-dimensional DCT before normalization
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elegant in its simplicity. First of all, we cannot cheat by reshaping the 2-d matrix into a
vector, because this creates a lot of discontinuities in the signal, something that DCT is not
good at dealing with. Instead, we have to create 2-dimensional basis vectors. We do this
by de ning functions such as:

bij(y) := Bi(X)b;(y) = Ci;j cos( xi) cos( yj):
Such functions can also be quantized into matrices using:

O
bij=b by
whereN denotes the outer product of two vectors, creatinghann rank-1 matrix. In
practice, the result looks like d. 1]5.

Using these basis vectors, or matrices (depending on how you look at them), the signal
matrix is divided into 8 8 pixel patches, and then each patch is represented as a linear
combination of the 64 basis matrices. Note that no compression has occurred in this step,
as we are still representing 64-dimensional signals in 64-dimensional space. However, in
almost all applications (especially with natural images, meaning real-world photographs),
the coe cients corresponding to the bases in the upper left corner ¢f g. 1.5 are generally
larger then the ones in the bottom right. As such, we can truncate the solution by setting any
su ciently small coe cients to 0, thereby achieving a high degree of compression without
signi cantly a ecting the image itself. This is the process used for JPEG compression. The
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Figure 1.5: Basis matrices for 2-dimensional DCT
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resulting coe cient matrix will be sparse, with most nonzero values located in the rst row
and rst column.

Fig.[1.7 shows the DCT in action. It is exceedingly hard to tell theedénce between
the two images visually, and yet the one on the right was compressed to 10% of its original
volume.

However, DCT has its weaknesses. Because it tends to ignore the contribution of the
ner basis matrices (the ones on the bottom right of [g.]1.5), it has trouble representing
images with fast, discontinuous switches in intensity. This rarely occurs in natural im-
ages, but does come up with images of text. This weakness results in so-called 'artifacts'
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Figure 1.6: A visualization of the 2D-DCT basis vectors. The left column represents the
actual vectors as shown in §. 1.5, wittand j values denoting the row and column of the
corresponding vectoib(;). The middle column represents the functﬁnm, and the right
column is a 3d representation En;‘j

i=Dj=2

- miscolored pixels surrounding such image patches, created because itidtdo ap-
proximate a Heaviside function (or rather, a sequence of Heaviside functions) with cosine
waves. This is evidentin g¢. 1]8.

One alternative that aims to remedy this issue is the wavelet transform.

1.4 Wavelet Transform

The Wavelet Transform, or Discrete Wavelet Transform (DWT) is similar to the DCT in
that it uses basis functions to reconstruct an original signal. But thereince is that
wavelets are not periodic like cosine waves - they are localized in time, meaning they have
a much easier time dealing with irregular, discontinuous image patches. They are sensitive
to ne details in a signal. And there is a plethora of wavelets to choose from, depending on
the task at hand - Morlet, Daubechies, Haar etc. Some examples can be segnih g. 1.9
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Figure 1.7: Left: original image. Right: Image reconstructed after being compressed via
DCT by a factor of 10

Figure 1.8: Artifacts created when applying the DCT to pictures of text

1.5 Sparse Coding

Assuming an adequate dictionary (the methods for acquiring this are discussed in chapter
is available, we require a mechanism for nding the sparsest representation vector, as
discussed in sectidn 1. Recall that the problem at hand is:

minkX BAkg; Jiajo S T=1:00R (1.11)

lation. The rst method for this is perhaps the most obvious: matching pursuit.
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Figure 1.9: Some examples of various wavelets
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Matching Pursuit

In matching pursuit (or MP), we attempt to nd the solution cagents one by one, start-
ing with the largest one by absolute value. The motivation stems from linear spans of
orthonormal bases, where

X X

X = Ba= ibi: fbi;xibi:
| |

The coe cients ; in that case can be obtained simply by taking the inner produgt of
with any basis vectob,. We apply the same reasoning in the case of our overcomplete
dictionary - where the vectors are normalized, but not orthogonal or even independent. We
again look at the inner product afwith each basis vector, then take the index associated
with the highest value, and assign that inner product as the@eat for the corresponding
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dictionary atom. We then subtract that atom fregnpand repeat the process.
Algorithm 1: Matching Pursuit

fori=1:Sdo
ale h xbji;
X x abb
end

import numpy as np

def matching_pursuit(B, v, I):
"""Returns an n-sparse vector a that minimizes
the expression [|v - Ball.

Arguments:

B: an (n x k) numpy.array dictionary

v: an (n x 1) numpy.array signal vector that is
to be approximated

Returns:
a (k x 1) numpy.array |-sparse array of coefficients
which minimize ||v-Bal||

Vv_ = np.copy(v)
coeff = np.zeros(B.shape[1])
for i in range(l):
c = v_.transpose()@B
arg = np.argmax(np.abs(c))
current_coeff = c[arg]
if current_coeff ==

break
coeff[arg] += current_coeff
v_ = v_-current_coeff*B[:,arg]

return coeff

MP is a greedy algorithm that does not necessarily produce the globally optimal solu-
tion, but its solution is 'good enough'. Crucially, the process may be stopped at any point
S%in order to obtain ars%sparse solution. In the caself= S = N, MP simply solves a
complete system of linear equations.
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Basis Pursuit

Basis pursuit (BP) is another pursuit algorithm which takes a slightlgmint approach.
The problem it solves i$ (1].3), except we are again substitutingstherm in place of the
sparsity map in order to generate a convex solution space:

minjjajj;; X= Ba (1.12)
so instead of nding the best solution with a given sparsity restriction, it ndssipersest
solution within a given solution space (assuming that Bais an underdetermined sys-
tem of equations with a non-trivial solution space). This is accomplished by approaching
(1.3) as an optimization problem. Recall that the canonical form for a linear optimization
problem is

maxc’X; LX v, X 0, X2R™
X

wherec” X is an objective functionl.X v is a collection of inequality constraints, and
X 0, % 0i=1;:::;misasetofbounds. We can reformuldte (1.12) thus:

m, 2K; L, (B, B); v, x X, (uv);, a, u v (1.13)
whereu andv are the positive and negative partsaofspeci cally, u; = max(g;0) and

values ofa can be represented as valuesupfvith the corresponding value ofbeing 0,
and vice-versa - any negative values are representedaith the corresponding value of
u being 0. This way, the concatenated vectas positive in every variable, simplifying

optimization problem looks like:

~ ~

X1 X2

bi by ::: by| bl
b2 b3 ::: bZ| bf

bY ::: by | b

u;vi 0
and this system can be solved by any linear optimization method, such as the simplex
algorithm or the interior-point method. More on BP and MP may be found in [7]lor [5].
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1.6 Classi cation

As previously stated, one useful application of sparse representations besides data com-
pression is in classi cation. Classi cation is the task of determining the class of some
object represented by a vector, given that we have previously seen a number of examples
of each possible class by way of a labeled training data set.

Assume we are given such a set of training dataimensional vectors each belonging
to one ofc classes, such that each class is representgoMegtors. We might construct a
dictionaryB as follows:

h |
B= By;:::;Be
h - - . i
= Xagy o Xaph Xon; st Xopls fE 5 Xes r  Xep

If we then represent a new vectpusing this dictionary:

X X
y= & Xij;
i=1 j=1
or in other wordsy = Ba, we can assume that, given scient training samples of theth
class,By, any new test vectoy that belongs to cladswill lie approximately in the linear
span of the training samples from that class. Note that in the above expressisna
scalar, but; is a column vector. Therefore, the coeients associated with basis elements

underlying class. We will test this premise in the next section, as well as delve into slightly
more detail regarding the classi cation mechanism.

Classifying MNIST

MNIST is a basic benchmark for testing classi cation algorithms, and the method de-
scribed above works quite well. In our case, we constructed the dictionary using 500
examples of each class (digit), represented their pixel-value matrices unraveled into 784-
dimensional vectors.

In almost all cases with MNIST, the digit in question was represented almost exclu-
sively by other images of the same digit, making classi cation easy. All that remains is
to design some selection method - an arbitrary mapping from the space of representations
on to the set of all classes. For example, we might simply pick the class that the highest
coe cient corresponds with. Or, we might create a histogram of all the cmats, then
pick the class that is most-represented. Or we could square the values before making the
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Figure 1.10: MNIST classi cation using sparse coding. The rstimage is the original. The
second image is its reproduction using a linear combination of 100 dictionary atoms. The
third image is a representation of the cagents associated with each dictionary atom. The
fourth image is a histogram of those values. The fth image is a histogram of the squares
of those values.

histogram, in order to suppress small values and promote high values. There are similari-
ties between these options angvector norms. In our case, chose a sparsity requirement
of S = 10, using a dictionary oK = 5;000 atoms. Using all 3 of the classi cation rules
outlined above, we achieved an accuracy of 94%, over a testing sef@dnages. In

fact, all three rules nearly always classi ed the image the same wagridig in only 20
cases.

In g. [.11] we can see some of the images that were incorrectly classi ed, as well as
their reconstructions and the incorrect predictions. Fig.|1.12 shows us which digits were
most commonly misclassi ed. We can see that classi cation for digits 0, 1 and 6 was the
most accurate, while the inaccuracies were evenly distributed over the other digits.

This approach is not without issues, however. If the angle between two of the class-
speci c linear spans @] and [Bj]) is too small, then MP might misrepresent some signal
vectors. An example of such a case is illustrated il _g. [L.13. In this case,

N

and let us assume thiaf andb, represent one class (which spans the entire x-y plane), and
bs belongs to another class. Matching pursuit will pigkas the optimal representation in
the rstiteration, and after that the remaining component, x; bsi bz is very small and not
much use in classi cation. Speci cally, the sparse representation derived from MP for this
example isa = (0:01; 0; 1.024Y , so any classi cation rule would classifyas a member of
class 2 - the one representediiay even though it belongs to the linear sparbpfindb,,
asillustrated in g[1.1IB.
We can formalize this. Assume that our classi er works by applying matching pursuit
to a signal vector to solvé (1.1), then observing the resulting céents ina and which
classes are represented the most. We can show that the most represented basis vector

0 100 2000 XD0 400 5100 012 3 4 56 7 &9 012 3 4 5 & TS89
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Figure 1.11: Examples of misclassi ed images. The columns represent the same things as
in g. [.1I0] with the addition of titles, which represent the ground truth (column 1), and

the wrong guess for each classi cation rule (columns 3, 4 and 5).

7

derived by MP will simply be the closest one. Practice has shown that usually, classi cation
comes down to simply picking the class of this most represented vector, as itsieaé
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will be orders of magnitude bigger than the second most represented one.

be am n-dimensional signal vector. Then the most parallel member of B is also the closest
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Figure 1.12: A chart representing how many images of each digit were mis-classi ed

member of B. In other words, for some index i,

habii h xbji;8]) kx bk,  x by ;

Figure 1.13: Sparse classi cation error - basis vectors are shown in orange, and the target
signal vector is red.
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k< b= bix bi
=h;xi  2hx bi + Ho; b
hxxi 2 bji + koikd
=hgxi 2hbji + by
=hx;xi 2hx; bji + Hoj; byji
= X b

Thus, a classi er constructed this way is very similar to a simple nearest-neighbor
classi er.

Remark 1.6.2. The reasoning above does not take into account the case Whel®) > 5,
but that should be a rare occurrence in principle, wherstthe best-matching basis vector.

1.7 Compressed Sensing

Data compression has massive real-world applications and bene ts in and of itself. How-
ever, compressed sensing is an idea that builds on it even further. The core concept is
simple: instead of collecting and then discarding most of it via compression, why not col-
lect only a fragment of the data to begin with? For example, instead of takingra fuh

picture, we might only test a few, sparsely distributed pixels, and then infer the complete
photograph from those. The idea is relatively simple to state mathematically:bketa

signal, andy be a measurement of only some of its variables, given by

y=Cx
whereC represents some sort of a selection matrix. For exan@plmuld choose one of
every three variables in X, or be a binomially distributed, such that each elembas a
chancep of being either 0 or 1, as illustrated in §. 1[14.
Assuming we knowy = Cx, and have an adequate diction&@yvhich sparsi esx, we
have

y=Cx=CBa= g

where = CB. So the task remains the same as before - nding the spaasebich
satisesy = a. As discussed in sectign 1.5, this is an NP-hard problem, unless the



CHAPTER 1. SPARSE REPRESENTATIONS 22

Figure 1.14: Binomially distributed matrix taking a compressed measurement of a signal
vectorx

sparsity constraint is relaxed to thenorm instead, in which case we can use basis pursuit
or another sparse coding algorithm to derive the representation

Compressive sensing has a wide array of applications. Whenever we have some map-
ping from an uncountable domain, but we can onlp@al to measure its value in a nite
number of locations, we can use compressive sensing to approximate a discretization of the
mapping over the rest of the domain. In that case, the selection r@avould signify the
points at which we are measuring (sensing) the signal. For example, if we were looking at
an image with pixels missing from some locations (due to a faulty camera or a corruption
of the digital data, for example), we might constr@cby rst taking an identity matrix,
and then eliminating the rows which correspond to the dead pixels in the vectorized image.
Here are some more examples:

" Studying ocean region properties (water ow, heat, salinity etc) by measuring it at
discrete points via sensor buoys

" Studying the ow of a uid through some geometry by placing a number of sensors
at speci ¢ points inside a pipe or cylinder
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" Recovering visual data from a corrupted image with missing pixels (this process is
also known as 'inpainting’)

" Removing objects (such as unwanted text) from an image by treating it as dead pixels

" Reconstructing a photograph that was taken by only measuring a few pixels on pur-
pose - this approach removes some of the technological and storage requirements
from the camera and places them on the receiving end. For example, a deep space
satellite could use a lower resolution camera to take photographs, then send the un-
encoded (but still low-volume) data back to earth. Current satellites have to compress
the data on-site, increasing computational requirements, before sending it back.

Additionally, in the next chapter, we will discuss methods of not only deriving a sparse
representation given a xed dictionary, but optimizing the dictionary itself. That means we
will be able to optimize thelacemenbf the sensors mentioned above, in order to get more
accurate measurements.



Chapter 2

Dictionary Learning

In chaptef IL we established a number of methods for obtaining the representation vector
that satis esx = Ba, given an adequate dictionaB; Now, we will discuss methods for
obtaining the dictionary itself. In other words, we are coming back to the initial problem
(1.7) and its ; counterpart. Recall that it was stated as:

nél_iAnJ'J'X BAjE; Jiajii<l; i=12:::;P

whereg; are columns ofA. We will rst review the some k-means clustering methods,
including Lloyd's algorithm, which is a special case of the K-SVD algorithm discussed
afterwards.

2.1 K-Means Clustering

K-means clustering refers to the task of grouping a number of data points into distinct
clusters, or minimizing the 'within-cluster sum-of-squares' (WCSS):

X( X .. ..2
EC) = X Gillz; (2.1)

i=1 x2C;

Ci, given by P

c XL :
G Ci =10k (2.2)
jCij 2 N being the ( nite) number of elements @.
This problem is also NP-hard - even with only two clusters, and even in only two
dimensions (‘planar’ k-means), as pér [15]. The most common approach to solving it

24
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numerically is an iterative process known as 'Lloyd's algorithm' or 'naive k-means'. Itis
so common, in fact, that it is sometimes referred to as simply 'k-means algorithm'.

Algorithm 2: Lloyd's algorithm

fori=1:1do

for x in Xdo
nd closest centroict,
assignx to subseC;

end
fori= 1|:;>kd0 .
| G xec; X3Ci)
end
end

1 def kmeans(X, n, iter):

2

"""A basic implementation of the k-means algorithm. Clusters the
signal vectors in X into n groups, and returns the centroid of each

group.

3

4 Arguments:

5 X: (p x m) numpy.array() - data matrix where each row represents one
data point

6 n: integer - determines the desired number of centroids/clusters

7 iter: integer - pre-determined number of iterations

8

9 Returns:

10 assign: (p x 1) numpy.array() - the i-th element is the index of the
group that the i-th data vector belongs to

11 centroids: (n x m) numpy.array() - the i-th row represents the
coordinates of the centroid of the i-th group

12

13 # initialization

14 centroids = np.outer(np.linspace(0,1,n), np.ones(X.shape[1]))

15 assign = np.zeros(X.shape[0], dtype=int)

16 d = np.zeros((X.shape[0], n))

17 count = np.zeros(n)

18 for i in pb(range(iter)):

19

20 # assignment

21 d = np.array([np.sum((X-c)**2, axis=1) for ¢ in centroids]).
transpose()

22 assign = np.argmin(d, axis=1)

23 count = np.array([np.sum(assign==j) for j in range(n)])

24
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# fix empty clusters
for j in np.where(count==0)[0]:
assign[random.randint(0,X.shape[0])] = |

# recalculate centroids
centroids = np.array([np.sum(X[assign==j], axis=0)/np.sum(assign
==j) for j in range(n)])

# final assignment
d = np.array([np.sum((X-c)**2, axis=1) for c in centroids]).
transpose()
assign = np.argmin(d, axis=1)
return assign, centroids
Here,l is some arbitrary pre-determined number of iterations until convergence is re-
liably reached. Alternatively, some stopping criteria may be used, such as per-iteration
error gain, or some target error value. As for the initial centroids, there are several pos-
sible approaches. One is to generate a ran#qartition of the data, then assign the
centroids accordingly, using (2.2). Another is to scatter initial centers randomly through-
out the dataset (this requires knowing or calculating the lower and upper bound of the
space ahead of time), or simply distributing them evenly across each dimengion -

n of the data points themselves and setting the initial centers to their locations.

The weakness of K-means is that it is not invariant foredent starting point assign-
ments/center placements, and it can get trapped by local minima. This is sometimes cir-
cumvented by running the algorithm repeatedly with various starting assignments, then
taking the solution with the best error score.

Figure 2.1: Clustering of some synthetic data

The applications of clustering methods are vast, and data compression is certainly one



CHAPTER 2. DICTIONARY LEARNING 27

of them. We can imagine an image as a collection of pixels located in RGB pixel-space -
that is, each pixel has three de ning axis values: red, green and blue, and we consider its
position in the image as just a label. We can then apply clustering to the points. Then we
can transform the image by replacing each pixel value with the value of its centroid. This
way, we get a faithful representation of the original image, using only a few colors. We can
specify the transformation as:

T: Vpixel ! C
T(X) = argminjjx Cjj;
c2C

where Vpixel is the space of all possible RGB pixel values (equivalent td]f0 C =

centroid.

Figure 2.2: Clustering applied to an RGB Image with only red and green components.
Left: original image. Middle: color-clustered image using= 50 clusters. Right: red-
green pixel space with Voronoi cells to represent the clusters.

Fig. [2.2 shows how an image can be relatively faithfully reconstructed using only 50
di erentcolors. The compression gain here is that we no longer need to store three oating-
point values for each pixel, but instead a single integer with value up to 50, meaning we
only need 6 bits of storage per pixel, as opposed to the 192 bits that the original pixels
would've required.
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Advanced K-means Implementations

Being such a fundamental and versatile algorithm, K-means has been thoroughly studied
over the years, and several improvements and optimizations have been established. We
will brie y cover some of them here.

In [2], a more e cient method for centroid initialization is established by rst takihg
sub-samples of the total pool of data, and clustering them td gets of centroid approx-
imation. Then that set of approximations is itself clustered, and the resulting centroids are
used as initial centroids when running the algorithm over the entire data set. In practice,
this initialization has been shown to be so powerful as to require very little optimization
afterwards in order to complete clustering.

In [11], the algorithm is restructured in order to speed up the cluster assignppent:
argmin % ¢; ,, wherec; are centroids. In short, they compute a tree structure over all
the data points, then use a recursive function to assign each data point to a cluster, at each
step of the algorithm, instead of solving the problem above by a brute force search over
all possible values. This approach achieves more CPU-time gains for higher vakies of
(meaning more clusteientroids). The results shown in [11] display consistent, 80-95%
decreases in time needed to complete the algorithms, as compared to vanilla k-means.

In [20], the authors present a completely new approach to the problem. The rst two
items in this section are simply optimizations of Lloyd's algorithm, whereas this is an
entirely new algorithm. First, the sum-of-squares cost function,

XX 2
E(C) = a) ¢
. . 2
i=1 j=1
is reformulated as
E(C) = trace@” A) tracei” A" AX); (2.3)
whereA = [g;:::;a,] is the data matrix, anX is ann k orthonormal matrix:
. P—
ICd =" 1G] .
y = JC:zJ &= JCy ;
L P
ICd &= JCd

ande arejCij-dimensional column vectors with each value equal to 1, so minimizing the
cost functionE is equivalent to maximizing the right-hand side [of {2.3). If we also ig-
nore the structure oK andrelax the constraint to any orthonormal matrix, we get a new
maximization problem:
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max traceX” A" AX) ; (2.4)

which, according to Ky Fan's theorem, can be solved by nding the ksigenvectors
of A” A (meaning the ones corresponding to kkargest eigenvalues). Finally, a cluster
assignment is computed using pivoted QR decomposition.

2.2 Singular Value Decomposition

The Singular Value Decomposition algorithm is a factorization of a real or complex matrix
that generalizes the eigenvalue decomposition of square normal matrices o amy
matrix. The eigenvalue decomposition would factorize the squar@ matrix A asA =

Q Q! where is adiagonal matrix of eigenvalues, a@ds a square n matrix such

that each column is a right eigenvector corresponding to the eigenvalue in the same column
of .SVDofanm nmatrix Alooks similar:

A=U V; (2.5)

whereU andV are unitary matrices of left and right singular vectors respectitklyeing

anm mmatrix,V ann nmatrix,and beingamm ndiagonal matrix of singular values.
Singular values work much the same way as eigenvalues and eigenvectors, except that they
are necessarily non-negative real numbers. It holds that

Avi = su; Au =sv; 1i=1;:::;min(m;n);
whereu; andy; are columns o) andV, respectively. Furthermorg, (2.5) can be rewritten
as

X
A= suv;
i=1
where rankf) = r. This leads to an important conclusion about approximation. If we
de ne a new matrix with

Xk
A= suv;
i=1
it holds thatAy is the best ranlk—anproximation forA (Eckart-Young-Mirsky theorem, [8]),
and itsresidual i = A A= [, SUV, . In other words,
argmin RSS\(A) = A, (2.6)

Arank@)=k
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where
~ - X x 2
RSSA) = A A_= Jaj &
i
is the 'residual sum of squares' error function, or the sum of the squares of elements of the
residual of an approximation.

SVD Pseudoinverse

One of the many applications of the SVD is to generate a Moore-Penrose pseudoinverse,
which is to say a matriA* with the following properties:

~ AATA= A

~ ATAAT = A

"~ (AAY) = AAY
~(ATA) = ATA

A" exists for any matriXA. SVD is used to generate this matrix by rst decomposing
A = U V, then dening * by replacing every non-zero diagonal entry inwith its
reciprocal and transposing the resulting matrix. Then we can obtain

A=V "U:

SVD Compression

As mentioned in the previous section, singular value decomposition can be used to generate
limited-rank approximation of matrices. This is directly applicable to image compression.
Instead of saving the full image matrik], we can save the rst columns fromU and
V and the rstr values from and recover a faithful reconstruction of the original image.
In fact, a very convenient property of SVD is that the importance, or contribution, of each
column inU or V corresponds to the magnitude of the corresponding singular valsie in
Thus, the smaller the indeéxthe more important is the rank-1 mattipsVv; . Observe the
natural image example shown in . 2.3
In fact, if we take a look at the singular values themselves, we can see that they usually
have fast decay, which is why most of the information energy is conserved in the rst few.
Clearly, approximating this image with only the rst 50 columns yields a very faithful
reproduction. Since the original dimension is 40800, and we are now only storing one
400 50 matrix, one 300 50 matrix and a 50 1 vector, we are saving as much as 80%
of the storage space, which is a remarkable compression rate.
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Figure 2.3: A 300400 image of a dog approximated with matrices of various ranks

2.3 K-SVD Algorithm

Now we nally arrive to K-SVD - a method to dynamically learn a dictionary for sparse
representations. The idea is essentially similar to K-Means - it is an iterative process, with
each iteration consisting of two steps. In one step, we optimize the representation matrix
A, and in the other step we optimize the diction&ntself, one column (atom) at a time.
We will describe the dictionary optimization below.

Let us assume we have some dictionBrgnd representatioA that m|n|m|ze3@4)
We want to obtain a better dictionafy, and the corresponding representatfos.t.

KX BAKk< KX BAK

As stated, we will be optimizing one dictionary atom - column - at a time. Let us select
a columnby, and x all other columns. The error function is now
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Figure 2.4: The singular values from the decomposition of the pixel matrix of the original
image in g.[2.3

X
kX BAk% = X bia,-> bkai
o :
In the above expression, the terms in the sum are outer products of vectors, meaning it
is a sum of rank-1 matrices. The ter@srepresent rows of. We can combine the rst
two terms, which are xed, into a single matri:

Ex biag ii (2.7)

bca; is, again, a rank-1 matrix, and so task is to nd the best rank-1 approximatidgyfor
which is exactly what SVD accomplishes (recall €g. |(2.6)). However, there is one more
preparatory step to take. If we were to utilize SVD right now to optimize the expression
(2.7), we would most likely end up with a full vector fef, but that vector has to remain
sparse. As such, we will extract a submatrix fr&by taking all the rows which actually

use the atonty in their representation. In other words, we will construct a set of indices,

I with

e=fijl i K;ag, Og
So we are checking theth row of A to see which data vectoss use the atoniy in their
representation. I& is non-zero, then the atom is being used to represer@nce!  is
obtained, we de ne a lter matrix , as a matrix of siz&\l j ! (j with ones on the!(k(i);1)
entries and zeros elsewhere. Now we can multiply vectors and matrices wittorder to
extract the rows or columns accordingtp So we can de neEE = Ex andag = x; i,
and we get
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Ex « by k,Z:: EQ bkaE|2::
Again, bt is a rank-1 matrix which we can freely optimize (we simultaneously optimize
bothby anda), so now we can employ SVD. We decompdge= U V>, and recall that
u;Sv; is the best rank-1 approximation f&ff (u; andv; being the left and right singular
vectors corresponding to the highest singular vauef EY), and so all we have to do
is de ne the optimizeoBk asu; anda,f assv;. This way we even keep the dictionary
atom normalized. We repeat the process for each atom in turn, and that completes a single
iteration. The nal algorithm is as follows:

Algorithm 3: K-SVD Algorithm

Initialize dictionaryB

fori=1:1do

/I sparse coding

for p=1:Pdo

| a, argming,, X, Ba; // eg. via matching pursuit
end

/I optimize dictionary

fork=1:Kdo

I« f Ijl i K;ay , Og

de ne as specied earlier in the chapter
Ex=X BA+Dba; /I outer product
EE = Ek k

compute SVDER = U V>

by « Uz

& kK SIvp

end

end

import numpy as np

1
2

3 def learn_dictionary(B, A, X):

4 """Optimizes the dictionary B to better minimize the
5 expression ||X-BA]|
6
7
8
9

Arguments:

B: (n x k) np.array - dictionary

A: (k x p) np.array - coefficient matrix
10 X: (n x p) np.array - signal matrix (each column is a signal)
11
12 Returns:
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None

K = B.shape[1]

for k in range(K):
# filter out signals which do not
# use the given dictionary atom
filter = (A[k, :] = 0)

if np.sum(filter) == 0: continue

A_k = A[: filter]

X_k = X[:,filter]

E_k = (X_k - B@A_k + np.outer(B[:,k], A_K[k,:]))
# SVD

u, d, v = np.linalg.svd(E_k)

B[:,k] = ul[:,0]

Alk,filter] = d[0]*V[0,]

def k_svd(X, B, I, iter, stop):

"""Applies the K-SVD algorithm to optimize arguments B and A
to minimize the expression [|X-BA]||

Arguments:

X: (n x p) np.array - signal matrix

B: (n x k) np.array - initial dictionary

I: integer - the sparsity constraint - all columns of
the resulting A matrix will be at least I-sparse

iter: integer - maximum number of iterations to run

stop: float - minimum percentage error gain. If the solution
improves less than that in an iteration, the process
is considered to have converged Smaller values mean more
accurate solutions, but also more iterations.

N, P = X.shape

K = B.shape[1]

A = np.zeros((K, P))
Xnorm = np.linalg.norm(X)

# obtain initial coefficient matrix

for p in range(P):
¢ = matching_pursuit(B, X[:,p], )
Al:,p] = ¢

progress = [np.linalg.norm(X-B@A)/Xnorm]

for i in range(iter):
# optimize dictionary
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learn_dictionary(B, A, X)

# optimize coefficient matrix
for p in range(P):
¢ = matching_pursuit(B, X[:,pl, I)
Al:;,p] = ¢
err = np.linalg.norm(X-B@A)/Xnorm
progress.append(err)

# stopping condition
impr = 1-(progress[-1]/progress[-2])
if impr < stop: break
return B, A, progress
The dictionary can be initialized in a number of ways, for example by simply including
a random subset df of the training vectors. Note that assignments such,ag Uy
signify that we are only updating those rowstpiwith indices in! .

Testing on Synthetic Data

The algorithm was rst tested using some synthetic data. The data was generated by rst
creating a real'N K dictionary, By, and populating its columns with vector representa-
tions of various cosine waves:

vkn:cosnThk n=1:00Nk=1;000K
b= k= 1p0K

Vk;:
B=[by;:::;bk]

Then we generatedida P sparse coe cient matrixAg, so we could obtain the data matrix
X = BA. This way, our problem has a 'trué‘'sparse solution - the matric& andA,, and
we can compare the derived solutiorB andA - to it. In our case, we used

N=20; K=50; P=1000; L=5:

Then, we commence K-SVD iterations by rst initializing to be the rstk signal
vectors. During operation, we measure the accuracy of our model with a simple normalized
loss function:

KX BAk

Ex(B;A) = KXk
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Figure 2.5: Some of the dictionary atoms used to generate synthetic data

Figure 2.6: Left: an example of a synthetically generated signal vector. Right: the compo-
nent dictionary atoms that, when summed, produce the signal on the left.

Our implementation of K-SVD attens out after 21 iterations why = 0:069 after
decreasing exponentially, as illustrated in[g.]2.7.

2.4 Stochastic Gradient Descent

SGD is another way to learn a dictionary. We can begin by regarding our problem as a
simple optimization problem, with a xed representation matkix

mBinkX BAK: kbk= 1;8i

If normalized dictionary atoms were not a constraint, this would technically be solvable
by a simple gradient descent iteration over all the variablds d¥ith the constraint, how-
ever, we are forced to use the slightly modi pobjectedgradient descent, where after each
step, we normalize all the atoms in order to project back on to the allowed solution space
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Figure 2.7: The erroEx occurring in each iteration of K-SVD applied to synthetic data

Figure 2.8: A synthetic signal vector (blue, solid) approximated by a 5-sparsectrd
vector using a 20 50 dictionary (the approximation is orange and dashed)

(the set of all dictionaries with unit columns). To formalize, we design a cost fundjion,
then use its derivatives to iterate our solution:

ca(B) = KX BAK
Bir1 = B 1 ca(By);

where is usually some predetermined step size.

Finally, because we are dealing with a potentially vast number of training examples
and dictionary variables, the standard gradient descent is simply too cumbersome memory-
demanding to execute. And so, we use the Stochastic Gradient Descent (SGD) instead. In
simple terms, SGD can be thought of as such: instead of considering all training examples
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with each step of our optimization, we instead optimize for one training example at a time.
To achieve this, we must simply re-design out cost function at each step, to only take into
account the current training example:

Cai(B) = kx  Bak
Bur1 = Bc T Capm(Bu);

sualize SGD this way: each example-speci c cost function representseaetit mountain

we are trying to climb, with a slightly dierent peak. Each step we take takes us towards a
di erent peak. We expect the overarching cost functignto have its peak somewhere in

the middle of all of them, or perhaps at their mean. And so we can expect to approach it,
while approaching each of the other ones in turn.

The SGD algorithm described above only optimizes the dictiofafgr some xed
representation matriA. However, we can take inspiration from the K-SVD and K-means
algorithm, and optimize each of them in turn, in each iteration. We optirAifer a
xed B, then optimizeB for a xed A, and repeat. We could even use SGD to do both
simultaneously, optimizing all the variables Biand A, and projecting onto the set of
all unit-column dictionaries with each iteration, however this would lead to either non-
sparse representation matrices, or we would have to include a sparsity constraint in our
cost functions.

Algorithm 4: SGD Algorithm

Initialize dictionaryB

fori=1:1do

/I define cost function

de ne ¢i(B; A) = kxyi) Bagk+ kapiki, €.9. via nite di erences
ObtainDi =r B;Aci(Bi;Ai)

/I optimize dictionary and representation

[Bi+1; Aiv1] = [BisA] D

/l normalize dictionary atoms

fork=1:Kdo
B,
B =
end
end

The optimization step is meant to signify that we are interpretBg4;] as a single,
attened vector. We are calculating the derivative of the cost function with respect to all
variables inB andA simultaneously, and optimizing them both at the same timg.some
arbitrarily chosen sparsity constraint.
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2.5 Principal Component Analysis

Principal Component Analysis (PCA) is a method that lets us rewrite our data using a
di erentbasis such that each consecutive basis axis introduces as much variance as possible
to the data.

variance as X _,
V(X) = X X

— P .
whereX = ﬁ X is the mean of the data.

Loosely speaking, variance is a measure of how spread out the data is. If we take only
thei-th component of each vector, we can measure how spread out the data is along the
i-th axis. As we can see in d. 2.9, we can maximize the variance along a single axis by
rewriting the data using PC1 and PC2 as our axes.

The most common application of PCA is dimensionality reduction. Once we have
obtained the principal components, we can simply elect only to use the&k estes to
represent the data. In the case of[g.]2.9, we would keep most of the information available
by projecting the data onto PC1.

In order to compute the principal components, we rst form a covariance nfatrix

1 ~

C=—— X X X X;
n 1
then computing the eigendecomposition for it:
CP= PD;

whereP = pl;:::;p, is a matrix of right eigenvectors, ard is a diagonal matrix of
corresponding eigenvaluePB.and D should be sorted according to the magnitudes of the
eigenvalues, starting with the highest. Each eigenvector represents one principal compo-
nent, and they are now sorted in a decreasing order of signi cance - meaning that truncating
all but the rstk components will keep as much variance (or energy) as is possikldiin
mensions. In other words, we may de ne the transformation matRges p;;:::p« and

then write

Y =P X
Y= P2X:

It can be shown that, are the representations X¥fin k dimensions with the highest possi-
ble variance and, thus, will retain the most information:

VPEX  VPIX;

for all orthonormah  k matricesP,.
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Figure 2.9: PCA applied to a 2-dimensional data set. PC1 and PC2 are the new axes - the
data is highly spread out (has high variance) along PC1. We can rely on information from
PC1 alone in order to classify the data and predict whether it belongs to the orange or the
blue category.



Chapter 3

Tensor-based methods

Tensors are useful tools in data processing, because data so often appears in the shape of
multidimensional arrays. For example, RGB images are essentiafly aa 3 tensors

(see g.[3.1). One way to approach this problem is to simply unravel this tensor into a 2D
matrix, or even a 1D vector, as we have done to satisfy the input format of all algorithms
discussed so far. However, keeping the original structure of the input data can sometimes
increase precision, or decrease computation time by simplifying calculations. First, we
will go over some basics of tensor arithmetic.

3.1 Overview of tensor arithmetic

Tensors ar@-order data structures, in the sense that scalars are 0-dimensional, vectors are
1-order and matrices are 2-order. All three of these can be thought of as low-order tensors,
in the same way that a column vector may be thought of as afh matrix.

Mode+ bers of a tensorA = [a ... ;] 2 R ** Mr gre M,-dimensional vectors ob-
tained by xing every index but ;.

The moder unfolding of a tensor is a transformation that converts an R-dimensional
tensorA 2 RM: # Mr into a matrixAy) 2 RM (MiM2iMraMraiMR) \where ther-th index is
used as a row index, and all other indices are aligned along the columns in reverse cyclical
ordering. The-mode folding denotes the inverse of that transformation and is denoted by
[A], %, so that

h i
(n_ .
(Al ,, =A:

Ther-mode product between a tengorand a matrixJ 2 RN M is de ned as
h [
(

1)
A U= U[A]p , 2R™ =N =My

41
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Figure 3.1: An RGB image decomposed into its three color channels

in other words, we would rst-mode unfold the tensor, then perform regular matrix mul-
tiplication, thenr-fold it back into a tensor. The-th dimension is changed to match the
rst dimension ofU.

The Kronecker product between matrick® R' J andB 2 RK ! is a matrix of size
(I K) (3 L)denedhby:

1B a&2B a;;B
A B= Z;lB az;2B - az;JB:
a1B a,B a;B

Thus, the Kronecker product of two vectors is just their outer product - a rank-1 matrix.

3.2 Generalized Tensor Compressive Sensing

In [13], Schon eld and Friedland construct a tensor-based framework for compressive
sensing. The idea is based on something called the 'CANDECBNRAFAC tensor
decomposition' (a.k.a. tensor rank decomposition, or TRD), which is itself a generaliza-
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tion of the SVD decomposition discussed in 2.2. TRD of a tehsdrR'* '™ has
the following form:

A= ragi Az am;i,
i=1
whereM is the order of the tensor arag,; 2 R'™ are vectors. In matrix rank term4, can
be said to have rank mifi,,. And if M = 2, TRD is just SVD.
Two more results are needed in order to explain generalized tensor compressive sensing
(GTCS):

Theorem 3.2.1.Let X = [x;] 2 R™ ™ be S-sparse. Letj{l2 R™ M and assume |has
NS R property for i= 1;2. De ne

Y = [Ypql = UiXU; 2 R™ ™:

Then X can be recovered uniquely using the following procedure.;tet:yy,, 2 R™ be
the columns of Y. Let 2 R™ be a solution of

z = minfkzky ; U1z = yig;i = 1;::0;mp: (3.1)

up=min u; ;Uzup=wj ;j=1:10 Ny (3.2)

Proof. LetZ = XU, 2 R™ ™. Assume that,;:::;z,, are the columns aZ. Note thatz,

is a linear combination of thl, columns ofX, given by the® row of U,. SinceX is S-
sparsez, has at moss nonzero entries. Note that= U, Z, it follows thaty; = U,z . Since
U; hasNS R, we deduce the equalitﬂ}l). Observe next ttrat= U,X”. Hence the
columnw; of Z” iswj = Upu;. SinceX is S-sparse, each, is S-sparse. The assumption
thatU, hasNS R property implies[(3]2).

Y = [y iinya =X 1Up dUq2R™ M

ThenX can be recovered uniquely frovhusing the following recursive procedure. Unfold
Y in mode 1, H )
Yo = Y )= UilX]y U 2R™ (Meim:
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sparse. Recover eachusing sparse coding (discussed at length in 1.5).ZLet
X LU, dUg 2 RN ™ M with its mode-1 bers beingiz:::;zm, . m,. UnfoldZ
in mode 2, h i)
Zo)=[Z]=U2[X]ly Uk |~ 2R™ (Memszm);

In their paper, Schon eld and Friedland compare their method to another tensor-based
compressed sensing approach called 'Kronecker compressive sensing’, and surpass it on
both accuracy and speed.

3.3 Tensor-Based Dictionary Learning

Problem [(1.1L) - transforming a set of data into a domain where it is sparsely represented -
can be formulated in terms of tensors instead of matrices. This is precisely the topit of [19]
(Quan, Huang, Ji). They look at dynamic textures - series of images that represent a short
video clip or animation, so each texture has a temporal component - and attempt to develop
a method analog to K-SVD (discussed in 2.3). For a data t¥n@oRM+ Mv Mr N

the expression to be optimized is given as

minkX C 1Dy 2Dy 3 DT‘é ; (33)
subject to the condition th&y 2 O(My; R), Dy 2 O(My; R), Dt 2 O(M+; R), where
n 0
OM;R)= D2RMM:D°D=DD” = |
is the orthogonal grougC 2 RM M Mr N and nally [Cluy , S for all possiblei. In
this expressionC is the sparse coding tensor, and there is a separate dictionary for each
mode of the data tensor - the two spatial dimensions, as well as the temporal dimension.

The algorithm to optimiz¢ (3]3) is analogous to K-SVD. In facMif = M = 1, then they
are the same algorithm, so this is a generalization.

Learning algorithm

First, all three dictionaries are initialized to some starting values. Then, sparse coding is
employed in order to solve

mclnkX C 1Dy -2Dy 3DTk|2: (34)
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for xed Dy; Dy; Dt. Afterwards, the dictionaries are updated by optimizing the following
set of expressions individually:

%DT = argMinpom,m KX C  1Du 2Dy 3 DK
Dy := argMinyop,m KK C 1Dy 2D D7k - (3.5)
“ Dy = argmin,om,m KX € 1D 2Dy 3 Dri¢
These two steps are repeated (alternated) some pre-deterKinadhber of iterations.
[19] additionally names and provides two propositions that validate the steps listed above

- they show that explicit solutions fdr (3.4) and (3.5) exist, and that SVD may be used to
obtain them. We will also outline them here:

Proposition 3.3.1.GivenX 2 RM+ Mv Mt Ny 2 Sy Dy 2 Sy, and Dy 2 Sy, the
minimization problem

argmin kX C 1Dy 2Dy 3DTlé

CZRMH My Mt N

subjectto [C]4)q , T forall possible i, has an explicit solution given by

h i
C=Tg X 3D-T— 2D\>/ 1D> ;

where Ts( ) denotes the operator that keeps the largest S elements of each row of the matrix
in terms of magnitudes while setting the rest to zero.

Proposition 3.3.2. Let fD; : D, 2 O(M; R)g”i1 be a set of orthogonal matrices. Given
X;C 2RM: M2 Me N ‘the minimization problem

argminkX C 1D, r1Dr1 P A r DrIG
A2Sy,

has an explicit solution given by A PQ”, where P and Q denote the orthogonal matrices
de ned by the following SVD:

X gDz r1Dr1  #1Dfy o[C 1D (1Drdfy=P Q

3.4 Multilinear Principal Component Analysis

Multilinear Principal Component Analysis (MPCA) is a generalization of the concepts dis-
cussed in sectidn 2.5 to the domain of tensors. The core idea remains the same: nd some
new set of orthogonal bases (axes) to represent the data in, such that they consecutively
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maximize its variance. Then, the may represent the data using only the rst few princi-
pal component axes, trusting that we will still keep most of the information. Let us state

ing dimensions:8i; X; 2 R'* '~ Our objective is to nd a multilinear transformation

U™ 2R Pion=1::::;N that maps the original tensor spaR'e R~ into a tensor
subspac®™ R™ (whergP, < In, forn=1;:::;N: Y = Xpn s UW 0@ N
UN">m=1;::::M such thatY , 2 R™ RP:m=1;:::;M captures most of the

variance observed in the original tensor objects, assuming that variance are measured by
the total tensor scattery, where

A - 2
Y — Ym YF;
m=1
_ o
Y=_ Ym
Mm:l

n,
UM:n=1::::;N = argmax v: (3.6)

One solution to the problem is obtained by optimizing the projection mattigesne by

one, similar to the alternating least squares method. Updatihgraditrices constitutes one
cycle or iteration, and we repeat the process for some predetermined number of iterations
K, or until we see no more improvement in the representation (which we can determine by
keeping track of y throughout the process. The method depends on the following critical
result:

vectors corresponding to the largest ®genvalues of the matrix

N L _
W= Xy Xm) U o U Kun Xa) (3.7)

m=1

where

~

Ue= 0D gMma gm  go  ge R
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See [14] for proof and more details. With that in mind, we may now construct the
MPCA algorithm:

Algorithm 5: MPCA

//_ centsr the data
X= i r'\r/lpll(m

— M

Xm=Xm X

I initialize

setU® to consist of thB eigenvectors corresponding to the most signi Bant
eigenvalues of ™ =" L, Xy X7, forn=1;:::N

Il optimiﬁe o

calculate Y, = X, ;0W 0@ NUN m=1:::::M
2

P —
calculate ¢, = N; Y.

fork=1:Kdo
/I update projection matrices
forn=1:Ndo

setU™ to consist of the®, eigenvectors corresponding to the larg@st
eigenvalues of the matrix™ as de ned in eq.[(3]7)

end n
recalculateY y m=1;:::;M and v,
if Y Y1 < then
| break
end

end

/I output

the feature tensor after projection is obtained as
Yo=X, (U0 0@ NUNm=1:::::M

1 import numpy as np
2 import tensorly as tl
3

4 def mpca(data, target _dims, max_iter=50):

5 """Computes a multilinear principal component analysis

6 for a set of tensor-shaped data points.

7

8 Arguments:

9 data: a list of numpy arrays. All should have the same

10 shape (D_1, D_2,..., D_n)

11 target_dims: the desired projection dimensions

12 (P_1, P_2,..., P_n). Each P_i should be smaller than the

13 corresponding D_i.
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max_iter: maximum number of iterations after which the process
stops. The process will stop earlier if the projection variance
stops improving.

N = len(data[0].shape) # data tensor order

M = len(data) # number of data tensors
# Center data

X_mean = sum(data)/M

# Initialize projection matrices U_n
U =1
for n in range(N):
# Define Phi_n
Phi_n=sum([tl.unfold(X-X_mean, n)@(tl.unfold(X, n).transpose())
for X in data])

# Get eigenvectors and sort them
eig_val, eig_vec = np.linalg.eig(Phi_n)
p = np.argsort(np.abs(eig_val))[::-1]
eig_vec = eig_vec[p]

# Define U_n as first P_n eigenvectors
U n = eig_vec]:, :target_dims[n]]
U.append(U_n)

# Calculate projection Y
Y =]
for m in pb(range(M)):
Y_m = r_mode_product(data[m], U[0].T, 0)
for n in range(1, N):
Y_m = r_mode_product(Y_m, U[n].T, n)
Y.append(Y_m)

# Calculate Psi
Psi = []
Psi.append(get_variance(Y))

# Main optimization loop:
for k in range(max_iter):
for n in range(N):

# Obtain projection matrix U_phi_n
U_phi_n = np.ones((1, 1))
for n2 in range(n+1, N):

U_phi_n = np.kron(U_phi_n, U[n2])
for n2 in range(0, n):
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U_phi_n = np.kron(U_phi_n, U[n2])

# Obtain Phi_n
Phi_n = sum([tl.unfold(X-X_mean, n)@U_phi_n@U_phi_n.T @
tl.unfold(X-X_mean, n).T for X in datal)

# Update U_n:

# 1. solve eigenproblem for Phi_n
eig_val, eig_vec = np.linalg.eig(Phi_n)
p = np.argsort(np.abs(eig_val))[::-1]
eig_vec = eig_vec[:, p]

# 2. define U_n as first P_n eigenvectors
U[n] = eig_vec]:, :target_dims[n]]

# Recalculate projection Y
Y =]
for m in range(M):
Y_m = r_mode_product(data[m], U[0].T, 0)
for n in range(1, N):
Y_m = r_mode_product(Y_m, U[n].T, n)
Y.append(Y_m)

# Recalculate Psi
Psi.append(get_variance(Y))
# If there is no longer any variance gain, return
if Psi[-1] < Psi[-2]:
break

return U, Psi

Testing on synthetic data

In order to test the MPCA algorithm, we have applied it to the same synthetic data as that
used in [14]. First, a tens@,, 2 R'"* '2 = is randomly generated with each entry being
drawn from a normal distribution with mean 0 and variance 1. Then, using some random
orthogonal matrice€,, 2 R'» 'n;n = 1;2; 3, the data tensak ,,is given as

for M data points, wherB ,, is a noise tensor with entries drawn from a normal distribution
with mean 0 and variance 0.01.

In regular, vector-based, PCA, dimensionality reduction comes down to choosing the
rst p principal components, with the value fprdirectly corresponding to the amount of
variance the new model will keep. However, in MPCA, we h&leli ferent values to



CHAPTER 3. TENSOR-BASED METHODS 50

Figure 3.2: MPCA eigenvalue analysis on synthetic data. Left: a logarithmic plot of the
magnitudes of eigenvalues of” as de ned in[(3.7). Right: a cumulative graph of their
relative values (represented as fraction of the sum total)

choose - not just one. Looking at ¢. 3.2, we can see that the prsigenvalues in each
mode are roughly the same. As such, we can intuit that a good strategy for choosing the

to min(l; p).
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Figure 3.3: Variance retention relative to dimensionality. The y-axis represents the relative
variance of a projgcted data sef—Q The x-axis displays the sum of the dimensions used
in the projection ( ,P,). The two colored lines represent @rent strategies of picking

the number of dimensions in each mode. 'uniform’ attempts to pick the same number of
dimensions in each mode (for example, (9,9,9), (10,10,10), (11,11,10), etc.), while 'linear’
tries to pick the same fraction of the maximum possible dimensions in each mode (for
example (3,2,1), (6,4,2), (9, 6, 3) etc. 'reference'’ is just a straight line, representing what
the variance would look like if we just randomly assigned the dimendigns



Sazetak

lako ovo nije cjelokupan pregled, proili smo nekolicinu efektivnih metoda za rijetku
reprezentaciju podataka, tj. s@vanje mipkx Bak sa uvjetom rijetkosti na te pove-

zane probleme. Reli smo u poglavlji L objnjavajiti metode koje se negste koriste

u modernom procesiranju signala, ksto su DCT i DFT, te smo upoznali neketamite
metode za rijetke reprezentacije - matching pursuit i basis pursuit. Spomenuli smo neke
od problema koji su sadani u ovom podrgju, pogotovacinjenicu da je sstinski problem
NP-tezak, te kako se switi sa tim problemima.

U poglavlju[2, upoznali smo se sa nekolicinom metoda za optimizaciju ne samo ri-
jetke reprezentacije, nego i geikaB. DiskutirajLti k-means i SVD, izgradili smo znanje
potrebno za razumjevanje K-SVD algoritma, te smo ga testirali na sikitetipodacima.
Takader smo ukratko pregledaligsgedan pristup sairokom primjenom - 'principal com-
ponent analysis', rean za razumjevanje MPCA algoritma kojeg spominjemo kasnije.

U zadnjem poglavlju, poglavlju] 3, ulazimo u domenu tenzora. Ovo je prirodan korak
budLti da se puno stvarnih podataka, pogotovo vizualnilgzeqmno prirodnije prikazati u
obliku tenzora vseg reda. Ponovili smo malo osnovne aritmetike tenzora, te upoznali dvije
metode - jedna je metoda zaanje rjenika napravljena za analizu dinaskih tekstura,

a druga je multilinearna PCA, generalizacija PCA algoritma iz prethodnog poglavlja u
prostor tenzora.

Primjene rijetkih reprezentacija siroke, i nove metode se razvijaju vrlo brzo kako bi
se suaili sa modernim problemom sve &e kolicine podataka koje prikupljamasaljemo
preko telekomunikacijskih mea, koje treba analizirati i komprimirati.



Summary

While this is by no means an exhaustive review, we have overviewed a numbezative
methods for representing data sparsely, which is to say, solvingeninBak with sparsity
constraints o and related problems. We started in chapter 1 by going over methods most
widely used in modern signal processing, such as the DCT and DFT, and then introduced
some general-purpose methods for sparse coding - namely matching pursuit and basis pur-
suit. We touched on some of the problems inherent in sparse coding (the fact that the base
problem is NP-hard), and how to circumvent those issues.

In chaptef 2, we introduced a number of methods for not only optimizing the sparse
representation, but the dictionaByas well, and sometimes simultaneously. By discussing
k-means clustering and singular-value decompositions, we built the knowledge base neces-
sary to understand the K-SVD algorithm, and we tested it on some synthetic data. We also
brie y overviewed another approach with broad applications - the principal component
analysis, necessary to understand MPCA discussed later on.

In the last chapter, chaptef 3, we enter the domain of tensors. This is a natural step,
as much real-world data, especially visual data, is more naturally represented as tensors of
higher orders instead of vectors or matrices. We went over some basic tensor arithmetic,
and then reviewed two methods. One is a dictionary learning method built to analyze dy-
namic textures, and the other is multilinear principal component analysis - a generalization
of PCA to tensor space.

The applications of sparse coding and dictionary learning are vast, and new methods
are being developed rapidly in order to deal with the modern problem of ever more data
being accumulated, sent over communication channels and needing to be analyzed or com-
pressed.
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