
Matrix and tensor methods for dictionary learning for
sparse representations

Špigel, Fran

Master's thesis / Diplomski rad

2021

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:148465

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-04-25

Repository / Repozitorij:

Repository of the Faculty of Science - University of
Zagreb

https://urn.nsk.hr/urn:nbn:hr:217:148465
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://zir.nsk.hr/islandora/object/pmf:9666
https://repozitorij.unizg.hr/islandora/object/pmf:9666
https://dabar.srce.hr/islandora/object/pmf:9666

SVEUČILIŠTE U ZAGREBU

PRIRODOSLOVNO–MATEMATIČKI FAKULTET

MATEMATIČKI ODSJEK

Fran Špigel

MATRIX AND TENSOR METHODS FOR
DICTIONARY LEARNING FOR
SPARSE REPRESENTATIONS

Diplomski rad

Voditelj rada:
Zlatko Drmač

Zagreb, Travanj, 2021

Ovaj diplomski rad obranjen je dana pred ispitnim povjeren-
stvom u sastavu:

1. , predsjednik

2. , član

3. , član

Povjerenstvo je rad ocijenilo ocjenom .

Potpisi članova povjerenstva:

1.

2.

3.

Roditeljima i majstorima

Contents

Contents iv

Introduction 1

1 Sparse Representations 2
1.1 Sparse Recovery . 2
1.2 Discrete Fourier Transform . 6
1.3 Discrete Cosine Transform (DCT) . 8
1.4 Wavelet Transform . 12
1.5 Sparse Coding . 13
1.6 Classification . 17
1.7 Compressed Sensing . 21

2 Dictionary Learning 24
2.1 K-Means Clustering . 24
2.2 Singular Value Decomposition . 29
2.3 K-SVD Algorithm . 31
2.4 Stochastic Gradient Descent . 36
2.5 Principal Component Analysis . 39

3 Tensor-based methods 41
3.1 Overview of tensor arithmetic . 41
3.2 Generalized Tensor Compressive Sensing 42
3.3 Tensor-Based Dictionary Learning . 44
3.4 Multilinear Principal Component Analysis 45

Bibliography 55

iv

Introduction

Sparse representations are an area of study with significant applications in data compres-
sion, classification and even transformation (such as removing dead pixels from an image).
In this thesis, we will construct an overview of some methods for representing visual sig-
nals sparsely, as well as test their applications on different data sets. We will explore the
applications and some common problems with sparse representations, as well as their so-
lutions. We will also include Python code for some of the algorithms discussed in the
paper.

Chapter 1 covers mechanisms for obtaining sparse representations - in other words,
finding sparse vectors a which solve expressions of the form x = Ba given some signal
vector x and a fixed N × K dictionary matrix B. We will focus on visual signals (images),
but the results and processes described herein have a wide range of applications. We will
show the compressive potential of Fourier and cosine transformations, cover the Matching
Pursuit and Basis pursuit algorithms, as well as explore the use of sparse representations in
classification tasks.

Chapter 2 covers how to not only obtain the sparse representation a, but also optimize
the dictionary B, in order to get even sparser or more accurate representations. We will go
over a a few algorithms for the k-means clustering problem, recall some basics of singular-
value decomposition, and finally review the K-SVD algorithm for dictionary learning.

Finally chapter 3 generalizes the discussed methods to the context of tensors, covering
tensor-based compressed sensing as well as tensor dictionary optimization.

1

Chapter 1

Sparse Representations

Sometimes, when observing naturally produced signals, it can be intuited that they exist in
a subspace of the set of all possible signals. More specifically, let our signals have the form
x = (x1, x2, . . . , xN)>, and we are presented with P signals, arranged in a matrix X such
that each column represents one signal. These could, for example, be black-and-white
image matrices, each unravelled into a vector of length N. Suppose that each pixel on the
image could only assume the value 0 or 1. With a 16 × 16 pixel image, that means 2256

possible configurations. However, only a tiny fraction of those would reasonably represent
something like a cat, or a dog, or a human face. So the question we naturally ask ourselves
is - what is the ’natural image’ subspace of the ’pixel configuration’ vector space?

1.1 Sparse Recovery
Our assumption is that there is some set B = [b1, b2, . . . , bK], where K � N, such that all
natural 16 × 16 images exist within the linear span of B. This would imply that we can
find representations ai such that for each signal xi, xi = Bai, i = 1, . . . , P. However, we will
show that, numerically, it is simpler to generate an overcomplete dictionary, where K � N,
but impose a sparsity requirement on the representation vectors. And so our problem can
be formulated as:

min
B,A
||X − BA||F , ||ai||0 ≤ S , i = 1, 2, . . . , P, (1.1)

where X = [x1, x2, . . . , xP] is an N × P matrix of P N-dimensional signals, such as image
vectors or sound waves, A = [a1, a2, . . . , aP] is a K × P matrix of P K-dimensional repre-
sentation vectors, and B = [b1, b2, . . . , bK] is an N×K overcomplete dictionary (sometimes
called a code book), with each dictionary atom bi having unit length. The first term is a
measure of the error in our approximation, and the last term is the sparsity requirement

2

CHAPTER 1. SPARSE REPRESENTATIONS 3

imposed on each representation vector, where S � N - in other words, all representation
vectors are S -sparse. The sparsity mapping, sometimes called a ’pseudo-norm’, is defined
as the limit of the `p norm as p approaches 0. In short, it simply counts the number of
nonzero elements of a vector. It is technically not a norm (since it does not satisfy the
homogeneity requirement), however we will be using the notation ‖ · ‖0 to signify this
mapping, as it is a natural continuation of the well-defined `p family of norms.

Expression (1.1) is actually composed of several significant sub-problems. One of them
is more fundamental: for a given signal vector x, and a fixed dictionary B, find its individual
representation a = (a1, . . . , aK)> which optimizes the following:

min
a
‖x − Ba‖2 , ‖a‖0 ≤ S . (1.2)

In other words, ”minimize a cost function with a strict sparsity constraint imposed on the
solution space”. There is another, similar approach to (1.2):

min
a
‖a‖0 , x = Ba, (1.3)

”Find the sparsest solution to an under-determined system of linear equations”. (1.2) and
(1.3) are not exactly the same problem, but their solution spaces overlap significantly, and
they often have the same minimum, so they are both worth considering. Additionally, they
are dealing with a similar issue - the problem with (1.2) is that the set of all S -sparse vectors
is not convex, so many of the standard approaches to solving it numerically are inadequate.
(1.3) has the issue of its error function being discontinuous, so again most optimization
methods will not work. This makes both of these problems NP-hard ([18]). To solve this
issue, we will generally substitute the sparsity mapping in these problems with the `1 norm.
The `2 norm would not suit our purposes - given a particular solution space, which is an
(K − N)-dimensional manifold in K dimensions, `2 norm would simply find the solution
which is closest to the origin, and that does not guarantee any sparsity. ‖ · ‖0 retrieves the
intersections of the manifold with basis axes (or at least, axis-spanned subspaces), and `1

norm comes close to approximating that behavior.
We can illustrate this point in 2 dimensions, using 1-dimensional solution manifolds,

as is the case in fig. 1.1: if our solution manifold were to take the shape of a 1-dimensional
line displaced from the origin in 2-dimensional space, we can see that minimizing with
respect to `2 norm yields the solution (0.4, 0.8), which is the closest to the origin, but
minimizing with respect to `1 yields (0, 1) which is the sparsest one. Additionally, we can
see by intuition that minimizing any 1-d manifold in 2-d space will yield either a sparse
solution (one that lies on an axis), or that the manifold will coincide perfectly with one
side of the colored square, in which case sparse solutions will at least be minimums, even
if they are not unique minimums.

And so we re-formulate (1.3) into a very similar, but much more solvable version:

CHAPTER 1. SPARSE REPRESENTATIONS 4

Figure 1.1: Minimal solution w.r.t. `2 norm (left) and `1 norm (right)

min
ã
‖ã‖1 , x = Ba (1.4)

There is an important result that guarantees a solution for the above expression.

Definition 1.1.1. An m × n complex matrix A is said to have the null-space property of
order S (NS PS) if, for all index sets I with S = |I| ≤ n we have that

∀η ∈ Ker(A) \ {0}, ‖ηI‖1 < ‖ηIC‖1 ,

where

ηIi =

ηi, i ∈ I
0, i < I,

and IC is the complement of I.

Theorem 1.1.2. Let B be a m × n complex matrix. Then every S -sparse signal a ∈ Cn is
the unique solution to the `1-relaxation problem:

min
ã
‖ã‖1 : Bã = Ba (1.5)

if and only if A satsfies the nullspace property with order S .

Proof. First, assume that the first statement holds true, and let ηI be some arbitrary element
of Ker(A). Note that η = ηI + ηIC , so by linearity we have

A(−ηIC) = A(ηI − η) = A(ηI) − A(η) = A(ηI).

CHAPTER 1. SPARSE REPRESENTATIONS 5

Since ηI is the unique solution to (1.5), it follows that ‖ηI‖1 < ‖ηIC‖1.
Conversely, assume that B has the nullspace property, and let a be S -sparse and b

another, not necessarily S -sparse, vector such that a , z and Bb = Ba. Define the nonzero
vector η = a − b. Note that η ∈ Ker(A). Let I be the support of a. Then, by the triangle
inequality,

‖a‖1 ≤ ‖a − bI‖1 + ‖bI‖1 = ‖ηI‖1 + ‖bI‖1 < ‖ηIC‖1 + ‖bI‖1 = ‖ − bIC‖1 + ‖bI‖1 = ‖b‖1.

�

Unfortunately, testing NSP is NP-hard ([17]). Fortunately, there is a similar property
with the same implication:

Definition 1.1.3. Let B = [b1, . . . , bk] be an n × k matrix. For every integer 1 ≤ S ≤ k, we
define the S -restricted isometry constants δS to be the smallest quantity such that BI obeys

(1 − δS)‖c‖2 ≤ ‖BIc‖2 ≤ (1 + δS)‖c‖2,

for all index sets I such that |I| ≤ S and all real coefficients (c j) j∈I . Matrix B is also
said to satisfy the S -restricted isometry property Similarly, we define the S , S ′-restricted
orthogonality constants θS ,S ′ for S + S ′ ≤ |I| to be the smallest quantity such that∣∣∣〈BIC , BI′C′

〉∣∣∣ θS ,S ′ · ‖c‖‖c′‖

holds for all disjoint index sets I, I′ such that |I| ≤ S , |I′| ≤ S .

Theorem 1.1.4. Suppose S ≥ 1 is such that

δS + θS + θS ,2S < 1,

and let a be a real vector supported on a set I with |I| ≤ S . Let x := Ba. Then a is the
unique minimizer to

min ‖d‖`1 , Bd = x.

The proof may be found in [4]. Even though the restricted isometry property is also
NP-hard to test ([1]), random Gaussian, Bernoulli and partial Fourier matrices have been
shown to satisfy it with exponentially high probability ([9]).

Yet another reformulation of (1.1) is sometimes used, where the sparsity restraint is
relaxed, and converted into an error factor for the cost function:

min
B,A
‖X − BA‖F + λ

P∑
i=1

‖ai‖1 , (1.6)

CHAPTER 1. SPARSE REPRESENTATIONS 6

where λ is some arbitrary coefficient that governs the importance of sparsity in the solution.
If a signal domain can be sparsely represented (’sparsified’), the first logical application

arises naturally in data compression. If a set of N-dimensional vectors can be adequately
represented using only S variables, we can immediately reduce storage space requirements
by approximately a factor of 1−S

N (e.g. if N = 100, S = 20, we can store the data using 80%
less space). Another application can be found in solving classification problems. More on
that in section 1.6.

Several signal domains have already been thoroughly analyzed and sparsified. One
such domain is visual signals, or images represented as pixel tensors. We will describe here
several methods for sparsifying pixel data: discrete cosine transforms, wavelet transforms
and the ubiquitous discrete Fourier transform.

1.2 Discrete Fourier Transform
The Fourier Transform is a method for decomposing a function f into a set of underlying
frequencies represented therein - it is a spectral decomposition:

f̂ (ξ) =

∫ ∞

−∞

f (x)e−2πixξdx. (1.7)

Here, f̂ (ξ) tells us how strongly the frequency ξ is represented in the function f . Once
we obtain the Fourier decomposition, we can losslessly reconstruct the original function,
using the inverse Fourier transform:

f (x) =

∫ ∞

−∞

f̂ (ξ)e2πixξdξ.

If we discretize the functions in question, such that f (xi) = fi; f̂ (ξi) = f̂i, we get the
Discrete Fourier Transform (DFT) and its inverse:

f̂k =

N−1∑
n=0

fn · e
−i2π

N kn (1.8)

fn =
1
N

N−1∑
k=0

f̂k · e
i2π
N kn. (1.9)

Two more steps are necessary in order to cement the DFT as a cornerstone of modern
telecommunications technology. As it stands, the DFT can be re-written in matrix form,
using a Vandermonde matrix:

CHAPTER 1. SPARSE REPRESENTATIONS 7

f̂ = F f

f̂1

f̂2

f̂3
...

f̂N−1

=

1 1 1 . . . 1
1 ωN ω2

N . . . ωN−1
N

1 ω2
N ω4

N . . . ω2(N−1)
N

...
...

...
. . .

...

1 ωN−1
N ω2(N−1)

N . . . ω(N−1)2

N

f1

f2

f3
...

fN−1

(1.10)

f =
1
N

F∗ f̂

ωN = e−i2π/N .

Finally, this formulation leads to the crucial method of performing DFT: the Fast Fourier
Transform.

Fast Fourier Transform
A matrix-vector multiplication, using a full matrix such as the one in (1.2) has O(N2)
complexity, because N2 multiplications need to be completed to calculate the result. This
causes problems if we try to apply it to truly large problems, where N can be in the millions
or even billions. In 1965, J. W. Cooley and John Tukey published a divide-and-conquer
algorithm which reduces this complexity to only O(N log(N)). Fig. 1.2 illustrates the
difference in computation time with this kind of reduction in complexity. We can see that
even with relatively light-weight data with N = 1, 000, FFT represents a 300-fold decrease
in time requirement. With N = 1, 000, 000, the decrease factor would be over 105.

FFT makes the DFT not only highly accurate, but also computationally cheap, which
why it is now ubiquitous in modern telecommunications.

DFT-based compression and other applications
DFT is a fundamentally important result in numerical mathematics. It sees uses in a variety
of applications - from data compression to solving partial differential equations. Its use in
data compression is very easy to see - since usually only low frequencies are present in
signals, a signal can be spectrally decomposed, and all high frequencies discarded with-
out major data loss. Then this truncated data vector may be stored or transported, and the
inverse DFT is applied when the signal needs to be analyzed in its natural form. Alterna-
tively, many operations can be executed in the spectral domain itself, which often means
sparse variables, making calculations faster. To illustrate the compressive potential of DFT,

CHAPTER 1. SPARSE REPRESENTATIONS 8

Figure 1.2: A logarithmic scale representation of the difference in computation time be-
tween a DFT implementation using matrix multiplication and the FFT

we can look at fig. 1.3, and see that even with 95% of the frequency values truncated (dis-
carded), the image is essentially indistinguishable from the original. In practice, instead of
using a cutoff like that, we would simply truncate everything outside of a small circle or
square in the center of the coefficients, since that is easier to communicate to the receiver
of our signal.

1.3 Discrete Cosine Transform (DCT)
The DCT is based on the Fourier Transform - we assume that a signal is periodic in nature,
and attempt to replicate it using a basis of cosine waves with different periodicities. With
1-dimensional signals, our basis might look something like this:

b̃i : R −→ [−Ci,Ci]

b̃i(x) := Ci cos (πxi) ,

where Ci is a normalizing factor such that ||b̃i|| = 1, i = 1, . . . ,K, regardless of the space
being considered. This function would naturally be quantized into an N-dimensional, nor-
malized vector with:

CHAPTER 1. SPARSE REPRESENTATIONS 9

Figure 1.3: DFT-compressed picture of a dog. The top row shows a logarithmic represen-
tation of the corresponding frequency magnitudes (DFT coefficients), with some fraction
of them being truncated to 0 (each coefficient with absolute value smaller than some cutoff

point). The bottom row represents the reconstructed image using the inverse DFT opera-
tion.

b̄ j
i := b̃i(jh), j = 0, 1, . . . ,N

bi :=
b∗i
||b∗i ||2

,

where h is some discretization factor used to quantize a domain such as [0, 1]
Arranging bi as columns into a matrix, we would obtain a dictionary B. Then, given

a signal x, we would employ sparse coding in order to find coefficients a = a1, . . . , ak s.t.
x = Ba. More on exactly how to obtain these coefficients in section 1.5. Fig. 1.4 illustrates
some bases that might be used in 1-d DCT (before normalization).

2D-DCT
Images, however, are inherently 2-dimensional signals, so the question of how to employ
these 1-dimensional bases to represent them presents itself naturally, and the answer is

CHAPTER 1. SPARSE REPRESENTATIONS 10

Figure 1.4: Some basis functions for 1-dimensional DCT before normalization

elegant in its simplicity. First of all, we cannot cheat by reshaping the 2-d matrix into a
vector, because this creates a lot of discontinuities in the signal, something that DCT is not
good at dealing with. Instead, we have to create 2-dimensional basis vectors. We do this
by defining functions such as:

b̃i, j(x, y) := b̃i(x)b̃ j(y) = Ci, j cos(πxi) cos(πy j).

Such functions can also be quantized into matrices using:

bi, j = bi

⊗
b j,

where
⊗

denotes the outer product of two vectors, creating an n × n rank-1 matrix. In
practice, the result looks like fig. 1.5.

Using these basis vectors, or matrices (depending on how you look at them), the signal
matrix is divided into 8 × 8 pixel patches, and then each patch is represented as a linear
combination of the 64 basis matrices. Note that no compression has occurred in this step,
as we are still representing 64-dimensional signals in 64-dimensional space. However, in
almost all applications (especially with natural images, meaning real-world photographs),
the coefficients corresponding to the bases in the upper left corner of fig. 1.5 are generally
larger then the ones in the bottom right. As such, we can truncate the solution by setting any
sufficiently small coefficients to 0, thereby achieving a high degree of compression without
significantly affecting the image itself. This is the process used for JPEG compression. The

CHAPTER 1. SPARSE REPRESENTATIONS 11

Figure 1.5: Basis matrices for 2-dimensional DCT

resulting coefficient matrix will be sparse, with most nonzero values located in the first row
and first column.

Fig. 1.7 shows the DCT in action. It is exceedingly hard to tell the difference between
the two images visually, and yet the one on the right was compressed to 10% of its original
volume.

However, DCT has its weaknesses. Because it tends to ignore the contribution of the
finer basis matrices (the ones on the bottom right of fig. 1.5), it has trouble representing
images with fast, discontinuous switches in intensity. This rarely occurs in natural im-
ages, but does come up with images of text. This weakness results in so-called ’artifacts’

CHAPTER 1. SPARSE REPRESENTATIONS 12

Figure 1.6: A visualization of the 2D-DCT basis vectors. The left column represents the
actual vectors as shown in fig. 1.5, with i and j values denoting the row and column of the
corresponding vector (bi, j). The middle column represents the function b̃i, j, and the right
column is a 3d representation of b̃i, j

- miscolored pixels surrounding such image patches, created because it is difficult to ap-
proximate a Heaviside function (or rather, a sequence of Heaviside functions) with cosine
waves. This is evident in fig. 1.8.

One alternative that aims to remedy this issue is the wavelet transform.

1.4 Wavelet Transform
The Wavelet Transform, or Discrete Wavelet Transform (DWT) is similar to the DCT in
that it uses basis functions to reconstruct an original signal. But the difference is that
wavelets are not periodic like cosine waves - they are localized in time, meaning they have
a much easier time dealing with irregular, discontinuous image patches. They are sensitive
to fine details in a signal. And there is a plethora of wavelets to choose from, depending on
the task at hand - Morlet, Daubechies, Haar etc. Some examples can be seen in fig. 1.9

CHAPTER 1. SPARSE REPRESENTATIONS 13

Figure 1.7: Left: original image. Right: Image reconstructed after being compressed via
DCT by a factor of 10

Figure 1.8: Artifacts created when applying the DCT to pictures of text

1.5 Sparse Coding
Assuming an adequate dictionary (the methods for acquiring this are discussed in chapter
2) is available, we require a mechanism for finding the sparsest representation vector, as
discussed in section 1. Recall that the problem at hand is:

min
A
‖X − BA‖F , ||ai||0 ≤ S , i = 1, . . . , P, (1.11)

where A = [a1, . . . , aP]. The mapping ‖ · ‖0 may be replaced with `1 to simplify the calcu-
lation. The first method for this is perhaps the most obvious: matching pursuit.

CHAPTER 1. SPARSE REPRESENTATIONS 14

Figure 1.9: Some examples of various wavelets

Matching Pursuit
In matching pursuit (or MP), we attempt to find the solution coefficients one by one, start-
ing with the largest one by absolute value. The motivation stems from linear spans of
orthonormal bases, where

x = Ba =
∑

i

αibi =
∑

i

〈bi, x〉bi.

The coefficients αi in that case can be obtained simply by taking the inner product of x
with any basis vector bi. We apply the same reasoning in the case of our overcomplete
dictionary - where the vectors are normalized, but not orthogonal or even independent. We
again look at the inner product of x with each basis vector, then take the index associated
with the highest value, and assign that inner product as the coefficient for the corresponding

CHAPTER 1. SPARSE REPRESENTATIONS 15

dictionary atom. We then subtract that atom from x, and repeat the process.
Algorithm 1: Matching Pursuit

for i = 1 : S do
find j0 s.t. |〈x, b j0〉| ≥ |〈x, b j〉|, j = 1, 2, . . . ,K;
a j0 ← 〈x, b j0〉;
x← x − a j0b j0

end

1 import numpy as np

2
3 def matching_pursuit(B, v, l):

4 """Returns an n-sparse vector a that minimizes

5 the expression ||v - Ba||.

6
7 Arguments:

8 B: an (n x k) numpy.array dictionary

9 v: an (n x 1) numpy.array signal vector that is

10 to be approximated

11
12 Returns:

13 a (k x 1) numpy.array l-sparse array of coefficients

14 which minimize ||v-Ba||

15
16 """

17 v_ = np.copy(v)

18 coeff = np.zeros(B.shape[1])

19 for i in range(l):

20 c = v_.transpose()@B

21 arg = np.argmax(np.abs(c))

22 current_coeff = c[arg]

23 if current_coeff == 0:

24 break

25 coeff[arg] += current_coeff

26 v_ = v_-current_coeff*B[:,arg]

27 return coeff

MP is a greedy algorithm that does not necessarily produce the globally optimal solu-
tion, but its solution is ’good enough’. Crucially, the process may be stopped at any point
S ′ in order to obtain an S ′-sparse solution. In the case of K = S = N, MP simply solves a
complete system of linear equations.

CHAPTER 1. SPARSE REPRESENTATIONS 16

Basis Pursuit
Basis pursuit (BP) is another pursuit algorithm which takes a slightly different approach.
The problem it solves is (1.3), except we are again substituting the `1 norm in place of the
sparsity map in order to generate a convex solution space:

min ||a||1, x = Ba, (1.12)

so instead of finding the best solution with a given sparsity restriction, it finds the sparsest
solution within a given solution space (assuming that x = Ba is an underdetermined sys-
tem of equations with a non-trivial solution space). This is accomplished by approaching
(1.3) as an optimization problem. Recall that the canonical form for a linear optimization
problem is

max
x̃

c> x̃, Lx̃ ≤ v, x̃ ≥ 0, x̃ ∈ Rm,

where c> x̃ is an objective function, Lx̃ ≤ v is a collection of inequality constraints, and
x̃ ≥ 0⇔ x̃i ≥ 0, i = 1, . . . ,m is a set of bounds. We can reformulate (1.12) thus:

m⇔ 2K; L⇔ (B,−B); v⇔ x; x̃⇔ (u; v); a⇔ u − v, (1.13)

where u and v are the positive and negative parts of a (specifically, ui = max(ai, 0) and
vi = max(−ai, 0), i = 1, . . . ,K. They are concatenated into one long vector of free variables
x̃ = (u1, . . . , uK , v1, . . . , vK) which is used as the variable to be optimized. Thus, any positive
values of a can be represented as values of u, with the corresponding value of v being 0,
and vice-versa - any negative values are represented in v, with the corresponding value of
u being 0. This way, the concatenated vector x̃ is positive in every variable, simplifying
the linear program. All that remains is to set c = (−1,−1, . . . ,−1), and the full linear
optimization problem looks like:

−x̃1 − x̃2 − . . . − x̃m → max

b1

1 b1
2 . . . b1

K −b1
1 −b1

2 . . . −b1
K

b2
1 b2

2 . . . b2
K −b2

1 −b2
2 . . . −b2

K
...

...
. . .

...
...

...
. . .

...
bN

1 bN
2 . . . bN

K −bN
1 −bN

2 . . . −bN
K

u1
...

uK

v1
...

vK

≤

x1

x2
...

xN

ui, vi ≥ 0, i = 1, . . . ,K,

and this system can be solved by any linear optimization method, such as the simplex
algorithm or the interior-point method. More on BP and MP may be found in [7] or [5].

CHAPTER 1. SPARSE REPRESENTATIONS 17

1.6 Classification
As previously stated, one useful application of sparse representations besides data com-
pression is in classification. Classification is the task of determining the class of some
object represented by a vector, given that we have previously seen a number of examples
of each possible class by way of a labeled training data set.

Assume we are given such a set of training data - n-dimensional vectors each belonging
to one of c classes, such that each class is represented by p vectors. We might construct a
dictionary B as follows:

B =
[
B1, . . . , Bc

]
=

[
x11, . . . , x1p|, x21, . . . , x2p|, . . . , |xc1, . . . , xcp

]
.

If we then represent a new vector y using this dictionary:

y =

c∑
i=1

p∑
j=1

ai jxi j,

or in other words, y = Ba, we can assume that, given sufficient training samples of the k-th
class, Bk, any new test vector y that belongs to class k will lie approximately in the linear
span of the training samples from that class. Note that in the above expression, ai j is a
scalar, but xi j is a column vector. Therefore, the coefficients associated with basis elements
from class k (ak1, . . . , akn) should have the highest values, allowing us to determine the
underlying class. We will test this premise in the next section, as well as delve into slightly
more detail regarding the classification mechanism.

Classifying MNIST
MNIST is a basic benchmark for testing classification algorithms, and the method de-
scribed above works quite well. In our case, we constructed the dictionary using 500
examples of each class (digit), represented their pixel-value matrices unraveled into 784-
dimensional vectors.

In almost all cases with MNIST, the digit in question was represented almost exclu-
sively by other images of the same digit, making classification easy. All that remains is
to design some selection method - an arbitrary mapping from the space of representations
on to the set of all classes. For example, we might simply pick the class that the highest
coefficient corresponds with. Or, we might create a histogram of all the coefficients, then
pick the class that is most-represented. Or we could square the values before making the

CHAPTER 1. SPARSE REPRESENTATIONS 18

Figure 1.10: MNIST classification using sparse coding. The first image is the original. The
second image is its reproduction using a linear combination of 100 dictionary atoms. The
third image is a representation of the coefficients associated with each dictionary atom. The
fourth image is a histogram of those values. The fifth image is a histogram of the squares
of those values.

histogram, in order to suppress small values and promote high values. There are similari-
ties between these options and `p vector norms. In our case, chose a sparsity requirement
of S = 10, using a dictionary of K = 5, 000 atoms. Using all 3 of the classification rules
outlined above, we achieved an accuracy of 94%, over a testing set of 10, 000 images. In
fact, all three rules nearly always classified the image the same way, differing in only 20
cases.

In fig. 1.11, we can see some of the images that were incorrectly classified, as well as
their reconstructions and the incorrect predictions. Fig. 1.12 shows us which digits were
most commonly misclassified. We can see that classification for digits 0, 1 and 6 was the
most accurate, while the inaccuracies were evenly distributed over the other digits.

This approach is not without issues, however. If the angle between two of the class-
specific linear spans ([Bi] and [B j]) is too small, then MP might misrepresent some signal
vectors. An example of such a case is illustrated in fig. 1.13. In this case,

B =

1 0 0.67
0 1 0.67
0 0 0.1

 ; x =

0.70.7
0

 ,
and let us assume that b1 and b2 represent one class (which spans the entire x-y plane), and
b3 belongs to another class. Matching pursuit will pick b3 as the optimal representation in
the first iteration, and after that the remaining component, x−〈x, b3〉b3 is very small and not
much use in classification. Specifically, the sparse representation derived from MP for this
example is a = (0.01, 0, 1.024)>, so any classification rule would classify x as a member of
class 2 - the one represented by b3, even though it belongs to the linear span of b1 and b2,
as illustrated in fig. 1.13.

We can formalize this. Assume that our classifier works by applying matching pursuit
to a signal vector to solve (1.1), then observing the resulting coefficients in a and which
classes are represented the most. We can show that the most represented basis vector

CHAPTER 1. SPARSE REPRESENTATIONS 19

Figure 1.11: Examples of misclassified images. The columns represent the same things as
in fig. 1.10, with the addition of titles, which represent the ground truth (column 1), and
the wrong guess for each classification rule (columns 3, 4 and 5).

derived by MP will simply be the closest one. Practice has shown that usually, classification
comes down to simply picking the class of this most represented vector, as its coefficient
will be orders of magnitude bigger than the second most represented one.

Proposition 1.6.1. Let B = {b1, . . . , bk} be a set of n-dimensional unit vectors, and let x
be am n-dimensional signal vector. Then the most parallel member of B is also the closest

CHAPTER 1. SPARSE REPRESENTATIONS 20

Figure 1.12: A chart representing how many images of each digit were mis-classified

member of B. In other words, for some index i,

〈x, bi〉 ≥ 〈x, b j〉,∀ j⇒ ‖x − bi‖2 ≤
∥∥∥x − b j

∥∥∥
2
, j = 1, . . . , k

Figure 1.13: Sparse classification error - basis vectors are shown in orange, and the target
signal vector is red.

CHAPTER 1. SPARSE REPRESENTATIONS 21

Proof. Assume 〈x, bi〉 ≥ 〈x, b j〉, j = 1, . . . ,K. Then,

‖x − bi‖
2
2 = 〈x − bi, x − bi〉

= 〈x, x〉 − 2〈x, bi〉 + 〈bi, bi〉

≤ 〈x, x〉 − 2〈x, b j〉 + ‖bi‖
2
2

= 〈x, x〉 − 2〈x, b j〉 +
∥∥∥b j

∥∥∥2

2

= 〈x, x〉 − 2〈x, b j〉 + 〈b j, b j〉

=
∥∥∥x − b j

∥∥∥
�

Thus, a classifier constructed this way is very similar to a simple nearest-neighbor
classifier.

Remark 1.6.2. The reasoning above does not take into account the case where ∠(x, bi) > π
2 ,

but that should be a rare occurrence in principle, when bi is the best-matching basis vector.

1.7 Compressed Sensing
Data compression has massive real-world applications and benefits in and of itself. How-
ever, compressed sensing is an idea that builds on it even further. The core concept is
simple: instead of collecting and then discarding most of it via compression, why not col-
lect only a fragment of the data to begin with? For example, instead of taking a full m × n
picture, we might only test a few, sparsely distributed pixels, and then infer the complete
photograph from those. The idea is relatively simple to state mathematically: let x be a
signal, and y be a measurement of only some of its variables, given by

y = Cx,

where C represents some sort of a selection matrix. For example, C could choose one of
every three variables in x, or be a binomially distributed, such that each element ci j has a
chance p of being either 0 or 1, as illustrated in fig. 1.14.

Assuming we know y = Cx, and have an adequate dictionary B which sparsifies x, we
have

y = Cx = CBa = Θa,

where Θ = CB. So the task remains the same as before - finding the sparsest a which
satisfies y = Θa. As discussed in section 1.5, this is an NP-hard problem, unless the

CHAPTER 1. SPARSE REPRESENTATIONS 22

Figure 1.14: Binomially distributed matrix taking a compressed measurement of a signal
vector x

sparsity constraint is relaxed to the `1 norm instead, in which case we can use basis pursuit
or another sparse coding algorithm to derive the representation a.

Compressive sensing has a wide array of applications. Whenever we have some map-
ping from an uncountable domain, but we can only afford to measure its value in a finite
number of locations, we can use compressive sensing to approximate a discretization of the
mapping over the rest of the domain. In that case, the selection matrix C would signify the
points at which we are measuring (sensing) the signal. For example, if we were looking at
an image with pixels missing from some locations (due to a faulty camera or a corruption
of the digital data, for example), we might construct C by first taking an identity matrix,
and then eliminating the rows which correspond to the dead pixels in the vectorized image.
Here are some more examples:

• Studying ocean region properties (water flow, heat, salinity etc) by measuring it at
discrete points via sensor buoys

• Studying the flow of a fluid through some geometry by placing a number of sensors
at specific points inside a pipe or cylinder

CHAPTER 1. SPARSE REPRESENTATIONS 23

• Recovering visual data from a corrupted image with missing pixels (this process is
also known as ’inpainting’)

• Removing objects (such as unwanted text) from an image by treating it as dead pixels

• Reconstructing a photograph that was taken by only measuring a few pixels on pur-
pose - this approach removes some of the technological and storage requirements
from the camera and places them on the receiving end. For example, a deep space
satellite could use a lower resolution camera to take photographs, then send the un-
encoded (but still low-volume) data back to earth. Current satellites have to compress
the data on-site, increasing computational requirements, before sending it back.

Additionally, in the next chapter, we will discuss methods of not only deriving a sparse
representation given a fixed dictionary, but optimizing the dictionary itself. That means we
will be able to optimize the placement of the sensors mentioned above, in order to get more
accurate measurements.

Chapter 2

Dictionary Learning

In chapter 1 we established a number of methods for obtaining the representation vector
that satisfies x = Ba, given an adequate dictionary B. Now, we will discuss methods for
obtaining the dictionary itself. In other words, we are coming back to the initial problem
(1.1) and its `1 counterpart. Recall that it was stated as:

min
B,A
||X − BA||F , ||ai||1 < l, i = 1, 2, . . . , P,

where ai are columns of A. We will first review the some k-means clustering methods,
including Lloyd’s algorithm, which is a special case of the K-SVD algorithm discussed
afterwards.

2.1 K-Means Clustering
K-means clustering refers to the task of grouping a number of data points into distinct
clusters, or minimizing the ’within-cluster sum-of-squares’ (WCSS):

E(C) =

k∑
i=1

∑
x∈Ci

||x − ci||
2
2, (2.1)

where C = {C1, . . . ,Ck} is a partition of the set of data points xi, and ci are the centroids of
Ci, given by

ci =

∑
x∈Ci

x
|Ci|

, i = 1, . . . , k, (2.2)

|Ci| ∈ N being the (finite) number of elements in Ci.
This problem is also NP-hard - even with only two clusters, and even in only two

dimensions (’planar’ k-means), as per [15]. The most common approach to solving it

24

CHAPTER 2. DICTIONARY LEARNING 25

numerically is an iterative process known as ’Lloyd’s algorithm’ or ’naive k-means’. It is
so common, in fact, that it is sometimes referred to as simply ’k-means algorithm’.

Algorithm 2: Lloyd’s algorithm

determine initial centroids c1, . . . , ck

for i = 1 : I do
for x in X do

find closest centroid ci

assign x to subset Ci

end
for i = 1 : k do

ci ←
∑

x∈Ci
x/|Ci|

end
end

1 def kmeans(X, n, iter):
2 """A basic implementation of the k-means algorithm. Clusters the

signal vectors in X into n groups, and returns the centroid of each

group.

3
4 Arguments:

5 X: (p x m) numpy.array() - data matrix where each row represents one

data point

6 n: integer - determines the desired number of centroids/clusters

7 iter: integer - pre-determined number of iterations

8
9 Returns:

10 assign: (p x 1) numpy.array() - the i-th element is the index of the

group that the i-th data vector belongs to

11 centroids: (n x m) numpy.array() - the i-th row represents the

coordinates of the centroid of the i-th group

12 """

13 # initialization

14 centroids = np.outer(np.linspace(0,1,n), np.ones(X.shape[1]))

15 assign = np.zeros(X.shape[0], dtype=int)

16 d = np.zeros((X.shape[0], n))

17 count = np.zeros(n)

18 for i in pb(range(iter)):

19
20 # assignment

21 d = np.array([np.sum((X-c)**2, axis=1) for c in centroids]).

transpose()

22 assign = np.argmin(d, axis=1)

23 count = np.array([np.sum(assign==j) for j in range(n)])

24

CHAPTER 2. DICTIONARY LEARNING 26

25 # fix empty clusters

26 for j in np.where(count==0)[0]:

27 assign[random.randint(0,X.shape[0])] = j

28
29 # recalculate centroids

30 centroids = np.array([np.sum(X[assign==j], axis=0)/np.sum(assign

==j) for j in range(n)])

31
32 # final assignment

33 d = np.array([np.sum((X-c)**2, axis=1) for c in centroids]).

transpose()

34 assign = np.argmin(d, axis=1)

35 return assign, centroids

Here, I is some arbitrary pre-determined number of iterations until convergence is re-
liably reached. Alternatively, some stopping criteria may be used, such as per-iteration
error gain, or some target error value. As for the initial centroids, there are several pos-
sible approaches. One is to generate a random k-partition of the data, then assign the
centroids accordingly, using (2.2). Another is to scatter initial centers randomly through-
out the dataset (this requires knowing or calculating the lower and upper bound of the
space ahead of time), or simply distributing them evenly across each dimension - ci :=
(m1 +h1i,m2 +h2i, . . . ,mn +hni), where mi and Mi are the minimum and maximum possible
values in the i-th dimension, and hi = (Mi −mi)/k, i = 1, . . . , n, or even randomly selecting
n of the data points themselves and setting the initial centers to their locations.

The weakness of K-means is that it is not invariant for different starting point assign-
ments /center placements, and it can get trapped by local minima. This is sometimes cir-
cumvented by running the algorithm repeatedly with various starting assignments, then
taking the solution with the best error score.

Figure 2.1: Clustering of some synthetic data

The applications of clustering methods are vast, and data compression is certainly one

CHAPTER 2. DICTIONARY LEARNING 27

of them. We can imagine an image as a collection of pixels located in RGB pixel-space -
that is, each pixel has three defining axis values: red, green and blue, and we consider its
position in the image as just a label. We can then apply clustering to the points. Then we
can transform the image by replacing each pixel value with the value of its centroid. This
way, we get a faithful representation of the original image, using only a few colors. We can
specify the transformation as:

T : Vpixel −→ C
T (x) = argmin

c∈C
||x − c||2,

where Vpixel is the space of all possible RGB pixel values (equivalent to [0, 1]3, C =

{c1, . . . , cn} is the set of all derived centroids, so T simply maps any pixel to its closest
centroid.

Figure 2.2: Clustering applied to an RGB Image with only red and green components.
Left: original image. Middle: color-clustered image using n = 50 clusters. Right: red-
green pixel space with Voronoi cells to represent the clusters.

Fig. 2.2 shows how an image can be relatively faithfully reconstructed using only 50
different colors. The compression gain here is that we no longer need to store three floating-
point values for each pixel, but instead a single integer with value up to 50, meaning we
only need 6 bits of storage per pixel, as opposed to the 192 bits that the original pixels
would’ve required.

CHAPTER 2. DICTIONARY LEARNING 28

Advanced K-means Implementations
Being such a fundamental and versatile algorithm, K-means has been thoroughly studied
over the years, and several improvements and optimizations have been established. We
will briefly cover some of them here.

In [2], a more efficient method for centroid initialization is established by first taking J
sub-samples of the total pool of data, and clustering them to get J sets of centroid approx-
imation. Then that set of approximations is itself clustered, and the resulting centroids are
used as initial centroids when running the algorithm over the entire data set. In practice,
this initialization has been shown to be so powerful as to require very little optimization
afterwards in order to complete clustering.

In [11], the algorithm is restructured in order to speed up the cluster assignment: pi ←−

argmin j

∥∥∥xi − c j

∥∥∥
2
, where c j are centroids. In short, they compute a tree structure over all

the data points, then use a recursive function to assign each data point to a cluster, at each
step of the algorithm, instead of solving the problem above by a brute force search over
all possible values. This approach achieves more CPU-time gains for higher values of k
(meaning more clusters/centroids). The results shown in [11] display consistent, 80-95%
decreases in time needed to complete the algorithms, as compared to vanilla k-means.

In [20], the authors present a completely new approach to the problem. The first two
items in this section are simply optimizations of Lloyd’s algorithm, whereas this is an
entirely new algorithm. First, the sum-of-squares cost function,

E(C) =

k∑
i=1

|Ci |∑
j=1

∥∥∥∥a(i)
j − ci

∥∥∥∥2

2

is reformulated as

E(C) = trace(A>A) − trace(X>A>AX), (2.3)

where A = [ai, . . . , an] is the data matrix, and X is an n × k orthonormal matrix:

X =

|C1|

|C2|
...
|Ck|

e1/
√
|C1|

e2/
√
|C2|

...

ek/
√
|Ck|

 ,
and ei are |Ci|-dimensional column vectors with each value equal to 1, so minimizing the
cost function E is equivalent to maximizing the right-hand side of (2.3). If we also ig-
nore the structure of X and relax the constraint to any orthonormal matrix, we get a new
maximization problem:

CHAPTER 2. DICTIONARY LEARNING 29

max
X>X=I

(
trace(X>A>AX)

)
, (2.4)

which, according to Ky Fan’s theorem, can be solved by finding the first k eigenvectors
of A>A (meaning the ones corresponding to the k largest eigenvalues). Finally, a cluster
assignment is computed using pivoted QR decomposition.

2.2 Singular Value Decomposition
The Singular Value Decomposition algorithm is a factorization of a real or complex matrix
that generalizes the eigenvalue decomposition of square normal matrices to any m × n
matrix. The eigenvalue decomposition would factorize the square n × n matrix A as A =

QΛQ−1, where Λ is a diagonal matrix of eigenvalues, and Q is a square n × n matrix such
that each column is a right eigenvector corresponding to the eigenvalue in the same column
of Λ. SVD of an m × n matrix A looks similar:

A = UΣV∗, (2.5)

where U and V∗ are unitary matrices of left and right singular vectors respectively, U being
an m×m matrix, V an n×n matrix, and Σ being an m×n diagonal matrix of singular values.
Singular values work much the same way as eigenvalues and eigenvectors, except that they
are necessarily non-negative real numbers. It holds that

Avi = siui, A∗ui = sivi, i = 1, . . . ,min(m, n),

where ui and vi are columns of U and V , respectively. Furthermore, (2.5) can be rewritten
as

A =

r∑
i=1

siuiv>i ,

where rank(A) = r. This leads to an important conclusion about approximation. If we
define a new matrix with

Ak =

k∑
i=1

siuiv>i ,

it holds that Ak is the best rank-k approximation for A (Eckart-Young-Mirsky theorem, [8]),
and its residual is Rk = A − Ak =

∑r
i=k+1 siuiv>i . In other words,

argmin
Ã:rank(Ã)=k

RSSA(Ã) = Ak, (2.6)

CHAPTER 2. DICTIONARY LEARNING 30

where

RSSA(Ã) :=
∥∥∥A − Ã

∥∥∥2

F
=

∑
i, j

|ai j − ãi j|
2

is the ’residual sum of squares’ error function, or the sum of the squares of elements of the
residual of an approximation.

SVD Pseudoinverse
One of the many applications of the SVD is to generate a Moore-Penrose pseudoinverse,
which is to say a matrix A+ with the following properties:

• AA+A = A

• A+AA+ = A+

• (AA+)∗ = AA+

• (A+A)∗ = A+A

A+ exists for any matrix A. SVD is used to generate this matrix by first decomposing
A = UΣV∗, then defining Σ+ by replacing every non-zero diagonal entry in Σ with its
reciprocal and transposing the resulting matrix. Then we can obtain

A+ = VΣ+U∗.

SVD Compression
As mentioned in the previous section, singular value decomposition can be used to generate
limited-rank approximation of matrices. This is directly applicable to image compression.
Instead of saving the full image matrix, M, we can save the first r columns from U and
V and the first r values from Σ and recover a faithful reconstruction of the original image.
In fact, a very convenient property of SVD is that the importance, or contribution, of each
column in U or V corresponds to the magnitude of the corresponding singular value in S .
Thus, the smaller the index i, the more important is the rank-1 matrix uisiv>i . Observe the
natural image example shown in fig. 2.3

In fact, if we take a look at the singular values themselves, we can see that they usually
have fast decay, which is why most of the information energy is conserved in the first few.

Clearly, approximating this image with only the first 50 columns yields a very faithful
reproduction. Since the original dimension is 400 × 300, and we are now only storing one
400 × 50 matrix, one 300 × 50 matrix and a 50 × 1 vector, we are saving as much as 80%
of the storage space, which is a remarkable compression rate.

CHAPTER 2. DICTIONARY LEARNING 31

Figure 2.3: A 300×400 image of a dog approximated with matrices of various ranks

2.3 K-SVD Algorithm
Now we finally arrive to K-SVD - a method to dynamically learn a dictionary for sparse
representations. The idea is essentially similar to K-Means - it is an iterative process, with
each iteration consisting of two steps. In one step, we optimize the representation matrix
A, and in the other step we optimize the dictionary B itself, one column (atom) at a time.
We will describe the dictionary optimization below.

Let us assume we have some dictionary B and representation A that minimizes (1.4).
We want to obtain a better dictionary, B̃, and the corresponding representation Ã s.t.

‖X − B̃Ã‖ < ‖X − BA‖

As stated, we will be optimizing one dictionary atom - column - at a time. Let us select
a column bk, and fix all other columns. The error function is now

CHAPTER 2. DICTIONARY LEARNING 32

Figure 2.4: The singular values from the decomposition of the pixel matrix of the original
image in fig. 2.3

‖X − BA‖2F =

∥∥∥∥∥∥∥∥∥X −
∑
i=1
i,k

bia>i − bka>k

∥∥∥∥∥∥∥∥∥
2

F

.

In the above expression, the terms in the sum are outer products of vectors, meaning it
is a sum of rank-1 matrices. The terms a>i represent rows of A. We can combine the first
two terms, which are fixed, into a single matrix Ek:∥∥∥Ek − bka>k

∥∥∥2

F
. (2.7)

bka>k is, again, a rank-1 matrix, and so task is to find the best rank-1 approximation for Ek,
which is exactly what SVD accomplishes (recall eq. (2.6)). However, there is one more
preparatory step to take. If we were to utilize SVD right now to optimize the expression
(2.7), we would most likely end up with a full vector for a>k , but that vector has to remain
sparse. As such, we will extract a submatrix from Ek by taking all the rows which actually
use the atom bk in their representation. In other words, we will construct a set of indices,
ωk with

ωk = {i|1 ≤ i ≤ K, aki , 0}.

So we are checking the k-th row of A to see which data vectors xi use the atom bk in their
representation. If aki is non-zero, then the atom is being used to represent xi. Once ωk is
obtained, we define a filter matrix Ωk as a matrix of size N × |ωk| with ones on the (ωk(i), i)
entries and zeros elsewhere. Now we can multiply vectors and matrices with Ωk in order to
extract the rows or columns according to ωk. So we can define ER

k := EkΩk and aR
k = x>k Ωk,

and we get

CHAPTER 2. DICTIONARY LEARNING 33

∥∥∥EkΩk − bka>k Ωk

∥∥∥2

F
=

∥∥∥ER
k − bkaR

k

∥∥∥2

F
.

Again, bkxR
k is a rank-1 matrix which we can freely optimize (we simultaneously optimize

both bk and aR
k), so now we can employ SVD. We decompose ER

k = UΣV>, and recall that
u1s1v>1 is the best rank-1 approximation for ER

k (u1 and v>1 being the left and right singular
vectors corresponding to the highest singular value s1 of ER

k), and so all we have to do
is define the optimized b̃k as u1 and aR

k as s1v>1 . This way we even keep the dictionary
atom normalized. We repeat the process for each atom in turn, and that completes a single
iteration. The final algorithm is as follows:

Algorithm 3: K-SVD Algorithm

Initialize dictionary B
for i = 1 : l do

// sparse coding

for p = 1 : P do
ap ←− argmina:‖a‖0≤l

∥∥∥xp − Ba
∥∥∥ ; // e.g. via matching pursuit

end

// optimize dictionary

for k = 1 : K do
ωk ←− {i|1 ≤ i ≤ K, aki , 0}
define Ωk as specified earlier in the chapter
Ek = X − BA + bka>k ; // outer product

ER
k = EkΩk

compute SVD: ER
k = UΣV>

bkΩk ←− u1

akΩk ←− s1v>1
end

end

1 import numpy as np
2
3 def learn_dictionary(B, A, X):
4 """Optimizes the dictionary B to better minimize the

5 expression ||X-BA||

6
7 Arguments:

8 B: (n x k) np.array - dictionary

9 A: (k x p) np.array - coefficient matrix

10 X: (n x p) np.array - signal matrix (each column is a signal)

11
12 Returns:

CHAPTER 2. DICTIONARY LEARNING 34

13 None

14 """

15 K = B.shape[1]

16
17 for k in range(K):

18 # filter out signals which do not

19 # use the given dictionary atom

20 filter = (A[k, :] != 0)

21 if np.sum(filter) == 0: continue

22
23 A_k = A[:,filter]

24 X_k = X[:,filter]

25 E_k = (X_k - B@A_k + np.outer(B[:,k], A_k[k,:]))

26
27 # SVD

28 u, d, v = np.linalg.svd(E_k)

29 B[:,k] = u[:,0]

30 A[k,filter] = d[0]*v[0,:]

1 def k_svd(X, B, l, iter, stop):
2 """Applies the K-SVD algorithm to optimize arguments B and A

3 to minimize the expression ||X-BA||

4
5 Arguments:

6 X: (n x p) np.array - signal matrix

7 B: (n x k) np.array - initial dictionary

8 l: integer - the sparsity constraint - all columns of

9 the resulting A matrix will be at least l-sparse

10 iter: integer - maximum number of iterations to run

11 stop: float - minimum percentage error gain. If the solution

12 improves less than that in an iteration , the process

13 is considered to have converged Smaller values mean more

14 accurate solutions , but also more iterations.

15 """

16
17 N, P = X.shape

18 K = B.shape[1]

19 A = np.zeros((K, P))

20 Xnorm = np.linalg.norm(X)

21
22 # obtain initial coefficient matrix

23 for p in range(P):

24 c = matching_pursuit(B, X[:,p], l)

25 A[:,p] = c

26 progress = [np.linalg.norm(X-B@A)/Xnorm]

27
28 for i in range(iter):

29 # optimize dictionary

CHAPTER 2. DICTIONARY LEARNING 35

30 learn_dictionary(B, A, X)

31
32 # optimize coefficient matrix

33 for p in range(P):

34 c = matching_pursuit(B, X[:,p], l)

35 A[:,p] = c

36 err = np.linalg.norm(X-B@A)/Xnorm

37 progress.append(err)

38
39 # stopping condition

40 impr = 1-(progress[-1]/progress[-2])

41 if impr < stop: break

42 return B, A, progress

The dictionary can be initialized in a number of ways, for example by simply including
a random subset of K of the training vectors. Note that assignments such as bkΩk ←− u1

signify that we are only updating those rows of bk with indices in ωk.

Testing on Synthetic Data
The algorithm was first tested using some synthetic data. The data was generated by first
creating a ’real’ N × K dictionary, B0, and populating its columns with vector representa-
tions of various cosine waves:

vkn = cos
(
nhk
2

)
, n = 1, . . . ,N; k = 1, . . . ,K

bk =
vk,:∥∥∥vk,:

∥∥∥ , k = 1, . . . ,K

B = [b1, . . . , bK] .

Then we generated a K×P sparse coefficient matrix A0, so we could obtain the data matrix
X = BA. This way, our problem has a ’true’ l-sparse solution - the matrices B0 and A0, and
we can compare the derived solutions - B and A - to it. In our case, we used

N = 20; K = 50; P = 1000; L = 5.

Then, we commence K-SVD iterations by first initializing B to be the first k signal
vectors. During operation, we measure the accuracy of our model with a simple normalized
loss function:

EX(B, A) =
‖X − BA‖F
‖X‖F

.

CHAPTER 2. DICTIONARY LEARNING 36

Figure 2.5: Some of the dictionary atoms used to generate synthetic data

Figure 2.6: Left: an example of a synthetically generated signal vector. Right: the compo-
nent dictionary atoms that, when summed, produce the signal on the left.

Our implementation of K-SVD flattens out after 21 iterations with EX = 0.069 after
decreasing exponentially, as illustrated in fig. 2.7.

2.4 Stochastic Gradient Descent
SGD is another way to learn a dictionary. We can begin by regarding our problem as a
simple optimization problem, with a fixed representation matrix A:

min
B
‖X − BA‖ : ‖bi‖ = 1,∀i

If normalized dictionary atoms were not a constraint, this would technically be solvable
by a simple gradient descent iteration over all the variables of B. With the constraint, how-
ever, we are forced to use the slightly modified projected gradient descent, where after each
step, we normalize all the atoms in order to project back on to the allowed solution space

CHAPTER 2. DICTIONARY LEARNING 37

Figure 2.7: The error EX occurring in each iteration of K-SVD applied to synthetic data

Figure 2.8: A synthetic signal vector (blue, solid) approximated by a 5-sparse coefficient
vector using a 20 × 50 dictionary (the approximation is orange and dashed)

(the set of all dictionaries with unit columns). To formalize, we design a cost function, cA,
then use its derivatives to iterate our solution:

cA(B) = ‖X − BA‖
Bk+1 = Bk − δ∇cA(Bk),

where δ is usually some predetermined step size.
Finally, because we are dealing with a potentially vast number of training examples

and dictionary variables, the standard gradient descent is simply too cumbersome memory-
demanding to execute. And so, we use the Stochastic Gradient Descent (SGD) instead. In
simple terms, SGD can be thought of as such: instead of considering all training examples

CHAPTER 2. DICTIONARY LEARNING 38

with each step of our optimization, we instead optimize for one training example at a time.
To achieve this, we must simply re-design out cost function at each step, to only take into
account the current training example:

cA,i(B) = ‖xi − Bai‖

Bk+1 = Bk − δ∇cA,p(k)(Bk),

where p : N → {1, . . . ,N} is some endless randomization of the training data. We can vi-
sualize SGD this way: each example-specific cost function represents a different mountain
we are trying to climb, with a slightly different peak. Each step we take takes us towards a
different peak. We expect the overarching cost function, cA, to have its peak somewhere in
the middle of all of them, or perhaps at their mean. And so we can expect to approach it,
while approaching each of the other ones in turn.

The SGD algorithm described above only optimizes the dictionary B for some fixed
representation matrix A. However, we can take inspiration from the K-SVD and K-means
algorithm, and optimize each of them in turn, in each iteration. We optimize A for a
fixed B, then optimize B for a fixed A, and repeat. We could even use SGD to do both
simultaneously, optimizing all the variables in B and A, and projecting onto the set of
all unit-column dictionaries with each iteration, however this would lead to either non-
sparse representation matrices, or we would have to include a sparsity constraint in our
cost functions.

Algorithm 4: SGD Algorithm

Initialize dictionary B
for i = 1 : l do
// define cost function

define ci(B, A) = ‖xp(i) − Bap(i)‖ + λ‖ap(i)‖1, e.g. via finite differences
obtain Di = ∇B,Aci(Bi, Ai)
// optimize dictionary and representation

[Bi+1; Ai+1] = [Bi, Ai] − δDi

// normalize dictionary atoms

for k = 1 : K do
Bk

i+1 =
Bk

i+1
‖Bk

i+1‖

end
end
The optimization step is meant to signify that we are interpreting [Bi, Ai] as a single,

flattened vector. We are calculating the derivative of the cost function with respect to all
variables in B and A simultaneously, and optimizing them both at the same time. λ is some
arbitrarily chosen sparsity constraint.

CHAPTER 2. DICTIONARY LEARNING 39

2.5 Principal Component Analysis
Principal Component Analysis (PCA) is a method that lets us rewrite our data using a
different basis such that each consecutive basis axis introduces as much variance as possible
to the data.

Definition 2.5.1. Given a set of n-dimensional data vectors X = {x1, x2, . . . , xM}, we define
variance as

V(X) =
∑(

X − X̄
)2
,

where X̄ = 1
M

∑
X is the mean of the data.

Loosely speaking, variance is a measure of how spread out the data is. If we take only
the i-th component of each vector, we can measure how spread out the data is along the
i-th axis. As we can see in fig. 2.9, we can maximize the variance along a single axis by
rewriting the data using PC1 and PC2 as our axes.

The most common application of PCA is dimensionality reduction. Once we have
obtained the principal components, we can simply elect only to use the first k axes to
represent the data. In the case of fig. 2.9, we would keep most of the information available
by projecting the data onto PC1.

In order to compute the principal components, we first form a covariance matrix C:

C =
1

n − 1

(
X − X̃

)∗ (
X − X̃

)
,

then computing the eigendecomposition for it:

CP = PD,

where P =
[
p1, . . . , pn

]
is a matrix of right eigenvectors, and D is a diagonal matrix of

corresponding eigenvalues. P and D should be sorted according to the magnitudes of the
eigenvalues, starting with the highest. Each eigenvector represents one principal compo-
nent, and they are now sorted in a decreasing order of significance - meaning that truncating
all but the first k components will keep as much variance (or energy) as is possible in k di-
mensions. In other words, we may define the transformation matrices Pk =

[
p1, . . . pk

]
and

then write

Y = P>X
Yk = P>k X.

It can be shown that Yk are the representations of X in k dimensions with the highest possi-
ble variance and, thus, will retain the most information:

V
(
P>k X

)
≥ V

(
P̃>k X

)
,

for all orthonormal n × k matrices P̃k.

CHAPTER 2. DICTIONARY LEARNING 40

Figure 2.9: PCA applied to a 2-dimensional data set. PC1 and PC2 are the new axes - the
data is highly spread out (has high variance) along PC1. We can rely on information from
PC1 alone in order to classify the data and predict whether it belongs to the orange or the
blue category.

Chapter 3

Tensor-based methods

Tensors are useful tools in data processing, because data so often appears in the shape of
multidimensional arrays. For example, RGB images are essentially a m × n × 3 tensors
(see fig. 3.1). One way to approach this problem is to simply unravel this tensor into a 2D
matrix, or even a 1D vector, as we have done to satisfy the input format of all algorithms
discussed so far. However, keeping the original structure of the input data can sometimes
increase precision, or decrease computation time by simplifying calculations. First, we
will go over some basics of tensor arithmetic.

3.1 Overview of tensor arithmetic
Tensors are n-order data structures, in the sense that scalars are 0-dimensional, vectors are
1-order and matrices are 2-order. All three of these can be thought of as low-order tensors,
in the same way that a column vector may be thought of as an n × 1 matrix.

Mode-r fibers of a tensor A = [aα1,...,αR] ∈ RM1×...×MR are Mr-dimensional vectors ob-
tained by fixing every index but αr.

The mode-r unfolding of a tensor is a transformation that converts an R-dimensional
tensor A ∈ RM1×...×MR into a matrix A(r) ∈ R

Mr×(M1 M2...Mr−1 Mr+1...MR) where the r-th index is
used as a row index, and all other indices are aligned along the columns in reverse cyclical
ordering. The r-mode folding denotes the inverse of that transformation and is denoted by
[A]−1

r , so that [
[A](r)

](−1)

(r)
= A.

The r-mode product between a tensorA and a matrix U ∈ RNr×Mr is defined as

A×r U =
[
U [A](r)

](−1)

(r)
∈ RM1×...×Nr×...×MR ,

41

CHAPTER 3. TENSOR-BASED METHODS 42

Figure 3.1: An RGB image decomposed into its three color channels

in other words, we would first r-mode unfold the tensor, then perform regular matrix mul-
tiplication, then r-fold it back into a tensor. The r-th dimension is changed to match the
first dimension of U.

The Kronecker product between matrices A ∈ RI×J and B ∈ RK×L is a matrix of size
(I · K) × (J · L) defined by:

A ⊗ B =

a11B a12B · · · a1J B
a21B a22B · · · a2J B
...

...
. . .

...
aI1B aI2B · · · aIJ B

 .
Thus, the Kronecker product of two vectors is just their outer product - a rank-1 matrix.

3.2 Generalized Tensor Compressive Sensing
In [13], Schonfield and Friedland construct a tensor-based framework for compressive
sensing. The idea is based on something called the ’CANDECOMP/PARAFAC tensor
decomposition’ (a.k.a. tensor rank decomposition, or TRD), which is itself a generaliza-

CHAPTER 3. TENSOR-BASED METHODS 43

tion of the SVD decomposition discussed in sec. 2.2. TRD of a tensor A ∈ RI1×···×IM has
the following form:

A =

r∑
i=1

λra1,i ⊗ a2,i ⊗ · · · ⊗ aM,i,

where M is the order of the tensor and am,i ∈ R
Im are vectors. In matrix rank terms, A can

be said to have rank minm Im. And if M = 2, TRD is just SVD.
Two more results are needed in order to explain generalized tensor compressive sensing

(GTCS):

Theorem 3.2.1. Let X = [xi j] ∈ RN1×N2 be S -sparse. Let Ui ∈ R
mi×Ni and assume Ui has

NS PS property for i = 1, 2. Define

Y = [ypq] = U1XU>2 ∈ R
m1×m2 .

Then X can be recovered uniquely using the following procedure. Let y1, . . . , ym2 ∈ R
m1 be

the columns of Y. Let z∗i ∈ R
N1 be a solution of

z∗i = min {‖zi‖1 ,U1zi = yi} , i = 1, . . . ,m2. (3.1)

Then each z∗i is unique and S -sparse. Let Z ∈ RN1×m2 be the matrix with columns z∗1, . . . z
∗
m2

.
Let w>1 , . . . ,w

>
N1

be the rows of Z. Then the j-th row of X is the solution u∗j ∈ R
N2 of

u∗j = min
{∥∥∥u j

∥∥∥
1
,U2u j = w j

}
, j = 1, . . . ,N1. (3.2)

Proof. Let Z = XU>2 ∈ R
N1×m2 . Assume that z∗1, . . . , z

∗
m2

are the columns of Z. Note that z∗i
is a linear combination of the N2 columns of X, given by the ith row of U2. Since X is S -
sparse, z∗i has at most s nonzero entries. Note that Y = U1Z, it follows that yi = U1z∗i . Since
U1 has NS PS , we deduce the equality (3.1). Observe next that Z> = U2X>. Hence the
column w j of Z> is w j = U2u∗j. Since X is S -sparse, each u∗j is S -sparse. The assumption
that U2 has NS PS property implies (3.2). �

Theorem 3.2.2. Let X = [xi1, . . . , xid] ∈ RN1×Nd be S -sparse. Let Ui ∈ R
mi×Ni and assume

that Ui has NS PS for i = 1, . . . , d. Define

Y = [y j1, . . . , y jd] = X ×1 U1 × · · · ×d Ud ∈ R
m1×···×md .

Then X can be recovered uniquely fromY using the following recursive procedure. Unfold
Y in mode 1,

Y(1) :=
[
Y

]
(1) = U1 [X](1)

[
⊗2

k=dUk

]>
∈ Rm1×(m2·...·md).

CHAPTER 3. TENSOR-BASED METHODS 44

Let y1, . . . , ym2·...·md be the columns of Y(1). Then yi = U1zi where each zi ∈ R
N1 is S -

sparse. Recover each zi using sparse coding (discussed at length in sec. 1.5). Let Z =

X ×2 U2 × · · · ×d Ud ∈ R
N1×m2×···×md with its mode-1 fibers being z1, . . . , zm2·...·md . Unfold Z

in mode 2,
Z(2) := [Z](2) = U2 [X](2)

[
⊗3

k=dUk ⊗ I
]>
∈ Rm2×(N1·m3·...·md).

Let w1, . . . ,wN1·m3·...·md be the columns of Z(2). Then w j = U2v j where each v j ∈ R
N2 is

S -sparse. Recover each v j using sparse coding. Continue the above procedure for mode
3, . . . , d and X can be reconstructed in series.

In their paper, Schonfield and Friedland compare their method to another tensor-based
compressed sensing approach called ’Kronecker compressive sensing’, and surpass it on
both accuracy and speed.

3.3 Tensor-Based Dictionary Learning
Problem (1.1) - transforming a set of data into a domain where it is sparsely represented -
can be formulated in terms of tensors instead of matrices. This is precisely the topic of [19]
(Quan, Huang, Ji). They look at dynamic textures - series of images that represent a short
video clip or animation, so each texture has a temporal component - and attempt to develop
a method analog to K-SVD (discussed in sec. 2.3). For a data tensor X ∈ RMH×MV×MT×N ,
the expression to be optimized is given as

min ‖X − C ×1 DH ×2 DV ×3 DT ‖
2
F , (3.3)

subject to the condition that DH ∈ O(MH,R), DV ∈ O(MV ,R), DT ∈ O(MT ,R), where

O(M,R) =
{
D ∈ RM×M : D>D = DD> = I

}
is the orthogonal group, C ∈ RMh×Mv×MT×N , and finally

∥∥∥[C](4)(i)

∥∥∥
0
≤ S for all possible i. In

this expression, C is the sparse coding tensor, and there is a separate dictionary for each
mode of the data tensor - the two spatial dimensions, as well as the temporal dimension.
The algorithm to optimize (3.3) is analogous to K-SVD. In fact, if MV = MT = 1, then they
are the same algorithm, so this is a generalization.

Learning algorithm
First, all three dictionaries are initialized to some starting values. Then, sparse coding is
employed in order to solve

min
C
‖X − C ×1 DH ×2 DV ×3 DT ‖

2
F (3.4)

CHAPTER 3. TENSOR-BASED METHODS 45

for fixed DH,DV ,DT . Afterwards, the dictionaries are updated by optimizing the following
set of expressions individually:

DT := argminD∈O(MT ,R) ‖X − C ×1 DH ×2 DV ×3 D‖2F
DV := argminD∈O(MV ,R) ‖X − C ×1 DH ×2 D ×3 DT ‖

2
F

DH := argminD∈O(MH ,R) ‖X − C ×1 D ×2 DV ×3 DT ‖
2
F

. (3.5)

These two steps are repeated (alternated) some pre-determined K number of iterations.
[19] additionally names and provides two propositions that validate the steps listed above
- they show that explicit solutions for (3.4) and (3.5) exist, and that SVD may be used to
obtain them. We will also outline them here:

Proposition 3.3.1. Given X ∈ RMH×MV×MT×N , DH ∈ S MH ,DV ∈ S MV and DT ∈ S MT , the
minimization problem

argmin
C∈RMH×MV×MT ×N

‖X − C ×1 DH ×2 DV ×3 DT ‖
2
F

subject to
∥∥∥[C](4)(i)

∥∥∥
0
≤ T for all possible i, has an explicit solution given by

C∗ =
[
TS

([
X ×3 D>T ×2 D>V ×1 D>H

]
(4)

)]−1

(4)
,

where TS (·) denotes the operator that keeps the largest S elements of each row of the matrix
in terms of magnitudes while setting the rest to zero.

Proposition 3.3.2. Let {Dr : Dr ∈ O(Mr,R)}Rr=1 be a set of orthogonal matrices. Given
X,C ∈ RM1×M2×···×MR×N , the minimization problem

argmin
A∈S Mr

‖X − C ×1 D1 · · · ×r−1 Dr−1 ×r A ×r+1 · · · ×R DR‖
2
F

has an explicit solution given by A = PQ>, where P and Q denote the orthogonal matrices
defined by the following SVD:[

X ×R D>R ×R−1 DR−1 · · · ×r+1 D>r+1
]
(r) [C ×1 D1 · · · ×r−1 Dr−1]>(r) = PΣQ>

3.4 Multilinear Principal Component Analysis
Multilinear Principal Component Analysis (MPCA) is a generalization of the concepts dis-
cussed in section 2.5 to the domain of tensors. The core idea remains the same: find some
new set of orthogonal bases (axes) to represent the data in, such that they consecutively

CHAPTER 3. TENSOR-BASED METHODS 46

maximize its variance. Then, the may represent the data using only the first few princi-
pal component axes, trusting that we will still keep most of the information. Let us state
the problem explicitly. Let X = {X1, . . . ,XM}, be a dataset of tensor objects with match-
ing dimensions: ∀i,Xi ∈ R

I1×···×IN . Our objective is to find a multilinear transformation{
Ũ (n) ∈ RIn×Pn , n = 1, . . . ,N

}
that maps the original tensor space RI1 ⊗ · · ·⊗RIN into a tensor

subspace RP1 ⊗· · ·⊗RPN (where Pn < In, for n = 1, . . . ,N: Ym = Xm×1 Ũ (1)> ×2 Ũ (2)> · · ·×N

Ũ (N)> ,m = 1, . . . ,M such that
{
Ym ∈ R

P1 ⊗ · · · ⊗ RPN ,m = 1, . . . ,M
}

captures most of the
variance observed in the original tensor objects, assuming that variance are measured by
the total tensor scatter ΨY, where

ΨY =

M∑
m=1

∥∥∥Ym − Ȳ
∥∥∥2

F
,

Ȳ =
1
M

M∑
m=1

Ym

or, in other words, we must optimize the following expression:{
Ũ (n), n = 1, . . . ,N

}
= argmax

Ũ(1),...,Ũ(N)
ΨY. (3.6)

One solution to the problem is obtained by optimizing the projection matrices Ũn one by
one, similar to the alternating least squares method. Updating all N matrices constitutes one
cycle or iteration, and we repeat the process for some predetermined number of iterations
K, or until we see no more improvement in the representation (which we can determine by
keeping track of ΨY throughout the process. The method depends on the following critical
result:

Theorem 3.4.1. Let
{
Ũ (n), n = 1 . . . ,N

}
be the solution to eq. (3.6). Then, for given pro-

jection matrices Ũ (1), . . . , Ũ (n−1), Ũ (n+1), . . . , Ũ (N), the matrix Ũ (n) consists of the Pn eigen-
vectors corresponding to the largest Pn eigenvalues of the matrix

Φ(n) =

M∑
m=1

(Xm(n) − X̄(n)) · ŨΦ(n) · Ũ>
Φ(n) · (Xm(n) − X̄(n))>, (3.7)

where
ŨΦ(n) =

(
Ũ (n+1) ⊗ Ũ (n+2) ⊗ · · · ⊗ Ũ (N) ⊗ Ũ (1) ⊗ Ũ (2) ⊗ · · · ⊗ Ũ (n−1)

)
.

CHAPTER 3. TENSOR-BASED METHODS 47

See [14] for proof and more details. With that in mind, we may now construct the
MPCA algorithm:

Algorithm 5: MPCA

// center the data

X̄ = 1
M

∑M
m=1Xm

X̄m = Xm − X̄

// initialize

set Ũ (n) to consist of the eigenvectors corresponding to the most significant Pn

eigenvalues of Φ(n)∗ =
∑M

m=1 X̄m(n) · X̄>m(n), for n = 1, . . . ,N
// optimize

calculate
{
Ȳm = X̄m ×1 Ũ (1)> ×2 Ũ (2)> · · · ×N Ũ (N)> ,m = 1, . . . ,M

}
calculate ΨȲ0

=
∑M

m=1

∥∥∥Ȳm

∥∥∥2

F
for k = 1 : K do
// update projection matrices

for n = 1 : N do
set Ũ (n) to consist of the Pn eigenvectors corresponding to the largest Pn

eigenvalues of the matrix Φ(n) as defined in eq. (3.7)
end
recalculate

{
Ȳm,m = 1, . . . ,M

}
and ΨYk

if
∣∣∣ΨYk − ΨYk−1

∣∣∣ < ε then
break

end
end
// output

the feature tensor after projection is obtained as{
Ym = Xm ×1 Ũ (1)> ×2 Ũ (2)> · · · ×N Ũ (N)> ,m = 1, . . . ,M

}
1 import numpy as np
2 import tensorly as tl
3
4 def mpca(data, target_dims , max_iter=50):
5 """Computes a multilinear principal component analysis

6 for a set of tensor-shaped data points.

7
8 Arguments:

9 data: a list of numpy arrays. All should have the same

10 shape (D_1, D_2,..., D_n)

11 target_dims: the desired projection dimensions

12 (P_1, P_2,..., P_n). Each P_i should be smaller than the

13 corresponding D_i.

CHAPTER 3. TENSOR-BASED METHODS 48

14 max_iter: maximum number of iterations after which the process

15 stops. The process will stop earlier if the projection variance

stops improving.

16 """

17 N = len(data[0].shape) # data tensor order

18 M = len(data) # number of data tensors

19
20 # Center data

21 X_mean = sum(data)/M

22
23 # Initialize projection matrices U_n

24 U = []

25 for n in range(N):

26 # Define Phi_n

27 Phi_n=sum([tl.unfold(X-X_mean, n)@(tl.unfold(X, n).transpose())

28 for X in data])

29
30 # Get eigenvectors and sort them

31 eig_val, eig_vec = np.linalg.eig(Phi_n)

32 p = np.argsort(np.abs(eig_val))[::-1]

33 eig_vec = eig_vec[p]

34
35 # Define U_n as first P_n eigenvectors

36 U_n = eig_vec[:, :target_dims[n]]

37 U.append(U_n)

38
39 # Calculate projection Y

40 Y = []

41 for m in pb(range(M)):

42 Y_m = r_mode_product(data[m], U[0].T, 0)

43 for n in range(1, N):

44 Y_m = r_mode_product(Y_m, U[n].T, n)

45 Y.append(Y_m)

46
47 # Calculate Psi

48 Psi = []

49 Psi.append(get_variance(Y))

50
51 # Main optimization loop:

52 for k in range(max_iter):

53 for n in range(N):

54
55 # Obtain projection matrix U_phi_n

56 U_phi_n = np.ones((1, 1))

57 for n2 in range(n+1, N):

58 U_phi_n = np.kron(U_phi_n, U[n2])

59 for n2 in range(0, n):

CHAPTER 3. TENSOR-BASED METHODS 49

60 U_phi_n = np.kron(U_phi_n, U[n2])

61
62 # Obtain Phi_n

63 Phi_n = sum([tl.unfold(X-X_mean, n)@U_phi_n@U_phi_n.T @

64 tl.unfold(X-X_mean, n).T for X in data])

65
66 # Update U_n:

67 # 1. solve eigenproblem for Phi_n

68 eig_val, eig_vec = np.linalg.eig(Phi_n)

69 p = np.argsort(np.abs(eig_val))[::-1]

70 eig_vec = eig_vec[:, p]

71
72 # 2. define U_n as first P_n eigenvectors

73 U[n] = eig_vec[:, :target_dims[n]]

74
75 # Recalculate projection Y

76 Y = []

77 for m in range(M):

78 Y_m = r_mode_product(data[m], U[0].T, 0)

79 for n in range(1, N):

80 Y_m = r_mode_product(Y_m, U[n].T, n)

81 Y.append(Y_m)

82
83 # Recalculate Psi

84 Psi.append(get_variance(Y))

85 # If there is no longer any variance gain, return

86 if Psi[-1] < Psi[-2]:

87 break

88
89 return U, Psi

Testing on synthetic data
In order to test the MPCA algorithm, we have applied it to the same synthetic data as that
used in [14]. First, a tensor Bm ∈ R

I1×I2×I3 is randomly generated with each entry being
drawn from a normal distribution with mean 0 and variance 1. Then, using some random
orthogonal matrices Cn ∈ R

In×In , n = 1, 2, 3, the data tensorAm is given as

Am = Bm ×1 C1 ×2 C2 ×3 C3 +Dm,m = 1, . . . ,M,

for M data points, whereDm is a noise tensor with entries drawn from a normal distribution
with mean 0 and variance 0.01.

In regular, vector-based, PCA, dimensionality reduction comes down to choosing the
first p principal components, with the value for p directly corresponding to the amount of
variance the new model will keep. However, in MPCA, we have N diffferent values to

CHAPTER 3. TENSOR-BASED METHODS 50

Figure 3.2: MPCA eigenvalue analysis on synthetic data. Left: a logarithmic plot of the
magnitudes of eigenvalues of Φ(n) as defined in (3.7). Right: a cumulative graph of their
relative values (represented as fraction of the sum total)

choose - not just one. Looking at fig. 3.2, we can see that the first p eigenvalues in each
mode are roughly the same. As such, we can intuit that a good strategy for choosing the
truncated dimensions P1, . . . , PN is to define an integer, p, and then set each Pn to be equal
to min(In, p).

CHAPTER 3. TENSOR-BASED METHODS 51

Figure 3.3: Variance retention relative to dimensionality. The y-axis represents the relative
variance of a projected data set (ΨY

ΨX
). The x-axis displays the sum of the dimensions used

in the projection (
∑

n Pn). The two colored lines represent different strategies of picking
the number of dimensions in each mode. ’uniform’ attempts to pick the same number of
dimensions in each mode (for example, (9,9,9), (10,10,10), (11,11,10), etc.), while ’linear’
tries to pick the same fraction of the maximum possible dimensions in each mode (for
example (3,2,1), (6,4,2), (9, 6, 3) etc. ’reference’ is just a straight line, representing what
the variance would look like if we just randomly assigned the dimensions Pn.

Sažetak

Iako ovo nije cjelokupan pregled, proučili smo nekolicinu efektivnih metoda za rijetku
reprezentaciju podataka, tj. rješavanje mina ‖x − Ba‖ sa uvjetom rijetkosti na a te pove-
zane probleme. Počeli smo u poglavlju 1 objašnjavajući metode koje se najčešće koriste
u modernom procesiranju signala, kao što su DCT i DFT, te smo upoznali neke općenite
metode za rijetke reprezentacije - matching pursuit i basis pursuit. Spomenuli smo neke
od problema koji su sadržani u ovom području, pogotovo činjenicu da je suštinski problem
NP-težak, te kako se suočiti sa tim problemima.

U poglavlju 2, upoznali smo se sa nekolicinom metoda za optimizaciju ne samo ri-
jetke reprezentacije, nego i rječnika B. Diskutirajući k-means i SVD, izgradili smo znanje
potrebno za razumjevanje K-SVD algoritma, te smo ga testirali na sintetičkim podacima.
Takoder smo ukratko pregledali još jedan pristup sa širokom primjenom - ’principal com-
ponent analysis’, nužan za razumjevanje MPCA algoritma kojeg spominjemo kasnije.

U zadnjem poglavlju, poglavlju 3, ulazimo u domenu tenzora. Ovo je prirodan korak
budući da se puno stvarnih podataka, pogotovo vizualnih, može puno prirodnije prikazati u
obliku tenzora višeg reda. Ponovili smo malo osnovne aritmetike tenzora, te upoznali dvije
metode - jedna je metoda za učenje rječnika napravljena za analizu dinamičkih tekstura,
a druga je multilinearna PCA, generalizacija PCA algoritma iz prethodnog poglavlja u
prostor tenzora.

Primjene rijetkih reprezentacija su široke, i nove metode se razvijaju vrlo brzo kako bi
se suočili sa modernim problemom sve veće količine podataka koje prikupljamo i šaljemo
preko telekomunikacijskih mreža, koje treba analizirati i komprimirati.

Summary

While this is by no means an exhaustive review, we have overviewed a number of effective
methods for representing data sparsely, which is to say, solving mina ‖x − Ba‖with sparsity
constraints on a and related problems. We started in chapter 1 by going over methods most
widely used in modern signal processing, such as the DCT and DFT, and then introduced
some general-purpose methods for sparse coding - namely matching pursuit and basis pur-
suit. We touched on some of the problems inherent in sparse coding (the fact that the base
problem is NP-hard), and how to circumvent those issues.

In chapter 2, we introduced a number of methods for not only optimizing the sparse
representation, but the dictionary B as well, and sometimes simultaneously. By discussing
k-means clustering and singular-value decompositions, we built the knowledge base neces-
sary to understand the K-SVD algorithm, and we tested it on some synthetic data. We also
briefly overviewed another approach with broad applications - the principal component
analysis, necessary to understand MPCA discussed later on.

In the last chapter, chapter 3, we enter the domain of tensors. This is a natural step,
as much real-world data, especially visual data, is more naturally represented as tensors of
higher orders instead of vectors or matrices. We went over some basic tensor arithmetic,
and then reviewed two methods. One is a dictionary learning method built to analyze dy-
namic textures, and the other is multilinear principal component analysis - a generalization
of PCA to tensor space.

The applications of sparse coding and dictionary learning are vast, and new methods
are being developed rapidly in order to deal with the modern problem of ever more data
being accumulated, sent over communication channels and needing to be analyzed or com-
pressed.

Circum Vitae

Fran Špigel was born on September 10th, 1993 in Zagreb. He went to Otok elementary
school, then attended the 18th linguistic gymnasium highschool in Zagreb. In 2012, he en-
rolled in the mathematics section of Prirodoslovno-Matematički Fakultet (PMF) in Zagreb,
and in 2017 he enrolled in the applied mathematics graduate course of the same university.

Bibliography

[1] Afonso Bandeira, Edgar Dobriban, Dustin Mixon, and William Sawin. Certifying
the restricted isometry property is hard. Information Theory, IEEE Transactions on,
59:3448–3450, 06 2013.

[2] P. S. Bradley and Usama M. Fayyad. Refining initial points for k-means clustering.
pages 91–99. Morgan kaufmann, 1998.

[3] Steven L. Brunton and J. Nathan Kutz. Data-Driven Science and Engineering: Ma-
chine Learning, Dynamical Systems, and Control. Cambridge University Press, 2019.

[4] E. J. Candes and T. Tao. Decoding by linear programming. IEEE Transactions on
Information Theory, 51(12):4203–4215, 2005.

[5] Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. Atomic decom-
position by basis pursuit. SIAM J. Sci. Comput., 20(1):33–61, December 1998.

[6] Xuemei Chen, Haichao Wang, and Rongrong Wang. A null space property approach
to compressed sensing with frames. 02 2013.

[7] Piotr J. Durka. Matching pursuit. Scholarpedia, 2(11):2288, 2007. revision #140500.

[8] C. Eckart and G. Young. The approximation of one matrix by another of lower rank.
Psychometrika, 1:211–218, 1936.

[9] Fan Yang, Shengqian Wang, and Chengzhi Deng. Compressive sensing of image re-
construction using multi-wavelet transforms. In 2010 IEEE International Conference
on Intelligent Computing and Intelligent Systems, volume 1, pages 702–705, 2010.

[10] John A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering al-
gorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics),
28(1):100–108, 1979.

55

CHAPTER 3. TENSOR-BASED METHODS 56

[11] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y.
Wu. An efficient k-means clustering algorithm: analysis and implementation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(7):881–892, 2002.

[12] Syed Ali Khayam. The discrete cosine transform (dct): Theory and application1.
Course Notes, Department of Electrical & Computer Engineering, 01 2003.

[13] Qun Li, Dan Schonfeld, and Shmuel Friedland. Generalized tensor compressive sens-
ing. pages 1–6, 07 2013.

[14] Haiping Lu, Konstantinos N Plataniotis, and Anastasios N Venetsanopoulos. Mpca:
Multilinear principal component analysis of tensor objects. IEEE transactions on
Neural Networks, 19(1):18–39, 2008.

[15] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar k-means
problem is np-hard, 2009.

[16] M Mozammel, Hoque Chowdhury, and Amina Khatun. Image compression using
discrete wavelet transform. International Journal of Computer Science Issues, 9, 07
2012.

[17] B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on
Computing, 24(2):227–234, 1995.

[18] Vishal M. Patel and Rama Chellappa. Sparse Representations and Compressive Sens-
ing for Imaging and Vision. Springer Publishing Company, Incorporated, 2013.

[19] Y. Quan, Y. Huang, and H. Ji. Dynamic texture recognition via orthogonal tensor
dictionary learning. In 2015 IEEE International Conference on Computer Vision
(ICCV), pages 73–81, 2015.

[20] Hongyuan Zha, Xiaofeng He, Chris Ding, Horst Simon, and Ming Gu. Spectral
relaxation for k-means clustering. Adv. Neural Inf. Process. Syst., 14, 04 2002.

[21] Lingsong Zhang, J. Marron, Haipeng Shen, and Zhengyuan Zhu. Singular value de-
composition and its visualization. Journal of Computational and Graphical Statistics
- J COMPUT GRAPH STAT, 16, 02 2007.

	Contents
	Introduction
	Sparse Representations
	Sparse Recovery
	Discrete Fourier Transform
	Discrete Cosine Transform (DCT)
	Wavelet Transform
	Sparse Coding
	Classification
	Compressed Sensing

	Dictionary Learning
	K-Means Clustering
	Singular Value Decomposition
	K-SVD Algorithm
	Stochastic Gradient Descent
	Principal Component Analysis

	Tensor-based methods
	Overview of tensor arithmetic
	Generalized Tensor Compressive Sensing
	Tensor-Based Dictionary Learning
	Multilinear Principal Component Analysis

	Bibliography

