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Abstract

Keywords : modal logic; metamathematics; formalised interpretability;

interpretability logics; generalised Veltman semantics

In this thesis we will study various properties of formalised relativised interpretability.

In the central part of this thesis we study for di�erent interpretability logics the following

aspects: completeness for modal semantics, decidability and algorithmic complexity.

In particular, we will study two basic types of relational semantics for interpretability

logics. One is the Veltman semantics, which we shall refer to as the regular or ordinary

semantics; the other is called generalised Veltman semantics. In the recent years and

especially during the writing of this thesis, generalised Veltman semantics was shown to be

particularly well-suited as a relational semantics for interpretability logics. In particular,

modal completeness results are easier to obtain in some cases; and decidability can be

proven via �ltration in all known cases. We prove various new and reprove some old

completeness results with respect to the generalised semantics. We use the method of

�ltration to obtain the �nite model property for various logics.

Apart from results concerning semantics in its own right, we also apply methods from

semantics to determine decidability (implied by the �nite model property) and complexity

of provability (and consistency) problems for certain interpretability logics.

From the arithmetical standpoint, we explore three di�erent series of interpretability

principles. For two of them, for which arithmetical and modal soundness was already

known, we give a new proof of arithmetical soundness. The third series results from

our modal considerations. We prove it arithmetically sound and also characterise frame

conditions w.r.t. ordinary Veltman semantics. We also prove results concerning the new

series and generalised Veltman semantics.
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Resum (extended abstract in Catalan)

El tema d'aquesta tesis són les lògiques d'interpretabilitat les quals descriuen el com-

portament del predicat d'interpretabilitat. Per tal de discutir la interpretabilitat entre

teories matemàtiques, permeteu que primer diguem unes paraules sobre interpretacions.

Hi ha diferents nocions d'una interpretació en ús, però una cosa que tenen en comú és que

totes involucren una traducció que preserva l'estructura; aquesta traducció transforma

formules de la teoria interpretada a formules de la teoria interpretadora. Aquest mapa

cal que preservi la demostrabilitat �ns a un cert punt, i.e. siA és un teorem de la teoria

interpretada, llavors la imatge deA ha de ser demostrable en la teoria interpretadora.

Que aquest mapapreservi l'estructura signi�ca que almenys commuta amb les connec-

tives lògiques. Les fórmules quanti�cades poden ser modi�cades lleugerament quan són

interpretades; especí�cament hom pot �tar el domini de (totes) les fórmules quanti�cades

fent servir un predicat �xat anomenat domini especi�cador (i.e. estem interessats en inter-

pretabilitat relativitzada). Això ens permet construir una interpretació de, per exemple,

una teoria de nombres en una teoria de conjunts, on (per la construcció habitual) només

alguns conjunts es fan servir per representar nombres. Podem requerir els axiomes de la

teoria interpretada de ser demostrables en la teoria interpretadora, però també podem re-

querir que això també es compleixi per tots els teoremes de la teoria interpretada (aquesta

diferència és rellevant només quan hom treballa en una metateoria dèbil).

Les lògiques d'interpretabilitat descriuen el comportament d'un tipus especí�c d'in-

terpretabilitat. Per començar, limitem el nostre interès en teories de primer ordre. En

segon lloc, només ens concentrem en interpretabilitat entre extensions �nites d'una teoria

�xada T. En tercer lloc, estem interessats en interpretabilitatformalitzada, i.e, no estu-

diem el problema de siT + A interpreta T + B, sinó el problema de siT pot demostrar

que T + A interpreta T + B. En quart lloc, no estem interessats per quinesA i B te-

nim que T + A interpreta T + B, sinó que estem interessats en aquelles propietats que

són estructurals en el sentit que es compleixen per qualsevol tria deA i B . Optem per

teoremes d'interpretabilitat en aquesta tesi; i.e. per tal queT + A interpreti T + B hem

requerit que la traducció de qualsevolteoremade T + B sigui demostrable enT + A. La

teoria T hauria de ser su�cientment forta; i.e. seqüencial. Si tal teoria és axiomatitzable,

té un predicat IntT (�; �), de�nit d'una manera natural, expressant el fet que el primer

argument del predicat interpreta el segon argument. La lògica d'interpretabilitat deT

és de�nida d'una manera molt semblant a la lògica de demostrabilitat deT, però amb
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Resum

un operador binari: � ; la interpretació corresponent d'aquest operador ésIntT . Així, la

lògica d'interpretabilitat d'una teoria T és el conjunt de totes les fórmules lògiques modals

en el llenguatge de lògiques d'interpretabilitat que són demostrables per qualsevol lectura

aritmètica que es doni a les variables proposicionals i prenent els operadors modals a les

seves aritmetitzacions corresponents. A diferència del que pot ser el cas en lògiques de

demostrabilitat, la lògica d'interpretabilitat de T realment depèn deT.

Per exemple, la lògica d'interpretabilitat de la teoria de conjunts de Gödel-Bernays

(que és la lògica denominadaIL P), i la lògica d'interpretabilitat de l'Aritmètica de Peano

(que és la lògica denominadaIL M), difereixen.

Donada una teoria seqüencialT, hi ha una certa quantitat de contingut, normalment

denominat IL (All), que la lògica d'interpretabilitat de T inevitablement ha de tenir.

Els continguts exactes deIL (All) no són coneguts; de fet, millorar la �ta inferior és la

pregunta que motiva la major part de les investigació en aquest camp. Una simple �ta és

la lògica d'interpretabilitat bàsica, denominadaIL . Aquesta és una extensió de la lògica

de demostrabilitat i conté cinc esquemes d'axioma addicionals que en la literatura són

coneguts comJ1-J5.

Tornant a la qüestió deIL (All), hi ha una manera interessant i sorprenent de millorar

les millors �tes inferiors conegudes, i.e. de trobar nous principis d'interpretabilitat arit-

mèticament vàlids. L'enfocament és estudiar semàntiques relacionals modals (semblant a

Kripke). Nous principis aritmèticament vàlids han sorgit prenent les condicions de marc

de principis ja coneguts, modi�cant-les, i llavors obtenint la fórmula modal que caracterit-

za la condició de marc modi�cada. Això, efectivament, no garanteix la validesa aritmètica

de la fórmula modal obtinguda de tal forma, però noves fórmules aritmèticament vàlides

s'han descobert talment. Un altre enfocament relacionat és intentar establir completesa

d'una certa extensió deIL . Si la demostració de completesa modal falla per a alguna

extensió concreta, estendre l'extensió més enllà, �ns que sigui modalment completa, pot

produir noves fórmules aritmèticament vàlides (aquest intent serà seguit en el capítol �nal

de la tesi).

Hi ha dos tipus de semàntiques modals per lògiques d'interpretabilitat. Una és cone-

guda comsemàntica regular Veltman(o semàntica ordinària Veltman, o nomésVeltman

semanticsquan no hi ha risc d'ambigüitat). L'altra és coneguda comsemàntica generalit-

zada Veltman, introduïda per Verbrugge, que combina una semàntica en l'estil de Kripke

amb una semàntica de veïnat. La semàntica regular Veltman pot ser usada per demostrar

completesa per moltes lògiques d'interpretabilitat. Tanmateix, per lògiques més comple-

xes, la semàntica generalitzada Veltman es poden emprar per donar demostracions de

completesa més simples i fàcils d'entendre. En els darrers anys i especialment durant

la redacció d'aquesta tesi, la semàntica generalitzada Veltman ha sigut provada de ser

particularment ben adequada com a semàntica relacional per lògiques d'interpretabilitat.

En particular, resultats sobre completesa modal són més fàcils d'obtenir en alguns casos;
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Resum

i decidibilitat pot ser demostrada via �ltració en tots els casos coneguts. Demostrem

diversos nous i redemostrem alguns resultats coneguts respecte la semàntica generalit-

zada. En alguns casos, només sabem que una lògica és completa respecte la semàntica

generalitzada Veltman. També hi ha exemples de lògiques completes respecte semàntica

generalitzada Veltman però incompletes respecte semàntica regular Veltman. Tots els

resultats de complexitat (la majoria dels quals són establerts en aquesta tesi) estan ba-

sats en semàntica regular Veltman. Pel que fa a decidibilitat, sembla que la semàntica

generalitzada Veltman és una eina més apropiada, ja que permet un mètode uniforme per

obtenir la propietat de model �nit.

En aquesta tesi estudiarem diverses propietats d'interpretabilitat relativitzada forma-

litzada.

En la part central d'aquesta tesi estudiem per diferents lògiques d'interpretabilitat els

següents aspectes: completesa per semàntiques modal, decidibilitat i complexitat algorís-

mica.

A banda de resultats al voltant de les semàntiques en el seu si, també apliquem mèto-

des de semàntiques per determinar la complexitat de problemes de demostrabilitat (i de

consistència) per certes lògiques d'interpretabilitat.

Des del punt de vista aritmètic, explorem tres sèries diferents de principis d'interpre-

tabilitat. Per dos d'ells, pels quals la solidesa aritmètica i modal ja era coneguda, donem

una nova demostració de solidesa aritmètica. La tercera sèrie resulta de les nostres con-

sideracions modals. Demostrem que és sòlida aritmèticament i que també caracteritza

condicions de marc respecte semàntica regular Veltman. A més, donem una demostració

de completesa per certes lògiques relacionades amb la tercera sèrie (les lògiquesIL WR i

IL W! ).

Permeteu que descrivim l'estructura de la tesi.

En el Capítol 1 donem una introducció informal del tema general de la tesi. En el

Capítol 2 donem una introducció més formal, de�nicions bàsiques i presentem alguns

resultats senzills.

En els dos capítols subseqüents explorem completesa modal. Primer introduïm l'eina

clau: etiquetes asseguradores. Aquí presentem la teoria general d'etiquetes asseguradores,

incloent la noció d'etiquetes asseguradores� -completes. Desenvolupem la teoria usada

posteriorment en la tesi, però també demostrem resultats interessants per si sols (com la

caracterització de� -completesa).

En el Capítol 4 fem servir etiquetes asseguradores per tal d'obtenir diversos resultats de

completes respecte la semàntica generalitzada Veltman. De�nimIL X-estructures perX �

f M; P; M0; P0; Rg i X � f W; W� g i demostrem que la les lògiquesIL X corresponents són

completes respecte la seva classe de marcs característica. En particular obtenim queIL P0

i IL R són completes, els quals són resultats nous. També de�nim elproblema d'iteració

d'etiqueta i introduïm un tipus especial d'estructures,IL WP-estructures, que poden ser
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Resum

usades per solucionar aquest problema en el cas simple de la lògicaIL P. La motivació

d'això és que el problema d'iteració d'etiqueta reapareix en lògiques més complexes com

IL WR, on la solució encara és desconeguda. Sospitem que la mateixa solució pot ser

aplicable �ns i tot en lògiques més complexes, però hi ha altres problemes que encara no

s'han solucionat en aquest cas. Tornem al tema de completesa en el capítol �nal de la tesi

on entre altres resultats donem una demostració condicional de la completesa deIL WR.

En el Capítol 5 apliquem resultats de completesa i obtenim resultats de decidibilitat.

Aquest és una aplicació, i potser la més útil, de la semàntica generalitzada: l'habilitat de

de�nir �ltracions amb bon comportament.

El Capítol 6 tracta la complexitat; demostrem que IL , IL W i IL P són

PSPACE-completes.

En el Capítol 7 treballem amb l'aspecte aritmètic de les lògiques d'interpretabilitat.

Concretament, donem una nova demostració de solidesa per dues sèries de principis re-

centment descobertes.

En el capítol �nal, Capítol 8, introduïm una altra sèrie de principis, demostrem que és

aritmèticament sòlida i la hi donem semàntica ordinària Veltman. Com ja hem mencionat

abans, també donem demostracions condicionals de completesa per lògiques relacionades

amb aquesta sèrie nova.
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Pro²ireni saºetak (extended abstract
in Croatian)

Tema ove disertacije su logike interpretabilnosti, koje opisuju pona²anje predikata

interpretabilnosti. Prvo ¢emo ne²to re¢i o interpretacijama izmežu teorija. Postoji ne-

koliko verzija interpretacija u upotrebi, ali ono ²to je zajedni£ko svima jest da se radi o

preslikavanju koje £uva strukturalna svojstva. To preslikavanje preslikava formule inter-

pretirane teorije u formule interpretiraju¢e teorije. Za ovo se preslikavanje zahtijeva da

u nekoj mjeri o£uva dokazivost, tj. ako jeA aksiom interpretirane teorije, onda slika

formule A mora biti dokaziva u interpretiraju¢oj teoriji. Zahtjev da preslikavanje £uva

strukturalna svojstva zna£i da komutira s propozicionalnim veznicima. Za kvanti�cirane

se formule dopu²ta malo odstupanje prilikom interpretacije; konkretno, mogu¢e je ogra-

ni£iti domenu (svih) kvanti�ciranih formula koriste¢i unaprijed odrežen predikat kojeg

zovemospeci�kator domene(tj. zanima nas relativizirana interpretabilnost). Ovo nam

omogu¢uje izgradnju, primjerice, teorije brojeva u teoriji skupova, gdje (u uobi£ajenoj

konstrukciji) samo neki skupovi predstavljaju brojeve. Moºemo zahtijevati da su aksi-

omi interpretirane teorije dokazivi u interpretiraju¢oj teoriji, ali moºemo to zahtijevati i

za sve teoreme uop¢e interpretirane teorije (razlika je bitna samo kada se radi u slaboj

metateoriji).

Logike interpretabilnosti opisuju pona²anje odrežene verzije interpretabilnosti. Za po-

£etak, ograni£avamo se na teorije prvoga reda. Drugo, zanima nas samo interpretabilnost

izmežu kona£nih pro²irenja neke unaprijed odrežene teorijeT. Tre¢e, zanima nasfor-

malizirana interpretabilnost, tj. ne prou£avamo problem vrijedi li daT + A interpretira

T + B, ve¢ se bavimo problemom moºe liT dokazatida T + A interpretira T + B. ƒetvrto,

ne zanima nas za koje pojedina£ne formuleA i B vrijedi da T + A interpretira T + B, ve¢

nas zanimaju ona svojstva koja su strukturalna u smislu da vrijede za bilo kakav odabir

formula A i B . U ovoj se disertaciji odlu£ujemo za interpretabilnost teorema, tj. za to da

T + A interpretira T + B zahtijevamo da svaki prijevodteoremaod T + B bude dokaziv

u T + A. Teorija T pritom mora biti dovoljno snaºna, primjerice sekvencijalna. Ako

je takva teorija aksiomatizabilna, onda postoji i predikatIntT (�; �), de�niran na prirodan

na£in, koji izraºava svojstvo da je prvi argument predikata interpretira drugi argument.

Logika interpretabilnosti teorije T de�nira se na sli£an na£in kao i logika dokazivosti te-
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Pro²ireni saºetak

orije T, ali s dodanim binarnim modalnim operatorom� £ija je intendirana interpretacija

IntT . Dakle, logika interpretabilnosti teorije T jest skup svih modalnih formula u jeziku

logike interpretabilnosti koje su dokazive za koju god aritmeti£ku interpretaciju propozici-

onalnih varijabli te preslikavaju¢i modalne operatore u njihove intendirane aritmetizacije.

Logika interpretabilnosti teorije T ovisi o teoriji T.

Primjerice, logika interpretabilnosti Gödel�Bernaysove teorije skupova (²to je logika

koju ozna£avamo kaoIL P), i logika interpretabilnosti Peanove Aritmetike (²to je logika

koju ozna£avamo kaoIL M), razlikuju se.

Za sekvencijalnu teorijuT postoji odreženi skup formula, koji se obi£no ozna£ava kao

IL (All), kojeg logika interpretabilnosti bilo koje teorije T mora sadrºavati. To£an sadrºaj

skupa IL (All) nije poznat; u stvari, popravljanje donje granice je pitanje koje motivira

ve¢inu istraºivanja u ovom podru£ju. Jedna jednostavna donja granica jeosnovna logika

interpretabilnosti, koju ozna£avamo sIL . To je pro²irenje logike dokazivosti koje sadrºi

pet dodatnih shema aksioma koje se u literaturi ozna£ava saJ1� J5.

Vra¢aju¢i se na pitanje sadrºaja skupaIL (All), postoji zanimljiv i iznenažuju¢ pris-

tup podizanju najbolje poznate donje granice; drugim rije£ima, traºenja novih aritmeti£ki

valjanih principa interpretabilnosti. Pristup o kojem je rije£ jest prou£avanje modalne

relacijske semantike. Novi su aritmeti£ki valjani principi otkriveni promatraju¢i karakte-

risti£na svojstva ve¢ poznatih principa, modi�ciraju¢i ih, te odrežuju¢i modalne formule

koje karakteriziraju tako dobivena relacijska svojstva. Ovakav postupak naravno ne ga-

rantira aritmeti£ku valjanost tako otkrivenih modalnih formula, ali neki aritmeti£ki valjani

principi doista jesu pronaženi na ovaj na£in. Jo² jedan sli£an pristup je poku²ati doka-

zati modalnu potpunost odreženih pro²irenja logikeIL . Ako dokaz modalne potpunosti

ne uspije, daljnje pro²irivanje spomenutog pro²irenja, dok god se ne ustanovi modalna

potpunost, moºe rezultirati novim aritmeti£ki valjanim formulama (ovaj ¢e se pristup

primijeniti u posljednjem poglavlju ove disertacije).

Postoje dva osnovna tipa modalne semantike kori²tena za logike interpretabilnosti. Je-

dan jeregularna Veltmanova semantika(ili obi£na Veltmanova semantika, ili samoVeltma-

nova semantikakad ne postoji mogu¢nost zabune). Druga jegeneralizirana Veltmanova

semantika koju je uvela Verbrugge, a koja osim osobina relacijske semantike ima i oso-

bine okolinske semantike. Regularnu Veltmanovu semantiku mogu¢e je koristiti za dokaz

potpunosti brojnih logika interpretabilnosti. Mežutim, za kompleksnije logike, generalizi-

rana semantika moºe se iskoristiti za dati jednostavnije i razumljivije dokaze potpunosti.

Posljednjih godina i posebno tijekom pisanja ove disertacije, generalizirana se semantika

pokazala kao posebno dobro primjenjiva relacijska semantika za logike interpretabilnosti.

Preciznije, jednostavnije je do¢i do rezultata o modalnoj potpunosti, a odlu£ivost se moºe

dokazati koriste¢i �ltracije u svim poznatim slu£ajevima. Mi dokazujemo razli£ite nove

rezultate, a uz to dajemo i nove dokaze starih rezultata, vezane uz potpunost u odnosu

na generaliziranu semantiku. U nekim slu£ajevima znamo samo da je odrežena logika
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potpuna u odnosu na generaliziranu semantiku. ’tovi²e, postoje primjeri logika koje su

potpune u odnosu na generaliziranu semantiku, a za koje znamo da su nepotpune u od-

nosu na regularnu Veltmanovu semantiku. Svi poznati rezultati o sloºenosti (od kojih

se ve¢ina dokazuje upravo u ovoj disertaciji) koriste regularnu Veltmanovu semantiku.

’to se ti£e odlu£ivosti, £ini se da je generalizirana semantika ponovno pogodniji alat, jer

omogu¢ava uniformnu metodu dokazivanja svojstva kona£nih modela.

U ovoj se disertaciji bavimo razli£itim svojstvima formalizirane relativizirane interpre-

tabilnosti.

U sredi²njem dijelu disertacije bavimo se razli£itim logikama interpretabilnosti i slje-

de¢im njihovim aspektima: potpunost u odnosu na modalnu semantiku, odlu£ivost te

algoritamska sloºenost.

Osim rezultata koji se ti£u same semantike, koristimo semanti£ke metode kako bismo

odredili algoritamsku sloºenost problema dokazivosti (i konzistentnosti) za razli£ite logike

interpretabilnosti.

’to se ti£e aritmeti£kog aspekta, prou£avamo tri niza principa interpretabilnosti. Za

dva mežu njima, za koja su aritmeti£ka i modalna adekvatnost ve¢ poznati, dajemo

nove dokaze aritmeti£ke adekvatnosti. Tre¢i je niz rezultat na²ih modalnih razmatranja.

Dokazujemo da je aritmeti£ki adekvatan i karakteriziramo klasu okvira u odnosu na obi£nu

Veltmanovu semantiku. Osim toga, razmatramo potpunost nekih logika vezanih uz tre¢i

niz (radi se o logikamaIL WR i IL W! ).

Sad ¢emo dati pregled strukture disertacije.

U prvom poglavlju dajemo neformalan uvod u okvirno podru£je kojem pripada ova

disertacija.

U drugom poglavlju dajemo formalniji uvod, osnovne de�nicije te dokazujemo neke

jednostavnije rezultate.

U idu¢a dva poglavlja istraºujemo modalnu potpunost. Prvo uvodimo klju£ni alat:

osiguravaju¢e oznake. Razvijamo op¢enitu teoriju osiguravaju¢ih oznaka, uklju£uju¢i kon-

cept � -punih osiguravaju¢ih oznaka. Razvijamo i teoriju koja se koristi kasnije u diser-

taciji, ali dokazujemo i rezultate zanimljive same po sebi (poput karakterizacije� -punih

skupova).

U £etvrtom poglavlju koristimo osiguravaju¢e oznake kako bismo dokazali potpunost

razli£itih logika interpretabilnosti u odnosu na generaliziranu Veltmanovu semantiku. De-

�niramo IL X-strukture za X � f M; P; M0; P0; Rg te X � f W; W� g i dokazujemo da je

pripadna logika IL X potpuna u odnosu na svoju karakteristi£nu klasu okvira. Posebno,

dokazujemo da su logikeIL P0 i IL R potpune, ²to su novi rezultati. Takožer de�niramo

problem iteracije oznakai uvodimo specijalan tip struktura, IL WP-strukture, koje rje-

²avaju ovaj problem u relativno jednostavnom slu£aju logikeIL P. Motivacija za ovo

istraºivanje jest ²to se problem iteracije oznaka javlja u sloºenijim logikama poput logike

IL WR, gdje je potpuno rje²enje zasad nepoznato. Mi vjerujemo da bi isto rje²enje moglo
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biti iskoristivo i za druge sloºenije logike, ali za to ustvrditi potrebno je rije²iti i neke druge

probleme. Ponovno se bavimo potpuno²¢u u �nalnom poglavlju ove disertacije gdje se,

izmežu ostalih rezultata, bavimo dokazom potpunosti logikeIL WR pod pretpostavkom

postojanja odgovora na neke druge otvorene probleme.

U petom poglavlju koristimo dobivene rezultate o potpunosti i dokazujemo odlu£ivost

razli£itih logika. Ovo je jo² jedna, i moºda najkorisnija, primjena generalizirane semantike:

mogu¢nost uniformne de�nicije �ltracija.

’esto poglavlje bavi se algoritamskom sloºeno²¢u; dokazujemo daIL , IL W i IL P

pripadaju klasi sloºenostiPSPACE-potpunih problema.

Sedmo poglavlje bavi se aritmeti£kim aspektima logika interpretabilnosti. Dajemo nov

dokaz aritmeti£ke adekvatnosti nedavno otkrivenih nizova principa interpretabilnosti.

U posljednjem poglavlju uvodimo jo² jedan niz principa interpretabilnosti, dokazujemo

mu aritmeti£ku adekvatnost, i pronalazimo mu Veltmanovu semantiku. Kao ²to smo ve¢

najavili, dajemo i uvjetne dokaze potpunosti za logike koje se ti£u novog niza principa

interpretabilnosti.

x
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Chapter 1

Introduction

This chapter is envisioned as a short and, to the extent that is attainable given the

matter at hand, gentle introduction to the topics of this thesis. In the second chapter,

Preliminaries, we give a technical introduction and lay the groundwork for the remainder

of the thesis.

1.1 Gödel's theorems and Provability Logic
While the results we obtain in this thesis are not particularly shaped by Gödel's

theorems and the phenomenon offormal incompleteness, the methods and tools involved

in obtaining these results are still central in the �eld of formalised interpretability. So let us

say a few words on Gödel's theorems. In 1920s the mathematician David Hilbert initiated

what is now known as Hilbert's Program (proposed in [31]). This was a two-fold program;

it called for the axiomatisation of all mathematics, and moreover this axiomatisation

should be such that the resulting theory of mathematics isprovablyconsistent. Thus, the

result of the program would be atheory of mathematics (a combination of axioms and rules

of inference using which one can prove mathematical results), but also a rigorousproof

that this theory is consistent. In this context, consistencymeans one cannot, starting

only with axioms and inferring their consequences step-by-step using the given rules of

inference, prove a logical contradiction.

The general sentiment among logicians and involved mathematicians is that the goal of

Hilbert's Program has been shown unattainable byGödel's incompleteness theorems. The

�rst incompleteness theorem, proved by Kurt Gödel in 1930 and published in 1931 ([24]),

is best formulated as the result onincompletability: any reasonable theory is not and, more

importantly, cannot be extended to, a reasonable and formally complete theory�a theory

that proves either A or the negation ofA for every possible sentenceA. By reasonable

we mean consistent, su�ciently strong (sequential) and presentable in a mechanical way

(recursively enumerable). We will be interested only in reasonable theories, as these cover

the majority of those used and studied in mathematics. From this point on we assume

1
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that all the theories we mention or quantify over are reasonable, even when we are not

explicit about this.

Gödel proved the second incompleteness theorem in 1930 too. This theorem states

that every reasonable theory is too weak to prove its own consistency. This does not mean

that one cannot prove the consistency of a theory in some other theory. Trivially, one can

prove consistency of a reasonable theoryT in a theory T enriched with the axiom asserting

that T is consistent. It should be noted that Gerhard Gentzen showed in 1936 that in

the case of the �rst-order theory Peano Arithmetic (PA) one can provide a su�ciently

strong consistency-proving extension in a more natural way, by using a strong enough

version of the principle of trans�nite induction ([23]). But the sole fact that one can

prove consistency ofT in a theory stronger than T, even if the axioms of the stronger

theory are regarded as reasonable or natural, is not surprising in itself. What Hilbert's

Program aimed for is a consistency proof in a theory that isat most as strong asT. And

by Gödel's incompleteness theorems, such a proof is not possible. Methodologically, one

may of course doubt about the purpose if it were possible to prove consistency ofT in

T itself. Either T is (a) inconsistent and then it will prove its own consistency or it is

(b) consistent but proving consistency will, because of the possibility of (a), not be a

particularly convincing evidence of the consistency.

An intriguing feature of Gödel's results is the method behind the proofs. The method

Gödel used is also where the connection with this thesis becomes tighter. In order to prove

formal incompleteness of any reasonable theoryT, Gödel proved that for every such theory

there exists a sentence, usually denoted byGT , such that neither it nor its negation�in

caseT moreover only proves true statements�are provable inT. The amusing feature of

GT is its interpretation. It can be seen as being equivalent to the sentence �This sentence

is not provable inT�. If GT is true, it is true but unprovable, and if it is false, it is provable

but false; neither option being particularly attractive (and the �rst option being the lesser

evil). This is reminiscent of the liar paradox, but while the liar paradox can be considered

to be, at least in its basic form, a consequence of poor understanding of the way natural

language works and/or unreasonable expectations of the concept of truth, the `paradox'

that GT provides has rock-solid formal foundations. Thus,GT is a mathematical sentence

with some degree of self-referentiality.

In what sense can a mathematical sentence, mathematical sentences being sentences

such as �There is no largest prime number.�1, become self-referential? The �rst step in

constructing self-referential sentences is to code objects we wish to refer to with mathemat-

ical objects. In the case of Peano Arithmetic, we code symbols, formulas, and sequences

1In the standard language of �rst-order arithmetic,

(8n)(9m)(8k)
�
(9`)k` = n + m + 1 ! k = 1 _ k = n + m + 1

�
:

2
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of formulas, with numbers. The properties these syntactical objects may have are coded

as predicates with free variables, with the standard interpretation in the form of various

number-theoretic properties. For example, the property of a formula that it is a theorem

of PA (i.e. that it is provable inside PA) might, had things been (wildly) simpler, cor-

respond to the property of the number coding this formula to be divisible by1931. A

large part of Gödel's original proof deals with establishing one such (albeit more complex)

possible connection between number theory and atheory of syntax(a theory of symbols,

formulas and �nite sequences of formulas).

In particular, the property that a formula is provable is one of the key ingredients of

Gödel's original proof of his two celebrated incompleteness theorems. A way to de�ne this

property is to �rst de�ne a formula with two free variables ProofT (p; A) formalising the

fact that (the �nite sequence of formulas coded by the number)p is a proof of (the formula

coded by the number)A. In a certain technical sense, this property really is not that

much more complex than the property of being divisible by1931. One can then de�ne the

property of being provable, i.e. being a theorem, by lettingProvT (A) := 9pProofT (p; A).

It is more convenient to speak of formulas and proofs, rather than their codes. In the

remainder of the introduction we will write ppq to refer to the code of a proofp, and

pAq to refer to the code of a formulaA. Usually it is clear from the context whether a

symbol represents a formula, a proof, or a similar object, or if we are actually referring to

the code of this object. For example, ifA is a sentence, we might writeProvT (A). The

intended reading is that we plug inthe codeof A, or actually its syntactical representation

(so-called numerals2), into the open formula ProvT (�). Now, one can wonder (and people

have, indeed, wondered) what sort of formulas concerningProvT are provable inT. For

example, by propositional logic we knowProvT (pAq) _ : ProvT (pAq) must be provable for

every sentenceA.

By Gödel's �rst incompleteness theorem, we know that for someA the sentence

ProvT (pAq) _ ProvT (p: Aq) is not provable in T. By Gödels second incompleteness the-

orem, we know that : ProvT (pA ^ : Aq) is not provable in T for any A, either. Let us

introduce a shorthand forProvT (pAq): 2 A. What does the set ofT-provable formulas

built using only formula-placeholdersA; B; C; : : : , propositional logical connectives and

2 look like? Let us call this setPL (T). Since the sentenceGT , whose existence can be

thought of as being responsible for the incompleteness theorems, provably satis�es the

property GT $ 2 : GT , one might expectPL (T) to behave highly erratically. Surpris-

ingly, not only doesPL (T) have a simple axiomatisation (for almost any theoryT), but

PL (T) is also decidable. That is, there is an algorithm that, given any formula, tells us

2We often need to refer to concrete numbers in formulas. The expressions we do this with are called
numerals. There is of course more than one way to do this; one simple expression that will be interpreted
as the numbern (for any �xed n) is the expressionS(S(: : : S(0))) , with n occurrences of �S�. The symbol
� S� stands for the direct successor of a given number (in the standard model). See Chapter 7 for the
de�nition of a better variant, e�cient numerals .

3
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whether this formula is contained inPL (T) or not.

Given a theory T, the set PL (T) de�ned in the way just described is calledthe

provability logic ofT. Perhaps surprisingly, almost all theoriesT have the same provability

logic, known as the Gödel�Löb Provability Logic GL . This set of formulas has many

properties one might expect of a logic, and in fact it is a simple example of a relatively

well-behaved modal logic.

Before moving forward towards interpretability logics, which extend provability logics

in a natural way, let us �rst say a few words on comparing theories and interpretations.

1.2 Comparing theories
If we have two theoriesT and U, a natural way to compare them would be to ask

whether T � U or U � T. Unfortunately, providing answers to these questions is not

very informative with regard to the question of how di�erent these theories really are.

SupposeU and T are essentially the same theory, but di�er in the fact thatT uses the

symbol + in all the places whereU uses the symbol� 0 and analogously for� in T and

+ 0 in U. Clearly T * U and U * T, even thoughT and U are the `same' theory.

Taking into account other such di�erences between theories, which we may consider

to be only super�cial di�erences, we can obtain some notion of aninterpretation of one

theory in another theory. There are di�erent notions of an interpretation in use, but what

they all share is that they involve a structure-preserving mapping; mapping formulas of

the interpreted theory to formulas of the interpreting theory. This mapping is required

to preserve provability to some extent, i.e. ifA is a theorem of the interpreted theory,

then the image ofA must be provable in the interpreting theory. That the mapping is

structure-preservingmeans that it at least commutes with logical connectives. Quanti�ed

formulas are allowed to be modi�ed slightly when interpreted; speci�cally one can bound

the domain of (all) quanti�ed formulas using a �xed predicate called thedomain speci�er

(i.e. we are interested inrelativised interpretability). This enables us to build an inter-

pretation of, e.g., a number theory in a set theory, where (by the usual construction) only

some sets are used to represent numbers. Finally, relational symbols of the interpreted

theory are allowed to become any formula of the same arity in the language of the in-

terpreting theory. We can ask for axioms of the interpreted theory to be provable in the

interpreting theory, but we can also require this to hold for all theorems of the interpreted

theory (this di�erence matters only when one works in a weak metatheory).

Before interpretability was studied as a subject in its own right, interpretations have

been used to establish results across mathematics. Let us give a few examples. Perhaps

the best-known examples are models of non-Euclidean geometries (for example, hyperbolic

geometry [1]) in Euclidean geometry. To a logician, an even more famous example might
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be the interpretation of number theory in set theory. For example, the interpretation

of �rst-order Peano Arithmetic in a modi�cation of ZF where the axiom of in�nity is

replaced with its negation (in fact, interpretability goes both ways between these two

theories, see [41]). Another example, one we already discussed, is the interpretability

of the theory of syntax in any su�ciently strong theory such as Peano Arithmetic (and

indeed in much weaker theories such asS1
2 and I� 0 + 
 1).

These and other interpretations might be fascinating in their own right. But they have

been put to use to provide more palpable results too. A famous result is another result by

Gödel. In [30] Gödel constructed an interpretation ofZF extended with the continuum

hypothesis (CH ), in pure ZF . This implies that if ZF is consistent, thenZF + CH is

consistent. Another example is relative undecidability. In general, ifT interprets U and

U is undecidable,T need not be undecidable (unlike the analogous situation with an

inconsistent theoryU). However, if U is essentiallyundecidable, thenT is undecidable

(this result is due to Tarski, see [61]).

In the next subsection we shall specify the aspects of interpretability that we are

interested in this thesis. Before doing so, let me embark on a short personal digression

to close this subsection. I �rst heard of modal logic, and of the provability logicGL

in particular, in a course I attended during my undergraduate study (in Rijeka). My

undergraduate thesis was about an automated search for interesting theorems ofGL .

The notion of interestingness was determined by various heuristics, such as �ifA is a

theorem, then(B) ! (A) is not interesting�. The result of this automated search was a

certain number of theorems ofGL that the algorithm deemed su�ciently interesting. I

wanted to present this collection in some organised form, ideally a graph, and was faced

with having to decide what would determine whether there is an arrow between any two

given nodes (where nodes represent interesting theorems ofGL ). Some options I explored

is to let A point to B if K ` (A) ! (B ); if K4 ` (A) ! (B ) (GL ` (A) ! (B ) is

not a good choice sinceGL ` B); or if B is a substitution instance ofA. In retrospect,

some version of the notion of interpretability is what I was after. At that point I did

not know of interpretability, and in particular that interpretability logics are probably

the best studied extension of provability logics. (An additional curiosity is that when I

started working on my undergraduate thesis, I was not aware that one of the very few

places where interpretability logics are studied is in the same country, in Zagreb, where I

later moved for my master's degree.)

1.3 Interpretability logics
Interpretability logics describe the behaviour of a speci�c kind of interpretability. For

a start, we limit our interest to �rst-order theories. Second, we only concern ourselves

5
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with the interpretability between �nite extensions of some �xed theoryT. Third, we are

interested informalised interpretability, i.e. we do not study the problem of whetherT + A

interprets T + B, but rather the problem of whetherT can prove that T + A interprets

T + B. Fourth, we are not interested in for which particularA and B we have thatT + A

interprets T + B, rather we are interested in those properties that are structural in that

they hold for any choices ofA and B. We opt for theorems interpretability in this thesis;

i.e. for T + A to interpret T + B we require that the translation of anytheoremof T + B

is provable inT + A. The theory T should be su�ciently strong; i.e. sequential. If such a

theory is axiomatisable, it has a predicateIntT (�; �), de�ned in a natural way, expressing

the fact that the extension of T by the �rst argument of the predicate interprets the

extension ofT by the second argument.

The interpretability logic of T is de�ned in much the same way as the provability logic

of T, but with an additional binary modal operator � whose intended interpretation is

IntT . Thus, the interpretability logic of a theory T is the set of all modal logical formulas

in the modal interpretability logic language that are provable for whatever arithmetical

reading is given to the propositional variables and taking the modal operators to their

intended arithmetisations.

Unlike what might be the case with provability logics, the interpretability logic ofT

really depends onT. For example, the interpretability logic of Gödel�Bernays set theory

(which is the logic denoted byIL P), and the interpretability logic of Peano Arithmetic

(which is the logic denoted byIL M), di�er.

Given a sequential theoryT, there is a certain amount of content, usually denoted by

IL (All), the interpretability logic of T is bound to have. The exact contents ofIL (All) is

not known; in fact, improving the lower bound is the question that motivates most of the

research in the �eld. A simple lower bound is thebasic interpretability logic, denoted by

IL . This is an extension of the provability logicGL (in sequential theories, provability of

a formula A can be shown to be equivalent to stating that the negation ofA interprets

a contradiction) and contains �ve additional axioms schemas which in the literature are

referred to asJ1� J5. Let us present and give a short of description of each of these

schemas. In the next section on preliminaries we will introduce a few conventions that

will enable us to drop most of the parentheses used in this introduction.

The principle J1 is � (A ! B) ! (A � B). This principle implies that if an extension

T + A is stronger (in the traditional sense) than another extensionT + B, then T + A

interprets T + B. If this were not the case, clearly the notion of the interpretability we

picked would have been too weak. However, the fact that this schema is provable means

that not only does it express a true fact, but that the base theoryT is in fact `aware' that

this schema holds. There are some true facts expressible in this language, most notably

2 A ! A, that are not provable, so one has to be careful even with simple properties.

The principle J2 is ((A � B) ^ (B � C)) ! (A � C). Essentially this principle expresses

6



Chapter 1. Introduction

the transitivity of interpretability, and is proved by composing particular interpretations

witnessing the facts thatA � B and B � C.

The principle J3 is ((A � C) ^ (B � C)) ! ((A _ B) � C). This principle re�ects

the fact that given two interpretations we can construct a third interpretation such that

it translates formulas just like the �rst interpretation if a certain formula ( A) holds, and

just like the second interpretation otherwise.

The principle J4 is (A � B) ! (3 A ! 3 B). This principle is a formalised version of

the fact that interpretability implies relative consistency.

The principle J5 is (3 A) � A and arithmetically, this is the most complex axiom

schema ofIL . Essentially this principle claims that from a model of the consistency of

A we can extract a model ofA itself. The interpretation is built with the help of the

formalised Henkin construction ([67]).

Getting back to the question ofIL (All), there is an interesting and surprising way of

improving the best known lower bounds, i.e. of �nding new arithmetically valid principles

of interpretability. The approach is to study modal (Kripke-like) relational semantics for

the logicIL and the extensions thereof. To every extension ofIL we can associate a class of

relational frames, thecharacteristic class. This is the class of those, and only those, frames

which validate all the theorems of the extension in question (we will de�ne frame validity

later in the thesis). The distinguishing property satis�ed exactly by the frames within

the characteristic class is called theframe condition. New arithmetically valid principles

of interpretability have been found by taking the frame conditions of already known

principles, modifying them, and then obtaining the modal formula that characterises the

modi�ed frame condition. This does not, of course, guarantee the arithmetical validity

of the thus obtained modal formula, but new arithmetically valid formulas have been

found this way. If for some extension the validity of a formula on all the frames in the

characteristic class implies its provability in the aforementioned extension, we speak of

modal completeness. Another related approach of �nding new principles of interpretability

is to try and establish modal completeness of a certain extension ofIL . If proving modal

completeness fails for a given extension, extending the extension further, until it becomes

modally complete, might yield new arithmetically valid formulas (this attempt will be

followed in the �nal chapter of this thesis).

There are two related kinds of modal semantics used for interpretability logics. One

is known as regular Veltman semantics(or ordinary Veltman semantics, or just Velt-

man semanticswhen there is no risk of ambiguity), introduced by Veltman. The other

is generalised Veltman semantics, introduced by Verbrugge, which combines Kripke-like

semantics with neighbourhood semantics. Regular Veltman semantics can be used to

provide complete semantics to many interpretability logics. However, for more complex

logics, generalised Veltman semantics can be used to provide simpler and much easier

to understand proofs of completeness (this is one of the results of this thesis). In some

7



Chapter 1. Introduction

cases, we only know that a logic is complete w.r.t. generalised Veltman semantics. There

are also examples of logics complete w.r.t. generalised Veltman semantics, but incomplete

w.r.t. regular Veltman semantics. All known complexity results (most of which are es-

tablished in this thesis) rely on regular Veltman semantics. As for decidability, it seems

that generalised Veltman semantics is a more appropriate tool, as it allows for a uniform

method of obtaining the �nite model property.

In the next chapter, Preliminaries, we give precise de�nitions of the concepts we use

throughout the thesis. In Section 2.7 we give an overview of the thesis structure.

8



Chapter 2

Preliminaries

This chapter has a few di�erent purposes. The �rst is to give a more formal introduc-

tion than the one provided in Chapter 1, including additional relevant historical references.

The second purpose is to de�ne the key notions that we use throughout the thesis, such

as the principles of interpretability and Veltman semantics. Finally, this chapter contains

some observations that did not �t other chapters.

2.1 Provability logics
This thesis is concerned with interpretability logics, a class of modal logics that extend

the provability logic GL . Let us �rst say a few words on provability. We assume the reader

has a certain amount of arithmetical background and refer for further details to [10].

Su�ciently strong formal theories T can reason about their own provability. The

usual way to do this is through a certain� 1-predicate that formalises provability, usually

denoted byProvT . For example, the following is provable inT:

ProvT

� l
: ProvT

�
d?e

�m�

! ProvT

�
d?e

�
;

that is, (the formalised version of) Gödel's second incompleteness theorem. Gödel noticed

that provability can be viewed as a modal operator (this was brie�y mentioned in [25]): if

we let 2 stand for ProvT , Gödel's second incompleteness theorem can be expressed more

succinctly:

2 : 2 ? ! 2 ? :

In the modal language the uses ofd�eare implicit. Examples of other properties ofProvT

expressible in a modal language are2 (A ! B) ! (2 A ! 2 B) and 2 A ! 22 A (where

A and B are arbitrary sentences).

The provability logic GL (Gödel, Löb) is a modal propositional logic with the single

unary modal operator2 . The axioms of the systemGL are all propositional tautologies

(in the new language), and all instances of the schemasK: 2 (A ! B) ! (2 A ! 2 B), and

L: 2 (2 A ! A) ! 2 A. The inference rules ofGL are modus ponens and necessitation

9



Chapter 2. Preliminaries

A=2 A.

Solovay [57] proved the arithmetical completeness theorem forGL . This theorem holds

for all � 1-sound extensions ofI� 0+ EXP, whereEXPis the sentence formalising the totality

of exponentiation (see [17]). This theorem shows that the language of provability logicGL

is too weak to distinguish between most of the theories that are usually considered.1 For

example, whether a theory is �nitely axiomatisable does not a�ect the theory's provability

logic.

Other formal properties, beside provability, have been explored through modal or

semi-modal systems; in particular, interpretability logics. All interpretability logics we

consider are extensions, both in terms of their language and their theoremhood, ofGL .

2.2 Interpretability logics
We consider the usual modal treatment of interpretability: interpretability logics. Let

us brie�y describe what is usually meant by �interpretability� in the context of inter-

pretability logics.

Let T1 and T2 be some �rst-order theories of �nite signatures� 1 and � 2, respectively.

For convenience, we may further assume there are no constants and function symbols. An

interpretation of T2 in T1 is a pair (f; U ) whereU is a formula in the language ofT1:

ˆ f maps n-ary relational symbolsR 2 � 2 to formulas with n free variables in the

language ofT1;

ˆ f (A ! B) = f (A) ! f (B ), similarly for other logical connectives;

ˆ f (8xF ) = 8x(U(x) ! f (F )) and similarly for (9x)F ;

ˆ T1 ` (9x)U(x);

ˆ for all sentencesF in the language ofT2:

T2 ` F ) T1 ` f (F ):

The last requirement, that translations of the theorems ofT2 are provable inT1, is some-

times modi�ed. The variant we employ is known astheorems interpretability. See e.g.

[37] and [68] for alternative possibilities, and further details concerning interpretations in

general.

In a su�ciently strong formal theory T in the languageL T , one can construct a binary

interpretability predicate IntT . This predicate expresses that an extension ofT interprets

another extension ofT. Both the interpreting and the interpreted theory are assumed

1However, it is possible that the provability logics of theories belowI� 0 + EXP di�er from GL (see
[3]).

10
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to extend T with a �nite number of sentences or, equivalently, with a single sentence.

Interpretability was �rst explored in [61], in a non-modal setting.

Modal logics for interpretability were �rst studied by Hájek in 1981 [33] and ’vejdar in

1983 [59]. Visser introduced the modal logicIL (interpretability logic), a modal logic with

a binary modal operator� representing interpretability, in 1990 [66]. This operator is the

only addition to the language of propositional logic; i.e. the language of interpretability

logics is given by

A ::= ? j p j A ! A j A � A;

wherep ranges over a countable set of propositional variables. Other Boolean connectives

are de�ned as abbreviations, as usual. In particular, we let> abbreviate ? ! ? . Since

2 B too can be de�ned (overIL ) as an abbreviation (expanded to: B � ? ), we do not

formally include 2 in the language. Similarly, we do not include3 in the language, where

3 B stands for : 2 : B . We stress that we still wish to use2 and 3 in our presentation,

but they are to be understood as abbreviations. We treat� as having higher priority than

! , but lower than other logical connectives. For example,A � B ! : (A � : C) �2 C ^ B

is to be understood as(A � B) ! (: (A � : C) � ((2 C) ^ B)).

Let T be a su�ciently strong formal theory in the language of arithmetic. Any mapping

A 7! A � , with A a modal formula andA � 2 L T , such that:

ˆ if p is a propositional variable,p� is a sentence;

ˆ it commutes with logical connectives;

ˆ ? � is 0 = 1,

ˆ (A � B)� = IntT
�
dA � e; dB � e

�
, wheredX e is the numeral of the Gödel number ofX ;

is calledan arithmetical realisation.

The interpretability logic of a theory T, denoted by IL (T) , is the set of all modal

formulas A such that T ` A � for all arithmetical realisations. While there are open

questions regarding interpretability logics of certain theories, it is known that they all

extend the basic systemIL . In fact, we know of much better lower bounds, butIL has

simple well-behaved semantics and is traditionally taken as the starting building block.

De�nition 2.1 The interpretability logic IL is axiomatised by the following axiom schemas:

ˆ classical tautologies (in the new language);

(K) � (A ! B) ! (� A ! � B );

(L) � (� A ! A) ! � A;

(J1) � (A ! B) ! A � B ;

11



Chapter 2. Preliminaries

(J2) (A � B) ^ (B � C) ! A � C;

(J3) (A � C) ^ (B � C) ! A _ B � C;

(J4) A � B ! (3 A ! 3 B);

(J5) 3 A � A.

Rules of inference are modus ponens and necessitationA=2 A.

We say that a modal formulaA is valid in a formal theory T if T ` A � for every

arithmetical realisation � . A modal theory S is arithmetically sound w.r.t. T if all its

theorems are valid inT. The modal theory S is arithmetically complete w.r.t. T if it

proves exactly those formulas that are valid inT. Sometimes we omit �arithmetically�

from �arithmetically sound (complete)�, if there is no risk of confusion with other notions

of soundness and completeness. For the proof that the systemIL is sound w.r.t. any

reasonable formal theory, see [66].

The systemIL is, unlike GL , arithmetically incomplete w.r.t. any reasonable theory.

For example,IL does not prove all instances ofA � B ! A � B ^ 2 : A, which are all valid

in every reasonable theory (see e.g. [66]). To achieve arithmetical completeness, we have

to study extensions of the basic systemIL . Extensions are built by adding new axiom

schemas, the so-called principles of interpretability. Two principles and the corresponding

extensions ofIL are of particular interest because these extensions arethe interpretability

logics of many interesting theories.

Montagna's principle M: A � B ! A ^ 2 C � B ^ 2 C is valid in theories proving full

induction. We denote byIL M the system obtained by adding all instances of the principle

M to the system IL as new axioms. Berarducci [2] and Shavrukov [56] independently

proved that IL (T) = IL M, if T is � 1-sound and proves full induction. The persistence

principle P: A� B ! 2 (A� B) is valid in �nitely axiomatisable theories. Visser [66] proved

the arithmetical completeness ofIL P w.r.t. any �nitely axiomatisable � 1-sound theory

containing I� 0 + SUPEXP, where SUPEXPasserts the totality of superexponentiation:

n 7! 2n
n where 2n

0 = n and 2n
m+1 = 2 (2n

m ) . Thus, the interpretability logic IL M of �rst-

order Peano Arithmetic di�ers from the interpretability logic IL P of Gödel-Bernays set

theory. It is still an open problem what is the interpretability logic of weaker theories like

I� 0+ EXP, I� 0+
 1 and PRA. For I� 0+
 1, this question depends on what the provability

logic of I� 0 + 
 1 is, which in turn may depend on very hard problems in computational

complexity�see [3]. For results regarding interpretability in PRA we refer to [12] and

[34].

In particular, one can ask what is the set of principles valid in all reasonable theories.2

This set is usually denoted byIL (All) . Note that this does not mean that there has to be

2�Reasonable� usually means �an extension ofS1
2 or I� 0 + 
 1�, or �as weak as possible under the

condition that IL (All) remains elegantly axiomatisable, if any�.

12



Chapter 2. Preliminaries

a theory T that attains IL (All) as its interpretability logic, i.e. IL (T) = IL (All) . Clearly

IL � IL (All) � IL P \ IL M. In fact, we know that both inclusions are proper. The

ongoing search forIL (All) is a main motivation behind studying extensions ofIL today.

Studying modal properties of lower bounds ofIL (All) turns out to be useful for �nding

new principles within IL (All). For example, the principle R (we will de�ne this and other

principles later) was discovered while trying to prove modal completeness ofIL P0W [28].

See the most recent development [29] for an overview of the progress that has been made

in the search forIL (All) . In this thesis (Chapter 8) we de�ne a new series of principles

for which it is an open question whether it extends the currently best known lower bound

of IL (All).

De�nitions and further details regarding interpretability and interpretability logics in

general can be found in e.g. [66].

2.3 Semantics for interpretability logics
The most commonly used semantics for the interpretability logicIL and its extensions

is Veltman semantics(or ordinary Veltman semantics).

De�nition 2.2 ([18], De�nition 1.2) A Veltman frame F is a structure (W; R; f Sw : w 2

Wg), where W is a non-empty set,R is a transitive and converse well-founded binary

relation on W and for all w 2 W we have:

a) Sw � R[w]2, whereR[w] = f x 2 W : wRxg;

b) Sw is re�exive on R[w];

c) Sw is transitive;

d) if wRuRv then uSwv.

The standard logic of (formalised) provability, the logicGL , is complete w.r.t. the

semantics based on the so-calledGL -frames: pairs(W; R) whereW is non-empty andR is

a transitive and converse well-founded binary relation onW. In the context of GL -frames

we havew 
 2 A if and only if: wRx implies x 
 A. The aforementioned completeness

result concerningGL was �rst proved by Segerberg in [54]. All interpretability logics

that we study here conservatively extend the logic of provability. So, it should not be

surprising that (W; R) in the preceding de�nition is precisely aGL -frame. For reasons

already explained earlier, we will usually work as if the symbol2 is not in the language.

A Veltman model is a quadrupleM = ( W; R; f Sw : w 2 Wg; 
 ), where the �rst three

components form a Veltman frame. The forcing relation
 is extended as usual in Boolean

cases, andw 
 A � B holds if and only if for all u such that wRu and u 
 A there exists

v such that uSwv and v 
 B .

13
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In this thesis we will mainly use a di�erent semantics, which we will refer to asgener-

alised Veltman semantics. R. Verbrugge [62] de�ned this speci�c generalisation of Veltman

semantics. The main purpose of its introduction, and until recently the only use, was to

show that certain extensions ofIL are independent, by Verbrugge [62], ’vejdar [60], Visser

[67], Vukovi¢ [72] and Goris and Joosten [28].

De�nition 2.3 A generalised Veltman frameF is a structure (W; R; f Sw : w 2 Wg),

whereW is a non-empty set,R is a transitive and converse well-founded binary relation

on W and for all w 2 W we have:

a) Sw � R[w] � (P(R[w]) n f;g );

b) Sw is quasi-re�exive: wRu implies uSw f ug;

c) Sw is quasi-transitive: if uSwV and vSwZv for all v 2 V, then uSw(
S

v2 V Zv);

d) if wRuRv, then uSw f vg;

e) monotonicity: if uSwV and V � Z � R[w], then uSwZ.

A generalised Veltman modelis a quadrupleM = ( W; R; f Sw : w 2 Wg; 
 ), where the

�rst three components form a generalised Veltman frame. Noww 
 A � B holds if and

only if for all u such that wRu and u 
 A there existsV such that uSwV and V 
 B . By

V 
 B we mean thatv 
 B for all v 2 V.

Given an ordinary or a generalised modelM = ( W; R; f Sw : w 2 Wg; 
 ), we write

M 
 A if w 
 A for all w 2 W. Similarly, given an ordinary or a generalised frame

F = ( W; R; f Sw : w 2 Wg), we write F 
 A if M 
 A for all modelsM based onF (i.e.

whereM = ( W; R; f Sw : w 2 Wg; 
 ) for some
 ).

2.4 Variations of generalised semantics
In a recent collaboration with Jan Mas Rovira and Joost J. Joosten we established

some basic results regarding generalised Veltman semantics and the possible variations

thereof. See [38] or [44] for a longer discussion on possible choices for the condition of

quasi-transitivity. In a sense we show that our choice (De�nition 2.3) is the most general

one (i.e. as little restrictive as possible). In this section we will only quote the main

results, and for the full proofs of all results we recommend [44].

Let us give a list of quasi-transitivity conditions considered so far in the literature:
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Nr. Semantic requirement for quasi-transitivity First mention

(1) uSxY ) 8 f Yygy2 Y

�
(8 y 2 Y ySxYy) ) 9 Z �

S
y2 Y Yy & uSxZ

�
[38]

(2) uSxY ) 8 f Yygy2 Y

�
(8 y 2 Y ySxYy) ) uSx

S
y2 Y Yy

�
[62]

(3) uSxY ) 9 y 2 Y 8Y 0(ySxY 0 ) 9 Y 00� Y 0 & uSxY 00) [38]
(4) uSxY ) 9 y 2 Y 8Y 0(ySxY 0 ) uSxY 0) [36]
(5) uSxY ) 8 y 2 Y 8Y 0(ySxY 0 ) 9 Y 00� Y 0 & uSxY 00) [38]
(6) uSxY ) 8 y 2 Y 8Y 0(ySxY 0 ) uSxY 0) [62]
(7) uSxY ) 8 y 2 Y 8Y 0(ySxY 0 & y =2 Y 0 ) 9 Y 00� Y 0 uSxY 00) [38]
(8) uSxY ) 8 y 2 Y 8Y 0(ySxY 0 & y =2 Y 0 ) uSxY 0) [28]

Note that the monotonicity condition (De�nition 2.3) does not a�ect the de�nition of

truth, so we could work without it too. More importantly, we can also always perform the

closure under monotonicity and end up with a model whose truth values are preserved.

Proposition 2.4 Let F = ( W; R; S) be a generalised Veltman frame with quasi-transitivity

(i ) for somei 2 f 1; : : : ; 8g. Let F0 = ( W; R; S0) whereS0 is the monotonic closure ofS:

S0 = f (w; x; Y 0) : (w; x; Y ) 2 S; Y � Y 0 � R[w]g:

Then F0 is a generalised Veltman frame satisfying quasi-transitivity Condition (2).

Furthermore, let V be an arbitrary valuation andA an arbitrary formula. Let M = ( F; V)

and M 0 = ( F0; V). We have that for every worldw:

M ; w 
 A if and only if M 0; w 
 A:

The preceding proposition tells us that Notion (2) of quasi-transitivity is, in a sense,

the most general one: any formula satis�able with another notion of quasi-transitivity

(out of the notions mentioned here) must be satis�able in some model in our selected

notion of a model.

It is well known that any ordinary Veltman model corresponds to a generalised Veltman

model, as the following proposition shows.

Proposition 2.5 Let M = ( W; R; S; V) be an ordinary Veltman model. Let

S0 = f (w; u; V) : (9v 2 W)uSwv 2 V � R[w]g:

Then M 0 = ( W; R; S0; V) is a generalised Veltman model for every notion of quasi-

transitivity ( i ) with i 2 f 1; : : : ; 8g. Furthermore, for every worldw and formula A:

M ; w 
 A if and only if M 0; w 
 A:

See e.g. [70], [44] or [38] for a proof. The other direction, transforming a generalised

model to an appropriate ordinary model, is harder, and here we state one transformation
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that works for some notions of quasi-transitivity. The �rst such transformation was con-

structed by Verbrugge in [62] (Theorem 2), and these two transformations can both be

used (only) for the following notions of quasi-transitivity: (3), (4), (5), (6).

For a generalised frameF = ( W; R; S) we let Sw [u] = f V : uSwVg. We collect this

and similar conventions in Section 2.8.

Proposition 2.6 Let M = ( W; R; S; V) be a generalised Veltman model. Let

S0 = f (w; u; v) : (9V 2 Sw [u])v 2 Vg:

Then M 0 = ( W; R; S0; V) is an ordinary Veltman model where the notion of quasi-

transitivity is (3), (4), (5) or (6). Furthermore, for every world w and formula A:

M ; w 
 A if and only if M 0; w 
 A:

One might wonder what is the relation between the di�erent notions of quasi-transitivity,

apart from the fact that they can all be seen as strengthenings of (2).

Proposition 2.7 ([44]) Let F be a generalised Veltman frame. LetM stand for the

monotonicity condition. The following implications hold.3

1. M & (1) ) (2)

2. (2) ) (1)

3. M & (3) ) (4)

4. (4) ) (3)

5. (5) ) (1)

6. M & (5) ) (2)

7. (5) ) (3)

8. M & (5) ) (4)

9. M & (5) ) (6)

10. (5) ) (7)

11. M & (5) ) (8)

12. (6) ) (1)

13. M & (6) ) (2)

14. (6) ) (3)

15. (6) ) (4)

16. (6) ) (5)

17. (6) ) (7)

18. (6) ) (8)

19. M & (7) ) (8)

20. (8) ) (7)

Remark 2.8 Suppose we are working with a de�nition of a Veltman frame which does

not include monotonicity. As we have seen, closing this frame under monotonicity will

not change truth values in any model based on this frame. This fact on its own does

not imply we can safely assume to have monotonicity in the de�nition. In fact, requiring

monotonicity by de�nition might change truth values. The problem lies in the fact that

3Note that M & ( i ) ) (j ) means literally �if a frame satis�es monotonicity and quasi-transitivity
in the sense(i ), then it satis�es quasi-transitivity in the sense (j ) too�. This is very di�erent from the
situation described in Proposition 2.4 where we started with a frame that is quasi-transitive in the sense
(i ), closed it under monotonicity and obtained a frame that is quasi-transitive in the sense(j ). See
Remark 2.8. Apart from the results already discussed, we did not check what other `implications' arise
when performing a closure.
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the closure under monotonicity might invalidate the selected notion of quasi-transitivity.

If we now perform the closure under quasi-transitivity, this might change the truth values.

Consider the following frame where the selected notion of quasi-transitivity is (8):

wRv0; wRv1; wRv2; wRv3, v0Sw f v1g, v2Sw f v3g.

v1v0

p
v2 v3

q

w

Consider the model based on this frame wherep is true exactly at v0 and q is true

exactly at v3. Clearly w 
 : (p � q). Once we take the monotonic closure ofS we

get v0Sw f v1; v2g and by the closure under quasi-transitivity (8) we getv0Sw f v3g. Now

w 
 p � q, i.e. the truth values are not preserved.

In the remainder of the thesis we will always use Notion (2) of quasi-transitivity, and

we will always assume monotonicity.

2.5 Extensions of IL
When we need to refer to an extension ofIL by a single modal formula or a set of

modal formulasX, we will write IL X.

Let (X) (resp. (X)gen) denote a formula of �rst-order or higher-order logic such that

for all ordinary (resp. generalised) Veltman framesF the following holds:

F 
 X if and only if F j= ( X) (resp. F j= (X)gen):

The formulas(X) and (X)gen are called the characteristic properties (or frame conditions)

of the given logicIL X. The class of all ordinary (resp. generalised) Veltman framesF

such that F j= ( X) (resp. F j= (X)gen) is called the characteristic class of (resp. generalised)

frames forIL X. If F j= (X)gen we also say that the frameF possesses the property (X)gen.

We say that an ordinary (resp. generalised) Veltman modelM = ( W; R; f Sw : w 2 Wg; 
 )

is an IL X-model (resp.IL setX-model), or that modelM possesses the property (X) (resp.

(X)gen), if the frame (W; R; f Sw : w 2 Wg) possesses the property (X) (resp. (X)gen).

A logic IL X will be said to be complete with respect to ordinary (resp. generalised)

semantics if for all modal formulasA we have that validity of A over all IL X-frames (resp.

all IL setX-frames) impliesIL X ` A.

We say that IL X has the �nite model property (FMP) w.r.t. ordinary (resp. gener-

alised) semantics if for each formulaA satis�able in someIL X-model (resp.IL setX-model),

A is also satis�able in some �niteIL X-model (resp.IL setX-model).

17
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The following table displays the current state of research regarding the principles we

discuss throughout the thesis. Here,o stands for ordinary Veltman semantics, andg for

generalised Veltman semantics. When a logic is complete w.r.t. ordinary semantics, it

is also complete w.r.t. generalised semantics (see Proposition 2.6), and similarly for the

FMP. For the results implied by this fact we do not cite any particular source in the table

below.

principle compl. (o) compl. (g) FMP (o) FMP (g)

M A � B ! A ^ � C � B ^ � C + [18] + + [18] +

M0 A � B ! 3 A ^ � C � B ^ � C + [27] + ? + [53]

P A � B ! � (A � B) + [18] + + [18] +

P0 A � 3 B ! � (A � B) � [28] + [50] ? + [50]

R A � B ! : (A � : C) � B ^ � C ? + [50] ? + [50]

W A � B ! A � B ^ � : A + [19] + + [19] +

F A � 3 A ! 2 : A � [62] ? + [19] +

W� A � B ! B ^ � C � B ^ � C ^ � : A + [27] + ? + [49]

De Jongh and Veltman proved the completeness of the logicsIL , IL M and IL P w.r.t.

their characteristic classes of ordinary (and �nite) Veltman frames in [18]. Goris and

Joosten [27, 28] proved the completeness ofIL M0 and IL W� w.r.t. ordinary semantics.

Mikec and Vukovi¢ [50] proved completeness ofIL R and IL P0 w.r.t. generalised Veltman

semantics. A more thorough introduction concerning each topic (completeness, decidabil-

ity, completeness) will be given in the relevant chapter of this thesis.

In addition to these principles, we also discuss three series of principles, namely(Rn ),

(Rn ) and (Wn ). Their de�nitions are a bit lengthy, so we will postpone de�ning them

until we discuss them (in the �nal two chapters of the thesis).

The two series(Rn ) and (Rn ) have been introduced recently [29] and not much is

known regarding their semantics. See Chapter 7 for the de�nition. Their frame conditions

w.r.t. ordinary Veltman semantics are de�ned in [29]. The corresponding conditions w.r.t.

generalised Veltman semantics have been explored by Jan Mas Rovira, Joost J. Joosten,

and the author. The preliminary results were presented in [45] and proofs with more

detail are available in [44]. We quote these results (without proofs) in Chapter 7, as we

de�ne these two series only then. Note that this work on the two series concerns just the

frame conditions; the work on completeness has not started yet. Similarly, the problem

of the �nite model property is open for both series.

The third series (Wn ) is introduced in the �nal chapter of this thesis. Some basic

results were already discussed in [46]. Their frame conditions w.r.t. ordinary Veltman

semantics coincide with the conjunction of (W)gen and (R)gen. Their generalised semantics

is discussed in Chapter 8.

Let us also mention that recently Kurahashi and Okawa obtained results concerning

certain natural sublogics ofIL , speci�cally the logics betweenIL and a logic calledIL �

18
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which is the logic of the class of structures calledVeltman prestructures[42]. The authors

prove that twelve of these logics are complete w.r.t. their characteristic classes of Veltman

prestructures, and that further eight are incomplete in this sense, yet complete w.r.t.

their characteristic classes of a generalised form of Veltman prestructures. All twenty

logics they study are proven complete w.r.t. �nite structures, and thus decidable.

In the next section we look at the frame conditions(X) and (X)gen of the aforementioned

logics and make some additional observations. We mainly focus on the principleW whose

semantics is more contrived than is the case with other principles.

2.6 Frame conditions
We start this section with some simple observations regarding Veltman semantics. For

a given ordinary or generalised Veltman modelM = ( W; R; f Sw : w 2 Wg; 
 ), a world

w 2 W and a formulaA we de�ne:

[A]w = f x : wRx & x 
 Ag:

De�nition 2.9 Let R be a binary relation andV an arbitrary set. We say that w is

R-maximal in V if w 2 V and for all x such that wRx we havex =2 V.

Let M = ( W; R; f Sw : w 2 Wg; 
 ) be an ordinary or a generalised Veltman model. Let

V � W be an arbitrary non-empty set of worlds. Clearly, there has to be anR-maximal

v in V (due to the converse well-foundedness ofR). We often use this fact. In particular,

we often use the following lemma.

Lemma 2.10 Let M = ( W; R; f Sw : w 2 Wg; 
 ) be an ordinary or a generalised Veltman

model. If M ; w 
 : (A � B) then there is a worldx that is R-maximal in [A]w (i.e. x 
 A

and there are no worldsz such that xRz and z 
 A) and for all y: if xSwy then y 1 B.4

Proof. Let V = f x 2 R[w] : x 
 A & ( 8y)(xSwy ) y 1 B)g. Then V is non-empty

and there is a maximalx 2 V. It remains to seex is R-maximal in [A]w . Assume for a

contradiction there is z such that xRz and z 
 A. Note that for all y we have thatzSwy

implies xSwy. Thus, for all y we have thatzSwy implies y 1 B (otherwise there isy with

xSwy 
 B , contrary to the de�nition of V). However, this contradicts the de�nition of x;

i.e. x is not maximal in V. a

Recall that for a principle X, we denote by (X) and (X)gen the properties of Veltman

frames, or generalised Veltman frames, respectively, such that the following holds:X is

4The variable y in the statement of this corollary quanti�es over worlds in the context of ordinary
Veltman semantics, and otherwisey quanti�es over sets of worlds.
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valid on a (generalised) Veltman frameF if and only if F has the property (X), or (X)gen,

respectively.

In the following table we summarise the frame conditions of some principles. In par-

ticular, we tried to include all the principles that are well known, have unusual properties,

or are important in the search forIL (All). Note that the notion of generalised Veltman

semantics that was mainly used in [62] substantially di�ers from the one used nowadays

(which was also �rst de�ned in [62], but explored in more detail only later). However, the

de�nition of truth has the same form in both cases, the characteristic properties are the

same, and the proofs of characterisation are similar. Thus [62] is cited as the �rst proof

of (M)gen and (P)gen being the characteristic properties forIL M and IL P. That these are

the characteristic properties with respect to the other notion was veri�ed in [72].

Property cf.

(M) uSwvRz ) uRz [18]

(M)gen uSwV ) (9V 0 � V )(uSwV 0 & R[V 0] � R[u]) [62]

(M0) wRuRxSwvRz ) uRz [27]

(M0)gen wRuRxSwV ) (9V 0 � V )(uSwV 0 & R[V 0] � R[u]) [71]

(P) wRw0RuSwv ) uSw0v [18]

(P)gen wRw0RuSwV ) (9V 0 � V )(uSw0V 0) [62]

(W) Sw � R is converse well-founded for eachw [19]

(W)gen uSwV ) (9U0 � U)(uSwU0 & R[U0] \ S� 1
w [U] = ; ) [28, 49]

(F) (W) [65]

(F)gen See Subsection 2.6.2 [70]

(W� ) (M0) and (W)

(W� )gen (M0)gen and (W)gen

(P0) wRuRxSwvRz ) xSuz [27]

(P0)gen wRxRuSwV & ( 8v 2 V)R[v] \ Z 6= ; ) (9Z 0 � Z )uSxZ 0 [28]

(R) (P0) [28]

(R)gen See below the table or Section [28]

(Rn) See [29] [29]

(Rn)gen See Chapter 7 forR1 [44, 45]

(Rn) See [29] [29]

(Rn)gen See Chapter 7 [44, 45]

(Wn) See Chapter 8 [46], here

(Wn)gen See Chapter 8 for discussion [46], here

A frame condition for W w.r.t. generalised Veltman semantics was �rst given in [28],

and the condition given in the table is from [49].

20



Chapter 2. Preliminaries

The condition (R)gen is the following:

wRxRuSwV ) (8C 2 C(x; u))( 9U � V)(xSwU & R[U] � C);

whereC(x; u) = f C � R[x] : (8Z )(uSxZ ) Z \ C 6= ; )g is the family of `choice sets'.

As a demonstration, let us look at the frame condition (M)gen.

Proposition 2.11 ([62]) The principle M is valid on a frame if and only if the frame

condition (M)gen holds:

uSwV ) (9V 0 � V )(uSwV 0 & R[V 0] � R[u]):

Proof. Let M = ( W; R; f Sw : w 2 Wg; 
 ) be a generalised Veltman model that satis�es

the given condition. Let w; u 2 W and supposew 
 A � B , and wRu 
 A ^ 2 C. Then

there is V with uSwV 
 B . The condition implies there isV 0 � V with uSwV 0 and

R[V 0] � R[u]. SinceV 0 � V 
 B , clearly V 0 
 B . SinceR[u] 
 C, we haveR[V 0] 
 C,

and thus V 0 
 2 C.

In the other direction, suppose the principleM is valid on some frame(W; R; f Sw : w 2

Wg), and uSwV. De�ne the forcing relation so that [p]w = f ug, [q]w = V, and [r ]w = R[u].

Sincew 
 p � q ! p ^ 2 r � q ^ 2 r , and clearly w 
 p � q, we getw 
 p ^ 2 r � q ^ 2 r .

Sinceu 
 p ^ 2 r , there must be a setV 0 with uSwV 0 
 q ^ 2 r . As [q]w = V, we have

V 0 � V . As [r ]w = R[u], we must haveR[V 0] � R[u]. a

2.6.1 Characteristic classes for ILW and ILW�

The �rst formulation of ( W)gen was published in [28]. Unfortunately this formulation

was overlooked and a di�erent (but, luckily, quite a bit shorter) formulation was published

in [49]. We discuss the second formulation here.

De�nition 2.12 ([49]) A generalised Veltman frameF = ( W; R; f Sw : w 2 Wg) has the

property (W)gen if the following holds:

uSwV ) (9V 0 � V )
�
uSwV 0 & R [V 0] \ S� 1

w [V ] = ;
�
:

As is customary, we omit the implicit universal quanti�ers: (8w; u 2 W)(8V � W). A

generalised Veltman model(F; 
 ) has the property (W)gen if the frame F has the property

(W)gen.

Since we will often use the negation of the property (W)gen, we will denote this negation

as (W)gen. Obviously:

(W)gen ,

8
<

:

(9w; u 2 W)(9V � W)
�
uSwV & ( 8V 0 � V )

�
uSwV 0 ) (R [V 0] \ S� 1

w [V ] 6= ; )
��
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Remark 2.13 ([49]) It is known (see table in the previous section) that the principleW

is valid on an ordinary Veltman frameF if and only if F has the property that for each

world w, the relation Sw � R is converse well-founded.

It is often the case that for a given principle of interpretabilityX, the corresponding

properties (X) and (X)gen can be formulated in such a way that they syntactically resemble

each other (some examples of this can be seen in the table in the previous section).

It is easy to check that the negation of the property (W) is equivalent to the following

property:

(9w; u 2 W)(9V � R [w] ; V 6= ; )(8v 2 V)(uSwv & R [v] \ S� 1
w [V ] 6= ; ):

Here, S� 1
w [V ] = f y j ySwz for somez 2 Vg. Indeed, if this property holds, there is an

in�nite R � Sw chain starting with u and with worlds alternating between the setsV and

S� 1
w [V ]. On the other hand, if there is an in�nite R � Sw chain u1Swv1Ru2Swv2R : : :, take

V = f v1; : : :g and u = u1.

Lemma 2.14 ([49]) Let F = ( W; R; f Sw : w 2 Wg) be a generalised Veltman frame.

Then the principle W is valid on a frameF if and only if F has the property (W)gen.

Proof. Assume that the principle W is not valid on the frame F. Then there exists a

forcing relation 
 on the frameF, a world w 2 W, and some formulasA and B such that

w 6
 A � B ! A � B ^ 2 : A. Thus:

(1) w 
 A � B ;

(2) w 6
 A � B ^ 2 : A:

From (2) it follows that there exists a world u 2 R [w] such that u 
 A, and

(3) (8V 0 � R [w])(uSwV 0 ) V 0 6
 B ^ 2 : A):

Let V = [ B ]w .

Sinceu 
 A, the fact labelled by (1) implies, together with the monotonicity, that

uSwV.

We now prove the following:

(8V 0 � V )
�
uSwV 0 ) R [V 0] \ S� 1

w [V ] 6= ;
�
:

Consider anyV 0 � V such that uSwV 0. Now V 
 B and the fact labelled by (3) imply

that there exists a world v 2 V 0 such that v 6
 2 : A, i.e. v 
 3 A. Thus, there is some

z such that vRz and z 
 A. But now the fact (1) and monotonicity imply zSw [B ]w , i.e.

zSwV. So,z 2 R [V 0] \ S� 1
w [V ], i.e. R [V 0] \ S� 1

w [V ] 6= ; . We have proved that the frame

F does not have the property (W)gen.
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We now prove the other implication from the statement of the lemma. Suppose that

the frameF does not have the property (W)gen, i.e. F has the property(W)gen. Then there

exist worlds w; u 2 W and a setV � W such that uSwV and the following holds:

(4) (8V 0 � V )
�
uSwV 0 ) R [V 0] \ S� 1

w [V ] 6= ;
�
:

We de�ne forcing relation 
 on F so that the following holds:

x 
 p , xSwV;

x 
 q , x 2 V:

We claim that w 1 p� q ! p� q^ 2 : p. It is easy to check thatw 
 p� q. It remains to

show that w 6
 p � q^ 2 : p. Assume the contrary, i.e. thatw 
 p � q^ 2 : p. Now z 
 p

and the assumptionw 
 p � q ^ 2 : p imply that there exists a setV 0 � R [w] such that

uSwV 0 and V 0 
 q ^ 2 : p. In particular, we have V 
 q, thus the de�nition of 
 implies

that V 0 � V . Now the fact labelled with (4) implies there isv 2 V 0 and somez 2 W such

that vRz and zSwV. But this implies z 
 p, and sov 1 � : p. This contradicts v 2 V

and V 
 � : p. Hence, the assumptionw 
 p � q ^ 2 : p leads to a contradiction. Thus,

the principle W is not valid on the frameF. a

We will use (this formulation of) (W)gen in what follows. We note here that the (W)gen

condition can be formulated in a more informative way.

Given a generalised frameF = ( W; R; f Sw : w 2 Wg), we say that (w; u; V) is a

counterexample inF to (W)gen if

uSwV and (8V 0 � V )
�
uSwV 0 ) (R [V 0] \ S� 1

w [V ] 6= ; )
�
:

Proposition 2.15 Let F = ( W; R; f Sw : w 2 Wg) be a generalised Veltman frame.

Whenever there arew, u and V such that (w; u; V) is a counterexample inF to (W)gen,

there is U � V such that:

1. (w; u; U) is a counterexample inF to (W)gen;

2. R[U] \ U = ; ;

3. given the setU = f v 2 U : R[v] \ S� 1
w [U] = ;g we have the following:

(a) U n U 6= ; ;

(b) for all v 2 U we have(8U0 � U)(8z)
�
vRzSwU0 ) U0 \ U n U 6= ;

�
.

Proof. Let us �rst show that we can �nd U with Properties (1) and (2).

For all v 2 V we de�ne a world uv. Fix v 2 V. If there exists z 2 R[v] \ V , let uv be

any suchR-maximal z. Otherwise, i.e. ifR[v] \ V = ; , let uv = v. Put U = f uv : v 2 Vg.
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Quasi-transitivity implies uSwU, and U has the required property that U \ R[U] = ; .

It remains to prove Property (1), i.e. that for an arbitrary U0 � U with uSwU0, the set

R[U0] \ S� 1
w [U] is non-empty. SinceU0 � U � V and (w; u; V) is a counterexample to

(W)gen, we have that the setR[U0] \ S� 1
w [V ] is non-empty. Thus, there is somex 2 R[U0]

such that xSwV. Since for eachv 2 V we havevSw f uvg, by quasi-transitivity we have

xSwU. The set R[U0] \ S� 1
w [U] contains the world x and hence is non-empty. Thus, we

have veri�ed Properties (1) and (2).

We can assume thatV already has Properties (1) and (2) and we will �ndU � V that

satis�es all three properties (1), (2), and (3).

Let

U1 = f v 2 V : R[v] \ S� 1
w [V ] 6= ;g ;

U2 = f v 2 U1 : (8V 0 � V )(8z)(vRzSwV 0 ) V 0 \ U1 6= ; )g;

U = ( V n U1) [ U2;

U3 = f v 2 U1 : (8U0 � U)(8z)(vRzSwU0 ) U0 \ U2 6= ; )g:

Clearly U1 is non-empty.

Before proving that we have the required properties (1), (2), and (3), let us show that

U2 = U3, prove an auxiliary claim, and show thatU2 � U n U. Fix v 2 U2, U0 � U and

z such that vRzSwU0. SinceU � V and v 2 U2, we haveU0 \ U1 6= ; . SinceU0 � U and

U = ( V n U1) [ U2, the only part of U1 that U0 could be intersecting must also be a part

of U2. Thus, U2 � U3. To show the other direction, �x v 2 U3, V 0 � V and z such that

vRzSwV 0. There are two possibilities. One is thatV 0 � U. In this case the de�nition of

U3 implies V 0 \ U2 6= ; , so, sinceU2 � U1, we haveV 0 \ U1 6= ; , as required. The other

possibility is that V 0 \ (V n U) 6= ; , i.e. V 0 \ (U1 n U2) 6= ; . Again, V 0 \ U1 6= ; . Since in

both cases we haveV 0\ U1 6= ; , we concludev 2 U2. Thus, we have proven thatU2 = U3.

Next we prove the following auxiliary claim:

for all x 2 W; xSwV implies xSwU: (2.1)

To prove this claim we �rst de�ne a set Vv for every v 2 V. If v 2 (V n U1) [ U2, let

Vv = f vg. Otherwise, i.e. ifv 2 U1 n U2, there areV 0 and z such that vRzSwV 0 � V n U1.

Let Vv = V 0. Note that for all v 2 V we haveVv � U, so forV0 :=
S

v2 V Vv we haveV0 � U.

If x is such thatxSwV then xSwV0 by quasi-transitivity, and xSwU by monotonicity. This

concludes the proof of the auxiliary claim (2.1).

Finally, let us show that U2 � U nU. Let v 2 U2, clearly v 2 U. Supposev 2 U. Since

v 2 U2 � U1, there isz such that vRzSwV. Then vRzSwU by (2.1). So,R[v]\ S� 1
w [U] 6= ; ,

and v =2 U.

Now we are ready to prove (1), (2) and (3) for the triple(w; u; U).
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By (2.1) we haveuSwU, so to see that (1) holds letU0 � U be such thatuSwU0. Since

Property (1) holds for the triple (w; u; V) and uSwU0 � V , there must bev 2 U0 such that

for somez we havevRzSwV. Therefore,vRzSwU by (2.1). Thus, R [U0] \ S� 1
w [U] 6= ; .

This concludes the proof of Property (1) for the setU.

Since the worldv from the preceding argument is contained inU n U, we also proved

Property (3a).

Property (2) for (w; u; U) holds because it holds for(w; u; V) and U � V.

It remains to verify Property (3b).

SupposeU 3 vRzSwU0 � U and U0 \ U n U = ; for a contradiction. Sincev 2 U,

either v 2 V n U1 or v 2 U2. In the �rst case we would haveR[v] \ S� 1
w [V ] = ; , which is

not the case (vRzSwU0 � U � V and apply monotonicity). So,v 2 U2 = U3, and by the

de�nition of U3, U0 \ U2 6= ; . SinceU2 � U n U as we showed earlier,U0 \ U n U 6= ; , a

contradiction. a

This new formulation tells us that we can pick a setU and a quasi-partitionf U; UnUg

of U such that points in U cannot `return' (via Sw � R) to U, while the points in U n U

can `return' to U, and have an additional property that every set these points `return' to

intersects (not only U but also) U n U.

Goris and Joosten emphasised in [27] that the properties (W) and (M0) determine

the characteristic class of Veltman frames for the logicIL W� because we haveIL W�

= IL WM0 (see [68]). In the following corollary we conclude the completely analogous fact

w.r.t. generalised semantics.

Corollary 2.16 ([49]) For any generalised Veltman frameF we have that schemaW� is

valid on F if and only if both conditions (M0)gen and (W)gen hold.

2.6.2 On ILF

The logic IL F is an example of a logic incomplete with respect to ordinary Veltman

semantics. Even though the characteristic classes (w.r.t. ordinary semantics) ofIL W and

IL F are the same (see [65]), the logics themselves are not. A straightforward way to see

this is to look at the frame conditions w.r.t. generalised Veltman semantics. In [62] a

generalised Veltman modelM is de�ned such that M 
 F but M 1 W. HenceIL F 0 W.

The condition (F)gen (see [70]) is thatSw � Rw is converse well-founded for eachw,

where the relationsSw and Rw are de�ned as follows:

ˆ for any A 2 2R[w] n f;g and B � 2R[w] n f;g we de�ne ASwB if and only if (8a 2

A)(9B 2 B)(aSwB),

ˆ for any C � 2R[w] n f;g and D 2 2R[w] n f;g we de�ne CRD if and only if (8C 2

C)(8c 2 C)(9d 2 D)(cRd).
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Proposition 2.17 ([49]) If a generalised Veltman frameF = ( W; R; f Sw : w 2 Wg)

possesses the property (W)gen then the frameF also possesses the property (F)gen.

Proof. Suppose for a contradiction that a generalised Veltman frameF that possesses the

property (W)gen does not have the property (F)gen.

Then there exists a worldw 2 W and sequences of sets(An ) and (Bn ) such that

A0SwB0RwA1SwB1 : : :

Let V =
S

n (
S

Bn ). Let u 2
S

n An be an arbitrary world. Then there existsn 2 ! such

that u 2 An . The fact AnSwBn implies that there existsU 2 Bn such that uSwU. Since

U � V � R [w], by monotonicity we haveuSwV. We claim the following:

(8V 0 � V )
�
uSwV 0 ) R [V 0] \ S� 1

w [V ] 6= ;
�
:

Let V 0 � V be a set such thatuSwV 0 and �x an arbitrary v 2 V 0. There is a number

m 2 ! such that v 2
S

Bm . SinceBmRwAm+1 , there is a worldz 2 Am+1 such that vRz.

Obviously we havezSwZ for someZ 2 Bm+1 . By monotonicity, zSwV.

So, we have proved that the frameF possesses the property (W)gen. a

We now give an alternative proof thatIL F 6`W, by using only the conditions (F)gen

and (W)gen.

Corollary 2.18 ([49]) The conditions (W)gen and (F)gen are not equivalent. So, the

principle W is not provable in IL F.

Proof. Let F be the smallest generalised Veltman frame (with respect to the de�nition of

a generalised Veltman frame) such that we haveW = f w; x1; x2; zg, wRx1, wRx2, wRz,

and x1Rz, and zSw f x1; x2g.

Let us suppose that the frameF does not satisfy the condition (F)gen. Then there

exists a worldu 2 W and sequences of sets(An ) and (Bn ) such that

A0SuB0RuA1SuB1 : : :

If u = x2 or u = z then we haveR [u] = ; . So, in this case the relationSu is empty, which

contradicts the fact that A0SuB0.

Let us now consider the caseu = x1. SinceR [u] = f zg, we haveSu = f (z; f zg)g.

SinceA0SuB0, it is necessary thatA0 = f zg and z 2
S

B0. But B0RuA1 then implies that

there exists a worldv 2 A1 such that zRv. This is impossible, becauseR [z] = ; .

It remains to check the caseu = w. Denote Bn =
S

Bn for eachn 2 ! . First note

that the set Bn cannot contain the worldw for any n 2 ! . Suppose the contrary. Then

AnSwBn and the de�nition of Sw implies Bn � 2R[w] n f;g . This implies Bn � R [w]. But

then we havew 2 R [w], contrary to the converse well-foundedness ofR.
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The setBn also cannot contain the worldsx2 andz. This is because we haveBnRuAn+1 ,

but R [x2] = ; and R [z] = ; .

Let us now prove that the setBn must be non-empty. We haveAnSwBn . The de�nition

of Sw requires the setAn to be non-empty. Thus, there exists a worldv 2 An and a set

V 2 Bn such that vSwV. But the de�nition of Sw requires V to be non-empty. Since

V � Bn , the set Bn is also non-empty.

So, the setBn does not contain the worldsw, x2 or z, but is non-empty. Therefore,

Bn = f x1g, and thusBn = ff x1gg. SinceBnRwAn+1 , and R [x1] = f zg, we havez 2 An+1 .

Hence, for alln 2 ! we haveBn = f x1g and z 2 An+1 . Choose anyn 2 ! . Now z 2 An+1 ,

An+1 SwBn+1 and the fact that Bn+1 = Bn = f x1g imply zSw f x1g. This is impossible

because we only havezSw f zg, zSw f z; x1g, zSw f z; x2g, zSw f z; x1; x2g and zSw f x1; x2g.

So, we have proved that the frameF satis�es the condition (F)gen.

Now let us show that the frameF satis�es (W)gen, i.e. does not satisfy the property

(W)gen. Let V = f x1; x2g. Obviously we haveV � R [w] and zSwV. It remains to verify

that the following holds:

(8V 0 � v)
�
zSwV ) R [V 0] \ S� 1

w [V ] 6= ;
�
:

It is easy to see that the only subsetV 0 of V such that zSwV 0 holds is the setV itself (as

we only havezSw f zg, zSw f z; x1g, zSw f z; x2g, zSw f z; x1; x2g and zSw f x1; x2g). Therefore,

we only need to prove that(9v 2 f x1; x2g)(R [v] \ S� 1
w [V ] 6= ; ). We indeed havex1Rz

and zSwX . So, the frameF does not satisfy the property (W)gen. a

2.7 Thesis structure
The �rst topic of this thesis is completeness with respect to generalised Veltman se-

mantics. We explore this topic in the next two chapters. First we introduce the key tool:

assuring labels, and then we employ this tool to obtain various completeness results. We

touch again on completeness in the �nal chapter of the thesis.

Next, in Chapter 5, we apply completeness results and obtain decidability results.

This is another, and perhaps the most useful, application of generalised semantics: the

ability to de�ne well-behaved �ltrations.

Chapter 6 is on complexity; we prove thatIL , IL W and IL P are all PSPACE-complete.

We also provide commentary regarding the complexity of other decidable logics.

In Chapter 7 we work with the arithmetical aspect of interpretability logics. Namely,

we give a new soundness proof for the two recently introduced series of principlesRn and

Rn using an extended version of the systemAtL presented in [40].

In the �nal chapter we introduce another series of principles, prove it arithmetically

sound and provide ordinary Veltman semantics for it. We also provide conditions under
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which the resulting logic is modally complete w.r.t. generalised Veltman semantics; the

validity of the conditions themselves remains an open problem.
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2.8 Notation
In this �nal section we present some notational choices we �x for the remainder of this

thesis.

Notation Meaning Context
R [x] f y : xRyg R � A � B is a binary relation andx 2 A
R[X ] f y : 9x 2 X; x Ryg R � A � B is a binary relation andX � A
R � 1[x] (R � 1)[x] R � A � B is a binary relation andx 2 B or x � B
L ` A L provesA L is a logic (possibly implicit) and A is a formula in the

language ofL
X 
 A X satis�es A X is a world, a model, or a frame. Depending on the

type of X , satisfaction is satisfaction in a world, global
satis�ability in a model, or validity on a frame

[A]w f x 2 R[w] : x 
 Ag w is a world andA is a modal formula

For example, S� 1
w [V ] = f u : uSwVg if we are working with generalised semantics

(where Sw � W � 2W ).
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Labelling

In this chapter we introduce assuringness, a concept we will use heavily in the re-

mainder of the thesis. In particular, it will be the key ingredient of our completeness

proofs.

The �rst version of this text, containing some of the content of this chapter (de�nition

and basic properties of assuring labels and labelling lemmas forW, P, M, M0 and R), has

been published in [37] and [11]. The edited version, where we explore the so-called� -full

assuring labels and iterated labelling systems exists as a preprint [26]. The content of this

chapter is largely taken from this preprint.

Introduction
A large part of this thesis is concerned with connections between syntax and semantics.

In order to prove semantic completeness of modal logics with respect to various forms of

relational semantics, the usual approach is to let the set of worlds equal the set of maximal

consistent sets w.r.t. the logic in question. With interpretability logics we sometimes use

more elaborate de�nitions, for example worlds are sometimes identi�ed with sequences of

sets of formulas. Nevertheless, the key idea is the same: models are built out of maximal

consistent sets.

The next issue, once we de�ned the set of worlds, is what will relations look like. In

the case of Veltman semantics, the relations that we care about are the binary relationR

and the ternary relation S. Bearing in mind that the set of worlds somehow corresponds

to a set of maximal consistent sets, clearlyR and S have to be re�ected in some syntactic

relations between maximal consistent sets.

For example, most modal logics with the unary modality2 admit the usual Kripke-

style semantics with:xRy if and only if 2 A 2 x impliesA 2 y. Sometimes this de�nition is

tweaked, depending on, for example, are the maximal consistent sets truncated (maximal

with respect to some �nite set) or we want to eliminate in�nite chains. However, again,

the key idea is the same: we want the relations of our model to be as large as possible,

while staying compatible with the de�nition of truth. Usually it is the case that the less
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restricted the relations, the easier it is �nd a model for a consistent formula.

Thus, the relations Sw for w 2 W remain to be de�ned. This problem is central to

Veltman semantics, and all known completeness proofs have the same general solutions:

labels.

For example, if we are working inIL and wish to prove completeness w.r.t. ordinary

Veltman semantics, we might want to letxSwy hold if and only if x and y have the same

label with respect to w (the approach used in [18]). We distinguish two main kinds of

labels: critical labels and assuring labels. As mathematical objects, critical labels are

single modal formulas and assuring labels are sets of formulas. Both types of labels have

the associated relations of precedence between maximal consistent sets. Namely, given

two maximal consistent setsw and x we can de�ne w � L x where L is a label. We

usually don't think of labels as existing in isolation, but rather in the context of some

such maximal consistent setsw and x.

3.1 Preliminaries
Uppercase Greek, like� and � , will denote maximal consistent sets (MCS's). It will

be clear from the context with respect to what logic the consistency will refer. Upper-

case Roman denotes modal interpretability formulasA; B; C; : : : or sets of such formulas

S; T; U; : : :. An exception to this rule is that we might write formulas from a setS as Si ,

Sj etc. In particular if S is a set of formulas, then
W

Si denotes a �nite disjunction over

some formulas inS. If we talk of logics we mean extensions ofIL . As usual, we use� A as

an abbreviation forA ^ 2 A. If S is a set of formulas then we write2 S for f 2 A j A 2 Sg.

De�nition 3.1 For MCS's � and � we de�ne � � � if

8A
�

2 A 2 � ) A; 2 A 2 �
�

:

When building models for consistent formulas we are to ensure a truth lemma:

8� 8B
�

B 2 � , � 
 B
�

: (3.1)

We will now investigate what (3.1) imposes on relationsSw for w 2 W. In particular,

let us consider the condition for a formula: (A � B) to be true in some worldx in some

particular model. Recall that x 
 : (A � B) if and only if there is some worldy so that

xRy, so that y 
 A but for no z for which ySxz will we have z 
 B . In particular, since

ySxy we see thaty 
 : B . Moreover, sinceyRu implies ySxu we also see thaty 
 2 : A.

Thus, certain transitions� R� should come with a promise that for any� 0with � S� � 0

we will have : B; 2 : B 2 � 0. Of course, we should also have: C; 2 : C 2 � 0 for any C so

that C � B 2 � . Let us introduce the notion of criticality from [18].
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De�nition 3.2 For MCS's � and � , and for C a formula, we say that� is a C-critical

successor of� whenever

8B
�

B � C 2 � ) : B; 2 : B 2 �
�

:

We will write � � C � in this case.1

It is easy to see thatC-criticality naturally extends the � relation as re�ected by the

following easy lemma.

Lemma 3.3 For MCS's � and � we have� � � if and only if � � ? � .

Proof. Immediate since2 A 2 � holds if and only if : A � ? 2 � . a

We can seeC-criticality as a promise that the formula C will be avoided in a strong

sense. All completeness proofs before [11] made essential use of critical successors. When-

ever in a structure of MCS's a� � C � was there, the de�nition of the S� relation should

re�ect the promise that C should be avoided. This strategy, although successful, resulted

in a need for complicated book-keeping to keep all promises.

An improvement can be made if we can deal with various promises at the same time.

Suppose we wished to de�ne� � B;C � in such a way that it promises that bothB and

C are avoided in� in a strong sense. Requiring that simultaneously both� � B � and

� � C � is not su�cient since the promises may interact. In particular

if A � B _ C 2 � we should also require that: A; 2 : A 2 � .

It is this simple idea that adds a lot of power to the notion of criticality. However, there

is one more subtlety to it. It turns out to be fruitful to apply a change of perspective.

Instead of speaking of a promise to avoid certain formulas it turns out to be a very fruitful

perspective to rather speak ofassuring certain formulas. If we do so, the set of promises

has certain nice properties. In particular, it can be closed under derivability as proven in

Lemma 3.12. These considerations give rise to the following de�nition.

De�nition 3.4 (Assuring successor) LetS be a set of formulas. We de�ne� � S� , and

say that � is an S-assuring successorof � , if for any �nite S0 � S we have that A �
W

Sj 2 S0 : Sj 2 � implies : A; 2 : A 2 � and for some2 C 2 � we have2 C 62� . We will

call S a label for � and � or simply a label.2

1The usual notation for criticality is � � C � . We write � � C � for criticality in this chapter in order
to more clearly distinguish it from assuringness, which we denote with� � S � .

2While this de�nition is more in line with the old notion of criticality, occasionally we will not require
that for some 2 C 2 � we have2 C 62� . For example, we work without this condition throughout the
whole chapter concerning modal completeness. The property will still hold one way or the other, it's just
that sometimes it is convenient not to have this condition be required by the de�nition.
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In the following lemma we shall see that the notion of assuring successor on sets of

formulas naturally extends the regular successor relation as well as the critical successor

relation.

Lemma 3.5 1. � � ; � if and only if � � � ;

2. � is a B-critical successor of� if and only if � � f: B g� , if and only if � � B � .

Proof. For the �rst item, we observe that the empty disjunction is per de�nition equivalent

to ? . We haveA � ? 2 � if and only if 2 : A 2 � . Consequently,

8A
�

A � ? 2 � ) : A; 2 : A 2 �
�

if and only if 8A
�

2 : A 2 � ) : A; 2 : A 2 �
�

:

Since we work in classical logic, the right-hand side is easily seen to be equivalent to

8A
�

2 A 2 � ) A; 2 A 2 �
�

.

The ( direction of the second item is easy and the other direction follows from the

�rst item of this lemma: if we take a �nite subset of f: Bg this is either the empty

set, or f: Bg itself. Now, the fact that A � :: B 2 � implies : A; 2 : A 2 � follows

from the assumption that � is a B-critical successor of� and that the fact A � ? 2 �

implies : A; 2 : A 2 � follows from the �rst item since critical successors are in particular

successors. a

3.2 Assuring and full labels
In this section we will expose a general theory of assuring successors. In the next

section we will show how assuring successors can be used to solve, in a uniform way,

certain problematic aspects of modal completeness proofs.

As the name suggests, assuring labels assure certain formulas to be present. The

relation � S assures elements in� and � , and in a sense it is not allowed to �speak� of

consistency formulas, i.e.3 -formulas cannot be contained in a label. This is made explicit

in the following lemma.

Lemma 3.6 We have the following:

1. if � � S� then S;2 S � � ;

2. if � � S� then 3 S � � ;

3. if � � S� then the label S does not contain any formula of the form3 A.

Proof. The �rst item is clear since for anyA 2 S we have that: A � : A is a theorem and

whence in� . By the de�nition of � � S� we get that A; 2 A 2 � .
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The second item follows from the �rst: since� is maximal, for any A 2 S, either

3 A 2 � or 2 : A 2 � . However, the latter would imply : A 2 � contradicting our �rst

item.

For the last item we reason as follows. Suppose for a contradiction that there is some

3 A in S. Then, by the �rst item we have both 3 A 2 � and 23 A 2 � . However, over

GL we have that23 A is equivalent to2 ? . But 2 ? 2 � clearly contradicts3 A 2 � . a

A label S between� � S� keeps track of the formulas that are promised to be in� in

virtue of certain interpretability formulas in � . The larger the label, the more promises

it stores.

Often we can enlarge the label for free. To see how much we can add we need the

following de�nition.

De�nition 3.7 For any set of formulasT and maximal consistent set� we de�ne

� 2
T = f 2 : A j A �

_

Ti 2 T 0

: Ti 2 � for some �nite T0 � Tg;

� �
T = f 2 : A; : A j A �

_

Ti 2 T 0

: Ti 2 � for some �nite T0 � Tg:

Note that � 2
; = f 2 : A j A � ? 2 � g. However, we want to think about this set as

f 2 C j 2 C 2 � g. Clearly the two sets, although not literally equal, behave the same when

used within labels. The next lemma tells us how promises propagate over composition of

successors.

Lemma 3.8 For the relation � S we claim the following:

1. if S � T & � � T � then � � S� ;

2. if � � S� � � 0 then � � S� 0.

Proof. The �rst item is obvious since any �nite subset ofS is also a �nite subset ofT

wheneverS � T. For the second item we observe that� � S� implies � �
S � � whence by

� � � 0 and 2 � �
S � � �

S we see that� �
S � � 0. a

Notation 3.9 Often we shall simply write
W

: Si to indicate some particular �nite disjunc-

tion without really specifying it. If in the same context we will need another particular

but otherwise unspeci�ed big disjunction we will �ag this by using a di�erent index.

Thus,
W

: Si _
W

: Sj stands for the disjunction of two particular but unspeci�ed �nite

disjunctions of negated formulas from some label setS.

Often we will consider a �nite collection of formulasCj such that eachCj will interpret

some �nite disjunction of negated formulas from the labelS. For each particular formula

Cj we will denote the corresponding disjunction by
W

: Sj
k and thus write Cj �

W
: Sj

k .

Subsequently, we will denote the big disjunction over allk and all corresponding: Sk
j by

W
: Sk

j so that (with the help of a few applications of axioms ofIL )
W

Ck �
W

: Sk
j .
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x

y z

S

q; p; � p : p

q � : p

Figure 3.1: Situation described in Lemma 3.11.

The following lemma gives us a way to extend labels.

Lemma 3.10 For any logic (i.e. extension ofIL ) we have that � � S� implies � � S[ � �
S

� .

Proof. Suppose� � S� and C �
W

: Si _
W

A j _ 3 A j 2 � for some �nite collection of

formulas: A j ; 2 : A j 2 � �
S . In particular, for eachj we haveA j �

W
: Sj

k 2 � for some �nite

collection (depending onj ) of formulas Sj
k from the label S. Then C �

W
: Si _

W
A j 2 �

and thusC�
W

: Si _
W

: Sj
k 2 � which implies: C; 2 : C 2 � since we assumed� � S� . a

This lemma tells us in a sense that when we have� � S� , then certain sentences in

� justify that we may extend the label S. Will likewise the occurrence of sentences in

� allow us to extend the labelS? The next lemma tells us that this is not the case.

In particular, if A �
W

: Si for someSi 2 S0 � �n S, then by de�nition : A; 2 : A 2 � .

However, when for some arbitraryA we have: A; 2 : A 2 � , this does not allow us to

extend our labelS.

Lemma 3.11 There are MCS's� and � , and a setS such that � � S� , and for some

propositional variablep we havep;2 p 2 � but � 6�S[f pg � .

Proof. Consider the model consisting of three pointsx; y and z given in Figure 3.1. Let

� = f A : x 
 Ag and � = f A : y 
 Ag. Sinceq 2 � and (q � : p) 2 � , whatever we take

for S with � � S� , we will never have� � S[f pg� . a

Thus, via the previous two lemmas we see that theS-assuringness between two sets

� � S� can only be automatically extended via� . The next lemma tells us that there are

other ways to `freely extend' a label.

Lemma 3.12 For any logic we have

1. � � S� and S ` A implies � � S[f Ag� ;

2. � � S� implies � � S[ 2 S� .

Proof. For the �rst item�that labels can be closed under derivability�we assume that

S ` A where the notion of derivability depends on the logic in question. Thus, for some

S1; : : : ; Sn 2 S we have S1 ^ : : : ^ Sn ` A. Consequently, ` : A !
W

: Sj and also

` 2 (: A !
W

: Sj ). Thus, if � � S� and (B �
W

: Si _ : A) 2 � , also (B �
W

: Si ) 2 � so

that : B; 2 : B 2 � and we conclude� � S[f Ag� .
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For the second item, we consider(A �
W

: Si _
W

: 2 Sj ) 2 � . But since : 2 Sj � 3 : Sj

and 3 : Sj � : Sj we conclude(A �
W

: Si _
W

: Sj ) so that : A; 2 : A 2 � . a

This Lemma 3.12 tells us that given an extensionIL X of the logic IL , we can freely

extend labels to be closed underIL X-derivability (where IL X is an arbitrary extension of

IL ) and to be closed under necessitation. Thus, we can identify labels withIL X theories.

Moreover, Lemma 3.10 tells us that we can freely close o� a labelS for � � S� under

� �
S . These observations lead us to the de�nition of� -full labels. When the context makes

clear which � is meant, we shall simply speak offull labels.

De�nition 3.13 For � a maximal consistent set we callS a � -full label wheneverS is a

logic extending� �
S .

In concrete,S is a � -full label whenever we have the following:

1. A �
W

: Si 2 � implies : A; 2 : A 2 S;

2. in particular 2 A 2 � implies A 2 S;

3. the labelS is closed under derivability, that is, ifS ` A, then A 2 S;

4. the labelS is closed under necessitation, that is, ifB 2 S, then 2 B 2 S.

If we stick to full labels, there is a close correspondence between theories and labels.

We �nd this observation so essential that we formulate it explicitly as a lemma:

Lemma 3.14 If � � S� and S is a full label, then S is an IL X-theory.

We pose as open question whether for any consistentIL X-theory S we can �nd MCS's

� and � so that � � S� . In case this could be answered in the a�rmative it would be

interesting to know whether the result can be extended to arbitrary chains of increasing

theories.

Full labels contain as many free promises as possible and posses certain nice closure

properties. In particular, we have the following lemma that justify the name `full'.

Lemma 3.15 Given a MCS� and a labelS, then S is � -full if and only if the following

holds:

8T
�

S � T ^ 8 �
�
� � S� ) � � T �

�
=) S = T

�

:

The sets of formulasS and T range here overIL X-theories, and� over MCS's.

Proof. First assume that S is a � -full label and S ( T. We want to show there is a

MCS � with � � S� but � 6�T � . As S ( T, there is someA 2 T for which we have

A =2 S, and therefore, byS being � -full, A =2 � �
S � S. SinceS is a theory alsoS 0 A and

� �
S 0 A. Then there exists a MCS� containing � �

S with A =2 � . Clearly � � S� , and as

: A � : A 2 � ; A 2 T and A =2 � , we see that� 6�T � .
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�

�

� 0 � 3 : p
�

f pg

;

;

Figure 3.2: Downward in�uence

p; q; r
u1v1

p p; q; r
u2 v2

q

r � : p _ : q; : (r � : p); : (r � : q)

f pg f qg

w

Figure 3.3: Incomparable labels

For the other direction assume� �
S 6� S. We want to �nd a theory T � S with

8�
�
� � S� ) � � T �

�
. Take T to be the theory generated byS [ � �

S : it certainly is

bigger than S. Now assume� � S� , but then � � S[ � �
S

� by Lemma 3.10. a

Full labels can at times simplify matters. In particular, they clearly propagate along

successors as expressed by the following lemma.

Lemma 3.16 If � � S� � T � , for some full labelsS and T, then S � T.

Proof. For any Si 2 S we have2 Si 2 � so, by fullness,Si 2 T. a

Thus, this Lemma states that full labels accrue information along the top successor

relation. Does information between related full labels also `re�ect down'? To put it

otherwise, it may be natural to ask if Lemma 3.8, Item 2 (that� � S� � � 0 implies

� � S� 0), can be strengthened. That is to say, suppose we have� � S� � T � 0, can we say

something more than just� � S� 0? As we shall see in the next section, it turns out that

for extensions ofIL we often can. In general this does not seem to hold, at least if we do

not require our labels to be full. Suppose� � ; � � f pg� 0 (see Figure 3.2). Ifp� : p 2 � and

p 2 � 0, there is an MCS� with : p 2 � . Clearly, the fact that we havef pg between� and

� 0 did not stop : p 2 � . Let us mention a question that we do not have a de�nite answer

for. Suppose� � S� � T � 0 and S and T are full labels. Is there a (non-trivial) notion of a

� T-in�uenced formula� such that we may put the T-in�uenced formulas between� and

� 0?

Although a label can be full, this does not mean we can always �nd a maximum among

the possible labels. We shall now exhibit a model that generates maximal consistent sets

� and � with two incomparable labels between them.

Lemma 3.17 There are maximal consistent sets� and � , and labelsS and T with � � S�

and � � T � so that � 6�S[ T � .

Proof. We let S := f pg, T := f qg and consider the model in Figure 3.3. Let� = f A :

w 
 Ag, � 1 = f A : u1 
 Ag and � 2 = f A : u2 
 Ag. Clearly, � 1 = � 2. However, we do

not have � � f p;qg� 1, since this would implyv1 
 q which is not the case. Similarly foru2,

� 2 and p. a
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When � � S� , this enforces many formulas of the form: (A � B) to be in � as we can

see in the next lemma.

Lemma 3.18 Let � � S� with A 2 � and S0 � �n S. We then have

: (A �
_

Si 2 S0

: Si ) 2 � :

Proof. SupposeA �
W

Si 2 S0 : Si 2 � . Then by � � S� we would have: A 2 � which is a

contradiction. Thus, A �
W

Si 2 S0 : Si =2 � and by maximality : (A �
W

Si 2 S0 : Si ) 2 � . a

Conversely, the next lemma will show that given a labelS and maximal consistent set

� we have: if there are su�ciently many negated interpretability formulas related toS in

� , then we can conclude that there exists some MCS� with � � S� .

Theorem 3.19 Let � be an MCS,B a formula andS a set of formulas. If for any choice

of S0 � S we have that : (B �
W

Si 2 S0 : Si ) 2 � , then3 there exists an MCS� such that

� � S� 3 B; 2 : B .

Proof. Suppose for a contradiction there is no such� . Then there is a formula4 A such

that for some Si 2 S we have (A �
W

: Si ) 2 � and B; 2 : B; : A; 2 : A ` ? . Then

` 2 : B ^ B � A _ 3 A, and we get` B � A. As (A �
W

: Si ) 2 � , also (B �
W

: Si ) 2 � .

A contradiction. a

The following lemma is sometimes called a �problem-solving lemma� (see [27]).

Lemma 3.20 Let � be an MCS such that: (B � C) 2 � . Then there is an MCS� such

that � � f: Cg� and B; 2 : B 2 � .

Proof. Taking S = f: Cg in Theorem 3.19. a

The following lemma is sometimes called a �de�ciency solving lemma� (see [27]).

Lemma 3.21 Let � and � be MCS's such thatA � B 2 � � S� 3 A. Then there is an

MCS � 0 such that � � S� 0 3 B; 2 : B .

Proof. First we see that for any choice ofSi , : (B �
W

: Si ) 2 � . Suppose not. Then for

someSi , (B �
W

: Si ) 2 � because� is an MCS. But then (A �
W

: Si ) 2 � and by � � S�

we have: A 2 � . A contradiction. So : (B �
W

: Si ) 2 � for any choice ofSi and we can

apply Theorem 3.19. a
3Lemma 3.18 tells us that we actually haveif and only if .
4There are �nitely many A j such that there exist some formulasSj

i 2 S with (A j �
W

: Sj
i ) 2 � and

2 : B; B; : A j ; 2 : A j ` ? . We can take A to be
W

j A j .
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3.3 Frame conditions and labelling lemmas
In this section we recall what steps there are along the way when constructing a

counter-model to an unprovable formula. We can think of the step-by-step method of

constructing a counter-model used e.g. in [27] for now. In the next chapter we use these

results in order to prove completeness of various systems w.r.t. generalised Veltman se-

mantics. In addition to that, these results have been used in order to prove completeness

and the �nite model property for IL W w.r.t. ordinary Veltman semantics. We do not

include the latter here since the author of the thesis did not contribute to it (this proof

�rst appeared in [11]).

The idea is to build a model from MCS's and de�ne theR and S� accessibility relations

on them, where in particular the R relation is to be de�ned using� . We wish to use

the labels along� to keep track of the promises posed on later added worlds by already

contained interpretability formulas, and, as we shall see, also to be able to ensure we can

�locally satisfy� the frame conditions corresponding to the additional axiom schemas, i.e.

we can close the model under the characteristic property of the schema.

Let W be a multiset of MCS's used in the model we wish to de�ne. The main points

one has to address are the following three:

1. For each� 2 W with : (A � B) 2 � we need to include af: Bg-assuring successor

� in W for which A 2 � .

2. For each� ; � 2 W with C � D 2 � � � 3 C we need to include a� 0 in W for

which � � � 0 3 D. Moreover if � is a T-assuring successor of� then we should be

able to choose� 0 a T-assuring successor of� as well (to carry promises along the

S� relation).

3. We need to make sure all the appropriate frame conditions are satis�ed.

The existence Lemmas 3.20, 3.21 of the previous section ensure existence of MCS's

required to witness modal formulas as speci�ed in Item 1 and Item 2 above. When working

in IL alone, making sure that the frame conditions are satis�ed does not pose any problems

[35], as they are just the basic properties ofR and S� , but with various extensions ofIL

the situation regarding the frame conditions for the additional modal principles becomes

more complicated (cf. [18, 27]). Note that many of these issues disappear when one uses

generalised Veltman semantics, as we shall see in the next chapter. However, ordinary

Veltman semantics is easier to visualise and demonstrate key ideas.

When MCS � 3 D is chosen witnessing a formulaC � D 2 � � � 3 C by Item 2

(Page 39), we want to be able to do so in a way where not only� � � (and the same

formulas are assured), but also� � � . Moreover, if � � T � , it should be possible to
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�

�

� �S�

T
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S [ � �
T

S�

T

Figure 3.4: Ensuring the frame condition for
P

�

�




S�

S [ � �
; S [ � �

;

�

Figure 3.5: Ensuring the frame condition for
M

choose� so that � � T � . Only then it is consistent to draw the � S� � arrow required

by the frame condition, as depicted in Figure 3.4.

To see such requirements are indeed possible to meet, we will prove, for each principle,

a labeling lemma. Labeling lemmas tell us how to label the� relation in a su�cient

way to ensure we can meet the requirements imposed by frame conditions locally. Note

that we do not require labels to be full in the remainder of this chapter; unless stated

otherwise, labels can be any sets of modal formulas, that is, theydo not have to be� -full

for any � .

Principle P. Let us see how frame conditions locally impose requirements on MCS's,

taking IL P as the �rst example. The frame condition forP is the following [18]:

wRw0RuSwv ) uSw0v:

The frame condition forP imposes on MCS's the following:

� � � � � S� � ) � S� � :

Lemma 3.22 For logics containingP we have

� � S� � T � ) � � S[ � �
T

� :

Proof. SupposeC �
W

: Si _
W

A j _ 3 A j 2 � , where2 : A j ; : A j 2 � �
T . Then C �

W
: Si _

W
A j 2 � and thus by P we obtain C �

W
: Si _

W
A j 2 � . Since� � S� we have2

V
Si 2 �

so we obtain C �
W

A j 2 � . But for each A j we have A j �
W

: Tjk 2 � and thus

C �
W

: Tjk 2 � . Since� � T � we conclude: C; 2 : C 2 � . a

In the case of P, a simpler labelling lemma can be used to ensure the frame condition

locally, provided we consider the labels that arefull (S a � -full label, and T a � -full

label).
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Lemma 3.23 For logics containingP we have

� � S� � T � ) � � T �

Proof. Assume� � S� � T � , and C �
W

: Ti 2 � . Then by P we know C �
W

: Ti 2 � .

Since� � T � we conclude: C; 2 : C 2 � . a

Note that the lemma is true in the case of ordinary labels, but in that case, the previous

lemma gives us more precise labelling information to ensure the frame condition locally.

This is because only for full labels we in fact haveS [ � �
T � T.

Principle M. The frame condition forM is the following [18]:

wRuSwvRz ) uRz:

The frame condition forM imposes on MCS's the following:

� S� � � 
 ) � � 
 :

When MCS � 3 D is chosen witnessing a formulaC � D 2 � � � 3 C by Item 2

(Page 39), we want to do so in such a way that whenever we later need to add a MCS


 with � � 
 , we can also draw the� � 
 arrow. Therefore, we need to ensure� 2
;

along the� � � arrow (as we remarked previously, one can think of the set� 2
; as simply

f 2 C j 2 C 2 � g), we achieve this by ensuring� 2
; along the � � � arrow. The situation

is depicted in Figure 3.5. The corresponding labelling lemma is the following:

Lemma 3.24 For logics containingM we have� � S� ) � � S[ � 2
;
� .

Proof. Assume that for some2 Cj 2 � 2
; we have(A �

W
: Si _

W
: 2 Cj ) 2 � . By M,

(A ^
V

2 Cj �
W

: Si ) 2 � , whence� : (A ^
V

2 Cj ) 2 � . As
V

2 Cj 2 � , we conclude

: A; 2 : A 2 � . a

In the case ofM, we have no simpler labelling lemma in caseS is a � -full label.

Principle M0. The frame condition forM0 is the following [27]:

wRuRxSwvRz ) uRz:

The frame condition forM0 imposes on MCS the following:

� � � � � 0S� � � 
 ) � � 
 :
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Figure 3.7: Ensuring the frame condition for
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When MCS � 3 D is chosen to witness a formulaC � D 2 � � � � � 0 3 C by Item

2 (Page 39), we want to do so in such a way that whenever we later need to add a MCS


with � � 
 , we can also draw the� � 
 arrow. Therefore, we again need to ensure� 2
;

along the � � � arrow. The situation is depicted in Figure 3.6, and the corresponding

labelling lemma is the following (as before, we do not have a special lemma in case the

labels are full):

Lemma 3.25 For logics containingM0 we have� � S� � � 0 ) � � S[ � 2
;
� 0.

Proof. SupposeC �
W

: Si _
W

3 A j 2 � , where 2 : A j 2 � 2
; . By M0 we obtain 3 C ^

V
2 : A j �

W
: Si 2 � . So, since� � S� and

V
2 : A j 2 � we obtain 2 : C 2 � and thus

2 : C; : C 2 � 0. a

Principle R. Last we will look at a more complicated case ofIL R.

The frame condition for the principleR is the following [28]:

wRxRySwy0Rz ) ySxz:

On MCS's the condition imposes the following:

� � � � � S� � � 
 ) � S� 
 :

The frame condition is depicted in Figure 3.7. Assume� 3 D was chosen as a witness

for C � D 2 � R� 3 C. Since � lies T-assuring above� , we should not only make

sure that � lies S-assuring above� , but also that any successor
 of � lies T-assuring

above � . Only then we would be justi�ed to draw the required� S� 
 arrow. One way

to guarantee� � T 
 is to ensure� 2
T along the � � � arrow: wheneverB �

W
: Ti 2 � , we

have 2 : B 2 � 2
T and this puts 2 : B 2 � and 2 : B; : B 2 
 as required.

The corresponding labelling lemma is the following:

Lemma 3.26 For logics containingR we have� � S� � T � ) � � S[ � 2
T
� .
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Proof. We considerA such that for someSi 2 S and some2 : A j 2 � 2
T , we have(A �

W
: Si _

W
3 A j ) 2 � . By R we obtain (: (A �

W
A j ) �

W
: Si ) 2 � , thus by � � S� we get

(A �
W

A j ) 2 � . As (A j �
W

: Tkj ) 2 � , also (A �
W

: Tkj ) 2 � . By � � T � we conclude

� : A 2 � . a

In the case ofR, a simpler labelling lemma can be used to ensure the frame condition

locally if T is � -full:

Lemma 3.27 For logics containingR we have� � S� � T � ) � � S[ 2 T � .

Proof. AssumeA �
W

: Si _
W

: 2 Tj 2 � . Then, by R, we obtain : (A �
W

: Tj ) �
W

: Si 2 �

and by � � S� we know� (A �
W

: Tj ) 2 � , and � : A 2 � as required. a

As before in the case of logics containingP and Lemma 3.23, this lemma ensures the

frame condition locally provided the labels are full: for in this case� �
T � T and therefore,

becauseT is a theory, � 2
T � 2 T, and consequentlyS [ � 2

T � S [ 2 T. Thus, su�cient

information is carried by the composed label.

Principle W. Let us state two existence lemmas forIL W, a logic for which only second-

order frame properties are known ([28], [49]).

We do not know if there is a labelling lemma for this logic in the same sense as before.

However, we know that the following lemmas are su�ciently strong for completeness

proofs w.r.t. both ordinary and generalised semantics (see [11] and the following chapter).

Lemma 3.28 Suppose� is an IL W-MCS. Suppose: (A � B) 2 � . There exists some

IL W-MCS � with � � f 2 : A; : B g � and A 2 � .

Proof. Suppose for a contradiction that there is no such� . Then there are �nitely many

formulas E i such that (E i � 3 A _ B) 2 � and A; f: E i ; 2 : E i gi ` ? . Let E =
W

i E i . By

IL and maximal consistency we have(E � 3 A _ B) 2 � and A; : E; 2 : E ` ? . Thus,

` A � E. Then (A � 3 A _ B) 2 � and by the principle W we haveA � B 2 � . The

contradiction. a

Lemma 3.29 For logics containingW we have that if B � C 2 � � S� 3 B then there

exists � with � � S[f 2 : B g� 3 C; 2 : C.

Proof. Suppose for a contradiction that no such� exists. Then for some formulaA

with (A �
W

: Si _ 3 B) 2 � , we get C; 2 : C; : A; 2 : A ` ? , whence` C � A. Thus,

B � C � A �
W

: Si _ 3 B 2 � . By W, B �
W

: Si 2 � which contradicts � � S� 3 B . a

In this chapter we introduced the main tool we use in our completeness proof with

respect to generalised Veltman semantics, the assuring labels. There is a bit more to labels

than what has been said here: in particular, at one point we will be needingiterated label

systems. For the most part of the following chapter (on completeness) what we've seen

so far will su�ce. Thus, we will return to discussing labels near the end of the following

chapter, when a new approach is required.
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Modal completeness

The aim of this chapter is to explore modal completeness with respect to generalised

Veltman semantics. We will �rst say a few words on the history of modal completeness

proofs concerning interpretability logics.

The content of this chapter, except for the �nal section, is largely taken from the recent

paper [50]. If not stated otherwise, it is safe to assume that those results and proofs are

taken from [50]. The content of [50] is copyrighted by Cambridge University Press.

The content of the �nal section is largely taken from the preprint [26].

Introduction
In this chapter, and in fact in the whole thesis, the only notion of semantic com-

pleteness we discuss is that of weak completeness. More precisely, letX be any (possibly

empty) set of modal formulas andIL X the result of extending the base logicIL with

X. Let C(X) be the characteristic class ofIL X w.r.t. ordinary Veltman semantics, i.e.

C(X) = f F : F is an ordinary Veltman frame andF 
 Xg. We say that IL X is complete

w.r.t. ordinary Veltman semantics if for all formulasA we have that: C(X) 
 A implies

IL X ` A.

We de�ne completeness w.r.t. generalised semantics similarly, by replacing �ordinary�

with �generalised� in the preceding de�nition.

Note that we do not have any sort of strong completeness result for any conservative

extension ofGL (which includes all logics studied in this thesis), since the counterex-

amples forGL (see e.g. [5]) are also counterexamples for such extensions. Since forGL

this issue can be overcome by switching to topological semantics, it is possible that with

topological semantics we have strong completeness for interpretability logics. However, at

the time of writing, topological semantics for interpretability logics has not been studied,

and the formulation of a strongly complete semantics for interpretability logics is an open

problem.

De Jongh and Veltman proved the completeness ofIL , IL M and IL P w.r.t. the corre-

sponding characteristic classes of ordinary (and �nite) Veltman frames in [18]. As is usual
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for extensions of the provability logicGL , all completeness proofs su�er from compactness-

related issues. One way to go about this is to de�ne a (large enough) adequate set of

formulas and let worlds be maximal consistent subsets of such sets (used e.g. in [18]).

With interpretability logics and ordinary Veltman semantics, worlds have not been iden-

ti�ed with (only) sets of formulas. It seems that with ordinary Veltman semantics it is

sometimes necessary to duplicate worlds (that is, have more than one world correspond

to a single maximal consistent set) in order to build models for certain consistent sets (see

e.g. [18]). In [19], de Jongh and Veltman proved completeness of the logicIL W w.r.t. its

characteristic class of ordinary (and �nite) Veltman frames.

Goris and Joosten, inspired by Dick de Jongh, introduced a more robust approach

to proving completeness of interpretability logics, theconstruction method [27, 28]. In

this type of proofs, one builds models step by step1, and the �nal model is retrieved as a

union. While closer to the intuition and more informative than the standard proofs, these

proofs are hard to produce and verify due to their size. (They might have been shorter

if assuring labels�see the previous chapter or [11, 26]�have been used from the start.)

For the purpose for which this type of proofs was invented (completeness ofIL M0 and

IL W� w.r.t. the ordinary semantics), this type of proofs is still the only known approach

that works.

In [50] a very direct type of proofs of completeness is presented; similar to [18] in the

general approach, but this time with respect to generalised Veltman semantics. The so-

called assuring labelsfrom [11, 26] were used as a key step (in this thesis, assuring labels

are studied in the preceding chapter). These completeness proofs are the ones that we aim

to explore here. An example that illustrates bene�ts of using the generalised semantics

will be given in the subsection dedicated toIL M0. The most interesting of these results

are completeness ofIL R and IL P0. The principle R is important because it forms the

basis of the, at the moment, best explicit candidate forIL (All). Results concerning the

principle IL P0 are interesting in a di�erent way; they answer an old question: is there an

unravelling technique that transforms generalisedIL X-models to ordinary IL X-models,

that preserves satisfaction of relevant characteristic properties? The answer isno: IL P0

is complete w.r.t. generalised Veltman semantics, but it is known to be incomplete w.r.t.

the ordinary semantics ([28]).

4.1 Preliminaries
In what follows, �formula� will always mean �modal formula�. A maximal consistent

set w.r.t. IL X will be called anIL X-MCS. We require the notion ofassuring labels(Def-

inition 3.4) which was originally introduced in [11] (see also [26]). However, here we use

1In [8] the term �step-by-step method� is coined for this type of proofs. Even before that, this was
known as Completeness by constructionin a reader from de Jongh and Veltman [20]. See also [7] and
[21].
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a slightly modi�ed version of this notion. The di�erence is a new strategy of ensuring

converse well-foundedness for the relationR. Instead of asking for the existence of some

3 F 2 w n u wheneverwRu, as is usual in the context of provability (and interpretabil-

ity) logics, we will go for a stronger condition (see De�nition 4.6). Since we will later

put R := � , this choice of ours is re�ected already at this point, in the de�nition of an

assuring successor.

De�nition 4.1 ([11], a slightly modi�ed De�nition 3.1) Let w and u be someIL X-MCS's,

and let S be an arbitrary set of formulas. We writew � S u if for any �nite S0 � S and

any formula A we have thatA �
W

G2 S0 : G 2 w implies : A; � : A 2 u:

We will also require the notationw�
S and w�

S (see De�nition 3.7). Note that with the

new de�nition of � S, we have the following:w � S u if and only if w�
S � u. Recall that

sincew is maximal consistent, use ofw2
; usually amounts to the same as the use of the

set f � A : � A 2 wg.

We will usually write w � u instead ofw � ; u. This should not be confused with the

standard notion of a predecessor/successor that can be found in the literature (in virtually

all sources that deal with the relation between syntax and semantics of interpretability

logics, including the previous chapter of this thesis), which usually requires an additional

property that there is some3 F 2 w n u wheneverw � u.

We will often require properties stated in lemmas 3.6 and 3.8. Here we emphasise that

these properties hold with the new de�nition of assuringness. We will use these properties

tacitly in the remainder of this chapter.

Lemma 4.2 ([11], Lemma 3.2) Letw, u and v be someIL X-MCS's, and let S and T be

some sets of formulas. It follows that:

a) if S � T and w � T u, then w � S u;

b) if w � S u � v, then w � S v;

c) if w � S u, then S � u.

We need two lemmas that can be used to construct (or in our case, �nd) an MCS with

the required properties. We already discussed them (see lemmas 3.20 and 3.21) in the

previous chapter, but here we stress that they hold with our de�nition of the relation� S:

Lemma 4.3 ([11], Lemma 3.4) Letw be anIL X-MCS, and let : (B � C) 2 w: Then there

is an IL X-MCS u such that w � f: Cg u and B; � : B 2 u:

Lemma 4.4 ([11], Lemma 3.5) Letw and u be someIL X-MCS's such that B � C 2 w;

w � S u and B 2 u: Then there is anIL X-MCS v such that w � S v and C; � : C 2 v:

We need a notion of adequacy which is mainly used to specify how far we want the

truth lemma to stretch.
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De�nition 4.5 We say a set� is adequateif it is a �nite set of formulas that is closed

under taking subformulas and single negations, and> 2 � .

Any �nite set of formulas can be extended to some adequate set.

In the remainder of this chapter, we will assume thatD always stands for an adequate

set. The following de�nition is central to most of the results of this chapter.

De�nition 4.6 Let X be a subset off M, M0, P, P0, Rg. We say that M = ( W; R; f Sw :

w 2 Wg; V) is the IL X-structure for a set of formulasD if:

W := f w : w is an IL X-MCS and for someG 2 D ; G ^ � : G 2 wg;

wRu :, w � u;

uSwV :, wRu and, V � R[w] and, (8S)(w � S u ) (9v 2 V)w � S v);

w 2 V(p) :, p 2 w:

We note that the IL X-structure for D is a unique object. In fact, we could work

with just one � IL X-structure� (that would not depend even onD): the disjoint union of

IL X-structures for all choices ofD. We also observe that the de�nition entails that when

uSwV, then V 6= ; sincewRu implies w � ; u, so there isv 2 V with w � ; v.

Notice that worlds in the de�nition above are somewhat more restricted than what is

usually found in similar proofs: every world is required to beR-maximal with respect to

some formula. That is, for every worldw 2 W we want to have a formulaGw such that

w 
 Gw and for any R-successoru of w, u 1 Gw . This is equivalent to the requirement

that for some formulaGw , w 
 Gw ^ 2 : Gw . Of course, before we prove our truth lemma

we can only require thatGw ^ 2 : Gw 2 w. Because of this we need the following lemma

whose proof boils down to an instance of Löb's axiom.

Lemma 4.7 If IL X 0 : A then there is anIL X-MCS w such that A ^ � : A 2 w:

Proof. We are to show thatf A ^ � : Ag is an IL X-consistent set. SupposeA; � : A ` ? :

It follows that ` � : A ! : A: Applying generalisation (necessitation) gives̀ � (� : A !

: A): The Löb axiom implies` � : A: Now, ` � : A and A; � : A ` ? imply A ` ? ; i.e.

` : A; a contradiction. a

We are now ready to prove the main lemma of this section, which tells us that the

structure de�ned in De�nition 4.6 really is a generalised Veltman model. Notice that we

do not claim that it is also an IL setX-model; we prove that later. Recall that ifB is a

formula, and w a world in a generalised Veltman model, we write[B ]w for f u : wRu and

u 
 Bg.

Lemma 4.8 Let X be a subset off M, M0, P, P0, Rg. The IL X-structure M for a set

of formulas D is a generalised Veltman model. Furthermore, the following truth lemma

holds:

M ; w 
 G if and only if G 2 w;
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for all G 2 D and w 2 W:

Proof. Let us verify that the IL X-structure M = ( W; R; f Sw : w 2 Wg; 
 ) for D is a

generalised Veltman model. SinceIL X 0 ? and > 2 D , Lemma 4.7 impliesW 6= ; .

Transitivity of R is immediate. To see converse well-foundedness, assume there are more

than jDj worlds in an R-chain. Then there arex and y with xRy and for someG 2 D ,

G; � : G 2 x; y. However, � : G 2 x and G 2 y obviously contradict the assumption

that xRy (x � y). Next, let us prove the properties ofSw for w 2 W. Clearly Sw �

R[w] � P (R[w]). If xSwV, then w � ; x implies there is at least one elementv in V (with

w � ; v). Quasi-re�exivity and monotonicity are obvious. Next, assumewRxRu and

w � S x. Lemma 4.2 andw � S x � u imply w � S u: Thus, xSw f ug. It remains to prove

quasi-transitivity. Assume xSwV and vSwUv for all v 2 V. Put U =
S

v Uv. We claim

that xSwU. We haveU � R[w]. Assumew � S x. This and xSwV imply there is v 2 V

such that w � S v. This and vSwUv imply there is u 2 Uv (thus also u 2 U) such that

w � S u. Let us prove the truth lemma with respect to the formulas contained inD. The

claim is proved by induction on the complexity ofG 2 D : We will only consider the case

G = B � C: AssumeB � C 2 w, wRu and u 
 B: Induction hypothesis impliesB 2 u:

We claim that uSw [C]w . Clearly [C]w � R[w]. Assumew � S u. Lemma 4.4 implies there

is an IL X-MCS v with w � S v and C; � : C 2 v (thus also wRv and v 2 W). Induction

hypothesis impliesM ; v 
 C. To prove the converse, assumeB � C =2 w. Lemma 4.3

implies there isu with w � f: Cg u and B; � : B 2 u (thus u 2 W). It is immediate that

wRu and the induction hypothesis implies thatu 
 B . AssumeuSwV: We are to show

that V 1 C. Sincew � f: Cg u and uSwV, there is v 2 V such that w � f: Cg v. Lemma

4.2 implies: C 2 v: The induction hypothesis impliesv 1 C; thus V 1 C. a

Theorem 4.9 Let X � f M; M0; P; P0; Rg. Assume that for every setD the IL X-structure

for D possesses the property (X)gen. Then IL X is complete w.r.t. IL setX-models.

Proof. Let A be a formula such thatIL X 0 : A. Lemma 4.7 implies there is anIL X-

MCS w such that A ^ � : A 2 w: Let D have the usual properties, and containA. Let

M = ( W; R; f Sw : w 2 Wg; V) be the IL X-structure for D. SinceA ^ � : A 2 w and

A 2 D , we havew 2 W. Lemma 4.8 impliesM ; w 1 : A: a

The logic IL is the logic of all Veltman frames (both ordinary or generalised). Thus

we immediately have the following:

Corollary 4.10 The logic IL is complete w.r.t. generalised Veltman semantics.

In the next section we comment on the completeness of the following logics w.r.t.

generalised Veltman semantics:IL M, IL M0, IL P, IL P0, IL R, IL W and IL W� .

In the end we will explore the logicIL WR, and another proof for IL P. The logic

IL WR is explored in more detail in the last chapter of this thesis.
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4.1.1 A note on generalised Veltman semantics and labelling

Labels are primarily a syntactic notion. However, there is an aspect of their interaction

with generalised semantics that is not present when working with ordinary semantics. In

this subsection we comment on this�there are no directly usable implications obtained

here; still, we think it's an interesting property both of labelling and generalised semantics.

In all studied extensions ofIL we have to duplicate maximal consistent sets when

building ordinary Veltman models for consistent sets of formulas. More accurately, no

one seems to have come up with a natural way of assigning just one purpose to every

maximal consistent set of formulas. For example, when building a model wheref: (p �

q); : (p� r ); p� (q_ r )g is true in some worldw, we could try to use the same set/worldu

visible from w as a witness for the formulas: (p� q) and : (p� r ) in w. For example, this

may be the set where the only propositional formula isp, and no formula of form: (A � B)

is contained. But, due top � (q_ r ), in any model wherew is present, we do require two

worlds like u within that model. One of these worlds will have anSw-successor satisfying

q but not r , and the other one anSw-successor satisfyingr but not q.

Generalised Veltman semantics doesn't share this problem of duplication, at least not

in any known case of a complete extension ofIL . A generalised model for the problem

above is simple. Letw = f: (p � q); : (p � r ); p � (q _ r )g, u = f pg, x = f qg, y = f rg,

and let wRuSw f x; yg. Unspeci�ed propositional formulas are assumed to be false, and

unspeci�ed � -formulas are assumed to be true.

Now, having in mind this generalised model, what can be said about thewRu transi-

tion in terms of labels? This might be important if we are building a generalised model

step-by-step. Sinceu has two roles, it would be natural to allow (even with assuringness)

two labels: f: qg and f: r g. Note that the Sw from De�nition 4.6 indeed takes multiple

labels into account. And these labels are justi�ed, since indeedf x; yg 1 q; r. Both these

labels are expressible without sets (in terms of criticality, for example, the labels would

be formulasq, and r , respectively).

However, there is another bit of label-related information that these facts do not

express: which labelsdo not hold. Although f: qg and f: r g are justi�ed choices, the

label f: q;: r g is not a good choice. This label would require: p =2 u, which is clearly

not the case. This is the information the assuringness allows us to express, and criticality

does not. Granted, one might say that the inadequacy of the assuring labelf: q;: r g

is equivalent to the inadequacy of the critical labelq _ r . However, expressing this fact

in terms of criticality does not retain structural information of our situation; we see a

disjunction where really we are only interested in disjuncts. Note that such a situation

cannot happen in ordinary semantics: if the labelf: q;: r g is inappropriate for somewRu

transition, that means there isA 2 u with A � q_ r 2 w. This, since we are now working

in ordinary semantics, means there should be anSw-successor ofu satisfying q _ r . So,
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either this new world satis�esq or r . So, f: qg or f: r g had to be inappropriate labels

(for wRu) too.
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4.2 Completeness results
We have seen an easy proof thatIL is complete w.r.t. generalised Veltman semantics.

In this section we explore completeness proofs for various extensions ofIL .

Note that we can always reuse completeness results for ordinary semantics (when

such result exists), as the following proposition shows. In this proposition we reuse the

construction gen(M ) from [73].

De�nition 4.11 ([73]) Let M = ( W; R; S; V) be an arbitrary ordinary Veltman model.

We de�ne a generalised modelgen(M ) = ( W; R; S0; V) where uS0
wV if and only if V �

R[w] and for somev 2 V we haveuSwv.

Proposition 4.12 Let X be a (possibly empty) set of arbitrary modal formulas. If the

logic IL X is complete w.r.t. ordinary Veltman semantics, it is also complete w.r.t. gener-

alised Veltman semantics.

Proof. SupposeIL X 0 A. Then there is anIL X-model M = ( W; R; S; V) and w 2 M

such that w 1 A. Let M 0 = gen(M ). See [70] for the proof thatM 0 really is a generalised

Veltman model and that the truth values are preserved everywhere.

It remains to check if the frameF0 of M 0 is an IL setX-frame. By de�nition, this is

the case if and only if for all theoremsA of IL X we haveF0 
 A. Note that for all

theorems A of IL X we have F 
 A, where F is the frame of M . Take an arbitrary

valuation U � W � Prop (Prop is the set of all propositional variables) and we claim that

(F0; U) 
 A. Clearly (F; U) 
 A. Now, the same construction as above (withU instead

of V) results in the model(F0; U) (the de�nition of F0 does not depend on a valuation).

And we have seen that truth values coincide, so(F0; U) 
 A, as required. a

See Subsection 4.2.4 regarding the failure of the converse of the preceding claim.

4.2.1 The logic ILM

Completeness of the logicIL M w.r.t. generalised Veltman semantics is an easy conse-

quence (see Proposition 4.12) of the completeness ofIL M w.r.t. the ordinary semantics,

�rst proved by de Jongh and Veltman ([18]). Another proof of the same result was given

by Goris and Joosten, using the construction method ([28, 36]).

The frame condition wRxSwyRz ) xRz for M is re�ected in its labelling lemma,

Lemma 3.24:

R. Verbrugge determined the characteristic property (M)gen in [62]:

uSwV ) (9V 0 � V )(uSwV 0 & R[V 0] � R[u]):

The following lemma holds for our de�nition of � S too.
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Lemma 4.13 ([11], Lemma 3.7) Letw and u be someIL M-MCS's, and letS be a set of

formulas. If w � S u then w � S[ u �
;

u.

When we combine this with the main result of the previous section we get a simple

and succinct completeness proof.

Theorem 4.14 The logic IL M is complete w.r.t. IL setM-models.

Proof. Given Theorem 4.9, it su�ces to show that for any setD, the IL M-structure for

D possesses the property (M)gen: uSwV ) (9V 0 � V )(uSwV 0 & R[V 0] � R[u]. Let

(W; R; f Sw : w 2 Wg; V) be the IL M-structure for D:

Let uSwV and take V 0 = f v 2 V : w � u �
;

vg. We claim uSwV 0 and R[V 0] � R[u]:

Supposew � S u. Lemma 4.13 impliesw � S[ u �
;

u: SinceuSwV, by De�nition 4.6, there

is v 2 V with w � S[ u �
;

v: So,v 2 V 0. Thus, uSwV 0.

Now let v 2 V 0 and z 2 W be such thatvRz. Sincev 2 V 0, we knoww � u �
;

v. Then

for all � B 2 u we have� B 2 v: Since vRz, we haveB; � B 2 z. So, u � z and by

De�nition 4.6 uRz. a

4.2.2 The logic ILM0

Modal completeness ofIL M0 w.r.t. ordinary Veltman semantics was proved in [27] by

Goris and Joosten. Certain di�culties encountered in this proof were our main motivation

for using generalised Veltman semantics. We will sketch one of these di�culties and show

in what way the generalised semantics overcomes it. Characteristic property (M0)gen (see

[49]):

wRuRxSwV ) (9V 0 � V )(uSwV 0 & R[V 0] � R[u])):

The frame condition wRxRySwuRz ) xRz for M0 is re�ected in its labelling lemma,

Lemma 3.25, which holds for our de�nition of� S too:

Lemma 4.15 ([11], Lemma 3.9) Letw, u and x be IL M0-MCS's, andS an arbitrary set

of formulas. If w � S u � x then w � S[ u �
;

x.

To motivate our way of proving completeness (ofIL M0, but also in general) w.r.t.

generalised Veltman semantics, let us sketch a situation for which there are clear bene�ts

in working with generalised Veltman semantics. We do this only now becauseIL M0 is

su�ciently complex to display some of these bene�ts. Suppose we are building models

step-by-step (as in theconstruction methodfrom [27]), and worldsw, u1, u2 and x occur

in the con�guration displayed in Figure 4.1. Furthermore, suppose we need to produce

an Sw-successorv of x.

With the ordinary semantics, we need to ensure that for ourSw-successorv, for each

� B1 2 u1 and � B2 2 u2, we have� B1; � B2 2 v. It is not obvious that such a construction

is possible. In case ofIL M0, it was successfully solved in [27] by preserving the invariant
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Figure 4.1: Left: extending an ordinary Veltman model. Right: extending a generalised
Veltman model. Straight lines representR-transitions, while curved lines representSw-
transitions. Full lines represent the starting con�guration, and dashed lines represent the
transitions that are to be added. This �gure is also taken from [50].

that sets of boxed formulas inui are linearly ordered. This way, �nite (quasi-)models can

always be extended by only taking the lastui into consideration.

With generalised Veltman semantics, we need to produce a whole set of worldsV, but

the requirements from the frame conditionwRuRxSwV ) (9V 0 � V )(uSwV 0 & R[V 0] �

R[u])) on each particular world are less demanding. For eachui , there has to be a

correspondingVi � V with � B i contained (true) in every world ofVi . Lemma 4.15 gives

a recipe for producing such worlds.

Theorem 4.16 The logic IL M0 is complete w.r.t. IL setM0-models.

Proof. Given Theorem 4.9, it su�ces to show that for any setD, the IL M0-structure for

D possesses the property (M0)gen. Let (W; R; f Sw : w 2 Wg; 
 ) be the IL M0-structure

for D: AssumewRuRxSwV and take V 0 = f v 2 V : w � u �
;

vg. We claim that uSwV 0

and R[V 0] � R[u]. Obviously V 0 � V � R[w]: Assume w � S u. Lemma 4.15 and

w � S u � x imply w � S[ u �
;

x. Now xSwV and the de�nition of Sw imply there is v 2 V

such that w � S[ u �
;

v. Lemma 4.2 impliesw � u �
;

v: So, v 2 V 0: It remains to verify that

R[V 0] � R[u]. Let v 2 V 0 and z 2 W be worlds such thatvRz. Sincew � u �
;

v, for all

� B 2 u we have� B 2 v, and sincevRz, it follows that � B; B 2 z. Thus, u � z i.e.

uRz: a

4.2.3 The logic ILP

As in the case of the logicIL M, the completeness ofIL P w.r.t. the generalised seman-

tics is an easy consequence of the completeness ofIL P w.r.t. the ordinary semantics, �rst

proved by de Jongh and Veltman [18]. Verbrugge determined the characteristic property

(P)gen in [62]:

wRw0RuSwV ) (9V 0 � V ) uSw0V 0:

The labelling lemma, Lemma 3.22, holds for our de�nition of� S too.
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Lemma 4.17 ([11] Lemma 3.8) Letw, x and u be someIL P-MCS's, and letS and T be

arbitrary sets of formulas. Ifw � S x � T u then w � S[ x �
T

u.

Theorem 4.18 The logic IL P is complete w.r.t. IL setP-models.

Proof. Given Theorem 4.9, it su�ces to show that for any setD, the IL P-structure for D

possesses the property (P)gen. Let (W; R; f Sw : w 2 Wg; 
 ) be the IL P-structure for D:

Let wRw0RuSwV and take V 0 = V \ R[w0]. We claim uSw0V 0: Let T be arbitrary such

that w0 � T u. Lemma 4.17 andw � ; w0 � T u imply w � w0�
T

u: Now, uSwV implies that

there is a v 2 V with w � w0�
T

v. Let A � :
V

T0 2 w0 for some �nite T0 � T. Then

: A; � : A 2 w0�
T . Lemma 4.2 andw � w0�

T
v imply : A; � : A 2 v. Thus, w0 � T v. Finally,

V 0 � R[w0] holds by assumption, thusuSw0V 0. a

4.2.4 The logic ILP0

The interpretability principle P0 = A � 3 B ! � (A � B) is introduced in J. Joosten's

master thesis in 1998. In [28] it is shown that the interpretability logicIL P0 is incomplete

w.r.t. Veltman models. Since we will show thatIL P0 is complete w.r.t. the generalised

semantics, this is the �rst example of an interpretability logic complete w.r.t. the gener-

alised semantics, but incomplete w.r.t. the ordinary semantics. Characteristic property

(P0)gen was determined in [28]. A slightly reformulated version:

wRxRuSwV & ( 8v 2 V)R[v] \ Z 6= ; ) (9Z 0 � Z )uSxZ 0:

The following technical lemma is almost obvious.

Lemma 4.19 Let x be an IL X-MCS, A a formula, and T a �nite set of formulas. Let

BG be an arbitrary formula, and TG an arbitrary �nite set of formulas, for every G 2 T.

Furthermore, assume:

a) A �
W

G2 T BG 2 x;

b) (8G 2 T) BG �
W

H 2 TG
: H 2 x.

Then we haveA �
W

H 2 S0 : H 2 x, whereS0 =
S

G2 T TG.

Proof. Let G 2 T. SinceTG � S0, clearly `
W

H 2 TG
: H �

W
H 2 S0 : H . The requirement b)

and the axiom (J2) imply BG �
W

H 2 S0 : H 2 x. Now jTj � 1 applications of the axiom

(J3) give
W

G2 T BG �
W

H 2 S0 : H 2 x. Finally, apply the requirement a) and the axiom

(J2). a

Next we need a labelling lemma forIL P0. This is where we use the technical lemma

above.
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Lemma 4.20 Let w, x and u be someIL P0-MCS's, and let S be a set of formulas. If

w � x � S u then w � x �
S

u.

Proof. Let A be an arbitrary formula. Let T � x �
S be a �nite set such that A �

W
G2 T : G 2

w: We will prove that : A; � : A 2 u: If G 2 T (� x �
S ), then G = � : BG, for some formula

BG. Thus A �
W

G2 T : � : BG 2 w, and by easy inferences and maximal consistency:

A �
W

G2 T 3 BG 2 w, and A � 3
W

G2 T BG 2 w. Applying P0 gives� (A �
W

G2 T BG) 2 w.

The assumptionw � x implies A �
W

G2 T BG 2 x: For eachG 2 T (� x �
S ) there is a �nite

subsetTG of S such that BG �
W

H 2 TG
: H 2 x: Let S0 =

S
G2 T TG: Clearly S0 is a �nite

subset ofS: Lemma 4.19 impliesA �
W

H 2 S0 : H 2 x: Finally, S0 � S and the assumption

x � S u imply : A; � : A 2 u: a

The following simple observation is useful both forIL P0 and IL R.

Lemma 4.21 Let w, x, v and z be someIL X-MCS's, and let S be a set of formulas. If

w � x �
S

v � z then x � S z.

Proof. Let S0 be a �nite subset of S with A �
W

G2 S0 : G 2 x. Then � : A 2 x �
S . Now

w � x �
S

v and Lemma 4.2 imply� : A 2 v. Sincev � z, we have: A; � : A 2 z. a

Theorem 4.22 The logic IL P0 is complete w.r.t. IL setP0-frames.

Proof. Given Theorem 4.9, it su�ces to show that for any setD, the IL P0-structure for

D possesses the property (P0)gen. Let (W; R; f Sw : w 2 Wg; 
 ) be the IL P0-structure for

D: AssumewRxRuSwV and R[v] \ Z 6= ; for eachv 2 V. We will prove that there is

Z 0 � Z such that uSxZ 0. Let S be a set of formulas such thatw � x � S u. Lemma 4.20

implies w � x �
S

u: SinceuSwV, there is v 2 V such that w � x �
S

v: SinceR[v] \ Z 6= ; ,

choose a worldzS 2 R[v] \ Z . Now w � x �
S

v � zS and Lemma 4.21 implyx � S zS. Put

Z 0 = f zS : S is a set of formulas such thatx � S ug. Clearly Z 0 � Z: So, Z 0 � R[x], and

since for each setS such that x � S u we havex � S zS, it follows that uSxZ 0: a

In [62] and [73] a possibility was explored of transforming a generalised Veltman model

to an ordinary Veltman model, such that these two models are bisimilar (in some aptly

de�ned sense). A natural question is whether such transformation exists if we add the

requirement that characteristic properties are preserved. The example ofIL P0 shows that

there areIL setP0-models with no (bisimilar or otherwise) counterpartIL P0-models.

4.2.5 The logic ILR

Completeness ofIL R w.r.t. ordinary Veltman semantics is an open problem (see [11]).

In this subsection we will prove that IL R is complete w.r.t. the generalised semantics.

Characteristic property (R)gen was determined in [28]. A slightly reformulated version:

wRxRuSwV ) (8C 2 C(x; u))( 9U � V)(xSwU & R[U] � C);
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whereC(x; u) = f C � R[x] : (8Z )(uSxZ ) Z \ C 6= ; )g is the family of �choice sets�.

The following lemma holds for our de�nition of � S too.

Lemma 4.23 ([11], Lemma 3.10) Letw, x and u be someIL R-MCS's, and let S and T

be arbitrary sets of formulas. Ifw � S x � T u then w � S[ x �
T

u:

Theorem 4.24 The logic IL R is complete w.r.t. IL setR-models.

Proof. Given Theorem 4.9, it su�ces to show that for any setD, the IL R-structure for D

possesses the property (R)gen. Let (W; R; f Sw : w 2 Wg; 
 ) be the IL R-structure for D:

AssumewRxRuSwV and C 2 C(x; u). We are to show that(9U � V)(xSwU & R[U] �

C). We will �rst prove an auxiliary claim:

(8S)
�
w � S x ) (9v 2 V)(w � S[ x �

;
v & R[v] � C)

�
:

So, let S be arbitrary such that w � S x, and suppose (for a contradiction) that for

every v 2 V with w � S[ x �
;

v, we haveR[v] * C, that is, there is somezv 2 R[v] n C.

Let Z = f zv : v 2 V; w � S[ x �
;

vg: We claim that uSxZ. Let T be arbitrary such

that x � T u, and we should prove that there existsz 2 Z such that x � T z: From

w � S x � T u and Lemma 4.23 it follows thatw � S[ x �
T

u. SinceuSwV, there is v 2 V

with w � S[ x �
T

v. Now, x �
; � x �

T and Lemma 4.2 implyw � S[ x �
;

v, so there is a world

zv 2 Z as de�ned earlier. Furthermore,w � x �
T

v � zv and Lemma 4.21 implyx � T zv.

To prove uSxZ it remains to verify that Z � R[x]. Let zv 2 Z be arbitrary and apply

Lemma 4.2 and Lemma 4.21 as before. Now,uSxZ and C 2 C(x; u) imply C \ Z 6= ; ,

contradicting the de�nition of Z . This concludes the proof of the auxiliary claim. Let

U = f v 2 V : w � x �
;

v and R[v] � Cg. Auxiliary claim implies U 6= ; . If w � S x,

auxiliary claim implies there isv 2 U such that w � S[ x �
;

v and R[v] � C, sov 2 U. Thus

xSwU. It is clear that R[U] � C. a

4.2.6 The logics ILW and ILW�

To prove that IL W is complete, one could try to �nd a su�ciently strong �labelling

lemma� and use De�nition 4.6 (IL X-structure). One candidate might be the following

condition:

w � S u ) (9G 2 D )
�

w � S[f � : Gg u & G 2 u
�

;

whereD is �nite, closed under subformulas and such that eachw 2 W contains Aw and

2 : Aw for someAw 2 D . If there is such a condition, it would greatly simplify proofs

of completeness for extensions ofIL W. Unfortunately, at the moment we do not know if

such a condition can be formulated and proved.

Another approach is to use a modi�ed version of De�nition 4.6 to work withIL W and

its extensions. This way we won't require a labelling lemma, but we lose generality in the
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following sense. To prove the completeness ofIL XW, for someX , it no longer su�ces to

simply show that the structure de�ned in De�nition 4.6 has the required characteristic

property (when each world is anIL X-MCS). Instead, the characteristic property ofIL X

has to be shown to hold on the modi�ed structure. So, to improve compatibility with

proofs based on De�nition 4.6, we should prove the completeness ofIL W with a de�nition

as similar to De�nition 4.6 as possible. That is what we do in the remainder of this section.

This approach turns out to be good enough forIL W� (IL WM0). We didn't succeed in

using it to prove the completeness ofIL WR. However, to the best of our knowledge,

IL WR might not be complete at all.

We use the following condition (W)gen (the �positive� version):

(W)gen := uSwV ) (9V 0 � V )
�

uSwV 0 & R[V 0] \ S� 1
w [V ] = ;

�
:

In what follows, IL WX denotes an arbitrary extension ofIL W.

We will use the following two lemmas, which we already discussed near the end of

the previous chapter (lemmas 3.28 and 3.29). Here we emphasise that they hold for our

de�nition of � S too.

Lemma 4.25 ([11], Lemma 3.12) Letw be anIL WX-MCS, and B and C formulas such

that : (B � C) 2 w: Then there is anIL WX-MCS u such that w� f � : B; : Cgu and B 2 u:

Lemma 4.26 ([11], Lemma 3.13) Letw and u be someIL WX-MCS, B and C some

formulas, andS a set of formulas such thatB � C 2 w; w � S u and B 2 u: Then there

is an IL WX-MCS v such that w � S[f � : B g v and C; � : C 2 v:

Given a binary relation R, let _R[x] = R[x] [ f xg:

When de�ning Sw we have to take care to make it compatible with the properties of a

generalised Veltman model, in particular, the property thatwRu implies uSw f ug and the

property that wRuRv implies uSw f vg. So, if we �x w and u, we should haveuSw f vg for

all v 2 _R[u](= R[u] [ f ug). However, because of monotonicity, we want not onlyuSw f vg

in such cases, but alsouSwV for all V � R[v] that contain v. This is why we add the

condition (a) in the de�nition below (within the de�nition of Sw).

If the set _R[x] contains maximal consistent sets (which it usually does in this section),

then
S _R[x] is a set of formulas. If satisfaction coincides with formulas contained, then it

is useful to think of
S _R[x] as the set of formulasB such that either B or 3 B is satis�ed

in x (however, one has to be careful with such an interpretation, since we do not claim

our truth lemma to hold for all formulas).

De�nition 4.27 Let X be W or W� . We say that M = ( W; R; f Sw : w 2 Wg; V) is the
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IL X-structure for a set of formulasD if:

W := f w : w is an IL X-MCS and for someG 2 D ; G ^ � : G 2 wg;

wRu :, w � u;

uSwV :, wRu and, V � R[w] and, one of the following holds:

(a) V \ _R[u] 6= ; ;

(b) (8S)
�
w � S u ) (9v 2 V)

�
9G 2 D \

S _R[u]
�

w � S[f � : Gg v
�

;

w 2 V(p) :, p 2 w:

With this de�nition, we can now prove a truth lemma.

Lemma 4.28 Let X be W or W*. The IL X-structure M for D is a generalised Veltman

model. Furthermore, the following holds:

M ; w 
 G if and only if G 2 w;

for eachG 2 D and w 2 W:

Proof. Let us �rst verify that the IL X-structure M = ( W; R; f Sw : w 2 Wg; 
 ) for D is

a generalised Veltman model. All the properties, except for quasi-transitivity, have easy

proofs (see the proof of Lemma 4.8). Let us prove the quasi-transitivity. AssumeuSwV,

and vSwUv for all v 2 V. Put U =
S

v2 V Uv. We claim that uSwU. Clearly U � R[w]. To

prove uSwU we will distinguish the cases (a) and (b) from the de�nition of the relation

Sw for uSwV: In the case (a), we havev0 2 V for somev0 2 _R[u]. We will next distinguish

two cases from the de�nition of v0SwUv0 . In the case (aa) we havex 2 Uv0 for some

x 2 _R[v0]. Sincev0 2 _R[u], we then havex 2 _R[u]. Sincex 2 Uv0 � U, then U \ _R[u] 6= ; :

So, we haveuSwU, as required. In the case (ab) we have:

(8S)(w � S v0 ) (9x 2 Uv0 )(9G 2 D \
[

_R[v0]) w � S[f � : Gg x):

To prove uSwU in this case, we will use the case (b) from the de�nition of the relation

Sw . Assumew � S u. Then we havew � S u � v0 or w � S u = v0. Either way, possibly

using Lemma 4.2, we havew � S v0, and so there arex 2 Uv0 and G 2 D \
S _R[v0] with

w � S[f � : Gg x. SinceuRv0 or u = v0, we have _R[v0] � _R[u]: So, the claim follows. In the

case (b), we have:

(8S)(w � S u ) (9v 2 V)(9G 2 D \
[

_R[u]) w � S[f � : Gg v):

To prove uSwU we will use the case (b) from the de�nition of the relationSw . Assume

w � S u. Then there arev0 2 V and G 2 D \
S _R[u] such that w � S[f � : Gg v0. From

v0 2 V it follows that v0SwUv0 . We will next distinguish between the possible cases in

the de�nition of v0SwUv0 . In the �rst case (ba) we haveUv0 \ _R[v0] 6= ; ; i.e. there is
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x 2 Uv0 \ _R[v0]. Then w � S[f � : Gg v0 = x or w � S[f � : Gg v0 � x. In both cases (possibly

using Lemma 4.2) we havew � S[f � : Gg x. In the case (bb):

(8S0)(w � S0 v0 ) (9x 2 Uv0 )(9G0 2 D \
[

_R[v0]) w � S0[f � : G0g x):

From w � S[f � : Gg v0 it follows that there are somex 2 Uv0 and G0 2 D \
S _R[v0] such

that w � S[f � : G;� : G0g x. Lemma 4.2 impliesw � S[f � : Gg x, as required. We claim that

for each formulaG 2 D and each worldw 2 W the following holds:

M ; w 
 G if and only if G 2 w:

The claim is proved by induction on the complexity ofG. The only non-trivial case is

when G = B � C: AssumeB � C 2 w; wRu and u 
 B . Induction hypothesis implies

B 2 u: We claim that uSw [C]w . Clearly [C]w � R[w]. Assumew � S u. Lemma 4.26

implies that there is anIL X-MCS v with w � S[f � : B g v and C; � : C 2 v (thus v 2 W).

SinceC 2 v, the induction hypothesis impliesv 
 C: Sincew � v, i.e. wRv, then v 2 [C]w .

Now, B 2 D and B 2 u imply B 2 D \
S _R[u]. Thus, uSw [C]w holds by the clause (b)

from the de�nition. To prove the converse, assumeB � C =2 w. Sincew is an IL X-MCS,

: (B � C) 2 w: Lemma 4.25 implies there isu with w � f � : B; : Cg u and B 2 u: Lemma 4.2

implies � : B 2 u: So,B ^ � : B 2 u; thus u 2 W: The induction hypothesis impliesu 
 B .

Let V � R[w] be such thatuSwV. We will �nd a world v 2 V such that w � f: Cg v. We

will distinguish the cases (a) and (b) from the de�nition of the relationSw . Consider the

case (a). Letv be an arbitrary node in V \ _R[u]. If v = u, clearly w � f � : B; : Cg v. If

uRv, then we havew � f � : B; : Cg u � v: Lemma 4.2 impliesw � f � : B; : Cg v. Consider the

case (b). Fromw � f � : B; : Cg u and the de�nition of Sw it follows that there is v 2 V and

a formula D 2 D such that w � f � : B; : C;� : D g v. In both cases we havew � f: Cg v; thus

C =2 v. Induction hypothesis impliesv 1 C; whenceV 1 C, as required. a

This lemma brings us one step away from a completeness proof.

Theorem 4.29 The logic IL W is complete w.r.t. IL setW-models.

Proof. In the light of Lemma 4.28, it su�ces to show that the IL W-structure M for D

possesses the property (W)gen. Recall the characteristic property (W)gen:

uSwV ) (9V 0 � V )(uSwV 0 & R[V 0] \ S� 1
w [V ] = ; ):

Suppose for a contradiction that there arew, u and V such that:

uSwV & ( 8V 0 � V )(uSwV 0 ) R[V 0] \ S� 1
w [V ] 6= ; ): (4.1)

Let V denote all such setsV (we keepw and u �xed). Let n = 2 jDj . Fix any enumeration
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D0; : : : ;Dn� 1 of P(D) that satis�es D0 = ; : We de�ne a new relationSi
w for all 0 � i < n ,

y 2 W and U � W as follows:

ySi
wU () ySwU; D i �

[
_R[y]; U �

2

4
_

G2D i

� : G

3

5

w

:

Let y 2 W and U � R[w] be arbitrary. Let us prove that ySwU implies the following:

(9U0 � U)(9i < n ) ySi
wU0: (4.2)

If ySwU holds by (a) from the de�nition of Sw , the set U \ _R[y] is non-empty. Pick

arbitrary z 2 U \ _R[y] and put U0 = f zg. We have eitherwRyRz or y = z. If wRyRz,

we haveySw f zg: Otherwise, y = z. Now quasi-re�exivity implies ySw f zg: Sincey 2 W,

there is a formulaG 2 D such that G ^ � : G 2 y. Fix i < n such that D i = f Gg: Clearly

D i �
S _R[y]: Sincez 2 U and ySwU, clearly U0 � R[w]. Sincey = z or yRz, we also have

� : G 2 z. Truth lemma implies U0 
 � : G; since if zRt, G =2 t, (truth lemma is applied

here) t 1 G, so z 
 � : G. Thus U0 � [� : G]w , and ySi
wU0. If ySwU holds by (b) from

the de�nition of Sw , take:

U0 = f z 2 U : (9G 2 D \
[

_R[y]) w � f � : Gg zg;

D i = f G 2 D \
[

_R[y] : (9z 2 U) w � f � : Gg zg:

In other words, U0 is the image of the mapping that is implicitly present in the de�nition

of the relation Sw (clause (b)): for eachS, pick a world vS (to be included in U0), and

a formula GS (to be included in D i ). Let m < n be maximal such that there areU 2 V

and U0 � U with the following properties:

(i) (8x 2 U)[(9y 2 R[x])(9Z � U)(9i � m) ySi
wZ ) x =2 U0];

(ii) (8x 2 W)(xSwU ) xSwU0).

SinceD0 = ; ; we have[
W

G2D 0
� : G]w = [ ? ]w = ; : So there are noZ � [

W
G2D 0

� : G]w
such that ySwZ for somey 2 W. So, if we takem = 0 and U0 = U for any U 2 V , (i)

and (ii) are trivially satis�ed. Since n is �nite and conditions (i) and (ii) are satis�ed for

at least one valuem, there must be a maximalm < n with the required properties. Let

us �rst prove that m < n � 1. Assume the opposite, that is (sincem < n ), m = n � 1.

Then there areU 2 V and U0 � U such that the conditions (i) and (ii) are satis�ed for

m = n � 1: SinceU 2 V , we haveuSwU: The condition (ii) implies uSwU0: Now U 2 V ;

U0 � U and uSwU0 imply R[U0] \ S� 1
w [U] 6= ; . Thus there arex 2 U0 and y 2 R[x] such

that ySwU. Now (ii) implies ySwU0. The earlier remark (4.2) implies that there isZ � U0

and i < n such that ySi
wZ: Sincem = n � 1, it follows that i � m: The condition (i)

implies x 62U0; a contradiction. Thus, m < n � 1. Let us now prove that m is, contrary
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to the assumption, not maximal, by showing thatm + 1 satis�es (i) and (ii). Let U 2 V

and U0 � U be some sets such that the conditions (i) and (ii) are satis�ed form. Denote:

Y = f x 2 U0 : (9y 2 R[x])(9Z � U0) ySm+1
w Zg:

Let us prove that m + 1 also satis�es (i) and (ii) with U0 instead of U, and U0 n Y

instead of U0. We should �rst show that U0 2 V . So, suppose thatuSwT � U0. Now,

T � U0 � U and U 2 V imply that there are somev 2 T and z 2 R[v] such that zSwU.

The property (ii) for m (with sets U and U0) implies zSwU0. So, R[T] \ S� 1
w [U0] 6= ; , as

required. Now let us verify the property (i) for the newly de�ned sets (U0 and U0n Y).

Let x 2 U0; y 2 R[x]; Z � U0; i � m + 1 be arbitrary such that ySi
wZ. If i � m, the

property (i) for m implies x =2 U0, so in particular, x =2 U0n Y. If i = m + 1, then x 2 Y.

Thus x =2 U0n Y and the condition (i) is satis�ed.

It remains to prove (ii). Take arbitrary x 2 W such that xSwU0. For every y 2 Y, the

de�nition of Y implies the existence of somezy 2 R[y] and Uy � U0 such that zySm+1
w Uy.

From the de�nition of the relation Sm+1
w we haveDm+1 �

S _R[zy]: Now, yRzy and the

truth lemma imply y 
 3 G; for eachG 2 D m+1 : From the de�nition of the relation Sm+1
w

and zySm+1
w Uy we haveUy � [

W
G2D m +1

� : G]w : So, the following holds:

Y 

^

G2D m +1

3 G and Uy 

_

G2D m +1

� : G;

for all y 2 Y. Thus, Uy \ Y = ; ; for every y 2 Y: For every y 2 U0 n Y put Uy = f yg.

Again, Uy \ Y = ; . Note that
S

y2 U0 Uy = U0nY. Now xSwU0 and quasi-transitivity imply

xSwU0nY. The fact that (i) and (ii) hold for m + 1 contradicts the maximality of m. a

We could have proven completeness ofIL W through simpler arguments if the com-

pleteness ofIL W was our ultimate goal, and one way is through the following proposition.

However, we need the format of the argument above when proving completeness of ex-

tensions ofIL W.

Proposition 4.30 Let M = ( W; R; f Sw 2 Wg; 
 ) be a Veltman model with the property

(W). Then gen(M ) = ( W; R; f S0
w 2 Wg; 
 ) is a generalised Veltman model with the

property (W)gen.

Proof. Assume the opposite, i.e.gen(M ) has the property (W)gen. We will obtain an

in�nite chain z0Swx0Rz1Swx1R : : : , which contradicts (W). Choose a worldw, a non�

empty set X � R [w] and z0 2 W such that z0S0
wX and:

(8V � X )
�
z0S0

wV ) (9v 2 V)(R [v] \ (S0
w)� 1 [X ] 6= ; )

�
:

We have de�ned the �rst element, z0, of our sequence. We will de�ne the remainder

of the sequence recursively. Suppose we have de�ned worldsz0; x0; z1; x1; : : : up to some
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world zi for i 2 ! such that the following is true:

(8V � X )
�
zi S0

wV ) (9v 2 V)(R [v] \ (S0
w)� 1 [X ] 6= ; )

�
:

We will now construct worldsx i and zi +1 . Note that the world z0 satis�es this property.

The fact that zi S0
wX and the de�nition of model gen(M ) imply zi Swx i for somex i 2 X .

Hencezi S0
w f x i g, so the property that by assumption holds forzi implies that there iszi +1

such that x i Rzi +1 and zi +1 S0
wX .

Assume there is a setV � X such that:

zi +1 S0
wV & ( 8v 2 V)(R [v] \ (S0

w)� 1 [X ] = ; ):

SincewRx i Rzi +1 , we havex i S0
w f zi +1 g. Now, zi S0

w f x i g, x i S0
w f zi +1 g, zi +1 S0

wV and quasi-

transitivity of the relation S0
w imply zi S0

wV. But this, together with the fact that (8v 2

V)(R [v] \ (S0
w)� 1 [X ] = ; ), contradicts the property that, by assumption, holds forzi .

Hence, for the worldzi +1 the following holds:

(8V � X )
�
zi +1 S0

wV ) (9v 2 V)(R [v] \ Z 6= ; )
�
:

a

Goris and Joosten proved in [27] the completeness ofIL W� (recall that this is equiv-

alent to IL WM0) w.r.t. ordinary Veltman semantics. One way to obtain completeness

w.r.t. generalised Veltman semantics would be to use Proposition 4.12. We proceed to

prove completeness directly, without referring to ordinary semantics. The bene�t is, as

always, in the possibility that this approach might be used for the extension ofIL W (and

IL W� ) which may not be complete with respect to ordinary Veltman semantics.

Theorem 4.31 The logic IL W� is complete w.r.t. IL setW � -models.

Proof. With Lemma 4.28, it su�ces to prove that the IL W� -structure for D possesses

the properties (W)gen and (M0)gen, for each appropriateD: So, let M = ( W; R; f Sw : w 2

Wg; 
 ) be the IL W *-structure for D. Theorem 4.29 shows that the modelM possesses

the property (W)gen. It remains to show that it possesses the property (M0)gen. Assume

wRuRxSwV. We claim that there is V 0 � V such that uSwV 0 and R[V 0] � R[u]. First,

consider the case whenxSwV holds by the clause (a) from the de�nition ofSw . So there

is v 2 V such that x = v or xRv. In both cases,wRuRv, and souSw f vg: It is clear

that R[v] � R[x] � R[u]. So it su�ces to take V 0 = f vg. Otherwise,xSwV holds by the

clause (b). TakeV 0 = f v 2 V : w � u �
;

vg. Clearly, V 0 � V � R[w]. Assumew � S u.

Now w � S u � x and Lemma 4.15 implyw � S[ u �
;

x. The de�nition of xSwV (clause (b))

implies there isG 2 D\
S _R[x] (soG 2 D\

S _R[u]) and v 2 V such that w � S[ u �
; [f � : Gg v,

thus alsov 2 V 0. In particular, w � S[f � : Gg v. SinceS was arbitrary, uSwV 0. It remains
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to verify that R[V 0] � R[u]. AssumeV 0 3 vRz. Sincew � u �
;

v, for all � B 2 u we have

� B 2 v, and sincevRz, it follows that � B; B 2 z. Thus, u � z i.e. uRz: a

In [49] it is shown that IL W� possesses the �nite model property w.r.t. generalised

Veltman semantics. To show decidability, (stronger) completeness w.r.t. ordinary Veltman

models was used in [49]. However, we observe that Theorem 4.31 above su�ces for the

mere purpose of decidability.

4.2.7 The logic ILWR

In previous subsections we saw that the completeness ofIL R can be proven using

IL R-structures, and that the completeness ofIL W can be proven usingIL W-structures.

These two types of structures have non-trivial di�erences (they di�er by more than just

the notion of IL X-consistency used). However, we saw thatIL W� -structures have the

same form asIL W-structures. So, one may hope to prove completeness ofIL WR with

the help of the same form of structures.

Unfortunately, it seems that IL WR-structures, if by an IL WR-structure we mean

an IL W-structure with the notion of IL W-consistency replaced with that ofIL WR-

consistency, does not possess the characteristic property (R)gen. In the remainder of

this chapter (based on [26]) we call the type of the problem that emerges �the label iter-

ation problem�. We will demonstrate how to overcome this problem for a simpler logic.

As for the logic IL WR itself, we return to it in the closing chapter of the thesis. We

decided to postpone the discussion because (1) we do not obtain an answer to the main

problem of whetherIL WR is complete or not; (2) we need some arithmetical background

for that chapter; and (3) the discussion will be lengthy, and is more naturally presented

as a separate chapter.
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4.3 Generalising ILX-structures
The labelling that was considered so far was concerned with two or three worlds at a

time. Due to the transitivity of R, labelling longer sequences often simpli�es to labelling

pairs or triples of worlds.

In this section, we �rst show that labelling sequences inIL R-models indeed reduces to

labelling triples of worlds. The completeness of the logicIL R w.r.t. the ordinary Veltman

semantics is still an open problem. The fact that labels for this logic are compatible with

transitive closures makes our labelling a good candidate for the step-by-step completeness

proofs such as theconstruction method[27].

In the remainder of the section we deal with logics whose labelling does not trivially

reduce to labelling pairs or triples of worlds. At the moment, the only logics falling into

this category that we know of are various extensions ofIL W. An example isIL WR, which

may also be the most interesting example since it is the simplest logic among those whose

(in)completeness status is currently open.

There is an easily identi�able problem in taking transitive closures when working with

assuringness. Suppose we are working inIL R. Let us recall that for IL R we have that

� � S� � T � 0 implies � � S[ � 2
T
� 0 (Lemma 3.26).

Consider the following situation that might occur while iteratively building a model in

a step-by-step completeness proof:x � U � � S � � T y, whereU, S and T are arbitrary

sets of formulas, whilex; � ; � ; y are MCS's and at the same time the worlds in the model

we are building. If we wish to compute the label betweenx and y it does make a di�erence

whether we �rst compute the label for the transitive transition betweenx and � or the

label for the transitive transition between� and y. In the �rst case we getU [ � 2
S [ � 2

T

as the label betweenx and y, and otherwise we getU [ � 2
S[ � 2

T
. Lemma 4.32 implies that

the following is the case:

U [ � 2
S[ � 2

T
� U [ � 2

S [ � 2
T :

This determines which way should the closure procedure proceed when faced with a choice,

i.e. we should go with the �rst choice since it results in a more informative label.

Lemma 4.32 For logics containingR we have that � � S� implies � 2
S[ � 2

T
� � 2

T .

Proof. Consider2 : A 2 � 2
S[ � 2

T
, that is, for someSi 2 S and 2 : B j 2 � 2

T , A �
W

: Si _
W

: 2 : B j 2 � . By R, : (A �
W

B j ) �
W

: Si 2 � , whence by� � S� , we getA �
W

B j 2 � .

But for each B j there is Tjk 2 T with B j �
W

: Tjk 2 � , whenceA �
W

: Tjk 2 � and

2 : A 2 � 2
T . a

4.3.1 Motivation for labelling systems

We will now present an issue concerning labelling inIL WR. Both IL W [19] andIL R

[50] are known to be complete, but this question remains open forIL WR.
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w x u

v z

S T

S [ x 2
T [ f 2 : Cg

w x

T

C

Figure 4.2: Labels for IL WR

We �rst discuss this problem, and then see how a more elaborate labelling system

can help. At the moment we do not know if the labelling systems will lead to a full

completeness proof ofIL WR (see the �nal chapter of this thesis).

The plan for the remainder of the section, and indeed the chapter, is to illustrate

labelling systemsand how they help. To accomplish this we will work withIL P, another

logic exhibiting the same issue (if we wish to prove completeness with respect toIL W-

structure-like objects). With IL P we can give a full completeness proof together with a

to-the-point presentation on how to deal with logics with non-trivial labelling of sequences.

Thus, the above mentioned elaborate labelling systems should at least be an ingredient,

if not the whole solution, in proving the more interesting completeness results (such as,

possibly, the one forIL WR).

Suppose2 we are building a model step-by-step (as in theconstruction method[27])

and we haveA � B 2 w � S x � T u 3 A. So, we need to �nd somev with B 2 v and a

su�ciently strong label for wRv; and then declareuSwv. Using the labelling lemmas for

W and R, it is easy to �nd v with w � S[ x2
T [f 2 : Cg v for someC contained either inu or

in a world R-accessible fromu. Let us for the moment suppose that any suchv �ts our

purposes.

Now, assume that at some later point during the construction, a worldz appears with

vRz. By the frame condition of the principleR, we should haveuSxz. If we were building

an IL R-model (and not anIL WR-model), we would have to ensure just thatz has the

same assuringness asu with respect to x, that is, xRz should be labelled withT. Since

we are building anIL WR-model and in order to ensure the frame condition forW, in

addition to that we are to �nd a formula C0 with x � T [f 2 : C0g z. An obvious candidate

for C0 is C. However, fromw � S[ x2
T [f 2 : Cg v � z we only get x � T z (Lemma 4.21),

and what we would like is to havex � T [f 2 : Cg z. Let us refer to this phenomenon asthe

problem of label iteration.

One way to try to solve this problem is to simplyrequire 2 : C to appear at the right

2This paragraph describes the situation represented in Figure 4.2. The triangle in the top-right corner
represents the set _R[u]. Some world in this set has to contain the formulaC.

65



Chapter 4. Modal completeness

place in the original label, i.e., instead of asking forw � S[ x2
T [f 2 : Cg v, we ask for

w � S[ x2
T [f 2 : C g [f 2 : Cg v: (4.3)

If we are proving completeness w.r.t. generalised semantics using the approach from earlier

sections, this means that we should add a new condition in the de�nition ofSw (De�nition

4.6). However, similar to how the original condition concerning two worlds requires us to

add the new condition concerning three worlds that we just described, this condition itself

requires us to add another condition, this time concerning four worlds. Let us illustrate

this.

Suppose we chose the worldv and occur the following situation later in the construction

process (see Figure 4.2):

A � B 2 w � S x � T u 3 A and v � z:

We would like to showuSxz. With the new condition added in the de�nition of Sw , we now

have to show that ifx � S0 x0 � T 0 u, then the world v satis�es x � S0[f 2 : Ag[ x02
T 0[f 2 : A g

v 3 B.

It would be convenient if we were able to prove

w � x2
S 0[f 2 : A g[ x 02

T 0[f 2 : A g

[f 2 : Ag v; (4.4)

since from this we can concludex � S0[f 2 : Ag[ x02
T 0[f 2 : A g

v 3 B. However, to be able to

conclude (4.4) we need to have a new case in the de�nition ofSw , one that concerns not

just w, x and u; but w, x, x0 and u. So, the choice ofv that �ts earlier requirements

might not be good enough. Analogous reasoning applies for longer sequences of worlds,

i.e. any �nite amount of requirements will not su�ce.

It turns out the problem of label iteration, that, as we just saw, occurs withIL WR,

also occurs when trying to prove thatIL P is complete w.r.t. the class of generalised

IL P-frames where an additional requirement which ensures (W)gen is present.3 In the

remainder of this section we will give a detailed exposition on how to handle this problem

in the case ofIL P. The same general approach should be useful for any other extension

of IL W that exhibits the problem of label iteration.

3(W)gen is the following condition: uSw V =) (9V 0 � V )uSw V 0& R[V 0] \ S� 1
w [V ] = ; .

The requirement we mention is that wheneverw � S u and we are making anSw -successorv of u, that
w � S[f 2 : B g v for someB 2 D \

S _R[u] where _R[u] = R[u] [ f ug. Since it is well known that IL P, which
is a complete logic [18], containsIL W (see e.g. [66]), we already know thatIL P is complete w.r.t. the
class of generalisedIL P-frames that satisfy (W)gen. We do not, however, know in general if the models
obtained by the standard completeness argument also satisfy this speci�c requirement (which is, at least
a priori, stronger than (W)gen).
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4.3.2 Test case: ILWP-structures

We will now introduce the labelling system forIL P and prove the completeness ofIL P

w.r.t. the class of generalisedIL P-frames where an additional requirement which ensures

(W)gen is present.

(P)gen:

wRw0RuSwV ) (9V 0 � V ) uSw0V 0:

Recall the labelling lemma forIL P (Lemma 3.22)

w � S x � T u ) w � S[ x �
T

u:

The actual labelling that we use is an iterated generalisation of this property. Thus,

instead of de�ning labels between pairs of MCS's, we consider tuples of MCS's with labels

between them:wn � Sn wn� 1 � Sn � 1 � � � � S1 w0. We wish to de�ne labels forIL P similar

to the ones forIL WR betweenw and v in (4.3) and (4.4). We will �rst de�ne these labels,

and then prove the appropriate labelling lemma.

De�nition 4.33 For n 2 ! nf 0g, let f w0; : : : ; wng be a �nite sequence ofIL P-MCS's, let

f S1; : : : ; Sng be a �nite sequence of sets of formulas andB be a formula. We recursively

de�ne n sets of formulas, one for everyj 2 f 1; : : : ; ng:

Q(f w0; : : : ; wng; f S1; : : : ; Sng; B; j ):

Usually the MCS's f w0; : : : ; wng and the sets of formulasf S1; : : : ; Sng will be clear from

the context, so we will write Qj (B ) for Q(f w0; : : : ; wng; f S1; : : : ; Sng; B; j ). We now re-

cursively de�ne the elements of our sequence:

Q1(B ) := S1 [ f 2 : Bg;

Qj +1 (B ) := Sj +1 [ f 2 : Bg [ wj
�
Q j (B ) :

Note that the preceding de�nition amounts to the following:

Qj (B ) = Sj [ f 2 : Bg [ wj � 1
�
Sj � 1 [f 2 : B g[ wj � 2

�
Sj � 2 [f 2 : B g[ :::

���[ w 1
�
S1 [f 2 : B g

:

Lemma 4.34 Let n 2 ! nf 0g be arbitrary, f w0; : : : ; wng be a �nite sequence ofIL P-

MCS's, f S1; : : : ; Sng a �nite sequence of sets of formulas andB � C a formula such that:

B � C 2 wn � Sn wn� 1 � Sn � 1 � � � � S1 w0 3 B:

Then there is anIL P-MCS v such that wn � Qn (B ) v and C; 2 : C 2 v.
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Proof. We prove the claim by induction onn. In the base case we are to �ndv such that

w1 � S1 [f 2 : B g v. But this is just Lemma 3.29.

Let us prove the claim forn +1. Fix MCS's f w0; : : : ; wn+1 g, labelsf S1; : : : ; Sn+1 g and

a formula B � C. Assume

B � C 2 wn+1 � Sn +1 wn � Sn � � � � S1 w0 3 B:

The goal is to �nd v with wn+1 � Qn +1 (B ) v 3 C; 2 : C, i.e.

wn+1 � Sn +1 [f 2 : B g[ wn
�
Q n ( B )

v 3 C; 2 : C:

From wn+1 � wn and the axiom P we haveB � C 2 wn . By the induction hypothesis,

there is v with wn � Qn (B ) v 3 C; 2 : C. From wn+1 � Sn +1 wn � Qn (B ) v and the labelling

lemma for IL P (Lemma 3.22) we have:

wn+1 � Sn +1 [ wn
�
Q n ( B )

v:

Sincef 2 : Bg � Qn (B ) � wn
�
Qn (B ) , we haveSn+1 [ wn

�
Qn (B ) = Sn+1 [f 2 : Bg[ wn

�
Qn (B ) . a

Note that the last line shows that a simpler de�nition of Qj +1 (B ) would su�ce:

Qj +1 (B ) := Sj +1 [ wj
�
Q j (B ) instead of Qj +1 (B ) := Sj +1 [ f 2 : Bg [ wj

�
Q j (B ) . However,

the purpose of this section is to introduce a method for dealing with arbitrary extensions

of IL W. We do not think it is likely that such a simpli�cation could be made in the case

of more interesting logics, such asIL WR.

Recall that in this chapter, the setD is always assumed to be a �nite set of formulas

closed under taking subformulas and single negations, and> 2 D .

Next we de�ne the structures w.r.t. which we later prove completeness. Note that in

the de�nition below, worlds are sets of formulas. Because of this, the operation
S _R[u]

makes sense and de�nes a set of formulas.

De�nition 4.35 We say that M = ( W; R; f Sw : w 2 Wg; 
 ) is the IL WP-structure for a

set of formulasD if:

ˆ W = f w : w is an IL P-MCS and for someB 2 D ; B ^ � : B 2 wg;

ˆ wRu , w � u;

ˆ uSwV , wRu and V � R[w] and, moreover, one of the following holds:

(a) V \ _R[u] 6= ; ;

(b) we have for alln 2 ! nf 0g; all f w0; : : : ; wng; and all f S1; : : : ; Sng:

w = wn � Sn � � � � S1 w0 = u ) (9v 2 V)(9B 2 D \
[

_R[u]) w � Qn (B ) v;

ˆ w 
 p , p 2 w.
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Lemma 4.36 The IL WP-structure M for D is a generalised Veltman model. Further-

more, the following holds for eachw 2 W and G 2 D :

M ; w 
 G if and only if G 2 w;

Proof. Let us �rst verify that the IL WP-structure M = ( W; R; f Sw : w 2 Wg; 
 ) for D is

a generalised Veltman model. All the properties, except for quasi-transitivity, have easy

proofs (see Lemma 4.28).

Let us prove quasi-transitivity. Thus, we assumeuSwV, and vSwUv for all v 2 V.

We put U =
S

v2 V Uv and claim that uSwU. Clearly U � R[w]. To prove uSwU we will

distinguish cases from the de�nition of the relationSw for uSwV:

In Case (a), there exists an MCSv0 2 V for somev0 2 _R[u]. We will next distinguish

two Cases from the de�nition ofv0SwUv0 .

In Case (aa) we can �ndx 2 Uv0 for somex 2 _R[v0]. Sincev0 2 _R[u], also x 2 _R[u].

And sincex 2 Uv0 � U, we haveU \ _R[u] 6= ; : So, we haveuSwU as required.

In Case (ab):

For all n 2 ! nf 0g; all f w0; : : : ; wng; and all f S1; : : : ; Sng we have: (4.5)

w = wn � Sn � � � � S1 w0 = v0 ) (9x 2 Uv0 )(9B 2 D \
[

_R[v0]) w � Qn (B ) x:

To prove uSwU in this case, we will use Case (b) from the de�nition of the relationSw .

Let n 2 ! nf 0g be arbitrary and let f w0; : : : ; wng and f S1; : : : ; Sng be arbitrary such that

w = wn � Sn � � � � S1 w0 = u. If u = v0, applying (4.5) with the worlds f w0; : : : ; wng and

the labels f S1; : : : ; Sng produces the requiredx 2 Uv0 and B 2 D \
S _R[v0]. Otherwise,

i.e. if uRv0, let w0
0 = v0, w0

i +1 = wi , S0
1 = ; , S0

i +1 = Si and apply the formula above with

n + 1, the sequencef w0
0; : : : ; w0

n+1 g and the labelsf S0
1; : : : ; S0

n+1 g. This gives us a world

x 2 Uv0 and a formulaB 2 D \
S _R[v0] with:

w � Sn [f 2 : B g[ wn � 1
�
Sn � 1 [ :::

:::w 1
�

S1 [f 2 : B g[ u �
;[f 2 : B g

x:

Weakening this fact by Lemma 3.8 with removingu�
;[f 2 : B g, we have the required property.

SinceuRv0 or u = v0, we have _R[v0] � _R[u]. Thus, we can reuseB for this Sw transition.

In Case (b):

For all n 2 ! nf 0g; all f w0; : : : ; wng; and all f S1; : : : ; Sng we have:

w = wn � Sn � � � � S1 w0 = u ) (9v 2 V)(9B 2 D \
[

_R[u]) w � Qn (B ) v:

To prove uSwU we will use Case (b) from the de�nition of the relationSw . So, let
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n 2 ! nf 0g be arbitrary and let f w0; : : : ; wng and f S1; : : : ; Sng be arbitrary such that

w = wn � Sn � � � � S1 w0 = u.

By the assumption of this case, there arev0 2 V and B 2 D \
S _R[u] such that

w � Qn (B ) v0. From v0 2 V we havev0SwUv0 . We will next distinguish the possible cases

in the de�nition for v0SwUv0 .

In the �rst Case (ba) we haveUv0 \ _R[v0] 6= ; ; i.e. there isx 2 Uv0 such that either

v0 = x or v0Rx. In both cases we havew � Qn (B ) x.

In Case (bb), we have (Case (b) forv0SwUv0 applied to n = 1 and S1 = Qn (B )) that

there are somex 2 Uv0 and B 0 2 D \
S _R[v0] such that w � Qn (B )[f � : B 0g x. By weakening,

w � Qn (B ) x, as required.

We claim that for each formulaG 2 D and each worldw 2 W the following holds:

M ; w 
 G if and only if G 2 w:

The proof is by induction on the complexity ofG. The only non-trivial case is when

G = B � C:

AssumeB � C 2 w; wRu and u 
 B . Induction hypothesis impliesB 2 u: We claim

that uSw [C]w by Case (b) from the de�nition of Sw . Clearly wRu and [C]w � R[w].

Fix n 2 ! nf 0g, f w0; : : : ; wng and f S1; : : : ; Sng. Assumew = wn � Sn � � � � S1 w0 = u.

SinceB � C 2 wn and B 2 w0, Lemma 4.36 implies that there is anIL P-MCS v with

wn � Qn (B ) v and C; 2 : C 2 v (thus v 2 W). Since C 2 v, the induction hypothesis

implies v 
 C. Sincew � v, i.e. wRv, then v 2 [C]w . Finally, B 2 D and B 2 u imply

B 2 D \
S _R[u].

To prove the converse, assumeB � C =2 w. Sincew is an IL P-MCS, : (B � C) 2 w:

Lemma 3.28 implies there isu with w � f � : B; : Cg u and B 2 u: Sincew � f � : B g u, we

have in particular that � : B 2 u: So, u 2 W: The induction hypothesis impliesu 
 B .

Let V � R[w] be such thatuSwV. We will �nd a world v 2 V such that w � f: Cg v. We

will distinguish Cases (a) and (b) from the de�nition of the relation Sw . Consider Case

(a). Let v be an arbitrary world in V \ _R[u]. If v = u, clearly w � f � : B; : Cg v. If uRv,

then we havew � f � : B; : Cg u � v: This implies w � f � : B; : Cg v. Consider Case (b). From

w � f � : B; : Cg u and the de�nition of Sw it follows that there is v 2 V such that (for some

formula D) w � f � : B; : C;� : D g v. In both cases we havew � f: Cg v; thus C =2 v. Induction

hypothesis impliesv 1 C; whenceV 1 C, as required. a

Theorem 4.37 IL P is complete w.r.t. the class of all generalised Veltman frames satis-

fying (P)gen. In particular, IL P is complete w.r.t. the class ofIL WP-structures generated

by all adequate setsD.

Proof. In the light of Lemma 4.36, it su�ces to show that the IL WP-structure M for D
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possesses the property (P)gen.4

Let us prove (P)gen. Let wRw0RuSwV and take V 0 = V \ R[w0]. We claim uSw0V 0:

We distinguish two possible cases foruSwV. If it holds by Case (a), there isv 2 V

such that either u = v or uRv. In both casesw0Rv. Let U = f vg. Clearly U � V. Since

w0RuRv, uSw0f vg, i.e. uSw0U. The remainder of the proof deals with the case whenuSwV

holds by Case (b) from the de�nition ofSw .

Fix n 2 ! nf 0g, the worlds f w0; : : : ; wng and the labelsf S1; : : : ; Sng. Assumew0 =

wn � Sn � � � � S1 w0 = u. We havew � ; wn � Sn � � � � S1 w0. Now the de�nition of uSwV

implies there isv 2 V with:

w � ;[f 2 : B g[ wn
�
Q n ( B )

v:

We claim that wn � Qn (B ) v. AssumeA �
W

: Fi 2 wn with Fi 2 Qn (B ) (we are to show

that : A; 2 : A 2 v). Clearly : A; 2 : A 2 wn
�
Qn (B ) . Sincea � S b implies S � b, we have

: A; 2 : A 2 v. a

So, we have a strategy to tackle less well-behaved logics. In the �nal chapter of the

thesis we will see what happens when we apply this approach toIL WR.

4In general, for example with the logic IL WR, we would want to verify if ( W)gen holds. The proof
would be the same as the proof of Theorem 4.29. In this case it is a consequence of (P)gen.
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Chapter 5

Decidability

The content of this chapter is based on the published papers [49] and [50].

Both papers [49] and [50] use tools introduced in an earlier paper [53]. Throughout

these three papers several inconvenient choices stacked up, culminating in an awkward

notion of an �adequate set� D for an appropriate setD� in [50]. Unfortunately such

inconveniences were unavoidable if we wanted, as we did, to use results from the previously

published papers without modifying the original proofs. We will use this chapter as an

opportunity to �x these issues. We will �rst prove a slightly modi�ed version of the key

result of [53]. We will then use this modi�ed framework to present the results of [49] and

[50].

Introduction
For IL , IL M, IL P and IL W, the original completeness proofs were proofs of com-

pleteness w.r.t. the appropriate �nite models [18], [19]. For these logics, the �nite model

property (FMP) w.r.t. ordinary Veltman semantics, as well as their decidability, is thus

immediate (and completeness and the FMP w.r.t. generalised Veltman semantics are eas-

ily shown to follow from these results). These completeness proofs usetruncated maximal

consistent sets, that is, sets that are maximal consistent with respect to the so-called

adequateset. The principal requirement ofadequacyis that the set is �nite. The exact

requirements vary with the logic at hand. Already with IL M, de�ning adequacy is not

trivial (see [18]).

For more complex logics, not much is known about the FMP w.r.t. ordinary Veltman

semantics. The �ltration method can be used with generalised models to obtain �nite

models. This approach was successfully used to prove the FMP ofIL M0 and IL W� w.r.t.

generalised Veltman semantics [53], [49], and similarly withIL P0 and IL R [50].

A drawback of this approach is in that the FMP w.r.t. ordinary Veltman semantics

does not follow from the FMP w.r.t. generalised Veltman semantics. So, if that is what we

are interested it, we do not provide an easy way for such results. However, decidability

can be obtained from the FMP w.r.t. either semantics (unless the logic in question is
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incomplete w.r.t. ordinary Veltman semantics, as is the case withIL P0, in which case

we actually need the FMP w.r.t. generalised semantics). At the moment it is not clear

whether the choice of semantics would a�ect our ability to produce results regarding

computational complexity of provability and consistency of the logic at hand (see the

next chapter).

A �ltration is often generated by logical equivalence over some appropriate set of

formulas. Here we use bisimilarity instead, i.e. we merge two worlds if they are bisimilar

according to at least one bisimulation. We will later see that such construction makes

sense. Applying this construction yields �nite models.

5.1 Preliminaries
Let us overview basic notions and results of [53]. As we announced, we will not follow

the content presented there faithfully; but we will give proofs of our statements whenever

we diverge from the original papers.

A note on notation: given some relationR, in this chapter we write R
h
x

i
to denote

the set f y : xRyg. In this chapter we often need to writeR
h
[x]

i
and wish to avoid writing

R[[x]]; so we increased the font size for the outer brackets.

Let A be a formula. If A equals: B for someB, then � A is B , otherwise� A is : B .

This is the �single negation� operation which we already met in the chapter concerning

completeness.

We need a notion ofadequacy, i.e. when is a set of formulas� �adequate�.1 Our

�ltration will start with a (possibly in�nite) model and an adequate set we are in-

terested in. Based on these choices obtain a �nite model. Already inGL , the set

f 3 p;33 p;333 p; : : :g has no �nite models. Thus, the desired notion of equivalence

has to be restricted somehow, and this is why we need adequacy. The notion of seman-

tic equivalence between the starting model and the �nite model we obtain later will be

precisely the equivalence w.r.t. this adequate set. Notice that we choose the adequate set

beforehand, and this set a�ects the content of the obtained �nite model. Our operation

is an operation onmodels, and not frames. In general this fact may be undesirable since

dependence on a valuation may lead to the loss of the appropriate frame condition (char-

acteristic property). As it turns out, the construction we use preserves the characteristic

property in all known cases despite its dependence on the forcing relation.

Visser [66] de�ned the notion of bisimulation between Veltman models. Vrgo£ and

Vukovi¢ [69] extended this de�nition to generalised Veltman models. Here we explicate

that the notion of a bisimulation depends on a set of propositional variables, which need

1Note that this is a di�erent notion of adequacythan the one used for completeness proofs in [18],
[19], and [27]. In this chapter we deal with, and only with, semantics. This eliminates most or all of the
hassle usually present when one has to take syntax into account.
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not be the set of all propositional variables.2

De�nition 5.1 ([69]) Let Propbe a (possibly �nite) subset of the set of all propositional

variables. A bisimulation between generalised Veltman modelsM = ( W; R; f Sw : w 2

Wg; 
 ) and M 0 = ( W 0; R0; f S0
w0 : w0 2 W 0g; 
 ) w.r.t. Prop is a non-empty relationZ �

W � W 0 such that:

(at) if wZw0, then w 
 p if and only if w0 
 p, for all p 2 Prop;

(forth) if wZw0 and wRu, then there isu0 2 W 0 such that w0R0u0, uZu0 and for all V 0 � W 0

such that u0S0
w0V 0 there isV � W such that uSwV and for all v 2 V there isv0 2 V 0

with vZv0;

(back) if wZw0 and w0R0u0, then there isu 2 W such that wRu, uZu0 and for all V � W

such that uSwV there is V 0 � W 0 such that u0S0
w0V 0 and for all v0 2 V 0 there is

v 2 V with vZv0.

The contents of Prop will usually be left unspeci�ed, since we expect its value to be

�xed and constant in all contexts. Ultimately we aim to use bisimulations withProp

equalling the set of all propositional variables occurring in� .

De�nition 5.2 Let M andM 0be arbitrary generalised Veltman models. We writew � Prop
n

w0 if w 2 W and w0 2 W 0, and for all modal formulasA whose modal depth is at mostn

and whose propositional variables are contained in the setProp we have

w 
 A if and only if w0 
 A:

If Prop is unspeci�ed, we assume quanti�cation over all propositional variables; similarly

if n is unspeci�ed, we assume quanti�cation over formulas of all modal depths.

Given a generalised Veltman modelM , the union of all bisimulations onM , denoted

by � , is the largest bisimulation onM , and � is an equivalence relation [69]:

Lemma 5.3 ([69]) Let M , M 0 and M 00be generalised Veltman models.

(1) If w 2 W and w0 2 W 0 are bisimilar w.r.t. some setProp, then w � Prop w0.

(2) The identity f (w; w) : w 2 Wg � W � W is a bisimulation.

(3) The inverse of a bisimulation betweenM and M 0 is a bisimulation betweenM 0

and M .

(4) The composition of bisimulationsZ � W � W 0 and Z 0 � W 0� W 00is a bisimulation

betweenM and M 00.
2On the topic of bisimulations, it may be interesting that in [14], ƒa£i¢ and Vrgo£ de�ned the notion

of a game for Veltman models and proved that a winning strategy for the defender in such a game is
equivalent to picking out a bisimulation between two models.
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(5) The union of a family of bisimulations betweenM and M 0 is also a bisimulation

betweenM and M 0. Thus there exists the largest bisimulation between modelsM and

M 0.

Fix any set of propositional variablesProp. Fact (5) of the preceding lemma implies

that there is the largest bisimulation � on M . Facts (2), (3) and (4) of the previous

lemma imply that � is an equivalence relation, while (1) tells us that bisimilarity implies

modal equivalence. From now on, we will only need this largest bisimulation� . Again,

we won't make the dependenceProp 7! � explicit since we never work with more than

one set of propositional variables in any context.

A � -equivalence class ofw 2 W will be denoted by[w]. For any set of worldsV, put
eV = f [w] : w 2 Vg.

De�nition 5.4 A �ltration of M through � ; � is any generalised Veltman modelfM =

( fW; eR; f eS[w] : w 2 Wg; 
 ) such that for all w 2 W and A 2 � we havew 
 A if and only

if [w] 
 A (we denote both forcing relations as
 , as there is no risk of confusion).

Before describing in what way is our particular �ltration constructed, let us �rst

introduce a tool we will use to prove �niteness.

De�nition 5.5 An n-bisimulation between generalised Veltman models(W; R; f Sw : w 2

Wg; 
 ) and (W 0; R0; f S0
w0 : w0 2 W 0g; 
 ) w.r.t. a set Prop is any sequenceZn � � � � �

Z0 � W � W 0:

(at) if wZ0w0 then w 
 p if and only if w0 
 p for all p 2 Prop;

(forth) if wZnw0 and wRu, then there existsu0 2 R0
h
w0

i
with uZn� 1u0 and for all V 0 2

S0
w0

h
u0

i
there is V 2 Sw

h
u

i
such that for all v 2 V there is v0 2 V 0 with vZn� 1v0;

(back) if wZnw0 and w0R0u0, then there existsu 2 R
h
w

i
such that uZn� 1u0 and for all

V 2 Sw

h
u

i
there is V 0 2 S0

w0

h
u0

i
such that for all v0 2 V 0 there is v 2 V with

vZn� 1v0:

We will use the same notion of adequacy for �ltrations that we use for completeness

(De�nition 4.5).

Note 5.6 Note that the de�nition of adequacy we use for �ltrations is not compatible

with published papers [53], [49], and [50]. The way results are proven in those papers

requires much more involved de�nitions of adequacy. The incompatibility a�ects most of

the remaining content in this chapter too, so we will not stress particular incompatibilities

in the remainder of the chapter.

If we restrict the class of models for which our �ltration method is applicable to a

special sort of models, and we will call these modelsmaximal models, then the results of
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[53], [49] and [50] can be proved in a slightly more succinct form. In particular, with this

kind of models we only need to apply the �ltration once in order to obtain a �nite model.

We already met such models in the previous chapter; all our completeness results were

proven with respect to this restricted class of models (see De�nition 4.6 and De�nition

4.27).

De�nition 5.7 Let � be an adequate set andM = ( W; R; f Sw : w 2 Wg; 
 ) a generalised

model. We say thatM is maximal w.r.t. � if for each w 2 W there is Aw 2 � such that

w 
 Aw and R[w] 
 : Aw .

Lemma 5.8 ([53], Lemma 3.1.2) LetM be a generalised Veltman model,Prop a �nite

set of propositional variables andw; w0 2 M . Then w and w0 are n-bisimilar w.r.t. Prop

if and only if w � Prop
n w0.

Note that given some �nite adequate set� and a subsetPropof the set of all proposi-

tional variables, the height of a maximal modelM is bounded byj� j. Due to this, worlds

in M are j� j-bisimilar w.r.t. Propif and only if they are bisimilar w.r.t. Prop. Thus, worlds

w and w0 in M are bisimilar w.r.t. Prop if and only if w � Prop
j� j w0 .

The following lemma combines the key results of [53] (Lemma 2.3, Theorem 2.4.,

Theorem 3.2).

Lemma 5.9 Let � be an adequate set andM = ( W; R; f Sw : w 2 Wg; 
 ) a model that

is maximal w.r.t. � . Let � denote the largest bisimulation onM . De�ne:3

(1) [w] eR
h
u

i
if and only if for somew0 2 [w] and u0 2 [u] we havew0Ru0.

(2) [u] eS[w]
eV if and only if [w] eR

h
u

i
, eV � eR

h
[w]

i
, and for all w0 2 [w] and u0 2 [u] such

that w0Ru0 we haveu0Sw0V 0 for someV 0 such that fV 0 � eV;

(3) for all propositional variablesp 2 � put [w] 
 p if and only if w 
 p, and for all

propositional variablesq 62� put [w] 1 q for all [w] 2 fW.

Then fM = ( fW; eR; f eS[w] : w 2 Wg; 
 ) is a model and a �ltration of M through � ; � .

Furthermore, fM is maximal w.r.t. � and �nite.

Proof. We �rst prove that fM is a model.

1. It is easy to see thateR is a binary relation on fW, and eS[w] � fW � 2eW n f;g for all

w 2 W.

2. Transitivity of eR. Assume[w] eR [u] eR [v]. For somew0 2 [w], u0; u00 2 [u] and

v002 [v] we havew0Ru0 � u00Rv00. Thus, there isv0 � v00with u0Rv0. By the transitivity

of R we havew0Rv0, so [w] eR [v].

3. Converse well-foundedness ofeR. Assume[w1] eR [w2] eR [w3] eR : : : We prove by in-

duction that for every wi there is w0
i � wi and w0

1Rw0
2R : : : Rw0

i . Base case isi = 1, and

3The set of worlds of the new model isfW , that is, the set f [w] : w 2 W g. Unlike fW , relations eR and
eS[w ] are not the product of applying the (previously introduced) operation V 7! eV , but rather completely
new entities which we now de�ne.
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here we can letw0
1 = w1. Suppose the claim holds for all values strictly smaller than

i , and let us prove the claim fori . Sincew0
i � 1 � wi � 1 and [wi � 1] R [wi ], there is some

w0
i � wi such that w0

i � 1Rw0
i . By induction hypothesis we know thatw0

1Rw0
2R : : : Rw0

i � 1.

Thus, w0
1Rw0

2R : : : Rw0
i � 1Rw0

i , as required.

4. Quasi-re�exivity of eS[w], for all w 2 W. Assume[w] eR [u]. To prove [u] eS[w]f [u]g let

w0 2 [w] and u0 2 [u] be arbitrary such that w0Ru0. By the quasi-re�exivity of Sw0, we

have u0Sw0f u0g, and clearly gf u0g � f [u]g (the two sets are equal).

5. Quasi-transitivity of eS[w], for all w 2 W. Assume[u] eS[w]
eV and for all v 2 V,

[v] eS[w]
fZv. We claim that [u] eS[w] ^S

v2 V Zv. So, takew0 2 [w] and u0 2 [u] such that w0Ru0.

Since [u] eS[w]
eV, there is Vw0;u0 such that u0Sw0Vw0;u0 and ]Vw0;u0 � eV. Let v0 2 Vw0;u0 be

arbitrary, and let v 2 V be the element such thatv0 � v. Since[v] eS[w]
fZv, there isTw0;u0;v0

such that v0Sw0Tw0;u0;v0 and T̂w0;u0;v0 � fZv. De�ne Tw0;u0 =
S

v02 Vw 0;u 0 Tw0;u0;v0. By the quasi-

transitivity of Sw0, we haveu0Sw0Tw0;u0. Sincev0 2 Vw0;u0 was arbitrary in the de�nition of

Tw0;u0;v0, clearly ]Tw0;u0 � ^S
v2 V Zv.

6. The property that [w] eR [u] eR [v] implies [u] eS[w]f [v]g. Let w0 2 [w], u0; u002 [u] and

v002 [v] be the worlds such thatw0Ru0 � u00Rv00. Then there isv0 � v00such that u0Rv0.

So,u0Sw0f v0g. Clearly gf v0g � f [v]g.

7. Monotonicity is immediate.

8. The forcing relation 
 is well-de�ned since it does not depend on a representative

of the class[w].

Next we prove that the model fM is a �ltration of M through � ; � .

We need to check if all truth values coincide, i.e.w 
 A if and only if [w] 
 A. We

prove this by induction on the complexity, and as usual we focus on the formulas of the

form A � B .

Assumew 1 A � B . Then there is[u] 2 [A]w such that if uSwV, then V 1 B.

Let eV be arbitrary such that [u] eS[w]
eV. Then uSwV 0 for some fV 0 � eV. SinceV 0 1 B,

we get fV 0 1 B by the induction hypothesis. Therefore,eV 1 B.

For the other direction, assumew 
 A � B . Assume[w] eR [u] 
 A. We construct
eV such that [u] eS[w]

eV 
 B . Let w0 2 [w] and u0 2 [u] be arbitrary such that wRu.

Sincew0 � w, w0 
 A � B , and therefore for someV(w0; u0) we haveu0Sw0V(w0; u0) 
 B .

Put V :=
S

w02 [w];u02 [u];w0Ru 0 V(w0; u0). By the induction hypothesis, eV 
 B . To obtain

[u] eS[w]
eV 
 B it remains to show that eV � R([w]). Obviously, if [v] 2 eV, then for some

w0, u0, and v0 we haveu0Sw0V(w0; u0) 3 v0, for somev0 � v. Clearly w0Rv0, so [w] eR [v], as

required.

Now we prove that the modelfM is maximal w.r.t. � .

Suppose that for somew 2 W there is noA 2 � such that [w] 
 A and eR
h
[w]

i

 : A.

Since M is maximal, there isAw 2 � such that w 
 Aw and R[w] 
 : Aw . Since fM

is a �ltration, [w] 
 Aw . Since eR
h
[w]

i
1 : Aw by assumption, there must beu such

that [w] eR [u] 
 Aw . Since fM is a �ltration, u 
 Aw . This contradicts the fact that
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R[w] 
 : Aw .

Finally, we prove that the model fM is �nite.

Recall that worlds w and w0 in a maximal model are bisimilar w.r.t.Prop if and only

if w � Prop
j� j w0. We have just seen thatfM is maximal w.r.t. � . Thus, every world[w] 2 fM

corresponds to an� Prop
j� j -class. There are only �nitely many formulas of modal depth

bounded byj� j and containing a �nite number of variables, up to equivalence. Thus, the

number of worlds in fM is �nite.

a

Lemma 5.9 implies that IL has the FMP w.r.t. generalised Veltman semantics. To

prove that a speci�c extension has the FMP, it remains to show that �ltration preserves

its characteristic property.

Since we are going to useIL X-structures (see De�nition 4.6 and De�nition 4.27) as

the starting modelsM , we can use the fact that they are maximal (see Chapter 4).

5.2 The �nite model property of ILW and ILW�

In this section we prove that if a generalised Veltman modelM possesses the property

(W)gen then the �ltration fM also possesses the property (W)gen. As a result we obtain

not only the �nite model property of IL W, but also the �nite model property of IL W�

(when combining with the results of [53]).

The results of this section together with the completeness ofIL W w.r.t. generalised

Veltman models, imply decidability of IL W. We will discuss this in more detail in the

next section; here we only deal with the �nite model property.

Note that de Jongh and Veltman [19] already proved the completeness of the system

IL W w.r.t. �nite Veltman models, which implies the �nite model property of IL W. How-

ever, the ultimate goal here is to prove the �nite model property ofIL W� . To obtain this

result we cannot reuse the existing proofs thatIL W has the �nite model property. Since

IL W� = IL WM0 (see [68]) and we know that the �ltration preserves the property (M0)gen,

we need to show that it preserves (W)gen too. For this reason the well-known fact that

IL W has the �nite model property is not directly applicable.

Lemma 5.10 Let � be an adequate set of formulas. LetM = ( W; R; f Sw : w 2 Wg; 
 )

be a generalised Veltman model that is maximal w.r.t.� and also satis�es (W)gen. Let �

be the largest bisimulation onM . Then the generalised modelfM = ( fW; eR; f eS[w] : w 2

Wg; 
 ) (Lemma 5.9) satis�es the condition (W)gen.

Proof. Let w 2 W be a world andX a non�empty set such that fX � eR
h
[w]

i
. For each

world u 2 [w] we de�ne setsX u and Zu as follows:

X u = f x 2
[

fX j uRxg and Zu = f z 2
[

eS� 1
[w]

h
fX

i
j uRzg:
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First we prove that for eachu 2 [w] the set X u is non�empty. Let x 2
S fX be a

world. By assumption, we havefX � eR
h
[w]

i
, so in particular [w] eR [x]. The de�nition of

the relation eR implies there are worldsw0 2 [w] and x0 2 [x] such that w0Rx0 holds. Now

u � w0, w0Rx0 and the property (back) of the bisimulation � imply that there exists a

world u0 2 W such that x0 � u0 and uRu0. Obviously we haveu0 2
S fX , and thus also

u0 2 X u. Hence, the setX u is non�empty. The proof that the set Zu is non�empty for

every u 2 [w] is completely analogous.

We intend to apply the property (W)gen to all u 2 [w], to the set X u and all y 2 Zu.

First we prove that for every world u 2 [w] we haveZu � S� 1
u

h
X u

i
. Consider any

world u 2 [w]. Assume that there exists a worldz 2 Zu such that z =2 S� 1
u

h
X u

i
holds, i.e.

zSuX u does not hold. By the de�nition of the setZu we haveuRz. Sincez 2
S eS� 1

[w]

h
fX

i

we also have[z] eS[w]
fX . Now uRz, u 2 [w] and the de�nition of eS[w] imply that there exists

a set V such that zSuV and eV � fX . We now prove that V � X u. Let x be an element

of the set V. From eV � fX we have in particular that [x] 2 fX , and thus alsox 2
S fX .

From zSuV we have in particular that V � R
h
u

i
, so uRx. Hence,x 2 X u.

Now zSuV, V � X u � R
h
u

i
, and the monotonicity of the relation Su imply zSuX u,

which contradicts the assumption. We have now proved that for eachu 2 [w] we have

Zu � S� 1
u

h
X u

i
, i.e. for eachy 2 Zu we haveySuX u.

By applying the assumption that the modelM has the property (W)gen to any u 2 [w],

X u and any y 2 Zu we get:

(5) (9Vy;u � X u)
�
ySuVy;u & ( 8v 2 Vy;u )(R

h
v

i
\ S� 1

u

h
X u

i
= ; )) :

Recall that we have chosen a worldw 2 W and a setX � W such that fX � eR
h
[w]

i
.

So, to prove that the modelfM possesses the property (W)gen, we will prove the following:

(8 [z] 2 fW)
�

[z] eS[w]
fX ) (9 eVz � fX )([z] eS[w]

fVz &

(8v 2 Vz)( eR
h
[v]

i
\ eS� 1

[w]

h
fX

i
= ; ))

�
:

In order to prove the preceding claim, consider any worldz 2
S fW with [z] eS[w]

fX . For

every u 2 [w] let Yz;u = f y 2 Zu j y � zg. We �rst prove that for each u 2 [w] the set Yz;u

is non�empty. Since [z] eS[w]
fX , we have in particular that [w] eR [z]. By the de�nition of

the relation eR it follows that there are worldsw0 2 [w] and z0 2 [z] such that w0Rz0. Facts

u � w0, w0Rz0, and the property (back) of the bisimulation � imply that there exists a

world u0 2 W such that u0 � z0 and uRu0. Obviously we haveu0 2 [z], and thus u0 2 Yz;u ,

so the setYz;u is non�empty for every u 2 [w].

In order to de�ne the set fVz with the desired properties we �rst de�ne certain sets for

every world u 2 [w]. Consider any worldsu 2 [w] and y 2 Yz;u . From the de�nition of

the set Yz;u we havey 2 Zu. From the fact labelled with (5) we have that there exists a
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set Vy;u � X u with the following property:

(6) ySuVy;u & ( 8v 2 Vy;u )(R
h
v

i
\ S� 1

u

h
X u

i
= ; ):

Now we de�ne the setVz as follows:

Vz =
[

u2 [w]; y2 Yz;u

Vy;u :

We now proceed to prove that the setfVz has the desired property, i.e. that the following

holds:
eVz � fX & [z] eS[w]

fVz & ( 8v 2 Vz)( eR
h
[v]

i
\ eS� 1

[w]

h
fX

i
= ; ):

We haveVy;u � X u for every u 2 [w] and y 2 Yz;u ; therefore fVz �
S

u2 [w]
gX u � fX .

We now prove that [z] eS[w]
fVz. Consider any worldsu and y such that u 2 [w], y 2 [z],

and uRy. From the de�nition of the set Yz;u it follows that y 2 Yz;u . From the fact

labelled with (6) we have in particular that ySuVy;u . From the de�nition of the set Vz we

have gVy;u � fVz. We have already shown that[w] eR [z]. Since eVz � fX , and fX � eR
h
[w]

i
by

the assumption, we also havefVz � eR
h
[w]

i
. From the de�nition of eS[w] we now have that

[z] eS[w]
fVz.

It remains to show that eR
h
[v]

i
\ eS� 1

[w]

h
fX

i
= ; , for every v 2 Vz. Suppose the contrary.

Then there are worldsv 2 Vz and s 2 W such that [s] 2 eR
h
[v]

i
\ eS� 1

[w]

h
fX

i
. From here it

follows in particular that [v] eR
h
s
i

and [s] eS[w]
fX . The fact that v 2 Vz and the de�nition

of the set Vz imply that there are worlds u 2 [w] and y 2 Yz;u such that v 2 Vy;u . From

the fact that [v] eR
h
s
i
, and by the de�nition of the relation eR, it follows that there are

worlds v0 2 [v] and s0 2 [s] such that v0Rs0. Now v � v0, v0Rs0 and the property (back)

of the bisimulation � imply that there exists a world s00such that vRs00and s00 � s0.

From s00 � s0 � s and [s] eS[w]
fX it follows that s002

S eS� 1
[w]

h
fX

i
. From the fact labelled

with (6) we know that ySuVy;u , and so in particular we haveVy;u � R
h
u

i
. Since we have

v 2 Vy;u , we also havev 2 R
h
u

i
, i.e. uRv. Now uRv and vRs00, and the transitivity of

the relation R imply that uRs00. Hences002
S eS� 1

[w]

h
fX

i
and uRs00. By the de�nition of

the set Zu we haves002 Zu. This contradicts the fact labelled with (6), i.e. the fact that

R
h
v

i
\ Zu = ; . a

Corollary 5.11 The logic IL W� has the �nite model property with respect to generalised

Veltman models which satisfy conditions (W)gen and (M0)gen.

5.3 Decidability of ILW and ILW�

In [53] it was proved that IL M0 has the �nite model property with respect to gener-

alised Veltman models which satisfy the condition (M0)gen. Together with the complete-
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ness ofIL M0 with respect to (maximal) generalised Veltman models, this su�ces to prove

that IL M0 is decidable, by a standard argument (cf. [4], p. 341):

ˆ the set of theorems ofIL M0 is recursively enumerable,

ˆ the set (up to isomorphism) of �nite generalised Veltman models with the property

(M0)gen is recursively enumerable,

ˆ we construct an algorithm which simultaneously enumerates theorems ofIL M0,

which are compared to a given formulaA, and generalised Veltman models with the

property (M0)gen, on which the truth of : A is tested.

The �nite model property implies that the algorithm will either �nd the generalised

Veltman model with the property (M0)gen in which : A is satis�ed, or establish that the

formula A is a theorem ofIL M0, in �nitely many steps.

By an analogous argument, the �nite model property and completeness ofIL W� w.r.t.

generalised semantics implies the decidability ofIL W� . Thus, we have proved the following

theorem.

Theorem 5.12 The systemsIL M0, IL W and IL W� are decidable.

5.4 The FMP and decidability for ILP0 and ILR
In this �nal section we repeat our construction, this time forIL P0 and IL R. A small

di�erence is that here we don't have completeness w.r.t. ordinary semantics (IL P0), or

completeness w.r.t. generalised semantics is still an open question (IL R). For present

purposes this simply means that there is only one way of proving decidability: through

generalised semantics. So, here we rely on results of Chapter 4.

Lemma 5.13 Let � be an adequate set of formulas. LetM = ( W; R; f Sw : w 2 Wg; 
 )

be a generalised Veltman model that is maximal w.r.t.� and also satis�es (P0)gen. Let �

be the largest bisimulation onM . Then the generalised modelfM = ( fW; eR; f eS[w] : w 2

Wg; 
 ) (Lemma 5.9) satis�es the condition (P0)gen.

Proof. Assume[w] eR [x] eR [u] eS[w]V and eR
h
[v]

i
\ Z 6= ; for each[v] 2 V. We claim that

there existsZ 0 � Z such that [u] eS[x]Z 0.

Since [w] eR [x], there are w0 2 [w] and x0 2 [x] such that w0Rx0. Let x0 2 [x] and

u0 2 [u] be any worlds such thatx0Ru0. The condition (back) implies that there is a world

ux0;u0 such that x0Rux0;u0 and ux0;u0 � M u0. Now, [u] eS[w]V, ux0;u0 2 [u] and w0Rux0;u0 imply

there is a setVx0;u0 such that ux0;u0Sw0 Vx0;u0 and ]Vx0;u0 � V . Since eR
h
[v]

i
\ Z 6= ; for each

[v] 2 V, we have eR
h
[v]

i
\ Z 6= ; for eachv 2 Vx0;u0. For eachv 2 Vx0;u0, choose a world

zv such that [zv] 2 eR
h
[v]

i
\ Z . Now [v] eR [zv] implies that there are somev0 2 [v] and
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z0
v 2 [zv] such that v0Rz0

v. Applying (back), we can �nd a world z00
v such that vRz00

v and

z0
v � z00

v . Put Zx0;u0 = f z00
v : v 2 Vx0;u0g. Note that we haveR

h
v

i
\ Zx0;u0 6= ; for each

v 2 Vx0;u0.

Applying (P0)gen givesux0;u0Sx0 Z 0
x0;u0 for someZ 0

x0;u0 � Zx0;u0. Clearly ]Z 0
x0;u0 � ]Zx0;u0 �

Z . Continuing our �rst application of (back), there is a set Z 00
x0;u0 such that u0Sx0Z 00

x0;u0,

and for eachz002 Z 00
x0;u0 there is z0 2 Z 0

x0;u0 such that z0 � z00. This implies ]Z 00
x0;u0 � ]Z 0

x0;u0.

Let T =
S

x02 [x];u02 [u];x0Ru 0 Z 00
x0;u0 and Z 0 = eT. It is easy to see thatZ 0 � Z and Z 0 � eR

h
[x]

i
.

We have u0Sx0Z 00
x0;u0 with ]Z 00

x0;u0 � Z 0 for all x0 2 [x] and u0 2 [u] with x0Ru0. Thus,

[u] eS[x]Z 0. a

Corollary 5.14 IL P0 is decidable.

Proof. SinceIL P0 is complete, it remains to show that it has the �nite model property.

Let M = ( W; R; f Sw : w 2 Wg; 
 ) be the IL P0-structure for an appropriateD, and apply

Lemma 5.13. As the resulting modelfM itself also satis�es the conditions of Lemma 5.13,

we can apply Lemma 5.13 once more, and by Lemma 5.9 obtain a �nite model. a

Let us prove the same forIL R.

Lemma 5.15 Let � be an adequate set of formulas. LetM = ( W; R; f Sw : w 2 Wg; 
 ) be

a generalised Veltman model that is maximal w.r.t.� and also satis�es (R)gen. Let � be the

largest bisimulation onM . Then the generalised modelfM = ( fW; eR; f eS[w] : w 2 Wg; 
 )

(Lemma 5.9) satis�es the condition (R)gen.

Proof. Assume[w] eR [x] eR [u] eS[w]V, and let C 2 C([x] ; [u]) be an arbitrary choice set. We

are to prove that there is a setU such that eU � V, [x] eS[w]
eU and eR

h
eU

i
� C.

Put Cx0 = f c 2 R
h
x0

i
: [c] 2 Cg for all x0 2 [x].

Let us �rst prove that for some x0 2 [x] ; u0 2 [u] with x0Ru0 we haveCx0 2 C(x0; u0).

Suppose not. Then for allx0 2 [x] ; u0 2 [u] with x0Ru0, there is a setZx0;u0 such that

u0Sx0Zx0;u0 with Zx0;u0 \ Cx0 = ; . Put Z =
S

x02 [x];u02 [u];x0Ru 0 Zx0;u0. Thus eZ � eR
h
[x]

i
. Thus

[u] eS[x]
eZ. SinceC 2 C([x] ; [u]), there is z 2 Z such that [z] 2 C \ eZ. Thus z 2 Zx0;u0

for somex0 2 [x] ; u0 2 [u] and x0Ru0. The de�nition of Cx0 implies z 2 Cx0. Thus,

Zx0;u0 \ Cx0 6= ; , a contradiction.

Now we claim that for all y 2 [x] there is uy � u0 with yRuy and Cy 2 C(y; uy).

Sincey � x0 and x0Ru0, the (back) condition implies that there is a worlduy such that

uy � u0 and yRuy (and other properties that we will return to later). We will show

that Cy 2 C(y; uy). Let Z 0 be such that uySyZ 0, and we are to prove thatCy \ Z 0 6= ; .

The earlier instance of (back) condition foruy further implies that there is a setZ with

u0Sx0 Z, and for all z 2 Z there is z0 2 Z 0 with z � z0. Let z 2 Z \ Cx0 be an arbitrary

element (which exists because, as we proved,Cx0 is a choice set). Then there isz0 2 Z 0

such that z0 � z. Since[z] 2 C, i.e. [z0] 2 C, we havez0 2 Cy. In particular, Z 0\ Cy 6= ; .

Thus, Cy 2 C(y; uy).
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Let us prove that there is a setU such that eU � V, [x] eS[w]
eU and eR

h
eU

i
� C. Let

w0 2 [w] and y 2 [x] be such that w0Ry. Since[u] eS[w]V, there is a setVw0;y such that

uySw0Vw0;y and gVw0;y � V . Applying (R)gen with Cy, there is Uw0;y � Vw0;y such that

ySw0Uw0;y and R
h
Uw0;y

i
� Cy. Let U =

S
w02 [w];y2 [x];w0Ry Uw0;y . Clearly eU � V. Thus

eU � eR
h
[w]

i
. The de�nition of eS[w] implies [x] eS[w]

eU.

It remains to verify that eR
h

eU
i

� C. Let t 2 U and z 2 W be such that [t] eR [z].

Then we havet 2 Uw0;y for somew0 2 [w] and y 2 [x]. Since[t] eR [z], there are t0 2 [t]

and z0 2 [z] with t0Rz0. The condition (forth) implies that there is z00such that tRz00and

z0 � z00. SinceR
h
Uw0;y

i
� Cy and z002 R

h
Uw0;y

i
, we havez002 Cy. The de�nition of Cy

implies [z00] 2 C, or equivalently, [z] 2 C. a

Corollary 5.16 IL R is decidable.

Future work

The �natural order of things� regarding the exploration of basic modal properties of

interpretability logics is to �rst obtain completeness result(s), then see if they are decid-

able, and �nally classify them in terms of computational complexity. The queue of logics

waiting for their decidability to be determined is currently empty: all interpretability

logics known to be complete w.r.t. at least one semantics are also known to be decidable.

Taking a step back, the best known candidates for a complete logic, whose completeness is

still an open question, are logics whose axioms are among those in two recently introduced

series of arithmetically sound principles [29]. Another candidate is the logicIL W! which

we explore in Chapter 8.
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Chapter 6

Complexity

In this chapter, which is for the most part self-contained, we prove thePSPACE-

completeness ofIL , IL W and IL P.

The �rst part of this chapter (the part that concerns the logic IL ) is based on the

published paper [47].

Introduction
Computational complexity of modal logics was �rst studied by Ladner [43]. Various

tableau-based methods were used in proofs ofPSPACE-decidability of a number of modal

logics (like K , K4 , S4 etc; see [43] and [58]).

Chagrov and Rybakov [16] prove thePSPACE-completeness of the closed fragments of

modal systemsK and K4 (and in fact any logic L such that K � L � K4 ), while for

logicsGrz and GL they establishPSPACE-completeness of their one-variable fragments.

Shapirovsky [55] proved thePSPACE-decidability of propositional polymodal provabil-

ity logic GLP . PSPACE-completeness of the closed fragment of the systemGLP is proved

by Pakhomov in [51].

In this chapter we explore complexity of interpretability logics. Bou and Joosten

proved in [6] that the decidability problem for the closed fragment ofIL is PSPACE-hard.1

This implies in particular that IL is PSPACE-hard. The fact that IL is PSPACE-hard also

follows from the fact that already GL is PSPACE-hard, and IL conservatively extends

GL .

In [63] (the �nal two chapters) another interesting topic regarding complexity and

interpretability is studied: feasible interpretability. In that version of interpretability

(which is a type ofaxioms interpretability), the length of a proof of an axiom's translation

is polynomially bounded. In this chapter we will study classical theorems interpretability.

The modal interpretability logic of feasible (and, of course, classical) interpretability of

PA is IL M (as shown in [63]). Unfortunately, we did not succeed in determining the

1ƒa£i¢ and Vukovi¢ [15] proved normal forms exist for a wide class of closedIL formulas. ƒa£i¢ and
Kova£ [13] quanti�ed asymptotically how wide those classes are asymptotically.
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complexity class ofIL M. See the concluding sections for some comments regarding our

attempts.

We �rst consider the complexity problem for the interpretability logic IL and prove

that it is PSPACE-complete [47]. Our constructions can be seen as generalisations of the

constructions by Boolos presented in [5] (Chapter 10). If we restrict our work toGL , the

resulting method is very similar to the one given by Boolos, up to the terminology. Our

method can also be seen as extending the method presented in [55], of provingPSPACE-

completeness (monomodal case), and other similar proofs where one constructs a tree-like

structure in a space-e�cient manner.

Since this method extends the methods available forGL , let us brie�y describe the

way we can e�ciently check GL -satis�ability, without going into too much detail. A very

brief description is that for GL a certain depth-�rst search through irre�exive transitive

trees of depth bounded by the complexity of a formula su�ces [64]. We will not present

any particular algorithm in full (see e.g. [5] or [55]). Suppose we start with some set

of GL -formulas � � � where � is �nite and closed under subformulas. Let us suppose

that in the language ofGL there is only one modal operator:3 (this choice makes our

description shorter). If � is satis�able, there are someM and w 2 M such that w 
 � .

In general,� needn't fully determine the modal theory of the world that satis�es� . For

example, if � = f p _ qg wherep and q are propositional variables, we can take a model

satisfying p or a model satisfyingq to demonstrate that � is satis�able. So the �rst step

is to determine what other formulas should be satis�ed in the world (or one of the worlds)

where� is satis�ed.2 So, the satis�ability of � is reduced to the satis�ability of some set

� which fully determines the truth of formulas contained in� . For example, if w 
 � ,

then the set f A 2 � : w 
 Ag is a good candidate for� . We can iterate through all the

sets� such that � � � � � , and check if they are satis�able. We next describe how to

perform this check for a particular set� such that � � � � � . Fix some such� . Let us

�rst describe what does it mean for some setQ to be propositionally satis�able. We �rst

describe an operation on the setQ. Assign to every formulaX of the form 3 A (or A � B

in case we are talking about propositional satis�ability in the context of interpretability

logics) that appears (either as such, or as a subformula) inQ a fresh propositional letter

pX . Now uniformly substitute all occurrences of formulasX of the form 3 A or A � B

that appear in Q with the assigned variablespX .

We say the setQ is propositionally satis�ableif the thus obtained set of (propositional)

formulas is satis�able.

First we check if � is propositionally satis�able. Continuing the description of how

to check GL -satis�ability, if � is propositionally satis�able, we look at all 3 -formulas

2Strictly speaking this is not a necessary step; we could get by with just specifying which propositional
variables and formulas of the form 3 B should be true, while ensuring the choice is coherent with the
contents of � .
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3 A1; : : : ; 3 Ak in � . For each3 A i , we need to check ifA i is satis�able. For this, we can

use ourGL -satis�ability algorithm again; this time with a set containing A i . If checks

return a positive answer for all i (i.e. for all i there are someM i and wi 2 M i with

wi 
 A i ), we can make a model for� by prepending a fresh worldw to the disjoint union

of modelsM i . Clearly w 
 3 A1; : : : ; 3 Ak . In this case we stop our search: we found a

satis�able set � � � . Otherwise, we try the next set� , � � � � � . If we don't �nd a

satis�able superset� of the set � , the algorithm determines that � is not satis�able.

There are two important aspects we did not specify in the preceding description of

how to check theGL -satis�ability of a given set of formulas. First, there is the issue

of 3 -formulas that are not present in� . We must ensure these formulas are false in

the remainder of the model. A simple way to do this is to parameterise the algorithm

with a set of �banned formulas� (which is, just like � , a subset of� ). Returning to the

appropriate step of our description, before checking ifA i is satis�able for 3 A i 2 � we look

at the set of all B j such that 3 B j 2 � n � . Such formulasB j must not be the satis�ed in

the model the algorithm builds forA i (because we later wish to obtain the truth lemma,

so the set of the contained formulas must correspond to the set of true formulas). So,

we add all such formulasB j to the set of �banned formulas� when we recursively call the

algorithm to check if A i is satis�able.

Another aspect we did not cover is termination. How do we ensure the recursion

stops? A way to achieve this is to utilise the fact thatGL ` 3 A $ 3 (A ^ 2 : A). So,

instead of trying to build a model for A i , we try and build a model forA i (a model M i

with wi 2 M i such that wi 
 A i ) where for all worldsx except for wi we havex 1 A i .

This property can be ensured with another parameter: �delayed banned formulas�. To

put it shortly, we need to tell the next call which formula within � is the formula A i .

In this chapter we work with ordinary Veltman models. Our methods extend the

approach used forGL , which we sketched above. Generally speaking, there are two new

conceptual issues that have to be dealt with. One is that we have to deal withSw relations

(which did not exist in GL -models), so the concept of a model de�ned by a particular

run of an algorithm is more complex than is the case withGL . With GL it su�ced to

let the accessibility relation R equal the execution tree of a successful run, where each

node represents a (successful) check if a particular set of formulas is satis�able. Another

but related issue is that the structure of the model can no longer be made dependent

solely on the formulas we'd like to satisfy in its root (together with the sets of �banned�

and �delayed banned� formulas). That is, in addition to formulas we'd like to be shown

(un)satis�able, there is additional information to carry between recursive calls of our

algorithm.
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6.1 Preliminaries
Recall that in this thesis, unless stated otherwise, we assume the language of inter-

pretability logics contains only the symbols? , ! , � , and countably many symbols for

propositional variables. The results of this section can be easily extended to include other

symbols such as2 . In particular, we know that 2 A is equivalent to (A ! ? ) � ? , so

given aPSPACEalgorithm P for the basic language we can construct aPSPACEalgorithm

P+ for the extended language: it consists of a linear-space preprocessing stage together

with P.

A rooted Veltman model(M ; w) is a pair consisting of a Veltman modelM = ( W; R; f Sx :

x 2 Wg) and a world w such that all other worlds areR-accessible fromw; we say that

(M ; w) is a model of a formulaB (a set of formulas� ) if M ; w 
 B (M ; w 
 B , for each

B 2 � ).

For a Veltman model M and a world x, the rooted submodel generated byx is the

rooted model (N; x), where N is the restriction of M to the set of all worlds that are

either x itself or are R-accessible fromx.

Let us denote bySub(A) the set of subformulas of a formulaA. For a given formula

A we de�ne � = Sub( A) [ f?g . We assume that the formulaA and the corresponding

set � are �xed and available in all contexts. In other words, we will assume that these

objects are available to our algorithm even though we don't mention them explicitly as

input parameters.

In the paper [47] the set� also contained negations of subformulas ofA. Here we

change the approach slightly. We add two additional inputs to our algorithm:B � �

which stands forbannedformulas, andD � � which stands fordelayed bannedformulas.

The original algorithm ([47]) solved the problem of satis�ability, i.e. �given some set

� � � , is there a rooted model(M ; w) such that w 
 � ?� The new algorithm presented

here solves a slightly more general problem: given some sets� ; B; D � � , is there a

rooted model(M ; w) such that w 
 � , such that _R[w] 
 :B , and R[w] 
 :D . Clearly,

the di�erence is only super�cial since the old algorithm can answer this question too,

given � [ :B [ 2 :B [ 2 :D as input.

Because of these newly added inputs (compared toIL ), we do not need additional

negated formulas in the set� . We believe this approach is more elegant than the one

used in our published paper.

Given S � � , we de�ne Full( S) := S [ f: B : B 2 � n Sg. We will say that S �

� is Boolean satis�able (w.r.t. � ) if Full( S) is a propositionally satis�able set (see the

introduction for a precise description ofpropositional satis�ability ). In general, it can

happen that Full( S) * � , but this won't be an issue. Let us brie�y describe the purpose

of Full( S). When the algorithm attempts the construction of a world satisfying� , it �rst

has to decide the truth values of formulas not determined by� . A way to implement this
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choice is to iterate through all subsetsS of � , and try to make exactly the formulas ofS

satis�ed. This implies we want all B for B 2 � n S to be falsi�ed.

6.2 The logic IL
We will present a PSPACE-algorithm that given a modal formula A checks whether

there is a rooted Veltman model(M ; w) of A (and additionally, given parametersB and

D, the model has to satisfy _R[w] 
 :B , and R[w] 
 :D ). In order to prove that IL is

in PSPACE, given a modal formulaA we will apply this algorithm to the set f Ag, with

the setsB = ; and D = f Ag (alternatively, we can take both setsB and D to be empty,

which might result in a slightly larger model). The execution with these parameters will

take a polynomial amount of space injAj, thus demonstrating that IL is in PSPACE.

We will present our algorithm as the main Algorithm (1) and supplementary algorithms

(2) and (3) that can make recursive calls of each other and return either a positive or a

negative answer ((1) makes only calls of (2), (2) makes only calls of (3), and (3) makes

only calls of (1)). First we will give a full description of the computation process (the

algorithms (1), (2) and (3)) and specify what we are computing, but we will prove our

claims about what we are computing only later.

First we pick the formula A whose satis�ability we're testing.

Note 6.1 In the remainder of the section we assume that the formulaA and the corre-

sponding set� = Sub( A) [ f?g are �xed. Thus, all our statements and algorithms are

implicitly parametrised with A.

Algorithm (1) takes sets� ; B; D � � as its input. Algorithm (2) takes sets� ; D � �

as its input. Algorithm (3) takes as input a formulaC � D 2 � , a set � � � n f C � Dg

of formulas of the formE � G; and a setD � � . All three algorithms return a single

value which is either a positive or a negative answer (i.e.yes or no). When we need to

refer to an input parameterX of an algorithm (i ) we will sometimes writeX (i ) if � X � is

otherwise ambiguous in the given context.

Algorithm (1) computes whether there is a rooted model(M ; w) such that w 
 � ,

such that _R[w] 
 :B and R[w] 
 :D . It does this by enumerating all (if any) Boolean

satis�able extensions� 0 � � such that Full(� 0) [ :B is propositionally satis�able. Al-

gorithm (1) returns a positive answer if and only if for at least one such extension� 0,

Algorithm (2) returns a positive answer with � (2) = � 0, and D (2) = B [ D .

Algorithm (2) takes sets � ; D � � as input, where � is assumed to be Boolean

satis�able. Algorithm (2) computes whether there is a rooted model(M ; w) such that
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w 
 Full(�) and R[w] 
 :D . This is accomplished by examining the sets� + and � � :

� + = f C � D 2 � : C � D 2 � g; (6.1)

� � = f C � D 2 � : C � D =2 � g: (6.2)

For each formula C � D 2 � � , we check whether there is a rooted Veltman model

(M C� D ; wC� D ) of f: (C � D)g [ � + , such that R[wC� D ] 
 :D . This is done through

the call of Algorithm (3) which is parametrised with (C � D)(3) = C � D, � (3) = � + ,

and D (3) = D. Algorithm (2) returns a positive answer if and only if all these checks are

positive.

Let us give a brief informal description of what Algorithm (3) computes. Suppose we

are constructing a rooted model(M ; w) of � whereC � D 2 � � . Algorithm (3) is trying

to build the part of R[w] that should witness the falsity ofC � D, i.e. there should be a

world satisfying C without an Sw transition to a world satisfying D. Let us denote the

aforementioned part ofR[w] (that witnesses the falsity ofC � D) as U. Algorithm (3)

�rst chooses which formulas in� will be satis�ed somewhere inU. We can denote the set

of such formulas asP (�positive�) and let N = � n P. The formulas in the setN are the

ones we want to be false everywhere inU. Later we will make U closed underSw . So in

particular, if E � G is to be true in w, either we have a world satisfyingG somewhere in

U, or E must be false everywhere inU (if E was true somewhere inU, we would needG

true somewhere inU).

Let us resume with the formal description of Algorithm (3). First we need an auxiliary

notion.

We will say that a pair of sets of formulas(N; P ) is a (� ; C � D)-pair if:

ˆ N; P � � ;

ˆ C 2 P, D 2 N , ? 62P;

ˆ for eachE � G 2 � , either E 2 N or G 2 P.

Algorithm (3) takes a single formulaC � D 2 � as input, a set� � � n f C � Dg of

formulas of the formE � G; and a set of formulasD � � . We return a positive answer

if there is a (� ; C � D)-pair (N; P ) such that for everyG 2 P there is a rooted Veltman

model (M G; wG) of G such that:

1. _R[wG] 
 :D ; : N ;

2. R[wG] 
 : G.

Note that these checks can be computed with Algorithm (1) if we provide the following

input values: � (1) = f Gg, B(1) = D [ N , and D (1) = f Gg.
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We will now proceed to prove that this algorithm has the required properties. To do

so, let us �rst verify that algorithms (1), (2) and (3) do what we described.

Lemma 6.2 Given � ; B; D � � , the following statements are equivalent:

1. there exists a rooted model(M ; w) such that w 
 � , such that _R[w] 
 :B and

R[w] 
 :D ;

2. there is a set� 0 � � and a rooted model(M ; w) such that w 
 Full(� 0), such that

R[w] 
 :B ; :D , the set� 0 is a Boolean satis�able extension of� , and Full(� 0) [:B

is propositionally satis�able.

Proof. For (1.) to (2.), note that if there is a rooted model(M ; w) such that w 
 � ,

such that _R[w] 
 :B and R[w] 
 :D , the same structure is a model ofFull(� 0) where

� 0 = f A 2 � : w 
 Ag. This extension is satis�able, and in particular propositionally

satis�able, with :B . Conditions involving R[w] are clearly preserved.

For the other direction, we reuse the model whose existence is known. The only non-

obvious property to check is whetherw 
 :B . Supposew 
 B and : B 2 :B for some

formula B 2 � . Since� 0 is Boolean satis�able,B 2 � 0 (otherwise : B 2 Full(� 0) and

then w 
 : B ). Sincew 
 � 0, it follows that w 
 : B , a contradiction. a

Lemma 6.3 Let � be a Boolean satis�able subset of� , and B; D � � . The sets� + and

� � are given by (6.1) and (6.2). The following are equivalent:

1. there exists a rooted model(M ; w) such that w 
 Full(�) and R[w] 
 :D ;

2. for all C � D 2 � � , there is a rooted Veltman model(M C� D ; wC� D ) of f: (C �

D)g [ � + , such that R[wC� D ] 
 :D .

Proof. First assume that there is a rooted Veltman model(M ; w) of Full(�) . It is easy

to see that we can put(M C� D ; wC� D ) = ( M ; w), for eachC � D 2 � � .

In the other direction, suppose we have rooted Veltman models(M C� D ; wC� D ) with

the described properties for eachC � D 2 � � . Denote (WC� D ; RC� D ; f SC� D
x : x 2

WC� D g; 
 C� D ) = M C� D . In order to construct a rooted Veltman model(M ; w) of � , we

take the disjoint union of the modelsM C� D , and then �merge� the worlds wC� D in one

world w. More formally, we suppose the modelsM C� D are disjoint, the world w is fresh

and then de�ne:

W = f wg [
[

C� D 2 � �

WC� D n f wC� D g;

R = f (w; x) 2 W 2 : x 6= wg [
[

C� D 2 � �

RC� D \ W 2;

Sw =
[

C� D 2 � �

SwC � D ;

for x 2 WC� D n f wC� D g; Sx = SC� D
x :
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In the last line, the superscript C � D (SC� D
x ) is added since otherwise it would be

ambiguous if we are referring to one of the initial modelsM C� D or the �nal model M .

We omit this superscript if there is no danger of confusion (e.g. the worldwC� D exists only

in M C� D , so we will write SwC � D instead of SC� D
wC � D

.) We put satisfaction of proposition

variables in w according to the setFull(�) .

It is easy to prove by induction on the complexity of a formulaB 2 � that we have

the following: M ; w 
 B if and only if B 2 � . Let us consider the caseB = C � D.

SupposeM ; w 
 C � D. AssumeC � D 62� for a contradiction. Clearly C � D 2 � � .

By assumption, C � D fails in M C� D , so there is somex, such that wC� D RC� D x, with

M C� D ; x 
 C and for no y such that xSwC � D y do we haveM C� D ; y 
 D. By the

construction of the modelM we haveM ; x 
 C and for no y such that xSwy do we have

M ; y 
 D. SincewRx and the setSw [x] equalsSwC � D [x], this contradicts the assumption

that M ; w 
 C � D.

In the other direction, supposeC � D 2 � and wRx. SinceC � D 2 � , we have

C � D 2 � + . SincewRx, by construction, x is in M E � G for exactly one formulaE � G.

SinceM E � G is a model of� + , there is y such that xSwE � G y and M E � G; y 
 D. But y is

included in M , and we havexSwy 
 D. Thus w 
 C � D. a

Lemma 6.4 Let � ; D � � where � is a set of formulas of the formE � G, and assume

C � D 2 � n � . The following are equivalent:

1. there exists a rooted model(M ; w) of f: (C � D)g [ � , such that R[w] 
 :D ;

2. there is a (� ; C � D)-pair (N; P ) such that for every G 2 P there is a rooted

Veltman model (M G; wG) of G such that:

(a) _R[wG] 
 :D ; : N ;

(b) R[wG] 
 : G.

Proof. (1.) to (2.) Fix the model (M ; w) of f: (C � D)g [ � such that R[w] 
 :D , and

we are to �nd the required (� ; C � D)-pair (N; P ). Sincew 1 C � D, there is a world

wC� D with wRwC� D 
 C and for all x, if wC� D Swx, then x 1 D. W.l.o.g. we can assume

that wC� D is an R-maximal3 world with this property. In particular, if wC� D Rx, then

x 1 C (otherwise, sincewRwC� D implies Sw [x] � Sw [wC� D ], the world wC� D would not

be R-maximal in the set in question). LetP = f G 2 � : [ G]w \ Sw [wC� D ] 6= ;g and

N = � n P.

For every G 2 P let wC� D;G denote any world that is R-maximal in the set [G]w \

Sw [wC� D ]. Put (M G; wG) := ( M [wC� D;G ]; wC� D;G ) where M [wC� D;G ] is the submodel

generated bywC� D;G .

3A world x is R-maximal in a set S if x is in S and no R-successor ofx is in S.
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It is easy to check we have Properties (2a) and (2b). For instance, let us �rst verify
_R[wC� D;G ] 
 : N . Assume otherwise, i.e. for someE 2 N and x 2 _R[wC� D;G ] we have

x 
 E. SinceE 2 N , we have[E]w \ Sw [wC� D ] = ; . Sincex 2 _R[wC� D;G ], certainly

x 2 Sw [wC� D;G ] � Sw [wC� D ], a contradiction.

In the other direction we know there is a(� ; C � D)-pair (N; P ) such that for every

G 2 P there is a rooted Veltman model(M G; wG) of G such that (2a) and (2b) hold.

We construct M as follows. First take the disjoint unionU of the models(M G; wG) for

G 2 P. Prepend a new worldw as anR-predecessor of every world inU. Make all the

worlds other than w pairwiseSw-accessible. The forcing relation of the new model should

inherit the ones from the building blocks, and forw it can be chosen arbitrarily.

It remains to prove that w 
 : (C � D); � and R[w] 
 :D . It is easy to see that

R[w] 
 :D . To see that w 
 : (C � D), note that wRwC 
 C (since C 2 P) and

that, since D 2 N , all the modelsM G validate : D. Finally, let us check if w 
 � . Let

E � G 2 � be an arbitrary formula, and x 2 R[w] an arbitrary world such that x 
 E.

Sincex 
 E, we haveG 2 P (otherwise E 2 N , contradicting wRx 
 E). Thus, the

world wG exists and by the de�nition of Sw , we havexSwwG.

a

Recall that we �xed a formula A which we would wish to decide if it has anIL -model

or not. We also �xed the corresponding set� = Sub( A) [ f?g (see Note 6.1).

Theorem 6.5 The logic IL is PSPACE-decidable.

Proof. First we show that the recursion depth is bounded byj� j + 1. Suppose that for

some initial input parameter � � � (with B = D = ; ) we have a chain of calls

c(1)
0 ; c(2)

0 ; c(3)
0 ; c(1)

1 ; c(2)
1 ; c(3)

1 ; : : : ; c(1)
n ; c(2)

n ; c(3)
n ; c(1)

n+1 ; c(2)
n+1 ; c(3)

n+1

of the Algorithms (1), (2) and (3) wheren = j� j. It is possible that c(3)
n+1 makes further

calls of Algorithm (1), at the moment we are not assuming anything with regard to that.

Let Gi for 0 � i � n be the formula from the setP in c(3)
i , for which c(3)

i made the call

c(1)
i +1 .

Let the index i � n � 1 be arbitrary. The setsD in c(1)
i +1 , c(2)

i +1 and c(3)
i +1 contain Gi , so

the set � in c(2)
i +2 cannot contain Gi . Since we never remove elements from the setsD in

subsequent calls, forj � i + 2 we have that � in c(2)
j cannot contain Gi . Since� in c(2)

j

is a superset of� in c(1)
j , and the latter contains Gj � 1, we haveGj 6= Gi for j � i + 1.

Thus, the setf G0; G1; : : : ; Gng � � containsn + 1 di�erent elements, which is impossible

sincej� j = n. This contradicts the existence of our chain, which is of lengthn + 2.

Thus, our algorithm terminates. Next we see that the space reserved by our algorithm

is at most polynomial in jAj in any given instant. To see this, we �rst note that the

recursion depth has an upper bound which is linear injAj. At any given moment we keep
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only one branch in memory. So, it remains to convince ourselves that each particular

execution of Algorithms (1), (2) and (3) takes at most a polynomial amount of space.

Algorithm (1) iterates through all � such that � � � � � . This iteration requires n

bits, and thus is linear in jAj. For each� we check if it is Boolean satis�able (which is a

PTIME preprocessing stage followed by anNP propositional satis�ability check). Finally,

Algorithm (1) makes a call of Algorithm (2).

Algorithm (2) is computationally very simple; it makes a small number of calls of

Algorithm (3). The number of calls made is bounded byj� j, but since we are not making

these (or any other) calls in parallel, even this detail is irrelevant.

Algorithm (3) iterates through all candidates(N; P ) for a (� ; C � D)-pair. Thus, it

su�ces to iterate through pairs of subsets of� (this requires 2n bits), and then perform

a simplePTIME check of all the conditions (C 2 P, D 2 N , ? =2 P, for all E � G 2 �

either E 2 N or G 2 P). If some pair (N; P ) passes these checks, we call Algorithm (1)

for this pair. If one of the checks failed or Algorithm (1) returned a negative answer, we

proceed to the next candidate pair.

We see that a particular execution of Algorithms (1), (2) and (3) takes a polynomial

(in fact, linear) amount of space. So the whole Algorithm (1) (together with the recursive

calls) is at most quadratic injAj, and thus it belongs toPSPACE.

Now the only thing left to verify is that the descriptions of what we are computing in

our algorithm are indeed correct. Since we already know that our computation terminates,

it is enough to show that our algorithm works locally correct, i.e. that assuming that

further calls do what we describe that they are doing, the call under consideration also

computes what we want it to compute. Formally, we prove the correctness of descriptions

by induction on the depth of the recursion (the base case are terminal calls, i.e. leaf calls

in the execution tree).

The fact that the description of Algorithm (1) is correct follows from Lemma 6.2,

that the description of Algorithm (2) is correct follows from Lemma 6.3, and that the

description of Algorithm (3) is correct follows from Lemma 6.4.

Thus, there is a model ofA if and only if Algorithm (1) returns a positive answer

given the input � = f Ag and B = D = ; . a

Bou and Joosten [6] proved that the decidability problem for the closed fragment of

IL is PSPACE-hard. Together with the previous theorem, this implies the following.

Corollary 6.6 The validity and decidability problems of the logic IL are PSPACE-

complete.

6.3 The logic ILW
Let us now extend results of the previous section to the logicIL W. The characteristic

property, (W), is the following:
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for all w 2 W, the relation Sw � R is converse well-founded.

Assume we wish to know if the following set isIL W-satis�able: f 3 p; p�3 q_ 3 r; q� pg.

The algorithm for IL would have to produce a witness for, among other formulas, the

formula 3 q _ 3 r . To do this it has to iterate through propositionally satis�able sets

containing 3 q _ 3 r . Disregarding the irrelevant formulas for the moment, there are two

options to go with: either 3 q or 3 r . Which option is picked depends on the order the

algorithm uses for iteration. If 3 q comes �rst, it will be picked and the �nal model might

look like this (all worlds are assumed to beR-accessible fromw):

p 3 q

q

And this is clearly not a good choice: we have an in�nite(R � Sw)-loop, so this model

is not an IL W-model. Thus, we have to build a di�erent algorithm that will prevent

(R � Sw)-loops. However, we have to allow certain non-problematic and non-trivialSw-

loops. Assume we want to satisfy3 p, p � q and q � p. We might build a model like this

one:

p q

Unlike the previous model, this model is �ne, and might even be the only solution (e.g. if

IL W ` : (p ^ q)). So, preventing(R � Sw)-loops cannot be reduced to simply preventing

Sw-loops; we really have to take the relationR into account. This time we can't makeSw

total as we did for IL (see Lemma 6.4).

We �rst show (Lemma 6.7) that IL W-satis�able formulas have a particular kind of

uniform models. For example, we can assume that ifp� q 2 � + and we have a number of

R-successors ofw that satisfy p, then there is a particularR-successor ofw that satis�es

q which is both Sw-accessible from all the aforementioned worlds that satisfyp, and also

(Sw � R � Sw)-maximal in the set of worlds satisfyingq. This is shown in the leftmost

picture below. The other two images sketch the main part of the proof of Lemma 6.7.

This is the part where we show that any model can be transformed to a model with the

desired properties, but that we do not lose the characteristic property(W) in the process.

It boils down to the fact that if there is a loop introduced in the process (caused by the

addition of an Sw-transition, pictured dashed), then the world we selected as supposedly

(Sw � R � Sw)-maximal actually had an(Sw � R � Sw)-successor (see the proof of Lemma

6.7).
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p
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p q (max) p q (max)

q

Once the Lemma 6.7 convinces us that there are uniformly-structured models for all

IL W-satis�able formulas, we can limit our search space to that class of models.

The main modi�cation of our algorithm will be the part that for each C � D 2 � �

iterates through (Sw-) �visibility� graphs of witnesses of formulas from the �P� component

of an (� ; C � D)-pair (N; P ). This graph tells us which witness is allowed toSw-access

which other witness. With this information, we will avoid introducing loops, since every

node will be aware of formulas that would cause a loop to appear. For example, if

P = f q0; q1; q2; q3; : : : g:

q0

q1

q2

q3

.
.

.

On this graph the existence of an arrowp ! q means that the witness ofp can Sw-

access the witness ofq. The non-existence, however, means that the witness ofp can't

Sw-accessany world satisfying q (not only the one particular chosen witness).

Let A be the formula whose satis�ability we are interested in, and� := Sub( A) [ f?g .

As in the previous section,A and � are �xed throughout the remainder of this section

(see Note 6.1). In this section, �model� will always mean �IL W-model�.

Given a set of formulas� , a modelM and a world x 2 M , denote

I x = f C � D 2 � : x 
 C � Dg;

Nx = f C � D 2 � : x 1 C � Dg:

These sets, of course, depend not only onx but also on � , however the notation doesn't

explicate this since the choice of� is �xed ( � = Sub( A) [ f?g ), as was the case withIL .

Lemma 6.7 If (M ; x) is a rootedIL W-model, then there is another rootedIL W-model

(N; y) such that:

1. (M ; x) � � (N; y) and f B 2 � : R[x] 
 Bg = f B 2 � : R[y] 
 Bg;

2. for all C � D 2 Nx there is a setPC� D � � containing C such that for every

G 2 PC� D there is a worldyC� D;G , and:

(a) PC� D = f B 2 � : [ B ]y \ Sy[yC� D;C ] 6= ;g ;
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(b) yC� D;G 
 G;

(c) yC� D;G is (Sy � R � Sy)-maximal in the set [G]y;

(d) whenever for someH 2 PC� D andE such that E � G 2 I x we haveyC� D;H Syz 


E, we also havezSyyC� D;G ;

(e) Sy[yC� D;G ] 
 : D .

Sometimes we will refer to the worldsyC� D;C as yC� D .

Proof. Note that the portions of R[x] witnessing falsity of di�erent C � D 2 Nx in the

rooted model(M ; x) can be assumed to be mutually disjoint w.r.t. the relationS. More

precisely, if Ci � D i 2 Nx , we can assume that there are corresponding worldsx i such

that x i 
 Ci , such that Sx [x i ] 
 : D i and the setsSz[x i ] [ S� 1
z [x i ] and Sz[x j ] [ S� 1

z [x j ] are

mutually disjoint (for all z 2 M ) when i 6= j . A way to achieve this is to replicateR[x]

in jNx j copies and pick eachx i from a di�erent copy of the original R[x].

We will construct N by modifying M . Using the assumption of disjointness that was

just described, and the fact that our modi�cations will happen completely inside the sets

Sx [x i ], we only need to show that we can achieve the statement of this lemma for a �xed

C � D 2 Nx .

So, �x C � D 2 Nx . Sincex 1 C � D, the set V := [ C]x n S� 1
x [[D ]x ] is non-empty.

At least one u 2 V is (Sx � R � Sx )-maximal in V, otherwise we have an(R � Sx )-loop4

in�nitely revisiting V. Pick any such(Sx � R � Sx )-maximal u 2 V and let xC� D := u. We

claim that xC� D is also(Sx � R � Sx )-maximal in [C]x . AssumexC� D (Sx � R � Sx )v 2 [C]x
(thus alsoxC� D Sxv). Suppose thatv =2 V, i.e., vSxz for somez 
 D. By the transitivity

of Sx we havexC� D Sxz which implies xC� D =2 V, a contradiction. Thus, v 2 V. But this

contradicts (Sx � R � Sx )-maximality of xC� D w.r.t. V .

Let PC� D = f B 2 � : [ B ]x \ Sx [xC� D ] 6= ;g and xC� D;C := xC� D . We will now

de�ne xC� D;G for all other G 2 PC� D (G = C has just been dealt with). First put V :=

Sx [xC� D ] \ [G]x . Clearly this set is not empty. As before, picku 2 V that is (Sx � R � Sx )-

maximal in V and let xC� D;G := u. Since(Sx � R � Sx )[xC� D;G ] � Sx [xC� D;G ] � Sx [xC� D ],

clearly xC� D;G is also(Sx � R � Sx )-maximal in [G]x .

Thus, if we take y := x, we have properties (2a), (2b), and (2c), and it is easy to

see we have (2e) too. We would now like to ensure the property (2d): whenever there is

H 2 PC� D such that xC� D;H Sxz 
 E with someE � G 2 I x , we then havezSxxC� D;G . We

will do this by iterating through the set Z = f z 2
S

E � G2 I x
[E ]x : xC� D Sxzg and including

(z; xC� D;G ) in Sx . The set Z , and in fact the setSx [xC� D ] too, clearly remains constant

in this process. This process may invalidate the transitivity ofSx and also the property

4By an � (R � Sx )-loop� we really mean an in�nite (R � Sx )-chain. Unless stated otherwise, we do
not assume that there is any repetition going on, despite the name. However, the results of this section
could be formulated in terms of �nite models (for example, by replacing every occurrence of �model�
with ��nite model�), in which case the loop would, of course, imply there is some repetition.
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(2c). Furthermore, it is not obvious that it preserves converse well-foundedness ofR � Sx .

Let us �rst show the converse well-foundedness ofR � (Sx )+ .5 After that, we will close Sx

under transitivity, and converse well-foundedness ofR � Sx will be immediate.

Suppose for a contradiction that we obtain an(R� (Sx )+ )-loop at some point during the

iterative process. We had converse well-foundedness before inserting some pair, denote it

as(z; xC� D;G ), in Sx . Thus, the loop we obtained must contain occurrences ofzSxxC� D;G

between in�nitely many occurrences ofR-transitions. We will �rst show that a loop of a

speci�c form must exist.

In the aforementioned(R � (Sx )+ )-loop, take the last occurrence ofzSxxC� D;G that

appears before some arbitrarily chosenR-transition bRa. The relation Sx is transitive

on the segment ofSx -transitions betweenxC� D;G and b, so xC� D;G Sxb. Similarly, take

the �rst occurrence of zSxxC� D;G after bRa. Since transitivity holds on the segment of

Sx -transitions betweena and z, we haveaSxz. Thus, for somea; b2 Sx [xC� D ], a loop of

this form must exist:

a Sx z Sx xC� D;G Sx b R a:

Now, since

xC� D;G Sx b R a Sx z 
 E;

for someE such that E � G 2 I x , we have in fact

xC� D;G Sx b R a Sx z Sx u 
 G;

for someu 2 [G]x that was present in the model before extendingSx with (z; xC� D;G ).

This contradicts (Sx � R � Sx )-maximality of xC� D;G w.r.t. [G]x . Thus, there are no

(R � (Sx )+ )-loops. It remains to closeSx under transitivity.

Worlds of the formxC� D;G may lose their(Sx � R� Sx )-maximality (property (2c)) in this

iterative process once we start addingSx -transitions for another formulaG0 2 PC� D . This

can be remedied easily. LetxC� D;G denote the world currently denoted byxC� D;G , and

now rede�nexC� D;G to be the(Sx � R� Sx )-maximal world in the setf z : xC� D;G Sxz 
 Gg.

SincexC� D;G aggregates paths from all worlds requiring anSx -successor satisfyingG,

and xC� D;G SxxC� D;G , we have all the old properties, with no need to extendSx . Since

we did not change the model itself, we do not have to check if the properties (2a)�(2e)

are preserved.

We let the modelN be the model thus obtained, andy := x. Finally, we should check

(M ; x) � � (N; y) and f B 2 � : R[x] 
 Bg = f B 2 � : R[y] 
 Bg, where (M ; x) now

stands for the state of the model before our transformations took place. First note that

the second claim holds trivially, since our transformation preservesR and Sz for z 6= x.

So it su�ces to verify that x and y agree on propositional variablesp 2 � (which by

5Given a binary relation Q, we denote the transitive closure ofQ with Q+ .
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de�nition they do) and formulas of the form C � D 2 � . Since we extendSx in a way

that does not enlargeSx [xC� D ], clearly if x 1 C � D, also y 1 C � D. If x 
 C � D,

since we do not erase anySx -transition, also y 
 C � D. a

Let us now present the algorithm. We use an approach similar to the one for the logic

IL . In particular, we have three algorithms, which we call Algorithms (1), (2) and (3),

again.

We need one more ingredient forIL W. We will say that a binary relation G is a

visibility graph for a (� ; C � D)-pair (N; P ) if G � P2 is transitive and re�exive on P.

Let G := G \ G � 1. Note that due to the re�exivity, every G 2 P is contained in the

equivalence class[G] 2 P=G.

Algorithms (1) and (2) are de�ned as before, so we skip their de�nitions (replacing

each implicit or explicit occurrence of �IL � with � IL W�). Algorithm (3) takes a single

formula C � D 2 � as input, a set� � � n f C � Dg of formulas of the formE � G; and

a set of formulasD � � . It returns a positive answer if for some(� ; C � D)-pair (N; P )

and a visibility graph G, for every G 2 P there is a rooted Veltman model(M G; wG) of

G such that:

1. _R[wG] 
 :D ; : N; :f H : H � J 2 � and (G; J ) =2 Gg;

2. R[wG] 
 : G; :f H : H � J 2 � and [G]G = [ J ]Gg.

Note that these checks can be computed with Algorithm (1).

We will now proceed to prove that algorithms (1), (2) and (3) are correct.

Lemma 6.8 Given � ; B; D � � , the following statements are equivalent:

1. there exists a rooted model(M ; w) such that w 
 � , such that _R[w] 
 :B and

R[w] 
 :D ;

2. there is a set� 0 � � and a rooted model(M ; w) such that w 
 Full(� 0), such that

R[w] 
 :B ; :D , the set� 0 is a Boolean satis�able extension of� , and Full(� 0) [:B

is propositionally satis�able.

Proof. See the proof of Lemma 6.2. Since we use the same model(M ; w) in both directions

of the proof, we do not need to check if the characteristic property(W) is preserved. a

The sets� + and � � are given by (6.1) and (6.2), as before.

Lemma 6.9 Let � be a Boolean satis�able subset of� , and B; D � � . The following

statements are equivalent:

1. there exists a rooted model(M ; w) such that w 
 Full(�) and R[w] 
 :D ;
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2. for all C � D 2 � � , there is a rooted Veltman model(M C� D ; wC� D ) of f: (C �

D)g [ � + , such that R[wC� D ] 
 :D .

Proof. The proof of this lemma is essentially the same as the proof of Lemma 6.3. The

(1.)-to-(2.) direction is exactly the same, and since we are taking generated submodels of

the model (M ; w) we do not need to check if the characteristic property is preserved in

the newly de�ned models.

In the other direction, we should check whether the resulting model(M ; w) satis�es

converse well-foundedness ofR � Sw . However, every(R � Sw)-path that exists in the

joint model (M ; w) is already present in one of the initial models(M C� D ; wC� D ) as an

(R � SwC � D )-path. Thus, no (R � Sw)-loops can occur in this construction. a

Lemma 6.10 Let � ; D � � where� is a set of formulas of the formE � G, and assume

C � D 2 � n � . The following statements are equivalent:

1. there exists a rooted model(M ; w) of f: (C � D)g [ � , such that R[w] 
 :D ;

2. there is a(� ; C � D)-pair (N; P ) and a visibility graph G for it such that for every

G 2 P there is a rooted Veltman model(M G; wG) of G such that:

(a) _R[wG] 
 :D ; : N; :f H : H � J 2 � and (G; J ) =2 Gg;

(b) R[wG] 
 : G; :f H : H � J 2 � and [G]G = [ J ]Gg.

Proof. (1.) to (2.). Assume w.l.o.g. that the model(M ; w) has properties of the model

(N; y) described in Lemma 6.7. In particular, we assume the existence of worldswC� D

and wC� D;G as described there. To show (2), let(N; P ) be the (� ; C � D)-pair de�ned

as follows:P = f B 2 � : [ B ]w \ Sw [wC� D ] 6= ;g and N = � n P. Note that this coincides

with PC� D in Lemma 6.7.

Let us de�ne the visibility graph G � P2 as follows. GivenG1; G2 2 P, put (G1; G2) 2

G if and only if wC� D;G 1 SwwC� D;G 2 . The re�exivity and transitivity of G follow from the

re�exivity and transitivity of Sw .

Let G 2 P and put (M G; wG) := ( M [wC� D;G ]; wC� D;G ) where M [wC� D;G ] is the

submodel generated bywC� D;G . Also let (WG; RG; f SG
x : x 2 WGg; 
 G) = M G.

Portions of properties (2a) and (2b) that appeared already in Lemma 6.4 (_R[wG] 


:D ; : N and R[wG] 
 : G) are proved exactly the same as before.

Let us verify _R[wG] 
 :f H : H � J 2 � and (G; J ) =2 Gg. Assume otherwise, i.e.

for somex 2 _R[wG] we havex 
 H for someH � J 2 � and (G; J ) =2 G. Properties in

Lemma 6.7 implyxSwwC� D;J . Thus, wC� D;G SwwC� D;J , contradicting (G; J ) =2 G.

Finally, let us verify that R[wG] 
 :f H : H � J 2 � and [G]G = [ J ]Gg. Assume

otherwise, i.e. for somex 2 R[wG] we havex 
 H for someH � J 2 � and [G]G = [ J ]G.

Again, Lemma 6.7 impliesxSwwC� D;J . Since [G]G = [ J ]G, we havewC� D;J SwwC� D;G .

Thus, wC� D;G RxSwwC� D;G , contradicting the converse well-foundedness ofR � Sw in M .
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(2.) to (1.). We construct M as follows. Let(WG; RG; f SG
x : x 2 WGg; 
 G) = M G for

all G 2 P. First take the disjoint union U of the models(M G; wG) for G 2 P. Prepend

a new worldw as a predecessor of every world inU. Let

Q = f (x; wG2 ) 2 U2 : (G1; G2) 2 G; x 2 M G1 ; x 
 E; E � G2 2 � g

Take Sw = (= U [
S

G2 P RG [ Q)+ . This concludes the construction ofM . Let us �rst

verify that M is an IL W-model.

The only non-trivial property is the converse well-foundedness ofR � Sw . Suppose for

a contradiction that there is an(R � Sw)-loop. Since� is �nite, for some G 2 P the world

wG must occur more than once in the loop. If we �x two occurrences ofwG in the loop

and look at the part of the chain bounded by these occurrences, we obtained another

(although not necessarily di�erent) (R � Sw)-loop, but this time we are guaranteed to

have only a �nite amount of pairwise distinct transitions. Furthermore, it is easy to see

that our (R � Sw)-loop induces some(R � Q+ )-loop (remove eachSw-transition that is an

= U -transition and collapse all consecutiveR-transitions into a singleR-transition).

Note that by the de�nition of Q, wheneverxQy, if Gx and Gy are indices of the

models containingx and y (resp.), we have(Gx ; Gy) 2 G. In particular this means that

the formulas Gx , where x is any world from the (R � Q+ )-loop, all belong to the same

equivalence class ofG. Recall that our loop contains only �nitely many distinct Q and R

transitions. Fix some transition xRy that appears in�nitely often in the loop.

Since x is the target of someQ-transition (an (R � Q+ )-loop cannot contain two

consecutiveR-moves), we havex = wH for someH 2 P. SincexRyQz for somez, there

is someE � G 2 � such that (H; G) 2 G and y 
 E. However, since[G]G = [ H ]G, we

have R[wH ] 
 : E (see (2b)). This contradictswH = xRy 
 E.

It remains to prove that w 
 : (C � D); � and R[w] 
 :D . To see thatw 
 : (C � D),

note that wRwC 
 C and that, sinceD 2 N , all the modelsM G validate : D. Similarly,

R[w] 
 :D . Let E � G 2 � be an arbitrary formula, and x 2 R[w] an arbitrary world

such that x 
 E. Assume that x 2 M H . Sincex 
 E, we have(H; G) 2 G (see (2a)).

Now the de�nition of Q implies xQwG, thus alsoxSwwG. a

Theorem 6.11 The logic IL W is PSPACE-decidable.

Proof. The proof is almost exactly the same as the proof of Lemma 6.5, but this time

referring to Lemmas 6.8�6.10. A small change is that we should convince ourselves that

�nding a good visibility graph in Algorithm (3) takes a polynomial amount of space.

When we loop through the possible(� ; C � D)-pairs (N; P ), we should try all possible

visibility graphs for P. A visibility graph for P is a binary relation onP, and thus requires

at most jPj2 bits for its representation. Verifying its re�exivity and transitivity is a simple

PTIME operation. a
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6.4 The logic ILP
It is well known that IL P extendsIL W. However, the logic itself is simpler. Models

of this logic have a convenient property thatwRxRuSwv implies uSxv. For this reason,

when building a world w and dealing with a formula E � G 2 � + (we are trying to

ensurew 
 E � G), we only need to ensure a world satisfyingG exists if there will be

an immediate R-successor ofw satisfying E (as far as the formulaE � G is concerned;

we might need a world satisfyingG for other reasons, of course). If there will be non-

immediate R-successors satisfyingE, the construction of their Sw-successors satisfyingG

will be handled by their immediateR-predecessors (which is, by this case's assumption,

not the world w). As is shown the picture below (wherex0; : : : ; xn are the worlds whose

construction was triggered by the worldw), we can makeSw total in the �rst R-layer.

We could not have done this withIL W, since one formula had only one witness, and

connecting too many worlds to it may have caused loops. Here, on the other hand, the

worlds x i (pictured) only serve to cover each other's needs: their children will take care

of their Sw-needs themselves.

Thus, there will be some �repetition� and models will on average be larger than it was

the case forIL and IL W, but the construction itself is arguably simpler.

w

x0 xn... �rst R-layer: Sw total

... otherwise reuse existing S

In this section all models areIL P-models.

We do not need any auxiliary lemmas, so let us present the algorithm. As before,

we have three algorithms (1), (2) and (3) with the same purpose as theirIL and IL W-

counterparts.

Let A be the formula whose satis�ability we are interested in, and� := Sub( A) [ f?g .

Algorithms (1) and (2) are de�ned just like before. Please see above for their descrip-

tions (replacing each implicit or explicit occurrence of �IL � or � IL W� with � IL P�).

Algorithm (3) takes as input a single formulaC � D 2 � , a set � � � n f C � Dg of

formulas of the formE � G; and a set of formulasD � � . It returns a positive answer

if for some (� ; C � D)-pair (N; P ), for every G 2 P there is a rooted Veltman model

(M G; wG) of G such that:

1. _R[wG] 
 � ; :D ; : N ;

2. R[wG] 
 : G.
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Note that these checks can be computed with Algorithm (1).

We will now proceed to prove that Algorithms (1), (2) and (3) are correct.

Lemma 6.12 Given � ; B; D � � , the following statements are equivalent:

1. there exists a rooted model(M ; w) such that w 
 � , such that _R[w] 
 :B and

R[w] 
 :D ;

2. there is a set� 0 � � and a rooted model(M ; w) such that w 
 Full(� 0), such that

R[w] 
 :B ; :D , the set� 0 is a Boolean satis�able extension of� , and Full(� 0) [:B

is propositionally satis�able.

Proof. See the proof of Lemma 6.2. Since we use the same model(M ; w) in both directions

of the proof, we do not need to check if the characteristic property(P) is preserved. a

Lemma 6.13 Let � be a Boolean satis�able subset of� , and B; D � � . The following

statements are equivalent:

1. there exists a rooted model(M ; w) such that w 
 Full(�) and R[w] 
 :D ;

2. for all C � D 2 � � , there is a rooted Veltman model(M C� D ; wC� D ) of f: (C �

D)g [ � + , such that R[wC� D ] 
 :D .

Proof. See the proof of Lemma 6.3. Here we should make an additional check of whether

we still have the characteristic property(P) once we merge (the roots of) the models

M C� D into one.

So, assumeuSwv and let w0 be betweenw and u. Then for someC � D we have

uSwC � D v. SinceM C� D satis�es (P), we haveuSw0v in M C� D , and thus uSw0v in M . a

Lemma 6.14 Let � ; D � � where� is a set of formulas of the formE � G, and assume

C � D 2 � n � . The following are equivalent:

1. there exists a rooted model(M ; w) of f: (C � D)g [ � , such that R[w] 
 :D ;

2. there is a (� ; C � D)-pair (N; P ) such that for every G 2 P there is a rooted

Veltman model (M G; wG) of G such that:

(a) _R[wG] 
 � ; :D ; : N ;

(b) R[wG] 
 : G.

Proof. (1.) to (2.). This is exactly the same as in the proof of Lemma 6.4, but now we

have an additional property to check: _R[wG] 
 � . Since wRwG and M satis�es (P),

wheneverw 
 H � J , we have _R[wG] � R[w] 
 H � J .

(2.) to (1.). Let (WG; RG; f SG
x : x 2 WGg; 
 G) = M G for all G 2 P. We construct M

as follows. First take the disjoint unionU of the models(M G; wG) for G 2 P. Prepend
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a new world w as a predecessor of every world inU. Let Sw = f (wG; x) : G 2 P; x 2

R[w]g [
S

G2 P SwG . This concludes the construction ofM . The following properties are

easy to check: the transitivity and converse well-foundedness ofR; the property that

xRyRz implies ySxz for x 2 R[w], the re�exivity of Sx (on R[x]2) for x 2 R[w], and the

transitivity of Sx for x 2 R[w].

Re�exivity of Sw : assumewRx. If x = wG for some G 2 P, we required that

(x; x) 2 Sw ; otherwise we use the re�exivity ofSwG for the formula G 2 P such that

x 2 M G.

If wRxRy, and x = wG for someG 2 P, then xSwy follows from the de�nition of Sw .

If wRxRy, and x 6= wG (for all G 2 P), there must be someG 2 P such that wGRxRy.

Then (x; y) 2 SwG � Sw .

Let us verify the transitivity of Sw . AssumeaSwbSwc and not aSwc. Thus, in partic-

ular, a 6= wG for all G 2 P. This and aSwb imply aSwG b for someG 2 P. Now wGRb

implies b 6= wH for all H 2 P. This and bSwc imply bSwH c for someH 2 P. Since

R[wG] \ R[wH ] = ; if G 6= H , it follows that bSwG c. By the transitivity of SwG , we have

aSwG c, and soaSwc.

Let us verify that the characteristic property (P) is preserved. It is clearly preserved

if only worlds from R[w] are involved. So assumeuSwv and let w0 be betweenw and u.

SincewRw0Ru, we haveu 6= wG for all G 2 P, so uSwG v for someG 2 P. If wGRw0 and

since (P) holds for M G, we haveuSw0v. Otherwise, wG = w0. In this case, we already

obtained uSw0v.

It remains to prove w 
 : (C � D); � and R[w] 
 :D . To see that w 
 : (C � D),

note that wRwC 
 C and that, sinceD 2 N , all the modelsM G satisfy : D. Similarly,

R[w] 
 :D . Let E � G 2 � be an arbitrary formula, and x 2 R[w] an arbitrary world

such that x 
 E. If x = wH for someH 2 P, we havexSwwG 
 G. Otherwise, there is

someH 2 P such that wRwH Rx. By the assumption that _R[wH ] 
 � , in particular we

have wH 
 E � G. SincewH Rx 
 E, there is y with xSwH y 
 G. SinceSwH � Sw , we

have xSwy. a

Theorem 6.15 The logic IL P is PSPACE-decidable.

Proof. The proof is analogous to the proof of Theorem 6.11, except that now we use

Lemmas 6.12, 6.13, and 6.14. a

Corollary 6.16 The logic IL P is PSPACE-complete.

Proof. By Theorem 6.15 and the fact that it conservatively extendsGL . a

Note 6.17 Lemmas 6.2, 6.3, 6.4 (IL ), 6.8, 6.9, 6.10 (IL W), 6.12, 6.12, and 6.12 (IL P)

can be slightly strengthened by adding the condition of�niteness to one (or both) of the

claims (1.) or (2.) that are present in all these lemmas. Depending on a lemma, this

is either obvious, or a simple consequence of the �nite model property (which all three
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logics, IL , IL W and IL P, have). This fact is not crucial for our proofs since we ensure

�niteness by other means, namely by ensuringR-maximality with appropriate formulas.

6.5 Other logics
It is natural to ask whether the results of this chapter extend to other interpretability

logics. Probably the best candidate logics to test next are interpretability logics that are

already known to be decidable. These are (to the best of our knowledge)IL M ([18]),

IL M0 ([49]), IL W� ([49]), IL R ([50]) and IL P0 ([50]).

Note also that in [49] and [50] the decidability ofIL M0, IL W� , IL R and IL P0 is proved

using generalised Veltman semantics, in whichSw-successors are sets of worlds. Therefore,

an adaptation of the technique of this chapter should take that into consideration. How-

ever, the remaining logic on this list, the logicIL M, does have the �nite model property

with respect to ordinary Veltman semantics. This is also the only interesting extension

of IL that is known to be complete and to have the �nite model property with respect to

ordinary Veltman semantics, but for which a complexity result is not obtained yet (either

in this chapter or elsewhere).

So let us brie�y comment on what we tried to do and why we did not succeed in

applying the approach that worked forIL , IL W and IL P to IL M.

In the piece-by-piece approach of building models that we've seen in this chapter, the

set of (direct) successors of any worldw is split into disjoint subsets (which we refer to

aspieces). Every piece corresponds to a single formula of formE � G we wish to be true

in the world w. Inside every piece, or in the case ofIL P inside the �rst R-layer of every

piece, we inserted as manySw relation as required in order to have all formulas of form

E � G we wish to be true in the worldw, true. So, if we wanted to satisfyE � G in w

and at the same time wanted to satisfyE in a world u in one of the pieces, we would

connect u to the (single) distinguished witness forG in this piece. This does not work

well for IL M. Recall that the frame condition (M) is that wRuSwvRz implies uRz. So,

when selecting the target of anSw-transition, one has to ensure that the set of boxed

formulas of the source is a subset of the set of boxed formulas of the target. Otherwise,

we would haveuSwv with u 
 2 B and v 1 2 B, for some2 B. Hence there would be

z with vRz 1 B. The frame condition requiresuRz, contradicting u 
 2 B . Since for

every formula we want a single distinguished witness per piece, we would have to select

a particular set of boxed formulas for this distinguished witness. There is no obvious

reason why this single set of boxed formulas would be compatible with all the worlds

we would wish to connect to the witness. That is, we might want to connect di�erent

sources (satisfying di�erent sets of boxed formulas) to this distinguished witness. Even if

we drop the requirement for having a single distinguished witness, there is still no obvious

reason why even a polynomial number of witnesses would su�ce. The number of di�erent
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w

True A � B formulas &
information on criticality

x0 xn...
witnesses of negated
A � B formulas

For true A � B in somew0, w0Rw,
and A 2 w, witnessx of B , w0Rx

...

...

...

Figure 6.1: A �naive� approach to building models in a space-e�cient manner.

possible selections of boxed formulas is, roughly,2j � j , where� is the set of subformulas of

the formula whose satis�ability our algorithm is currently verifying.

One alternative to the approach used in this chapter is to drop the general approach

of building self-su�cient pieces altogether. A possible alternative is to try and implement

something like the procedure used in Goris' and Joosten's construction method ([27, 28]).

With this approach, every world would take care of all the problems (as in our approach)

and all the de�ciencies that the addition of this world caused in the model. The latter is

unlike the approach we used in this chapter, since in this chapter we let the parent of a

world take care of solving children's de�ciencies (solving de�ciencies can be done e�ciently

for the logics studied in this chapter, since we take care of all children's de�ciencies in one

go). It is easy to see that the alternative approach can quickly lead to an in�nite branch

if we're not careful. Suppose the ambient logic isIL and we havew 
 E � G; G � E and

wRu 
 E. We �rst need a witnessv of G so that we can letuSwv and solve the de�ciency

caused byw 
 E � G and wRu 
 E. The world v causes a new de�ciency:w 
 G� E and

wRv 
 G. So we need a witness forE, which will then require a witness forG, etc. For

IL we can try to solve this by keeping track of all the formulas satis�ed among all theSw-

transitions that occurred after the lastR-transition. Whenever we make anSw-transition

uSwv, we can add anotherSw-transition vSwu. Since the ambient logic isIL , no property

of a Veltman model is invalidated by such additions. There will never be more thanj� j

adjacent Sw-transitions since after j� j adjacent Sw-transitions every possible de�ciency

can be solved by making a transition to one of the worlds in the precedingSw-sequence.

However, it's not clear if and how we can ensure (in polynomial space) that the total

number of R-transitions is bound.

For IL M, the approach described in the last paragraph might be fruitful. The re-

quirement that would work for IL , that whenever we make anSw-transition uSwv we add

another Sw-transition vSwu, is not su�ciently subtle for IL M, since it does not take into

account the sets of boxed formulas. We should only allowSw-transitions towards worlds

whose sets of boxed formulas are supersets of the corresponding set for the current world.

Every time we make a transition (eitherR or Sx for somex) the target world has at least

as many boxed formulas. This property might6 imply that the recursion depth does not

6We only sketch the approach in this section, so we cannot claim this categorically; there may be
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exceedj� j3:

ˆ There are never more thanj� j R-transitions in a single branch since every world is

R-maximal for some formula in� .

ˆ Between twoR-transitions we can makeSx -transitions, and x can be one of the at

most j� j worlds.

ˆ For a �xed x, there can be at mostj� j adjacentSx -transitions where the set of boxed

formulas stays the same.

Similarly, we preserved the polynomial branching factor: every world causes at mostj� j

problems, and at mostj� j2 de�ciencies. Unfortunately, we did not yet succeed in turning

this sketch into an actual algorithm. One of the issues we have to solve is how to resolve

de�ciencies that appear after performing the closure under the characteristic property (in

this process newR-transitions are inserted in the model). If space was not a problem,

we could keep track of the worlds that are going to become connected after the closure.

However, it is not clear why would such a list of worlds be of polynomial length. A

possible solution would be not to keep track of the worlds, but rather of their sets of

true � -formulas and their sets of boxed formulas. Since the sets of boxed formulas is

monotonically increasing, the number of possible combinations would �t into polynomial

space. We aim to continue working on this issue and resolve it in future work.

unforeseen issues.
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The approximating theory

In this chapter we prove the arithmetical validity of the principles contained in the

two series of principlesRn and Rn, which were recently introduced in [29]. Both series

are already known to be arithmetically sound; this was established using reasoning based

on de�nable cuts. We wanted to provide a di�erent proof of the same result and aimed

to use the method of approximating theories introduced in [40]. In [40] this approach is

formalised as a systemAtL. The bene�t of AtL is that such proofs seem to highly resemble

the purely modal proofs of these principles within the logicIL P.1 It turned out that the

original version ofAtL, the version of this system presented in [40], did not su�ce to prove

the arithmetical soundness of the seriesRn and Rn. At least we were not able to �nd full

proofs of the two series while staying inside the old version ofAtL.

The aim of this chapter is to present an extended system (which we still callAtL), and

prove that the two series are arithmetically valid by reasoning in the system. Together

with the authors of [40] we extend and generalise the results of [40]. Unlike most other

chapters, this content is not yet submitted to a journal, but we plan to do this soon ([39]).

This chapter is for the most part joint work with Joost J. Joosten and Albert Visser,

and the modal soundness results w.r.t. generalised Veltman semantics are joint work with

Jan Mas Rovira (see [44] for details).

7.1 Preliminaries
In this part of the thesis we will be using reasoning in and over weak arithmetics. To

this end, let us start by describing the theoryS1
2, introduced by Buss in [9]. This is a

�nitely axiomatisable and weak �rst-order theory of arithmetic. The signature ofS1
2 is

(S; j � j ; b
1
2

�c; + ; �; # ; = ; � ):

The intended interpretation of j � j is the length of its argument when expressed in the

binary number system. In other words,jnj is (in the intended interpretation) equal

1There is another extension ofIL , CuL, where arithmetical soundness proofs resembleIL M-proofs.
See Section 8.4 for the de�nition of CuL.
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to dlog2(n + 1) e. The intended interpretation of b1
2 �c is precisely the one suggested by

the notation. The symbol # is pronounced �smash� and has the following intended

interpretation (�the smash function�):

n# m = 2 jnjj mj :

Other symbols are more standard and are intended to be interpreted in the expected way.

The motivation for the smash function is that it gives an upper bound to Gödel

numbers of formulas obtained by substitution. SupposeA is a formula, x a variable and

t a term. Given the Gödel numbers ofA and t (denoted with dAe and dte, as usual),

the Gödel number ofA(x 7! t) will not surpass dAe# dte. Here the assumption is that

both the numeral representation and the Gödel numbers we work with are e�cient. For

example, we can take the Gödel number of a string of symbols to be its ordinal number

in an arbitrary computationally very easy but otherwise �xed enumeration of all strings

in the language ofS1
2.

As for the numerals, we can usee�cient numerals , de�ned recursively as follows:

0 7! 0;

2n 7! (SS0) � n;

2n + 1 7! S((SS0) � n):

Clearly, e�cient numerals have about the same growth rate as the corresponding binary

representations. We require the coding of our choice to have asymptotically the same

growth order as the Gödel numbers of the e�cient numerals. We also require that the

code of a subterm is always smaller than the entire term, and similarly for formulas. We

will consider such codingnatural. For example, using powers of prime numbers to code

sequences and terms of the formSSS:::0 as numerals will not be considered natural in

this context. See [10] for details.

Before introducing (some of) the axioms ofS1
2, we will �rst de�ne a certain hierarchy

of formulas in the language ofS1
2. We will say that a quanti�er is boundedif it is of the

form (Qx � t) wheret is a term that does not involvex.2 A quanti�er is sharply bounded

if it is of the form (Qx � j tj) wheret is a term that does not involvex

De�nition 7.1 ([10]) Let � b
0, � b

0, and � b
0 stand for the set of formulas all of whose

quanti�ers are sharply bounded. We de�ne� b
i , � b

i , and � b
i for i > 0 as the minimal sets

satisfying the following conditions:

1. If A and B are � b
i -formulas, thenA ^ B and A _ B are � b

i -formulas.

2. If A is a � b
i -formula and B is a � b

i -formula, then : A and A ! B are � b
i -formulas.

2By � (Qx � t)� we mean � (9x)(x � t ^ : : : � if Q is 9, and similarly if Q is 8.
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3. If A is a � b
i � 1-formula, then A is a � b

i -formula.

4. If A is a � b
i -formula, x a variable andt is a term not involving x, then (8x � j tj)A

is a � b
i -formula.

5. If A is a � b
i -formula, x a variable andt is a term not involving x, then (9x � t)A

and (9x � j tj)A are � b
i -formulas.

6. The �rst �ve conditions are to be repeated in the dual form: with the roles of�

and � , and 9 and 8, swapped in all places.

7. A formula A is a � b
i -formula if it is equivalent over predicate logic both to a� b

i -

formula and to a � b
i -formula.

Thus, this hierarchy is analogous to the standard arithmetical hierarchy, with bounded

quanti�ers in the role of unbounded quanti�ers, and sharply bounded quanti�ers in the

role of bounded quanti�ers.

De�nition 7.2 (The polynomial induction schema [10]) Let� be a set of formulas which

may contain zero or more free variables. We de�ne� -PIND axioms to be the formulas

A(x 7! 0) ^ (8x)(A(x 7! b
1
2

xc) ! A) ! 8 xA;

for all A 2 � and all variablesx.

Thus, when proving facts using the schema of polynomial induction, in the inductive

step we are only allowed to refer to the property obtained forb1
2nc. This is, of course,

less convenient than the standard schema of mathematical induction where we can use

the property obtained for n � 1.

We obtain S1
2 by extending a certain list of 32 quanti�er-free formulas (dubbedBASIC,

see e.g. [10]) with all� b
1-PIND axioms.

This somewhat unusually axiomatised theory has a nice connection to computational

complexity, as the next theorem shows.

Theorem 7.3 ([9]) We have the following.

ˆ SupposeS1
2 ` (8x)(9y)A(x; y) for some � b

1-formula A. Then there is a PTIME-

computable functionf A such that if f A (x) = y then A(x; y) holds (f A is awitnessing

function for A), and S1
2 ` (8x)A(x; f A (x)) .

ˆ Conversely, supposef is a PTIME-computable function. Then there is a� b
1-formula

A f such that A f (x; y) holds if and only if f (x) = y, and S1
2 ` (8x)(9y)A f (x; y).
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Theories in this chapter will be� b
1-axiomatised theories (i.e. havingPTIME-decidable

axiomatisations). Moreover, we will always assume that any theory we consider comes

with a designated interpretation ofS1
2. That is, when we say �a theory�, we mean a pair

of an actual theory together with some singled-out and �xed interpretation ofS1
2.

As S1
2 is �nitely axiomatisable, and in this chapter we work with a principle similar

to a principle of interpretability P which is valid in �nitely axiomatisable theories, the

theory S1
2 is a natural choice. However, we could have used another weak theory, such

as I � 0 + 
 1. Here I � 0 refers to Q extended with the schema of induction, restricted

to � 0-formulas of the standard hierarchy. The axiom
 1 states the totality of ! 1, the

function n 7! 2jnj2 (note the similarity with the smash function). This theory is a less

natural choice as it is not yet known whether it is �nitely axiomatisable. An even more

powerful system isI� 0 + exp. Here,expstates the totality of exponentiation. This can be

expressed by a� 2 statement since the graph of the exponentiation function can be given

by a bounded formula.

A principle similar to induction is that of collection, in particular � 1-collection.

De�nition 7.4 (� 1-collection) The schema

(8n)(( 8x < n )(9y)A(x; y) ! (9m)(8x < n )(9y < m )A(x; y))

whereA is restricted to � 1-formulas possibly with parameters, is the� 1-collection schema.

The principle is occasionally useful, however we will have to �nd ways to avoid it as it is

not available in S1
2.

7.1.1 Formalised interpretability

Before introducing formalised interpretability, let us say a few words on formalised

provability. The provability predicateof a theoryT, usually denoted asPrT , is the natural

formalisation of the statement �there exists aT-proof of a given formula�. Let us denote

the e�cient numeral of the (natural) Gödel number of A by dAe. Su�ciently strong

theories (such asS1
2 and I� 0 + 
 1) prove the Hilbert�Bernays�Löb derivability conditions

([32]):

1. for all A, if T ` A, then T ` PrT (dAe);

2. for all A, T ` PrT (dA ! Be) ! (PrT (dAe) ! PrT (dBe));

3. for all A, T ` PrT (dAe) ! PrT (dPrT (dAe)e).

These conditions su�ce to show that T ` PrT (d0 = 1e) and consequentlyT ` 0 = 1

follows from T ` : PrT (d0 = 1e), i.e. the Gödel's second incompleteness theorem. These

conditions also su�ce to show that the following holds:

if T ` PrT (dAe) ! A; then T ` A:
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Thus T is only �aware� that PrT (dAe) impliesA in case the conditional is trivially satis�ed

by the provability of its consequent. This entailment is known asLöb's rule. In fact, T is

�aware� of this limitation ( formalised Löb's rule):

T ` PrT (dPrT (dAe) ! Ae) ! PrT (dAe):

If we replace occurrences ofPrT (dAe) with 2 A, for all A, we can formulate the facts and

rules above in the language of propositional modal logic. The provability logicGL is the

extension of the basic modal logicK with an additional axiom schema representing Löb's

formalised rule:

2 (2 A ! A) ! A:

In his well-known result, Solovay [57] established arithmetical completeness for this logic.

The predicatePrT satis�es the following property:

T ` A if and only if N j= PrT (dAe): (7.1)

Now, one might ask if there are other predicates, apart fromPrT , that satisfy the same

Property (7.1) (i.e. which extensionally coincide with the predicatePrT ). Indeed, there

are many other such predicates. One such predicate is given in [22] as the formalisation

of �provable by the union of all consistent initial segments ofT�. 3 Let us call this notion

Feferman-provability. As we're interested only in consistent theories, clearly this predicate

has the same extension as the predicatePrT . However, it is provable within PA that

0 = 1 is not Feferman-provable. This is of course not the case withPrPA , as that would

contradict Gödel's second incompleteness theorem.

If we're dealing with some poly-time decidable theoryT, by Theorem 7.3 there is

a � b
1-predicate verifying whether a number codes aT-proof of a formula. This implies

that the provability predicate, claiming that a proof exists for some given formula, is a

9� b
1-predicate. This is convenient because forS1

2 we have provable9� b
1-completeness.

We now move on and consider interpretability. There are various notions of formalised

interpretability (see Theorem 1.2.10. of [37] for a discussion on their relationships). Here

we are interested intheorems interpretability, i.o.w. we say thatk is an interpretation of

V in U (we write k : U � V) if and only if

8� (2 V � ! 2 U � k):

Here 2 V and 2 U are to be understood as, of course, the provability predicates ofV and

U, respectively. Thek-translation of � is denoted as� k . If V is a �nitely axiomatisable

theory, then U � V is in fact a 9� b
1 sentence. This is due to the fact that for �nitely

3In [22] the theory T is assumed to be a consistent re�exive extension ofPA .
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axiomatisable theoriesV, their interpretability in U boils down to the statements stating

the provability of the translation of the conjunction of these axioms. As the theories

studied in this chapter are all� b
1-axiomatisable, the aforementioned statement is9� b

1, in

particular 9� b
1.

7.2 Tweaking the axiom set
For �nitely axiomatised theories V, we have:

S1
2 ` U � V ! 2 S1

2
(U � V);

becauseU � V is a 9� b
1-sentence. Recall that in this chapter all theories are assumed to

be � b
1-axiomatised. If this were not the case,U � V need not, of course, be a� b

1-sentence,

even for �nitely axiomatised theoriesV.

To mimic the P-style behaviour for an arbitrary theoryV, we will modify V to a new

theory V 0 that approximates V to obtain S1
2 ` U � V ! 2 S1

2
(U � V 0). Of course, the new

theory V 0 should be su�ciently like V to be useful. Thus, we de�ne a theoryV 0 that is

extensionally the same asV, but for which U � V 0 is a statement that is so simple that

under the assumption thatU � V, we can easily infer2 S1
2
(U � V 0).

7.2.1 The approximating theory de�ned

The idea is simple and as follows. Given some translationk, let us de�ne the set

of axioms V 0 as consisting of just those axioms� of V such that U ` � k . Note that,

if k : U � V , then V and V 0 have the same axioms. However, whenV is not �nitely

axiomatisable in general, we cannot take this insight with us when we proceed to reason

inside a box. In formulas: we do havek : U � V ) V � V 0 but in general we do not

have k : U � V ) 2 (V � V 0).

This idea works modulo some tri�ing details. Firstly, the de�nition of the new axiom

set does not have the right complexity. Secondly, if the argument is not set up in a careful

way, we may seem to need both� 1-collection andexp. We shall use a variation of Craig's

trick so that the axiom sets that we consider will remain to be� b
1-de�nable. The same

trick makes the use of strong principles, like� 1-collection andexp, super�uous.

De�nition 7.5 Let U and V be� b
1-axiomatised theories. Moreover, letk be a translation

of the language ofV into the language ofU that includes a domain speci�er. We de�ne

V [U;k] as follows.

axiomsV [U;k ] (x) := 9 p; '<x
�

x = p' ^ (p = p)q ^

axiomsV (' ) ^ proofU (p; ' k)
�

:
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Chapter 7. The approximating theory

It appears at �rst sight that we have de�ned a � b
1-formula. It is clear that axiomsV [U;k ] (x) is

poly-time decidable ifaxiomsV (x) and axiomsU (x) are. Thus, this formula clearly describes

a PTIME-computable procedure. By Theorem 7.3, we know it has to be� b
1-de�nable.

The following lemma tells us thatS1
2 veri�es that k : U � V implies that V and V [U;k]

are extensionally equal. Actually, V � V [U;k] always holds and does not depend on the

assumptionk : U � V.

Lemma 7.6 Let U and V be � b
1-axiomatised theories. We have

1. S1
2 ` 8 k (id : V � V [U;k]).

2. S1
2 ` 8 k (k : U � V ! id : V [U;k] � V ).

Proof. Ad (1). Reason inS1
2. We have to show:2 V [U;k ] ' ! 2 V ' . This is easily seen to

be true, since we can replace every axiom' ^ (p = p) of V [U;k] by a proof of ' ^ (p = p)

from the V-axiom ' . The resulting transformation is clearly p-time.

Ad (2). Reason inS1
2. Supposek : U � V and 2 V ' . We set out to prove2 V [U;k ] ' . From

our assumption2 V ' we obtain a proofp of ' from V-axioms � 0; : : : ; � n . We would be

done obtaining a proofp0 if we could replace every axiom occurrence of� i in p by

� i ^ (qi = qi )
� i

^ E; l

whereqi were a proof inU of � k
i , so that we would obtain aV [U;k]-proof r of ' . Clearly, for

each� i we have that2 V � i , so that by our assumptionk : U � V we obtain aU proof qi of

� k
i . However, these proofsqi may be co�nal and thus we would need a form of collection

to exclude that possibility to keep the resulting syntactical objectp0 �nite.

It turns out that we can perform a little trick to avoid the use of collection. To

this end, let � be the (possibly non-standard) conjunction of these axioms. Note that,

by the naturality conditions on our coding, � is bounded byp. Since clearly, we have

2 V � , we may �nd, using k : U � V, a U-proof q of � k (recall that we employ theorems

interpretability in this chapter). We may use q to obtain U-proofs ofqi of � i
k . Clearly,

jqi j is bounded by a term of orderjqj2. We can now replace every axiom occurrence of� i

in p by
� i ^ (qi = qi )

� i
^ E; l

and obtain a V [U;k]-proof r of ' . We �nd that jr j is bounded by a term of orderjpj � j qj2.

So r can indeed be found in p-time from the givenp and q. a

For the previous lemma to hold it is essential that we work with e�cient numeralsp.

The reader may �nd it instructive to rephrase the lemma in terms of provability.

Corollary 7.7 For U and V, � b
1-axiomatised theories we have
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Chapter 7. The approximating theory

1. S1
2 ` 8 k 8' (2 V [U;k ] ' ! 2 V ' ).

2. S1
2 ` 8 k

�
k : U � V ! 8 ' (2 V [U;k ] ' $ 2 V ' )

�
.

As mentioned before, even though we have extensional equivalence ofV and V [U;k] under

the assumption that k : U � V, we do not necessarily have this under a provability

predicate. That is, although we do have2 S1
2
(2 V [U;k ] ' ! 2 V ' ) we shall, in general, not

have k : U � V ! 2 S1
2
(2 V ' ! 2 V [U;k ] ' ).

7.2.2 A P-like principle for the approximated theory

The theory V [U;k] is exactly de�ned so that it being interpretable inU is true almost

by de�nition. This is even independent onk being or not an interpretation of V in U.

The following lemma re�ects this insight.

Lemma 7.8 For U and V, � b
1-axiomatised theories we haveS1

2 ` 8 k (k : U � V [U;k]).

Proof. Reason inS1
2. Supposep is a V [U;k]-proof of � . We want to construct a U-proof of

� k . As a �rst step we transformp into a V-proof p0as we did in the proof of Lemma 7.6,(1).

Next we transformp0, usingk, into a predicate logical proofq of � k from assumptions� k
i ,

where each� i is a V-axiom. It is well known that this transformation is p-time. Finally,

each axiom� i extracted from p, comes from aV [U;k]-axiom � i ^ (r i = r i ), where r i is a

U-proof of � k
i . So our �nal step is to extendq to a U-proof q0 by prepending theU-proofs

r i above the corresponding� k
i . This extension will at most double the number of symbols

of q, so q0 � q2. a

As a direct consequence of this lemma, we see via necessitation thatS1
2 ` 2 S1

2
8k (k :

U � V [U;k]) so that in a trivial way we obtain something that comes quite close to the

P-schema:

S1
2 ` U � V ! 2 S1

2
8k (k : U � V [U;k]): (7.2)

This is not yet what we are looking for. Therefore, we go to the setting of interpretability

logics where all theories that we consider come as sentential extensions of some base

theory. In this context we can prove the following lemma.

Lemma 7.9 Let T be a� b
1-axiomatised theory, containingS1

2 (as always), and let� and

� be T-sentences.

S1
2 ` k : (T + � ) � (T + � ) ! 2 S1

2
k : (T + � ) � (T [T + �;k ] + � )

Proof. We reason inS1
2 and suppose

k : (T + � ) � (T + � ): (7.3)
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In particular, k : (T + � ) � T whence by (7.2) we conclude

2 S1
2
k : (T + � ) � T [T + �;k ]: (7.4)

We need to conclude2 S1
2
k : (T + � ) � (T [T + �;k ] + � ). In other words, we need to show

2 S1
2

�

8' (2 T [T + �;k ]+ � ' ! 2 T + � ' k)
�

: (7.5)

By (7.3) we know that2 T + � � k so that by provable� 1-completeness we also have2 S1
2
2 T + � � k .

Thus, under the 2 S1
2

we may use2 T + � � k . With this, we can now set out to prove (7.5).

Thus we reason under the2 S1
2
, �x some arbitrary ' and assume2 T [T + �;k ]+ � ' . By the

formalised deduction theorem we get2 T [T + �;k ] (� ! ' ). Thus, via (7.4) and by observing

that (� ! ' )k = ( � k ! ' k) we obtain 2 T + � (� k ! ' k). This is combined with 2 T + � � k

to obtain 2 T + � ' k which was needed for (7.5) so that the proof is �nished. a

This lemma can be simpli�ed slightly which shall be the �nal version of our approxi-

mation of the principle P.

Theorem 7.10 Let T be a � b
1-axiomatised theory, containingS1

2, and let � and � be

T-sentences.

S1
2 ` k : (T + � ) � (T + � ) ! 2 S1

2
k : (T + � ) � (T [T;k] + � )

Proof. Similar to the proof of Lemma 7.9. We now start by applying (7.2) toU= V= T

to conclude2 S1
2
k : T � T [T;k] so in particular 2 S1

2
k : (T + � ) � T [T;k]. The remainder of

the proof is unaltered. a

We observe that,a priori , Lemma 7.9 is slightly stronger than Theorem 7.10 since

T [T + �;k ] can contain more axioms thanT [T;k]. However, for our purposes we did not see a

need for the additional freedom generated by usingT [T + �;k ] instead ofT [T;k].

7.2.3 Iterated approximations

As it turns out, we will need to apply our technique of approximating theories to

theories that themselves are already approximations4. To this end we generalise the

de�nition of approximated theories to sequences of interpretations as follows.

De�nition 7.11 Let V [hU;ki ] := V [U;k]. We recursively de�ne

V [hU0 ;k0 i ;:::;hUn ;kn i ;hUn +1 ;kn +1 i ]

4An example can be found in the proof of Lemma 7.30.
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for n � 0 to stand for
�
V [hU0 ;k0 i ;:::;hUn ;kn i ]

� [Un +1 ;kn +1 ]
, i.e.:

axiomsV [hU0 ;k 0 i ;:::; hUn ;k n i ;hUn +1 ;k n +1 i ] (x) :=

9 p; '<x
�

x = p' ^ (p = p)q ^

axiomsV [hU0 ;k 0 i ;:::; hUn ;k n i ] (' ) ^

proofUn +1
(p; ' kn +1 )

�

:

If x denotes a �nite sequencehU0; k0i ; : : : ; hUn ; kn i , then we understandV [x;hUn +1 ;kn +1 i ] as

V [hU0 ;k0 i ;:::;hUn ;kn i ;hUn +1 ;kn +1 i ].

Lemma 7.9 can be adapted to this new setting so that we get the following.

Lemma 7.12 Let T be a � b
1-axiomatised theory, containingS1

2, and let � and � be

T-sentences. Letx be a sequence of pairshUi ; ki i . We have:

S1
2 ` k : (T + � ) � (T [x] + � ) ! 2 S1

2
(T + � � T [x;hT + �;k i ] + � ):

Proof. Reason inS1
2 and supposek : (T + � ) � (T [x] + � ). Via a straightforward and minor

modi�cation of Lemma 7.9 we get

2 S1
2
k : (T + � ) � (

�
T [x]

� [T + �;k ]
+ � );

i.e., 2 S1
2
k : (T + � ) � (T [x;hT + �;k i ] + � ) as was to be shown. a

Again, it seems that there is no need to keep track of the� formulas in the T [T + �;k ]

de�nition. Therefore, we shall in the sequel work with simply sequences of interpretations

of T in T rather than sequences of pairs of theory and interpretation. The corresponding

de�nition is as follows wherehi denotes the empty sequence and for a sequencex, we use

x ? k or sometimes simplyx; k to denote the concatenation ofx with hki .

De�nition 7.13 For T a � b
1-axiomatised theory we de�neT [hi] := T and T [x?k ] :=

�
T [x]

� [T;k]
.

From now on, we shall writeT [k] instead of T [hki ]. With the simpli�ed notion of

iteration we can formulate a friendlierP-�avoured principle.

Theorem 7.14 Let T be a � b
1-axiomatised theory, containingS1

2, and let � and � be

T-sentences. Letx be a sequence of interpretations. We have:

S1
2 ` k : (T + � ) � (T [x] + � ) ! 2 S1

2
k : (T + � ) � (T [x;k ] + � ):
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7.3 A modal logic for approximation
In this section we will present a modal logical system to reason about interpretations

and approximations based on them.

7.3.1 The logicAtL

We proceed to articulate modal principles re�ecting facts about approximations. The

main idea is to label our modalities with sequencesx of interpretation variables. Of

course, in the arithmetical part, these sequencesx will indeed be interpreted via some

map � as a sequence� (x) of translations from the language ofT to the language ofT.

In the next subsection we shall make the arithmetical reading precise but the idea is that

A � x B will stand for T + � � T [� (x)] + � wheneverA is interpreted by the arithmetical

sentence� and B by � . Likewise,2 xA will be interpreted as2 T [� ( x )] � .

As in [40], we will call our modal systemAtL. We �rst specify the language. We have

propositional variablesp0; p1; p2 : : : We will usep; q; r; : : : to range over them, and we have

interpretation variables k0; k1; k2; : : :. We have one interpretation constantid. The meta-

variablesk; `; m; : : : will range over the interpretation terms (i.e. interpretation variables

and id). The meta-variablesx; y; z; : : : will range over �nite sequences of interpretation

variables. The modal language is the smallest language containing the propositional

variables, closed under the propositional connectives, including> and ? , and given an

interpretation term k, the modal operators2 k and � k (we let 3 xA abbreviate : 2 x : A),

and closed under the following rule.

ˆ If A � x B is in the language andk is an interpretation term not contained inx, then

A � x;k B is in the language. Similarly for2 xA.

We will write � for � id, and analogously for2 and 3 . Our logic AtLwill have axioms

` A for any tautology A. Moreover, AtL has the obvious interchange rules to govern

interaction between both sides of the turnstylè based on the deduction theorem so that

� ; � ` C , � `
V

� ! C. Apart from modus ponens,AtL has the following axioms and

rules.
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(! 2 )x;k ` 2 x;k A ! 2 xA

(! � )x;k ` A � xB ! A � x;k B

Lx
1 ` 2 x (A ! B) ! ( 2 xA ! 2 xB)

Lx;y
2 ` 2 yA ! 2 x 2 yA

Lx
3 ` 2 x ( 2 xA ! A) ! 2 xA

Jx
1 ` 2 x (A ! B) ! A � xB

Jx
2a ` (A � B) ^ (B � xC) ! A � xC

Jx;y
2 b ` (A � xB) ^ 2 x?y (B ! C) ! A � xC

Jx
3 ` (A � xC) ^ (B � xC) ! A _ B � xC

Jx
4 ` A � xB ! (3 A ! 3 xB)

Jx;y
5 ` A � x 3 yB ! A � y B

Px;y;k � ; � ; 2 y(A � x;k B) ` C ) � ; A � x B ` C

Necx ` A ) ` 2 xA

In the above, the rulePx;y;k is subject to the following conditions:

1. k is an interpretation variable;

2. k does not occur inx; � ; A; B; C ;

3. � consists of formulas of the formE � x;k F ! E � x F and

2 xE ! 2 x;k E.

We will call the licence to use2 xE ! 2 x;k E provided by Px;y;k : (E2 )k, and we will call

the licence to useE � x;k F ! E � x F : (E� )k.

We observe that by taking the empty sequence we get various special cases of our

axioms. For example, a special case of(! 2 )x;k would be ` 2 kA ! 2 A. Furthermore,

successive applications of(! 2 )x;k yield ` 2 xA ! 2 A

Likewise, a special case of(! � )x;k gives us` A � B ! A � kB. A special case of

Jx;y
2 b is given by what we could callJx

2b given by (A � xB) ^ 2 x (B ! C) ! A � xC by

taking y to be the empty sequence inJx;y
2 b. In our applications so far, we only saw need

for the special case of the axiom. It is unknown ifAtL with Jy
2b instead of Jx;y

2 b proves

the same set of interpretability-variable-free formulas (and likewise for the other special

cases).

Furthermore, we observe thatJx
1 follows from the classicalJ1 principle since

2 x (A ! B) ! 2 (A ! B)

! A � B

! A � xB:

As a �rst and simple derivation in our system we have the following strengthening of

the principle P0 in AtL (recall that P0 is the schemeA � 3 B ! 2 (A � B)).
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Lemma 7.15 Let x be a �nite non-empty sequence of interpretation variables. We may

�x y so that x = y?hki with the understanding that y = id in case the length ofx is just

one. Now, let� consists of formulas of the formE � y;k F ! E � y F and 2 yE ! 2 y;k E.

We have the following rule to be derivable overAtL:

� ; � ; 2 (A � B) ` C ) � ; A � x 3 B ` C

Proof. This follows from the rulePx combined with the schemaJx
5. a

7.3.2 Quantifying over interpretations

In order to set up arithmetical semantics, we would like to quantify over sensible trans-

lations. However, how are we to separate the sensible from the non-sensical translations?

In this subsection we shall provide a construction to guarantee that we only use sensible

translations.

Being a sensible translation or not shall be gauged via some �xed interpretation of the

natural numbers. Thus, letT be any theory with a designated interpretation, sayN , of

S1
2. Let � ? be a conjunction ofT-axioms that implies (S1

2)N . We �x T, N and � ? for the

remainder of this section.

We can now provide a construction that guarantees that we only deal with sensible

translations. De�ne, for any translation k of the language ofT to the language ofT:

s(k) :=

8
><

>:

k; if (� ?)k

id; otherwise

Thus, s(k) is an interpretation de�ned by cases. Via an easy induction on the complexity

of ' we can prove that over predicate logic we have

' s(k)  !
�

(� ?)k ^ ' k
�

_
�

: (� ?)k ^ '
�

: (7.6)

Since the needed induction to prove this is on thelength of ' and since the proof can be

uniformly constructed in p-time from ' , we have access to (7.6) when reasoning insideS1
2.

We observe thats(k) should be evaluated where it occurs. For example in the formula

9k2 U � s(k) , the choice of whethers(k) will be id or k will depend on whether(� ?)k holds

under the 2 U even though thek comes from a quanti�er outside the box. In contrast, in

the expression9k2 U [s( k ) ]' , the nature of U[s(k)] depends on whether(� ?)k holds outside

the box.

Let us proceed by making some easy observations ons(k). In the following lemma,

we start by observing that regardless of the nature ofk, the derived s(k) provides us an

interpretation of � ? in T. Next, we see that any other interpretation of� ? in T will also

occur as an image ofs. Thus, modulo T-provable equivalence,s(k) ranges precisely over
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all interpretations of � ?.

Lemma 7.16 We have, veri�ably in S1
2, for any k,

1. T ` (� ?)s(k) ,

2. for any formula � we haveT ` (� ?)k ! (� s(k) $ � k),

Proof. Let us prove the �rst claim. Reason inS1
2 and let k be arbitrary. Now reason inT

or more formally, under the2 T . We distinguish cases. If(� ?)k , then s(k) = k, and (� ?)k

holds by the case assumption. Otherwise,s(k) = id. The choice ofT (see beginning of

the subsection) impliesT ` � ?, as required.

Similarly, to see the second claim we should show that either(� ?)k ! (� k $ � k) if

(� ?)k , or (� ?)k ! (� $ � k) if (� ?)k doesnot hold. Both claims are obviously true under

the respective assumptions. a

In the light of Theorem 7.14 it is desirable that approximating theories containS1
2. The

following lemma tells us that approximating theories indeed contain a su�cient amount

of arithmetic. We recall that where the lemma mentions the theory of formT [T;s(k)] we

really mean the theory axiomatised by

axiomsT [T; s( k )] (x) = 9 p; ' < x
�

x = p' ^ (p = p)q^

axiomsT (' ) ^ proofT (p; ' s(k))
�

:
(7.7)

In this formula we can expand' s(k) as in (7.6).

Lemma 7.17 S1
2 ` 8 k 2 T [T; s( k )] (S1

2)N .

Proof. Reason inS1
2. Consider any translationk from the language ofT to the language

of T. Lemma 7.16 tells us there is a proof inT of (� ?)s(k) . Hence, we have proofspi of

(� i )s(k) , for (standardly) �nitely many T-axioms � 1; : : : ; � n . We would like to show that

T [T;s(k)] proves each of these� i , since thenT [T;s(k)] proves(S1
2)N . We take arbitrary � i and

put x = p� i ^ (pi = pi )q. If we now substitute this x into (7.7), we immediately get the

�rst two conjuncts of (7.7). Furthermore, T proves(� i )s(k) becausepi is a proof of this

formula in T. So, � i ^ (pi = pi ) is an axiom ofT [T;s(k)] , whenceT [T;s(k)] proves� i . a

Recall that we work with the theoriesT that interpret S1
2 and that we �x a designated

interpretation N : T � S1
2. We de�ned a variety of other theories of the formT [x], but

we did not specify what interpretation ofS1
2 we are supposed to bundle them with. The

preceding lemma tells us that we can reuseN . Thus, we will take N as the designated

interpretation of S1
2 in the T [x].
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7.3.3 Arithmetical soundness

As usual, the modal logics are related to arithmetic via so-calledrealisations. Realisa-

tions map the propositional variables to sentences in the language of arithmetic. However,

we now also have to deal with the interpretation sequences. Thus, our realisations for the

arithmetical interpretation are pairs (�; � ), where:

ˆ � maps the propositional variables toT-sentences, and

ˆ � maps the interpretation variables to translations from the language ofT to the

language ofT.

We stipulate that the � are> for all but �nitely many arguments and likewise, we stipulate

that the � are id for all but �nitely many arguments. The realisations are lifted to

the arithmetical language in the obvious way by having them commute with the logical

connectives and by taking:

(2 k1 ;:::;k n A)�;� := 2 T [ hs( � ( k 1 )) ;:::; s( � ( k n )) i ] A �;� ; and

(A � k1 ;:::;k n B)�;� :=

(T + A �;� ) � (T [ hs(� (k1 )) ;:::;s(� (kn )) i ] + B �;� ):

We observe that the nested modalities make sense because of Lemma 7.17. Note that the

interpretation s(k) is applied only at locations where it can be expanded to a formula.

Thus, we can arithmetise its use inT. For this reason, we can internally quantify over

interpretations and the statement of the following theorem makes sense.

Theorem 7.18 Let T be a � b
1-axiomatisable theory containingS1

2. Furthermore, let

8T -realisation �ag that we quantify over realisations that are lifted to the entire modal lan-

guage using formalised provability and interpretability over the base theoryT. We then

have

� ` AtL A =) 8 T -realisation� S1
2 ` 8 � (

^
� �;� ! A �;� ):

Proof. Via an easy induction onAtLproofs. We refer the reader to [40] for details. An

important ingredient is given in Theorem 7.14. a

The use of aP-�avoured rule instead of an axiom is suggested since it better allocates

�exibility in collecting all applications of Lemma 7.6 and Corollary 7.7 in our reasoning.

To be on the safe side, we consider thatAtLis presented using multi-sets so that we can

allocate of applications of Lemma 7.6 and Corollary 7.7after a Px;y;k rule is applied.
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7.3.4 Room for generalisations

We already observed that our modal system does not directly allocate the extra �ex-

ibility that Lemma 7.12 has over Theorem 7.14. If we would like our logics to re�ect

the extra �exibility, we could work with sequences of pairs of formulas and translations

instead of just sequences of translations. These formulas can then be added to the base

theory. Similar, but even more general, is the following notion where assignments for the

arithmetical interpretation are triples (�; �; � ), where:

ˆ � maps the propositional variables toT-sentences,

ˆ � maps the interpretation variables to translations from the language ofT to the

language ofT, and

ˆ � maps the interpretation variables to theories in the language ofT.

As before, we stipulate that the� are > for all but �nitely many arguments; the � are id

for all but �nitely many arguments; and the � are T for all but �nitely many arguments.

The assignments are lifted to the arithmetical language in the obvious way as before, but

now taking:

(2 k1 ;:::;k n A)�;�;� := 2 T [ h� ( k 1 ) ;s( � ( k 1 )) i ;:::; h� ( k n ) ;s( � ( k n )) i ] A �;�;� ;

(A � k1 ;:::;k n B)�;�;� :=

(T + A �;�;� ) � (T [ h� (k1 );s(� (k1 )) i ;:::;h� (kn );s(� (kn )) i ] + B �;�;� ):

This notion gives rise to the following notion of consequence and soundness ofAtLwith

respect to this notion of consequence is readily proven.

� j= T A :, 8 � S1
2 ` 8 �; � (

^
� �;�;� ! A �;�;� ):

Another way of possible generalisation is given by approximating both the interpretedand

the interpreting theory. We observe that currently we only approximate the interpreted

theory. Alternatively, we could label the binary modality � by a pair of sequencesx; y

of translations with the intended reading ofA � x;y B being T [s(x)] + � � T [s(y)] + � when

� and � are the intended readings ofA and B respectively. Such a generalisation would

allow for a more sophisticated transitivity axiom:

(A � x;y B) ^ (B � y;z C) ! (A � x;z C):

We leave these observations for future investigations.
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7.3.5 An alternative system

The idea of approximating �nite axiomatisability can be realised in a di�erent way.

Let A � 0 B stand for T + � � S1
2 + � when � and � are the arithmetical interpretation

of A and B respectively. Likewise,2 0A will stand for 2 S1
2
� . Using this notation, we can

formulate a new sound principle.

Lemma 7.19 Given an interpretation k, we have

` k : A � B ! 2 0(k : A � 0 B):

Proof. Assumek : A � B . Clearly k : A � 0 B, by the assumption that all our base theories

T extend S1
2. SinceS1

2 + B is �nitely axiomatisable, k : A � 0 B is a 9� b
1-statement. By

9� b
1-completeness we get the required2 0(k : A � 0 B). a

Lemma 7.20

` A � 3 B ! 2 0(A � B):

Proof. Using Lemma 7.19 and noticing that fromk : A � 0 3 B we can obtainA � B just

like with the rule Jx;y
5 of AtL. a

The relation between the logicAtL, i.e. reasoning with iterated approximations, and

reasoning with � 0 and non-iterated approximations, is unknown. In particular, we do

not know if both systems prove the same theorems in their common language or in the

language without any interpretability variable at all. However, we do observe that both

systems are su�ciently strong for the principles appearing in this chapter.

7.4 On principles in IL(All)
In this section, we give arithmetical soundness proofs for some well-known inter-

pretability principles that hold in all reasonable arithmetical theories. For this purpose

we will employ the systemAtL.

To avoid repeating too much content from [40], here we study only the following

principles, but with proofs written in more detail compared to [40]. For other well-known

principles please refer to [40].

W ` A � B ! A � (B ^ 2 : A)

M0 ` A � B ! (3 A ^ 2 C) � (B ^ 2 C)

R ` A � B ! : (A � : C) � B ^ 2 C

7.4.1 The principleW

We start with the IL P-proof of the principleW, which we will later convert to anAtL

proof of W.
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Fact 7.21 IL P ` W.

Proof. We reason inIL P. SupposeA � B . Then, 2 (A � B). Hence,(� ) 2 (3 A ! 3 B),

and, thus, (�� ) 2 (2 : B ! 2 : A).

Moreover, fromA � B , we haveA � (B ^ 2 : A) _ (B ^ 3 A). So it is su�cient to show:

B ^ 3 A � B ^ 2 : A.

We have:
B ^ 3 A � 3 B by (� )

� 3 (B ^ 2 : B) by L3

� B ^ 2 : B by J5

� B ^ 2 : A: by (�� )

a

To prove arithmetical soundness ofW we will essentially replicate the modal proof of

W in IL P. We �rst give a more formal version of the proof that uses the rulePx;y;k in the

way we formally de�ned it. Afterwards we will give a more natural proof.

Lemma 7.22 The following holds:

2 (A � [k] B);

(B ^ 3 A � [k] B ^ 2 [k]: B ) ! (B ^ 3 A � B ^ 2 [k]: B )

` AtL B ^ 3 A � B ^ 2 : A:

Proof. Reason inAtL. Some simple uses of rules and axiom schemas ofAtL are left

implicit.

2 (A � [k] B) assump. (7.8)

(B ^ 3 A � [k ]B ^ 2 [k ] : B )! (B ^ 3 A � B ^ 2 [k ] : B ) assump. (7.9)

2 (3 A ! 3 [k]B) by (7.8); Jk
4 (7.10)

2 (2 [k]: B ! 2 : A) by (7.10) (7.11)

3 A � 3 [k]B by (7.10); J1 (7.12)

B ^ 3 A � 3 [k]B by (7.12); J1; J2 (7.13)

B ^ 3 A � 3 [k](B ^ 2 k : B ) by (7.13); Lk
3; Jk

2 (7.14)

B ^ 3 A � [k] B ^ 2 k : B by (7.14); Jk
5 (7.15)

B ^ 3 A � B ^ 2 [k]: B by (7.9); (7.15) (7.16)

B ^ 3 A � B ^ 2 : A: by (7.11); (7.16) (7.17)

a
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Proposition 7.23 The principle W is arithmetically valid.

AtL ` A � B ! A � B ^ 2 : A:

Proof. Reason inAtL. By Pk and Lemma 7.22 we get

A � B ` AtL B ^ 3 A � B ^ 2 : A: (� )

Now assumeA � B . Combining A � B with (� ) we get

B ^ 3 A � B ^ 2 : A: (�� )

Clearly A � B implies

A � (B ^ 2 : A) _ (B ^ 3 A): (��� )

From (�� ) and (��� ) by J3 we obtain A � B ^ 2 : A. Thus

AtL ` A � B ! A � B ^ 2 : A;

as required. a

The proof presented in Proposition 7.23 (and Lemma 7.22) resembles the proof we gave

earlier demonstrating thatIL P ` W. However, the resemblance is not exactly obvious; we

had to turn our proof �inside-out� in order to use the rule Pk (resulting in the contrived

statement of Lemma 7.22). This can be avoided by applying the rulePk in a di�erent

way. When we want to conclude something starting fromA � x B, we introduce a fresh

interpretation variable k and get 2 y(A � x;k B) (for whichever y we �nd suitable). Now

we have to be a bit more careful; we can't end the proof before we eliminate thisk. We

also have to be careful in how we use the rules(E2 )k and (E� )k. Essentially, any proof

in the new form must be formalisable in the systemAtL as it was de�ned earlier. Let us

demonstrate this with the principle W.

Reason inAtL. Suppose thatA � B . By Pk we have that, for somek, 2 (A � [k] B).

Hence, byJk
4, we have(� ) 2 (3 A ! 3 [k]B) and, so,(�� ) 2 (2 [k]: B ! 2 : A).

Moreover, fromA � B , we haveA � (B ^ 2 : A) _ (B ^ 3 A). So it is su�cient to show

B ^ 3 A � B ^ 2 : A. We have:

B ^ 3 A � 3 [k]B by (� )

� 3 [k](B ^ 2 [k]: B ) by Lk
3

� B ^ 2 [k]: B by Jk
5 and (E� )k

� B ^ 2 : A: by (�� ) :
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7.4.2 The principleM0

Another good test case is the principleM0, since both IL W 0 M0 and IL M0 0 W.

Although we will later demonstrate the method for the principleR too and IL R ` M0,

the proof for R is more complex. For this reason we include the principleM0.

We start with the IL P-proof of M0.

Fact 7.24 IL P ` M0.

Proof. Reason inIL P.

A � B ! 2 (A � B) by P

! 2 (3 A ! 3 B) by J4

! 2 (3 A ^ 2 C ! 3 B ^ 2 C)

! 3 A ^ 2 C � 3 B ^ 2 C by J1

! 3 A ^ 2 C � 3 (B ^ 2 C)

! 3 A ^ 2 C � B ^ 2 C: by J5

a

Now we adapt this proof to �t AtL. We will not write the more formal version of the

proof (see the commentary in Subsection 7.4.1).

P-style soundness proof of M0 Reason inAtL.

A � B ! 2 (A � [k] B) by Pk

! 2 (3 A ! 3 [k]B) by Jk
4

! 2 (3 A ^ 2 C ! 3 [k]B ^ 2 C)

! 3 A ^ 2 C � 3 [k]B ^ 2 C by J1

! 3 A ^ 2 C � 3 [k]B ^ 2 [k]2 C by Lk
2

! 3 A ^ 2 C � 3 [k](B ^ 2 C)

! 3 A ^ 2 C � [k] B ^ 2 C: by Jk
5

! 3 A ^ 2 C � B ^ 2 C: by (E� )k

7.4.3 The principleR

As the �nal example, we will prove that the principle R is arithmetically valid.

Before we see thatIL P ` R, we �rst prove an auxiliary lemma.

Lemma 7.25 IL ` : (A � : C) ^ (A � B) ! 3 (B ^ 2 C).

Proof. We prove theIL -equivalent formula(A � B) ^ 2 (B ! 3 : C) ! A � : C. But this

is clear, asIL ` (A � B) ^ 2 (B ! 3 : C) ! A � 3 : C and IL ` 3 : C � : C. a
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Fact 7.26 IL P ` R.

Proof. We reason inIL P. SupposeA � B . It follows that 2 (A � B). Using this together

with Lemma 7.25 we get:

: (A � : C) � : (A � : C) ^ (A � B)

� 3 (B ^ 2 C) by Lemma 7.25

� B ^ 2 C: by J5

a

P-style soundness proof of R Reason inAtL. We �rst show that (A � [k] B) ^ : (A �

: C) ! 3 [k](B^ 2 C). We show an equivalent claim(A� [k]B)^ 2 [k](B ! 3 : C) ! A� : C.

Suppose thatA � [k] B and 2 [k](B ! 3 : C). Thus, A � [k] 3 : C by Jk
2b. By Jk

5 we get

A � : C, as required. By necessitation,

2 ((A � [k] B) ^ : (A � : C) ! 3 [k](B ^ 2 C)): (7.18)

We now turn to the main proof. SupposeA � B . Then, for somek, we have2 (A � [k] B)

and, thus,

: (A � : C) � : (A � : C) ^ (A � [k] B)

� 3 [k](B ^ 2 C) by (7.18)

� B ^ 2 C: by Jk
5 and (E� )k

7.5 Two series of principles
In [29] two series of interpretability principles are presented. One series is called the

broad series, denotedRn for n 2 ! . The other series is called theslim hierarchy, denoted

by Rn . The latter is actually a hierarchy of principles of increasing logical strength.

Both series of principles are proven to be arithmetically sound in any reasonable arith-

metical theory. The methods used to prove this soundness in [29] involve de�nable cuts

and in essence can be carried out in the system calledCuL (we use this system in this

thesis too, please see Chapter 8). In the next two sections we will see how both series

admit a soundness proof based on the method of �nite approximations of target theo-

ries as embodied in our logicAtL. We will also use this opportunity to state the results

concerning modal semantics we obtained in collaboration with Jan Mas Rovira, which

concern the two series. The proofs of these results can be found in his Master's thesis

[44].
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7.6 Arithmetical soundness of the slim hierarchy
As already mentioned, the slim seriesRn de�ned in [29] is actually a hierarchy. Thus,

to prove arithmetical soundness it su�ces to study a co�nal sub-series. In our case we will

study the certain sub-serieseRn . Let us de�ne the original sequence �rst; even though we

will use the sub-series for the most part. Letai ; bi ; ci and ei denote di�erent propositional

variables, for all i 2 ! .5 We de�ne a series of principles as follows.

R0 := a0 � b0 ! : (a0 � : c0) � b0 ^ 2 c0

R2n+ 1 := R2n [: (an � : cn )=: (an � : cn ) ^ (en+1 � 3 an+1 );

bn ^ 2 cn=bn ^ 2 cn ^ (en+1 � an+1 )]

R2n+ 2 := R2n+1 [bn=bn ^ (an+1 � bn+1 );

3 an+1 =: (an+1 � : cn+1 );

(en+1 � an+1 )=(en+1 � an+1 ) ^ (en+1 � bn+1 ^ 2 cn+1 )]

We proceed with de�ning the sub-serieseRn (see [29], below Lemma 3.1):

X0 := A0 � B0

Xn+1 := An+1 � Bn+1 ^ (Xn )

Y0 := : (A0 � : C0)

Yn+1 := : (An+1 � : Cn+1 ) ^ (En+1 � Yn )

Z0 := B0 ^ 2 C0

Zn+1 := Bn+1 ^ (Xn ) ^ 2 Cn+1 ^ (En+1 � An ) ^ (En+1 � Zn )
eRn := Xn ! Yn � Zn :

For convenience, de�neX� 1 = > . With this we have Xn � IL An � Bn ^ (Xn� 1) for all

n 2 ! . The �rst two schemas:

eR0 := A0 � B0 ! : (A0 � : C0) � B0 ^ 2 C0;
eR1 := A1 � B1 ^ (A0 � B0) ! : (A1 � : C1) ^ (E1 � : (A0 � : C0)) �

B1 ^ (A0 � B0) ^ 2 C1 ^ (E1 � A0) ^ (E1 � B0 ^ 2 C0):

In the proof that AtL ` eRn (see the proof of Theorem 7.28) we use the following lemma.

5The series is originally de�ned as a series of modal formulas, not a series ofschemasof modal formulas.
In the remainder of the chapter we will work with schemas, as that is the way we treat other principles
in this thesis.
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Lemma 7.27 For all n 2 ! , and all interpretation variables k:

AtL ` (An � k Bn ^ (Xn� 1)) ^ Yn ! 3 k(Zn ):

Proof. Let n = 0 and �x k. We are to prove

AtL ` (A0 � k B0 ^ > ) ^ : (A0 � : C0) ! 3 k(B0 ^ 2 C0):

Equivalently,

AtL ` (A0 � k B0) ^ 2 k(B0 ! 3 : C0) ! A0 � : C0:

Assume(A0 � k B0) ^ 2 k(B0 ! 3 : C0). By Jk
2, this yields A0 � k 3 : C0, whence byJk

5,

A0 � : C0.

Let us now prove the claim forn + 1. Fix k. Unpacking, we are to show that:

AtL ` (An+1 � k Bn+1 ^ (Xn )) ^ : (An+1 � : Cn+1 ) ^ (En+1 � Yn )

! 3 k
�

Bn+1 ^ (Xn ) ^ 2 Cn+1 ^ (En+1 � An ) ^ (En+1 � Zn )
�

:

Equivalently, we are to show that:

AtL ` (An+1 � k Bn+1 ^ (Xn )) ^ (En+1 � Yn )

^ 2 k
�

(Bn+1 ^ (Xn )) ! 3 : Cn+1 _ : (En+1 � An ) _ : (En+1 � Zn )
�

! An+1 � : Cn+1 :

(7.19)

Assume the conjunction on the left-hand side of (7.19). The �rst and the third con-

junct imply

An+1 � k Bn+1 ^ (Xn ) ^
�

3 : Cn+1 _ : (En+1 � An ) _ : (En+1 � Zn )
�

;

whence by weakening,

An+1 � k (Xn ) ^
�

3 : Cn+1 _ : (En+1 � An ) _ : (En+1 � Zn )
�

: (7.20)

We now aim to getAn+1 � k 3 : Cn+1 . To this end, we set out to eliminate the last two

disjuncts within (7.20).

From En+1 � Yn (the second conjunct on the left-hand side of (7.19)) we haveEn+1 �

: (An � : Cn ), thus En+1 � 3 An , whence2 k(En+1 � An ) by the generalisedP0 (Lemma

7.15). We now combine2 k(En+1 � An ) with (7.20), simplify and weaken to obtain

An+1 � k (Xn ) ^ (3 : Cn+1 _ : (En+1 � Zn )) : (7.21)
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Thus, we have eliminated the second disjunct within (7.20), and it remains to eliminate

: (En+1 � Zn ). We will now use the second conjunct on the left-hand side of (7.19),

En+1 � Yn , again. We wish to apply the rulePj
k , so assume2 k(En+1 � j Yn ). Combining

2 k(En+1 � j Yn ) with (7.21) and unpackingXn ,

An+1 � k (An � Bn ^ (Xn� 1)) ^ (En+1 � j Yn ) ^ (3 : Cn+1 _ : (En+1 � Zn )) : (7.22)

Reason under2 k . We wish to apply the rule P`
j with An � Bn ^ (Xn� 1), so assume

2 j (An � ` Bn ^ (Xn� 1)) . Combining 2 j (An � ` Bn ^ (Xn� 1)) with En+1 � j Yn we obtain

(still under the 2 k) that En+1 � j (An � ` Bn ^ (Xn� 1)) ^ Yn . Applying this to (7.22) we

may conclude

An+1 � k
�

En+1 � j (An � ` Bn ^ (Xn� 1)) ^ Yn

�

^ (3 : Cn+1 _ : (En+1 � Zn )) :

The induction hypothesis allows us to replaceAn � ` Bn ^ (Xn� 1) ^ Yn with 3 ` (Zn ).

An+1 � k (En+1 � j 3 ` (Zn )) ^ (3 : Cn+1 _ : (En+1 � Zn )) :

By Jk;`
5 ,

An+1 � k (En+1 � ` Zn ) ^ (3 : Cn+1 _ : (En+1 � Zn )) :

By our last application of P`
j and (E� )` , we can substitute� for � ` :

An+1 � k (En+1 � Zn ) ^ (3 : Cn+1 _ : (En+1 � Zn )) :

Finally, we can simplify, weaken and apply J5 to obtainAn+1 � : Cn+1 . a

We can now prove soundness for the slim hierarchy. It su�ces to do this for the co�nal

sub-hierarchy eRn .

Theorem 7.28 For all n 2 ! , AtL ` eRn .

Proof. Let n 2 ! be arbitrary. Assume2 k(An � Bn ^ (Xn� 1)) . Clearly

Yn � (An � k Bn ^ (Xn� 1)) ^ Yn :

Now Lemma 7.27 implies

Yn � 3 k(Zn );

whence by the generalised J5,

Yn � k Zn :

By the rule Pk , we can replace our assumption2 k(An � Bn ^ (Xn� 1)) with Xn . Furthermore,

by the same application ofPk , and by (E� )k , we haveYn � Zn . Thus, X n ! Yn � Zn , i.e.

130



Chapter 7. The approximating theory

eRn . a

Finally, as we announced earlier, we quote the result obtained in collaboration with

Jan Mas Rovira. To state the generalised frame condition for the principleR1 (which

lies strictly between eR0 and eR1) we let R� 1[E ] := f x : (9y 2 E)xRyg, and R� 1
x [E ] :=

R� 1[E ] \ R[x].

Theorem 7.29 The frame condition for the principle R1 with respect to generalised

Veltman semantics is the following condition:

8w; x; u; B; C; E

 

wRxRuSwB; C 2 C(x; u)

) (9B0 � B)
�

xSwB0; R[B0] � C; (8v 2 B0)(8c 2 C)

(vRcSxR� 1
x [E] ) (9E0 � E)cSvE0)

� !

:

Proof. Please see [44] for the proof (including a formalisation in Agda). a

7.7 Arithmetical soundness of the broad series
In order to de�ne the second series we �rst de�ne a series of auxiliary formulas. For

any n � 1 we de�ne the schemataUn as follows.

U1 := 3 : (D1 � : C);

Un+2 := 3 ((Dn+1 � Dn+2 ) ^ Un+1 ):

Now, for n � 0 we de�ne the schemataRn as follows.

R0 := A � B ! : (A � : C) � B ^ 2 C;

Rn+1 := A � B !
�

Un+1 ^ (Dn+1 � A)
�

� B ^ 2 C:

As an illustration we present the �rst three principles.

R0 := A � B ! : (A � : C) � B ^ 2 C;

R1 := A � B ! 3 : (D1 � : C) ^ (D1 � A) � B ^ 2 C;

R2 := A � B ! 3
�

(D1 � D2) ^ 3 : (D1 � : C)
�

^ (D2 � A) � B ^ 2 C:
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7.7.1 Proof using iterated approximations

When working with this series it is convenient to also have the following schemas:

V1 := 2 (D1 � : C);

Vn+1 := 2 (Dn � Dn+1 ! Vn ) for n � 1:

Alternatively, we could have de�nedVn := : Un for n � 1.

Lemma 7.30 For all n 2 ! n f 0g, and all �nite sequencesx consisting of interpretation

variables:

AtL ` Dn � x 3 : C ! Vn :

Proof. Let n = 1 and x be arbitrary. We are to proveAtL ` D1 � x 3 : C ! 2 (D1 � : C).

This is an instance of the generalisedP0 schema as we stated in Lemma 7.15.

Let us now prove the claim forn + 1. Thus, we �x an arbitrary sequence of interpre-

tations x. We are to show that

AtL ` Dn+1 � x 3 : C ! 2 (Dn � Dn+1 ! Vn ):

Thus, reasoning inAtL, we assumeDn+1 � x 3 : C. We now wish to apply the rulePk

with this formula, where k is an arbitrary variable not used inx. So, assume2 (Dn+1 � x;k

3 : C). Reason under a box. AssumeDn � Dn+1 . Now Dn � Dn+1 and Dn+1 � x;k 3 : C

imply Dn � x;k 3 : C. By the necessitated induction hypothesis, this impliesVn . Thus,

2 (Dn � Dn+1 ! Vn ), as required. a

Lemma 7.31 For all interpretation variables k we have the following:

AtL ` Un ^ (Dn � A) ^ (A � k B) � k B ^ 2 C:

Proof. It is clear that the claim to be proved follows by necessitation,J1, and Jk
5 from the

following:

AtL ` Un ^ (Dn � A) ^ (A � k B) ! 3 k(B ^ 2 C):

This formula is equivalent to

(Dn � A) ^ (A � k B) ^ 2 k(B ! 3 : C) ! Vn :

On the left-hand side we getDn � k 3 : C. Now Vn follows from Lemma 7.30. a

Theorem 7.32 For all n 2 ! , AtL ` Rn .

Proof. Casen = 0 is clear. Let n > 0 be arbitrary and let us proveRn . Reason inAtL.
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AssumeA � B . We wish to apply the rulePk here. So, assume2 (A � k B). We have:

Un ^ (Dn � A) � Un ^ (Dn � A) ^ (A � k B):

Lemma 7.31 and the ruleJ2 imply

Un ^ (Dn � A) � k B ^ 2 C;

and by (E� )k,

Un ^ (Dn � A) � B ^ 2 C:

a

7.7.2 Proof using� 0 (S1
2)

Here we present an alternative proof which avoids iterated approximations, and instead

uses the idea exploited in Lemma 7.19 and Lemma 7.20. The proof is essentially the same,

but slightly shorter. We note here that we also wrote an alternative proof for the series

Rn but we omit it in this thesis it as the proofs are very similar in that case too.

Lemma 7.33 For all n 2 ! n f 0g:

AtL ` Dn � 0 3 : C ! Vn :

Proof. Let n = 1. We are to proveAtL ` D1 � 0 3 : C ! 2 (D1 � : C). This is an instance

of the generalisedP0 schema (Lemma 7.20).

Let us now prove the claim forn + 1. We are to show that

AtL ` Dn+1 � 0 3 : C ! 2 (Dn � Dn+1 ! Vn ):

AssumeDn+1 � 0 3 : C. By Lemma 7.19, we have2 0(Dn+1 � 0 3 : C). Reason under a

box. AssumeDn � Dn+1 . Now Dn � Dn+1 and Dn+1 � 0 3 : C imply Dn � 0 3 : C. By the

induction hypothesis, this impliesVn , as required. a

Lemma 7.34 Given an interpretation variable k,

AtL ` Un ^ (Dn � A) ^ (A � k B) � k B ^ 2 C:

Proof. It is clear that the claim to be proved follows by necessitation,J1, and Jk
5 from the

following:

AtL ` Un ^ (Dn � A) ^ (A � k B) ! 3 k(B ^ 2 C):
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This formula is equivalent to

(Dn � A) ^ (A � k B) ^ 2 k(B ! 3 : C) ! Vn :

On the left-hand side we getDn � k 3 : C. In particular, Dn � 0 3 : C. Now Vn follows

from Lemma 7.33. a

Theorem 7.35 For all n 2 ! , AtL ` Rn .

Proof. The proof is exactly the same as the proof of Theorem 7.32. a

Finally, we state the generalised frame condition for the seriesRn, obtained in joint

work with Jan Mas Rovira.

Theorem 7.36 Let n 2 ! be arbitrary. We haveF 
 Rn if and only if for all w, x0, : : : ,

xn� 1, y, z, A, B, C, D0, : : : , Dn� 1 we have the following:

wRxn� 1R : : : Rx0RyRz;

(8u 2 R[w] \ A)(9V)uSwV � B;

(8u 2 R[xn� 1] \ Dn� 1)(9V)uSxn � 1 V � A;

(8i 2 f 1; : : : ; n � 2g)(8u 2 R[x i ] \ Di )(9V)uSx i V � Di +1 ;

(8V 2 Sy[z])V \ C 6= 0;

z 2 D0

) (9V � B)(xn� 1SwV & R[V] � C):

Proof. Please see [44] for the proof (including a formalisation in Agda). a
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Chapter 8

An R� -�avoured series of principles

In this chapter we further explore the question of the completeness of the logicIL WR

which we touched upon in Section 4.3 and in particular Subsection 4.3.1. We discussed

the label iteration problemand describedlabelling systemswhich can be used to resolve

the label iteration problem at least in the simpler case ofIL WP-frames. We postponed

the remainder of the discussion onIL WR for this chapter.

The contents of this chapter is unpublished, with a preliminary report appearing as a

short paper [46].

Introduction
In Subsection 4.3.1 we commented on the situation that may appear in a model we

are building (which is meant to be anIL WR-model):

B � C 2 w � S x � T u 3 B:

In such situations we need to �nd a worldv with

w � S[ x2
T [f 2 : B g [f 2 : B g v 3 B:

However, using the principlesW and R directly only gives usw � S[ x2
T [f 2 : B g v (we only

get T where we'd like to haveT [ f 2 : Bg). Similarly for longer sequences: suppose

B � C 2 w � S x � T y � U u 3 B. In this case we'd like to have

w � S[ x2
T [f 2 : B g[ y 2

U [f 2 : B g
[f 2 : B g v 3 C

In order to prove the characteristic property we will actually require slightly more

complex labels. We make the recursive labelling pattern forIL WR explicit in De�nition

8.1.

De�nition 8.1 For n 2 ! n f 0g, let f w0; : : : ; wng be a �nite sequence ofIL WR-MCS's,

let f S1; : : : ; Sng be a �nite sequence of sets of formulas, andB a formula. We recursively
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de�ne n sets of formulas, one for everyj 2 f 0; : : : ; n � 1g :

Q(f w0; : : : ; wng; f S1; : : : ; Sng; B; j ):

Usually the MCS's f w0; : : : ; wng, and the sets of formulasf S1; : : : ; Sng will be clear from

the context, so we will writeQj (B ) for Q(f w0; : : : ; wng; f S1; : : : ; Sng; B; j ).

Q0(B ) := ; ;

for j 2 f 1; : : : ; n � 1g : Qj (B ) := wj
2
Sj [f 2 : B g[ Q j � 1 (B ) [ Qj � 1(B ):

Given a su�ciently large sequence of worldswi and the corresponding labelsSi , we

have:

Q1(B ) = w1
2
S1 [f 2 : B g;

Q2(B ) = w2
2
S2 [f 2 : B g[ w1

2
S1 [f 2 : B g

[ w1
2
S1 [f 2 : B g;

Q3(B ) = w3
2

S3 [f 2 : B g[

�
w2

2
S2 [f 2 : B g[ w 1

2
S1 [f 2 : B g

�
[ w1

2
S1 [f 2 : B g

[ w2
2
S2 [f 2 : B g[ w1

2
S1 [f 2 : B g

[ w1
2
S1 [f 2 : B g:

Given a setS and a formulaB, we will often need to refer to the setS [ f 2 : Bg; for this

reason we will sometimes denoteS [ f 2 : Bg asS� (the formula B will usually be obvious

from the context). Using this notation we have:

Q1 = w1
2
S�

1
;

Q2 = w2
2
S�

2 [ w1
2
S �

1

[ w1
2
S�

1
;

Q3 = w3
2

S�
3 [

 

w2
2
S �

2 [ w 1
2
S �

1

!

[ w1
2
S �

1

[ w2
2
S�

2 [ w1
2
S �

1

[ w1
2
S�

1
:

Considering what it takes to be able to claim the existence of worlds (i.e. maximal

consistent sets w.r.t.IL WR) v with w � S�
n [ Qn � 1 (B ) , which is a labelling that can be used to

prove the characteristic property, we arrive at a new series of principles. If the principles

in this series are provable inIL WR, this approach leads to a completeness proof ofIL WR.

Let us lay down the plan for this chapter. In the next section we �rst de�ne the new

series of principlesWn for n 2 ! and then we prove the �de�ciency-solving� lemma, i.e.

that the new series is su�ciently strong for obtaining the labelsQj (B ) de�ned above.

One we de�ned the principles, we introduceIL W! -structures (whereIL W! stands for

the extension ofIL with the set of principlesf Wn : n 2 ! g) and prove that if IL WR ` Wn

(for all n 2 ! ), then IL WR is complete w.r.t. generalised semantics. Also, if the principles

Wn are valid in IL setWR-frames, thenIL W! is complete w.r.t. generalised semantics. Both

claims we prove conditionally; we do not know if their antecedents are true.
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Having discussed generalised semantics, we then turn to discuss ordinary Veltman

semantics forIL W! and prove that the principlesWn are valid in ordinary IL WR-frames.

If IL WR ` Wn (for all n 2 ! ), then the principlesWn are valid in generalisedIL WR-frames

too. We believe to have determined that the principlesW1� W4 are valid in IL setWR-

frames.1 The proof that the principle W5 is valid in ordinary IL WR-frames amounts to

showing that a certain model with about 500 worlds cannot exist. The principleW5 is the

point where our earlier strategies do not seem to be su�ciently strong to prove the validity

w.r.t. the appropriate generalised frames. It is hard to analyse such large models (the

generalised model whose existence we are to show to be impossible has at least as many

worlds as the corresponding model in ordinary semantics, i.e. more than 500 worlds). We

leave resolving this question for future work.

In the penultimate section we show that the new series is arithmetically valid. This is

a prerequisite for even considering this series in the context ofIL (All); the section comes

next-to-last for purely technical reasons: no other content depends on the results of this

section, while that section depends on Section 8.1.

In the �nal section we give a recap of what we know regardingIL W! , and what remains

to be answered in future work.

8.1 The logic ILW!

De�nition 8.2 We de�ne a series of principles(Wn )n2 ! .

U1 := ? ;

for n > 1 : Un := 3 Cn� 1 _ � � � _ 3 C1;

V1 := A;

for n > 1 : Vn := : ((Cn� 1 � 3 A _ Bn� 1 _ Un� 1) ! (Vn� 1 � Bn� 1));

for n > 0 : Wn := ( A � 3 A _ Bn _ Un ) ! (Vn � Bn ):

Note that most parentheses in the de�nition are not required by our reading conven-

tion; they are added here solely for additional clarity.

We can letW0 := W so that Wn is de�ned for all n 2 ! . We could also shift the indices

down, so that W1 becomesW0 etc., which we do not do in order to have the indices align

better in some situations. We are really only interested inWn for n > 0, and only treat

that case in proofs.

1More precisely, a script employing a certain amount of semantic reasoning determined that anIL WR-
counterexample cannot exist forW1� W4. The reasoning principles that this script employs haven't been
formally veri�ed and it is possible, though we believe it to be unlikely, that W3 or W4 are not valid in
IL setWR-frames.
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By IL W! we denote the extension ofIL with the set of principles f Wn : n 2 ! g.

Similarly, by IL W! X we understand the extension ofIL W! by X.

Let us unravel the de�nition of Wn for some small values ofn:

W1 :A � 3 A _ B1 ! A � B1;

W2 :A � 3 A _ B2 _ 3 C1 ! : (C1 � 3 A _ B1 ! A � B1) � B2;

W3 :A � 3 A _ B3 _ 3 C2 _ 3 C1 !

: (C2 � 3 A _ B2 _ 3 C1 ! : (C1 � 3 A _ B1 ! A � B1) � B2) � B3:

The �rst two principles are well-known, although not in the form presented above. We

show that IL W1 = IL W and IL W1W2 = IL R� :

ˆ IL W1 = IL W. Clearly IL W ` A �3 A _ B1 ! A � (3 A _ B1) ^ 2 : A; ! A � B1. On

the other hand, IL W1 ` A � B ! A � B ^ (2 : A _ 3 A); ! A � (B ^ 2 : A) _ 3 A; !

A � B ^ 2 : A.

ˆ IL W1W2 = IL R� .

IL R� ` A � 3 A _ B2 _ 3 C1 ! : (A � C1) � B2 ^ 2 : C1

IL R� ` A � 3 A _ B2 _ 3 C1 ! : (A � C1) � B2

IL R� ` A � 3 A _ B2 _ 3 C1 ! : (C1 � 3 A _ B1 ! A � B1) � B2

To see the last inference, supposeC1 �3 A _ B1, : (A � B1) and (for a contradiction)

A � C1. Then A � 3 A _ B1, and thus by W (IL R� ` W), A � B1, a contradiction.

For the other direction,

IL ` A � B ! A � (B ^ 2 : A ^ 2 : C) _ 3 A _ 3 C

IL W2 ` A � B ! : (C � 3 A _ C ! A � C) � B ^ 2 : A ^ 2 : C

IL W2 ` A � B ! : (A � C) � B ^ 2 : A ^ 2 : C

IL W2 ` A � B ! : (A � C) � B ^ 2 : C

For the second line takeB2 := B and C1; B1 := C.

We note here that there is an easy way of formingWn+1 from Wn . Let OLD be

the result of replacing the �rst occurrence ofA in Wn (the occurrence ofA at the very

beginning ofWn ) with Cn . We then have:

Wn+1 = A � 3 A _ Bn+1 _ 3 Cn _ � � � _ 3 C1 ! : (OLD) � Bn+1 :
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8.2 Generalised semantics
In this section we prove two conditional claims:

1. If IL WR ` Wn for all n 2 ! , then IL WR is complete with respect to its generalised

semantics.

2. If the generalised frame condition ofIL W! is equivalent to (WR)gen, then IL W! is

complete w.r.t. the class ofIL setW! -frames.

The structure of this proof resembles Section 4.3. Our �rst goal is to prove a de�ciency-

solving lemma forIL W! . This is not as trivial as it was for other logics considered in

this thesis. We �rst introduce a technical notion, CB-sequences, and prove they can be

constructed. We will need CB-sequences in the de�ciency-solving lemma; essentially, they

will populate the labels used in that lemma with the correct choice of formulas.

De�nition 8.3 Let X be an arbitrary collection of modal formulas. Letn 2 ! n f 0g. Let

f w0; : : : ; wng be a �nite sequence ofIL W! X-MCS's, let f S1; : : : ; Sng be a �nite sequence

of sets of formulas and letE � G a formula such that:

E � G 2 wn � Sn wn� 1 � Sn � 1 � � � � S1 w0 3 E:

We de�ne a CB-sequence of lengthm 2 f 1; : : : ; n � 1g to be a pair of any �nite sequences

fC1; : : : ;Cmg and fB 1; : : : ;Bmg of sets of formulas, and furthermore for alli 2 f 1; : : : ; mg:

Bi � : Si ;
_

Ci � 3 E _
_

Bi _
_

1� j � i � 1

3
_

Cj 2 wi :

Lemma 8.4 Let X be an arbitrary collection of modal formulas. Letn 2 ! n f 0; 1g. Let

f w0; : : : ; wng be a �nite sequence ofIL W! X-MCS's, let f S1; : : : ; Sng be a �nite sequence

of sets of formulas andE � G a formula such that:

E � G 2 wn � Sn wn� 1 � Sn � 1 � � � � S1 w0 3 E:

Let m 2 f 1; : : : ; n � 1g be arbitrary. If 2 : D 2 Qm (E), then2 there exist a CB-sequence

(fC1; : : : ;Cmg; fB 1; : : : ;Bmg) of length m with D 2
S

i 2f 1;:::;m g Ci .

Proof. Let n 2 ! n f 0; 1g be arbitrary. We prove the claim for this value ofn and all

values ofm 2 f 1; : : : ; n� 1g by induction on m. Base case ism = 1. Since2 : D 2 Q1(E),

for some �nite J we haveD �
W

j 2 J : S1
j _ 3 E 2 w1 whereS1

j 2 S1 for all j 2 J . We let

C1 = f Dg and B1 = f: S1
j : j 2 Jg. Clearly all required properties are satis�ed.

2Note that all formulas in Qm (E ) are of the form 2 : D .
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Suppose the claim holds for all values less than some valuem, with 2 � m � n � 1.

We now prove the claim form. Since2 : D 2 Qm (E) and 2 � m � n � 1, there are two

cases to distinguish: (1)2 : D 2 Qm� 1(E) and (2) 2 : D 2 wm
2
Sm [f 2 : E g[ Qm � 1 (E ) .

In Case (1) we use the induction hypothesis form � 1 and obtain a CB-sequence

(fC1; : : : ;Cm� 1g; fB 1; : : : ;Bm� 1g) of length m � 1 with D 2
S

i 2f 1;:::;m � 1g Ci . We extend

this sequence by de�ningBm = ; and Cm = ; . Clearly the required properties of a

CB-sequence are satis�ed, andD 2
S

i 2f 1;:::;m g Ci .

In Case (2), for some �niteJ and K we haveD �
W

j 2 J : Sm
j _ 3 E _

W
k2 K : 2 : Hk 2 wm

where Sm
j 2 Sm for all j 2 J and 2 : Hk 2 Qm� 1(E) for all k 2 K . We de�ne a

CB-sequence of lengthm as follows. For everyk 2 K , since 2 : Hk 2 Qm� 1(E), the

induction hypothesis implies there is a CB-sequence(fCk
1 ; : : : ;Ck

m� 1g; fB k
1 ; : : : ;Bk

m� 1g) of

length m � 1. Put Cm = f Dg and Bm = f: Sm
j : j 2 Jg. For i with 1 � i � m � 1, put

Ci =
S

k2 K Ck
i and Bi =

S
k2 K Bk

i . It is easy to see we have all the required properties. In

particular, for the property that

_
Cm � 3 E _

_
Bm _

_

1� j � m� 1

3
_

Cj 2 wm

note that for all k 2 K , by the induction hypothesis, we have

Hk 2
[

1� j � m� 1

Cj :

Thus, this property follows from

D �
_

j 2 J

: Sm
j _ 3 E _

_

k2 K

: 2 : Hk 2 wm :

a

We need the following lemma for the �de�ciency-solving� business.

Lemma 8.5 Let X be an arbitrary collection of modal formulas. Letn 2 ! n f 0g. Let

f w0; : : : ; wng be a �nite sequence ofIL W! X-MCS's, let f S1; : : : ; Sng be a �nite sequence

of sets of formulas and letE � G be a formula such that:

E � G 2 wn � Sn wn� 1 � Sn � 1 � � � � S1 w0 3 E:

Then there is anIL W! X-MCS v such that wn � S�
n [ Qn � 1 (E ) v and G; 2 : G 2 v.

Proof. For n = 1 this is the labelling lemma forIL W (see Lemma 4.26). Letn > 1 be

arbitrary. Suppose there is no such consistent setv, i.e. the following set is inconsistent:

f G; 2 : G; : A; 2 : Ag
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whereA is a formula such that for some �nite setsJ and K we have:

A �
_

j 2 J

: Sn
j _ 3 E _

_

k2 K

: 2 : Hk 2 wn ;

where Sn
j 2 Sn for all j 2 J and 2 : Hk 2 Qn� 1(E) for all k 2 K . The inconsistency of

the set f G; 2 : G; : A; 2 : Ag implies IL ` G � A, whence byJ2:

E �
_

j 2 J

: Sn
j _ 3 E _

_

k2 K

: 2 : Hk 2 wn :

We de�ne a CB-sequence of lengthn � 1 as follows. For everyk 2 K , since2 : Hk 2

Qn� 1(E), Lemma 8.4 implies there is a CB sequence(fCk
1 ; : : : ;Ck

n� 1g; fB k
1 ; : : : ;Bk

n� 1g) of

length n � 1. For i with 1 � i � n � 1, put Ci =
S

k2 K Ck
i and Bi =

S
k2 K Bk

i .

For convenience, we also de�neCn = f Eg and Bn = f: Sn
j : j 2 Jg.

Finally, we de�ne for all i 2 f 1; : : : ; n � 1g:

B i :=
_

Bi ;

Ci :=
_

Ci :

We prove the following claim by induction: for alli 2 f n; : : : ; 2; 1g,

Vi � B i 2 wi :

As the base case we takei = n. Unpacking the de�nitions of Cn and Bn and since for

everyk 2 K we haveHk 2
S

1� j � n� 1 Cj , we have:E �3 E _ Bn _ 3 Cn� 1 _ � � � _ 3 C1 2 wn .

The principle Wn implies Vn � Bn 2 wn . Suppose the claim holds fori + 1 and let us

prove the claim for i . By the induction hypothesis and after unpackingVi +1 � B i +1 we

have

: (Ci � 3 E _ B i _ Ui ! Vi � B i ) � B i +1 2 wi +1 :

Sincewi +1 � Si +1 wi and using the property of a CB-sequence thatBi +1 � : Si +1 , we get

Ci � 3 E _ B i _ Ui ! Vi � B i 2 wi :

Again, since (fCk
1 ; : : : ;Ck

n� 1g; fB k
1 ; : : : ;Bk

n� 1g) is a CB-sequence, we have
W

Ci � 3 E _
W

B i _
W

1� j � i � 1 3 Cj 2 wi . Thus,

Vi � B i 2 wi ;

as required. This concludes the proof by induction.

In particular this implies that V1 � B1 2 w1, i.e. E � B1 2 w1. This is impossible since

B1 =
W

B1, B1 � : S1 and w1 � S1 w0 3 E. a
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Now that we have our de�ciency-solving lemma, we can proceed to the de�nition of an

IL W! -structure for a set of formulasD. Here we assume thatD has the same properties

that were assumed in Chapter 4, i.e. it is a �nite set closed under subformulas and single

negations, and contains> (see De�nition 4.5).

The IL W! -structures will resembleIL WP-structures de�ned earlier (see De�nition

4.35). As was the case withIL W-structures (De�nition 4.27), we distinguish two cases

in the de�nition of Sw . And sinceIL W! is a�ected by the problem of label iteration (see

Section 4.3), we need to use a labelling system. The labelling system forIL W! is de�ned

in De�nition 8.1.

De�nition 8.6 We say that M = ( W; R; f Sw : w 2 Wg; 
 ) is the IL W! -structure for a

set of formulasD if:

ˆ W = f w : w is an IL W! -MCS and for someB 2 D ; B ^ � : B 2 wg;

ˆ wRu , w � u;

ˆ uSwV , wRu and V � R[w] and, moreover, one of the following holds:

(a) V \ _R[u] 6= ; ;

(b) we have for alln 2 ! nf 0g; all f w0; : : : ; wng; and all f S1; : : : ; Sng:

w = wn � Sn � � � � S1 w0 = u ) (9v 2 V)(9B 2 D \
[

_R[u]) w � S�
n [ Qn � 1 (B ) v;

ˆ w 
 p , p 2 w.

The following lemma is very similar to Lemma 4.36, and both share the same general

format as Lemma 4.28. Essentially the only di�erence compared to Lemma 4.36 is a

di�erent labelling system, which a�ects the proof only slightly.

Lemma 8.7 The IL W! -structure M for D is a generalised Veltman model. Furthermore,

the following holds for eachw 2 W and G 2 D :

M ; w 
 G if and only if G 2 w;

Proof. All the properties, except for quasi-transitivity, have easy proofs (see the proof of

Lemma 4.36). Let us prove quasi-transitivity. AssumeuSwV, and vSwUv for all v 2 V.

Put U =
S

v2 V Uv. We claim that uSwU. Clearly U � R[w]. To prove uSwU we will

distinguish the cases (a) and (b) from the de�nition of the relationSw for uSwV:

In Case (a), there existsv0 2 V for somev0 2 _R[u]. We will next distinguish two cases

from the de�nition of v0SwUv0 .

In Case (aa) we havex 2 Uv0 for somex 2 _R[v0]. Since v0 2 _R[u], we then have

x 2 _R[u]. Sincex 2 Uv0 � U, then U \ _R[u] 6= ; : So, we haveuSwU, as required.
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In Case (ab) we have:

For all n 2 ! nf 0g; all f w0; : : : ; wng; and all f S1; : : : ; Sng we have: (8.1)

w = wn � Sn � � � � S1 w0 = v0 ) (9x 2 Uv0 )(9B 2 D \
[

_R[v0]) w � S�
n [ Qn � 1 (B ) x:

To prove uSwU in this case, we will use Case (b) from the de�nition of the relationSw .

Let n 2 ! nf 0g be arbitrary and let f w0; : : : ; wng and f S1; : : : ; Sng be arbitrary such that

w = wn � Sn � � � � S1 w0 = u. If u = v0, applying (8.1) with n, the world f w0; : : : ; wng

and the labelsf S1; : : : ; Sng, produces the requiredx 2 Uv0 � U and B 2 D \
S _R[v0].

Otherwise, i.e. if uRv0, let w0
0 = v0, w0

i +1 = wi , S0
1 = ; , S0

i +1 = Si and apply (8.1)

with n + 1, f w0
0; : : : ; w0

n+1 g, and f S0
1; : : : ; S0

n+1 g. This gives us a worldx 2 Uv0 and

B 2 D \
S _R[v0] with w � S�

n [ Q0
n (B ) x, where, for everyj , the notation Q0

j (B ) is short

for Q(f w0
0; : : : ; w0

n+1 g; f S0
1; : : : ; S0

n+1 g; B; j ). It is easy to prove by induction that after

replacing occurrences ofu2
f 2 : B g (i.e. w0

1
2
S0

1 [f 2 : B g) with ; in the recursive de�nition of Q0
n (B )

we obtain Qn� 1(B ) and furthermore that Qn� 1(B ) � Q0
n (B ). Thus, w � S�

n [ Qn � 1 (B ) x.

SinceuRv0, we have _R[v0] � _R[u]. Thus, we can reuse the formulaB for this Sw transition.

In Case (b), we have:

For all n 2 ! nf 0g; all f w0; : : : ; wng; and all f S1; : : : ; Sng we have: (8.2)

w = wn � Sn � � � � S1 w0 = u ) (9v 2 V)(9B 2 D \
[

_R[u]) w � S�
n [ Qn � 1 (B ) v:

To prove uSwU we will use Case (b) from the de�nition of the relationSw .

Let n 2 ! nf 0g be arbitrary and let f w0; : : : ; wng and f S1; : : : ; Sng be arbitrary such

that w = wn � Sn � � � � S1 w0 = u. By (8.2), there arev0 2 V and B 2 D \
S _R[u] such

that w � S�
n [ Qn � 1 (B ) v0. From v0 2 V it follows that v0SwUv0 . We will next distinguish the

possible cases in the de�nition ofv0SwUv0 .

In Case (ba) we haveUv0 \ _R[v0] 6= ; ; i.e. there isx 2 Uv0 such that either v0 = x or

v0Rx. In both cases we havew � S�
n [ Qn � 1 (B ) x.

In Case (bb), we have:

For all n0 2 ! nf 0g; all f w0
0; : : : ; w0

n0g; and all f S0
1; : : : ; S0

n0g we have: (8.3)

w = w0
n0 � S0

n 0
� � � � S0

1
w0

0 = v0 ) (9x 2 Uv0 )(9B 0 2 D \
[

_R[v0]) w � S�
n 0[ Q0

n 0� 1
(B ) x;

whereQ0
j (B ) is short for Q(f w0

0; : : : ; w0
n0g; f S0

1; : : : ; S0
n0g; B; j ).

At the moment we only need to use (8.3) withn0 = 1, which is the following statement:

for every T, if w � T v0, there is x 2 Uv0 and B 0 2 D \
S _R[v0] such that w � T [f 2 : B g x.

Using this and w � S�
n [ Qn � 1 (B ) v0 we get that there is somex 2 Uv0 � U and B 0 2

D\
S _R[v0] such that w � S�

n [ Qn � 1 (B )[f � : B 0g x. By weakening,w � S�
n [ Qn � 1 (B ) x, as required.
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We claim that for each formulaG 2 D and each worldw 2 W the following holds:

M ; w 
 G if and only if G 2 w:

The proof is by induction on the complexity ofG. The only non-trivial case is when

G = B � C:

AssumeB � C 2 w; wRu and u 
 B . Induction hypothesis impliesB 2 u: We claim

that uSw [C]w by Case (b) from the de�nition of Sw . Clearly wRu and [C]w � R[w].

Fix n 2 ! nf 0g, f w0; : : : ; wng and f S1; : : : ; Sng. Assumew = wn � Sn � � � � S1 w0 = u.

SinceB � C 2 wn and B 2 w0, Lemma 8.7 implies that there is anIL W! -MCS v with

wn � S�
n [ Qn � 1 (B ) v and C; 2 : C 2 v (thus v 2 W). SinceC 2 v, the induction hypothesis

implies v 
 C. Sincew � v, i.e. wRv, then v 2 [C]w . Finally, B 2 D and B 2 u imply

B 2 D \
S _R[u].

To prove the converse, assumeB � C =2 w. Since w is an IL W! -MCS, we have

: (B � C) 2 w. Lemma 4.25 implies there isu with w � f � : B; : Cg u and B 2 u: Since

w � f � : B g u, we have in particular that � : B 2 u: So, u 2 W: The induction hypothesis

implies u 
 B . Let V � R[w] be such thatuSwV. We will �nd a world v 2 V such that

w � f: Cg v. We will distinguish Cases (a) and (b) from the de�nition of the relationSw .

Consider Case (a). Letv be an arbitrary world in V \ _R[u]. If v = u, clearlyw � f � : B; : Cg v.

If uRv, then we havew � f � : B; : Cg u � v: This implies w � f � : B; : Cg v. Consider Case

(b). From w � f � : B; : Cg u and the de�nition of Sw it follows that there is v 2 V such that

(for some formulaD) w � f � : B; : C;� : D g v. In both cases we havew � f: Cg v; thus C =2 v.

Induction hypothesis impliesv 1 C; whenceV 1 C, as required. a

Theorem 8.8 The logic IL WR is complete w.r.t. IL setWR-frames if IL WR ` Wn for all

n 2 ! .

Proof. In the light of Lemma 8.7 it su�ces to show that the IL W! -structure M for D

possesses the properties (W)gen and (R)gen. The proof that (W)gen holds is very similar to

the proof that IL W-structures satisfy (W)gen (Theorem 4.29). Let us now prove thatM

possesses the property (R)gen.

AssumewRxRuSwV and C 2 C(x; u). We are to show that there isU � V with xSwU

and R[U] � C. To do this, we distinguish two possible cases foruSwV. If uSwV holds

by Case (a) from the de�nition of Sw , there is v 2 V such that either u = v or uRv. In

both casesxRv. Let U = f vg. Clearly U � V. SincexRv, xSw f vg, i.e. xSwU. For any

z 2 R[v] we havexRuRz and thus uSx f zg. This implies z 2 C. Thus R[U](= R[v]) � C.

The remainder of the proof deals with the case whenuSwV holds by Case (b) from the

de�nition of Sw .
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We will �rst prove an auxiliary claim:

for all n 2 ! nf 0g; all f w0; : : : ; wng; and all f S1; : : : ; Sng we have:

w = wn � Sn � � � � S1 w0 = x ) (9v 2 V)(9B 2 D \
[

_R[u]) w � S�
n [ Qn � 1 (B )[ x2

;
v & R[v] � C:

Fix n 2 ! n f 0g, and setsf w0; : : : ; wng and f S1; : : : ; Sng with w = wn � Sn � � � � S1

w0 = x. Suppose (for a contradiction) that for everyv 2 V and B 2 D \
S _R[u] with

w � S�
n [ Qn � 1 (B )[ x2

;
v, we haveR[v] * C, that is, there is somezv;B 2 R[v] n C. Let

Z = f zv;B : v 2 V; B 2 D \
[

_R[u]; w � S�
n [ Qn � 1 (B )[ x2

;
vg:

We claim that uSxZ. We havexRu by assumption. To see thatZ � R[x], take any

zv;B 2 Z and apply Lemma 4.2 and Lemma 4.21 to the fact thatw � x2
;

v � z. To

complete the proof thatuSxZ, we will use Case (b) from the de�nition ofSx . This part

of the proof will also imply Z 6= ; .

Fix n0 2 ! n f 0g, f w0
0; : : : ; w0

n0g and f S0
1; : : : ; S0

n0g. Assumex = w0
n0 � S0

n 0
� � � � S0

1
w0

0 =

u. We have:

w = wn � Sn � � � � S1 w0 = x = w0
n0 � S0

n 0
� � � � S0

1
w0

0 = u:

For i 2 f 1; : : : ; ng, let w0
n0+ i = wi and S0

n0+ i = Si . Let n00:= n0+ n.

Recall that uSwV (i.e. w0
0Sw0

n 00
V) holds by Case (b). We can apply this clause with

n00, f w0
0; : : : ; w0

n00g, and f S0
1; : : : ; S0

n00g. So there is somev 2 V and B 2 D \
S _R[u] such

that

w � (S0
n 00)

� [ Q0
n 00� 1

(B ) v;

where, for everyj , the notation Q0
j (B ) is short for Q(f w0

0; : : : ; w0
n00g; f S0

1; : : : ; S0
n00g; B; j ).

Note that in particular, w � S�
n [ Qn � 1 (B )[ x2

;
v. To see this, note that (S0

n00)� = S�
n ,

Qn� 1(B ) � Q0
n00� 1(B ) (this can be proved inductively using the recursive de�nition of

Q0
n00� 1(B )), and

x2
; = w0

n0
2
; � w0

n0
2
S0

n 0[f 2 : B g[ Q0
n 0� 1

(B ) � Q0
n0(B ) � Q0

n00� 1(B ):

Thus, zv;B is well-de�ned. Note that a part of the proof just given isw0
n0

2
S0

n 0[f 2 : B g[ Q0
n 0� 1

(B ) �

Q0
n00� 1(B ). Thus, we have

w � w0
n 0

2
S 0

n 0[f 2 : B g[ Q 0
n 0� 1

( B )
v � zv;B :

This and Lemma 4.21 imply (recall once more thatx = w0
n0)

x � S0
n 0[f 2 : B g[ Q0

n 0� 1
(B ) zv;B :

145



Chapter 8. An R� -�avoured series of principles

This concludes the proof ofuSxZ.

Now, uSxZ and C 2 C(x; u) imply C \ Z 6= ; , contradicting the de�nition and the

non-emptiness ofZ . This concludes the proof of the auxiliary claim.

Let U = f v 2 V : R[v] � Cg. Auxiliary claim implies U 6= ; . To prove xSwU we will

use Case (b) from the de�nition ofSw . Fix n 2 ! n f 0g, f w0; : : : ; wng, and f S1; : : : ; Sng.

Assumew = wn � Sn � � � � S1 w0 = x. The auxiliary claim implies there isB 2 D \
S _R[u]

and v 2 U such that w � S�
n [ Qn � 1 (B )[ x2

;
v. Thus, B 2 D \

S _R[x] and w � S�
n [ Qn � 1 (B ) v.

This concludes the proof thatxSwU. It is clear that R[U] � C. a

8.3 Ordinary semantics
Due to di�culties in determining whether the principles Wn are valid in IL setWR-

frames, we tried to obtain validity in regular IL WR-frames. In this section we prove that,

indeed, the logicIL W! is valid in regular semantics. What this entails is that either

IL WR is incomplete w.r.t. IL setWR-frames, orIL W! ` IL WR.

Theorem 8.9 For n 2 ! , the principle Wn is valid in ordinary IL WR-frames.

Proof. For n = 1 and n = 2 the claim follows from the fact that IL W1 = IL W and

IL W1W2 = IL R� .

Suppose the claim does not hold for somen > 2. Then there is anIL WR-model M ,

and formulasA; B 1; : : : ; Bn ; C1; : : : ; Cn� 1 such that there is a world inM , we will denote

this world as vn , such that the instance ofWn with these formulas is not satis�ed invn .

Note that the schemaWn does not containCn . For this reason we can use the symbol

Cn to refer to the formula denoted byA. This will eliminate the need for some case

distinctions.

Before proceeding with the proof, let us sketch the proof. First we see there is a

certain R-sequence in our model. Then we see that there is a structure, which we will call

an �L-sequence�, appended to the end of the aforementionedR-sequence. Next, we will

construct two functions, i 7! i and i 7! ei , both mapping the setf 1; : : : ; ng to some �nite

set of natural numbers. Finally, using these mappings we will see that ourL-sequence

must be �nite, yielding a contradiction.

In the �rst part of this proof we establish the existence of certain worldsvn ; vn� 1; : : : ; v0

such that vn R vn� 1 R : : : R v0 and prove the property (8.7) below.

We will write Si for Svi .

By unravelling the de�nition of Wn , we see that there exist worldsvn� 1; : : : ; v0 such
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that vn R vn� 1 R : : : R v0 and:

vn 
 Cn � 3 Cn _ Bn _ Un ; (8.4)

vi 
 Ci � 3 Cn _ B i _ Ui ;

and for all Si +1 -successorsx of vi , x 
 : B i +1 (for 1 � i � n � 1); (8.5)

v0 
 Cn ; and for all S1-successorsx of v0, x 
 : B1: (8.6)

Thus (8.5) expands to:

ˆ vn� 1 
 Cn� 1 � 3 Cn _ Bn� 1 _ Un� 1, and for all Sn -successorsx of vn� 1, x 
 : Bn ;

ˆ vn� 2 
 Cn� 2 � 3 Cn _ Bn� 2 _ Un� 2, and for all Sn� 1-successorsx of vn� 2, x 
 : Bn� 1;

ˆ : : :

ˆ v2 
 C2 � 3 Cn _ B2 _ U2, and for all S3-successorsx of v2, x 
 : B3;

ˆ v1 
 C1 � 3 Cn _ B1 _ U1, and for all S2-successorsx of v1, x 
 : B2.

Let

Y = f y 2 R[v1] : y 
 Cn and (8x 2 S1[y])x 
 : B1g:

Thus, any y 2 Y satis�es the properties we require from the worldv0. W.l.o.g. we can

assume that the worldv0 is an (S1 � R � S1)-maximal world in Y. Otherwise, if no world

in Y is (S1 � R � S1)-maximal, the relation S1 � R � S1 is not converse well-founded,

contradicting the property (W). Furthermore, note that

if v0 (S1 � R � S1) z, then z 1 Cn . (8.7)

If this were not the case, the existence of such a worldz would contradict the (S1 � R � S1)-

maximality of the world v0 within Y (we would have v1Rz and z 
 Cn , and, since

S1[z] � S1[v0], for all S1-successorsx of z, x 
 : B1, so z 2 Y).

In the next portion of the proof we de�ne a certain type of sequence, an �L-sequence�,

and prove there is an in�nite such sequence.

Let us de�ne the L-sequences. These are a speci�c kind of either a �nite sequence

f x0; : : : ; xmg for somem 2 ! , or of an in�nite sequence(x i ) i 2 ! . We denote the set of

indices f 0; : : : ; mg or ! as I . Furthermore, we requirex0 = v0 and that the following

properties are satis�ed too:

1. for all i 2 I such that i + 1 2 I we havex i (R � (S1 [ � � � [ Sn ))x i +1 ;

2. for all i 2 I we havex i 1 C1 and x i 
 Cj for somej 2 f 2; : : : ; ng;

3. if i; i +1 2 I and x i (R � Sk)x i +1 , then x i Sj x i +1 for all j 2 f 1; : : : ; kg;
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4. if i; i +1 2 I and x i (R � Sk)x i +1 , and j is the minimal ` such that x i 
 C` , then

x i (R � Sj )x i +1 .

As a consequence of (3.),L-sequences will also have these properties:

5. for all i 2 I we havev0S1x i ;

6. for every worldw 2 f v1; : : : ; vng and all i 2 I we havewRx i ;

Sincevn R vn� 1 R : : : R v1, the property (6) follows from the property (5). Furthermore,

since the property (3.) implies that whenever we havex i (R� Sk)x i +1 , we also havex i S1x i +1 ,

the property (3.) implies the property (5).

First we check that the sequence which consists only of the worldv0 is a �nite L-

sequence. All properties have simple proofs, except for the propertyv0 1 C1. Suppose

for a contradiction that v0 
 C1. Sincev1 R v0 
 C1 and v1 
 C1 � 3 Cn _ B1, we have

v0S1u 
 3 Cn _ B1 for someu. Sincev0S1u, by (8.6) we haveu 
 : B1, thus u 
 3 Cn .

Then there isu0 with uRu0 
 Cn . However, we noted earlier (8.7) that ifv0(S1 � R � S1)z,

then z 1 Cn . So, it cannot be the case thatv0S1uRu0S1u0 
 Cn , i.e. v0 (S1� R� S1) u0 
 Cn .

Thus, v0 1 C1.

We will prove that an in�nite L-sequence exists by showing that any �niteL-sequence

can be extended to a longer �niteL-sequence. Once we do that, the required in�nite

L-sequence can be obtained as the appropriate union of �niteL-sequences.

So suppose we have anL-sequenceL1 = f x0; : : : ; xkg and we wish to construct an

appropriate extensionL2 of L1, i.e. we wish to de�nexk+1 .

By the property (2.) we know that xk 
 Ci for somei 2 f 2; : : : ; ng. Pick the minimal

such i . By the property (6) we have vi R xk . This, together with the fact that vi 


Ci � 3 Cn _ B i _ Ui , implies there must exist a worldy with xkSi y 
 3 Cn _ B i _ Ui .

Using the property (6) once more, we havevi R vi � 1 R xk . So, vi � 1 Si xk , and thus

vi � 1 Si y. Since anySi -successor ofvi � 1 satis�es : B i (see (8.5)), we havey 
 : B i . Thus,

y 
 3 Cn _ Ui , i.e. y 
 3 Cn _ 3 Ci � 1 _ � � � _ 3 C1. So, there must existz with yRz 
 Cj

for somej 2 f 1; 2; : : : ; i � 2; i � 1; ng. So,xk(R � (S1 [ � � � [ Sn ))z.

Let L2 denote the extension ofL1 with z, i.e. xk+1 := z. We have to check ifL2 is

an L-sequence too. As we noted above, we only need to check properties (1.) (which is

immediate), (2.), (3.), and (4.). Furthermore, Property (2.) only needs to be veri�ed for

the new world z, while Properties (3.) and (4.) only need to be checked for the newly

added part of theL-sequence, i.e. fori = k.

Let us check (4.) �rst. This is immediate since we de�nedi to be the minimal ` such

that xk 
 C` .

Next we check (3.). Let j 2 f 1; : : : ; ig be arbitrary. Since R � Si � Si , the case

j = i is easy. The other case isj < i , i.e. vi R vj . We havevi R vj R xk Si y R z. The

characteristic property (R) implies xkSj z.
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It remains to check (2.). The proof for this property is very similar to the proof that

v0 1 C1 which we gave earlier. We already know thatz 
 Cj for somej 2 f 1; 2; : : : ; i �

2; i � 1; ng. Thus, it su�ces to show z 1 C1. Suppose not, i.e.z 
 C1. Sincev1 R z 
 C1

and v1 
 C1 � 3 Cn _ B1, we havezS1u 
 3 Cn _ B1 for someu. The property (5) (which

follows from (3.), so we can use it) impliesv0S1z. Sincev0S1zS1u, we must haveu 
 : B1,

thus u 
 3 Cn . Then there is u0 with uRu0 
 Cn . However, we noted earlier (8.7) that

if v0(S1 � R � S1)u, then u 1 Cn . So, it cannot be the case thatv0S1uRu0S1u0 
 Cn , i.e.

v0 (S1 � R � S1) u0 
 Cn . Thus, z 1 C1.

This concludes our proof that an in�nite L-sequence exists.

In the �nal part of the proof we de�ne certain indices i and ei . These indices will be

associated with world whose existence will enable us to point to the contradiction.

Fix an arbitrary in�nite L-sequenceL1 = ( x i ) i 2 ! . We will recursively de�ne mappings

i 7! i and i 7! ei with the domain f 1; : : : ; ng and the codomain! .

Let 1 = 1 and e1 = 0. Now suppose the indices1; : : : ; i � 1 and the indicese1; : : : ; ]i � 1 2

! have been selected. We are to de�nei and ei . For at least onej 2 f 2; : : : ; ng and some

k > ]i � 1, the formula Cj is true in xk (this follows from applying (2.) to indices inI = !

that are larger than ]i � 1). Fix the minimal j such that there existsk > ]i � 1 and the

formula Cj is true in xk ; and de�ne i = j . The de�nition of i implies that the following

set is non-empty:

T = f xk 2 ! : k > ]i � 1 and xk 
 Ci g:

By the characteristic property (W) there is at least one(Si � R � Si )-maximal world in T.

Let ei equal the index` such that the world x` is an (Si � R � Si )-maximal world in T.

We will show the following properties hold:

a. i 2 f i � 1 + 1; : : : ; ng for all i 2 f 2; : : : ; ng;

b. if ei < k , then xk 1 Cj for all i 2 f 1; : : : ; ng and j 2 f 1; 2; : : : ; i � 1; ig;

c. ]i � 1 < ei for all i 2 f 2; : : : ; ng

d. if ei < k � `, then xkSj x` for all i 2 f 1; : : : ; ng and all j 2 f 1; 2; : : : ; i � 1; ig.

We prove (a.)�(d.) simultaneously by induction on i , with base cases beingi = 1 for

all four properties (thus there is nothing to prove in the base case for (a.) and (c.)). To

make the proof more readable, we will group the induction's base and step by properties

(a.)�(d.).

Let us check the property (a.). There is nothing to check fori = 1. Assumei > 1.

By the property (b.) applied to i � 1 we know that for any k such that ]i � 1 < k , for all

j 2 f 1; : : : ; i � 1g we havexk 1 Cj . Since by the de�nition of i there is k with ]i � 1 < k

and xk 
 Ci , we must havei > i � 1. The de�nition of i clearly implies i � n, so (a.)

holds.
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The property (c.) is obvious from the de�nition of ei .

Next we check the property (d.). We will prove the induction base and step at the

same time. Fixk and ` such that ei < k � `, and j 2 f 1; : : : ; ig. If k = `, the claim follows

from the re�exivity of Sj (jRx k follows from (6)). So assumek 6= ` and, in addition, that

` = k + 1 (if the claim held for all pairs of adjacent indices, the required result would

be implied by the transitivity of Sj ). Let m be minimal such that xk 
 Cm . Now the

property (4.) implies xk(R � Sm )x` . By the de�nition of i we havei � m. Sincej � i

(hencej � m), Property (3.) implies xkSj x` .

Finally, the property (b.). The base case follows from Property (2.). We �rst consider

the casej < i . The de�nition of i implies that i � ` for every ` such that C` is true in xm

for somem > ei . So, it cannot be the case thatj < i does not satisfy the property (b.).

It remains to consider the casej = i . Let m be the minimal index such thatxei 
 Cm .

Certainly m � i since xei 
 Ci by the de�nition of ei . We can also show thatm � i .

Suppose otherwise, i.e.xei 
 Cm and m < i . Then ]i � 1 < ei and xei 
 Cm , contradicting

the de�nition of i . Thus, we can conclude thati = m. By Property (4.) we have

xei (R � Si )xei +1 . By the same property we havexei +1 (R � Sj )xei +2 for some j � i , and

applying the property (d.) to this, xei +1 (R � Si )xei +2 . Thus, by the transitivity of Si , we

get xei (R � Si )xei +2 . We can continue this process, and after �nitely many steps (]i + 1 � ei

steps) we concludexei (R � Si )x]i +1 .

By Property (d.), we havex]i +1 Si xk . Thus, x i (Si � R � Si )xk . Sinceei < k and xei is an

(Si � R � Si )-maximal world in the set we denoted byT earlier, we must havex 1 Ci .

We have checked all properties (a.)�(d.).

The property (b.) implies x ]n+1 1 Cj for all j (the property (a.) implies n = n). This

contradicts the property (2.) satis�ed by L1 . a

8.4 Arithmetical soundness
In this section we prove that the logicIL W! is arithmetically valid, i.e. a subset of

IL (All).

This semi-formal systemCuL is de�ned in [40]. Essentially, this is an extension of

the logic IL both in terms of the language and theoremhood. It is an alternative to the

system AtL that we explored in Chapter 7. Both systems enable us to give modal-like

proofs of arithmetical validity for many known principles (see [40]), and at the moment

it is not clear whether these systems di�er in power. In any case, will useCuL in this
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chapter. These are the axiom schemas and the rules of the system:

(! )J ` 2 I A ! 2 A

LJ
1 ` 2 I (A ! B) ! (2 I A ! 2 I B)

LJ
2 ` 2 I A ! 2 I 2 J A

LJ
3 ` 2 I (2 J A ! A) ! 2 I A

JJ
1 ` 2 (A ! B) ! A � B

JJ
5 ` 3 J A � A

NecJ ` A ) ` 2 I A

MJ � ; (A ^ 2 J C � B ^ 2 J 0
C) ` D ) � ; A � B ` D

Here J is a variable not occurring in� ; A; B; D and J 6= J 0

Reasoning in the system allows using all the regular principles likeJ2 : (A � B)^ (B � C) !

A � C, J3 : (A � C) ^ (B � C) ! A _ B � C and J4 : A � B ! (3 A ! 3 B).

The intended interpretations of superscripts (such asI and J ) are de�nable cuts.

See [40] for more details. Reasoning with de�nable cuts is the standard way of proving

arithmetical validity; see [29] for a rather large application.

Before proving the main theorem of the section (the arithmetical validity ofIL W! ),

we �rst prove two auxiliary lemmas.

Lemma 8.10 Let n 2 ! n f 0g. Suppose2 (A !
W

1� i � n� 1 3 K : Ci ) and Cn� 1 � 3 A _

Bn� 1 _ Un� 1. Then for some cutJ the following holds:

Cn� 1 ^
^

1� i � n� 2

2 J : Ci � Bn� 1

Proof. Combining the two assumed formulas, we get

Cn� 1 � 3

0

@
_

1� i � n� 1

3 K : Ci

1

A _ Bn� 1 _ Un� 1:

Applying (the contraposition of) LK
2 ,

Cn� 1 �

0

@
_

1� i � n� 1

3 : Ci

1

A _ Bn� 1 _ Un� 1:

We can unpackUn� 1 next:

Cn� 1 �

0

@
_

1� i � n� 1

3 : Ci

1

A _ Bn� 1 _

0

@
_

1� i � n� 2

3 : Ci

1

A :
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Equivalently,

Cn� 1 �

0

@
_

1� i � n� 1

3 : Ci

1

A _ Bn� 1:

Applying the principle W,

Cn� 1 �

0

@
_

1� i � n� 2

3 : Ci

1

A _ Bn� 1:

Finally, there is a cut J such that

Cn� 1 ^
^

1� i � n� 2

2 J : Ci �

0

@Bn� 1 _
_

1� i � n� 2

3 : Ci

1

A ^
^

1� i � n� 2

2 : Ci :

a

Lemma 8.11 For all cut variables K and all n 2 ! n f 0g,

` Vn � A ^
^

1� i � n� 1

2 K : Ci :

Proof. We prove the claim by induction onn. If n = 1, Vn = A, and clearly` A � A ^ > .

Suppose the claim holds for allk 2 f 1; : : : ; n � 1g. Fix K . We are to show that

` Vn � A ^
^

1� i � n� 1

2 K : Ci :

We will do this by proving that

` Vn ! 3 (A ^
^

1� i � n� 1

2 K : Ci );

equivalently (by unpackingVn and rearranging),

2 (A !
_

1� i � n� 1

3 K Ci ) ^ (Cn� 1 � 3 A _ Bn� 1 _ Un� 1) ! Vn� 1 � Bn� 1:

So, suppose2 (A !
W

1� i � n� 1 3 K Ci ) and Cn� 1 � 3 A _ Bn� 1 _ Un� 1. By the induction

hypothesis,

` Vn� 1 � A ^
^

1� i � n� 2

2 K : Ci :

Applying 2 (A !
W

1� i � n� 1 3 K Ci ),

Vn� 1 �

0

@
_

1� i � n� 1

3 K Ci

1

A ^
^

1� i � n� 2

2 K : Ci :
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Thus,

Vn� 1 � 3 K Cn� 1 ^
^

1� i � n� 2

2 K : Ci :

Let J be the cut given by Lemma 8.10. ApplyingLJ
2,

Vn� 1 � 3 K Cn� 1 ^
^

1� i � n� 2

2 K 2 J : Ci :

Thus,

Vn� 1 � 3 K (Cn� 1 ^
^

1� i � n� 2

2 J : Ci ):

Applying JK
5 ,

Vn� 1 � Cn� 1 ^
^

1� i � n� 2

2 J : Ci :

Finally, applying Lemma 8.10 andJ2:

Vn� 1 � Bn� 1:

a

Theorem 8.12 For all n 2 ! n f 0g, ` Wn , i.e.

` A � 3 A _ Bn _ Un ! Vn � Bn

Proof. SupposeA � 3 A _ Bn _ Un . Applying the principle W, A � Bn _ Un . Then there

is a cut K such that

A ^
^

1� i � n� 1

2 K : Ci � (Bn _ Un ) ^
^

1� i � n� 1

2 : Ci :

By unpacking Un we see that

A ^
^

1� i � n� 1

2 K : Ci � Bn ^
^

1� i � n� 1

2 : Ci :

In particular,

A ^
^

1� i � n� 1

2 K : Ci � Bn :

Lemma 8.11 implies

Vn � A ^
^

1� i � n� 1

2 K : Ci :

Applying J2 givesVn � Bn , as required. a

Thus IL W! � IL (All) . Note that this result does not mean that we found a better

lower bound for IL (All) . The new principles might depend on some already introduced
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principles.

8.5 Status
At the moment we don't have answers to the following three questions:

1. Are the principles(Wn )n2 ! valid on generalisedIL WR-frames?

2. Do we haveIL WR 
 Wn for all n 2 ! ?

3. Do we haveIL WR! R! 
 Wn for all n 2 ! ?3

Of course, if (2) has a positive answer, then (1) and (3) have a positive answer too.

If (1), we have modal completeness ofIL W! w.r.t. generalised semantics. This is a

strictly stronger system thanIL W and IL R, and so would be the strongest system yet for

which we have modal completeness.

If (1) and (2), then IL WR = IL W! , and so we also have completeness ofIL WR w.r.t.

generalised semantics.

If (1) and not (2) are the case, in addition we have incompleteness ofIL WR w.r.t. gen-

eralised semantics. This would be a �rst example of an interpretability logic that is

incomplete w.r.t. generalised semantics. If (2) is not the case (regardless of (1)), we have

incompleteness ofIL WR w.r.t. ordinary semantics.

If (1) is not the case, then(Wn )n2 ! is strictly stronger than IL WR; in this case, (2)

is not the case either. With additional work we might still be able to prove completeness

of IL W! w.r.t. generalised semantics. This would require us to �rst formulate the char-

acteristic properties w.r.t. generalised semantics (since in this case, this is not merely a

conjunction of (W)gen and (R)gen).

If (3) is not the case, we have a (strictly) better lower bound ofIL (All): the logic

IL W! R! R! .

To sum up, these are the possible outcomes we might hope for:

ˆ Modal completeness ofIL W! w.r.t. generalised semantics.

ˆ Modal completeness ofIL WR w.r.t. generalised semantics.

ˆ Modal incompleteness ofIL W! w.r.t. ordinary semantics.

ˆ Modal incompleteness ofIL WR w.r.t. ordinary semantics.

ˆ A (strictly) better lower bound of IL (All): the logic IL W! R! R! .

Currently, we are aiming to show that all the principlesWn are valid on IL setW! -

frames, i.e. to answer the �rst question posed above positively.
3By IL WR! R! we denote the extension ofIL W! with the principles Rn and Rn for all n 2 ! . Similar

notation will be used elsewhere too.
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