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Zagreb, 2021.



PRIRODOSLOVNO–MATEMATIČKI FAKULTET
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Summary

A matter of utmost focus in experimental and theoretical research in high energy

physics today is testing the Standard Model through searches of deviations from

its predictions. The determination of Cabibbo–Kobayashi–Maskawa quark mixing

matrix is one of the key testing grounds in particle physics phenomenology. This is

especially the case for the |Vub| matrix element, where a tension has been noticed

between the values obtained in inclusive and exclusive determinations. In recent

years, a deviation of measurements of several observables in semileptonic decays of

heavy mesons from their expected Standard Model values has sparked a renewed

interest in theoretical research of what is known as lepton flavour universality, or

the universality of weak coupling constant among lepton flavours.

Since the study of quark flavour transitions necessarily deals with hadronic

physics involving strong, non-perturbative interactions which introduce large un-

certainties, a large effort has been made to put these uncertainties under control.

At the moment, there are several theoretical tools at disposal used to extract the

values of desired hadronic parameters: lattice quantum chromodynamics, effective

theories and various types of sum rules based on quark-hadron duality.

In this thesis, sum rules will be used in a computation of Bc and Bu meson

transition form factors. Extracting non-perturbative quantities will enable scruti-

nizing SM predictions of important semileptonic Bc and Bu decays. In particular,

an extraction of the |Vub| CKM matrix element from B̄ → π`ν̄` and Bc → D(∗)`ν̄`

decays is performed, alongside a test of lepton flavour universality in the SM. In the

Bc → (J/ψ, ηc)`ν̄` decays new physics effects are additionally explored.
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Sažetak

Testiranje Standardnog modela (SM) kroz potrage za odstupanjima od predvidanja

je u primarnom fokusu eksperimentalnih i teorijskih istraživanja u fizici visokih en-

ergija danas. Pri tome je precizno odredivanje elemenata Cabibbo–Kobayashi–Mas-

kawa matrice kvarkovskog miješanja jedno od ključnih poligona. To je posebno

istina u slučaju |Vub| matričnog elementa, gdje je niz godina prisutna tenzija izmedu

vrijednosti dobivenih u ekskluzivnim i inkluzivnim raspadima. Takoder je neobičan

skup mjerenja opservabli povezanih sa poluleptonskim raspadima teških mezona.

Ona indiciraju odstupanja od vrijednosti koje imaju u Standardnom modelu, što je

potaklo nova teorijska razmatranja mogućnosti narušenja univezalnosti leptonskog

okusa, odnosno univerzalnosti slabe konstante vezanja medu okusima leptona.

Kako su proučavanja slabih kvarkovskih prijelaza direktno povezana sa hadron-

skom fizikom, koja opisuje neperturbativne učinke jake sile, neodredenosti predvida-

nja su velike, te se izuzetan trud ulaže u sustavno kontroliranje tih neodredenosti.

Trenutno postoje nekoliko teorijskih alata pogodnih za odredivanje vrijednosti hadron-

skih parametara, od kojih su neki: kvantna kromodinamika na rešetci, efektivne

teorije, te razni oblici pravila zboja, u kojima se pod pretpostavkom dualnosti

kvarkova i hadrona relevantne korelacijske funkcije računaju koristeći disperzijske

relacije te Wilsonov razvoj umnožaka operatora.

U ovoj tezi istražene su mogućnosti pravila zbroja (SR) pri računu strukturnih

funkcija u slabim poluleptonskim raspadima teških mezona. Računi neperturba-

tivnih veličina će omogućiti produbljivanje uvida u Standardni model kroz portal

Bu i Bc mezona. Specifično, istražena je perspekivnost mjerenja |Vub| matričnog ele-

menta u B̄ → π`ν̄` i Bc → D(∗)`ν̄` raspadima, te su predočene neke opservable koje

testiraju univerzalnost leptonskog okusa. U Bc → (J/ψ, ηc)`ν̄` raspadima predočen
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Sažetak

je test univerzalnosti leptonskog okusa, te su istraženi neki efekti koje operatori

izvan Standardnog modela mogu imati.

Hadronski dio amplitude slabih poluleptonskih raspada mezona koji sadrže jedan

kvark b okusa shematski se može napisati kao

〈Mf (pf )| q̄2(0)Γ[µ... ]b(0) |Bq1(pi)〉 =
∑
i

Π[µ... ]Fi(q2), (1)

gdje je b → q2 relevantan kvarkovski prijelaz, i q = pi − pf . Korelacijske funkcije

koje opisuju strukturne funkcije Fi(q2) se u pravilima zbroja računaju koristeći

njihova disperzivna te analitička svojstva. Primjećuje se da se u domeni u kojoj

je q2 dovoljno daleko od skale jakih interakcija ΛQCD korelacijske funkcije mogu

računati u perturbativnom računu. Perturbativnom dijelu se, koristeći OPE, do-

daju ”mekani” doprinosi, ili u obliku usrednjenih interakcija sa vakuumom (konden-

zati) u trotočkastim pravilima zbroja kvantne kromodimanike (3ptQCDSR, ili samo

QCDSR), ili u obliku distribucijskih amplituda u pravilima zbroja na svjetlosnom

stošču (LCSR). Ključna razlika je da se u 3ptQCDSR pristupu generički operatori

Ô(x, y) razvijaju za x−y ≈ 0, dok se u LCSR oni razvijaju za (x−y)2 ≈ 0. Drugim

riječima, operatori su u prvom slučaju razvijeni po malim udaljenostima, a u dru-

gom po malim udaljenostima na svjetlosnom stošcu. U oba pristupa se primjećuje

da je analitička struktura u domeni u kojoj se hadoni formiraju odredena polovima

te rezovima uz realnu os. Polovi i rezovi predstavljaju jednočestične i vǐsečestične

hadronske rezonance, kojima je lako analitički manipulirati. Tako se analitičnost

korelacijske funkcije u područjima u kojima rezonanci nema lako može iskoristiti -

nakon što se primjeni Cauchyev teorem za korelacijsku funkciju, doprinose polova

i rezova krivuljnom integralu je lako kompenzirati. To definira pravilo zbroja, i

shematski

FOPE
i (male udaljenosti)

q2→−∞
= F res

i . (2)

Koristeći form faktore koji su dobiveni u ova dva pristupa, različiti fenomenološki

izračuni su predstavljeni za nekoliko poluleptonskih raspada B i Bc mezona. Struk-

tura teze je sljedeća:

1. U poglavlju 1 predstavljen je sažetak temeljnih svojstava Standardnog mod-
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Sažetak

ela, bitnih za slabe mezonse. Elektroslabi i jaki sektor su ukratko uvedeni,

ukljućujući motivaciju za istraživanja predočena kasnije u disertaciji. Neki

nedostatci Standardnog modela su navedeni, usključujući trenutne tenzije u

sektoru kvarkovskih okusa.

2. Poglavlje 2 sadrži pregled metoda najčešće primjenjenih na račune nepertur-

bativnih hadronskih veličina. Dva odvojena odjeljka su posvećena metodama

primjenjenim na računima strukturnih funkcija u ovoj disertaciji, odnosno

sumacijskim pravilima, QCDSR-u i LCSR-u.

3. Poglavlje 3 je posvećeno definiranju baze matričnih elemenata relevantnih za

fenomenološka istraživanja interesantnih raspada. Neki daljni detalji pristupa

pravila zbroja specifični za račune strukturnih funkcija su raspravljeni.

4. Poglavlje 4 temelji se na istraživanju objavljenom u ref. [1]. Istražena je

fenomenologija poluleptonskog kanala raspadaBc mezona u šarmantne mezone.

Potrebni form faktori su izračunati u okviru koji udružuje razvoj korelacijskih

funkcija na svjetosnom stošcu sa gausijanskom valnom funkcijom J/ψ mezona

inspiriranom nerelativističkom kvantnom kromodinamikom. Strukturne funkcije

zadovoljavaju relacije koje dolaze iz spinskih simetrija teških kvarkova i nerela-

tivističkog limesa kvantne kromodinamike. Neke kutne opservable su predložene

kao test univerzalnosti leptonskog okusa, i po prvi put su predstavljeni izrazi za

diferencijalnu kutnu distribuciju u tri kuta za Bc → J/ψ(→ µ+µ−)`ν̄` proces,

dΓ(Bc → (J/ψ → µ+
Rµ
−
L)`ν̄`)

dq2d cos θ`d cos θV dχ
=

3G2
F |Vcb|2|~p2|q2

8(4π)4m2
Bc

Å
1− m2

`

q2

ã2

×

×
[
|1 + VL|2TVL + |VR|2T|VR|2 + TV intR

+ 2|P |2(HV
S )2 sin2 θV

+ TP int + |TL|2T|TL|2 + TT intL

]
B(J/ψ → µ−Lµ

+
R),

(3)

gdje amplitude Ti ovise o strukturnim funkcijama i kinematičkim varijablama.

Istražen je učinak kojeg ima uvodenje nekih operatora izvan SM-a na opser-

vale. Nadeno je da, iako neki operatori mogu imati relativno snažan utjecaj

na neke opservable, nijedan ne može u isto vrijeme objasniti postojeće tenzije

primjećene u B → D(∗)`ν̄` procesu, što je istina i za omjer koji mjeri lepton-
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Sažetak

sku univerzalnost okusa, za koji je dobiveno da u standardnom modelu ima

vrijednosti

Rηc|SM ≡ Γ(Bc→ηcτ ν̄τ )
Γ(Bc→ηcµν̄µ)

= 0.32± 0.02 , (4)

RJ/ψ|SM ≡ Γ(Bc→J/ψτν̄τ )
Γ(Bc→J/ψµν̄µ)

= 0.24± 0.02. (5)

5. Poglavlje 5 temelji se na istraživanju objavljenom u ref. [2]. Predložen je

način mjerenja |Vub| matričnog elementa u Bc → D(∗)`ν̄` raspadu. Strukturne

funkcije unutar Standardnog modela izračunate su koristeći 3ptQCDSR, i ko-

risteći ih testirane su relacije koje dolaze od spinskih simetrija teških kvarkova.

Kondenzatski nelokalni doprinosi strukturnim funkcijama su ispitani, i nadeno

je da nemaju značajnog utjecaja na numeričke vrijednosti. Predikcije nekoliko

kutnih opservabli prezentirane su unutar Standardnog modela, a za omjer koji

mjeri leptonsku univerzalnost okusa dobiveno je

Rc(D
0) ≡ B(Bc → D0τ ν̄τ )

B(Bc → D0µν̄µ)
= 0.64± 0.05,

Rc(D
∗) ≡ B(Bc → D∗τ ν̄τ )

B(Bc → D∗µν̄µ)
= 0.55± 0.05,

(6)

6. Poglavlje 6 temelji se na istraživanju objavljenom u ref. [3]. LCSR B̄ → π

strukturne funkcije ažurirane su u bayesianskoj analizi koristeći najrecentnije

hadronske parametre. Nakon toga one su kombinirane sa postojećim dostup-

nim podatcima sa rešetke u svrhu povećanja preciznosti u cijeloj fizikalnoj

kinematskoj domeni. Precizno odredivanje |Vub| matričnog elementa pred-

stavljeno je u prilagodbi koja koristi posljednje usrednjenje eksperimentalnih

podataka B̄ → π`ν̄` raspada, te je dobiveno

|Vub|B̄→πLCSR+LQCD = (3.77± 0.15) · 10−3. (7)

Time je tenzija sa posljednjim inkulzivnim odredivanjem |Vub| ublažena. Neke
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kutne opservable koje mjere leptonsku univerzalnost okusa su takoder izračunate

Rπ =
Γ(B̄ → πτ−ν̄τ )

Γ(B̄ → π`−ν̄`)
= 0.699+0.022

−0.020. (8)

Ključne riječi: standardni model, slabi raspadi, Cabibbo-Kobayashi-Maskawa

matrica, fizika hadrona, fizika kvarkova, strukturne funkcije, pravila zbroja
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Introduction

The Standard Model faces an increasing number of challenges in the quark flavor

sector. A sophisticated interplay between electroweak and strong interactions takes

place in decays of heavy mesons - the knowledge of hadronic parameters plays a

crucial role in accurately predicting their weak decay rates. Due to this entan-

glement, the inherent non-perturbativity of the hadronic matrix elements poses a

serious obstacle in testing the Standard Model’s flavour sector. Distinguishing be-

tween potential effects of new physics and the Standard Model is impossible without

a firm grasp on the hadronic uncertainties.

This is especially important in light of the tension present in the b→ u semilep-

tonic decays, where the exclusive and inclusive determinations of |Vub| seem to give

mutually exclusive values with statistical significance of ≈ 3σ. This surely calls for

a detailed analysis of hadronic contributions relevant for the transition, being the

largest source of theoretical uncertainty.

The same need for a precise determination of hadronic observables reflects on

an another tension persisting for years now. The Standard Model lepton flavour

universality implies that the widths of mesonic decays to leptons of different flavour

should be the same up to a phase space factor. However, in B → D(∗)`ν̄`, Bc →
J/ψ`ν̄` and the rare B → K`+`− decays this seems not to be the case at ≈ 2− 3σ

statistical significance, depending on the process. Again, in order to conclude if

this tension can be alleviated in the Standard Model, more precise calculations of

hadronic matrix elements are of crucial importance.

For these reasons, in this thesis several b-flavored meson exclusive decay channels

are investigated in hopes of further scrutinizing the Standard Model phenomenology.

The chapters contained within are structured as the following:
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Introduction

1. In Chapter 1 a recap of elementary Standard Model properties relevant for

the weak decays of mesons is presented. Electroweak and strong sectors are

briefly introduced, with a motivation for the studies presented further in the

thesis. Some shortages of the Standard Model are listed, together with present

tensions in the quark flavour sector.

2. Chapter 2 contains an overview of methods most commonly applied to cal-

culations of non-perturbative hadronic quantities. Two separate sections are

further dedicated to methods applied to form factors computations in this the-

sis, namely the sum rules of quantum chromodynamics and the light-cone sum

rules.

3. Chapter 3 is dedicated to defining the basis of matrix elements relevant for

phenomenological decay studies of interest. Some details of the sum rule ap-

proach specific to the form factor calculations are also discussed.

4. Chapter 4 is based on research published in ref. [1]. The phenomenology

of semileptonic decay channels of Bc meson to charmonia is investigated.

Required form factors are calculated in a framework that combines light-

cone expansion of correlation functions with a gaussian wave function used

for J/ψ, inspired by non-relativistic quantum chromodynamics. Angular ob-

servables are proposed as a test of lepton flavour universality, where for the

first time expressions are presented for four-fold decay distributions of the

Bc → J/ψ(→ µ+µ−)`ν̄` process. The effect some new physics operators have

on these observables is computed.

5. Chapter 5 is based on research published in ref. [2]. A proposal is made for

the measurement of |Vub| matrix element through the Bc → D(∗)`ν̄` decay.

The Standard Model form factors are calculated using three-point sum rules

of quantum chromodynamics, and the heavy quark spin symmetry relations

are probed using the results. A prediction of several angular observables is

presented inside the Standard Model.

6. Chapter 6 is based on research published in ref. [3]. Light-cone sum rule

2
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B̄ → π form factors are updated in a Bayesian analysis using the most recent

hadronic parameters. They are then combined with the available lattice data

in order to increase precision in the entire physical kinematical domain. A

precise extraction of the |Vub| matrix element is presented in a fit that uses

the most recent experimental average of the B̄ → π`ν̄` decay. This nullifies

the tension with the most recent inclusive determination of |Vub|. Some lepton

flavour universality angular observables are also computed.
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1. The Standard Model

The Standard Model (SM) is an experimentally very well tested [4] quantum field

theory (QFT) widely accepted as the best model of the elementary particle content

and its interactions in existence. The theory is based on a gauge symmetry group

product of three groups

SU(3)c × SU(2)L × U(1)Y , (1.1)

where SU(3)c corresponds to the gauge sector of quantum chromodynamics (QCD),

and SU(2)L × U(1)Y to the electroweak (EW) sector. Consequently, whole of the

particle content carries quantum numbers that testify to the transformations under

rotations in those groups. They are usually classified as in table 1.1. The left-

handed fields are organized in three generations of SU(2)L doublets both for quarks

Table 1.1: Standard Model field content classified according to the representations

of SU(3)c × SU(2)L × U(1)Y

Symbol Nomenclature Representation

Gauge fields

Bµ U(1)Y hypercharge boson (1, 1, 0)
Wµ SU(2)L bosons (1, 3, 0)
Gµ SU(3)c gluons (8, 1, 0)

Matter fields

QL left-handed quarks (3, 2, 1/3)
UR right-handed up-type quarks (3, 1, 4/3)
DR right-handed down-type quarks (3, 1, -2/3)
`L left-handed leptons (including neutrinos) (1, 2, -1)
`R right-handed leptons (1, 1, -2)

Higgs field

φ the Higgs boson (1, 2, 1)

4



The Standard Model

and leptons, while the right-handed ones are singlets

QL ∼

uL
dL

 ,
cL
sL

 ,
tL
bL

 , and LL ∼

νe
eL

 ,
νµ
µL

 ,
ντ
τL

 ,
u′R ∼ uR, cR, tR, d′R ∼ dR, sR, bR, and `R ∼ eR, µR, τR.

(1.2)

Each fermion generation has, when formulated like this, two different flavors asso-

ciated with it. In section 1.2 it will become obvious that one important aspect of

the EW Lagrangian is the appearance of a flavor-changing mechanism. However,

it turns out that quarks from the upper components of the SU(2)L doublets can

only exchange flavor with the ones from the lower components. For this reason, the

left-handed doublets can be symbolically organized such that the upper and lower

components are incorporated into 3-component vectors in flavor space for quarks

and leptons separately, so that

QL =

u′L
d′L

 with u′L =


uL

cL

tL

 , and d′L =


dL

sL

bL

 ,

LL =

νL
`L

 with νL =


νe

νµ

ντ

 , and `L =


eL

µL

τL

 ,
(1.3)

whereas the singlet right-handed states are combined in their own 3-component

flavor vectors. This simplifies unifying expressions, since flavor changing currents

will occur through a 3× 3 flavor mixing matrix (here denoted symbolically V ), and

then interact with vector potentials Wµ in the form

Wµ[ū′L]iγ
µVij[d

′
L]j + leptons + h.c. (1.4)

where the indices i and j concern flavor, and repeated indices (both Lorenz and

otherwise) will always imply summation unless explicitly stated otherwise. Quarks

and leptons are fermions, but spinor (as well as flavor) degrees of freedom will gen-
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erally be left implicit (or implied in matrix form). In gauge theories in general all

the elementary fields are massless by definition, but can acquire mass through the

breaking down of internal symmetries. In the SM, this is achieved by the spon-

taneous symmetry breaking (SSB) of the EW SU(2)L × U(1)Y symmetry to the

U(1)EM of electromagnetism by coupling the Higgs field to the fermions, and ex-

panding it around the minimum of its potential. This minimum is actually the

point in which the symmetry of the Lagrangian gets broken, more on which will be

said in section 1.2.

Quarks and gluons are peculiar among elementary particles due to the property

of color confinement. That is, they are never observed as free particles in nature,

but are rather confined in QCD bound states, hadrons. This makes phenomenology

involving QCD extremely challenging, due to the breakdown of traditional pertur-

bative aspects of QFT. In the Large Hadron Collider (LHC) era, this challenge is

an unavoidable one. Understanding proton collisions, and resulting particle produc-

tion and decays is inherently impossible without a firm and detailed grasp of QCD

phenomenology. A nonperturbativity inherent to it is explored more in section 1.1

and methods encountered in treating it in section 2.

The SM is in principle completely determined by 18 parameters (aside from

several ones which either haven’t been implemented in the SM as of yet, such as

neutrino masses and mixing parameters, or are disputed to have measurable effect,

or even exist, such as the QCD charge conjugation parity (CP) violating parame-

ter) - 10 particle masses, 3 coupling constants, 4 weak mixing parameters and the

Higgs vacuum expectation values. The entirety of particle phenomenology (with

the exception of gravity, and its impact) should in principle be derivable using QFT

tools from the SM. However, there is an immense ongoing effort in understanding

all the peculiar idiosyncrasies concerning SM dynamics, its implications, and the

phenomenology in general together with the theoretical tools used to extract it.

In summary, priori to the EW SSB the entire SM Lagrangian can be decomposed

as

LSM = LQCD + LEW, (1.5)

and it contains all the particles and interactions from Tab. (1.1). QCD is historically
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referred to as the strong sector, because the magnitude of its coupling constant is

several orders of magnitude that of the EW one at energies of order Q2 ∼ 1 − 100

GeV2. Any shortcomings and/or new physics contributions, due to the extreme

scrutiny under which the SM has been placed in the last several decades, will be

reflected on the level of the Lagrangian.

1.1. The strong sector

After the realization that the properties of hadronic particles discovered in the bub-

ble and spark chambers of the 1950’s cannot be classified only according only to

their charge and spin, Kazuhiko Nishijima [5] and Murray Gell-Mann [6] indepen-

dently postulated that an additional degree of freedom must exist, unknown at the

time. The quantum number assigned to these ”strange” particles was aptly named

strangeness, and in 1961 a particle spectrum was structured and classified by Gell-

Mann, who named it the eightfold way [7], according to the 8 mesons arising from

the 8 generators of the SU(3) symmetry group, called the flavor symmetry group af-

ter it was postulated that the hadronic particles are in fact composite, and that they

consisted of three different quark flavors (up, down and strange) bound in mesons

(integer spin) or baryons (half-integer spin). The model seemed problematic, since

one of the features of the eightfold way was an appearance of a S = 3 baryon Ω−, a

particle consisted of 3 strange quarks, and the ∆++ baryon, consisted of 3 up quarks.

Quarks are fermionic particles, and are subject to the Pauli principle, which means

such a particle shouldn’t exist, unless there is an another degree of freedom yet un-

accounted for. This degree of freedom was suggested independently both in a paper

by Greenberg [8] and in one by Han and Nambu [9] to account for the discrepan-

cies, and the picture was completed by incorporating gluons as gauge bosons in a

field-theoretical sense [10], assigning the term color to the newly postulated degree

of freedom.

The underlying theory of hadrons was therefore formulated as what we know

as QCD today, the theory of interacting quarks and gluons. Quarks are massive,

but their masses are generated through the interaction with the Higgs boson, a

7
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feature generally associated with the EW part of the Lagrangian, not being explicitly

included into the QCD one, while gluons are massless. In the language of QFT, the

quark-gluon interaction properties are encoded in the SU(3)c-symmetric (c stands

for color) Lagrangian

LQCD = −1

4
Ga
µνG

aµν +
6∑
i=1

q̄i(i /D)qi, (1.6)

where explicit coordinate dependence has been suppressed, as have the color and

spinor indices, the sum goes over all quark flavors, qi are the quark fields of i-th

flavor, Dµ is the covariant derivative

Dµ = ∂µ − igst
aGa

µ, (1.7)

with ta being the 8 Gell-Mann matrices [11] generating the SU(3)C gauge symmetry

group, and Ga
µν is the non-abelian gluonic field strength tensor

Ga
µν = ∂µG

a
ν − ∂νGa

µ + gsf
abcGb

µG
c
ν , (1.8)

with the appropriate group structure constants fabc

[
λa

2
,
λb

2
] = ifabc

λc

2
. (1.9)

Obviously, unlike photons, gluons interact with themselves on the elementary level.

Interaction diagrams involving gluon loops enter the renormalization procedure and

one finds that quarks are asymptotically free [12,13], that is

lim
µ2→+∞

αs(µ
2) = 0, (1.10)

where αs = gs/4π by examining the sign of the QCD beta function describing the

running of the coupling constant

β(αs(µ
2)) ≡ µ2∂α

2
s(µ

2)

∂µ2
= −αs(µ2)[b0 + b1αs(µ

2) + b2α
2
s(µ

2) + . . . ] < 0. (1.11)
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Running the coupling constant towards lower energies, a natural scale emerges, as

is made obvious in the leading order (LO) expression for the coupling constant in

the modified minimal subtraction (MS) renormalization scheme

αs(µ
2) =

αs(µ
2
0)

1 + b0αs(µ2
0) ln µ2

µ2
0

≡ 1

b0 ln µ2

Λ2
QCD

with b0 =
11CA − 2Nf

12π
, (1.12)

where CA = Nc = 3 is the color factor, and Nf takes into account number of quark

flavors involved on the scale in question. In the MS renormalizaton scheme the loop

integral divergences are regularized dimensionally by substituting the 4-momentum

integrated over by a D-dimensional one, which scales the integral measure according

to substitution

pµ → pµD ⇒ d4p→ µ4−DdDp, (1.13)

and the renormalization scale is shifed as compared to the minimal substracton

(MS) scheme by a multiplicative Euler–Mascheroni constant γE, µ2 → eγE

4π
µ2. The

QCD Landau pole (i.e. the scale at which the strong constant from eq. (1.11)

diverges) appears at a scale dependent on the renormalization scheme and the order

of the expansion, but is roughly at the order of ∼ 200 − 300 MeV2 [14]. As a

consequence, at energies high enough, the standard perturbative approach describes

the particle phenomena sufficiently accurately, but at the same time a more troubling

result occurs - at low energies the coupling constant, as calculated perturbatively,

starts to rise uncontrollably, and already at the scale of the proton mass it becomes

comparable to unity

αs(µ
2 . m2

p) ∼ 1, (1.14)

essentially deeming perturbative approach obsolete on the scales comparable to the

mass of the proton.

Even though QCD can be treated perturbatively at ultraviolet (UV) energy

scales, at low energies the confinement phenomena dominates - quarks cannot be

isolated from the bound states they appear in, but this effect does not arise out of the

low-energy behaviour of the perturbative coupling constant running. Perturbative

calculations can not be trusted at µ2 ∼ Λ2
QCD by definition, since there the theory
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Figure 1.1: A depiction of the effect of the linear part of the confining QCD

potential

stops being perturbative. The existence of confinement phenomena is an empirical

conclusion supported also by lattice [15] - no free quark has ever been detected in an

experiment. Typically, confinement is explained in terms of the classical potential

that would emulate the QCD interaction between quarks. Today, e.g. it is known

that quark-antiquark interaction in heavy quarkonium states [16] can be very well

described by the Cornell potential

V (r) = V0 −
A(αs)

r
+ σr, (1.15)

which, aside from the short-distance 1/r behaviour, also contains a linear term

that dominates at comparatively larger values of r (usually V0 is set at the scale

at which the linear term starts dominating, that is the radius of the bound state

in question). This means that the amount of energy one needs to put into taking

the quark-antiquark pair apart grows with distance, and at a certain threshold a

quark-antiquark pair gets produced, as in figure 1.1, resulting in confinement, or

the inability to separate quarks from bound states. The appearance of light quark-

antiquark pairs can be incorporated into the QCD potential by smearing the linear

part with a gaussian or an exponential test function. A further hint of the QCD

confinement was found in the scaling of the hadron angular momentum J with its

mass

J ∝M2, (1.16)

a picture emerging from considering bound states as quark-antiquark pairs tied by

a gluon flux tube, or considering hadrons as Regge particles, poles moving along a

so called Regge trajectory [17, 18], a finding later suppported by the anti-de Sitter

(AdS)/QCD duality approach [19].
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As a specific example of the interplay of the perturbative and nonperturbative

physics, one might consider a decay of a heavy B̄d meson to a lepton-neutrino pair

and a charged meson P+ (e.g. π+, ρ+, D+...), characterized by the amplitude

iM =
〈
P+`−ν̄`

∣∣ Ĥeff

∣∣B̄d

〉
∝ Lµ

〈
P+
∣∣ Ĵµ ∣∣B̄d

〉
, (1.17)

where the effective Hamiltonian Heff contains the relevant operator (or operators,

generally) composed of free fields, Lµ is the leptonic tensor (easily calculated us-

ing standard perturbation techniques) factorised from the hadronic matrix element,

which squeezes the quark transition current operator. This type of hadron-to-hadron

transition amplitude is usually called a form factor. The decay is mediated by the

charged W± current, which changes the quark flavor from b → q (with q = u, c),

and then produces the leptonic pair characterized by an invariant mass q2. When

one tries to perturbatively calculate the form factor, a problem arises. To illustrate

it, one might focus on a pseudoscalar hadronic final state of momentum k, and write

its two-quark Fock component in terms of light-cone coordinates (a basis in which

the nontrivial QCD vacuum simplifies drastically [20], i.e. it is equal to the free

vacuum, up to the gauge zero modes problem), which looks like [21]

∣∣P+(k)
〉

=

∫ 1

0

du√
u(1− u)

d2l⊥
16π3

1√
2Nc

ψ(u,~l⊥)×

×
[
a†
q↑

(uk+,~l⊥)b†
q̄↓

((1− u)k+,−~l⊥)− a†
q↓

(uk+,~l⊥)b†
q̄↑

((1− u)k+,−~l⊥)
]
|0〉 ,

(1.18)

depending on the state in question, where the light-cone coordinates are

k± =
k0 ± k3

√
2

, where k = (k0, k1, k2, k3)→ (k+, k−, k
1, k2). (1.19)

One quark carries uk+ portion of longitudinal momentum and the other (1− u)k+.

Transverse momentum is given by ~l⊥, while the |~l⊥|2 contributions have been ne-

glected due to an assumption that kinematically u ≈ 1 − u (for pions at LO this

assumpion is valid). The wave function ψ(u, l⊥) is connected with the so called

light-cone wavefunction, on which a more detailed discussion follows in section 2.2.
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When considering higher Fock states, one must also consider an appropriate number

of wave functions. After Wick contracting the creation operators from the final state

ket with the interaction current one obtains, schematically

〈
P+
∣∣ Ĵµ ∣∣B̄d

〉
∝
[
(Perturbative)⊗ (Nonperturbative)

]µ
, (1.20)

where a convolution is implied. The perturbative part is easily loop-expanded, but

the nonperturbative one is a consequence of the fundamental inability to account for

confined state interactions, and is inscribed in the wavefunction. The specific outlook

of the convolution in question depends on the factorization assumptions made, and

the relevant scales in question, but the point remains - one must somehow account

for the deeply nonperturbative contributions to the form factors.
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1.2. The electroweak sector

A crucial feature of the SM is the EW spontaneous symmetry breaking (SSB). Today

the unification of QED and weak field theories at v ∼ (GF

√
2)−1/2 ≈ 246 GeV is

inscribed in the SM, and below the theory’s SU(2)L×U(1)Y symmetry spontanously

breaks through the Higgs-Kibble mechanism [22–24], and the remaining symmetry

(that keeps the photon massless) is the one of the electromagnetic U(1)EM , i.e.

SU(2)L × U(1)Y
SSB→ U(1)EM . (1.21)

The EW SSB generates both the W± and Z0 bosons’ masses in the process, as well

as the masses of all the other elementary particles in the SM, which is fortunate

considering no explicit mass terms are allowed in gauge theories in general, since

they render the theory unrenormalizable. To depict this in short, the gauge part of

a SU(2)L × U(1)Y -symmetric theory with 4 massless gauge bosons, W 1,2,3
µ and Bµ

is given by

Lgauge = −1

4
W a
µνW

aµν − 1

4
BµνB

µν , (1.22)

where

W a
µν = ∂µW

a
ν − ∂νW a

µ + gWf
abcW b

µW
c
ν and Bµν = ∂µBν − ∂νBµ, (1.23)

with the SU(2)L structure constants defined through the commutators of 3 Pauli

matrices

[
σa

2
,
σb

2
] = ifabc

σc

2
. (1.24)

To break the symmetry, a scalar term including an SU(2)L complex Higgs doublet

is added to the Lagrangian

Lh = (Dµφ)†Dµφ− µ2φ†φ− λ(φ†φ)2, with φ(x) =

φ(+)(x)

φ(0)(x)

 , (1.25)
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where the SU(2)L × U(1)Y covariant derivative is now

Dµφ = (∂µ − igW
1

2
σaW a

µ − ig′
Y

2
Bµ)φ, (1.26)

and Y is called hypercharge, and is conserved under U(1)Y rotations. If the Higgs

parameters are chosen such that µ2 < 0 and λ > 0, the Lagrangian in the ground

states of the theory’s potential does not share the symmetry that the Lagrangian

with all other field configurations exhibits. The expectation value of the Higgs field

is in this convention parametrized as

〈0|φ(0)|0〉 =

…
−µ2

2λ
=

v√
2
. (1.27)

The most important consequence of the SSB is made obvious if the scalar field is

reparametrized as a real fied with four degrees of freedom expanded around the

vaccum expectation, i.e.

φ(x)→ φ′(x) = eiσ
a

2
θa(x) 1√

2

 0

v +H(x)

 , (1.28)

where one can now choose (due to gauge invariance), the unitary gauge θa(x) = 0,

and notice that the first term in the Lagrangian from eq. (1.25) now generates terms

quadratic in gauge fields proportional to ∼ v2. This effectively generates the masses

of the physical W± and Z0 bosons, while keeping the SM renormalizable, and they

become

mW± =
1

2
vgW , and mZ0 =

1

2
v
»
g2
W + g′2, (1.29)

while the boson states after the SSB are written in the basis of gauge fields asAµ
Z0
µ

 =
1√

g2
W + g′2

 g′ gW

gW −g′

W 3
µ

Bµ

 , and W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
, (1.30)

including the photon, here designated as Aµ, which remains massless since U(1)EM

is the residual symmetry after the SSB. The unphysical Goldstone bosons, which

appear when a non-symmetrical Higgs field configuration is considered (as above),
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have been ”gauged away” effectively by choosing the unitary gauge, and one can

compare the number of degrees of freedom before SSB and after it

3 · 2[W 1
µ ,W

2
µ ,W

3
µ ] + 2[Bµ] + 4[φ] = 3 · 3[W+

µ ,W
−
µ ,Z0

µ] + 2[Aµ] + 1[H], (1.31)

where one has to keep in mind that the massless vector bosons have 2 degrees of

freedom, while the massive ones have 3. The Goldsone bosons can be explicitly

included in calculations (i.e. by not setting them to zero), but the physical result

would stay the same, albeit including more diagrams. Almost generally [25], one can

count the number of massive bosons that aquire mass by ”eating” the Goldstone

bosons by looking at the dimension of the coset G/H, where the generic initial

symmetry group G is broken to a generic subgroup H.

The fermionic masses are included through the Yukawa couplings with the Higgs

doublet, in a gauge invariant way

LY = −
[
(Q̄LYu)uR

]
φ−

[
(Q̄LYd)dR

]
φ̃−

[
(¯̀
LYe)eR

]
φ̃+ h.c., (1.32)

where a helpful notation φ̃ = iσ2φ∗ has been introduced. The coupling matrices

Yu, Yd and Yl in effect generate the fermion masses in the SM, which is made obvious

in the unitary gauge after the SSB

−
[
(Q̄LYu)u

′
R

]
φ

SSB→ − v√
2

(ū′LYuu
′
R),

−
[
(Q̄LYd)d

′
R

]
φ̃

SSB→ − v√
2

(d̄′LYdd
′
R),

−
[
(L̄LY`)`R

]
φ̃

SSB→ − v√
2

(¯̀
LY``R),

(1.33)

where one has to keep in mind that these 3×3 matrices in flavor space are in general

not diagonal. They can be diagonalized by simultaneously transforming the fermion

fields and the Yukawa matrices

f(L,R) → Vf(L,R)f(L,R) ≡ f̃(L,R), and Yf → VfLYfV
†
fR ≡

√
2

v
Mf , (1.34)

where f = (u, d, `) are the SM fields in weak-eigenstate basis, f̃ = (ũ, d̃, ˜̀) are the
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SM fields in mass-eigenstate basis, and Mf is now a diagonal mass matrix containing

the elementary particle mass terms. The newly introduced vectors Vf(L,R) must be

determined by an experiment in the quark sector, whereas they are unit vectors in

the lepton sector since the right-handed neutrinos do not exist in the SM. In another

words, neutrinos remain massless in the SM. So for quarks one can define a complex

unitary matrix

VuLV
†
dL ≡ VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 , (1.35)

which allows casting weak-eigenstate basis interaction to fermion mass-eigenstate ba-

sis. The matrix is called the Cabbibo-Kobayashi-Maskawa (CKM) matrix [26, 27],

and its elements are not independent, due to unitarity constraints, and can in fact be

completely determined by only 4 parameters. While a few different parametrizations

are popular, the most commonly used one is the so called Wolfenstein parametriza-

tion [28], defined by the parameters

λ =
|Vus|»

|Vud|2 + |Vus|2
, A = |Vcb|

»
|Vud|2 + |Vus|2

|Vus|2
, and ρ̄+ iη̄ = −VudV

∗
ub

VcdV
∗
cb

.

(1.36)

The unitarity relations imply a graphical representation in the form of a triangle

in the complex plane. The parameters determining the triangle are determined by

several collaborations, of which the result depicted here is by the CKMfitter1 group

in the form of a global fit, and is shown in figure 1.2, together with various exper-

imental constraints that enter the fit. One might notice an impressive agreement

on the physical (ρ̄, η̄) point measurements from a wide variety of different experi-

ments (nuclear 0+ → 0+ transitions, leptonic, semileptonic and hadronic decays of

mesons etc.), pointing to incredible strength of SM prediction power. Any deviation

from the unitarity of the CKM matrix would imply the existence of some unknown

particles and interactions.

The CKM matrix elements enter the interaction part of the Lagrangian as cou-

plings of quarks of differents generations through an interaction with the charged

1http://ckmfitter.in2p3.fr/
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W±bosons,whichafterSSBinunitarygaugelookslike

Lf⊃−
gW√
2
¯̃uLγ

µW+µVCKMd̃L +h.c., (1.37)

anditisnowobvious,sinceV∗CKM=VCKM,thatcharge-parity(CP)violationisone

oftheconsequencesofthisSMformulation.Infact,theonlywaytoviolateCPin

theSMisthroughtheelectroweaksector,asidefromahypotethical(and,froma

gauge-symmetryperspective,allowed)QCDantisymmetrictermproportionaltoa

near-zero(orpossibly,zero)parameterθQCD 0[29]hypothesizedtocontributeto

CPviolationthroughtheLagrangian

LθQCD=−nfg
2
s

θQCD
32π2

GµνG̃
µν. (1.38)

Tobemorespecific,CPviolationcanonlyoccurthroughtheparameterη=0,

whichcanbeincorporatedintheVCKMthroughanintroductionofacomplexphase

factorδ13,as

s12=λ,

s23=Aλ
2,

s13e
iδ13=Aλ3(ρ−iη).

(1.39)

AmoreconvenientwaytoparametrizetheCPviolationintheSMisthroughthe
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so called Jarlskog invariant [30]

J = Im(VusVcbV
∗
ubV

∗
cs) = (3.18± 0.15)× 10−5, (1.40)

which vanishes if and only if CP is exactly conserved in the SM. Although measured

to be very small, CP violation has been confirmed indirectly [31, 32], and directly,

in K [33], D [34] and B [35] meson decays. Aside from the charged current that

changes quark flavors from the up-type to the down-type and vice versa, a neutral

quark current is generated mediated by the Z0 boson

Lf ⊃ −
»
g2
W + g′2

(
cuL ¯̃uLγ

µZ0
µũL + cuR ¯̃uRγ

µZ0
µũR + (u→ d)

)
, (1.41)

through which the flavor changes cannot occur in the SM at tree level. This is what

is known as the non-existence of flavour-changing neutral currents (FCNCs) in the

SM. However, they can occur as suppressed higher-order quantum corrections, e.g.

through the so-called electroweak penguin diagrams, which helped to predict the

large t quark mass through the sensitivity of the ε′/ε parameter to it [36], or the

box diagrams, which involve W± in the loop exchange, and relate to the mixing of

meson states.

An important comment is in order. When measuring hadronic and semileptonic

decay rates involving flavor-changing charged currents, such as the one in eq. (1.17),

the SM tests inevitably depend both on the form factors and the CKM matrix

elements relevant for the quark transition in question, since

dΓ(B̄d → π+`−ν̄`)

dq2
∝ |Vub|2

∣∣f+(q2)
∣∣2 +O

Å
m2
`

q2

∣∣f0(q2)
∣∣2ã , (1.42)

where with f+(q2) a common notation for the pseudoscalar→ pseudoscalar mesonic

transition form factors has been introduced, and will be elaborated upon in section 3.

In mature stages of the LHC precision era, this means that every uncertainty associ-

ated with CKM matrix elements that were extracted from these types of decays has

inscribed in itself the uncertainties stemming from the inherently nonperturbative

aspects of QCD, since in experiments the differential or full decay rate is measured.
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Precision determination of decay-specific form factors was one of the motivations

for the topic of this thesis, as will be further elaborated in section 2, where methods

of determining nonperturbative QCD elements are listed and compared.
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1.3. Some shortcomings of the SM

Despite an amazing amount of success the SM has enjoyed in the LHC era, there

are several shortcomings which will need to be ameliorated in the years to come.

The most obviously glaring one is the absence of inscription of gravity into the

theory. Gravity is considered to be the fourth elementary force (along the elec-

tromagnetic, weak and strong forces) in the universe, but is phenomenologically

experienced only on a macroscopical, classical level. The language of gravity is to-

day widely considered to be that of Einstein’s general theory of relativity, a classical

theory plagued by the divergence of solutions around the centre of mass of a black

hole, i.e. a very densely distributed mass. At this scale, it is expected that the

spacetime quantum fluctuations play an important role. As the source of gravita-

tion is the stress-energy tensor (a rank-2 tensor), the graviton is expected to be a

spin-2 massless (due to gravity’s long range) particle. This in turn deems quantum

gravity perturbatively unrenormalizable. Two modern allevations are the string the-

ory approach, and the loop quantum gravity approach. The former is a unifying

one, in which gravity is treated on the same level as other forces, and has problems

with compactifications (one needs a lot of extra dimensions) and additional degrees

of freedom (such as supersymmetry), while the former treats gravity on its own.

Two additional problems somewhat connected to the one of gravity are the ones

of dark matter and dark energy. Decades of astrophysical observations have led

researchers to conclude that our universe might be inhabited by an as of yet undis-

covered type of matter. This is most obviously witnessed when measuring the ve-

locity of stars (or gas) in spiral galaxies at different distances from the galaxy’s

centre [37]. It becomes clear that, at given distance, the velocity of matter is of-

ten several times larger than the expectation involving ordinary matter. Similarly,

rotation velocities do not decrease with distance from the center [38], as would be

expected. Since the matter hypothesized to exist in the halos of galaxies, and ac-

count for this phenomenon, is electromagnetically neutral, and is only observed to

interact gravitationally, it is commonly called dark. Similarly, a constant energy

density source term, named dark energy, can be added to Einstein’s field equation
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that would drive the universe’s accelerating expansion. This energy density can also

be realized in a more dynamical way, e.g. through the so called quintessence models.

Today, majority of estimates agree that a total of ≈ 95% of matter-energy density

is comprised of these two dark modes, while ordinary matter constitues only ≈ 5%.

Concerning the EW sector, it is an experimentally confirmed fact that neutrinos

have masses, which is a necessary consequence of the detection of neutrino oscilla-

tions [39]. However, in the SM there are no right-handed neutrinos, i.e. the neutrinos

do not interact with the Higgs field through Yukawa couplings. Since the exact way

these masses are to be implemented in the SM has heavy implications for the fu-

ture experimental phenomenology, this is a bountiful area of research [40]. As an

example one might consider the seesaw models, in which the smallness of neutrino

masses is explained by the existence of heavier degrees of freedom that dynamically

determine the mass generation, or scotogenic models, which explore the possibility

of inducing the mass through higher-order loop corrections involving new physics.

The baryon asymmetry refers to the fact that, even though the CP violation in

the SM is very small, very little antimatter is detected in comparison to ordinary

matter [41]. In fact, as mentioned in the chapter above, the only way CP is violated

in the SM is through the complex phase inscribed in the CKM matrix, of which a

measure is the Jarlskog invariant, which is of order O(10−5), not nearly enough to

explain the currently observed baryon-antibaryon asymmetry in the universe. Often,

scenarios of new physics are invoked to explain the baryon-antibaryon asymmetry.
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1.4. Tensions in the flavor sector

Aside from the problems SM is facing on a very direct level, a significant number of

measurements of various observables in the flavor sector has stubbornly been defying

their SM predictions in the last decade. Among these, the most prominent are the

determinations of the |Vub| CKM matrix element, and a set of observables based on

ratios of decay widths of heavy hadrons which test the universality of EW lepton

coupling across flavours.

1.4.1. Inclusive and exclusive |Vub| determination

The unitarity triangle reflects a robust SM test. The left side of the unitarity triangle

in figure 1.2 is of length

Rb = (1− λ2

2
)
1

λ

|Vub|
|Vcb|

. (1.43)

This means that measuring the Wolfenstein parameter λ, and both CKM matrix

elements |Vub| and |Vcb| determines a ring (green color in figure 1.2) on which the side

of the triangle lies. At the moment, λ is measured to a sub-percent level, while |Vcb|
and |Vub| have an experimental uncertainty of ≈ 2% and ≈ 8% respectively [4], that

is, |Vub| is comparatively imprecise. Although the measurements seem compatible

with the triangle being unitary, a more scrutinized look at experimental data reveals

a somewhat troubling fact.

Determinations of a CKM matrix element can be classified as being either inclu-

sive or exclusive. In the case of |Vub|, these two terms are reserved for semileptonic

processes in which the initial state is always a B meson and the final state always

contains a lepton-neutrino pair (sometimes other b → u type decays of b-flavored

hadrons are also classified under exclusive decays), as shown in figure 1.3. However,

the exclusive channels only contain one final state meson (π, ρ, ω...), while the in-

clusive channel implies a summation over hadronic final states. To date, the most

precise exclusive channel for determining |Vub| is the decay B̄ → π`ν̄`. Surprisingly,

a direct comparison of the exclusive and inclusive results of the |Vub| determina-

tions yields a discrepancy with a statistical significance of ≈ 2.7σ [42], assuming no
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correlations between determinations and normally distributed results.

Theoretically, inclusive B̄ → Xu`ν̄` (where Xu denotes hadronic states involv-

ing a u quark) processes are explored using either factorization tools or Wilson’s

Operator Product Expansion (OPE), where often the Heavy-Quark Effective The-

ory (HQET) is used (for a brief introduction of both terms see section 2). In the

specific case of b → u transitions a problem emerges of large b → c background

contamination, requiring the employment of hadronic phase space cuts in order

to separate the two channels. Additionally, shape functions appear describing the

structure functions relevant for the decay, which are always modeled to an extent

using conservative constraints and fitted to reproduce e.g. the available B̄ → Xsγ

data. Multiple scales separating the kinematical regions additionally complicate the

issue. These are among the reasons theoretical uncertainties still dominate the |Vub|
value determined from the inclusive channel.

On the other hand, the largest source of uncertainty in the exclusive B̄ → π`ν̄`

decay are the weak transition form factors (see section 3). These have to be eval-

uated by use of one of the methods described in section 2. Additionally, from the

experimental side one has to always choose between pure and efficient modes of

detection, resulting in limited precision. In this way, the untagged decays are highly

efficient, but rather impure, whereas disentangling hadronically tagged decays turns

out to be very inefficient. Somewhere halfway is the semileptonically tagged method,

resulting in mediocre purity and efficiency.

The tension between the exclusively and inclusively determined |Vub| is depicted

ν`

u

B

W+

`

}Xu
Vub

u

ν`

ub

W+ `

B π
Vub

Figure 1.3: Feynman diagrams describing inclusive (left) and exclusive (right)

channels of |Vub| determination
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in figure 1.4, where the values quoted by the Particle Data Group (PDG) collab-

oration [4] is shown by the year of the publication. If the tension persists with

increasing precision of the calculation of hadronic contributions, new physics effects

would have to be introduced to alleviate it. This puzzle is a showcase of the need to

precisely determine hadronic matrix elements inside the SM in order to be able to

say something about the more fundamental parameters. The precise |Vub| determi-

nation hinges crucially on the ability to determine the QCD matrix elements with

as little model dependency as possible.

2008 2010 2012 2014 2016 2018 2020

3.0

3.5

4.0

4.5

Figure 1.4: PDG quoted values of inclusive versus exclusive |Vub| from different

publication years. The latest result can be found in [4]

1.4.2. Lepton flavour universality

In the SM, the EW interaction is described by a single coupling between leptons of

all flavours and the W± boson, as

Lf ⊃ −
gW

2
√

2

∑
f

ν̄lfγ
µ(1− γ5)lfW

+
µ + h.c., (1.44)

and equivallently, to the neutral Z0 boson, as

Lf ⊃
gW

2 cos θW

∑
f

l̄f
[
T3fγ

µ(1− γ5)−Qf sin2 θWγ
µ
]
lfZµ. (1.45)
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This property is called Lepton Flavour Universality (LFU), and as a SM test one

might imagine a universe in which LFU does not hold, and consider the conse-

quences. As already mentioned, measuring the semileptonic decay widths of mesons

directly would be inadequate due to the lack of precision in determination of both

CKM and hadronic matrix elements. However, glancing at eq. (1.42) inspires ob-

servables defined as ratios

RCC
if =

Γ(Hi →Mf`Aν̄`A)

Γ(Hi →Mf`B ν̄`B)
, and RNC

if =
Γ(Hi →Mf`A ¯̀

A)

Γ(Hi →Mf`B ¯̀
B)
, (1.46)

testing the lepton flavour universality between generations A and B for the charged

current and neutral current decays respectively. Since flavour can only change

through charged currents at tree level, the electromagnetically neutral transitions

are loop suppressed. These so called LFU ratios are especially sensitive to LFU

violation (hence the name), since the CKM matrix element dependence cancels out

entirely, while the form factor dependence cancels only partially, since the decay

width is actually an integral of functions involving form factors over the leptonic

pair invariant mass squared. Numerically, the uncertainties turn out to drastically

decrease due to this partial cancellation, which is very convenient for testing the

SM.

Interestingly, a series of channels has shown persistent tension between the mea-

surements of LFU ratios and their SM values, as is the case for instance for the

ratio

RD(∗) =
Γ(B̄ → D(∗)τ ν̄τ )

Γ(B̄ → D(∗)µν̄µ)
. (1.47)

This tree level decay occurs through the W± boson, and its difference from unity is

almost entirely an effect of the difference in lepton masses. Generally, the corrections

to unity are of order ∼ ∆m2
`

(mHi−mMf )2 . For the aforementioned case the current world

averages [42–52] are

RSM
D = 0.299± 0.003 < Rexp

D = 0.340± 0.030,

RSM
D∗ = 0.258± 0.005 < Rexp

D∗ = 0.295± 0.014,
(1.48)
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with a combined tension of ≈ 3σ, as shown in figure 1.5, taken from the HFLAV col-

laboration2. Again, in order to make a conclusive statement, hadronic uncertainties

need to be put under better control.

Figure 1.5: The measurements of RD − RD∗ as of spring 2019, taken from the

HFLAV collaboration

Another such ratio with a measurement deviating about ≈ 2σ from its SM value

was found in a semileptonic decays of Bc meson [53–55], where the quark transition

also occurs at tree level, defined as

RSM
J/ψ =

Γ(B−c → J/ψτ ν̄τ )

Γ(B−c → J/ψµν̄µ)
≈ 0.25± 0.02 < Rexp

J/ψ = 0.71± 0.025. (1.49)

The experimental measurement uncertainties are still quite large, but what is sur-

prising is the fact that the central value is almost three times higher than the SM

expectation.

Perhaps most strikingly, recently an old tension was reaffirmed and strengthened

in the loop suppressed process ratios

RK(∗) =
Γ(B → K(∗)µ+µ−)[1.1 GeV2,6.0 GeV2]

Γ(B → K(∗)e+e−)[1.1 GeV2,6.0 GeV2]

, (1.50)

2https://hflav-eos.web.cern.ch/hflav-eos/semi/spring19/main.shtml
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where the integration of the differential decay width in both numerator and denom-

inator has been performed in the range where the square of the invariant mass of

the leptonic pair is 1.1 GeV2 < q2 < 6.0 GeV2. Measurements are presented in fig-

ure 1.6. Now tension exceeds 3σ for the RK , whereas the tension is smaller for RK∗ ,

as [56–59]

RSM
K = 1± 0.01 > Rexp

K = 0.846+0.044
−0.041,

RSM
K∗ = 1± 0.01 > Rexp

K∗ = 0.69+0.12
−0.09.

(1.51)

Figure 1.6: The measurements of RK presented in ref. [58], with a ≈ 3σ deviation

from unity. In the plot older BaBar [60] and Belle [61] measurements are also

depicted.

Taken at face value, these measurements at the very least seem to imply hadronic

uncertainties are still not under competitive control. A more radical resolution would

lead to hints towards new physics prospects.
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non-perturbative phenomena

Since hadronic physics exhibits many fundamentally nonperturbative features, one

has to resort to approaches alternative to standard perturbation techniques in order

to extract the particular phenomenology including them. The mantra in contempo-

rary particle phenomenology is to avoid introducing any model-dependence as much

as possible, making two options rather obvious: effective field theories and numerical

lattice calculations, both however still plagued by some idiosyncrasies of their own.

On the front of the effective field theories containing heavy quarks, it was realised

early on in the 90’s independently by Georgi [62] and Eichten & Hill [63] that a

proper effective field theory can be formulated based on the separation of scales of

the heavy quark mass mQ and the scale of QCD dynamics of the bound system

ΛQCD,
ΛQCD

mQ

� 1. (2.1)

Here, after employing the ”velocity superselection” rule, the heavy quark is treated

as static, and the Lagrangian of the theory actually contains a heavy degree of

freedom for each velocity. This is in a way redundant after requiring that the

kinematical transformation of the low-energy (heavy quark) field of velocity vµ

Hw(x) = ei(q·x)Hv(x), with wµ = vµ +
qµ

mQ

, and
q2

m2
Q

� 1 (2.2)

leaves the effective Lagrangian invariant, a property named reparametrisation in-

variance [64] (which must hold to all orders in perturbation theory). The field in

question is therefore the reparameterisation covariant spinor field, whereas the or-
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dinary spinor fields must also be properly boosted. Reparametrization invariance

is usually interpreted as a remnant of the obvious loss of Lorentz symmetry in the

nonrelativistic limit - an effective field theory is expected to respect all the relevant

symmetries of the original field theory, in this case QCD. The theory was aptly

named the Heavy Quark Effective Theory (HQET), and has subsequently shown

incredible success in the description of bound systems involving both heavy and

light degrees of freedom. This of course implies that the expansion is at least am-

biguous when considering for example the Bc mesons, since here the bound state

contains only heavy degrees of freedom (b- and c-flavored quarks), and the heavy

flavor symmetry is broken by the kinetic terms proportional to 1/mQ, which regu-

late the infrared (IR) divergences involving two heavy quarks of the same velocity.

Fortunately, the heavy quark spin symmetry (HQSS), i.e. the invariance of the ef-

fective Lagrangian under the spin rotations of heavy quarks, is unbroken here, on

which a few words are to be spent in the later parts of the thesis.

The appropriate effective field theory required to deal with heavy-heavy bound

systems is actually the Nonrelativistic QCD (NRQCD) [65, 66], originally designed

to be treated on the lattice. The NRQCD Lagrangian is in principe the same as

the one for HQET (aside from the four-fermion operators which only show up in

NRQCD), but exhibits a different power counting scheme, that’s to say it results in

different interaction, and different physics. In NRQCD there are multiple relevant

scales, usually expressed in terms of the average quark velocity. Velocity becomes the

expansion parameter, as opposed to ΛQCD/mQ in the case of HQET. In the literature,

the new kinematic domains are respectively named hard, soft and ultrasoft, where

the adjective refers to the ”hardness” of the gluons exchanged between the heavy

quarks. Since the theory is nonrelativistic, the time and space components of the

gluon propagator are separated. Later, extensions of NRQCD were also developed,

named potential NRQCD (pNRQCD) and velocity NRQCD (vNRQCD).

An effort has been made to unify the HQET with the Chiral Perturbation Theory

[11, 67–69], characterized by an expansion in the expansion parameter involving a
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characteristic low momentum p

1

(4π)2

p2

F 2
π

� 1, (2.3)

where Fπ is the chiral pionic decay constant, resulting in the Heavy Meson Chiral

Perturbation Theory (HMχPT) [70,71], which, aside from direct phenomenological

extractions involving both heavy and light hadrons, allows for some useful relations

to be derived, e.g. the vector form factor in the decay of D meson to a pion and a

pair of electrons at low pionic recoil can be written in HMχPT as

f+(q2) ≈ fD
fπ

gD∗Dπ

1− q2

M2
D∗

, (2.4)

where gD∗Dπ is the strong coupling constant of mesons. However, this equation also

contains corrections stemming from the mass of the final state meson, which become

relevant for instance if one decides to substitute π → K. A reminder is in order -

the heavy hadrons whose behaviour is well-described by HMχPT always contain a

light quark.

On the lattice QCD (LQCD) front, there has been an incredible influx of in-

formation on heavy hadrons in the past few decades. In LQCD, physics is studied

on the level of correlation functions directly, where (in path-integral formulation)

the expectation value of an operator (after integrating out the fermionic, Grossman

fields) can be written as

〈O〉 =

∫
4∏

α=0

[
DAα(x)

]
O e−S[Aα(x)]∫

4∏
α=0

[
DAα(x)

]
e−S[Aα(x)]

, (2.5)

where the continuum QCD action is replaced by the discretized action on a spatial

lattice of dimension a, i.e.

∫
d4x→ a4

∑
xεV

and Dµψ(x)→ ∆µψ(x) ≡ Uµ(x)ψ(x+ aµ̂) + U †µ(x)ψ(x− aµ̂)

2a
,

(2.6)
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where µ̂ is a unit vector in the µ-th direction, and with Uµ(x) ≡ Peig
∫ x+µ̂
x dxµAµ(x)

being the path-ordered link field operator that transports the fermion field from

a point x to a point x + aµ̂. The discretization process is not uniquely defined

and different discretizations have different properties on finite lattice spacing size,

albeit all of them reproducing the correct QCD continuum behaviour. Evaluating

the correlation functions amounts to producing ensembles of gauge fields with the

probability distribution

P ∝ e−S[Aα(x)], (2.7)

calculating the fermionic propagator, and lastly, evaluating the operator value for

every configuration of the ensemble and averaging it out by

〈O〉 ≈ 1

N

N∑
i=1

O(i−th configuration) + order(
1√
N

).

Ranging from the basic meson properties such as masses, lifetimes and decay con-

stants, all the way to the more specific observables, such as the decay form factors

and mixing angles, the lattice community has proven to be an endless well of the

heavy quark physics input. In the last decade, an especially useful type of calculation

has emerged, one using a new discretization type called Highly-Improved Staggered

Quarks (HISQ) [72], exploiting a ”doubling” symmetry of the lattice action, and

then improving on it by specific smearing and reunitarization of the lattice opera-

tors to reduce the errors. Recently, using the HISQ action combined with NRQCD,

the HPQCD collaboration has been successful in extracting the form factors of

Bc → Bd,s [73] and Bc → J/ψ [55] weak decays to a very high precision, i.e. a de-

gree now competitive with experimental one. For a while now, the B → D [74, 75],

B → D∗ [76,77] and B → π [78–80] decay form factors have been determined to an

admirable precision on the lattice.

The LQCD approach has some theoretical ambiguities, but the main downsides of

it are certainly the computational power needed to evaluate the correlation functions

on huge ensembles (typically, the simulations are run on either one of the very few

super-computers in the world), and lack of a dynamical interpretation of the results.

Prior to the development of modern LQCD, the standard for calculating hadronic,
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low-energy quantities from the QCD principles was a method retroactively called the

Shifman-Vainshtein-Zakharov sum rules (SVZSR) after the authors or, more simply

QCD sum rules (QCDSR) [81–83]. The method is based on the Kenneth G. Wilson’s

OPE [84], where the expectation value of the nonlocal product of multiple operators

is expanded in a series of long-distance local operators weighted by short-distance

coefficients

〈α| T [Â(x)B̂(y)] |β〉 =
∑
i

Ci(x− y;µ) 〈α| Ôi(x;µ) |β〉 , (2.8)

where the dimension of the local operators increases with i, provided that x − y is

small compared to the dimensions of interaction, and µ is the factorization scale.

The short distance coefficients are calculable in perturbation theory since QCD

is asymptotically free, and in QCDSR the expectation values 〈α| Ôi(x;µ) |β〉 are

usually taken as parameters either measured experimentally, or extracted from a

phenomenological consideration or a lattice calculation. Next, a unitarity relation

is utilized by inserting a complete sum of states which couple to the operators Â(x)

and B̂(y) (have the same quantum numbers) in a vacuum-to-vacuum correlation

function so that

Disc 〈Ω| T [Â(x)B̂(y)] |Ω〉 ∝
∑
n

〈Ω| Â(x) |n〉 〈n| B̂(y) |Ω〉 . (2.9)

where |Ω〉 is the interacting vacuum, in order to extract various hadronic prop-

erties. E.g. if one is interested in the leptonic decay constants, Â(x) and B̂(y)

would represent quark currents. It is important to notice that the |n〉 states are

hadronic particles in the case of QCD, which means that one is in position to re-

late hadronic parameters to the expectation values of operators involving free quark

fields by means of OPE. Compared to LQCD this method is less time-consuming,

and provides a relatively clear insight into how the quark degrees of freedom impact

the physics on the hadronic level, and was historically very important in calculating

quark masses [85,86], meson [87] and baryon masses [88,89], and a wide plethora of

other QCD features, stemming from lifetimes, to decay constants and form factors.
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However, it is at the moment significantly less precise for most problems it is applied

on, mostly due to the introduction of some additional parameters and some other

concerns involving unitarity and convergence of the three-point sum rules, the topic

on which more will be said in the following subchapter.

To ameliorate these problems the light-cone sum rules (LCSR) were developed

[90–92] a decade later. In LCSR bilocal operators are introduced in terms of power

corrections for large spacelike momenta, and hadron-to-vacuum correlation functions

(in eq. (2.8) this would mean β → 0, and α representing a hadronic state) are written

in terms of integrals over multiparticle distribution amplitudes (DA) of increasing

twist, i.e. the difference between spin and dimension of the corresponding operators.

When considering a form factor for a decay of the type A → B + X, where X is

some other factorizable contribution, relevant operators begin to emerge as

〈B(p)| Ô2(x, y) |0〉 ∝
∫

duϕtwi
B (u)f twi

B (u;x, y) ∀i ≥ 2

〈B(p)| Ô3(x, y) |0〉 ∝
∫

duΦtwi
3B (u)f twi

3B (u;x, y) ∀i ≥ 3

. . . ,

(2.10)

where the first line symbolizes the two-particle contribution, the second line the

three-particle one, and so on, and so on. Each of the operators contains contributions

of increasing twist (denoted by i). Twist is defined as the dimension of the operator

minus its spin. This is very convenient, since higher twist contributions are heavily

suppressed. The f twi
nB (u;x, y) functions are calculable perturbatively, while ϕtwi

B (u)

and Φtwi
3B (u) encode the nonperturbative contribution. This is especially useful in

heavy-to-light type of decays, e.g. decays involving a heavy b quark [93–97], and

one encounters virtualities of the type

m2
b − p2

B ≥ O(ΛQCDmb) & m2
b − q2 ≥ O(ΛQCDmb), (2.11)

where pB is the four-momentum of the B meson, and q is the difference in momenta

of initial state and final state hadron, so that the zero-recoil point is defined by the

maximum q2. This allows for a reliable expansion around the light-cone, so that
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the only relevant degrees of freedom are the longitudinal momenta of the partons.

The method has historically been incredibly fruitful at describing B decays to light

mesons [98, 99], rare B decays [100], radiative decays [91], and a vast number of

other phenomenological applications.

There is a class of models usually referred to as quark models [101–105] which

have historically been very fertile in producing phenomenological predictions in

heavy quark decays. Though the specific technicalities vary from model to model,

most of them construct dressed correlation functions (propagators and vertices) ac-

cording to some symmetry property or renormalization considerations by fitting

model parameters to experimental data, and then calculate the desired properties

in a diagrammatic approach. The most troubling aspect of this approach is an

unclear connection to QCD, which makes it rather difficult to estimate systematic

uncertainties.

On the phenomenological side, through various assumptions as well as trunca-

tions and approximations to Dyson-Schwinger equations of QCD (such as the ladder

approximation) one can qualitatively explain various phenomenologically successful

quark models. While the truncation of exact equations remains a problem also on

the side of ab initio Dyson-Schwinger approach to QCD, improved consistent trunca-

tions (e.g., beyond the ladder approximation) gradually reduce modeling [106–111].

To summarize, when dealing with non-perturbative phenomena involving heavy

degrees of freedom typically the methodology can be assigned to one of the following

categories:

1. effective field theories (HQET, NRQCD, HMχPT...),

2. lattice QCD,

3. sum rules,

4. Dyson-Schwinger equations of QCD and various quark models.

This thesis will mainly focus on utilizing various sum rules, together with some ex-

perimental, HQET and NRQCD considerations in order to extract the phenomenol-

ogy of some exclusive decays of heavy mesons. The following two chapters are
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therefore dedicated to expanding on the methodology of those two techniques.

2.1. QCD sum rules (QCDSR)

The ultimate goal of the QCDSR method is to estimate the contribution of QCD

degrees of freedom to amplitudes describing various particle processes. The central

premise underlying the principle is the quark-hadron duality. Generally, quark-

hadron duality is a synthesis of the experimental fact that only color-singlet states

propagate, and the notion that they are built up from colored states - quarks and

gluons. Therefore, calculation of a cross section or a decay width using well es-

tablished perturbative techniques including partons in an appropriate kinematical

domain should, up to a certain precision, describe the hadronic process measured

experimentally. Applying this notion using QCDSR in practice turns out to be very

convoluted, which can be demonstrated on the example of two- and three-point cor-

relation functions most often encountered in hadronic processes. Often, one also

encounters four-point correlation functions, e.g. when considering purely hadronic

decays with multiple final state hadrons, or processes involving tetraquarks, but

these applications are beyond the scope of this thesis and therefore omitted.

2.1.1. Two-point correlation functions

In order to understand QCDSR on a more technical level, it is demonstrative to

inspect the first order EM correction to the electron-electron scattering, which con-

tains a quark-antiquark loop describing a virtual pair creation [112]. Imagining that

the electrons carry momenta k1 and k2, the momentum transfer carried by the pho-

ton is defined as q = k1−k2. The vacuum-to-vacuum correlation function describing

this loop correction is then

Πµν(q) = i

∫
d4x eiq·x 〈Ω| T [ĵµ(x)ĵ†ν(0)] |Ω〉 = (qµqν − q2gµν)Π(q2), (2.12)

where the Lorentz decomposition hinges crucially on the conservation of the EM

quark current ĵµ(x). Here one can anticipate the OPE by comparing with the

35



Treatment of non-perturbative phenomena

expression in eq. (2.8). Two kinematical regions are of interest here:

1. a highly virtual photon is exchanged so that −q2 � ΛQCD;

2. a photon is exchanged so that q2 > 0.

In the first case, for massless quarks, the integral is dominated by |~x| ∼ x0 ∼
1/
√
−q2 � Rhad. ∼ 1/ΛQCD, and a perturbative expansion is justified. In the

case of heavy quarks, symbolically denoted Q, the situation is even simpler due

to the appearance of heavy quark mass scale - virtual quark and gluons mostly

carry momenta of order mQ. In other words - they propagate predominantly at

short distances and during short time intervals, and quark-gluon interactions are

suppressed even at q2 = 0.

In the second case, however, the average distance |x− 0| grows, and quarks start

forming hadrons observed as resonances in the e−e− → e−e− spectrum. Referring

to eq. (2.9), now a unitarity relation holds so that

Disc 〈Ω| T [ĵµ(x)ĵ†ν(0)] |Ω〉 ∝
∑
n

〈Ω| ĵµ(x) |n〉 〈n| ĵ†ν(0) |Ω〉 , (2.13)

where states |n〉 represent both single meson states, or multi-particle ones. Turning

to momentum representation, in the former case, the correlation function has a pole,

while for an n-particle state it experiences a branch cut for q2 > (
∑n

i mi)
2. The

order at which poles and branch cuts appear on the real axis depends on the system,

a mass of a certain radial excitation might be higher than an invariant mass of a

multiparticle resonance, and vice versa. An effective energy threshold parameter

denoting the lowest of the residues is defined as smin = m2
res. These conclusions

are important, since they affect the way quark-hadron duality is imposed on the

correlation function.

A very convenient way to bridge the perturbative region and the hadronic region

of the correlation function is by analytically continuing it in a complex variable z,

and focusing on the Cauchy relation at a point on the negative part of the real axis,

z = q2 < 0. In this region the function is analytic, and the Cauchy representation
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is valid, so that

Π(q2) =
1

2πi

∮
C

dz
Π(z)

z − q2
=

1

2πi

∮
|z|=R

dz
Π(z)

z − q2

+
1

2πi

R∫
0

dz

ï
Π(z + iε)

z + iε− q2
− Π(z − iε)

z − iε− q2

ò
,

(2.14)

where the chosen integration curve has been symbolically denoted by C, and depicted

in figure 2.1. The correlation function Π(z) often tends to zero as R → +∞,

but can be otherwise renormalized by subtracting the value at q2 = 0, so that

Π(q2) → Π(q2) − Π(q2 = 0). In case this doesn’t ameliorate the divergence, one

might have to resort to multiple subtractions. Supposing the integral over the circle

vanishes, now

Π(q2) =
1

2πi

∮
C

dz
Π(z)

z − q2
=

1

π

+∞∫
smin

ds
Im Π(s+ iε)

s− q2
, (2.15)

where the only contributions to the rightmost integral in eq. (2.14) are at the points

where residues exist, i.e. at q2 > smin. The reflection principle Π(z− iε) = Π∗(z+iε)

has also been implemented. This is very informative - the correlation function at

q2 < 0, where a perturbative expansion is justified if −q2 � ΛQCD, relates directly

to hadronic properties also measurable experimentally at q2 > smin.

★★

Figure 2.1: The integration curve C,

along which the correlation function is in-

tegrated. Depicted by the red star is the

lowest lying resonance, while the wavy

line represents the multiparticle states

(branch cuts).
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The point of latter discussion becomes more obvious when focusing on the mo-

mentum representation of eq. (2.14), where, and focusing on the single particle

resonances, we have (for the positive time ordered term in the T -product)

i

∫
d4x ei(q·x) 〈Ω| ĵµ(x)ĵ†ν(0) |Ω〉 θ(x)

= i
∑
n

∫
d4x

d3pn
(2π)3

ei(q−pn)·xθ(x) 〈Ω| ĵµ(0)
|n; ~pn〉 〈n; ~pn|

2En
ĵ†ν(0) |Ω〉

+ multiparticle states,

(2.16)

and for the negative time ordered term

i

∫
d4x ei(q·x) 〈Ω| ĵ†ν(0)ĵµ(x) |Ω〉 θ(−x)

= i
∑
n

∫
d4x

d3pn
(2π)3

ei(q+pn)·xθ(x) 〈Ω| ĵ†ν(0)
|n; ~pn〉 〈n; ~pn|

2En
ĵµ(0) |Ω〉

+ multiparticle states.

(2.17)

The expectation values on the right-hand side of the equation define the vector

meson weak decay constant, denoted fn for the state n

〈n; ~q| ĵν(0) |Ω〉 = fnmnε
∗
ν (n; ~q) . (2.18)

Writing the Heaviside θ function in the integral representation as

θ(x) =
1

2πi

∫ +∞

−∞
dw

ei(w·x)

w − iε
, (2.19)

allows for the evaluation of delta functions in the correlator. Turning back to the

Cauchy representation from eq. (2.15), and keeping in mind that the sum over n

also implies a sum over polarizations, here the the n = 1 state is singled out and
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symbolically denoted V (for the vector state)

Π(q2) = f 2
V

+∞∫
smin

ds
δ(s−m2

V )

s− q2
+

+∞∫
smin

ds
ρres(s)

s− q2
=

f 2
V

m2
V − q2

+

+∞∫
smin

ds
ρres(s)

s− q2
, (2.20)

where ρres gathers all the information about higher radial excitations and the con-

tinuum of multiparticle states. As stated before, sometimes it turns out that the

dispersion relation needs subtracting one or more divergent terms at q2 = 0. At

q2 < 0 the correlation function is calculable by use of Wilson’s OPE using quark

and gluon fields, which are then related through the dispersive properties to the

hadronic parameters, as is obvious in eq. (2.20) for the case of the leptonic decay

constant of a vector meson, fV . The exact way OPE is appropriated is demon-

strated in section 2.1.3, as is the determination of ρres, after a brief discussion on

the three-point correlation functions inside the QCDSR paradigm.

Considering interpolating currents with adequate quantum numbers composed

of alternative Dirac structures results in description of various mesonic states. A

common choice of currents, especially for mesons with at least one heavy degree of

freedom, is

j(0) ∝ q̄1(0)1q2(0)→ scalar mesons,

j5(0) ∝ q̄1(0)γ5q2(0)→ pseudoscalar mesons,

jµ(0) ∝ q̄1(0)γµq2(0)→ vector mesons,

j5µ(0) ∝ q̄1(0)γµγ5q2(0)→ axial vector mesons.

(2.21)

The choice of interpolating current is somewhat arbitrary, but in the mesonic case

doesn’t present a large source of uncertainty. However, in the case of baryons, the

choice can be quite ambiguous.

Weak leptonic decays of flavorful pseudoscalar mesons, as depicted in figure 2.2,

are an especially explicit example of the importance of leptonic decay constant

determination. In this special case, the decay width at leading order is

Γ(P → `ν̄) ∝ f 2
P |Vq1q2|2. (2.22)
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Decay width is an experimentally determinable observable proportional to a product

of squares of a CKM matrix element and a leptonic decay constant. This means

that a precise determination of the fundamental SM parameter is impossible without

prior knowledge of the hadronic parameter. A similar case of semileptonic decays

was discussed above, where hadronic matrix elements are not determined by a single

parameter, but are rather functions of the square of invariant mass of the lepton

pair, which reflects on the decay width as presented in eq. (1.42).

q1

q2

W∗

M

`

ν̄`

Figure 2.2: Feynman diagram describing a leptonic decay of a meson M .

2.1.2. Three-point correlation functions

When considering weak hadronic transitions, matrix elements emerge such as

Hµ = 〈Mf (pf )| (V − A)µ |Mi(pi)〉 . (2.23)

Here, the mesonic transition that occurs is Mi → Mf , and (V − A)µ denotes the

vector-axial vector weak transition current from the SM Lagrangian. This invites

exploring a correlation function of type

Πµ[αβ](pi, pf , q) = i2
∫

d4xd4y ei(pi·y−pf ·x) 〈Ω| T [ĵ[α](x)(V − A)µĵ
†
[β](y)] |Ω〉 , (2.24)

where ĵ[α],[β](x) are interpolating currents describing initial and final state mesons,

and the Lorentz indices [α] and [β] exist if, respectively, final or initial meson state

is a vector particle, and q = pi−pf is the momentum transfer. By complete analogy

with the two-point correlation function, now two completeness relations are applied
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resulting in

Πµ[αβ](pi, pf , q) = i2
∑
n,m

∫
d4xd4y

d3pn
2En(2π)3

d3pm
2Em(2π)3

ei(pf ·x−pi·y)×

× 〈Ω| ĵ[α](x) |n; ~pn〉 〈n; ~pn| (V − A)µ |m; ~pm〉 〈m; ~pm| ĵ†[β](y) |Ω〉 .
(2.25)

In this way, and sticking to the OPE framework from previous section, the hadronic

matrix element in question can be extracted at q2 < 0, with a few important and

rather problematic caveats. These are discussed at the end of section 2.1.3. The

number of independent functions that determine the Lorentz structure of the cor-

relation function depends on the initial- and final-state meson spin properties. For

the case of pseudoscalar to pseudoscalar (P → P ) transition, two form factors are

adequate for the description (one for each pseudoscalar), while for the pseudoscalar

to vector (P → V ) transition one needs four form factors - one for the pseudoscalar,

and three for the massive vector spin degrees of freedom. Focusing on an arbitrary

Lorentz structure

Πµ[αβ](pi, pf ) ⊃ g̃(p2
i , p

2
f , q

2)Γ̃µ[αβ](pi, pf ), (2.26)

and singling out the 〈n = Mi| (V − A)µ |m = Mf〉 contribution, the Cauchy repre-

sentation for the function g̃(q2) is

g̃(p2
i , p

2
f , q

2) =
fMi

fMf

(p2
i −m2

i )(p
2
f −m2

f )
f̃(q2) +

∞∫
simin

∞∫
sfmin

dsidsf
ρ̃res(si, sf , q

2)

(p2
i − si)(p2

f − sf )
+ . . . ,

(2.27)

where f̃(q2) is the form factor multiplying the appropriate Lorentz structure inside

Hµ. Again, discussion on subtractions is omitted, and they need to be accounted

for if divergences are present. These are also nullified by the use of Borel transfor-

mations, which serve a more important purpose of suppressing the impact of soft

degrees of freedom at q2 < 0, which is explained in detail in section 2.1.3.

There is several novelties and subtleties here when compared to the two-point

correlation function example. First, the non-perturbative hadronic properties are
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now encoded in a function - the form factor, instead of a simple parameter. Since

the mesons produced are on shell, form factors only depend on one kinematic pa-

rameter, the momentum transfer squared, q2. Second, the dispersive integral over

higher resonant states is now a double integral. This, as will be demonstrated in

section 3.2, creates further ambiguities related to the continuum threshold and intro-

duces uncertainties hard to estimate. Additionally, when analytically continuing the

expression in p2
i and p2

f a careful approach is in order, since now the analytic struc-

ture is much more complicated [113, 114]. On the OPE side, as mentioned before,

there are now multiple scales present, and −q2 � ΛQCD is not a sufficient condition

to justify the perturbative expansion any more. In fact, the expansion is justified

only if
∣∣p2
i

∣∣, ∣∣p2
f

∣∣ � ΛQCD for light quarks, and involves the heavy quark mass scale

for heavy quarks, which will be further elaborated upon, again in following sections.

2.1.3. Wilson’s OPE and quark-hadron duality

In summary of previous sections, in order to evaluate hadronic quantities of interest

in this thesis two OPE’s are encountered (here in momentum space):

1. the two-point OPE,

Π̄2pt.(q2) = i

∫
d4x ei(q·x) 〈Ω| T [ĵ(x)ĵ†(0)] |Ω〉 =

∑
i

Ci(q
2;µ) 〈Ω| Ôi(µ) |Ω〉 ,

(2.28)

where the expansion is valid for

• q2 � −ΛQCD for light quark currents, or

• q2 � mQ for currents with at least one heavy degree of freedom,

2. the three-point OPE,

Π̄3pt.(q2, p2
i , p

2
f ) = i2

∫
d4xd4y ei(pi·y−pf ·x) 〈Ω| T [ĵ(x)j(0)ĵ†(y)] |Ω〉 =∑

i

C̃i(q
2, p2

i , p
2
f ;µ) 〈Ω| Ôi(µ) |Ω〉 ,

(2.29)

where the expansion is valid for
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• q2, p2
i , p

2
f � −ΛQCD for light quark currents, or

• q2, p2
i , p

2
f � mQ for currents with at least one heavy degree of freedom.

The Lorentz indices and the flavor content of the currents has been left implicit for

simplicity. A scale µ naturally emerges separating the soft contributions from the

hard ones. In principle, both the coefficients and the operators contain soft and

hard contributions, but this is often simplified for calculations purposes, and can

be disregarded if the scale is chosen appropriately in a specific kinematical domain.

The operators on the right hand side can be classified according to their dimension

and are suppressed by powers of q2 (or p2
i and p2

f ), and are, (up to dimension 5)

d = 0 ⇒ Ô0 = 1,

d = 3 ⇒ Ô3 = q̄(0)q(0),

d = 4 ⇒ Ô4 =
αs
π
Ga
µν(0)Gaµν(0),

d = 5 ⇒ Ô5 = igsq̄(0)σµνtaGa
µν(0)q(0).

(2.30)

The short-distance coefficient in front of the d = 0 operator is just the perturbative

term, while the other coefficients contain the contributions from the quark conden-

sate, the gluon condensate, and the mixed quark-gluon condensate. These so called

condensates are actually averages of the virtual quarks’ interactions with the QCD

vacuum over larger times and distances, and are power suppressed with q2. As such,

their contributions vanish as q2 → −∞, i.e. in the deep Euclidean region, which

means that

lim
q2→−∞

Ä
Π̃2pt.
ä

= C0(q2;µ), and

lim
q2→−∞

Ä
Π̃3pt.
ä

= C̃0(q2, p2
i , p

2
f ;µ).

(2.31)

Considering the dispersive relations from eq. (2.20) and eq. (2.27), this has a far

reaching consequence inspiring the quark-hadron duality. Namely, this means that

the resonant continuum contributions to the spectral function can, at large enough
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q2 be modeled using the perturbative spectral function so that

+∞∫
smin

ds
ρres(s)

s− q2

q2→−∞
=

1

π

+∞∫
seff

ds
ImC0(s;µ)

s− q2
,

∞∫
simin

∞∫
sfmin

dsidsf
ρ̃res(si, sf , q

2)

(p2
i − si)(p2

f − sf )
q2→−∞

=
1

π2

∞∫
sieff

∞∫
sfeff

dsidsf
Im C̃0(si, sf , q

2;µ)

(p2
i − si)(p2

f − sf )
,

(2.32)

respectively for the two- and three-point correlation functions. The thresholds seff

and si,feff are exactly the square of sums of current quark masses at q2 → −∞, but

have to be modified for finite q2, so are named effective thresholds. This modification

is necessary due to the contributions of radial excitations to the spectral function,

whose magnitude depend on the system in question. Generally, this parameter is

fitted to such that the sum rules converge properly, and has to be deduced from

experimental information, but is empirically always close to the square of the mass

of the first radial excitation. This finally allows for a sum rule to be evaluated,

which can schematically be written as

ΠOPE(small distances)
disp.
= Πhad. (2.33)

The exact way this is implemented is shown in section 3.2. Practically, this allows

for determination of hadronic quantities from the QCD Lagrangian ab initio.

Commonly, in order to suppress the contribution of non-diagonal states and to

improve the convergence of the power series, either a Borel transformation is applied,

or the correlation is differentiated n times and a moment sum rule is established for

the n-moment. Moment sum rules are not employed in this thesis. Borel transform

of a function is defined as

B̂q2→M2f(q2) = lim
−q2, n→ +∞
−q2/n→M2

(−q2)n+1

n!

dn

d(q2)n
f(q2). (2.34)

In other words the function’s derivative is taken n times with respect to q2, and a

limit is sought for −q2, n → +∞, while the ratio −q2/n is kept fixed and equal to
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M2. In this way, parameter M2, called the Borel mass, or the Borel parameter is in-

troduced. Most commonly, the amplitudes will contain propagator terms multiplied

by powers of a kinematical variable squared. Since

dn

d(q2)n

ï
1

(q2 −m2)k

ò
=

(−1)n

(q2 −m2)k+n

Γ(k + n)

Γ(k − 1)
, (2.35)

as can be checked by induction, the Borel transform is

Bq2→M2

ï
1

(q2 −m2)k

ò
= (−1)k

1

M2(k−1)

e−
m2

M2

(k − 1)!
. (2.36)

The exponent is of order ∼ 1, but the suppression is now both power-wise and

factorial-wise. Since M2 is not really a physical parameter, it can be assesed such

that at chosen values

1. the correlation function reproduces a certain known hadronic parameter,

2. the soft contributions do not overwhelm the perturbative contribution,

3. the continuum contribution to the correlation function is adequately con-

trolled.

If powers of q2 appear in the numerator, one can always complete the square such

that one power of the denominator is canceled. The Borel transformation is applied

both to the partonic (left) and the hadronic (right) side of eq. (2.33). The application

of three point QCDSR is shown in section 3.2, and appendix A.
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2.2. Light-cone sum rules (LCSR)

Reliance on three-point sum rules historically led to some troubling conclusions [115].

1. Unexpected non suppressed condensate terms appear in the expansion of the

electormagnetic pion form factorFπ(q2) [116] and the A1(q2 = 0) form factor

in the semileptonic B → ρ decay. In the first case, condensate terms present

wrong asymptotics failing to vanish as q2 → −∞, while in the second the

amplitude blows up in the limit of infinitely heavy b-quark mass.

2. Off-diagonal transition contributions vanish if a Borel transformation is ap-

plied [115,117], which opens a whole new set of problems. Namely, the double

dispersion relation can be contaminated with non-Landauian singularities [99],

which may be hard to determine. Also, the effect of the suppression with re-

spect to the so called Borel parameter might be too weak.

In LCSR these problematic points were ameliorated by considering an expansion

in operators of increasing twist rather than dimension, which occur when the two-

point correlation function is expanded around the light-cone. Twist is defined by

subtracting the canonical spin of the operator from its mass dimension, as

τ = d− j. (2.37)

Allowing for a possibillity that the degree of singularity is not determined by

the mass dimensions of the composite operators, the authors of [118] investigate

the operator product expansion in increasing twist, where the commutator of two

operators is expanded around the light cone (x− y)2 ≈ 0 is

〈α| T [Â(x)B̂(y)] |α〉 =
∑
τ

Cτ

Å
1

2
(x− y);µ

ã
〈α| Ôτ

Å
1

2
(x− y),

1

2
(x+ y);µ

ã
|β〉 ,

(2.38)

and on the right hand side all of the local operators of the same twist have been
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summed in a single bilocal operator such that

Ôτ
Å

1

2
(x− y),

1

2
(x+ y);µ

ã
=∑

i | d(Oi)=τ+ji

Å
1

2

ãji
(x− y)µ1 · · · (x− y)µji Ô

µ1...µji
i

Å
1

2
(x+ y);µ

ã
.

(2.39)

Now, not all four components of vector (x−y)µ need to vanish, as long as (x−y)2 ≈ 0.

The most singular contributions near the light cone come from the bilocal operators

with smallest τ , when

Cτ

Å
1

2
(x− y);µ

ã
∼
ï

2

(x− y)2

ò(d[A]+d[B]−τ)/2

. (2.40)

In practice, to obtain the light-cone sum rule in weak heavy-to-light decays, a two

point vacuum-to-meson function of type

Πµ[α] = i

∫
d4x ei(q·x) 〈Mf (pf )| T

[
(V − A)µj[α](x)

]
|Ω〉 , (2.41)

is investigated, where (V − A)µ is the weak quark transition current with quantum

numbers corresponding to Mf , and j[α](x) is the interpolating current with Lorentz

structure symbolically denoted [α]. The operator squezeed between the vacuum and

the final state meson is expanded in twist around the light cone (x− 0)2 ≈ 0. The

operators contributing to final state light meson wave functions of increasing twist

are [119]

τ = 2 ⇒ [Ô2]µ = q̄1(z)γµγ5 [z,−z] q2(−z),

τ = 3 ⇒ [Ô3p] = q̄1(z)iγ5q2(−z),

⇒ [Ô3σ]µν = q̄1(z)σµνγ5q2(−z),

⇒ [Ô3]µναβ = q̄1(z)σµνγ5gsGαβ(vz)q2(−z),

τ = 4 ⇒ [Ô4]µαβ = q̄1(z)γµγ5gsGαβ(vz)q2(−z),

⇒ [ ˆ̃O4]µαβ = q̄1(z)γµigsG̃αβ(vz)q2(−z),

(2.42)
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Treatment of non-perturbative phenomena

where [z,−z] is the path-ordered gauge factor

[z,−z] = P

ñ
exp

®
igs

∫ 1

0

dt (x− y)µA
µ (tx+ (1− t)y)

´ô
. (2.43)

Their contributions to decay amplitudes are incorporated through wave functions

φi;Mf
,Φi;Mf

and Ψi;Mf
, defined up to τ = 4 as

〈Ω| q̄1(z)/zγ5 [z,−z] q2(−z) |Mf (pf )〉 = ifMf
(p · z)

∫ 1

0

du ei(2u−1)(p·z)φ2;Mf
(u;µ2),

〈Ω| q̄1(z)iγ5q2(−z) |Mf (pf )〉 =
fMf

m2
Mf

mq1 +mq2

∫ 1

0

du ei(2u−1)(p·z)φp3;Mf
(u;µ2),

〈Ω| q̄1(z)σµνγ5q2(−z) |Mf (pf )〉 = − i

3

fMf
m2
Mf

mq1 +mq2

(pfαzβ − pfβzα)×

×
∫ 1

0

du ei(2u−1)(p·z)φσ3;Mf
(u;µ2),

〈Ω| q̄1(z)σµνγ5gsGαβ(vz)q2(−z) |Mf (pf )〉 = if3Mf

(
pαpµg

⊥
νβ − pαpνg⊥µβ − (α→ β)

)
×

×
∫
Dᾱ ei(p·z)(α1−α2−vα3)Φ3;Mf

(α1, α2, α3;µ2),

〈Ω| q̄1(z)γµγ5gsGαβ(vz)q2(−z) |Mf (pf )〉 =

pµ (pαzβ − pβzα)
1

p · z fMf

∫
Dᾱ ei(p·z)(α1−α2−vα3)Φ4;Mf

(α1, α2, α3;µ2)

+
(
pβg

⊥
αµ − pαg⊥βµ

)
fMf

∫
Dᾱ ei(p·z)(α1−α2−vα3)Ψ4;Mf

(α1, α2, α3;µ2),

〈Ω| q̄1(z)γµigsG̃αβ(vz)q2(−z) |Mf (pf )〉 =

pµ (pαzβ − pβzα)
1

p · z fMf

∫
Dᾱ ei(p·z)(α1−α2−vα3)Φ̃4;Mf

(α1, α2, α3;µ2)

+
(
pβg

⊥
αµ − pαg⊥βµ

)
fMf

∫
Dᾱ ei(p·z)(α1−α2−vα3)Ψ̃4;Mf

(α1, α2, α3;µ2),

(2.44)

for pseudoscalar mesons, where, for simplicity, light-like vectors pµ and zµ have been

introduced as

pµ = pfµ −
1

2
zµ
m2
Mf

p · z , (2.45)

and, additionally, a projector on a plane perpendicular to both pµ and zµ has been
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Treatment of non-perturbative phenomena

introduced as

g⊥µν = gµν −
1

p · z (pµzν + pνzµ). (2.46)

Usually, φ2;Mf
is called the twist-two wave function, φ

{p,σ}
3;Mf

and Φ3;Mf
are classified

as twist-three wave functions, while Φ4;Mf
, Ψ4;Mf

, Φ̃4;Mf
and Ψ̃4;Mf

are classified as

twist-four wave functions. Expressions for vector states are available as well [120,

121], but are not listed in this thesis. The integration measure of the three-particle

wave-function integrals is defined as

∫
Dᾱ =

∫ 1

0

dα1dα2dα3δ(1− α1 − α2 − α3), (2.47)

and the integral is performed over the momentum fractions of two quarks and a

single gluon, respectively. The twist-three three-particle contribution introduces a

new non-perturbative parameter f3Mf
, defined in appendix B, along with the non-

perturbative parameters entering twist-four wave function definitions. Not going

into the construction of the collinear conformal group algebra, it suffices to note

that the twist-two wave function can be expanded in Gegenbauer polynomials C
3/2
n

φ2;Mf
(u;µ2) = 6u(1− u)

(
1 +

∞∑
n=1

a
Mf
n (µ2)C3/2

n (2u− 1)

)
, (2.48)

where the scale dependence of the wave function is inscribed in the non-perturbative

Gegenbauer coefficients a
Mf
n (µ2), which renormalize multiplicatively at LO in αs(µ

2),

as described also for higher twist wave-function parameters in appendix B. The

asymptotic form of eq. (2.48) is given by

φas
2;Mf

(u) = φ2;Mf
(u;µ2 → +∞) = 6u(1− u). (2.49)

Since twist contributions with τ > 4 are usually very suppressed (cf. [122] for the

B → π decay), in this thesis only the contributions up to twist-four are considered.
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3. Form factors in weak decays

The main channel of testing the SM in this thesis is the one of semileptonic meson

decays which occur through a charged weak current. In all of the decays investigated

the initial state meson contains one b quark, and another one, say q1. The transition

amplitude can then be written as

iM = 〈Mf (pf )`ν̄`| Ĥeff(0) |Bq1(pi)〉 , (3.1)

where Ĥeff symbolically denotes part of the Weak Effective Theory (WET) Hamil-

tonian relevant for the specific transition. In this thesis, b→ q2 = c and b→ q2 = u

transitions are considered, and the construction of relevant four-Fermi operators is

described in appendix C. Obviously, this implies that the quark flavour content of the

final meson in this naming scheme is q̄1q2. An advantage in considering semileptonic

decays as SM probes as compared to the fully hadronic modes is the factorization

of the amplitude on the hadronic and the leptonic part. There is no final state

interaction to a great approximation. This means that, depending on the relevant

operator, as announced in eq. (1.17)

iM =
GF√

2
Vbq2L

[µ... ](0) 〈Mf (pf )| ĵb→q2[µ... ] (0) |Bq1(pi)〉 , (3.2)

where the Lorentz structure of the effective operators is determined by the nature of

the effective Hamiltonian. The leptonic current for a generic Dirac structure Γ[µ... ]

is always

L[µ... ](0) = 〈`ν̄`| ¯̀(0)Γ[µ... ]ν`(0) |0〉 , (3.3)
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Form factors in weak decays

where ¯̀(0) and ν`(0) are the leptonic and neutrino fermion fields, while the hadronic

matrix element is defined through the decay form factors. Since the quark transition

underlying the process in question is of the type b → q2, the hadronic current

operator is

ĵb→q2[µ... ] (0) = q̄2(0)Γ[µ... ]b(0), (3.4)

where, again, b(0) and q̄2(0) represent the quark fields.

As explained in section 1.2, in the SM, weak charged current quark transitions

occur only through vector−axial Dirac structure

Γµ = (V − A)µ = γµ(1− γ5). (3.5)

However, when considering possible new physics contributions, the effective Hamil-

tonian is complemented with scalar, vector and tensor operators. The inclusion of

these new operators implies in turn the necessity to introduce new form factors.

Sometimes (as in the case of the scalar form factor, see section 3.1.1) these form

factors can be reduced to the usual SM form factors by an appropriate use of equa-

tions of motion. However, in most cases, the correlation functions describing the

form factors are linearly independent, and require an additional calculation, as will

become clear in the following sections.

In this thesis only decays of b-flavored pseudoscalar mesons are considered. This

is due to the experimental availability of such decays - a large number of b−flavoured

pseudoscalar meson states is produced on both the hadronic (LHC) and leptonic

(KEK) colliders. However, in the final state, both pseudoscalar and vector meson

states are experimentally distinguished.

3.1. Form factor definitions

In this section, form factors required for the description of both pseudoscalar→pseudo-

scalar (symbolically denoted P → P ) and pseudoscalar→vector (symbolically de-

noted P → V ) mesonic transition matrix elements are listed and explored. Here,

they are classified by the Dirac structure of the effective operators responsible for
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Form factors in weak decays

the decay. Since the exact definitions can vary depending on the Lorenz structures

chosen as the basis, here the so called Wirbel-Stech (WS) basis [123] is utilized.

3.1.1. P → P form factors

Starting with the SM form factors, the Dirac structure defining the hadronic matrix

element is

• Γµ = γµ(1− γ5),

and there are two independent form factors, since the transition occurs through the

(V − A)µ current. The form factors are

〈Pf (p2)| q̄2(0)γµ(1− γ5)b(0) |Bq1(p1)〉 =

f+(q2)
[
P µ −

m2
Bq1
−m2

Pf

q2
qµ
]

+ f0(q2)
m2
Bq1
−m2

Pf

q2
qµ ,

(3.6)

where Pµ ≡ pµ1 + pµ2 and qµ ≡ pµ1 − pµ2 . The substitution Mf → Pf has been made

in order to symbolically distinguish from the processes in which a vector state is

produced in the final state. Furthermore, to better systematize the calculations,

now initial and final momenta have been indexed with p1 for the initial meson state

momentum and p2 for the final meson state momentum. Due to the momentum

conservation, q2 is exactly the squared invariant mass of the lepton-neutrino pair.

Kinematical behaviour of weak decay form factors is entirely determined by q2. In

order for the matrix element to be finite in at the maximum hadronic recoil point

q2 = 0, the form factor relation at q2 = 0

f+(0) = f0(0) (3.7)

needs to hold. For light leptons, i.e. when
m2
`

m2
Bq1
−m2

Mf

� O(1) the hadronic matrix

element contribution to decay width is entirely determined by f+(q2).

The first operator not present in SM listed here is defined by the unit Dirac

structure

• Γ = 1,
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which in turn defines the scalar form factor

〈Pf (p2)| q̄2(0)b(0) |Bq1(p1)〉 = fS(q2) =
m2
Bq1
−m2

Pf

mb(µ)−mq2(µ)
f0(q2). (3.8)

Here the introduction of a new scalar form factor is unnecessary due to the vector

current conservation, which connects the vector operator matrix element with the

scalar one. A direct consequence of this is that, unlike the SM form factors, the

scalar matrix element has a renormalization scale dependence defined by the quark

mass running.

The last operator relevant for the P → P transition not present in SM is

• Γµν = σµν ,

which results in the tensor form factor defined as

〈Pf (p2)| q̄2(0)σµνqνb(0) |Bq1(p1)〉 =
i

mBq1
+mPf

î
q2P µ − (m2

Bq1
−m2

Pf
)qµ
ó
fT (q2).

(3.9)

For the tensor operator the equality

σµνγ5 = − i

2
εµναβσ

αβ (3.10)

is valid, so no additional form factors need to be introduced for the σµνγ5 structure.

For Γ = γ5 the matrix element is exactly zero.

3.1.2. P → V form factors

In a completely analogous way, the form factors relevant for the P → V transition

are listed below, starting with the SM contribution, when

• Γµ = γµ(1− γ5).
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Now, however, there are four form factors (one for the pseudoscalar degree of free-

dom, and three accounting for the polarizations of the massive vector meson)

〈Vf (p2)| q̄2(0)γµ(1− γ5)b(0) |Bq1(p1)〉 = − 2V (q2)

mBq1
+mVf

εµναβε
∗νpα2p

β
1

− i(mBq1
+mVf )A1(q2)ε∗µ + i

A2(q2)

mBq1
+mVf

(ε∗ · q)(p1 + p2)µ

+ i
2mVf

q2
(A3(q2)− A0(q2))(ε∗ · q)qµ.

(3.11)

Again, in order for the matrix element to be finite, the relation A0(0) = A3(0) must

hold. Additionally, as the pseudoscalar current matrix element is defined with a

single function, the relation follows,

A3(q2) =
mBq1

+mVf

2mVf

A1(q2)− mBq1
−mVf

2mVf

A2(q2), (3.12)

confirming that there are exactly four independent form factors.

As mentioned above, the pseudoscalar Dirac structure

• Γ = γ5

defines a single form factor, which is again through a Ward identity connected to

one used to describe the (V − A)µ transition

〈Vf (p2)| q̄2(0)γ5b(0) |Bq1(p1)〉 = −(ε∗ · q) 2mVf

mb(µ) +mq2(µ)
A0(q2). (3.13)

This matrix element again has a renormalization scale dependence defined by the

quark mass running.

Finally, outside the SM the P → V transition also receives contributions from

the tensor Dirac structure

• Γµν = σµν(1 + γ5),
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which defines the tensor form factors

〈Vf (p2)| q̄2(0)σµνq
ν(1 + γ5)b(0) |Bq1(p1)〉 = 2iεµνρσε

∗νpρ1p
σ
2T1(q2)

+ T2(q2)
î
ε∗µ(m2

Bq1
−m2

Vf
)− (ε∗ · q)Pµ

ó
+ T3(q2)(ε∗ · q)

ñ
qµ −

q2

m2
Bq1
−m2

Vf

Pµ

ô
,

(3.14)

where, in order for the matrix element to be finite the relation T1(0) = T2(0) must

hold. A note is in order. The arbitrariness of the form factor basis is commonly

utilized in the correlation function calculations. Since in QCDSR and LCSR one has

to consider off-shell meson momenta (p2
1 6= m2

Bq1
), in order to avoid any ambiguity

in the interpretation of the initial momentum squared, often the following basis is

employed

〈Vf (p2)| q̄2(0)σµνγ5b(0) |Bq1(p1)〉 = A(q2)
(
ε∗µPν − Pµε∗ν

)
−B(q2)

(
ε∗µqν − qµε∗ν

)
− 2C(q2)

(ε∗ · q)
m2
Bq1
−m2

Vf

(p2µqν − qµp2ν) .

(3.15)

Even though the operators squeezed between the mesonic states are different, they

are not independent, and

T1(q2) = A(q2), T2(q2) = A(q2)− q2

m2
Bq1
−m2

Vf

B(q2), T3(q2) = B(q2) + C(q2).

(3.16)
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3.2. Form factors in QCDSR

In the QCDSR paradigm applied on the calculation of Bq1 → Mf weak decay form

factors, the definition of the correlation functions of interest (respectively for the

decays to vector and pseudoscalar mesons) is

Πµν
V (pBq1

, pV ) ≡ i2
∫∫

d4x d4y e−i(pBq1
x−pV y) 〈Ω|T

{
:jνV (y) : :jµ(0) : :j†Bq1

(x) :
}
|Ω〉

Πµ
P (pBq1

, pP ) ≡ i2
∫∫

d4x d4y e−i(pBq1
x−pP y) 〈Ω|T

{
:jP (y) : :jµ(0) : :j†Bq1

(x) :
}
|Ω〉

(3.17)

where the colon represents normal ordering with respect to the free vacuum

:Ô(x) :≡ Ô(x)− 〈0|Ô(x)|0〉 (3.18)

and |Ω〉 is the interacting vacuum state. Normally ordered Hamiltonians are con-

sidered in order not to have to consider contractions between quark fields inside

normally ordered currents (not relevant for the physics). The jµ(0) current repre-

sents the weak quark transition current. Hadronic currents are defined as

jBq1 (x) = q̄1(x)iγ5b(x),

jP (x) = q̄1(x)iγ5q2(x),

jνV (x) = q̄1(x)γνq2(x).

(3.19)

According to Wick’s theorem, one can decompose the time ordered operator product

to a sum of products of normally ordered operators and propagators, which, in the
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case of Bc → D0 looks like

Fµxy ≡− : c̄yi
(
γ5

)
iju

y
j ū

0
k

(
γµ
)
kl

(
1− γ5

)
lmb

0
mb̄

x
n

(
γ5

)
npc

x
p :

− : c̄yi
(
γ5

)
iju

y
j ū

0
k

(
γµ
)
kl

(
1− γ5

)
lmb

0
mb̄

x
n

(
γ5

)
npc

x
p :

− : c̄yi
(
γ5

)
iju

y
j ū

0
k

(
γµ
)
kl

(
1− γ5

)
lmb

0
mb̄

x
n

(
γ5

)
npc

x
p :

− : c̄yi
(
γ5

)
iju

y
j ū

0
k

(
γµ
)
kl

(
1− γ5

)
lmb

0
mb̄

x
n

(
γ5

)
npc

x
p :

− : c̄yi
(
γ5

)
iju

y
j ū

0
k

(
γµ
)
kl

(
1− γ5

)
lmb

0
mb̄

x
n

(
γ5

)
npc

x
p :

− : c̄yi
(
γ5

)
iju

y
j ū

0
k

(
γµ
)
kl

(
1− γ5

)
lmb

0
mb̄

x
n

(
γ5

)
npc

x
p :

− : c̄yi
(
γ5

)
iju

y
j ū

0
k

(
γµ
)
kl

(
1− γ5

)
lmb

0
mb̄

x
n

(
γ5

)
npc

x
p :

(3.20)

where, for brevity, the coordinate dependence was made obvious through the index.

Here, the more general quark flavor considerations have been substituted, as q1 → c

and q2 → u, again for brevity. However, the flavor structure can be also be exchanged

in order to represent other b-flavored mesons transition, e.g. for the Bc → Bs weak

decay q1 → c and q2 → s. Contractions are implied by the lines above the field

operators, and they indicate quark propagators immersed in external (classical)

gluon fields. Quark field (in the formalism of background field theory) then satisfies

the equation of motion

(
iγµ

∂

∂xµ
+ g /A

cl
(x)−m

)
ψ(x) = 0 (3.21)

which means that the propagator satisfies

(
iγµ

∂

∂xµ
+ g /A

cl
(x)−m

)
S(x, y) = δ(x− y) (3.22)

where the propagator expressed through the means of contraction is

i[Sq(x, y)]ij = qxi q̄
y
j . (3.23)
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In the Fock-Schwinger gauge [83] (technically only a gauge for quantities that are

otherwise gauge-invariant, due to translational non-invariance), defined by

(x− x0)µAa
µ = 0, (3.24)

the quark propagator can be expanded for x − y ≈ 0 in terms of the external

(classical) gluon field

iS(x, y) = iS(0)(x− y) + g

∫
d4ziS(0)(x− z)i /A

cl
(z)iS(0)(z − y)

+ g4

∫
d4z

∫
d4z′iS(0)(x− z′)i /Acl

(z′)iS(0)(z′ − z)i /A
cl

(z)iS(0)(z − y) + . . .

(3.25)

where S(0)(x− y) is the free quark propagator in coordinate space,

S(0)(x− y) =
1

2π2

/x− /y
(x− y)4

, (3.26)

with color and Dirac indices suppressed. In the aforementioned gauge, the gluon

field can be expressed through its field strength (going up to linear term) as

Aµ(x) ≈ 1

2
xρGρµ(0) (3.27)

which is, in principle, all that is needed to write out the correlation function in terms

of expectation values of operators, beside a technical reminder that fermion fields

can be expanded around the origin using (again, in this gauge) covariant derivatives

instead of the ordinary ones

q(x) = q(0) +
[
xαDαq(x)

]
x=0

+ . . . (3.28)

A more detailed derivation of the diagrammatic evaluation can be found in ap-

pendix A.
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If the correlation functions from eq. (3.17) are decomposed as

Πµ
P (p1, p2) = ΠP,1p

µ
1 + ΠP,2p

µ
2 ,

Πµν
V (p1, p2) = gµν ΠV,0 + pµ2p

ν
1 ΠV,1 + pµ1p

ν
1 ΠV,2

+ pµ2p
ν
2 ΠV,3 + pµ1p

ν
2 ΠV,4 + iεµναβp2αp1β ΠV,v,

(3.29)

after the Borel transforming them one gets the final expressions for the pseudoscalar

form factors

f+(q2) =
(mb +mc)mc

2m2
Bc
m2
D∗fBcfD0

e

m2
Bc
M2

1
+
m2
D∗
M2

2 M2
1M

2
2

ï
B−p2

1
(M2

1 )B−p2
2
(M2

2 )

Å
ΠP,1(q2) + ΠP,2(q2)

ãò
,

f0(q2) =
(mb +mc)mc

2m2
Bc
m2
D∗fBcfD0

e

m2
Bc
M2

1
+
m2
D∗
M2

2 M2
1M

2
2×

×
ï
B−p2

1
(M2

1 )B−p2
2
(M2

2 )

Å
ΠP,1(q2)− ΠP,2(q2)

m2
Bc
−m2

D∗
q2 + ΠP,1(q2) + ΠP,2(q2)

ãò
,

(3.30)

and with complete analogy for the vector case

V (q2) = −(mBc +mD∗)(mb +mc)

2fBcfD∗m
2
Bc
mD∗

exp

ß
m2
Bc

M2
1

+
m2
D∗

M2
2

™
M2

1M
2
2

ï
B−p2

1
(M2

1 )B−p2
2
(M2

2 )ΠV,v

ò
,

A1(q2) = − mb +mc

(mBc +mD∗)fBcfD∗m
2
Bc
mD∗

exp

ß
m2
Bc

M2
1

+
m2
D∗

M2
2

™
M2

1M
2
2×

×
ï
B−p2

1
(M2

1 )B−p2
2
(M2

2 )ΠV,0

ò
,

A2(q2) = +
(mBc +mD∗)(mb +mc)

2fBcfD∗m
2
Bc
mD∗

exp

ß
m2
Bc

M2
1

+
m2
D∗

M2
2

™
M2

1M
2
2×

×
ï
B−p2

1
(M2

1 )B−p2
2
(M2

2 )
(
ΠV,1 + ΠV,2

)ò
,

A0(q2) = − mb +mc

2fBcfD∗m
2
Bc
m2
D∗

exp

ß
m2
Bc

M2
1

+
m2
D∗

M2
2

™
M2

1M
2
2 ×

×
ï
B−p2

1
(M2

1 )B−p2
2
(M2

2 )

Å
ΠV,0 + (m2

Bc −m2
D∗)

ΠV,1 + ΠV,2

2
− q2 ΠV,1 − ΠV,2

2

ãò
,

(3.31)

with the expressions given explicitly for Bc → D and Bc → D∗ respectively, and

M2
1 ,M

2
2 are the Borel parameters in the Bc and D(∗) channels, respectively. All the
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semileptonic decays follow the similar convention, up to substituting appropriate

masses in the expressions.
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3.3. Form factor kinematical

extrapolation

Since QCD-based sum rules are valid only in a very limited kinematical range (in

b → q transitions, resonances do not contribute to the correlation function when

(mb + mq)ΛQCD � (mb + mq)
2 − q2), a large effort has been put into determining

model-independent bounds on the form factors in the entire kinematically allowed

semileptonic phase space. This is succesfully achieved by considering an expansion

in a conformal variable [124–126]

z(q2; t∗, t0) =

√
t∗ − q2 −√t∗ − t0√
t∗ − q2 +

√
t∗ − t0

, (3.32)

which maps the q2 line for q2 > t∗ onto a unit circle C in the complex plane. The

q2 region below t∗ is mapped along the real axis inside the unit circle C. Obviously

z(t∗; t∗, t0) = −1, and z(t0; t∗, t0) = 0. Therefore, t0 defines the q2 point that maps to

the unit circle origin, and can be chosen relatively free, as long as t0 < t∗. Hadronic

correlation functions, described by form factors and expanded in z(q2) ≡ z(q2; t∗, t0)

have a known analytic structure, which is in principle easily exploited. To illustrate

this, here a general two-point correlation function of type

Π
[µν]
j = i

∫
d4x ei(q·x) 〈Ω| T

î
j[µ](x)j†[ν](0)

ó
|Ω〉 =

Nj∑
i

Γ
[µν]
i Πi(q2), (3.33)

is explored where, again, Lorentz indices have been put in square brackets to denote

generality (the procedure applies equally well to correlation functions defined by

currents with different Lorentz structures), and Nj is the number of independent

Lorentz structures Γ
[µν]
i in the decomposition multplied by functions Πi(q

2). The

imaginary part of the independent functions Πi(q
2) can be written as a sum over

complete hadronic states as

Im Πi(q2) =
1

2

∑
i

(2π)4δ4(q − pHi)
∣∣〈Ω| j[µ] |Hi〉

∣∣2. (3.34)
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Taking a look at the (properly subtracted) integral representation of the functions

Πi(q
2)

χij(q
2) =

1

n!

∂nΠi(q2)

∂(q2)n
=

1

π

∫ ∞
0

dt
Im Πi(t)

(t− q2)n+1
, (3.35)

it becomes obvious that by substituting q2 for z(q2), if there are no discontinuities

below t∗, the integral deforms to a contour integral over the unit circle with the

origin at z = 0. This is why t∗ is commonly chosen as the lowest threshold of

multiparticle production t∗ = t+ ≡ m2
bq relevant for the b → u transition, since

they would contribute a branch cut hard to account for inside the unit circle. In

that case, the only discontinuities the correlation function experiences are the pole

contributions which are easily accounted for.

The shape of the extrapolation function with bounded expansion coefficients is

introduced by noticing that all of the terms on the right-hand side of eq. (3.34)

are positive-definite, so that the sum is always positive, and larger then any of the

individual terms. This is true for both the single-particle and multi-particle states.

Focusing for example on a generic |M1M2〉 state consisting of two (pseudo)scalar

mesons, the inequality results in

Im Πi(q2)

≥ nf
2

∫
Ω

dΩ

16π2

 
k2

q2
θ(q2 − (mM1 +mM2)2)

∣∣∣〈Ω| j[µ]
∣∣∣M1(

q

2
− k)M2(

q

2
+ k)

〉∣∣∣2.
(3.36)

The variable k2 relates to the final meson state of the decay, in the rest frame of the

initial meson state, so if a semileptonic decay Bq1 →Mf`ν̄` is considered

k2 =
m2
Bq1

q2
~p 2
Mf

=
1

4q2

[
q2 − (mBq1

+mMf
)2
] [
q2 − (mBq1

−mMf
)2
]
. (3.37)

Inserting eq. (3.36) into eq. (3.35) a model independent bound presents itself. Since

this discussion is reserved for initial states containing one b-quark, eq. (3.35) is

perturbatively calculable at the point of maximum hadronic recoil (with soft power

corrections), since (mb +mq)ΛQCD � (mb +mq)
2. Written explicitly in terms of the

62



Form factors in weak decays

complex variable z ≡ z(q2), the inequality for the i-th form factor Fi(z) is

1

2πi

∮
C

dz

z
|φi(z)Fi(z)|2 ≤ 1; ∀i, (3.38)

where the outer weighing functions φi(z) have been introduced which by construction

depend on the specific form factor, always include χij(q
2 = 0), and are analytic on

the unit circle.

If a form factor Fi(z) contains pole behaviour below t∗ (for −1 < z < 0), they

can be canceled out by the Blaschke factors defined as

P (z) =
N∏
i

z − zi
1− z̄iz

, (3.39)

where the numer of subthreshold poles is N , and for the i-th pole zi = z(m2
i ).

For a b → q transition, ground states and radial exitations of bq bound states

represent relevant poles. The spin-parity properties of poles to be accounted for

are determined by the spin-parity properties of the initial- and final-meson states

as well as the transition current. Since Blaschke factors are unimodular on the unit

circle, substituting Fi(z)→ Pi(z)Fi(z) will not spoil the inequality from eq. (3.36).

Both Pi(z)Fi(z) and φi(z) are now analytic on the unit disk, and their product can

be Taylor-expanded, and

Fi(z) =
1

Pi(z)φi(z)

∞∑
n=0

anz
n. (3.40)

Substituting this in eq. (3.36) generates model-independent bounds on the form

factors as
∞∑
n=0

|an|2 ≤ 1. (3.41)

It can be shown that truncating the expression at the K-th term in the sum (re-

sulting in the form factor approximation FK
i (z)) implies that the maximum relative

truncation error is defined by the inequality

max
∣∣Fi(z)− FK

i (z)
∣∣ < 1

P (zmax)φ(zmax)

zK+1
max√

1− z2
max

. (3.42)
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The parametrization from eq. (3.40) is named the Boyd-Grinstein-Lebed (BGL)

parametrization after the authors [127,128].

For the f+(q2) form factor of the B̄ → π decay, an another parametrization,

more simple in form, can be deduced from the same principles, named the Bourrely-

Caprini-Lellouch (BCL) parametrization, again after the authors [129]. The authors

propose a simpler form

f+(q2; t+, t0) =
1

1− q2/mB∗

K∑
n=0

bn(t+, t0)zn(q2; t+, t0), (3.43)

where t+ = (mB + mπ)2 is the B̄π pair production threshold, the lowest multi-

particle threshold relevant for the b→ u transition, and it replaces the more general

threshold t∗ from eq. (3.32). Since the only pole below the threshold t+ relevant for

the decay is the vector state B∗, the divergece of the form factor is made explicit by

the simple pole factor. This also reproduces the correct perturbative QCD scaling

- as q2 → +∞ the form factor scales as f+(q2) ∼ 1/q2. The z-expansion under the

sum is thus analytic on the entire unit disk in the complex plane.

Since angular momentum is conserved in the process, the behaviour of the form

factor around the B̄π threshold is

Im f+(q2 ≈ t+) ∼ (q2 − t+)3/2, (3.44)

and analyticity implies that

Re f+(q2 ≈ t+) ∼ c1 + c2(q2 − t+). (3.45)

Recalling that q2 = t+ maps onto z(t+) = −1, it is obvious that z(q2 ≈ t+) + 1 ∼√
q2 − t+. Taken together with eq. (3.44) and eq. (3.45), this means thatï

df+(z)

dz

ò
z=−1

= 0, (3.46)
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allowing for a further constraint on the expansion coefficients, i.e.

bK = −(−1)K

K

K−1∑
n=0

(−1)nn bn. (3.47)

This condition reduces the number of free parameters by one, and the final BCL

form is given by

f+(q2) =
1

1− q2/mB∗

K−1∑
n=0

bn

(
zn − (−1)n−K

n

K
zK
)
. (3.48)

The simplification hinges on the fact that below t∗ = t+ the form factor exhibits no

discontinuities besides the one made explicit in the pole factor. If the form factor

contains branch cuts below t∗, i.e. t∗ does not represent the lowest pair production

threshold, the condition eq. (3.46) can not be applied.

Since the BCL parametrization is based on similar dispersive properties as the

ones the BGL parametrization is based on, the coefficients also satisfy bounds, albeit

in a more involved way then those in eq. (3.41). Equating the two parametrizations

one arrives at the equality

∞∑
n=0

anz
n =

m2
B∗

4(t+ − t0)
φ+(z)

(1− z)2(1− z∗)2

(1− zz∗)2

K∑
n=0

bnz
n ≡ Ψ(z)

K∑
n=0

bnz
n, (3.49)

where φ+(z) is the outer function introduced in eq. (3.38) complementary to the

f+(z) form factor, and z∗ = z(q2 = mB∗) is the value of the conformal variable z at

the position of the B∗ pole. Since the function Ψ(z) is analytic on the |z| < 1 disk,

it can be expanded around z = 0

Ψ(z) =
∞∑
n=0

ηnz
n, (3.50)

which, when inserted in eq. (3.49) results in

K∑
j,k=0

Bjkbjbk ≤ 1, (3.51)
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with

Bjk =
∞∑
n=0

ηnηn+|j−k|. (3.52)

Since the sum of squares of the BGL coefficients at leading order recieve contribu-

tions proportional to a2
n ∼ ( Λ̄

mb
)3 [130], Λ̄ being the hadronic scale in the large-mb

expansion, it is realistic to expect this bound is a very conservative one.
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4. Probing LFU and NP effects

in the B+
c → [J/ψ, ηc] `

+ν` decay

This chapter is based on research published in D. Leljak, B. Melic and M. Patra,

JHEP 05 (2019), 094 [arXiv:1901.08368 [hep-ph]] [1].

A few years ago the LHCb collaboration announced the first LFU test using

charmed-beauty meson semileptonic decays to J/ψτ+νµ and J/ψµ+νµ [53]. A mea-

surement of the ratio of muonic and tauoinc semileptonic branching fractions was

performed, resulting in

RJ/ψ|exp =
B(B+

c → J/ψτ+ντ )

B(B+
c → J/ψµ+νµ)

= 0.71± 0.17± 0.18, (4.1)

which is more than 2σ away from the Standard model (SM) prediction. Currently

there are many model-dependent calculations of RJ/ψ [102,104,105,131–139] within

the SM, predicting results in the range (without including model uncertainties)

RJ/ψ|SM ∈ [0.24, 0.30] , (4.2)

However, the RJ/ψ measurement is challenging. The detection of both muonic and

tauonic decay channels occurs only by identifying the three final-state leptons, two

of them coming from cc̄ muonic annihilation and being perfectly identified. The

third lepton enables distinguishing the two semileptonic B+
c decay channels from

the background, and is a large source of uncertainty of the measurement. Three

other large sources of experimental uncertainty are an inadequate size of simulation
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samples, the q2 binning strategy and the bias of the fitting procedure. Reducing the

experimental uncertainties is, therefore, a matter of great priority in distinguishing

any new physics prospects in semileptonic B+
c decays. However, having in mind the

anomalies listed in section 1.4.2 noticed in processes with similar quark transitions,

it is interesting to entertain the possibilities. As mentioned, combining the RD and

RD∗ measurements the deviation slightly exceeds 3σ, which is similarly observed for

the RK and RK∗ ratios.

The theoretical uncertainties are associated to a large extent with the inability to

determine precisely the hadronic transition form factors, which is in part ameliorated

by defining observables in which such uncertainties cancel.

Calculations of Bc → charmonia form factors are theoretically demanding. A

variety of model calculations are available, all of which include large uncertainties

in their predictions. Summarizing the values of Bc into S-wave charmonia form

factors at q2 = 0 calculated in different models (perturbative QCD (pQCD) [131],

three-point QCD sum rules (3ptQCDSR) [132], light cone sum rules (LCSR) [133],

relativistic quark model (RQM) [104, 105, 134, 135], nonrelativistic quark models

(NRQM) [136,137], light-font quark model (LFQM) [138], constituent quark model

(CQM) [139], relativistic quark model (RCQM) [102]) in the literature a range of

results at q2 = 0 can be found,

f+(0) = f0(0) ∈ [0.20, 1.43] , (4.3)

for the Bc → ηc transition form factors, and

V (0) ∈ [0.17, 1.63] ,

A1(0) ∈ [0.21, 1.19] ,

A2(0) ∈ [0.23, 1.27] ,

A0(0) ∈ [0.12, 1.09] ,

(4.4)

for the Bc → J/ψ transition form factors. No reliable prediction for the Rηc and

RJ/ψ LFU ratios can be made until the theoretical systematic uncertainties are put

under scrutiny. To illustrate this, by including uncertainties in the estimations of
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the publications that provide them [140–145], the range of the SM predictions from

eq. (4.2) widens even more, as

RJ/ψ|SM ∈ [0.17, 0.41] . (4.5)

In this thesis a calculation of the form factors for Bc → S-wave charmonia in the

full q2 range was addressed using a LCSR-inspired approach. The LCSR method

was proven to be a reliable method for calculating transition form factors of many

heavy-to light decays, such as B(s), D(s) → π, ρ,K,K∗, η, η′ [94–97, 99] and even for

Λb → Λc decays [146,147]. A comparison of the results with the previously published

QCD lattice points for f+(q2) and f0(q2) from Bc → ηc and V (q2) and A1(q2) from

Bc → J/ψ is presented and shows a nice agreement, especially comparing to the

preliminary results available at the time the publication this section is based on was

published. Following [142,143] here a 20% uncertainty to the lattice QCD results is

assigned.

At the time of publication of the paper this section is based on, the lattice

QCD pseudo data for Bc → J/ψ form factors V (q2) and A1(q2) were published in

preliminary form by the HPQCD collaboration at several q2 points for V (q2) and

A1(q2) [148]. Earlier, the same collaboration had also produced a preliminary set

of results for Bc → ηc form factors, which were reported on in the same proceedings.

Since, a complete set of form factors was published by the HPQCD collaboration [54,

55]. While the result for the RJ/ψ in the LCSR-inspired method presented here shows

a very good agreement with the lattice results, some of the form factors show slight

devations.

Possible deviations from the SM RJ/ψ predictions inspires many scenarios of pos-

sible new physics (NP) effects in the semileptonic Bc → ηc(J/ψ)`ν̄` decays. These

usually appear either in the context of specific models, for instance models containing

leptoquarks [149], left-right symmetric models, R-parity violating supersymmetric

models, etc. [150–152] or in a model independent approach based on the general

weak interaction effective Hamiltonian [140, 141, 145, 153–155]. To account for pos-

sible NP effects in Bc → ηc and Bc → J/ψ semileptonic decays here the effective
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Hamiltonian approach consisting of all possible four-Fermi operators was employed.

The constraints on NP operator contributions and the corresponding Wilson coef-

ficients are obtained from the available experimental data pertaining RD, RD∗ , τ

and D∗ polarizations in B → D(∗)`ν̄` decays, as well as the Bc lifetime. There

are various studies [156–161] performing a global fit on the relevant NP operators

considering the presence of only one or two NP operators simultaneously. Here,

the latest constraints on the Wilson coefficients [158] are utilized, and an analysis

of the effects of the NP operators on various observables is performed, including

the branching fractions ratio, the forward-backward asymmetry, the convexity pa-

rameter and the longitudinal as well as the transverse polarization components of

τ in the final state. For the first time, the study of the full four-fold differential

decay rate Bc → J/ψ (→ µ+µ−, e+e−)`ν̄` is performed, where the leptons from the

J/ψ decay are of opposite helicities. The four-fold decay distribution in this case is

proportional to three angles and the momentum transfer q2. Existence of three inde-

pendent decay angles gives the freedom to construct additional asymmetries which

are sensitive to the real as well as the imaginary part of the new physics couplings.

4.1. LCSR/NRQCD form factors

The form factors are extracted from the correlation function of the T -product of the

weak current jΓ, where Γ = V,A, S, P, T represents the vector, axial-vector, scalar,

pseudoscalar, or tensor structure, respectively, and an interpolating current of the

Bc meson jBc(0) = mbc̄(0)iγ5b(0) among the vacuum and the external on-shell meson

Mf (Mf = J/ψ, ηc),

Π(q2, p2
Bc) = i

∫
d4x ei(q·x)

〈
Mf (p)

∣∣∣T ¶jΓ(x)j†Bc(0)
©∣∣∣ 0〉 (4.6)

Both Bc → Mf decays proceed through b-quark decays and here an assumption

is made, that in the region of the large m2
b − q2 ≤ O(mbΛQCD) and m2

b − p2
Bc
≤

O(mbΛQCD) virtualities, the correlation function Eq. (4.6) are dominated by the

light-like distances and the description in terms of the products of perturbatively
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calculable hard-scattering kernels with non-perturbative and universal light-cone

distribution amplitude (LCDA), ordered by increasing twist, is appropriate.

The LCSR method was extensively used for determining the heavy-to-light tran-

sition form factors. Here the situation is far more involved since the final-state

meson is a quarkonium state - ηc or J/ψ. Therefore, to properly account for the

non-negligible O(2mc) mass corrections in the correlator, a systematic expansion of

the correlator near the light cone including latter corrections should be performed.

This is a highly nontrivial task and to this date has not been achieved. In the future,

to improve the whole picture, a revised consideration of the charmonia LCDA’s is

expected, similar to what was done in the case of heavy hadrons (B-mesons and

Λb). Proving the factorization theorems and deriving the RG evolution kernels of

LCDA while considering full mass corrections would amount to a respectable task.

However, in the case of charmonia, this task proves to be far more involved - neither

HQET nor heavy-quark symmetries can be applied. Also, heavy-mass expansion

convergence is less obviously stable. Such a calculation, if consistently doable for

charmonia, is far beyond the scope of this study. Here it is assumed that potentially

large intrinsic mass effects can be effectively absorbed by using DA models that

reproduce the charmonia phenomenology. Here, a simplified sum rule model was

used, where the final-state charmonia in Bc-decays are treated as light particles in

the correlator expansion near the light-cone and will closely follow the approach of

the standard LCSR. On the other hand, to describe non perturbative properties of

charmonia NRQCD-inspired DAs were used, which exactly reproduces leading char-

monia NR moments at ∼ 1 GeV energies. To resolve the right DA structure at the

∼ mb energies of the decay, the DAs are Gegenbauer-expanded and evolved accord-

ingly. A twist-expansion is performed as a correction to the leading approximation,

and large mc mass corrections in twist-3 and twist-4 DAs are taken into account.

The genuine O(4m2
c/mbΛQCD) corrections are not included as the collinearity of

the wave functions is assumed. Moreover, since the model constraints in describ-

ing charmonia particles are obvious, the stability of the model on the variation of

parameters of the model is explored. The results seem consistent with the QCDSR

calculations of the same form factors, and obey HQSS/NRQCD symmetry relations
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among form factors.

By inserting the sum over states with Bc quantum numbers and by using

〈0|jBc(0)|Bc(pB)〉 =
fBcm

2
Bc

mb(µ) +mc(µ)
(4.7)

for the ground state, employing the hadronic dispersion relation in the virtuality p2
Bc

of the Bc channel, the correlation function Eq. (4.6) can be related to the Bc →Mf

matrix elements and the form factors defined in section 3. As usual, the quark-

hadron duality is employed to approximate the contribution of higher resonances by

introducing the effective threshold parameter sBc0 and the ground state contribution

of the Bc meson is enhanced by the Borel transformation in the variable p2
Bc
→ σ2.

The strategy of fixing the sum rule parameters, in particular the continuum

threshold parameter sBc0 , is to use the lattice results for the decay constant of Bc,

and fix the continuum threshold parameters by requiring that the 2-point functions

calculated in the LCSR numerically match the lattice value. This is done by using

the NLO expression and the pole mb,mc masses. The MS masses used in the study

are taken as mb(mb) = 4.18 GeV and mc(mc) = 1.27 GeV. Taken this way, sum

rules exhibit stable behaviour, i.e. the continuum and higher-order corrections are

suppressed and the Bc mass is correctly reproduced for µ = 3.9 ± 0.3 GeV by the

daughter sum rules. With the estimated sBc0 = 46.8±0.8 GeV2 we have also checked

the stability of the sum rules for Bc →Mf transitions. In both cases, the results are

very stable on the variation of the Borel parameter, allowing σ2 to vary between 70−
90 GeV2 with almost no change. Other parameters used in the study are provided

by various lattice collaborations or are taken from NRQCD-inspired determinations,

as described below.
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4.1.1. Leading twist contributions

The leading twist-2 DA of a ηc meson is defined as in eq. (2.44) [162] for Mf = ηc

and q1,2 = c, while for the J/ψ the expressions are

〈0|c̄(z)γµ[z,−z]c(−z)|J/ψ(p, ε(λ=0))〉 = fJ/ψmJ/ψpµ

∫ 1

−1

dξ eiξ(p·x)φ||(ξ, µ),

〈0|c̄(z)σµν [z,−z]c(−z)|J/ψ(p, ε(λ=±1))〉 = if⊥J/ψ(εµpν − ενpµ)

∫ 1

−1

dξ eiξ(p·x)φ⊥(ξ, µ),

(4.8)

where ξ = u − (1 − u), and u is the fraction of longitudinal momentum of the

Mf = J/ψ meson carried by c-quark and (1−u) is the fraction of momentum carried

by c̄-quark. DAs experience a scale dependence, and are evaluated at a scale µ, up

to which the transverse momenta are integrated out. Non perturbative DAs φ(ξ, µ)

contain contributions from momenta below µ. The higher-twist amplitudes and

higher-order corrections are not listed here, but are available in the literature [121].

The vector and tensor decay constants fJ/ψ and fTJ/ψ are defined as

〈0|c̄(0)γµc(0)|J/ψ(p, e(λ))〉 = fJ/ψmJ/ψe
(λ)
µ ,

〈0|c̄(0)σµνc(0)|J/ψ(p, e(λ))〉 = ifTJ/ψ(µ)(e(λ)
µ pν − e(λ)

ν pµ), (4.9)

where fTJ/ψ is renormalization scale dependent, and at LO it renormalizes multiplica-

tively, as

fTJ/ψ(µ′2) =
(
αs(µ

′2)/αs(µ
2)
)Cf/β0 fTJ/ψ(µ), (4.10)

with β0 = 11− 2/3nf , CF = 4/3 is the usual group factor, and nf is the number of

flavors involved. The ηc decay constant is defined correspondingly as

〈0|c̄γµγ5c|ηc(p)〉 = −ifηcpµ. (4.11)
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For the decay constants the following lattice results are used

fBc = 0.427(6)(2) GeV [163,164],

fJ/ψ = 0.405(6)(2) GeV [165],

fηc = 0.3947(24) GeV [166], (4.12)

while for fTJ/ψ, a precisely determined ratio of decay constants is employed

RT
J/ψ =

fTJ/ψ(µ = 2 GeV)

fJ/ψ
= 0.975± 0.010, (4.13)

derived by considering combined QCDSR and lattice results [167]. The predictions

for charmonia decay constants in [167] also nicely agree with the lattice results

above.

The leading twist-2 DAs are expanded in terms of Gegenbauer polynomials, as

in eq. (2.48), and the expression can be inverted so that

a
Mf
n (µ2) =

2(2n+ 3)

3(n+ 1)(n+ 2)

∫ 1

0

duC(3/2)
n (2u− 1)φ2;Mf

(u, µ2). (4.14)

For light mesons, the coefficients are explicitly calculated at a scale µ0 on the lattice,

or are phenomenologically extracted. However, no such data exists for charmonium.

Thus, representing the wave function in DA moments is more useful. The latter are

defined at a scale µ as

〈ξn(µ)〉 =

∫ 1

−1

dξξnφ(ξ, µ). (4.15)

Due to the flavor symmetric quark content of charmonium, the wave function is

symmetric around u = 1
2
, and the first relevant moment is the second one. It can

be extracted from NRQCD [168–170] as

〈ξn(µ0)〉 =
1

3
〈v2〉Mf

+O(v4), (4.16)

where v is the non-relativistic velocity of a quark confined in the meson state. As-
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suming a gaussian model at a scale µ0 [171] for the LCDA

φ(u, µ0) = Nσ
4u(1− u)√

2πσ
exp

ñ
−(u− 1

2
)2

2σ2

ô
; σ2 =

〈v2〉Mf

12
, (4.17)

where Nσ ≈ 1 is the normalization constant defined by

∫ 1

−1

dξφ(ξ, µ) = 1, (4.18)

the evolution is easily performed to an arbitrary perturbative scale µ.

In NRQCD the average square velocities are extracted at the NLO order in αs

from the rates Γ(ηc → γγ) and Γ(J/ψ → e+e−). These vary across determinations,

〈v2〉J/ψ = 0.225 +0.106
−0.088 [172], 〈v2〉ηc = 0.226 +0.123

−0.098 [172], 〈v2〉J/ψ = 〈v2〉ηc = 0.21± 0.02

[169, 170]. Also in existence is the matching of charmonium (and Bc) leading-twist

LCDAs to NRQCD with relativistic corrections [173, 174]. The higher order αs

corrections are thought to possibly be large [175–177]. Here, the latest improved

value is used [172, 178, 179] for both charmonia, since at leading order there is no

difference of quark relative velocities between J/ψ and ηc

〈v2〉 = 0.201± 0.064. [21] (4.19)

4.1.2. Higher twist corrections

Concerning higher twist corrections, the Wandzura-Wilczek approximation (WWA)

is used, where the three-particle contributions are entirely neglected. For ηc this

means sticking to the asymptotic form with the inclusion of mc corrections [119]

φp3;Mf
(u;µ2)

∣∣
WWA

= 1 + ρ+(µ2)φp,+(u, µ2),

φσ3;Mf
(u;µ2)

∣∣
WWA

= 6u(1− u) + ρ+(µ2)φσ,+(u, µ2), (4.20)
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where ρ+(µ2) = 4m2
c(µ

2)/m2
ηc and

φp,+(u, µ2) =
1

4

ñ∫ u

0

dv
φ
′
(v, µ2)

1− v −
∫ 1

u

dv
φ
′
(v, µ2)

v

ô
,

φσ,+(u, µ2) = −3

2
u(1− u)

ñ∫ u

0

dv
φ(v, µ2)

(1− v)2
+

∫ 1

u

dv
φ(v, µ2)

v2

ô
. (4.21)

For the J/ψ meson a more involved elaboration is in order. Neglecting the three

particle contributions in the WWA, equations of motion are used to express the

twist-three DAs in terms of the leading twist-two DAs φ‖,⊥ with the corrections

stemming from the non-negligible valence quark mass

δ+(µ) =
2mc(µ)

mJ/ψ

1

RT
Jψ

, δ̃+(µ) =
2mc(µ)

mJ/ψ

RT
Jψ , (4.22)

as [120,180–182]:

h̃
(s)
|| = (1− δ+(µ))h

(s)
|| , g̃

(a)
⊥ = (1− δ̃+(µ))g

(a)
⊥ ,

and

g
(v)
⊥ (x, µ)

∣∣
WWA

=
1

4

ñ∫ u

0

dv
Φ||(y, µ)

1− v +

∫ 1

u

dv
Φ||(v, µ)

v

ô
+ δ̃+(µ)φ⊥(u, µ),(4.23)

g̃
(a)
⊥ (x, µ)

∣∣
WWA

= (1− u)

∫ u

0

dv
Φ||(v, µ)

1− v + u

∫ 1

u

dv
Φ||(v, µ)

v
, (4.24)

h
(t)
|| (u, µ)

∣∣
WWA

=
1

2
ξ

ñ∫ u

0

dv
Φ⊥(y, µ)

1− v −
∫ 1

u

dv
Φ⊥(v, µ)

v

ô
+ δ+(µ)φ‖(u, µ),(4.25)

h̃
(s)
|| (u, µ)

∣∣
WWA

= (1− u)

∫ u

0

dv
Φ⊥(v, µ)

1− v + u

∫ 1

u

dv
Φ⊥(v, µ)

v
, (4.26)

with

Φ||(u) = 2φ||(u) + δ̃+ξφ
′

⊥(u) ,

Φ⊥(u) = 2φ⊥(u)− δ+

Å
φ‖(u)− ξ

2
φ
′

‖(u)

ã
. (4.27)
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The J/ψ twist-four DAs are assumed to take their asymptotic form:

h⊥,3 = 6u(1− u) , g‖,3 = 6u(1− u) ,

A|| = 24u2(1− u)2 , A⊥ = 12u2(1− u)2 . (4.28)

While the light-cone paradigm works rather well in the case of mesons containing

light degrees of freedom, it is possible that the twist-four contributions are large in

the case of ηc, due to the existence of mc corrections. Moreover, in this case the

required hadronic parameters are not yet available so the twist-four contribution is

disregarded.

Also, since the J/ψ DAs defined above do not correspond to matrix elements of

operators with definite twist [94]: φ⊥,‖ are of twist-two, h
(s,t)
‖ and g

(v,a)
⊥ contain a

mixture of twist-two and twist-three contributions and A⊥,‖, h3, g3 are a mixture of

twist-two, twist-three and twist-four contributions. Therefore it is usual to refer to

g
(v,a)
⊥ , h

(s,t)
‖ as twist-three LCDAs and to h3, g3,A⊥,‖ as twist-four LCDAs.

Finally, the sum rules can be constructed as in section 2.2. The expression for

the calculation of the form factors can be given in a closed form as

FBc→M(q2) =
mb +mc

m2
Bc
fBc

em
2
b/σ

2

∫ 1

uBc0

du

u
exp

ï
−m

2
b − ūq2 − uūm2

M

uσ2

ò
F (u, µ, q2),

(4.29)

where

uBc0 =
1

2m2
M

»
(sBc0 − q2 −m2

M)2 + 4m2
M(m2

b − q2)− (sBc0 − q2 −m2
M), (4.30)

σ is a Borel parameter and ū = 1 − u. The functions F (u, µ, q2) contain all twist

contributions listed above. It suffices to further comment that the higher-twist

contributions are suppressed by the Borel parameter. A list of results at q2 = 0 is

presented in table 4.1.

The definitions of form factors are as in section 3.1.1 and 3.1.2. A rough agree-

ment can be seen between the modified LSCR approach utilized in this study and

the results provided in other publications. The only exception is the form factor

A2(q2), where the LCSRs produce a rather low value. However, the cited errors
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Table 4.1: Form factor predictions at q2 = 0. Recent relevant lattice results are

given by the HPQCD collaboration [148], reported here without the systematical

error.

Form

Factor
this work

QCDSR

[183]

QCDSR

[132]

SR

[133]

pQCD

[131]

CCQM

[145,184]

RQM

[104]

RQM

[105]

LFQM

[138]

latt.

[148]

f ηc+,0(0) 0.62± 0.05 0.41± 0.04 0.66 0.87 0.48(7) 0.75 0.47 0.54 0.61(5) 0.59

V J/ψ(0) 0.73± 0.06 0.70± 0.06 1.03 1.69 0.42(2) 0.78 0.49 0.73 0.74(4) 0.70

A
J/ψ
1 (0) 0.55± 0.04 0.50± 0.05 0.63 0.75 0.46(3) 0.56 0.50 0.52 0.50(3) 0.48

A
J/ψ
2 (0) 0.35± 0.03 0.43± 0.05 0.69 1.69 0.64(3) 0.55 0.73 0.51 0.44(5) -

A
J/ψ
0 (0) 0.54± 0.04 0.53± 0.04 0.60 0.27 0.59(3) 0.56 0.40 0.53 0.53(3) -

f ηcT (0) 0.93± 0.07 - - - - 0.93 - - - -

T
J/ψ
1,2 (0) 0.47± 0.04 0.48± 0.03 - - - 0.56 - - - -

T
J/ψ
3 (0) 0.19± 0.01 0.27± 0.03 - - - 0.20 - - - -

are obtained just by varying the model parameters, and do not include the relevant

uncertainties coming from the lack of 4m2
c/(mbΛQCD) corrections. It is possible that

these could potentially significantly influence the form factor values.

4.1.3. Extrapolation to high q2

To extrapolate the form factors to the q2 values that LCSR is not applicable at, a

slightly modified BCL parametrization from section 3.3 is employed. For each form

factor, five equally spaced points are produced including their parametric uncer-

tainties using the LCSR method in the range q2 ∈
[
−5 GeV2, 5 GeV2

]
, which are a

posteriori fitted to the BCL shape function. The BcMf pair production threshold

is chosen for t∗

t∗ = t+ = (mBc +mMf
)2, (4.31)

while the choice has been made for the free parameter t0 = topt = t+(1−
√

1− q2
max

t+
),

which optimizes the truncation error and maps the semileptonic domain symmetri-

cally in z. This choice numerically doesn’t impact the extrapolation. The pole struc-

ture has been approximated with a single pole for each form factor. Even though in

principle there are more poles for each transition below the pair-production thresh-

old, the semileptonic range is far enough from the lowest b→ c resonance for higher
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multipole contributions to be safely disregarded. The shift in the pole due to the

existence of other resonances is absorbed by the BCL expansion coefficients, i.e.

1

1− q2

m2
Res1

1

1− q2

m2
Res2

∑
n

anz
n q2�Res≈ 1

1− q2

m2
Res1

∑
n

ānz
n. (4.32)

Furthermore, it has been shown in previous studies that branch cuts below t∗ do

not contribute significantly to the form factors in the semileptonic region [127].

Their contributions to the BCL bounds are not considered in this study. Thus, the

modified BCL parametrization for the i-th form factor used here is

F i(q2) = P (q2)
[
bi0 + bi1z(q2)

]
, (4.33)

where P (q2) = (1−q2/m2
Res)

−1 is the pole factor. Including more resonances beneath

t+ empirically does not change the shape of the form factor in the semileptonic

region.

Table 4.2: Summary of the BCL fit for Bc → ηc

and Bc → J/ψ form factors. The masses of the

low-laying Bc resonances are taken from [185–188]

Form factor JP mR (GeV) b0 b1

f+ 1− 6.34 0.62 -6.13

f0 0+ 6.71 0.63 -4.86

fT 1− 6.34 0.93 -9.36

V 1− 6.34 0.74 -8.66

A1 1+ 6.75 0.55 -4.67

A2 1+ 6.75 0.35 -1.78

A0 0− 6.28 0.54 -6.80

T1 1− 6.34 0.48 -4.88

T2 1+ 6.75 0.48 -2.93

T3 1+ 6.75 0.19 -1.69

Specific form factor proper-

ties rigorously determine and

select resonances relevant for

the transition in question. Form

factors V (q2) and T1(q2) cor-

respond to the vector compo-

nents of the transition currents,

and, as the Bc meson is a pseu-

doscalar, the transition occurs

through a negative parity res-

onance. A1,2(q2), as well as

T2,3(q2), correspond to the ax-

ial vector component of the V −
A, while the form factor A0(q2)

corresponds to the pseudoscalar

current and only contributes in
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Figure 4.1: Bc → ηc form factors calculated in this study, including the lattice

points from [148] with added 20% systematical error.

the decays with the non-vanishing lepton masses (in the semileptonic Bc decays with

the τ lepton). All relevant resonance masses are given in table 4.2, together with

the fitted parameters bi0 and bi1 from eq. (4.33).
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Figure 4.2: Bc → J/ψ SM form factors calculated in this study, including the

lattice points from [148] with added 20% systematical error.

Fits to both SM and NP Bc → ηc form factors are presented in figure 4.1,

together with the projected uncertainties. No correlations between the form factor

pseudo data points are taken into account. Pseudo data is indeed very correlated,

but including the correlations would in a sense underestimate the total uncertainty,

since no systematics errors due to the 4m2
c/(mbΛQCD) can be estimated or included.

Also, since under the pair production threshold there are several branch cuts and
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Figure 4.3: Bc → J/ψ NP form factors calculated in this study.

poles not included explicitly in the fit, no unitarity constraints are applied.

4.1.4. HQSS/NRQCD symmetry relations at the zero recoil

Inside the HQSS and NRQCD paradigm a set of model-independent limits for the

form factors for Bc → ηc and Bc → J/ψ decays can be derived. Although the

aforementioned decays bear a resemblance with heavy-to-heavy transitions and in

fact do produce interesting symmetries in a heavy-quark limit [189], the c-quark is

significantly lighter than the b-quark which causes the produced c-quark to be quite

energetic, which in turn spoils exact heavy-flavor symmetries. On the other hand,

the c-quark is in fact heavy enough that non-relativistic limits can be exploited

at the point of zero hadronic recoil - symmetry relations for maximal momentum

transfer q2
max = (mBc −mJ/ψ,ηc)

2 still hold, and the form factors can be related to a

single function ∆ [189–191], with an unknown normalization. Following [189] near

zero recoil (q′ � mc) the form factors can be approximated

〈ηc(v, q′)|Vµ(q2) |Bc(v)〉 = 2
√
mBcmηc ∆(a0q

′) vµ, (4.34)

〈J/ψ(v, q′)|Aµ(q2) |Bc(v)〉 = 2
√
mBcmJ/ψ ∆(a0q

′) ε∗µ, (4.35)

where Vµ = b̄γµc and Aµ = b̄γµγ5c and εµ is a polarization vector of J/ψ. Here v is

the velocity of the Bc meson with v2 = 1, and q′ is a small residual velocity carried

by the final state meson (not to be confused by q, the momentum carried by the

lepton pair system), so that

pµBc = mBcv
µ; (pηc,J/ψ)µ = mηc,J/ψv

µ + q′µ. (4.36)

81



Probing LFU and NP effects in the B+
c → [J/ψ, ηc] `

+ν` decay

The parameter a0 is connected to the Bohr radius of the Bc meson, it value is not

important for the further discussion and will not be discussed here.

The ∆(a0q
′) function can now be related to the Bc → ηc form factor f+(q2) at

the zero recoil as

∆(a0q
′) ≈
…
mBc

mηc

f+(q2
max), (4.37)

which amounts, using the predicted f+(q2
max) from the calculation above, to

∆(a0q
′)our ≈ 0.79± 0.09. (4.38)

This value can be compared with the value obtained in the QCD relativistic potential

model in [191].

In [190] it was shown that in the NRQCD approximation one can derive a gener-

alized set of relations using the HQSS, so that the transition form factors of Bc → ηc

and Bc → J/ψ decays can be given in terms of a single form factor, even for the case

of non-equal four-velocities v1 6= v2, of the initial and the final state heavy mesons.

To show this the Bc → J/ψ form factors are defined in the helicity basis as

g(q2) ≡ (H++ −H−−)/
»
λ(mBc ,mJ/ψ, q2) =

2

mBc +mJ/ψ

V (q2),

f(q2) ≡ −(H++ +H−−)/2 = (mBc +mJ/ψ)A1(q2),

F1(q2) ≡ −
√
q2H00

=
1

mJ/ψ

ï
− λ(mBc ,mJ/ψ, q

2)

2(mBc +mJ/ψ)
A2(q2)

− 1

2
(q2 −m2

Bc +m2
J/ψ)(mBc +mJ/ψ)A1(q2)

ò
,

F2(q2) ≡ −2

√
q2»

λ(m2
Bc
,m2

J/ψ, q
2)
Ht0 = 2A0(q2),

(4.39)

and the triangle function is defined as

λ(mBc ,mJ/ψ, q
2) ≡ (q2 +m2

Bc −m2
J/ψ)2 − 4mBcq

2. (4.40)

Using the expressions from [190], stemming from considering NRQCD and HQSS,
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and relating different decay form factors at the point of zero recoil q2
max, the Q̄q →

Q̄
′
q helicity form factors can be expressed as [142]:

g(q2
max) =

3 + rQ
4m2

Bc
rJ/ψ

f(q2
max),

F1(q2
max) = mBc(1− rJ/ψ)f(q2

max),

F2(q2
max) =

2(1 + rJ/ψ) + (1− rJ/ψ)(1− rQ)

4mBcrJ/ψ
f(q2

max),

(4.41)

for the Bc → J/ψ decay, and

f0(q2
max) =

1

m2
Bc
−m2

ηc

8m2
Bc

(1− rηc)rηc
2(1 + rηc) + (1− rηc)(1− rQ)

f+(q2
max), (4.42)

for the Bc → ηc decay [143], where some shorthand notation has been introduced:

rM = mM/mBc (with mM = [mJ/ψ,mηc ]), rQ = mQ′/mQ = mc/mb and rq =

mq/mQ = rQ. Additionally, the vector decay form factors can be related to the

pseudoscalar ones as [144]

f(q2
max) =

8mBcrηc
3 + rηc − (1− rηc)rQ

f+(q2
max),

g(q2
max) =

1 + rQ
mBcrJ/ψ

4rηc
3 + rηc − (1− rηc)rQ

f+(q2
max),

F1(q2
max) = m2

Bc(1− rJ/ψ)
8rηc

3 + rηc − (1− rηc)rQ
f+(q2

max),

F2(q2
max) =

1 + rJ/ψ
rJ/ψ

4rηc
3 + rηc − (1− rηc)rQ

f+(q2
max),

(4.43)

where rq = rQ for Bc → ηc, J/ψ was used, which simplified the relations. It is

expected that these relations are broken by terms of order O(mc/mb,ΛQCD/mc) .

30%.

Below the consistency check of the HQSS/NRQCD relations and form factors

obtained in the previous section is performed. At the zero-recoil F1(q2) and f(q2)

are the same up to a constant factor, eq. (4.41), which explicitly gives

F1(q2
max)

f(q2
max)

= mBc(1− rJ/ψ) = 3.18 , (4.44)
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whereas

g(q2
max)|

g(q2
max)|eq.(4.41)

≈ 0.81,

F2(q2
max)|

F2(q2
max)|eq.(4.41)

≈ 0.89,

(4.45)

and
f0(q2

max)|
f0(q2

max)|eq.(4.42)

≈ 1.18. (4.46)

We see that the HQSS/NRQCD predictions are quite consistent with the modified

LCSR predictions for form factors at the zero recoil point and can be safely used as

model-independent bounds on R ratios. Such bounds were also used in cf. [142–144].

It should be kept in mind that the accuracy of the predictions cited there is limited

to O(30%).

Finally, using eq. (4.43) the following numerical values are obtained

f(q2
max)|

f(q2
max)|eq.(4.43)

≈ 1.02,

g(q2
max)|

g(q2
max)|eq.(4.43)

≈ 1.05,

F1(q2
max)|

F1(q2
max)|eq.(4.43)

≈ 1.02,

F2(q2
max)|

F2(q2
max)|eq.(4.43)

≈ 1.02,

(4.47)

which confirms an excellent agreement among the relations between Bc → ηc and

Bc → J/ψ transition form factors derived from HQSS/NRQCD symmetry relations

and the LCSR-inspired results at the point of zero hadronic recoil.
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4.2. Phenomenology

Referring now to appendix C for the weak interaction effective Hamiltonian, a phe-

nomenological analysis is presented of a set of observables including NP contribu-

tions. The NP degrees of freedom are further assumed to couple only to τ leptons,

as an additional contribution to the B̄ → D(∗)τ ν̄τ might account for the discrepancy

in RD(∗) .

Operators containing axial or pseudoscalar hadronic currents do not contribute

to the Bc → ηc decay, hence VR − VL = 0. and SR − SL = 0 and therefore VR = VL,

and SR = SL. The scalar hadronic current does not contribute to the Bc → J/ψ

transition, which leads to SL + SR = 0. Considering this, a shorthand notation is

introduced SR + SL = S and SR − SL = P further in the text.

Constraints on the Wilson coefficients appearing in WET Lagrangian are ob-

tained from a combined analysis of the BaBar, Belle and LHCb data for the branch-

ing fraction ratios RD(∗) , the τ polarization asymmetry along the longitudinal di-

rection of the τ lepton in B → D∗, as well as the longitudinal D∗ polarization in

Bc → D∗τντ decay [158]. The leptonic branching fraction of the Bc meson B(B−c →
τ ν̄τ ) has not yet been measured, and the possible NP scenarios are constrained by

the precise experimental measurements of the Bc lifetime, τ exp
Bc

= (0.507 ± 0.009)

ps [192]. Since Bc lifetime is very sensitive to the value of the charm quark mass,

the total Bc decay width still allows for up to 60% contribution from NP [158,193].

In particular, the best fit point for SR is dependent on the assumption of the value

for the Bc → τ ν̄τ decay width.

In the following analysis the limit BR(Bc → τ ν̄) < 30% is considered, and the

values of the Wilson coefficients are taken from a combined analysis done in cf. [158].

There, all one-dimensional scenarios with only one NP Wilson coefficient considered

at a time were studied, as well as two-dimensional scenarios with two NP Wilson

coefficients considered simultaneously. The best fit points in the 1D scenarios and

85



Probing LFU and NP effects in the B+
c → [J/ψ, ηc] `

+ν` decay

the 2σ ranges cited in the publication at the scale 1 TeV are

VL = 0.11+4
−5,

SR = 0.16+7
−8,

SL = 0.12+8
−11,

SL = 4TL = −0.07+9
−8.

(4.48)

The existence of these one-dimensional NP scenarios is motivated by adding a single

particle to the SM, as follows:

• VL 6= 0: This operator arises in vector leptoquark (LQ) models. Two exam-

ples are SU(2)L-singlet vector U1 LQ [194], or the scalar SU(2)L-triplet [195].

Also interesting are the left handed W ′ models [196].

• SR 6= 0: This operator is generated in models containing extra charged

scalars, and is the dominant operator in models containing two Higgs dou-

blets [197]. It can also be generated by the SU(2)L-doublet vector V2 LQ [198].

• SL 6= 0: Similar as SR 6= 0 [199].

• SL = 4TL 6= 0: This operator constraint derives from the scalar SU(2)L-

doublet S2 LQ [200] at the new physics scale µ2 ≈ ΛNP. QCD renormalization

group effects scale this to SL ≈ 8.1TL at µ2 ≈ m2
b .

Only the real values of the coefficients were considered for the 1D fit.

For the best fit points in the 2D scenarios at the scale 1 TeV the following values

are cited in the publication

(VL, SL = −4TL) = (0.08, 0.05),

(SR, SL) = (−0.30, −0.64),

(VL, SR) = (0.09 0.06),

(Re[SL = 4TL], Im[SL = 4TL]) = (−0.06,±0.40).

(4.49)

Since the uncertainties are large in the 2D fit, they aren’t considered. Similar models

are relevant as those in the 1D fits, apart from an additional possibility:
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• Re[SL = 4 TL], Im[SL = 4 TL]: In this case complex couplings are con-

sidered due to the fact that real parameters do not give a good fit to the

experimental data. Complex coefficients were found to give a good explana-

tion for the RD∗ data [201].

As already mentioned, in R2 and S1 LQ scenarios, the coupling SL and TL are

connected in the following way

SL(mb) ' 8.1TL(mb)⇒ R2 LQ scenario,

SL(mb) ' − 8.5TL(mb)⇒ S1 LQ scenario.
(4.50)

The relations holding at 1 TeV are spoiled by the QCD anomalous dimension, and

EW corrections.

4.2.1. Two-fold differential decay widths

The following phenomenological analysis is first performed in the SM (with all of

the NP couplings turned off), after which all of the 1D and 2D scenarios from the

previous paragraphs are considered. The values the NP couplings assume is, as

stated previously, taken from a recent publication [158]. The two-fold differential

decay width for both Bc → ηc and Bc → J/ψ semileptonic decay can be written as

d2Γ(Bc →Mf`ν̄`)

dq2d cos θ`
=

1

(2π)3

|~p2|
32m2

Bc

Å
1− m2

`

q2

ã
|M(Bc →Mf`ν̄`)|2, (4.51)

where ~p2 = λ(m2
Bc
,m2

Mf
, q2)/(2mBc) is the three-momentum of the Mf = ηc, J/ψ in

the Bc meson rest frame, and θ` is the polar angle of the lepton ` (the angle between

the lepton direction in the W ∗ boson rest frame and the direction of the W ∗ boson

in the Bc rest frame) and q2 (q = p1− p2) is the momentum transfer to the `ν̄` pair.

1. Two-fold differential decay distribution for Bc → ηc`ν̄`
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The complete expression for the two-fold differential decay width in the basis of

helicity form factors is

d2Γ(Bc → ηc`ν̄`)

dq2d cos θ`
=
G2
F |Vcb|2|~p2|q2

(2π)316m2
Bc

Å
1− m2

`

q2

ã2

×

×
{
|1 + VL + VR|2

[
|H0|2 sin2 θ` + 2δ`|Ht −H0 cos θ`|2

]
+ |S|2|HS

P |2 + 16|TL|2
[
2δ` + (1− 2δ`) cos2 θ`

]
|HT |2

+ 2
√

2δ`

(
ReS + S VL

)
HS
P [Ht −H0 cos θ`]

+ 8
√

2δ`

(
ReTL + TLVL

)
[H0 −Ht cos θ`]HT

− 8HS
PHT cos θ`

(
TLS

)}
,

with the helicity flip-factor δ` = m2
`/2q

2, TLVL = ReTL ReVL + ImTL ImVL, TLS =

ReTL ReS + ImTL ImS and S VL = ReS ReVL + ImS ImVL. The q2 dependence

has been left implicit for the purpose of brevity. The helicity form factors from the

equation above are

Ht(q
2) =

m2
Bc
−m2

ηc√
q2

f0(q2), H0(q2) =
2mBc|~p2|√

q2
f+(q2),

HS
P (q2) =

m2
Bc
−m2

ηc

mb(µ)−mc(µ)
f0(q2), HT (q2) =

2mBc |~p2|
mBc +mηc

fT (q2).

(4.52)

A brief discussion on the expressions are given in appendix D.

2. Two-fold differential decay distribution for Bc → J/ψ`ν̄`

Next, the differential distribution of the B̄c → J/ψ`−ν̄` decay is considered with

VRVL = ReVR ReVL + ImVR ImVL, TLP = ReTL ReP + ImTL ImP and P VL =
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ReP ReVL + ImP ImVL, and is given by

d2Γ(Bc → J/ψ`ν̄`)

dq2d cos θ`
=
G2
F |Vcb|2|~p2|q2

32(2π)3m2
Bc

Å
1− m2

`

q2

ã2

×

×
{
|1 + VL|2

[
(1− cos θ`)

2|H++|2 + (1 + cos θ`)
2|H−−|2 + 2 sin2 θ`|H00|2

+ 2δ`

(
sin2 θ`(|H++|2 + |H−−|2) + 2|Ht0 −H00 cos θ`|2

)]
+ |VR|2

[
(1− cos θ`)

2|H−−|2 + (1 + cos θ`)
2|H++|2 + 2 sin2 θ`|H00|2

+ 2δ`

(
sin2 θ`(|H++|2 + |H−−|2) + 2|Ht0 −H00 cos θ`|2

)]
− 4
(

ReVR + VRVL

)[
(1 + cos2 θ`)H++H−− + sin2 θ`|H00|2

+ 2δ`

(
sin2 θ`H++H−− + |Ht0 −H00 cos θ`|2

)]
+ 16 cos θ`H

S
VH

0
TTLP

+ 2|P |2|HS
V |2 + 4

√
2δ`H

S
V (Ht0 −H00 cos θ`)

(
ReP + P VL

)
+ 16|TL|2

[
|H0

T |2
(

1 + 2δ` + (1− 2δ`) cos 2θ`

)
+ 2|H+

T |2 sin2 θ`
2

(
1 + 2δ` + (1− 2δ`) cos θ`

)
+ 2|H−T |2 cos2 θ`

2

(
1 + 2δ` − (1− 2δ`) cos θ`

)]
− 16

√
2δ`

(
ReTL + TLVL

)[
H++H

+
T +H−−H

−
T +H00H

0
T

−
(
H++H

+
T −H−−H−T +Ht0H

0
T

)
cos θ`

]}
.

The hadronic helicity amplitudes are expressed as

H±±(q2) =
−(mBc +mJ/ψ)2A1(q2)± 2mBc|~p2|V (q2)

mBc +mJ/ψ

,

HS
V (q2) =

2mBc

mb(µ) +mc(µ)
|~p2|A0(q2),

H00(q2) =
−(m2

Bc
−m2

J/ψ − q2)(mBc +mJ/ψ)2A1(q2) + 4m2
Bc
|~p2|2A2(q2)

2mJ/ψ

√
q2(mBc +mJ/ψ)

,

Ht0(q2) = −2mBc |~p2|√
q2

A0(q2)

H±T (q2) = − 1√
q2

î
±
»
λ(m2

Bc
,m2

J/ψ, q
2)T1(q2) + (m2

Bc −m2
J/ψ)T2(q2)

ó
,

H0
T (q2) = − 1

2mJ/ψ

[
(m2

Bc + 3m2
J/ψ − q2)T2(q2)−

λ(m2
Bc
,m2

J/ψ, q
2)

m2
Bc
−m2

J/ψ

T3(q2)
]
,

(4.53)
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where again, the q2 dependence has been left implicit in the expression for the decay

distribution.

A comparison of the predictions for branching fractions in the SM for both decays

is given in table 4.3 from the available literature, where the branching fraction

values have been updated using the latest value for the Bc lifetime, τBc = (0.507±
0.009) ps [192], while in the brackets the original published values of the branching

fractions are cited. If there are no brackets the branching fractions have already

been calculated using the latest value for τBc .

Table 4.3: Branching fractions of Bc → J/ψ, ηc decays calculated in different

models and given in %, with ` denoting a light lepton, e or µ.

Mode this work
QCDSR

[132]
SR

[133]
pQCD
[131]

RCQM
[102]

CCQM
[145,184]

RQM
[104]

RQM
[134]

RQM
[105]

RQM
[135]

LFQM
[138]

Bc → ηc`ν̄` 0.82+0.12
−0.11

0.85
(0.75)

1.85
(1.64)

0.50
(0.44)

0.91
(0.81)

0.95
0.47

(0.42)
0.89

0.52
(0.52)

0.85
0.74

(0.67)

Bc → ηcτ ν̄τ 0.26+0.06
−0.05

0.25
(0.23)

0.55
(0.49)

0.15
(0.14)

0.25
(0.22)

0.24 - - - -
0.21

(0.19)

Bc → J/ψ`ν̄` 2.24+0.57
−0.49

2.16
(1.9)

2.67
(2.37)

1.13
(1.00)

2.33
(2.07)

1.67
1.39

(1.23)
1.42

1.49
(1.47)

2.33
1.64

(1.49)

Bc → J/ψτ ν̄τ 0.53+0.16
−0.14

0.54
(0.48)

0.73
(0.65)

0.33
(0.29)

0.55
(0.49)

0.40 - - - -
0.41

(0.37)

4.2.2. Lepton flavour universality ratios

The LFU-testing ratios of semileptonic branching fractions using the LCSR form

factors fitted to the modified BCL parametrization from eq. (4.33) are

Rηc |SM ≡ Γ(Bc→ηcτ ν̄τ )
Γ(Bc→ηcµν̄µ)

= 0.32± 0.02 , (4.54)

RJ/ψ|SM ≡ Γ(Bc→J/ψτν̄τ )
Γ(Bc→J/ψµν̄µ)

= 0.24± 0.02. (4.55)

Results agree very well with the recent model-independent analysis of RJ/ψ [142,144]

and Rηc [143,144], but the tension persists with the experimental value at the level

of ≈ 2σ.

The ratios of the branching fractions RJ/ψ,ηc are computed next in the context of

different NP scenarios using the form factors presented in section 4.1. The values of
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the NP operators’ effective couplings considered in this analysis are discussed above

and are listed in eq. (4.48) and eq. (4.49). In figure 4.4 the q2 dependence of the

ratios Rηc and RJ/ψ is shown in the presence of only one NP operator (first two

figures of both panels). The third figure in both panels shows the ratio in presence

of two NP operators. The SM value is always shown by the blue dotted line. The

ratio increases for most of NP contributions for both J/ψ and ηc. The SL = 4TL

case with the coupling being purely real or imaginary results in a decrease in the

ratio Rηc . This is due to the negative interference between SL and TL , eq. (4.52).

The shaded region shows the 2σ allowed region for VL, SL = 4TL, SL,R parameters in

the 1D fit, with the central value shown by a dashed line. In the case of 2D scenarios

the results are presented at the best fit point of NP couplings. As expected, the

ratio Rηc is more sensitive to the scalar and the tensor operators, whereas RJ/ψ is

more sensitive to VL. Values of RJ/ψ and Rηc in presence of different NP scenarios
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Figure 4.4: Ratios of branching fractions Rηc(q
2) (upper panel), RJ/ψ(q2) (lower

panel) as a function of q2. The blue dotted lines are the SM prediction, the green

dashed line is for the best fit values of the NP couplings in the 1D scenario as

discussed in the text. The green band represents NP effects from the 2σ allowed

regions in the 1D scenarios. The third figure in both panels is the result for the best

fit points in the 2D scenarios.

are listed in table 4.4. The results are presented for the best fit points, as well as

for the 2σ allowed regions in the 1D scenario.

It can be noted that none of the NP scenarios considered here can explain the 2σ
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tension in RJ/ψ with the experiment, if the values of Wilson coefficients are taken

from a recent global fit to experimental data [158].

Table 4.4: The values of Rηc and RJ/ψ in presence of different NP scenarios. The

subscript and the superscript are the values for the 2σ range of the NP couplings.

VL SL SR SL = 4TL

R1D
ηc 0.39+0.03

−0.03 0.44+0.11
−0.11 0.49+0.10

−0.09 0.26+0.08
−0.06

R1D
J/ψ 0.29+0.02

−0.03 0.24+0.01
−0.01 0.23+0.01

−0.01 0.25+0.01
−0.02

(VL, SL = −4TL) (SR, SL) (VL, SR) Re, Im[SL = 4TL]

R2D
ηc 0.42 0.45 0.44 0.43

R2D
J/ψ 0.29 0.22 0.27 0.26

4.2.3. Forward-backward asymmetry, convexity parameter and the τ

polarization

Separating the two-fold distribution to terms proportional to powers of cos θ`, as in

appendix D, a set of observables can be defined that test the SM through final-state

polarizations/angular kinematics. Since the observables are defined in appendix D,

here the definitions are not repeated. Definitions of angles are shown in figure 4.5,

and as can be seen, the ẑ axis is chosen as the one alone which the J/ψ meson

propagates in the Bc rest frame, while the virtual W ∗ propagates in the −ẑ direction.

The two planes of leptonic pairs define the angle χ. Definitions of kinematic variables

can alter the expressions among publications, so one has to be extra careful when

comparing.

1. The backward-forward asymmetry AFB(q2)

Neither the forward-backward asymmetry, nor the convexity parameter are sensitive

to the 1D scenario in which only the VL coupling is turned on. The Bc → ηc

transition appears to be more sensitive to the new physics operators as compared

to the Bc → J/ψ transition. In case of the J/ψ decay mode, the presence of the SL
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θV

µ−

µ+

J/ψ

Bc

χ

W ∗

ℓ−

ν̄ℓ

θℓ
z

Figure 4.5: Angular conventions for the Bc → J/ψ(→ µ+µ−)`ν` decay.

and SR coefficients in the 2D scenario leads to a significant deviation from AFB(q2)

prediction in the SM (table 4.5). The differential forward-backward asymmetry is

shown in figure 4.6.
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Figure 4.6: Differential forward-backward asymmetry dAFB(q2)/dq2 for ηc (upper

panel), and J/ψ (lower panel) as a function of q2. The blue dotted lines are the SM

prediction, the green dashed line is for the best fit values of the NP couplings in the

1D scenario as discussed in the text. The green band represents the NP effects from

the 2σ allowed regions. The third figure in both panels is the result for the best fit

points in the 2D scenarios.

2. The convexity parameter Cτ
F (q2)

The present allowed values of the coupling have a very small effect on Cτ
F (q2) in

case of J/ψ, whereas in case of ηc the SL = 4TL case enhances Cτ
F (q2) only at large
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values of q2 (table 4.5). The differential convexity parameter is shown in figure 4.7.
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Figure 4.7: Differential convexity parameter dCτ
F(q2)/dq2 for ηc (upper panel), and

J/ψ (lower panel) as a function of q2. The blue dotted lines are the SM prediction,

the green dashed line is for the best fit values of the NP couplings in the 1D scenario

as discussed in the text. The green band represents the NP effects from the 2σ

allowed regions. The third figure in both panels is the result for the best fit points

in the 2D scenarios.

3. The τ lepton polarization P τ
L,T (q2)

Here the polarization of the final-state τ in the W− rest frame in the presence of the

NP operators is discussed. The differential decay rate for a given spin projection

in a given direction can be easily obtained with the inclusion of the spin projection

operators (1 + γ5/si)/2 for τ in the calculation, where sµL and sµT are respectively the

longitudinal and the transverse sppin projections of τ in the W− rest frame and are

given by [202–204]

sµL =
1

mτ

(|~pτ |, Eτ sin θτ , 0, Eτ cos θτ ), sµT = (0, cos θτ , 0,− sin θτ ). (4.56)

The longitudinal and the transverse polarization components of the τ are then de-

fined as:

Pi(q
2) =

dΓ(sµi )/dq2 − dΓ(−sµi )/dq2

dΓ(sµi )/dq2 + dΓ(−sµi )/dq2
=

Pi(q2)

2(aθ`(q
2) + cθ`(q

2)/3)
, i = L, T, (4.57)
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where, including the NP effects

1

N(q2)
PηcL (q2) =

{
|1 + VL + VR|2

[
− |H0|2 + δτ (|H0|2 + 3|Ht|2)

]
+ 3
√

2δτH
S
PHt

(
ReS + S VL

)
+

3

2
|S|2|HS

P |2 + 8|TL|2(1− 4δτ )|HT |2

− 4
√

2δτ

(
ReTL + TLVL

)
H0HT

}
,

(4.58)

1

N(q2)
PJ/ψL (q2) =

{
(|1 + VL|2 + |VR|2)

[
−
∑
n=±,0

|Hnn|2 + δτ

( ∑
n=±,0

|Hnn|2 + 3|Ht0|2
)]

+ 2ReVR
[
(1− δτ )(|H00|2 + 2H++H−−) + 3δτ |Ht0|2

]
− 3
√

2δτ

(
ReP + P VL

)
HS
VHt0

+
3

2
|P |2|HS

V |2 + 8|TL|2(1− 4δτ )
∑
n

|Hn
T |2

+ 4
√

2δτ

(
ReTL + TLVL

) ∑
n=±,0

HnnH
n
T

}
,

(4.59)

for the longitudinal polarization, where the differential decay width normalization

factor has been defined as

N(q2) =
1

(2π)3

|~p2|
32m2

Bc

Å
1− m2

`

q2

ã
. (4.60)

For the transverse polarization, the functions are

1

N(q2)
PηcT (q2) =

3π
√
δτ

2
√

2

{
|1 + VL + VR|2H0Ht +

1√
2δτ

(
ReS + S VL

)
HS
PH0

+ 4
√

2δτ

(
ReTL + TLVL

)
HtHT + 4HS

PHTTLS
}
,

(4.61)
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and

1

N(q2)
PJ/ψT (q2) =

3π
√
δτ

4
√

2

{
(|1 + VL|2 − |VR|2)(|H−−|2 − |H++|2)

+ 2(|1 + VL|2 + |VR|2)Ht0H00 − 4ReVRHt0H00 + 8HV
S H

0
TTLP

− 2√
2δτ

(
ReP + P VL

)
HS
VH00 + 16|TL|2(|H−T |2 − |H+

T |2)

+ 4
(

ReTL + TLVL

)[1 + 2δτ√
2δτ

(H++H
+
T −H−−H−T )− 2

√
2δτHt0H

0
T

]}
.

(4.62)

The transverse polarization of τ , as can be seen from eq. (4.61) and (4.62), has an

overall factor of
√
δτ and therefore vanishes in the limit of zero lepton mass and

the emitted lepton is then fully longitudinally polarized. Consequently, the τ lepton

can be largely transversely polarized as compared to the muons or the electrons.

The q2 dependence of the τ polarization in presence of different NP operators is
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Figure 4.8: Longitudinal polarization of τ (P
ηc,J/ψ
L ) in the decay of Bc → ηcτν

(upper panel), and Bc → J/ψτντ (lower panel) as a function of q2. The blue dotted

lines are the SM prediction, the green dashed line is for the best fit values of the NP

couplings in the 1D scenario as discussed in the text. The green band represents

the NP effects from the 2σ allowed regions. The third figure in both panels is the

result for the best fit points in the 2D scenarios.

shown in figure 4.8, and figure 4.9. The following observations can be made from

the figures. The longitudinal and transverse polarizations of τ in the ηc decay mode

are more sensitive to the NP operators compared to the J/ψ decay mode. The
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tau transverse polarization in the J/ψ decay mode is again mostly affected by the

NP operator SL = 4TL at low values of q2, whereas the SL, SR parameters in the

2D scenario lead to a deviation from the SM prediction for both the longitudinal

and the transverse τ polarization. The predictions for the mean forward-backward

asymmetry, the convexity parameter and the tau polarization in the presence of

different NP operators are summarised in table 4.5.
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Figure 4.9: Transverse polarization of τ (P
ηc,J/ψ
T ) in the decay for Bc → ηcτν

(upper panel), and Bc → J/ψτντ (lower panel) as a function of q2. The blue dotted

lines are the SM prediction, the green dashed line is for the best fit values of the NP

couplings in the 1D scenario as discussed in the text. The green band represents

the NP effects from the 2σ allowed regions. The third figure in both panels is the

result for the best fit points in the 2D scenarios.

4.2.4. Four-fold differential decay widths

In this section for the first time the process Bc → J/ψ (J/ψ → µ+µ−) `ν` is con-

sidered, the 4-fold differential decay rate being dependent on three angles θV , θ`, χ

and the momentum transfer q2. The angle θ` is the same as defined in the previous

section, θV is the polar angle between the direction of the emitted µ− in the J/ψ

rest frame and the parent J/ψ in the Bc rest frame, and χ is the azimuthal angle be-

tween the W ∗`ν̄` plane and the J/ψµ+µ− plane. The angles are shown in figure 4.5.

This offers a possibility to explore numerous asymmetries and an opportunity to

constrain future NP searches through multiple observables.
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Table 4.5: The integrated values of the forward-backward asymmetry, the convex-

ity parameter and the longitudinal and transverse polarization of τ in the whole q2

region, in case of different NP scenarios discussed in the text. The subscript and

the superscript are the values for the 2σ range of the NP couplings.

SM SL SR SL = 4TL (VL, SL = −4TL) (SR, SL) (VL, SR) Re, Im[SL = 4TL]

AηcFB −0.35 −0.31−0.29
−0.34 −0.30−0.28

−0.32 −0.36−0.34
−0.36 −0.33 −0.31 −0.33 −0.27

Cτ,ηc
F −0.22 −0.16−0.13

−0.21 −0.14−0.12
−0.17 −0.27−0.21

−0.35 −0.19 −0.15 −0.19 −0.16

P ηc
L 0.42 0.580.66

0.43 0.620.68
0.53 0.310.45

0.14 0.50 0.59 0.50 0.57

P ηc
T 0.81 0.730.80

0.67 0.700.76
0.66 0.840.86

0.80 0.77 0.72 0.77 0.43

A
J/ψ
FB 0.02 0.0050.02

−0.01 0.040.05
0.03 0.020.02

0.01 0.006 0.07 0.03 0.02

C
τ,J/ψ
F −0.07 −0.07−0.07

−0.07 −0.07−0.07
−0.07 −0.07−0.06

−0.07 −0.07 −0.08 −0.08 −0.08

P
J/ψ
L −0.53 −0.50−0.48

−0.53 −0.57−0.55
−0.58 −0.53−0.53

−0.53 −0.51 −0.60 −0.54 −0.48

P
J/ψ
T 0.40 0.430.45

0.40 0.350.38
0.33 0.350.41

0.29 0.39 0.29 0.38 0.28

The J/ψ is too light to decay to τ+τ−, therefore the outgoing leptons can be

either a pair of muons or of electrons. Masses of leptons originating from the J/ψ

decay are ignored, but the leptonic mass from the W ∗ decay is retained. The total

differential decay rate for the µ−Lµ
+
R (σ ∼ λ−` − λ+

` = −1) final state is given by

eq. (4.63) below. The corresponding expressions for µ−Rµ
+
L final state can be obtained

by setting θV → θV + π in eq. (4.63). Therefore,

G(q2, θ`, θV , χ) ≡ dΓ(Bc → (J/ψ → µ+
Rµ
−
L)`ν̄`)

dq2d cos θ`d cos θV dχ

=
3G2

F |Vcb|2|~p2|q2

8(4π)4m2
Bc

Å
1− m2

`

q2

ã2

B(J/ψ → µ−Lµ
+
R)×

×
[
|1 + VL|2TVL + |VR|2T|VR|2 + TV intR

+ 2|P |2(HV
S )2 sin2 θV

+ TP int + |TL|2T|TL|2 + TT intL

]
,

(4.63)

where the amplitudes Ti are given in the appendix D. The interference terms with

NP operators are contained in the numerical analysis, but are not listed in the
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expressions. The 4-fold differential distribution contains various combinations of the

θ`, θV and χ angles, with the imaginary couplings being proportional to sinχ. The

constraints on the NP coefficients (VL, SL and SR) in the 1D scenario are obtained

using the condition that they are purely real. The global fit results considered here

do not include the vector operator VR, as it does not arise at the dimension-six level

in the SU(2)L-invariant effective theory. The application of relation SL = 4TL in

the purely imaginary case is in more agreement with the SM compared to the case

with the real Wilson coefficients. However, the effects of the real and the imaginary

components of these NP coefficients can be isolated by constructing different angular

asymmetries.

First the forward-backward asymmetry in θV and both θV , θ` with the angle χ

fully integrated over is considered1

Ã
J/ψ
FB <θV >

=
1

Γ

∫ 2π

0

dχ

∫ 1

−1

d cos θ`

Ç∫ 1

0

−
∫ 0

−1

å
d cos θV G(q2, θ`, θV , χ)

=
8π

3Γ

[
|1 + VL|2(1 + δ`)

(
H2
−− −H2

++

)
+ 8|TL|2(1 + 4δ`)(|H−T |2 − |H+

T |2)

−12
√

2δ`

(
ReTL + TLVL

)(
H−−H

−
T −H++H

+
T

)]
,

(4.64)

Ã
J/ψ
FB <θV , θ`>

=
1

Γ

∫ 2π

0

dχ

Ç∫ 1

0

−
∫ 0

−1

å
d cos θV

Ç∫ 1

0

−
∫ 0

−1

å
d cos θ` G(q2, θ`, θV , χ)

=
2π

Γ

[
|1 + VL|2

(
H2
−− +H2

++

)
+ 32|TL|2δ`(|H−T |2 + |H+

T |2)

−8
√

2δ`

(
ReTL + TLVL

)(
H++H

+
T +H−−H

−
T

)]
,

(4.65)

where Γ in the denominator is the q2-dependent decay width of Bc → µ+µ−`ν̄`

normalized to the normalization factor N(q2), obtained by integrating eq. (4.63)

1In the publication, there is a typo in this equation - the q2 momentum transfer is not integrated
over.
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over all the angles and is given by

Γ ≡ 1

N(q2)

d

dq2
Γ(Bc → µ+µ−`ν̄`) =

16π

9

{
2|1 + VL|2

[
(1 + δτ )

(
H2

00 +H2
++ +H2

−−

)
+ 3δτH

2
t0

]
+ 3|HV

S |2|P |2 + 6
√

2δτH
V
S Ht0

(
ReP + P VL

)
+ 16|TL|2(1 + 4δτ )

(
|H0

T |2 + |H+
T |2 + |H−T |2

)
− 24

√
2δτ

(
ReTL + TLVL

)(
H00H

0
T +H++H

+
T +H−−H

−
T

)}
,

(4.66)

and the <> brackets in eq. (4.66) denote the angle in which the asymmetry is

explored. It can be seen from eq. (4.64) that the numerator is not sensitive to

the scalar type NP operators. Therefore the sensitivity to the scalar NP comes

only from the total decay width in the denominator, eq. (4.66). In figure 4.10
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Figure 4.10: Forward-backward asymmetry AFB <θV > [upper-panel] and AFB <

θV , θ`> [lower-panel] as a function of q2. The blue dotted lines are the SM prediction,

the green dashed line is for the best fit values of the NP couplings in the 1D scenario

as discussed in the text. The green band represents the NP effects from the 2σ

allowed regions. The third figure in both panels is the result for the best fit points

in the 2D scenarios.

A
J/ψ
FB < θV > and A

J/ψ
FB < θV , θ` > are shown as a function of q2 with the values of

the new physics couplings as given in eq. (4.48) and eq. (4.49). The current bound

on the NP couplings makes the observable A
J/ψ
FB < θV > sensitive to SL = 4TL in
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the 1D scenario and to the same combination with both the real and the imaginary

components present in case of 2D scenario. As for the asymmetry A
J/ψ
FB <θV >, the

deviation from the SM in case of 2D scenario for the combination Re[SL = 4TL],

Im[SL = 4TL] can be as large as 50-70% in the region of small q2. However, the

other observable with the asymmetry in both θV and θ`, A
J/ψ
FB < θV , θ` > is not a

good observable to look for NP scenarios under present constraints on the couplings.

Additional asymmetries can be constructed in the angle χ along with θV and θ`.

These asymmetries are proportional to both cosχ and sinχ, and their corresponding

expressions are given as

A
J/ψ
FB <χ, θV >

=
1

Γ

Ç∫ π/2

−π/2
−
∫ 3π/2

π/2

å
dχ

∫ 1

−1

d cos θ`

Ç∫ 1

0

−
∫ 0

−1

å
d cos θV×

× G(q2, θ`, θV , χ)

=
−4π

3Γ

{
|1 + VL|2

[
H00

(
H−− −H++

)
+ 2δ`Ht0

(
H−− +H++

)]
− 2HV

S H
+
T TLP +

√
2δ`

(
H−− +H++

)
HV
S

(
ReP + P VL

)
+ 32δ`H

0
T

(
H−T −H+

T

)
|TL|2 − 4

√
2δ`

(
ReTL + TLVL

)
×

×
(
H00(H−T −H+

T ) +H0
T (H−− −H++) +Ht0(H−T +H+

T )
)}
,

(4.67)

and

A
J/ψ
FB <χ, θV , θ`>

=
1

Γ

Ç∫ π/2

−π/2
−
∫ 3π/2

π/2

å
dχ

Ç∫ 1

0

−
∫ 0

−1

å
d cos θ`

Ç∫ 1

0

−
∫ 0

−1

å
d cos θV×

× G(q2, θ`, θV , χ)

=
16

9Γ
(2δ` − 1)

[
|1 + VL|2H00

(
H−− +H++

)
− 16|TL|2H0

T

(
H−T +H+

T

)]
.

(4.68)

In figure 4.11, the asymmetries A
J/ψ
FB <χ, θV > [upper-panel] and A

J/ψ
FB <χ, θV , θ`>

[lower-panel] are shown as a function of q2. They behave similarly to the asymmetries

A
J/ψ
FB <θV > and AFBJ/ψ <θV , θ`> discussed above, where χ was integrated over the
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Figure 4.11: Asymmetries AFB < χ, θV > [upper-panel] and AFB < χ, θV , θ` >

[lower-panel] as a function of q2. The blue dotted lines are the SM prediction, the

green dashed line is for the best fit values of the NP couplings in the 1D scenario as

discussed in the text. The green band represents the NP effects from the 2σ allowed

regions. The third figure in both panels is the result for the best fit points in the

2D scenarios.

whole range. These observables do not provide any additional information compared

to AFB < θV > and AFB < θV , θ` > discussed before. The 2D scenario in case of

A
J/ψ
FB < χ, θV > with Re[SL = 4TL] and Im[SL = 4TL] results in about 10-20%

deviation from the SM value at low values of q2.

Finally, observables sensitive only to the imaginary component of the NP opera-

tors are considered, which are exactly zero within the SM. There are three possible

combinations, (a) asymmetry depending only on χ, (b) asymmetry depending on χ

and θV , and (c) asymmetry depending on χ, θV and θ`. The relevant expressions

are

AIm
FB <χ>

=
1

Γ

Ç∫ π

0

−
∫ 2π

π

å
dχ

∫ 1

−1

d cos θ`

∫ 1

−1

d cos θV G(q2, θ`, θV , χ)

=
π2

Γ

[√
2δ`

(
4 {ImTL + (TLVL)∗}

{
H00(H−T −H+

T ) +H0
T (H++ −H−−)

+ Ht0(H+
T +H−T )

}
+HV

S {ImP + (P VL)∗}
(
H−− +H++

))
+ 4HV

S H
+
T (P TL)∗

]
,

(4.69)
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where (TLVL)∗ = ImTLReVL − ImVLReTL , (P VL)∗ = ImP ReVL − ImVLReP and

(P TL)∗ = ImP ReTL − ImTLReP shorthand notations have been introduced,

AIm
FB <χ, θV >

=
1

Γ

Ç∫ π

0

−
∫ 2π

π

å
dχ

∫ 1

−1

d cos θ`

Ç∫ 1

0

−
∫ 0

−1

å
d cos θV G[q2, θ`, θV , χ]

=
4π

3Γ

√
δ`

[
4
√

2 {ImTL − (TLVL)∗}×

×
{
H00(H−T +H+

T ) +Ht0(H−T −H+
T )−H0

T (H++ +H−−)
}

+
√

2HV
S

(
H−− −H++

)
{ImP − (P VL)∗}+

4√
δ`
HV
S H

+
T (P TL)∗

]
,

(4.70)

and finally

AIm
FB <χ, θV , θ`>

=
1

Γ

Ç∫ π

0

−
∫ 2π

π

å
dχ

Ç∫ 1

0

−
∫ 0

−1

å
d cos θ`

Ç∫ 1

0

−
∫ 0

−1

å
d cos θV G[q2, θ`, θV , χ]

=
16

9Γ
(2δ` − 1)

[
H00

(
H−− −H++

)(
2ImVR + ImVRReVL − ReVRImVL

)]
.

The asymmetry AIm
FB < χ, θV , θ` > is only sensitive to the NP operator VR and is

therefore not relevant for this case since right-handed vector operators are not con-

sidered in the global fits, as discussed before. In figure 4.12 AIm
FB <χ> [upper-panel]

and AIm
FB < χ, θV > [lower-panel] are shown as a function of q2. These observ-

ables are only shown for ImSL = 4 ImTL in the 1D scenario and ReSL = 4 ReTL,

ImSL = 4 ImTL in the 2D scenarios as these were the only cases considered in the

global fit in ref. [158]. The forward-backward asymmetry depending only on χ in

the light of results from the current global fit shows about 1% deviation from the

SM in the 1D scenario and up to 3% deviation in the 2D scenario, in the mid-range

of q2 = 5− 9 GeV2. The asymmetry AIm
FB <χ, θV > in case of the 2D scenario only

deviates around 1% in the low q2 region, whereas it is insensitive to NP in the 1D

scenario. The predictions for the integrated forward-backward asymmetries in the

presence of different NP operators is summarised in table 4.6.
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Figure 4.12: Asymmetries AIm
FB(χ) [upper-panel] and AimgFB (χ, θV ) [lower-panel] as

a function of q2. The SM value being zero is shown by a blue dotted line, the

green dashed line is for the best fit values of the NP couplings in the 1D scenario as

discussed in the text. The green band represents the NP effects from the 2σ allowed

regions. The second figure is for the relevant 2D scenario.

Table 4.6: The integrated values of the forward-backward asymmetries in the whole

q2 region, in case of different NP scenarios discussed in the text. The subscript and

the superscript are the values for the 2σ range of the NP couplings.

SM SL SR SL = 4TL (VL, SL = −4TL) (SR, SL) (VL, SR) Re, Im[SL = 4TL]

A
J/ψ
FB <θV > 0.16 0.160.16

0.15 0.170.17
0.16 0.140.17

0.12 0.15 0.17 0.16 0.09

A
J/ψ
FB <θV , θ`> 0.21 0.200.21

0.20 0.210.22
0.21 0.210.22

0.21 0.21 0.22 0.21 0.21

−AJ/ψFB <χ, θV > 0.09 0.100.10
0.09 0.090.09

0.09 0.090.10
0.08 0.10 0.08 0.10 0.07

−AJ/ψFB <χ, θV , θ`> 0.03 0.030.03
0.03 0.030.03

0.03 0.030.03
0.03 0.03 0.03 0.03 0.02

AIm
FB <χ> 0.0 0.0 0.0 −0.0040.001

−0.01 0.0 0.0 0.0 0.02

AIm
FB <χ, θV > 0.0 0.0 0.0 −0.0020.0

−0.003 0.0 0.0 0.0 −0.001
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4.3. Conclusion

The sensitivity of all the considered observables in this section to the different NP

operators is summarized in table 4.7. Most of the observables in the ηc decay mode

are sensitive to the NP coupling SR. The transverse polarization of τ is mostly

affected by the current best fit point of the combination of coefficients Re, Im[SL =

4TL] in the 2D NP scenario. The 2D NP scenario with the presence of both SR and

SL leads to largest deviation from the SM predictions for most of the observables in

the case of J/ψ, apart from RJ/ψ.

VL SL SR SL = 4TL (VL, SL = −4TL) (SR, SL) (VL, SR) Re,Im[SL = 4TL]

Rηc X

AηcFB X∗ X∗ X

Cτ,ηc
F X X X∗

P ηc
L X X∗

P ηc
T X

RJ/ψ X X

A
J/ψ
FB X

P
J/ψ
L X

P
J/ψ
T X∗ X X

Table 4.7: Summary of the sensitivity of the observables to the NP couplings. The

best fit value of the NP coupling which is most sensitive to the observable is marked

with X. The boxes with X∗ are the ones where 2σ ranges of NP parameters give

the largest deviation from the SM value.

In addition, the full 4-fold differential distribution of the decay rate Bc → J/ψ`ν`,

with J/ψ decaying to a pair of leptons of opposite helicity is considered for the first

time in the presence of new physics operators. We find that the asymmetry in

the angle θV is mostly sensitive to the NP couplings Re, Im[SL = 4TL], in the 2D

NP scenarios. The asymmetries in the angle χ, which are zero in the SM and

are sensitive to the imaginary part of the NP coupling, are also considered and

found to be sensitive to SL = 4TL combination of parameters. Therefore, with the
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current allowed parameter space for the SL = 4TL NP parameters obtained from the

global fit to experimental data on semileptonic B → D,D∗ decays, the asymmetries

constructed with θV , χ and (θV , χ) angles lead to significant deviation from the SM

prediction.

However, it is important to stress that none of the NP scenarios derived from

the recent global fit analysis of the available experimental data on semileptonic

B → (D,D∗)`ν̄` decays [158] can also simultaneously explain the current 2σ tension

with the experimental RJ/ψ ratio. With the extended experimental LHCb program,

future studies with more data will be needed to disentangle the existence of LFU

violation in Bc decays.
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5. |Vub| determination from the

B+
c → D(∗) `+ν` decay

This chapter is based on research published in D. Leljak and B. Melic, JHEP 02

(2020), 171 doi:10.1007/JHEP02(2020)171 [arXiv:1909.01213 [hep-ph]] [2].

The main source for the extraction of |Vub| from the exclusive decays is the

semileptonic B̄ → π`ν̄` decay, which is precisely measured and also relatively pre-

cisely determined theoretically. Theoretical uncertainties are mainly driven by the

lack of precise determinations of hadronic matrix elements, or more specifically -

form factors. Nowadays, precise theoretical calculation of B̄ → π form factors are

available in the framework of the LCSR at q2 ≤ 12 − 15 GeV [95, 205, 206] and on

the lattice at q2 ≥ 15 GeV [78, 80]. Combined and constrained by unitarity and

analyticity principles, these two approaches enable a form factor determination in

the full q2 range and, consequently, very precise determination of |Vub| [207]

|Vub|B̄→π = (3.53± 0.08stat ± 0.06syst) · 10−3 . (5.1)

Since the work this section is based on was published, two additional, very precise

determinations were published [3, 208], in one of which the author of this thesis

participated.

With large accumulation of data on Λ0
b decays at LHCb, it became possible to

study also the semileptonic Λ0
b decays, in order to extract the |Vub|/|Vcb| ratio [209]
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using the QCD lattice results for the form factors [210]:

|Vub|/|Vcb|Λb→Λc = 0.084± 0.004exp ± 0.004lattice , (5.2)

which is again somewhat lower than the most recent averaged inclusive determina-

tion of this ratio [42].

With the advancement on the experimental front, more and more hadronic decay

channels are becoming available for the exclusive extraction of CKM matrix ele-

ments, which is especially beneficial for the b→ u`ν̄` semileptonic transitions [211].

The most promising exclusive decays of this type are B → (η, η′, ω, ρ)`ν̄`, but also, in

the near future, the Bc → D(∗)`ν̄` decay, which is discussed here. LHCb plans to go

for rare Bc → D0`ν̄` decays in the Upgrade II [212]. As stated for the LHCb Upgrade

II, approximately 30,000 reconstructed Bc → D0`ν̄` decays can be expected with

the 300 fb−1 Upgrade II dataset, which could lead to a competitive measurement of

|Vub| from these decays too.

In this section the calculation of Bc → D(∗) form factors is addressed and an

analysis of the semileptonic Bc → D(∗) decays is performed. For the calculation of

the form factors the three-point sum rule (3ptSR) method [81–83,213] is employed.

Although the method itself has some general limitations, for heavy-to-heavy decays

of the type considered here the QCDSR seems to be of adequate applicability. This

behaviour mainly concerns heavy-to-light transitions, while in Bc → D(∗) decays,

considered here, the use of heavy-quark symmetries, and the description of mesons in

terms of light-cone distribution amplitudes seem not to be trustworthy approaches.

As will be discussed briefly in section 5.1, one can parametrize Bc → D(∗) matrix

elements in the heavy quark limit in terms of two form factors which can be further

expressed with the help of the heavy-quark symmetry as integrals over the Bc me-

son wave function, eq. (5.14) and (5.16). However, there are no fully reliable and

controllable models for calculating the Bc wave function without further approxima-

tions being involved, such as various non-relativistic or heavy-quark approximations

at zero-recoil, or the use of constituent quark models related to a quark potential

and/or relativistic quark kinematics, as for example the ones used in ref. [191]. Also,
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the impact of the deviation from the infinite heavy quark mass limit is then diffi-

cult to judge upon and incorporate into systematical uncertainties. On the other

hand, the light-cone sum rule method relies on the known description of the final

(light) meson or the decaying heavy-meson distribution amplitudes (DAs) of in-

creasing twist, which is hardly applicable for our Bc → D(∗) transitions, since the

Bc meson DA’s aren’t known, nor are the D(∗) mesons light enough that their DAs

could be systematically expanded near the light-cone. There exists the Brodsky-

Huang-Lepage (BHL) prescription [214] on how to (for a relativistic two particle

state) approximately connect the wave function with the light-cone functions, used

in [133]. But, this approach involves models with constituent quark masses and

arbitrary phenomenological parameters which are hardly numerically controllable.

There are no available lattice QCD form factor predictions for Bc → D(∗) decays

as of this moment, but the HPQCD collaboration has announced some work is in

progress. Alternative methods used in the estimation of Bc → D∗ form factors, like

various relativistic quark models provide form factors with a precision that cannot

be systematically controlled and therefore calculated values for the form factors dif-

fer in a wide range, see table 5.3. On the other hand, OPE expansion in the QCDSR

is under control, the non-perturbative vacuum condensates are universal and known

also from sum rule calculations.

5.1. QCDSR form factors

The form factors are taken in the WS basis, and are defined as in section 3, with

Bq1 → Bc and Mf = D(∗), which means q1 → c and q2 → u. The required decay

constants are defined as

〈Ω| c̄(0)iγ5b(0) |Bc〉 = fBc
m2
Bc

mc +mb

,

〈Ω| c̄(0)iγ5u(0)
∣∣D0
〉

= fD0

m2
D0

mu +mc

,

〈Ω| c̄(0)γνc(0) |D∗〉 = fD∗mD∗εν .

(5.3)
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The rest of the standard procedure is explained in section 3.2, while the expressions

and the details of their derivation are presented in appendix A, so here only the

process of sum rule parameter setting is explained, with a comment on the non-local

condensate contributions which were published for the first time in a research paper

this section is based on. The list of contributions considered is given in figure 5.1,

namely the perturbative part and non-perturbative terms up to dimension 5

Πi = Πpert
i + Π

(3)
i + Π

(4)
i + Π

(5)
i + . . . , (5.4)

Figure 5.1: Contributions to correlation function from left to right: (a) per-

turbative diagram,(b) non local quark condensate diagram, (c) an example of a

quark-gluon condensate diagram, (d) an example of a gluon condensate diagram.

The perturbative part is calculated by standard methods imposing the Cutkosky

rules to calculate simultaneously discontinuities in p2
1 and p2

2 of amplitudes described

by the triagle diagram with quarks in the loop, where for the i-th Lorentz structure

(−4)Ims1,s2Πpert
i (s1, s2, q

2) = ρi(s1, s2, q
2), and then by using the double dispersion

relation

Πpert
i (p2

1, p
2
2, q

2) = − 1

(2π)2

∫∫
ρi(s1, s2, q

2)

(s1 − p2
1)(s2 − p2

2)
ds1ds2 . (5.5)

It is easy to see that the quark- and mixed quark-gluon condensate contribu-

tions (figure 5.1) vanish after the Borel transformations in both variables p2
1 = p2

Bc

and p2
2 = p2

D(∗) . However, this is only true if one considers local condensates.

To improve the picture we examine the influence of non-local quark condensates

〈q̄(x)[x, 0]q(0)〉 [215,216] in Bc → D(∗)`ν̄` decays. The non-local quark condensates

are usually introduced as a function smeared over a gaussian centered around x = 0
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(since the non-locality is expected to be small)

〈q̄(x)q(0)〉 = 〈q̄q〉
∞∫

0

dν eν
x2

4 f(ν) (5.6)

with the model-dependent function [217]

f(ν) =
λa−2

Γ(a− 2)
ν1−ae−λ/ν , a− 3 =

4λ

m2
0

(5.7)

or in the simpler version [218], used in this study

f(ν) = δ

Å
ν − m2

0

4

ã
. (5.8)

The first two moments of the model function f(ν) are fixed by the OPE as

∞∫
0

dν f(ν) = 1,

∞∫
0

dν ν f(ν) =
m2

0

4
. (5.9)

Here m2
0 is the standard OPE parameter [219,220] connected with the average quark

virtuality, and is defined as a ratio of quark and quark-gluon condensates

g〈q̄(x)(σ ·G)q(0)〉 ≈ m2
0〈q̄(x)q(0)〉 . (5.10)

The use of the more sophisticated function f(ν) given in eq. (5.7) does not change

anything in the conclusion. Namely, numerically the non-local quark condensates

Π
(3)
i = Π

〈q̄q〉
i and the mixed quark-condensate Π

(5)
i = Π

〈q̄σ.Gq〉
i are contributing just

up to 1% to the result.

All of the non-perturbative diagrams are numerically negligible, and can be safely

neglected.

5.1.1. Setting the sum rule parameters

To calculate the form factors in QCD sum rules, in which the correlation func-

tion is written as a sum of perturbative and non-perturbative contributions as in
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eq. (5.4), the perturbative part is calculated by the usual expansion in the coupling

constant, while the non-perturbative part is described by the manner of Wilson’s

operator product expansion as a sum of expectation values of operators of increasing

dimension. Since it is known that when using the Borel-transformed sum rules in

calculating heavy meson decay constants higher orders of perturbation series can

contribute as much as 30-40%, depending on the scheme (heavy-light decay con-

stants are known to NNLO [221]), whereas the QCD 3-point function is only known

to LO, here the 3-point function is parametrized with the same threshold parame-

ters seff
0 that at LO in QCDSR reproduce the meson decay constants obtained from

the lattice QCD calculations, listed in table 5.1, whereas the 3ptSR Borel mass

parameters M2 are taken in the region where the stability is achieved in the sense

of appearance of the so called Borel plateau. In this way, since the form factor in

3ptSRis proportional to the inverse of decay constants, as in eq. (3.30) and (3.31),

one may conclude that

Fi(q
2) ∝ Π3pt.

i (q2)

Π2pt.
i

=
a(q2) + αs(µ

2)b(q2)

(c+ αs(µ2)d)(e+ αs(µ2)f)

≈ a(q2)

ce
+O
ï
αs

Å
b(q2)

ce
− a(q2)(

d

c2e
+

f

ce2
)

ãò
.

(5.11)

Assuming that form factors also receive positive NLO contributions (this is to be

expected from studies resumming ladder corrections [190]), using the leptonic decay

Table 5.1: Decay constants of mesons with 3ptSR parameters.

Meson lattice [MeV] our value [MeV] seff
0 [GeV2] M2 [GeV2]

fBc 427± 8 [164], 434± 5 [222] 425± 25 53− 55 30− 50

fD0 213± 2 [223], 207± 4 [224] 212± 16 7− 7.5 4− 6

fD∗ 278±23 [225], 224± 9 [226] 258± 40 6− 8 6− 8

constants calculated at LO (with the same soft corrections included in the 3 point

correlation function) with the parameters that reproduce the lattice value might

serve very well to cancel the as-of-yet unknown αs corrections to the 3 point corre-
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lation function.

An approximate relation connecting the Borel mass parameters of different meson

decay constants noticed by authors in [99]

M2
1

M2
2

≈ m2
M1
−m2

Q1

m2
M2
−m2

Q2

(5.12)

where mMi
is mass of the meson, and mQi is the mass of its heavier quark, is found

to hold here too, and, as will be shown later, in 3-point calculations as well. A

reminder is in order - the uncertainties of decay constants arising in the calculation

are connected with the specific method of calculation, since the threshold param-

eters are actually fixed so that they reproduce the lattice values, along with their

uncertainties. Venturing into the 3-point calculation, as mentioned above, the same

Borel thresholds are used as the ones that reproduce the lattice QCD leptonic decay

constants. It is important to notice that, when estimating parametric uncertainties

of the 3ptSR calculation, decay constants and thresholds are not varied indepen-

dently, but are rather always ”plugged in” together - the numerical value of the

threshold is always used with the numerical value of the QCDSR leptonic decay

constant that is reproduced by the latter threshold. The hope is that all the higher

order/higher dimension operator contributions are reproduced through the thresh-

old modification in the 3-point calculation as well. Otherwise, for the b quark the so

called ”potential subtracted” mass [227] is used, which is coincidentally very close to

both the Υ(1S) scheme mass [228] and the kinetic scheme mass [229, 230], whereas

the c-quark the mass is then given by varying the ratio Z of the two masses given

by the QCD lattice calculation [231, 232], keeping in mind that the MS masses are

not used, and this ratio for pole masses tends to be lower as higher order corrections

are included - which is the choice is made to use a somewhat lower value of Z. The

same method described above was already used for calculating Bc → ηc, J/ψ tran-

sition form factors in [183]. All parameters used are listed in table 5.2. As for the

Borel mass parameters, it is found that stability in the sense of appearance of the

Borel plateau is achieved for approximately twice of the values of the Borel mass
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Table 5.2: Parameters used in the QCDSR calculation.

mb = 4.6+0.1
−0.1 GeV mBc = 6.275 GeV M2

Bc
= 60− 90 GeV2

mc = Zmb, Z ≈ 0.29+0.1
−0.1 mD0 = 1.865 GeV M2

D0 = 8− 12 GeV2

mD∗ = 2.007 GeV M2
D∗ = 12− 16 GeV2〈

αs
π
GG
〉

= 0.009± 0.007 GeV4 [233] m0 = 0.8− 1.05 GeV τBc = 0.507± 0.009 ps

parameters used in the 2-point sum rule, so that

M2
2pt.

M2
3pt.

≈ 1

2
, (5.13)

which is a heuristic finding also confirmed by prior QCDSR studies. Additionally, a

demand is set that heavier hadronic states contribute less than 50% of the ground-

state Bc meson contribution to 3ptSR in the Bc channel. This condition (and the

one arising from the mBc reproduction) yields an upper limit in ↑M2
Bc

= 90 GeV2,

and a lower limit in ↓M2
D(∗) = 8 GeV2. The upper constraint on M2

D(∗) is less

rigid. This is probably due to a lack of understanding of αs corrections, which

would modify both the ’Borel window’ and the threshold values. The sum rules

for observables should in principle be independent of the auxiliary Borel parameters

M2. In practice, however, this is only approximately true because of the various

approximations made. Therefore it is important to pick the right ’Borel window’

where all above requirements are satisfied, by checking the stability of the sum rule

against variation of the Borel and other parameters and including the errors into

analysis. The form factor uncertainties presented here reflect also these parameter

variations, and the form factors do not change by more than ∼5% in the acceptable

range of the Borel mass parameters. The estimation of the systematic errors is hard

here, due to a lack of higher-order perturbative corrections in the 3ptSR, which could

be large and would significantly stabilize the sum rules. The extracted values of

sum rule parameters described above are in the acceptable range, expected by some

general considerations, such as for example the relation among Borel parameters of

two different meson constants in eq. (5.12), as well as among Borel parameters from

2ptSR and 3ptSR calculations, given in eq. (5.13).

With the parameters set by the considerations above, in table 5.3 the prediction
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for the form factor values at q2 = 0 are presented together with an extensive list of

the earlier results found in literature. The form factors predicted in previous QCDSR

calculation [132] are significantly larger then the results presented here and those

obtained from other model calculations. The reason can be found in the fact that the

authors there renormalize their perturbative spectral densities using Coulomb-like

gluon exchange corrections which usually results in multiplying the bare values by a

factor of three or more. Another remark is that this kind of renormalization should

work at q2
max, leaving the scaling with q2 somewhat ambiguous, especially having in

mind that the QCDSR are reliable in the low q2 region, i.e. at maximum hadronic

recoil. The authors thus claim that their results can be considered to represent the

upper bounds in the QCDSR approach.

Table 5.3: Form factor predictions at q2 = 0 in various models.

Form Factor
QCDSR

this work

QCDSR

[132]

LCSR

[133]

CCQM

[184,234]

pQCD

[235]

RQM

[104]

RQM

[105]

LFQM

[138]

SMD

[236]

QCDSR

[237]

BSW

[238]

fD
0

+,0(q2 = 0) 0.16± 0.02 0.32 0.35 0.19 0.19(7) 0.14 0.14 0.16(4) 0.15 0.13(5) 0.08

V D∗(q2 = 0) 0.27± 0.04 1.66 0.57 0.23 0.25(11) 0.18 0.17 0.13(3) 0.22 0.25(8) 0.16

AD
∗

1 (q2 = 0) 0.17± 0.03 0.43 0.32 0.14 0.18(8) 0.17 0.10 0.08(2) 0.15 0.11(4) 0.10

AD
∗

2 (q2 = 0) 0.17± 0.03 0.51 0.57 0.15 0.20(8) 0.19 0.11 0.07(2) 0.13 0.17(8) 0.11

AD
∗

0 (q2 = 0) 0.17± 0.04 0.35 - 0.13 0.17(7) 0.14 0.09 0.09(2) 0.16 - 0.08

5.1.2. Extrapolation to high q2

Considering the fact that the QCDSR method is reliable only in the low q2 region, the

form factors are calculated at several q2 values for 0 ≤ q2 ≤ 10 GeV2, extrapolated

to high q2 region using the BCL approach [129] and then compared to the BGL

[127, 128] one. Traditionally, one would choose t∗ = t+ = (mBc + mD(∗))2 and

then compensate for all the resonances beneath t∗. Then, one would assume that

the two-particle contributions to the form factor (seen as branch cuts beneath t∗)

are negligible, even though there might be plenty. In this case, however, it turns
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out to be beneficial to use t∗ = (mB(∗) + mη)
2 for Bc → D semileptonic decays and

t∗ = (mB(∗) +mρ)
2 for Bc → D∗ semileptonic decays, for then there is a maximum of

two resonances contributing to a single form factor which are then removed by the

Blaschke factor in the BGL parametrization or by the standard pole dependence

of form factors in the BCL parametrization. This strategy was first employed in

Ref. [142] for the Bc → J/ψ decay, where the lowest multiparticle threshold of was

chosen for t∗. Here, there are still branch cuts contributing below t∗, e.g. the one

starting at B̄π pair production threshold. However, this branch cut is closer to q2
max,

so to be on the safe side, the next two-particle production threshold is used.

The fitting function is then expanded in a power series in z multiplied by a

function compensating for the poles, which is for the two cases inspected here given

as

FBGL
i (z) =

1

Bi(z)φi(z)

∞∑
k=0

akz
k , FBCL

i (z) =
1

Pi(z)

∞∑
k=0

bkz
k , (5.14)

where FBGL
i (z) are the helicity form factors defined as

g(z) =
2

mBc +mD∗
V (z); f(z) = (mBc +mD∗)A1(z); F2(z) = 2A0(z);

F1(z) =
1

mD∗

ï
− λ(mBc ,mD∗ , q

2)

mBc +mD∗
A2(z)− 1

2
(q2 −m2

Bc +m2
D∗)(mBc +mD∗)A1(z)

ò
(5.15)

for the vector particle and

fBGL
0 (q2) = (M2

Bc −M2
D)f0(q2) (5.16)

for the pseudoscalar one, whereas for FBCL
i (z) the WS form factor basis is used and

the functions

Bi(z) =
n∏

R=1

z − z(m2
R, t0)

1− zz(m2
R, t0)

and Pi(z) =
n∏

R=1

Å
1− q2(z)

m2
R

ã
(5.17)

account for n resonances of masses mR below the threshold. One can notice that in

the original BCL paper authors used the fact that the derivative of the form factor
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vanishes at q2 = t+, which is a consequence of angular momentum conservation,

and expression-wise relies on the fact that z(q2 = t+) = −1, which isn’t the case

here, since here t∗ 6= t+. Therefore, this fact is not utilized and the parametrization

is kept in its more simple form. The form factors in the helicity basis are used in

the case of fitting to the BGL function, since in this basis unitarity relations are

diagonalized and the φi(z) functions are readily available. The latter are calculable

perturbatively and have been known for a long time now [128,142].

A final comment concerns the parameter t0. Here the value that optimizes the fit

in the sense that it reduces the possible error originating from truncating the series

in eq. (5.14) was chosen. This is achieved for z(0, t0) = −z(q2
max, t0), which lowers

the overall maximum value of z, and thus |zmax| ≈ 0.106.

The resonances entering eq. (5.17) are listed in table 5.4. For mB(∗) the exper-

imentally well established values were used, while for the other resonances values

obtained by a recently updated quark model [239] were used.

Table 5.4: Summary of the fits for Bc → D and Bc → D∗ form factors.

JP threshold mR [GeV] BGL: a0 a1 χ2[10−2] BCL: b0 b1 χ2[10−2]

1− Bη 5.32 f+ 0.0087 -0.032 0.1 f+ 0.23 -0.7 4

0+ Bη 5.76 fBGL
0 0.019 -0.07 5 f0 0.18 -0.2 0.8

1− B∗ρ 5.32, 5.93 g 0.019 -0.04 1 V 0.25 0.2 0.9

1+ Bρ 5.78, 5.78 f 0.0055 -0.01 2 A1 0.11 0.5 4

1+ Bρ 5.78, 5.78 F1 0.0010 -0.003 0.6 A2 0.16 -0.1 6

0− Bρ 5.28, 5.91 F2 0.022 -0.05 0.5 A0 0.12 0.3 20

For the Bc → D transition the form factors are related to each other at the

maximum recoil point, so the fit is done simultaneously, and the error covariance
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matrix, defined as (
Mf+,0

)
ij

= cov[θi, θj] (5.18)

with vectors in this case being ~θ = (b
f+

0 , b
f+

1 , bf0

0 )T , is

MfBc→D+,0
=


0.000531195 −0.00492472 1.48099× 10−7

−0.00492472 0.0536992 −0.0000114013

1.48099× 10−7 −0.0000114013 0.000313175

 , (5.19)

where the fourth expansion parameter has been fixed using the fact that f+(0) =

f0(0) as

bf0

1 =
b
f+

0 − bf0

0

z(0)
+ b

f+

1 . (5.20)

In the case of Bc → D∗ transition the form factors aren’t related so that the vectors

entering the covariance look like ~θ = (bF
0 , b

F
1 )T , with F = {V,A{1,2,0}}, and

MV Bc→D∗ =

 0.0033 −0.0359

−0.0359 0.9093

 , MABc→D
∗

1
=

 0.0004 −0.0033

−0.0033 0.1650,



M
ABc→D

∗
2

=

 0.0002 −0.0007

−0.0007 0.1006

 , MABc→D
∗

0
=

 0.0013 −0.0145

−0.0145 0.3363

 .
(5.21)

In Bc → D(∗) decays, being b → u transitions, the parameter |zmax| in the form

factor q2-expansion is somewhat larger, and the functions |φi(z)min| are smaller than

in typical b→ c transitions. One would need to go to higher order in z to reduce the

truncation error - which would be unusable here, since no high-q2 points are available

to impose bounds on parameters of the fit multiplying higher orders in z. Actually

adding higher orders of z to the fit function only marginally changes its central shape,

which is mostly witnessed through the central value of ffit
+ (q2

max), which changes at

most by ∼ 10% and always stays inside the uncertainties of the linear z fit. Using

f+(q2) as a benchmark, the difference of the two fitting procedures is made obvious

in figure 5.2, where one can see that compensating multiple resonances using a
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multipole function Pi(q
2) can be a bit more violent, driving the fit towards higher

form factor values.

f+
BGL(q2 )

f+
BCL (q2 )

f+
QCDSR(q2 )
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Figure 5.2: The BGL (purple, dot-dashed line) and BCL (orange, full line) fits to

the QCDSR values of f+(q2) and V (q2).

Knowing that traditionally (in B → π, B → D(∗) decays) sum rules undervalue

the form factors’ value at zero-recoil, one is tempted to use the fit that reproduces

higher values of zero-recoil form factors, even if this is somewhat less faithful to our

QCDSR results in terms of χ2, defined for the i−th form factor as

χ2
i =

∑
j

[F fit
i (q2

j )− FQCDSR
i (q2

j )]
2

[σ2
Fi

(q2
j )]

2
. (5.22)

In the fits presented here this turns out to be the case when the more simple BCL

choice of parametrization is adopted, which is consequently the one used in the

following phenomenological analysis from now on. The difference anyways turns out

to be almost negligible for all of the form factors.

In figure 5.3 the q2-dependence of form factors used further in the analysis is

presented. One can notice that the Bc → D∗ form factors come with a larger

uncertainty, which stems from the fact that the value of fD∗ decay constant is more

uncertain than that of fD, in both lattice and our fitted results, see table 5.1. In

figure 5.4 a comparison of the QCDSR prediction for f+(q2) to two quark models

is shown, namely the constituent quark model, CCQM [234] and the light quark

model, LFQM [138], where a good agreement among results can be noticed, despite

the difference in approaches to their calculation.
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Figure 5.3: Final predictions for Bc → D(∗) form factors obtained by extrapolating

3ptSR results to higher q2 regions by using the BCL parametrizations.
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Figure 5.4: The purple solid line and the area represents the QCDSR result from

this work for f+(q2) form factor with errors; the blue dashed-line is the CCQM

prediction [234], while the red dash-dotted one is the LFQM prediction [138].

5.1.3. A comment on correlations between pseudo data points

When minimizing χ2 in the fitting procedure the pseudo data points were chosen to

be uncorrelated. This is a rather strong assumption, and stems from the fact that

the correlations are hard to be determined exactly. In order to estimate the effect

the correlation might have on the form factor uncertainties and observables, first a
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new χ̃2 to be minimized is defined, namely,

χ̃2
i ≡ [Fi(q

2
a;
~θ)− FQCDSR

i (q2
a)]
(
Σ−1

)
ab

[Fi(q
2
b ;
~θ)− FQCDSR

i (q2
b )]. (5.23)

For the first estimate of χ̃2
i the points are correlated rather crudely, by introducing

the covariance

Σij ≡ (1− x) · sisjδij + x · sisj , (5.24)

where x describes the correlation, varied between 50%−90%, while si are the errors

of the parameters arising from the QCDSR calculation. The effect this arbitrary

correlation has on the goodness of fit is that (as expected) χ̃2 is now much larger,

χ̃2 ≈ [2−10] ·χ2. The integrated decay rates remain at the same level of uncertainty.

The observables defined as ratios have much smaller uncertainties (as expected, since

they cancel to a larger extent in the ratio), while the form factors and differential

decay rates have larger uncertainties in the q2 region below ∼ 8 GeV2, and somewhat

smaller uncertainties in the upper q2 region.

For a more nuanced assesement of the pseudo data correlations the Jacobian J
is numerically estimated for each form factor. It is a 11× 6 matrix (11 pseudo data

points and 6 parameters), with which a ”raw” covariance matrix is calculated by

Σ = J TPJ , (5.25)

where P is a 6 × 6 diagonal matrix containing the errors in the parameters (the

parameters themselves are assumed to be uncorrelated). The covariance matrix

used when minimizing χ̃2 is estimated then by

Σ̃ = σTρ σ, (5.26)

where ρ is the correlation matrix obtained from Σ, and σ is a vector containing the

QCDSR errors of the pseudo data points.

Globally, now the χ̃2 grows to an even larger value, χ̃2 ≈ 20 · χ2. The effect this

has on the net uncertainties of the quantities presented in this paper is the same

as described above, only to a larger extent. In particular, for the correlated case
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the lower q2 region have now larger uncertainties, while in the upper q2 region the

errors become smaller, as compared with the uncorrelated case, as is witnessed in

figure 5.5. This is taken into consideration when the |Vub| determination prospect is

f+
uncorr (q2)

f+
corr (q2)

0 2 4 6 8 10 12 14

0.2

0.3

0.4

0.5

0.6

q2 [GeV2]

Figure 5.5: Comparison of the uncorrelated fit with the correlated one.

presented.

It should be stressed again that all the central values of the fit parameters remain

the same, regardless of the treatment of the correlations between pseudo data.
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5.2. Phenomenology

The definition of the two-fold differential decay width is given in eq. (4.51), which

reduces to the differential decay width by explicitly integrating over cos θ`, or, specif-

ically in the case of Bc → D0`ν̄`,

dΓ(Bc → D0`ν̄`)

dq2
=
G2
F |Vub|2q2

192π3m3
Bc

»
λ(m2

Bc
,m2

D0 , q2)

Å
1− m2

l

q2

ã2

×

×
ïÅ

1 +
m2
l

2q2

ã
|h0(q2)|2 +

3m2
l

2q2
|ht(q2)|2

ò
,

(5.27)

whereas for the case of Bc → D∗`ν̄`

dΓ(Bc → D∗`ν̄`)

dq2
=
G2
F |Vub|2q2

192π3m3
Bc

»
λ(m2

Bc
,m2

D∗ , q
2)

Å
1− m2

l

q2

ã2

×

×
ïÅ

1 +
m2
l

2q2

ã
(|H+(q2)|2 + |H−(q2)|2 + |H0(q2)|2) +

3

2

m2
l

q2
|Ht(q

2)|2
ò
,

(5.28)

with a new set of helicity form factors, defined as

h0(q2) =

 
λ(m2

Bc
,m2

D0 , q2)

q2
f+(q2) , ht(q

2) =
m2
Bc
−m2

D0√
q2

f0(q2), (5.29)

and

H±(q2) = −i

ï
±
»
λ(m2

Bc
,m2

D∗ , q
2)

mBc +mD∗
V (q2) + (mBc +mD∗)A1(q2)

ò
,

H0(q2) = − i

2mD∗
√
q2

ï
(mBc +mD∗)(m

2
Bc −m2

D∗ − q2)A1(q2)

− λ(m2
Bc
,m2

D∗ , q
2)

mBc +mD∗
A2(q2)

ò
,

Ht(q
2) = −i

»
λ(m2

Bc
,m2

D∗ , q
2)√

q2
A0(q2).

(5.30)

This set of helicity form factors differs from the one defined in section 4.2.1 only

through the choice of basis for the polarization vectors of the final state meson and

lepton. The general definitions from appendix D still stand. However, since the

helicity form factors relate to the WS basis form factors in a different way, the
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relations are written up in this basis.

In both of these cases it is also beneficial to define the differential decay width as

a sum of contributions of left and right lepton helicity projections along the z-axis

dΓ−(Bc → D0lν̄l)

dq2
=
G2
F |Vub|2q2

192π3m3
Bc

»
λ(m2

Bc
,m2

D0 , q2)

Å
1− m2

l

q2

ã2

|h0(q2)|2 ,

dΓ+(Bc → D0lν̄l)

dq2
=
G2
F |Vub|2q2

192π3m3
Bc

»
λ(m2

Bc
,m2

D0 , q2)

Å
1− m2

l

q2

ã2
m2
l

2q2

[
|h0(q2)|2 + 3|ht(q2)|2

]
,

(5.31)

and

dΓ−(Bc → D∗lν̄l)

dq2
=
G2
F |Vub|2q2

192π3m3
Bc

»
λ(m2

Bc
,m2

D∗ , q
2)

Å
1− m2

l

q2

ã2

×

×
[
|H+(q2)|2 + |H−(q2)|2 + |H0(q2)|2

]
,

dΓ+(Bc → D∗lν̄l)

dq2
=
G2
F |Vub|2q2

192π3m3
Bc

»
λ(m2

Bc
,m2

D∗ , q
2)

Å
1− m2

l

q2

ã2
m2
l

2q2
×

×
[
|H+(q2)|2 + |H−(q2)|2 + |H0(q2)|2 + 3|Ht(q

2)|2
]
,

(5.32)

so that it’s obvious that Γ = Γ+ + Γ−. In the case of the D∗ in the final state, one

can look at both the longitudinal and the transverse D∗ polarization contribution,

dΓL(Bc → D∗lν̄l)

dq2
=
G2
F |Vub|2q2

192π3m3
Bc

»
λ(m2

Bc
,m2

D∗ , q
2)

Å
1− m2

l

q2

ã2

×

×
ïÅ

1 +
m2
l

2q2

ã
|H0(q2)|2 +

3

2

m2
l

q2
|Ht(q

2)|2
ò
,

dΓT (Bc → D∗lν̄l)

dq2
=
G2
F |Vub|2q2

192π3m3
Bc

»
λ(m2

Bc
,m2

D∗ , q
2)

Å
1− m2

l

q2

ã2

×

×
Å

1 +
m2
l

2q2

ã[
|H+(q2)|2 + |H−(q2)|2

]
,

(5.33)

respectively, where again Γ = ΓL + ΓT .

Predictions for integrated decay rates of both decays using the QCDSR form

factors from section 5.1.2 are given in table 5.5.
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Table 5.5: Decay widths of Bc → D0,∗ decays, given in 10−18 GeV using the PDG

average value of |Vub| [4]

Mode This work [102] [132] [133] [184] [138] [235] [104] [134] [105] [135]

Γ(Bc → D0lν̄l) 31± 6 51 59 293 43 43 46 19 26 20 49

Γ(Bc → D0τ ν̄τ ) 21± 4 31 32 219 27 30 32 - - - -

Γ(Bc → D∗lν̄l) 85± 33 56 270 512 78 64 160 110 53 34 192

Γ(Bc → D∗τ ν̄τ ) 46± 20 32 120 293 44 39 94 - - - -

In Fig.5.6 the partial differential decay rates are given in units of |Vub| GeV−1.

It is obvious that one can achieve the satisfactory precision for Bc → Dlν̄l decays,

while the theoretical errors in the Bc → D∗ form factors and uncertainties in the Bc

and D∗ decay constants drive predictions for Bc → D∗`ν̄` to be quite uncertain.
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Figure 5.6: Partial differential decay rates with errors of Bc semileptonic transi-

tions to D (left), and to D∗ (right), where the orange solid-line/area corresponds to

µ in the final state, and the purple dashed-line/area to the case with τ final state.
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5.2.1. Lepton flavor universality ratios

Both experimentally and theoretically, due to the cancellations of systematic hadronic

uncertainties, it is preferable to extract the ratios

Rc(D
0) ≡ B(Bc → D0τ ν̄τ )

B(Bc → D0µν̄µ)
= 0.64± 0.05,

Rc(D
∗) ≡ B(Bc → D∗τ ν̄τ )

B(Bc → D∗µν̄µ)
= 0.55± 0.05,

(5.34)

that is - ratios of branching fractions of semileptonic decays including a τ lepton

in a final state to the branching fractions including a muon in a final state. Once

measured, the ratios in eq. (5.34) will serve as an additional test of the lepton flavour

universality in Bc decays. Considering this ratio, it can be noticed that although

the models discussed in e.g. [133], [132], [102, 184, 234], and [235] apply different

approaches in the calculation of the form factors, we agree well with the predictions

of [102,184,234,235] for the ratios Rc(D
0) and Rc(D

∗), and quite disagree with [132].

One can also notice that, in spite of the huge difference between the form factors

presented here and decay width values and the ones reported in [133] the values

presented here still agree quite well on the Rc(D
∗) value, while the Rc(D

0) from the

aforementioned publication seems to be somewhat larger. The main disagreement

with the results presented here is visible when it is compared with the previous 3ptSR

calculation of [132]. There, the authors accounted for Coulomb interactions which

were modeled to be very large and consequently drive the Bc → D(∗) form factors

to large values, hardly compatible with any of the models above. The origin of the

discrepancy was already discussed, above table 5.3. Here, the reader is reminded

that these corrections, aside from enlarging the form factor magnitudes, might also

alter their q2 scaling - which in turn might impact the ratios significantly. Also,

the decay constants used in [132] (not precisely known at the time) are significantly

smaller, which additionally increased their results.

The q2 distributions of differential forms of dRc(D
0) and dRc(D

∗) (which are just

ratios of partial differential decay rates, as opposed to integrated rates) are shown

in figure 5.7.
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Figure 5.7: Ratios of differential partial decay rates Bc semileptonic transitions to

D (left), and to D∗ (right) with tau in the final state to the case with muon in the

final state.

5.2.2. Angular observables in Bc → D(∗)`ν̄`

Further on, three independent angular observables are written up in the helicity basis

from eq. (5.29) and (5.30) for the decay Bc → D0`ν̄`, namely the forward-backward

asymmetry AD
0, `

FB (q2), the polarization asymmetry of the lepton l, PD0, `(q2), and the

so-called convexity parameter CD0, `
F (q2) as:

d

dq2
AD

0, `
FB (q2) =

3m2
l

2q2

Re
[
h0(q2)h∗t (q

2)
](

1 +
m2
l

2q2

)
|h0(q2)|2 +

3m2
l

2q2 |ht(q2)|2
,

d

dq2
PD0, `(q2) =

m2
`

2q2

[
|h0(q2)|2 + 3|ht(q2)|2

]
− |h0(q2)|2

m2
`

2q2

[
|h0(q2)|2 + 3|ht(q2)|2

]
+ |h0(q2)|2

,

d

dq2
CD0, `
F (q2) =

3

2

|h0(q2)|2
(m2

`

q2 − 1
)(

1 +
m2
`

2q2

)
|h0(q2)|2 +

3m2
`

2q2 |ht(q2)|2
.

(5.35)

The arbitrary choice of the lepton angle can change the sign of the forward-

backward asymmetry, so one should be careful when referring to its definition. In

figure 5.8 the above observables are plotted just for the case with the τ lepton in the

final state, since the asymmetries with light leptons in the final state are basically

constant in the entire q2 range (with the exception of extreme upper and lower
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kinematical limits)

d

dq2
A
D0, µ/e
FB (q2) ≈ 0 ,

d

dq2
PD0, µ/e(q2) ≈ −1 ,

d

dq2
CD0, µ
F (q2) ≈ −3

2
. (5.36)

For the case of Bc → D∗`ν̄` we similarly have
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Figure 5.8: Angular observables defined in eq. (5.35) for Bc → D0τ ν̄τ .

d

dq2
AD

∗, `
FB (q2)

= −3

4

|H+(q2)|2 − |H−(q2)|2 − 2
m2
`

q2 Re
[
H0(q2)H∗t (q2)

]
(|H+(q2)|2 + |H−(q2)|2 + |H0(q2)|2)

(
1 +
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`

2q2

)
+ 3

2

m2
`
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d

dq2
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= −1 +
m2
`

q2

|H+(q2)|2 + |H−(q2)|2 + |H0(q2)|2 + 3|Ht(q
2)|2

(|H+(q2)|2 + |H−(q2)|2 + |H0(q2)|2)
(
1 +

m2
`

2q2

)
+ 3

2

m2
`

q2 |Ht(q2)|2
,

d

dq2
CD∗, `
F (q2)

=
3

4

Å
1− m2

`

q2

ã |H+(q2)|2 + |H−(q2)|2 − 2|H0(q2)|2

(|H+(q2)|2 + |H−(q2)|2 + |H0(q2)|2)
(
1 +

m2
`

2q2

)
+ 3

2

m2
`

q2 |Ht(q2)|2
,

d

dq2
FD∗, l
L (q2) =

|H0(q2)|2 + 3|Ht(q
2)|2/(1 + 2q2

m2
`
)

|H+(q2)|2 + |H−(q2)|2 + |H0(q2)|2 + 3|Ht(q2)|2/(1 + 2q2

m2
`
)
,

(5.37)

where in addition we compute the longitudinal polarization fraction of D∗, FD∗
L , in

the decay. The results for these observables are shown in Figure 5.9. Similarly to
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the prior case one observable is approximately constant

d

dq2
PD∗, µ/e(q2) ≈ −1 (5.38)

and it it not shown there. Values of Bc → D∗ angular observables integrated sepa-

rately in the numerator and the denominator are given in table 5.6. Again, proving

that these observables are relatively independent of the hadronic form factors, good

agreement with the recent analysis provided in [240], where the LFQM form factors

from [138] are used, is found.
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Figure 5.9: Angular observables defined in eq. (5.37) with errors for Bc →
D∗(l, τ)ν̄(l,τ), where now l stands for light leptons, a case depicted by a dashed-

line/area in orange, whereas the case with the final τ state is depicted in purple.
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Table 5.6: Angular observables integrated over the entire kinematic region.

l = µ l = τ l = µ l = τ

AD
∗, l

FB −0.4± 0.2 −0.3± 0.2 AD
0, l

FB ≈ 0 0.30± 0.06

PD∗, l ≈ −1 −0.6± 0.4 PD0, l ≈ −1 −0.1± 0.1

CD∗, l
F −0.2± 0.2 −0.02± 0.08 CD0, l

F ≈ −3
2

−0.6± 0.1

FD∗, l
L 0.4± 0.2 0.4± 0.3 - - -
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5.3. Exclusive |Vub| determination and

the |Vub|/|Vcb| ratio

A proposal to determine |Vub| by measuring the decay width of Bc → Dµν̄µ is put

forward in this section. An estimate is presented for

ζD0 |Vub|2 ≡ Γ(Bc → D0µν̄µ) (5.39)

as

ζD0 = (2.0± 0.3)× 10−3 eV . (5.40)

Combining the predictions from table 5.5 with the future experimental data, the |Vub|
can be determined from Bc → D0µν with the theoretical uncertainty of O(10%).

By calculating the same for the semileptonic Bc → D∗µν decay,

ζD∗ |Vub|2 ≡ Γ(Bc → D∗µν̄µ),

ζD∗ = (5± 2)× 10−3 eV , (5.41)

it is obvious that in this case the error is much larger and amounts to O(20%),

which makes this decay at present less suitable for the |Vub| determination. Gaining

a little insight into the size of αs corrections might prove to justify correlating the

QCDSR pseudo data and performing a real Bayesian analysis. This would deem

both of these decays very interesting in terms of |Vub| determination.

In figure 5.10 |Vub| dependence on the decay rate is presented using the value

of ζD0 quoted in eq. (5.40). It is clear that if the decay rate can be measured with

10− 20% accuracy, as expected in the LHCb Run II [241], then the Bc → D0 might

prove a powerful channel for the exclusive extraction of |Vub|.
Also given here is the value for

∆ζD0(q2
1, q

2
2) ≡ 1

|Vub|2
∫ q2

2

q2
1

dq2dΓ(Bc → D0µν̄µ)

dq2
, (5.42)
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which, employing the predicted QCDSR Bc → D0 form factor f+(q2) from the

3ptSR at mµ2 ≤ q2 ≤ 10 GeV2, figure 5.2, amounts to

∆ζD0(m2
µ, 10 GeV2) = (1.2± 0.1± 0.1)× 10−3 eV , (5.43)

where an additional 10% uncertainty has been added, which is the error estimate

stemming from the correlations between the QCDSR pseudo data points in the low

q2 region. Also presented are the the other bins of ∆ζD0(q2
1, q

2
2), which can be used

together with future experimental data to determine |Vub| from Bc → D0µν̄µ decays

in table 5.7.

Table 5.7: Distribution of ∆ζD0(q2
1, q

2
2) placed in bins spaced by 2 GeV apart.

[q2
1 − q2

2] [GeV2] [m2
µ − 2] [2-4] [4-6] [6-8] [8-10] [10-12] [12-14] [14-16] [16-18] [18-q2

max]

∆ζD0(q2
1, q

2
2) [10−4 eV] 2.2 2.4 2.5 2.5 2.6 2.5 2.3 1.9 1.1 0.21

±0.2 ±0.2 ±0.3 ±0.3 ±0.4 ±0.5 ±0.5 ±0.5 ±0.3 ±0.06
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Figure 5.10: The prospect for |Vub| determination from Γ(Bc → Dµν̄µ); the yellow

band represents the PDG value of |Vub|.
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5.3.1. The |Vub|/|Vcb| ratio

The theoretical error of 7.5% in eq. (5.40) might be improved by explicitly adding

the αs-corrections to the 3ptSR, which would certainly reduce the main systematic

theoretical uncertainty of adjusting s0 sum rule parameter. In order to suppress the

unknown systematic uncertainty in the estimation of |Vub| arising from the method

itself, here defined is the ratio of branching fractions

RD0J/ψ ≡
ζD0(q2

min1
, q2

max1
)

ζJ/ψ(q2
min2

, q2
max2

)
=

Å |Vub|2
|Vcb|2

ã−1
∫ q2

max1

q2
min1

dΓ(Bc→D0µν̄µ)

dq2 dq2∫ q2
max2

q2
min2

dΓ(Bc→J/ψµν̄µ)

dq2 dq2
, (5.44)

where the form factors entering dΓ(Bc → J/ψµν̄µ)/dq2 are known to some extent

from lattice calculation [55, 148], and are reproduced to a satisfactory precision by

the QCDSR method. The form factors for Bc → J/ψ transition were already briefly

presented in [3]. Here the used parameters differ a little from ones used there, due

to a necessary update. The specific values of parameters used in the calculation

are listed in table 5.8, and the form factors are given in figure 5.12. Also experi-
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Figure 5.11: The prospect for |Vub|/|Vcb| determination from RD0J/ψ; the yellow

band represents the PDG value of |Vub|/|Vcb|.

mentally, due to the very short lifespan of the Bc and a huge background stemming
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from B decays, measuring the |Vub| quark coupling strength directly is highly chal-

lenging [209, 212]. Not surprisingly, it turns out that measuring it through the

ratio defined above has some benefits from the experimental standpoint as well

(such as canceling the production rate uncertainty). Although challenging, the

prospects of using Run 1 + Run 2 data at LHCb are indicating that one could

come around 10-20% uncertainties in |Vub|/|Vcb| measurement in an analysis looking

at the B(Bc → D0µν̄µ)/B(Bc → J/ψµν̄µ) ratio [241]. By combining the predictions

presented for RD0J/ψ with future measurements one can achieve the most precise

determination of |Vub|/|Vcb| in the low-q2 kinematic region in Bc → D0 transition

and moderate-q2 region in Bc → J/ψ transition.

In figure 5.11 this ratio is plotted in the bin defined through q2
min1

= q2
min2

= m2
µ,

q2
max1

= (mBc − mD0)2/2, and q2
max2

= (mBc − mJ/ψ)2/2, which is approximately

the kinematic region in which the QCDSR turn to be most reliable. The current

experimental world average of |Vub|/|Vcb| is also shown on the plot for comparison of

theoretical and future experimental predictions for the ratio of branching fractions

directly with the present limit on |Vub|/|Vcb|.
One should keep in mind that here the differential decay widths are integrated

in the lower half of the q2 region of both decay channels and that the form factors

used to produce the plot are the result of fits to uncorrelated pseudo-data points. In

line with the estimate of the contribution of the correlation among the points to the

error budget discussed in section 5.1.3, one should assign a further 10% uncertainty

to |Vub|/|Vcb| not shown in the plot.

Table 5.8: Decay constants of mesons with 3ptSR parameters.

Meson lattice [MeV] our value [MeV] seff
0 [GeV2] M2 [GeV2]

fJ/ψ 405±6 [165], 399±6 [242] 394± 17 16-17 10-15

fBs 224±5 [222], 229±5 [243] 225±16 37.5-39.5 20-35

When fitting the threshold parameters for the Bc → J/ψ and Bc → Bs tran-

sitions to those obtained in the calculation of fJ/ψ and fBs decay constants using

the same criteria as for Bc → D(∗) explained in section 5.1.1, the values listed in
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table 5.8 are obtained, and used in the 3pt correlation function calculations.

As for the Borel mass window in the three-point calculation, the approximate

relation from eq. (5.13) holds, and M2
3pt,J/ψ ≈ 20−25 GeV2, while M2

3pt,Bs
≈ 30−60

GeV2. The plot of the form factors for the Bc → J/ψ transition obtained using the

latter parameters is given in figure 5.12 together with the lattice points given by the

HPQCD Collaboration [148]. Once again excellent agreement can be seen between

the lattice result and the QCDSR form factors, an agreement which is reproduced

in all of the LFQM form factors [138]. The plot of the Bc → Bs form factors is
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Figure 5.12: Final predictions for Bc → J/ψ form factors obtained by extrapolat-

ing 3ptSR results to higher q2 regions using the BCL parametrization.

included in figure 5.13. The form factors show a large uncertainty appearing due to

the inability of utilizing QCDSR deeper in the high q2 region. One should also always

keep in mind that these uncertainties do not include the truncation error, which is

always of the order of 20-30% at q2
max in our calculations, since we extrapolate only

linearly in z(q2).

Finally, the table 5.9 contains the results of these two fits. The unitarity thresh-

old used in each case is listed in the same table under the column ”threshold”. Note

that when fitting the Bc → J/ψ form factors we exclude two of the poles appearing

beneath the B∗D threshold, since numerically their value is very close to the thresh-

old itself. Namely these poles are M(1P1) ≈M(1P ′1) ≈ 7.14 GeV, and are very close

to
√
t∗ ≈ 7.2 GeV. This is done in order to keep the monotonic behaviour of A1(q2)

and A2(q2) around q2
max, and it does not significantly alter their numerical value. A

more nuanced discussion on the impact of near-threshold poles in pole fits one can

find in e.g. [94]. The poles for the Bc → J/ψ case are taken from [187], whereas for

135



|Vub| determination from the B+
c → D(∗) `+ν` decay
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Figure 5.13: Final predictions for Bc → Bs form factors obtained by extrapolating

3ptSR results to higher q2 regions using the BCL parametrization.

the Bc → Bs case the needed pole masses are known from experiments [4].

Table 5.9: Summary of the fits for Bc → J/ψ and Bc → Bs form factors.

JP threshold mR [GeV] BCL: b0 b1 χ2[10−4]

1− BD 6.34, 6.90, 7.01 V Bc→J/ψ 0.69 2 23

1+ B∗D 6.73, 6.74 A
Bc→J/ψ
1 0.50 1 45

1+ B∗D 6.73, 6.74 A
Bc→J/ψ
2 0.42 1 102

0− B∗D 6.28, 6.84 A
Bc→J/ψ
0 0.50 -1 13

1− Dsη
′ 2.11, 2.71, 2.86 fBc→Bs+ 0.5 3 0.7

0+ Dsη
′ 2.138 fBc→Bs0 0.6 -1 0.3

In the time between the writing of this thesis, and publishing the research this

section is based upon, both Bc → J/ψ and Bc → Bs decays were investigated on

the lattice [55, 73]. QCDSR results presented here agree very well with the lattice

QCD results, for all of the form factors.
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5.3.2. The |Vub|/|Vcs| ratio and the HQSS compatibility

In [189] the authors propose to use the differential ratio of B(Bc → D0`ν̄`) and

B(Bc → Bs`ν̄`) at zero recoil defined as

Rmax
D0Bs

=

Å |Vub|2
|Vcs|2

ã−1 dΓ(B+
c → D0e+νe)/dq

2|q2'q2
max

dΓ(B+
c → Bse+νe)/dq2|q2'q2

max

(5.45)

to determine the |Vub|/|Vcs| ratio. Experimentally, to measure the ratio |Vub|/|Vcs|
would be more challenging than |Vub|/|Vcb|, since the experimental systematics do

not nicely cancel in this ratio [241]. However, this could be as well an interesting

possibility in the future, and is examined here. Around the zero hadronic-recoil

region HQSS reduces the number of the form factors of these two decays to just one,

and the differential decay rate ratio in the limit becomes insensitive to specifics of

the Bc wave function, thus becoming proportional just to a ratio of the final meson

masses and decay constants. Namely, in HQET the following parametrization is

valid:

〈
D0(v, q′)

∣∣Vµ(q2) |Bc(v)〉 = 2
√
mBcmD0

[
Σ1(a0q

′)vµ + a0Σ2(a0q
′)q′µ
]
,

〈Bs(v, q
′)|Vµ(q2) |Bc(v)〉 = 2

√
mBcmBs

[
Ωs

1(a0q
′)vµ + a0Ωs

2(a0q
′)q′µ
]
,

(5.46)

where v is the velocity of the Bc meson, and q′ is a small residual velocity carried

by the final state meson (denoted such as to avoid confusion with q, the momentum

carried by the lepton pair system), so that

p1µ = mBcvµ; p2µ = mfvµ + q′µ, (5.47)

with mf = [mD0 ,mBs ]. The parameter a0 is connected to the Bohr radius of the

Bc meson and is not discussed here. The form factors Σ2(a0q
′) and Ωs

2(a0q
′) are

irrelevant for this discussion, as they do not contribute around the zero-recoil region

(q′2 = 0), so in principle one could deduce the differential branching fractions near

zero recoil just from the form factors Σ1(a0q
′) and Ωs

1(a0q
′). In [189] it is argued

that, owing to this fact, and by considering the heavy-quark spin symmetry for the
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remained form factors which one can write as

Σ1(a0q
′) =

1√
2
fD0

√
mD0

∫
d3x ei~q′·~xΨ(x),

Ωs
1(a0q

′) =
1√
2
fBs
√
mBs

∫
d3x ei~q′·~xΨ(x),

(5.48)

where Ψ(x) is the Bc meson wave function, the ratio at the zero-recoil,

RFF =
Σ1(a0q

′ ≈ 0)

Ωs
1(a0q′ ≈ 0)

(5.49)

should in principle very weakly depend on the particular shape of the wave function,

due to its cancellation, so that in the heavy quark limit

RHQ
FF ≈

fD0

fBs

…
mD0

mBs

≈ 0.53. (5.50)

In section 5.3.1 some details on calculation of Bc → Bs form factors obtained anal-

ogously to the ones of the Bc → D0 transition are presented, and they give

Rour
FF = 0.8± 0.3, (5.51)

which can also be compared with the result from ref. [191], where the wave functions

have been calculated in the framework of a HQET-inspired quark model, explicitly,

R
[191]

FF = 0.89 . (5.52)

Comparison shows that the heavy quark spin symmetry relations are obeyed in the

QCDSR calculation. This also agrees well with values extracted from other quark

models [104,105,138]. However, the error in the calculation presented in this section

is quite large, since the form factors relevant for the b → u and c → s decays are

not very correlated. Also, one can reliably use the sum rules for the Bc → Bs case

only very close to the maximum recoil region, as can be noticed from figure 5.13,

due to the occurrence of non-Landau singularities. Lattice input might prove to be

useful here in order to extrapolate to higher order z terms for both decays and with
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more theoretical input the extraction of the |Vub|/|Vcs| ratio from eq. (5.45) could

be viable.
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5.4. Conclusion

For the extraction of |Vub| from the Bc → D0 semileptonic decay it is important

to determine precisely the relevant form factors, since the predictions for the light

leptons in the final state come out essentially proportional to |f+(q2)|2|Vub|2. In

this section the calculation of the Bc → D0 form factors f+(q2) and f0(q2) and the

Bc → D∗ form factors V (q2), A1(q2), A0(q2) and A2(q2) has been presented, using

the three-point QCD sum rules. The form factors are then theoretically confined in

the region of q2 ≤ 10 GeV2. The extrapolation to higher q2 values is discussed for the

BGL and BCL z-series and final predictions are given for the BCL parametrization

of form factors, summarized in table 5.4 and figure 5.2 and figure 5.3.

The q2 differential decay rate distributions (divided by |Vub|2) are also presented

for both a light (e or µ) and a τ lepton in the final state. The numerical predictions

for various angular observables in the Bc → D(∗) semileptonic transitions are given in

figure 5.8 and figure 5.9, which can be useful to further scrutinize the SM predictions

for these decays. Those are the forward-backward asymmetry A`FB(q2), the lepton

polarization P `
L(q2), convexity parameter C`

F (q2) and the D∗ meson longitudinal

polarization fraction, FD∗
L in Bc → D∗ decays. In addition, the values of the ratios

of branching fractions of the semileptonic decays to a τ lepton to the branching

fractions to a muon are calculated, Rc(D
0) = 0.64± 0.05 and Rc(D

∗) = 0.55± 0.05,

for testing the lepton favour universality violation in the semileptonic Bc channels,

with the q2 distributions shown in figure 5.7.

The possibility of determining the |Vub| CKM matrix element from Bc → D(∗)

decays is carefully studied and the conclusion has been drawn that |Vub| can be de-

termined with the uncertainty of 7.5% from the Bc → D0µν̄µ decay. Experimentally

there are good prospects for this measurement. The Bc decays will be extensively

investigated at LHCb in the Upgrade II [212]. With approximately 30,000 recon-

structed Bc → D0`ν̄` decays which can be expected with the 300 fb−1 Upgrade II

dataset, a competitive extraction of |Vub| from Bc → D0 semileptonic decays can be

expected. By normalizing Bc → D0µν̄µ to Bc → J/ψµν̄µ the ratio |Vub|/|Vcb| could

be experimentally extracted with 10− 20% of uncertainty [241].
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It was further demonstrated that numerically the QCDSR form factors do obey

the behaviour imposed on them by the heavy quark spin symmetry, as dictated by

the ratio of Bc → D0 and Bc → Bs transitions [189]. Although the precision is still

not satisfactory enough, this opens up new possibilities in terms of extraction of the

|Vub|/|Vcs| ratio, even if experimentally this turns out to be extremely challenging.

141



6. |Vub| determination from the

B̄ → π `ν̄` decay

This chapter is based on research accepted for publishing in Journal of High Energy

Physics, D. Leljak, B. Melić and D. van Dyk, [arXiv:2102.07233 [hep-ph]] [3].

The world average of the inclusive |Vub| determinations following the BNLP ap-

proach [230, 244–247] and the GGOU approach [248, 249] as determined by the

HFLAV collaboration reads [42]:

103 × |Vub|BLNP = 4.44 +0.13
−0.14|exp.

+0.21
−0.22|theory ' 4.44+0.25

−0.26 ,

103 × |Vub|GGOU = 4.32 ± 0.12|exp.
+0.12
−0.13|theory ' 4.32+0.17

−0.18 .
(6.1)

These results deviate significantly from |Vub| determinations that use the exclusive

decays B̄0 → π+`−ν̄`, where ` = e, µ. The present world average thereof reads [42]:

103 × |Vub|B̄ → π
LQCD+LCSR = 3.67± 0.09|exp. ± 0.12|theory ' 3.67± 0.15 . (6.2)

Assuming the inclusive and exclusive results to be uncorrelated and normally dis-

tributed with the stated overall uncertainties, these results are mutually incompat-

ible. One finds a deviation of ≈ 2.7σ, depending on which of the inclusive determi-

nations is considered. This long-standing situation is commonly referred to as the

“exclusive vs inclusive” puzzle, which continues to be a topic of active research [250].

The most recent inclusive determination by the Belle collaboration [251] finds the

tension reduced, with the central value dropping closer to the exclusive one, while

simultaneously increasing the uncertainty. The average of the values extracted using
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four different theoretical frameworks is reported as:

103 × |Vub| = 4.10± 0.09± 0.22± 0.15 . (6.3)

where the uncertainties are of statistical, systematical, and theoretical origin, re-

spectively. Compared to the relative uncertainty of ≈ 4% in the determination from

exclusive B̄ → π`−ν̄` decays, the inclusive determination has a much larger relative

uncertainty of ≈ 7%. The latter is partially dominated by the subtraction of a

large B → Xc`
−ν̄` background, which is one focus of the recent Belle analysis [251].

The smallness of the (theory) uncertainties in the exclusive determination therefore

warrant heightened scrutiny.

The description of exclusive semileptonic decays requires knowledge of the hadronic

form factors. The set of form factors includes f+ and f0, which are relevant to the

SM predictions for charged-current semileptonic B̄ → π`−ν̄` decays. Another form

factor fT is needed for SM predictions of rare semileptonic B̄ → π`+`− decays and

also arises in Beyond the Standard Model (BSM) analyses of the charged-current

decay. All three form factors are scalar-valued coefficients defined in section 3.1.1.

Presently, the determination of |Vub| from the exclusive B̄ → π`−ν̄` decays is

the most competetive. Other determinations either lack precision on the theoretical

side (such as B̄c → D`−ν̄`, discussed in section 5) or the experimental side (such

as B̄ → `−ν̄` or Λb → pµ−ν̄µ), with improvements to the precision expected in the

future. A more detailed discussion is available in ref. [42]. The increase in precision

of the theoretical predictions for and the experimental measurements of B̄ → π`−ν̄`

has also made this decay a prime candidate for searches of BSM effects in charged

currents. These searches are well motivated in light of recent tensions in b→ c`−ν̄`

processes.

The purpose of this section is three-fold:

1. to revisit light-cone sum rule predictions for the full set of local B̄ → π form

factors, with focus on the systematic uncertainties that affect this method;

2. to carry out a combined fit with the precise lattice QCD (LQCD) results for the

form factors, in order to provide the most up-to-date exclusive determination
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of |Vub|;

3. to provide up-to-date predictions for B̄ → π`−ν̄` observables that probe lepton-

flavour universality and non-standard weak effective couplings.

6.1. LCSR form factors

In this section the LCSRs for full set of local B̄ → π form factors associated with

dimension-three b → u or b → d currents is revisited. The LCSRs are constructed

with an on-shell pion and an interpolated B meson, and by the use of pion distri-

bution amplitudes, and in the WS basis.

The analytical expressions for the two-point correlation functions that give rise

to the sum rules are known to high accuracy. The expansion in light-cone operators

uses the twist of an operator as an expansion parameter, as discussed in section 2.2.

Operators of higher twist are supressed by power of Λhad/mb. The leading contribu-

tions at the twist-two level are known at next-to-leading order (NLO) in αs [95,205].

Next-to-next-to-leading order (NNLO) [252] are partially computed in the large β0

approximation. In B̄ → π transitions, the next-to-leading twist contributions are

known to by enhanced by the factor

µπ
mb

=
m2
π

mb(mu +md)
, (6.4)

which is formally power-suppressed but numerically large. Due to this enhancement,

the twist-three terms contribute approximately 50% to the correlation function,

e.g. [95]. Due to the chiral enhancement it is important to include the twist-three

terms also at NLO [95]. Beyond this level, contributions up to twist-six follow the

expected pattern of power suppression [122].

In the following sections, the predictions for the three hadronic form factors

based on the analytic expressions in ref. [95, 96, 253] are provided. These LCSRs

use π-meson distribution amplitudes. They include expressions up to twist-four

accuracy at leading order in αs and expressions up to twist-three accuracy at next-

to-leading order in αs. Expressions beyond twist-four accuracy are numerically
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negligible [122]. In the preparation of this work we have identified two typos in

the analytic expressions in the literature.1 These two typos do not significantly

impact the form factor values, but have a non-negligible effect on the computation

of the B-meson mass predictor, which is used below, in determination of the duality

thresholds.

The numerical results for the form factors as presented below differ from previous

LCSR studies in the following aspects:

1. Updated input parameters for quark masses, strong coupling and — most

importantly — for the two-particle twist-two π LCDA are used. The full set

of input parameters is discussed in section section 6.1.1.

2. The duality thresholds are determined for all three form factors from three

daughter sum rules. The latter are obtained from the derivative of the initial

sum rules with respects to the Borel parameter. In this way a predictor for

the mass squared of the B meson can be included in a statistical analysis.

The method is discussed for the f+ form factor in ref. [206], and for LCSRs

with B-meson LCDAs in ref. [254]. Details of this procedure and practical

considerations for this step are discussed in section 6.1.2.

3. Within the threshold-setting procedure, the dependence of the duality thresh-

olds on the momentum transfer q2 is investigated. Two models of the thresh-

olds are compared, and their difference is used to assign a systematic uncer-

tainty to the final results.

6.1.1. Input parameters

The setup follows the usual approach to calculate both the B-meson decay constant

fB in two-point QCD sum rules and the B̄ → π form factors in LCSR within a

simultaneous analysis [95, 206, 259]. The rationale for this approach is that per-

turbative corrections to the correlation functions in both sum rules partially cancel.

1First, in eq. (4.12) of ref. [95] the factor 1/2 in front of the d2φ4π/du
2 term should be replaced

by a factor 1/4. Second, in the fourth line of eq. (B.35) the plus prescription should extend to
the entire term rather than only to the ρ/(1− ρ) factor. The first typo is corrected in subsequent
publications, while the second typo is not.
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Table 6.1: Input parameters used in the numerical analysis of the two-point sum

rules for the fB decay constant and LCSRs for B̄ → π form factors. The full prior

distribution is a product of uncorrelated individual priors, which are either uniform

or gaussian distributed. gaussian priors cover the intervals at 68% probability, and

their central value corresponds to the mode. For practical purpose, variates of

the gaussian priors are only sampled inside their respective 99% intervals. The

prior intervals of the duality threshold parameters are chosen such that the peaking

posterior distribution is fully contained.

Parameter value/interval unit prior comments/source

quark-gluon coupling and quark masses

αs(mZ) 0.1179 ± 0.0010 — gaussian [4]

mb(mb) 4.18 ± 0.03 GeV gaussian [4]

[mu +md](2 GeV) 6.9 ± 1.1 MeV gaussian [4]

hadron masses

mB 5279.58 MeV — [4]

mπ 139.57 MeV — [4]

vacuum condensate densities

〈q̄q(2GeV)〉 −(288+17
−14)3 MeV3 — m2

πf
2
π/2(mu +md)

〈αs
π
G2〉 [0.000, 0.018] GeV4 uniform [255]

m2
0 [0.6, 1.0] GeV2 uniform [255]

rvac [0.1, 1.0] — uniform [255]

parameters of the pion DAs

fπ 130.2 ± 0.8 MeV gaussian [256]

a2π(1GeV) 0.157 ± 0.027 — gaussian [257]

a4π(1GeV) [−0.04, 0.16] — uniform [258]

µπ(2GeV) 2.8+0.6
−0.4 GeV — m2

π/(mu +md)

f3π(1GeV) [0.003, 0.006] GeV2 uniform [119]

ω3π(1GeV) [−2.2,−0.8] — uniform [119]

δ2
π(1GeV) [0.11, 0.33] GeV2 uniform (50% sys. unc.) [257]

ω4π(1GeV) [0.1, 0.3] — uniform [119]

sum rule parameters and scales

µ 3.0 GeV — [221,258]

M2 [12.0, 20.0] GeV2 uniform [258]

s
f+

0 [30.0, 42.0] GeV2 uniform

s
′ f+

0 [−1.0,+1.0] — uniform

sf0

0 [30.0, 42.0] — uniform

s′ f0

0 [−1.0,+1.0] — uniform

sfT0 [30.0, 42.0] GeV2 uniform

s′ fT0 [−1.0,+1.2] — uniform

M
2

5.5± 1.0 GeV2 gaussian [221]

sB0 [29.0, 44.0] GeV2 uniform 146
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As a consequence, the input parameters presented here involve the full set of all,

the two-point sum rule and the light-cone sum rule parameters. The parameters are

classified as follows:

strong coupling and quark masses These parameters include the strong cou-

pling at µ = MZ , the bottom quark mass in the MS scheme at the scale mb,

and the sum of the up and down quark masses in the MS scheme at the scale

2 GeV.

hadron masses These parameters include the masses of the initial-state B meson

mB and the final-state pion mπ.

vacuum condensate densities These parameters include the quark condensate

evaluated using the GMOR relation at 2 GeV and the gluon condensate, while

the mixed quark-gluon condensate is implemented through m2
0, its ratio with

the quark condensate. Lastly, rvac parametrizes factorization in the four-quark

condensate density. These parameters are needed exclusively in the two-point

sum rule.

parameters of the π LCDAs These parameters include the pion decay constant

fπ to which the leading-twist LCDA is normalised. The shape of the leading-

twist DA is described by an expansion in Gegenbauer polynomials, which

are eigenfunction of the RGE kernel to leading-logarithmic accuracy. Isospin

symmetry implies that only even Gegenbauer polynomials contribute, and we

retain the first two non-vanishing Gegenbauer coefficients a2π and a4π. Fol-

lowing ref. [119], we normalise the twist-3 two-particle LCDAs to the chiral

parameter µπ(2 GeV) and twist-three three-particle LCDAs to the decays con-

stants f3π. The shape of the three-particle LCDAs additional involves the

parameter ω3π. The twist-four LCDAs are parametrized in terms of δ2
π and

ω4π. If not specified otherwise, all parameter of this class are renormalised at

a scale of 1 GeV.

sum rule parameters and scales These parameters include the Borel parameter

M2 and the values and slopes of the duality threshold parameters sF0 and
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s′F0 , where F denotes one of the form factors {f+, f0, fT}. We discuss the

parametrisation of the thresholds in detail below. The perturbative LCSR

kernels are evaluated at a renormalisation scale µ. Further parameters are the

Borel parameter M̄2 and duality threshold s̄B0 of the auxilliary two-point sum

rule.

All the input parameters are listed and their prior probability density functions

(PDFs) are summarized in table 6.1.

The differences between the inputs used in this work and the inputs used in

Refs. [206,259] is briefly discussed:

1. While the input parameters for the light quark masses mu and md change only

slightly, this change has a large numerical effect on µ2
π, which normalises the

twist-three two-particle contributions to the sum rules. It also affected the

value of q̄q condensate density.

2. A recent lattice QCD analysis [257] of the shape of the leading-twist pion

LCDA has provided for the first time a determination of the leading Gegen-

bauer moment a2 from first principles. This result is used as a gaussian prior

in the following analysis. Note that the RGE to LL are used here to translate

the lattice results to the relevant input scale of 1 GeV. The uniform prior

PDFs for the parameters a4 and δ2
π are adjusted to match the lattice QCD

results for these parameters within their uncertainty intervals.

3. The Borel window for the LCSR to the interval is slightly increased, to 12 GeV2 ≤
M2 ≤ 20 GeV2. Here, the Borel parameter is varied uniformly, rather than

with a gaussian prior. This increases the uncertainty due to the Borel param-

eter in the final numerical results and also fully includes the peaking structure

in the posterior PDF.

6.1.2. Setting the duality thresholds and Borel parameters

Each of the duality thresholds sF0 corresponds to a point at which to artificially split

the dispersive integral for its form factor F into two contributions: one corresponding
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to the B̄ → π form factor, and one corresponding to hadronic transition matrix

elements for excited B-mesons and the continuum of b-flavoured states. To obtain

the threshold parameters, one commonly uses daughter sum rules obtained by taking

a derivative of the form factors’ correlation function with respect to −1/M2 and

by subsequently normalizing to the correlation function. By using the same input

parameters as in the original sum rule, one thereby constrains the duality thresholds

parameters. This new daughter sum rule can be cast into a pseudo observable that

serves as a predictor of the mass square for the interpolated state, i.e. here the B

meson; see e.g. ref. [206]. Schematically,

[m2
B(q2;F )]LCSR =

∫ s0
0
ds s ρF (s, q2) e−s/M

2∫ s0
0
ds ρF (s, q2) e−s/M2 . (6.5)

Here F denotes any of the three form factor under consideration, and ρF is the OPE

result for the form factor’s spectral density.

To determine the duality thresholds the procedure used in ref. [206] for the

f+ form factor is followed. A theoretical Gaussian likelihood centered around the

experimental results for the B-meson mass is constructed. Further, a theoretical

uncertainty of 1% is assigned to the LCSR prediction of the B-meson mass. For

each form factor the likelihood challenges the LCSR predictions for the mass in five

different q2 points equally spaced between −8 GeV2 to +8 GeV2. The parameters

listed in table 6.1 are then fitted to this likelihood, using two different models for the

duality thresholds, see below. The posteriors for most parameters are in good agree-

ment with the priors, with the exception of the posteriors for the duality threshold

parameters and the LCSR Borel parameter, which change from uniform to peaking

distributions. This change clearly indicates that we successfully infer the duality

thresholds and the Borel parameter from the daughter sum rules.

The procedure carried out in this work is similar but not identical to the one

presented in [206], where instead of π-LCDAs, the significantly less precise B-meson

LCDAs were appropriated. It differs in the following points:

1. Here, all three transition form factors are determined simultaneously, while in

ref. [206] the analysis is constrained to f+ only. The procedure presented here
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Figure 6.1: The dependence

of the B-meson mass predictor

[m2
B(q2;F )]LCSR for each of the three

form factors F = {f+, f0, fT} on the

momentum transfer q2. We show the

posterior-prediction for a q2-invariant

threshold (in orange) and a threshold

with linear q2 dependence as in

eq. (6.6) (in blue). The shaded areas

correspond to the respective 68%

probability envelopes.

restricts the possible parameters space more strongly, since all form factors

share the same input parameter set except for their respective threshold pa-

rameters. The effect is mostly visible in the posterior of the Borel parameter

and discussed in detail below.

2. The q2 derivatives of the form factors (as suggested in ref. [206]) are not de-

termined. This decision is based on the following observation. If the predictor

for a form factor and for its q2 derivative share the same threshold parameter,

then the mass predictor for the derivative cannot in general be expected to

produce a value close to the B meson mass squared. Therefore, new and in-

dependent duality threshold parameters would need to be introduced for each

derivative. This reduces the usefulness of the derivatives as a similar amount

of information can be extracted by increasing the number of q2 points, which

150



|Vub| determination from the B̄ → π `ν̄` decay

12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00

M2

0.25

0.30

0.35

0.40

0.45

0.50

fo
rm

fa
ct

or

EOS v0.3.2f+(0)

fT (0)

f+(5 GeV2)

fT (5 GeV2)

f0(5 GeV2)

Figure 6.2: The dependence of the form factors f+ (in blue), f0 (in orange), and

fT (in green) on the Borel parameter M2. This dependence is exemplified for two

different choices of q2: 0 GeV2 (solid lines), and 5 GeV2 (dashed lines). The form

factor f0 coincides with with f+ at q2 = 0, and is therefore not depicted at this

value.

is computationally easier.

In a first fit the duality thresholds are assumed to be constant with respect to

q2. In a second fit, a linear q2 dependence of the thresholds is allowed , i.e.,

sF0 (q2) ≡ sF0 + q2 s′F0 . (6.6)

As already disussed in ref. [206], evidence is found for a mild q2 dependence of the

duality thresholds. Here, a reduction of the global χ2 by ∼ 0.5 is evident when

allowing for a linear q2 dependence in all three thresholds. This has to be compared

to a decrease of three degrees of freedom. While this result does in no way require

to impose a q2 dependence of the thresholds, here it is considered grounds enough

to further investigate the q2 dependence of the B-meson mass predictors. To this

end, the median curve and its 68% probability envelope for each mass predictor

and for both fit models is computed. The findings are illustrated in figure 6.1.

As can be expected due to the three additional parameters, the 68% envelopes of

the fit model with q2-dependent thresholds (blue bands) have a larger uncertainty

than the envelopes of the fit model with constant thresholds (orange bands). How-
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ever, the former model reproduces the physical B-meson mass on average better

than the fit model with constant thresholds in the q2 interval considered here. The

maximal deviation of the B-meson mass predictors from the physical mass is re-

duced for all three form factors. Therefore, the q2-dependent ansatz is chosen as a

representation for the duality thresholds for the central values of form factor pre-

dictions computed here. The difference between the constant and the q2-dependent

threshold parametrizations is used to estimate systematic uncertainties due to the

determination of the duality threshold parameters.

The dependence on the Borel parameter M2 is accounted for by varying this

parameter in the prefered window 12 GeV2 ≤M2 ≤ 20 GeV2. In this way, the resid-

ual M2 dependence of the form factor predictions is accounted for. This procedure

was carried out in ref. [206], where a gaussian prior was used. Here, this procedure

is applied instead with a uniform prior. Despite the mild dependence of each form

factor on the Borel parameter value, its posterior differs strongly from its prior, with

a peak at around 15 GeV2. This can be understood, since each form factor and each

q2 point entering the theoretical likelihood differs slightly in its dependence on the

Borel parameter. Only when investigating all form factors and q2 simultaneously,

the posterior of the Borel parameter is found to exhibit a clearly peaking structure.

As expected, the overall form factors dependence on the Borel parameter is very

weak and is shown in figure 6.2.

6.1.3. Numerical results for the form factors

The form factors are predicted at five equally-distanced q2 points in the interval

−10 GeV2 ≤ q2 ≤ +10 GeV2. The choice of q2 points simultaneously maximizes

the number of pseudo data points while keeping correlations of neighbouring points

below 80% in the combined parametric and systematic uncertainty. Two systematic

uncertainties are estimated by the following procedures:

1. For each form factor prediction the renormalization scale is varied by divid-

ing and multiplying it with a factor of 1.25, corresponding to the interval

[2.40 GeV, 3.75 GeV]. The maximal one-sided variation of all our predictions
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can be found when lowering the renormalization scale. Across all form factors

and all q2 points, this variation evaluates consistently to ∼ 4%. For a conser-

vative estimate of this effects, an uncorrelated 4% systematic uncertainty is

added to all form factor predictions.

2. For each form factor the difference between the predictions with constant du-

ality thresholds and q2-dependent duality thresholds is computed. The largest

difference occurs for f0(q2 = 10 GeV2), corresponding to roughly ∼ 6% of the

central value. The differences are added in quadrature to the variances.

The joint posterior predictive distribution for all of the form factors is to excellent

approximation a multivariate Gaussian distribution. The mean values and standard

deviations are provided in table 6.2. For convenience the mean values and the co-

variance matrix are attached to the arXiv preprint of the manuscript this section

is based no as an ancillary machine-readable file. One can immediately notice the

very close numerical values of f+ and fT form factors, which is expected as a con-

sequence of the heavy-quark expansion and the large-energy symmetry limit [181].

The f0(q2 = 0) pseudo data point is not included, since it coincides with f+(q2 = 0)

by definition. Uncertainties amount to ∼ 10% across all q2 points. The parametric

covariance matrix for the prrediction exhibits a large degree of correlation. The

determinant of ρ, the linear correlation matrix reads

det ρ

∣∣∣∣
parametric

= 4.0× 10−31 . (6.7)

Accounting for the systematic uncertainties as discussed above increases the deter-

minant to

det ρ

∣∣∣∣
total

= 3.7× 10−5 , (6.8)

thereby reducing the degree of correlation. The largest correlation of 81% occurs

amongst f0(−5 GeV2) and f+(−5 GeV2). These findings give confidence that the 14

data points can be treated as 14 independent observations in the following studies.
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Table 6.2: The LCSR predictions for the form factors in five q2 points. The value

of f0(q2 = 0) is not independent, since f+(q2 = 0) = f0(q2 = 0) by construction.

q2 −10 GeV2 −5 GeV2 0 GeV2 +5 GeV2 +10 GeV2

f+(q2) 0.170± 0.022 0.224± 0.022 0.297± 0.030 0.404± 0.044 0.574± 0.062
f0(q2) 0.211± 0.029 0.251± 0.024 — 0.356± 0.040 0.441± 0.052
fT (q2) 0.170± 0.021 0.222± 0.020 0.293± 0.028 0.396± 0.039 0.560± 0.053

6.1.4. Extrapolation to high q2

The standard approach to extrapolate the form factors is a fit of a parametrization

of the form factors to LCSR pseudo data points. For the extrapolation of our LCSR

results to large q2 here the BCL parametrization [129] is chosen, as it is commonly

applied in the literature [78–80]. Details can be again be seen in section 3.3.

A common choice is choice is made t∗ = t+ ≡ (mB + mπ)2. The magnitude of

z(q2) for q2 within the semileptonic phase space is again minimized by choosing

t0 = t0,opt = (mB +mπ)(
√
mB −

√
mπ)2 , (6.9)

which is also adopted here. As a consequence, |z| < 0.284 for semileptonic B̄ → π

decays. The B̄ → π vector and tensor form factors feature a single subthreshold

pole, each due to the B∗ bound state, which is located outside the semileptonic

phase space. The scalar form factor f0 has no subthreshold pole.

The features of the form factor f+(q2) in the BCL parametrization are very

well known, but there is some ambiguity as to how the the scalar form factor f0

should be parametrized, which is not discussed in ref. [129]. Commonly [78,80] f0 is

parametrized without the use of a pole, due to the absence of a subthreshold bound

state. In addition, the behaviour of Disc f0 ∼ p1/2 just above the pair production

threshold cannot be used to eliminate one of the expansion coefficients. It is therefore

ambiguous if f0 should be expanded to order K or K−1 to ensure consistency when

simultaneously fitting f+. In this section, f0 is expanded to order zK−1 to make it

compatible with the literature [78,80].

For the tensor form factor fT most of the same considerations as for f+ apply.
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BCL parameters (K = 3)

f+(0) 0.283+
−

0.027
0.027

b+
1 −1.0+

−
4.3
4.5

b+
2 −2.9+

−
6.2
5.8

b0
1 −6.8+

−
6.3
6.9

b0
2 4+

−
12
12

fT (0) 0.282+
−

0.026
0.026

bT1 −0.7+
−

4.3
4.6

bT2 −3.0+
−

6.3
5.9

Table 6.3: The median values

and central 68% probability intervals

obtained from the one-dimensional

marginalized posterior distributions

for the parameters of the common

BCL parametrization eq. (6.10) for

the K = 3 fit when fitted to the LCSR

pseudo data points. The total χ2 is

0.017 for 6 degrees of freedom, corre-

sponding to a p value in excess of 99%

at the best-fit point.

There is a single subthreshold pole, which corresponds to the B∗ bound state. The

factor (1 − q2/M2
B∗)
−1 accounts simultaneously for the asymptotic behaviours for

q2 → ∞ and the bound state. As for the vector form factor we expand to order

zK . Above the pair production threshold, two units of orbital angular momentum

impose that Disc f+ ∝ p5/2. Hence, the absence of a p1/2 term can again be used to

eliminate the expansion coefficient bTK in lieu of the coefficients bTn with n < K.

Based on the above considerations, the common BCL parametrization then reads:

f+(q2) =
f+(q2 = 0)

1− q2/m2
B∗

ï
1 +

K−1∑
n=1

b+
n

(
z̄n − (−1)n−K

n

K
z̄K

) ò
,

f0(q2) = f+(q2 = 0)

ï
1 +

K−1∑
n=1

b0
nz̄n

ò
,

fT (q2) =
fT (q2 = 0)

1− q2/m2
B∗

ï
1 +

K−1∑
n=1

bTn

(
z̄n − (−1)n−K

n

K
z̄K

) ò
,

(6.10)

with z̄n ≡ zn − zn0 , z ≡ z(q2; t+, t0), and z0 = z(0; t+, t0). Here the kinematical

constraint f+(0) = f0(0) is manifestly fulfilled, which reduces the overall number of

free parameters by one.

In the following a fit to the common BCL parametrization eq. (6.10) to the

14 LCSR pseudo data points and their correlated uncertainties is presented. As

discussed in that section, the correlated pseudo data points can be counted as 14

independent observations. Adding further data points is unlikely to increase the
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amount of information, due to the already large degree of correlation among the

data points. In the fit to the LCSR prediction, the number of fit parameters is

therefore limited to be smaller than 14, corresponding to a maximal order K = 4 in

the z expansion, which has eleven independent parameters.

Two fits are carried out: one with K = 3, and one with K = 4. Already for

K = 3 a good fit is obtained, with χ2/d.o.f. ∼ 0.017/6 and a p value in excess

of 99%. The goodness of fit therefore gives no indication that higher orders of z

are required in the fit model. Nevertheless, a fit is carried out with K = 4 to

obtain a handle on the systematic extrapolation error inherent to the form factor

parametrization. Medians and central 68% probability intervals of the marginalized

one-dimensional posterior distributions are shown for each of the BCL parameters

for the K = 3 fit in table 6.3. Corresponding results in the K = 4 fit are compatible

with the results of the K = 3 fit at the 1σ level. This is not surprising, since the

uncertainty intervals for the shape parameters in the K = 4 fit are an order of

magnitude larger than those in the K = 3 fit, while the goodness of fit cannot be

improved further. Therefore, the K = 3 fit is used as our default for numerical

values and illustrations in this section. Note that the unitarity bounds that have

been formulated for exclusive b→ u transitions form factors [129,260] are not used

here.

Fit results in relation to the LCSR pseudo data points are shown in figure 6.3.

This figure also indicates that this extrapolation to large q2 has sizable uncertainties.

Within these uncertainties, results are compatible with the available lattice QCD

results [78–80] for the B̄ → π form factors. The latter are not part of the analyses

in this section and are merely shown for an illustrative purpose. In both the K = 3

and the K = 4 fit the bands of posterior-predictions at 68% probability do not

correspond to the 68% uncertainty regions of the data points. Empirically, it is

found that this effect is caused by the large correlations among q2-neighbouring

data points and between the predictions for f+ and f0. The effect causes the BCL

fit’s uncertainty bands to trail slightly below the form factor pseudo data points.

The extrapolations of the LCSR results can be challenged in several ways.
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Figure 6.3: Posterior-predictions for the form factors f+ (top), f0 (center), and

fT (bottom) obtained from the fits of the common BCL parametrization (6.10) to

only the LCSR pseudo data points discussed in section 6.1.3. Lattice QCD points

are merely shown for illustrative purpose. The bands correspond to the envelope at

68% probability.
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First, a dispersive representation of f+(q2) implies that:

Resq2→m2
B∗
f+(q2) =

1

2
fB∗mB∗gB∗Bπ = 14.6± 1.3 GeV2 , (6.11)

for which fB = 190 ± 1.3 MeV from a lattice calculation is used, f ∗B/fB = 0.958 ±
0.022 [226] and gB∗Bπ = 30.1+2.6

−2.4 from a recent QCD light-cone sum rule calcula-

tion [261]. Since the common BCL parametrization for f+ includes a pole for the

B∗, an analytical formula for the residue can be obtained. From the fit described

above

Resq2→m2
B∗
f+(q2) = 12± 29 GeV2 , (6.12)

which is in agreement with eq. (6.11) within its sizable uncertainties. The uncertain-

ties presented are of parametric origin only. Systematic uncertainties due to higher

orders in the z expansion are not taken into account, and could be sizable due to

the magnitude of z(q2 = m2
B∗). The residue is therefore not immediately useful to

check the validity of our extrapolation to large q2.

Second, the soft-pion theorem relates the form factor f0 to the B-meson and

pion decay constants [70, 71,262–264] as

f0(t−) + f0(t+) =
2fB
fπ

ï
1− mu +md

md +mb

ò
= 2.914± 0.092 . (6.13)

The relation holds even at next-to-leading order in 1/mb, and including short-

distance corrections [265]. Here the same numerical inputs are used as above and

additionally fπ = 130.2± 0.8MeV [4]. From the fit described above

f0(t−) + f0(t+)

∣∣∣∣
LCSR only

= 5.1± 6.3 . (6.14)

Although our results are consistent with the expectation in eq. (6.13), the uncer-

tainties are so large that we cannot use the above relations to carry out a meaningful

test of the validity of our extrapolation.

Third, in the large-energy symmetry limit the form factors f+ and f0 are related
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Figure 6.4: The ratio of form factors R0+(q2) as defined in the text. We extrapola-

tion is based on the fit to LCSR pseudo data and compared with the symmetry limit

(6.15), which is valid for large π energy in the B-meson rest frame or equivalently

at small q2.

via [181]:

f0(q2) =
m2
B +m2

π − q2

m2
B

f+(q2) +O
Å

Λhad

Eπ
,
Λhad

mB

ã
. (6.15)

Here Eπ is the energy of the π in the B rest frame. A useful measure of compatibility

can therefore be obtained through the ratio

R0+(q2) =
m2
B

m2
B +m2

π − q2

f0(q2)

f+(q2)
. (6.16)

This ratio is shown in figure 6.4 based on an extrapolation of the LCSR form fac-

tors. The LCSR results are consistent with the large-energy limit within ∼ 10%

uncertainty up to ' 13 GeV2, i.e. within the whole region of applicability of the

LCSRs.

In the next section form factor extractions are performed in a combined fit to

LCSR and lattice QCD inputs. This procedure further constrains the form factors

at high q2 and reduces the uncertainties appreciably.
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6.2. Interpolation between LCSR and

lattice QCD form factors

In this section the LCSR results obtained in section section 6.1.3 is interpolated

with precise results for the B̄ → π form factors obtained from lattice QCD simu-

lations. These lattice QCD results exhibit very small uncertainties for 19 GeV2 .

q2 . 25 GeV2, outside the reach of the light-cone sum rules. In this section two

independent sets of lattice QCD results are used. The first set is provided by the

FNAL/MILC collaboration [78, 79] based on Nf = 2 + 1 gauge ensembles and a

staggered-quark action. The second set is provided by the RBC/UKQCD collabo-

ration [80] based on Nf = 2 + 1 gauge ensembles with domain wall fermions.

Information from an older analysis by the HPQCD collaboration [266] isn’t ap-

propriated here for two reasons: first, it shares some of the Nf = 2 + 1 ensembles

with the results published by FNAL/MILC [78]; second, it does not provide correla-

tions between the f+ and f0 results. A more recent HPQCD analysis [267] providing

a single, very precise value for f0 at zero-recoil is also bypassed. Again, some of the

Nf = 2+1 ensembles are shared with the FNAL/MILC analysis, and the correlations

between the HPQCD and the FNAL/MILC results cannot be accounted for.

The usage of RBC/UKCQCD data is straightforward, since ref. [80] provides

both the f+ and the f0 form factor in three different q2 points including their cor-

relations. These data are therefore used in the likelihood as a multivariate gaussian

constraint.

The usage of the FNAL/MILC data is more involved, since refs. [78, 79] do not

provide data points for any of the form factors. Instead, these references provide

the outcome of a BCL fit to the data points. As discussed below, a need to modify

the BCL parametrization is present, making it impossible to use the BCL results

of FNAL/MILC collaboration as is. Instead, the BCL results are used to produce

pseudo data points of the form factors. Three such points are produced for f+ and

four points both for f0 and for fT . The points are chosen in the range 19 GeV2 ≤
q2 ≤ 25 GeV2. Based on information provided in ref. [78, 79], this range of q2 was
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Table 6.4: A complete list of the data points for the 3 transition form factors used

in the combined fit.

form factor # of points q2 values (in GeV2) type source

f+

5 −10.0, −5.0, 0.0, 5.0, 10.0 LCSR this work
3 21.0, 23.0, 25.0 LQCD FNAL/MILC [78]
3 19.0, 22.6, 25.1 LQCD RBC/UKQCD [80]

f0

4 −10.0, −5.0, 5.0, 10.0 LCSR this work
4 19.0, 21.0, 23.0, 25.0 LQCD FNAL/MILC [78]
3 19.0, 22.6, 25.1 LQCD RBC/UKQCD [80]

fT
5 −10.0, −5.0, 0.0, 5.0, 10.0 LCSR this work
4 19.0, 21.0, 23.0, 25.0 LQCD FNAL/MILC [79]

chosen to minimize the total uncertainty. The smaller number of points for f+ is due

to a peculiarity in the BCL fit results. The covariance matrix provided in ref. [78] is

singular. This can be understood, since in that work the identity f+(0) = f0(0) is not

manifestly fulfilled by the parametrization. Based on the authors’ suggestions [268],

the coefficient b+
3 (in their notation) is replaced by a linear combination of the

remaining coefficients, such that the identity f+(0) = f0(0) is manifestly fulfilled.

This replacements requires the removal of the row and column associated with b+
3

from the correlation matrix, reducing the number of free parameters to three. Hence,

the maximal number of independent pseudo data points from FNAL/MILC is now

also limited to three.

An overview of the data points used is provided in table 6.4.

With the likelihood for the lattice QCD results at hand, a simultaneous fit of

the common BCL parametrization is carried out in eq. (6.10) to both the LCSR

pseudo data points and the lattice QCD data points. For K = 3 the fit yields

a minimal χ2 ' 154. Given 23 degrees of freedom in the fit, this corresponds to

a p value considerably smaller than the a-priori threshold of choice amounting to

3%. Therefore, this fit is rejected. Investigating the BCL paramatrization with

K = 4, Better agreement, with a minimal χ2 = 27.5 for 20 degrees of freedom, is

found. The corresponding p value of 12% is acceptable. For both cases, a visual

comparison of the extrapolation of the LCSR results for f+ and fT with the lattice

data as shown in figure 6.3 does not give any reason to expect a bad fit. However, the

same figure illustrates that the extrapolation of f0 is not easily compatible with the
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lattice points. Therefore, the goodness of fit of the overall analysis hinges crucially

on the correlations between f0 and the other form factors.

The surprising result for the fit with the common BCL parametrization implies

an investigation of alternative fit models is needed. The parametrization of the

f0 form factor is thus modified by including a pole above the Bπ pair production

threshold, corresponding to a scalar Bπ resonance. Since no such resonance has

been observed yet, its mass has to be estimated. To this end, the heavy-quark limit

is employed, which yields:

mBs,0 −mB∗s = mB0 −mB∗ ' 215 MeV (6.17)

Here Bs,0 and B0 denote the lowest-lying scalar BK and Bπ resonances, respectively,

with valence quark contents (b̄s) and (b̄d). Using the known masses of the B∗(s),

mB∗ = 5.325 GeV mB∗s = 5.415 GeV [4], the value mB0 = 5.540 GeV arises. This

value is meant as rough estimate only, and slight variations of the value can and will

be accommodated by the parameters of the modified BCL parametrization. The

modified BCL parametrization then reads:

f0(q2) =
f+(z0)

1− q(z)2/m2
B0

ï
1 +

K∑
n=1

b0
nz̄n

ò
,

f+(q2), fT (q2) : unchanged with respect to eq. (6.10) ,

(6.18)

where the maximal order of the z expansion for the f0 form factor has also been

increased. In this way the same number of shape parameters for each form factor

is used. (Note that for f+ and fT one shape parameter is fixed as discussed in

section 6.1.4.) The stated modification does not allow to apply the unitarity bounds

for the f0 form factor as is. However, alternative parametrizations such as the

BGL parametrization can account for above-threshold poles in the formulation of

the unitarity bounds [269], which are not considered here. The fits are repeated

with the modified BCL parametrization in eq. (6.18) with K = 3 and K = 4. In

both cases acceptable to good fits are obtained, with p values of 52% and 54%
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respectively.2 Effectively, the pole modifies the shape parameters and implicitly

allows for more flexibility of the fit. Explicitly expanding the B∗ pole factor in z

around q2 = 0 yields:

1

1− q(z)2/m2
B∗
≈ 1

1− t0
m2
B∗

+ 4
m2
B∗(t0 − t+)

(m2
B∗ − t0)2

z +O
(
z2
)
. (6.19)

This illustrates that additional powers of z are now available to relieve the apparent

tension between the LCSR and LQCD data of f0.

The median values and central 68% probability intervals for each marginalized

one-dimension posteriors are provided in table 6.5. The covariance matrix is pro-

vided as an ancillary file together with the arXiv preprint of the publication this

section is based upon. The fit parameter values for K = 4 are consistent with the

ones for K = 3 within uncertainties. Investigating the K = 5 case, the p value

increases insignificantly compared to the K = 4 case. Although the K = 3 fit is also

acceptable, the K = 4 fit is presented here as the main result. The reason is that

at K = 4 the fit can account for an additional systematic uncertainty due higher

orders in the z expansion.

Plots of the posterior predictions for each form factor are provided in figure 6.5.

A cursory glance at the f+(0) plot suggest a ∼ 1.4σ deviation between the fit to the

LCSR results only and the fit to the combined LCSR+LQCD likelihood. This naive

interpretation is not useful, due to strong correlation between the normalization and

the shape parameters. As a consequence, the compatibility in this point cannot be

accurately computed, and the overall goodness-of-fit diagnostics of our fits, such as

the p value, must suffice.

The fits to LCSR data only shown in this section are carried out with the modified

BCL parametrization as given in eq. (6.18) and therefore differ slightly to those

obtained in section 6.1.4.

The precision of the extrapolation of the form factors significantly improves by

combining the LCSR and LQCD inputs, especially in the large q2 region, as expected.

2The inclusion of the scalar resonance makes up for the majority of the p value improvement.
Keeping only the pole and fixing the additional shape parameter to zero yields p values of 7% and
60%, respectively.
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Figure 6.5: Posterior-predictions for the form factors f+ (top), f0 (center), and fT

(bottom) obtained from the fits of the modified BCL parametrization (6.18) to the

LCSR pseudo data points only (blue bands), and both the LCSR and lattice QCD

inputs (orange bands). The bands correspond to the envelope at 68% probability.
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Table 6.5: The median values and central 68% probability intervals for the param-

eters of the modified BCL parametrisation from eq. (6.18) when fitted to the LQCD

and LCSR pseudo data.

param.
scenario LCSR+LQCD LCSR

K = 3 K = 4 K = 3

f+(0) 0.237+
−

0.017
0.017 0.235+

−
0.019
0.019 0.283+

−
0.027
0.027

b+
1 −2.38+

−
0.33
0.38 −2.45+

−
0.49
0.54 −1.0+

−
3.5
3.6

b+
2 −0.82+

−
0.76
0.81 −0.2+

−
1.1
1.2 −2.8+

−
4.9
4.7

b+
3 — −0.9+

−
4.2
4.0 —

b0
1 0.48+

−
0.07
0.07 0.40+

−
0.18
0.20 −5+

−
52
51

b0
2 0.14+

−
0.39
0.44 0.1+

−
1.1
1.2 22+

−
200
200

b0
3 2.79+

−
0.71
0.77 3.7+

−
1.6
1.6 −32+

−
240
240

b0
4 — 1+

−
14
13 —

fT (0) 0.240+
−

0.016
0.016 0.235+

−
0.017
0.017 0.281+

−
0.025
0.025

bT1 −2.05+
−

0.32
0.36 −2.45+

−
0.45
0.50 −0.6+

−
4.2
4.4

bT2 −1.45+
−

0.63
0.66 −1.08+

−
0.68
0.71 −3.2+

−
5.9
5.8

bT3 — 2.6+
−

2.1
2.0 —

p value ∼ 52% ∼ 54% ∼ 100%

χ2/d.o.f ∼ 21.01/22 ∼ 17.75/19 ∼ 0.0278/5

Now, eq. (6.11) is revisited in order to extract the strong coupling constant from

the combined fit. We obtain:

gB∗Bπ = 39.8± 1.1 , (6.20)

where the uncertainties are of parametric origin only. Systematic uncertainties due

to higher orders in the z expansion are not taken into account, and could be sizable

due to the magnitude of z(q2 = m2
B∗). The result eq. (6.20) agrees well with the

lattice determination gB∗Bπ = 45.3± 6.0 by the RBC/UKQCD collaboration [270],

but it shows a tension with respect to the recent direct LCSR determination gB∗Bπ =

30.1+2.6
−2.4 [261] at the level of 3.4 σ.3

However, the extrapolation becomes unstable for q2 ≥ t−, i.e., outside the

3Note that it was already observed in [261] that a significantly larger result arises when using
eq. (6.11) than when calculating this quantity directly.
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Table 6.6: Comparison of the results for the form factor normalizations with other

QCD-based results in the literature. The result of ref. [254] is included for complete-

ness, although the authors caution that the threshold setting procedure employed

in that work fails for the B̄ → π form factors.

Source f+(0) = f0(0) fT (0)

Lattice QCD

Fermilab/MILC [78,79] 0.2± 0.2 0.2± 0.2

RBC/UKQCD [80] 0.24± 0.08 —

combination w/ Pade approx. [207] 0.265± 0.010± 0.002 —

Light-cone sum rules

Duplancic et al. [95] 0.26+0.04
−0.03 0.255± 0.035

Imsong et al. [206] 0.31± 0.02 —

Bharucha [252] 0.261+0.020
−0.023 —

Khodjamirian/Rusov [259] 0.301± 0.023 0.273± 0.021

Gubernari et al. (B LCDA) [254] 0.21± 0.07 0.19± 0.06

this work 0.283± 0.027 0.282± 0.026

Light-cone sum rules + Lattice QCD combination

this work 0.235± 0.019 0.235± 0.017

semileptonic phase space: the 68% probability region for the f0 form factor starts

to cover both positive and negative values, and the central value turns negative just

below q2 = t+. This finding of negative form factors is inconsistent with a dispersive

representation of the form factor. The behaviour is suspected to be an artifact of

the fit model. Hence, no meaningful way is obvious to compare these results to the

expectation from the Callan-Treiman type relation in eq. (6.14).

In figure 6.6 a plot of R0+(q2) for the form factors interpolating the LCSR and

LQCD data is provided. The results appear to be consistent with the large-energy

limit from eq. (6.15). Compared to the LCSR-only result, the range in which the

large-energy symmetry limit holds has expanded up to ' 15 GeV2.

A comparison of form factor values computed here and those in the literature is

compiled in table 6.6.
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Figure 6.6: The form factor ratio R0+(q2) interpolated between LCSR and LQCD

data and compared to the large-energy symmetry limit in the low q2 region.
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6.3. Phenomenology

6.3.1. Exclusive |Vub| determination

Following the determination of the form factors from LCSRs and lattice QCD input,

the extraction of the magnitude of the CKM matrix element |Vub| is now possible

from measurements of the B̄ → π`−ν̄` branching ratio.

To this end, the world average of the branching ratio as provided by the HFLAV

collaboration [42] is used. This average is based on individual measurements by the

BaBar [271, 272] and Belle [273, 274] collaborations. The world average is provided

in terms of 13 bins of the squared momentum transfer q2, with identical bin sizes.

Within the averaging process, HFLAV accounts for shared systematic correlations

among the individual measurements.

A visual representation of this data, which is provided in figure 6.7, shows that

the highest relative experimental precision is achieved in for intermediate q2, i.e.,

in a region that is not reliably accessible with LCSRs and not yet accessible with

lattice QCD simulations. Consequently, the efforts presented in teh section above

– to obtain high-precision determinations of the form factors at intermediate q2

through interpolation of the respective theory results is of high importance to the

|Vub| determination. This is nicely illustrated in Fig. 3 of ref. [130].

The |Vub| extraction analysis is set up in the same way as in section 6.2. This

means that the fit using the modified BCL parametrization is exclusively employed

in this section. As the only modification with respect to section 6.2, the HFLAV

average is included as part of the likelihood. The theory prediction for the B̄ →
π`−ν̄` branching ratio does not depend on the form factor fT in the SM, which

is assumed for the following fit. For ` = e, µ the branching ratio is only very

weakly dependent on the form factor f0, which contributes measurably only for

q2 . 1 GeV2. Additionally, the predictions for f0 are affected by interaction between

the experimental constraint on f+ and the theoretical correlations between f+ and

f0. As a consequence, the results are presented as one-dimensional marginalized

posterior distributions only for |Vub| and the parameters describing the f+ form
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Table 6.7: Results from the three fits to combinations of fit models and data sets

as described in the text. The median values and central intervals ar provided at

68% probability for the one-dimensional marginalized posterior distributions.

param.
method LCSR+LQCD LCSR only

K = 3 K = 4 K = 3

10−3 × |Vub| 3.80+
−

0.14
0.14 3.77+

−
0.15
0.15 3.28+

−
0.33
0.28

f+(0) 0.248+
−

0.009
0.009 0.246+

−
0.009
0.009 0.284+

−
0.025
0.025

b+
1 −2.13+

−
0.19
0.19 −2.10+

−
0.22
0.21 −1.91+

−
0.31
0.30

b+
2 −0.82+

−
0.54
0.55 0.23+

−
0.87
0.87 −1.42+

−
0.85
0.89

b+
3 — −3.0+

−
2.8
2.8 —

χ2/d.o.f ∼ 32.33/34 ∼ 29.30/31 ∼ 10.72/17

p value ∼ 55% ∼ 55% ∼ 87%

factor. Fits are carried out to the LCSR pseudo data only in the K = 3 fit model as

well as combined fits to the LCSR + lattice QCD inputs in the K = 3 and K = 4

models. In all cases a good fit is found, with p values in excess of 55%. While the

K = 4 fit model to LCSR + lattice QCD inputs does not provide a significantly

improved goodness of fit, it is still adopted it as the nominal fit model here. The

reasoning is that this model can account for additional systematic uncertainties

inherent to the extrapolation process, which slightly increases the uncertainty of

the |Vub| extraction. The smallness of the difference in the K = 3 and K = 4

uncertainties seems to indicate that systematic uncertainties are under reasonable

control. Summaries of the one-dimension marginalized posteriors in terms of their

median values and central 68% probability intervals are provided in table 6.7.

The LCSR-only fit yields a |Vub| result that is slightly smaller than the LCSR +

lattice LQCD results by approximately more than one sigma. The latter results for

K = 3 and K = 4 are in mutual agreement. This is not surprising, given the shift

in f+(0) between these two scenarios, which is already discussed in section 6.2. The

results for K = 3 and K = 4 for fit to LCSR + lattice LQCD results are perfectly

compatible with each other. The nominal result is obtained from the fit to LCSR
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Table 6.8: Comparison of the |Vub| CKM matrix element determinations from the

B̄ → π`−ν̄` decays, using QCD-based form factor predictions.

Source 10−3 × |Vub|

LQCD

Fermilab/MILC [78,79] 3.72± 0.16

RBC/UKQCD [80] 3.61± 0.32

combination w/ Pade approx. [207] 3.53± 0.08stat ± 0.06syst

HFLAV [42] 3.70± 0.10stat ± 0.12syst

LCSR

Duplancic et al. [95] 3.5± 0.4± 0.2± 0.1

Imsong et al. [206] 3.32+0.26
−0.22

this work 3.28+0.33
−0.28

LCSR + LQCD

HFLAV [42] 3.67± 0.09stat ± 0.12syst

this work 3.77± 0.15

+ lattice QCD input with K = 4, and reads

|Vub|B̄→πLCSR+LQCD = (3.77± 0.15) · 10−3. (6.21)

The apparent slight tension between f+(0) obtained from the fit to LCSR data

only and the fit to LCSR+LQCD data, as previously discussed in section 6.2, persists

here as well. It translates to a reasonable agreement between the determinations

of |Vub| at the 1.4σ level. A very good fit is found using the combined LCSR and

LQCD data, with χ2/d.o.f. ∼ 1, and a p value of ∼ 55% at the best-fit point.

Adding information on the form factor shape through the HFLAV average of the

experimental data does not affect the results for the BCL parameters compared to

results of the theory-only fit in section 6.2. This result exhibits a slight tension with

the BLNP and GGOU determinations from eq. (6.1), in both cases at the ≈ 2σ

level. However, it is in very good agreement with the recent method-averaged result

by the Belle collaboration as given in eq. (6.3). Here the tension reduces to ≈ 1σ

only.
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The nominal results for |Vub| is compared with other methods in table 6.8 and in

figure 6.8 the Standard Model prediction is presented for the differential decay rate

of B̄ → π`−ν` divided by |Vub| for the electron and tau lepton final states.

The normalized branching ratios obtained with the use of the theory-only form

factors from section 6.2 yield

B(B̄ → πµ−ν̄µ) =
(
9.6+1.0
−1.0

)
× |Vub|2 ,

B(B̄ → πτ−ν̄τ ) =
(
6.7+0.6
−0.5

)
× |Vub|2 .

(6.22)
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EOS v0.3.2

mod. BCL K = 4 (LCSR + LQCD + HFLAV)

HFLAV

Figure 6.7: Differential branching ratio for B̄0 → π+`−ν̄` decay as obtained from

the combined fit to LCSR and lattice QCD inputs and experimental data, compared

to the HFLAV average of the experimental data.

6.3.2. Lepton flavour universality ratio

Next, predictions are made for the SM observables for the B̄ → π`−ν̄` decay results

as obtained in section 6.2.

In light of hints for LFU violating effects in B̄ → D(∗)`−ν̄` decays [42, 275], the
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LFU-probing observable for B̄ → π`−ν̄` decays is investigated, as

Rπ =
Γ(B̄ → πτ−ν̄τ )

Γ(B̄ → π`−ν̄`)
=

∫ q2
max

m2
τ
dΓ(B̄ → πτ−ν̄τ )/dq

2∫ q2
max

m2
`
dΓ(B̄ → π`−ν̄`)/dq2

, (` = e, µ) . (6.23)

In the SM, predictions for Rπ involve only two out of three form factors, f+ and f0.

Using the results from the form factor fit with K = 4 as obtained in section 6.2 it

is found that

Rπ

∣∣
LCSR+LQCD

= 0.699+0.022
−0.020 . (6.24)

The central values for Rπ as predicted from the K = 3 and K = 5 fits fall entirely

within the above uncertainties. Also shown are the differential branching ratios for

the tauonic and light-lepton modes individually in figure 6.8.

It is important to stress that for a precise determination of Rπ knowledge of

the scalar form factor f0(q2) is key. To demonstrate this, the contributions to the

tauonic decay width stemming from each of the form factors is disentangled

Rπ ≡ R+
π +R0

π , (6.25)

corresponding to the |f+|2 and |f0|2 contributions, respectively. Numerically

R+
π

∣∣
LCSR+LQCD

= 0.476+0.014
−0.013 , R0

π

∣∣
LCSR+LQCD

= 0.224+0.014
−0.013 . (6.26)

Although the f0 contribution is half the size of the f+ contribution, its relative

uncertainty is about two times as large as the one of the f+ term. This illustrates

the importance of accurately predicting both of the form factors for this LFU probe.

In table 6.9 a comparison of the nominal results presented in previous sections

with the available determinations of Rπ in the literature is provided. The prediction

presented in this section is in very good agreement at or below the 1 σ level with

the previous determinations provided in refs. [80, 276]. A minor exception is the

prediction of ref. [277], which is in slight tension with results presented here at the

2σ level.
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Figure 6.8: Our Standard Model prediction of the differential decay rate of

B̄ → π`−ν̄` divided by |Vub| for the electron and tau final states. The form fac-

tors are obtained from a fit to both LCSR and LQCD inputs using modified BCL

parametrization in the K = 4 fit model.

Although the LFU ratio Rπ is |Vub|-independent, it could, on the other hand, be

sensitive to potential new physics effects in B̄ → πτ−ν̄τ decay due to the presence of

new scalar currents and/or electroweak symmetry breaking effects associated with

the large mass of the τ lepton. Hence, Rπ is a very interesting candidate for future

measurements. To date, there is a single experimental result by the Belle collabora-

tion [278]. It is obtained from an upper limit on the branching ratio of B̄ → πτ−ν̄τ ,

which has not yet been observed. This result reads:

Rπ

∣∣
Belle

= 1.05± 0.51 , (6.27)

which, again, agrees with the predicition using form factors from section 6.2.
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Table 6.9: Comparison of theory results for the LFU ratio Rπ in the literature.

Th. only
source RBC/UKQCD [80] Bečirević et al. [276] this work
Rπ 0.69±0.19 0.78±0.10 0.699±0.022

Th. + Exp.
source Bernlochner [277] Bečirević et al. [276] this work
Rπ 0.641±0.016 0.66±0.02 0.688±0.014

6.3.3. Angular observables and polarizations in B̄ → π`−ν̄`

Now the form factor results can be used to predict the two angular observables in

the two-fold differential decay rate of B̄ → π`−ν̄` as well as the lepton polarization

in these decays, as defined in appendix D.

Firstly, there is the forward-backward asymmetry in the Standard model. The

integrated normalized forward-backward asymmetry is defined as

A`FB =
1

Γ(B̄ → π`−ν̄`)

∫ q2
max

m2
`

dq2

ñ∫ 0

−1

−
∫ −1

0

ô
d cos θ`

dΓ2(B̄ → π`−ν̄`)

dq2d cos θ`
. (6.28)

The forward-backward asymmetry arises from interference of the timelike polariza-

tion with the longitudinal polarization of the dilepton final state. The asymmetry is

proportional to the mass of the charged lepton. Hence, AFB is small for the ` = e, µ,

which makes it very sensitive to BSM effects that could lift the helicity suppression.

With the results for the form factors from section 6.2 in the SM

AµFB = −0.0048± 0.0003 ,

AτFB = −0.259± 0.004 .
(6.29)

The SM prediction for the electron mode is not provided, since it is indistinguish-

able from zero. The results are in reasonable agreement with the RBC/UKQCD

results [80], but are more precise.4

The flat term FH [279, 280] is another observables that arises in the normalized

angular distribution. In the SM it is proportional to the lepton mass and therefore

small. This makes it an appropriate candidate for a BSM probe, too. It can be

4Note that the convention for lepton helicity angle in ref. [80] differs from the one used in this
section by a sign, which is also affecting the overall sign of AFB.
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defined as

F `
H = 1 +

2

3

1

Γ(B̄ → π`−ν̄`)

d2

d(cos θ)2

ï
dΓ(B̄ → π`−ν̄`)

d cos θ

ò
= 1 +

2

3
C`
F , (6.30)

and is therefore related to the convexity parameter C`
F . With the results for the

form factors from section 6.2 in the SM

F µ
H = 0.0024± 0.0001; F τ

H = 0.134± 0.003 . (6.31)

The SM prediction for the electron mode is not provided, since it is indistinguishable

from zero.

As a final BSM probe the integrated normalized τ polarization asymmetry is

investigated, which can be expressed as

P τ =
Γ(B̄ → πτ−↑ ν̄τ )− Γ(B̄ → πτ−↓ ν̄τ )

Γ(B̄ → πτ−ν̄τ )
, (6.32)

where τ↑,↓ denotes the tau helicities λτ = ±1/2. With the results for the form factors

from section 6.2, in the SM

P τ = −0.21± 0.02. (6.33)
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6.4. Conclusion

In this section, the B̄ → π form factors are studied and use their numerical results

from QCD-based methods to update the exclusive determination of |Vub| from B̄ → π

semileptonic decays and the SM predictions of a number of phenomenologically

interesting observables.

The determination of the form factors using light-cone sum rules with π distri-

bution amplitudes is revisited. The analysis presented in this section includes the

full set of local B̄ → π form factors of dimension-three currents. For the first time,

a threshold setting procedure based on Bayesian inference to the full set of these

form factors is applied. Beside the thresholds, a value for the (unphysical) Borel

parameter that is mutually compatible among all three form factors can be inferred.

The results for the form factors, obtained at small momentum transfer q2, are

then extrapolated to large q2 by applying a standard BCL parametrization. This

extrapolation agrees well with precise lattice QCD results for the form factor f+

and fT . However, in order to ensure good agreement also for the form factor f0,

its parametrization needs to be modified. For precise and consistent predictions the

correct treatment of the correlations in the pseudo data points is crucial, especially

between f+ and f0; this is sometimes overlooked in the literature. Correlated re-

sults are provided for the normalization and shape parameters of all form factors,

including their correlations through ancillary machine-readable data files.

The predictions for the form factors agree very well with measurements of the q2

spectrum of the semileptonic decay B̄0 → π+`−ν̄`. Using its current world average

the value |Vub| = (3.77 ± 0.15) · 10−3 is deduced. This result is in good agreement

with the most recent inclusive determination by Belle at the 1 σ level, which removes

the long-standing tension between inclusive and exclusive |Vub| determinations.

The form factors at hand, SM predictions are also computed for a number of

phenomenologically interesting observables, such as the lepton-flavour universality

ratio Rπ, the leptonic forward-backward asymmetry AFB, the flat term FH and the τ

polarization Pτ . Based on the precise and correlated results for the form factors very

precise predictions are obtained of the aforementioned observables. Their relative
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uncertainties range from ≈ 10% for the branching ratios to about 4% for some of the

normalized observables. Precision measurements of these observables by the Belle

experiment will further constrain the form factors and probe the SM at a precision

level.
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In this thesis several exclusive semileptonic channels of b-flavored mesonic decays

were reviewed and proposed as tests of the SM. Form factor determinations were

performed in the sum rule approaches coupled with HQET/HQSS/NRQCD con-

sistency checks. The results are in each case extrapolated to a fit model inspired

by dispersive relations and considerations of the correlations functions’ analytical

structure. For each decay, a specific phenomenological investigation is executed. In

summary:

1. In Bc → (J/ψ, ηc)`ν̄` decays:

(a) A full set of Bc → J/ψ, ηc form factors computed using LCSR accompa-

nied with gaussian NRQCD-inspired wave functions is presented. Form

factors were found to satisfy the HQSS/NRQCD constraints.

(b) Values of RJ/ψ,ηc using the latter form factors are in line with what was

obtained in similar QCD based approaches. Specifically,

Rηc |SM ≡ Γ(Bc → ηcτ ν̄τ )

Γ(Bc → ηcµν̄µ)
= 0.32± 0.02 , (6.34)

RJ/ψ|SM ≡ Γ(Bc → J/ψτ ν̄τ )

Γ(Bc → J/ψµν̄µ)
= 0.24± 0.02 . (6.35)

(c) Concerning the discrepancy between RJ/ψ in the SM and the one mea-

sured on the LHCb experiment, it was found that no NP operator con-

sidered in the study can alleviate the tension significantly.

(d) For the first time, four-fold angular decay distribution expressions are

obtained for the Bc → J/ψ(→ µ+µ−)`ν̄` decay, including the contribu-
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tions from NP operators. Several observables potentially measurable are

predicted.

2. In Bc → D(∗)`ν̄` decays:

(a) A proposal is made to measure the |Vub| CKM matrix element in the

Bc → D(∗)`ν̄` decay, for which the form factors were calculated using the

QCDSR method. The form factors satisfy HQET relations.

(b) Possible non-locality of the condensates is considered as a contribution

to the Bc → D(∗) correlation functions. Non-local effects are completely

negligible in the Borel-window relevat for the form factors, but help to

constraint its lower bounds.

(c) For the LFU ratios it was found that

Rc(D
0) ≡ B(Bc → D0τ ν̄τ )

B(Bc → D0µν̄µ)
= 0.64± 0.05,

Rc(D
∗) ≡ B(Bc → D∗τ ν̄τ )

B(Bc → D∗µν̄µ)
= 0.55± 0.05,

(6.36)

where correlating the form factors appropriately would serve to reduce

the uncertainties without changing the central values. Several angular

observables are predicted as well, to be tested experimentally.

3. In B̄ → π`ν̄` decays:

(a) The full set of B̄ → π LCSR form factors is updated in a Bayesian

analysis using the latest available hadronic parameters. Form factors

values at different q2 are shown to be very correlated, which serves to

further constraint the predictions.

(b) All of the available lattice QCD pseudo data on B̄ → π form factors is

incorporated in a Bayesian fit in order to scrutinize the predictions as

much as possible.

(c) The LFU ratio using the LCSR + lattice QCD B̄ → π form factors is

predicted as

Rπ = 0.699± 0.22, (6.37)

179



Conclusions

which agrees with similar QCD-based determinations, but is more precise.

(d) Using the most recent HFLAV experimental data average, the exclusive

value

|Vub| = (3.77± 0.15) · 10−3 (6.38)

is obtained. This result is in good agreement with the most recent in-

clusive determination, which removes the long-standing tension between

inclusive and exclusive |Vub| determinations.

These results serve as a further motivation to explore the possibilities of testing

the SM on particle colliders such as LHCb or Belle II. In order to get a definitive

answer on the prospects of NP effects, more involved computations will have to be

performed in the future on the theoretical side, and on the experimental side more

precise data will have to be collected. It is clear that in the years to come a lot of

work is to be done in the sector of flavour physics in hopes that more sophisticated

insight can be gained in the non-perturbative effects of weak hadronic transitions.
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A. QCDSR expressions

A.1. Correlation function calculation

A.1.1. Perturbative terms

• Bc → D

By evaluating the first line in (3.20) up to first order in propagator expansion one

obtains what is referred to as the perturbative part of the amplitude, which is the

quantity that would have been obtained if one just squeezed the product of the

currents between free vacua.

Π
(0)µ
P (p1c , pP ) = −i2

∫∫
d4x d4y e−i(p1cx−pP y)×

× 〈Ω|: c̄yi
(
γ5

)
iju

y
j ū

0
k

(
γµ
)
kl

(
1− γ5

)
lmb

0
mb̄

x
n

(
γ5

)
npc

x
p :|Ω〉

= i5
∫∫

d4x d4y e−i(p1cx−pP y)×

× 〈Ω|:Sc(x, y)pi
(
γ5

)
ijSu(y, 0)jk

(
γµ
)
kl

(
1− γ5

)
lmSb(0, x)mn

(
γ5

)
np :|Ω〉

= −12 i3
∫

d4k

(2π)4

ï
(mbmc +mumc −mbmu − k2 + p1·p2)kµ

(k2 −m2
c)((k + p1)2 −m2

b)((k + p2)2 −m2
u)

+
(mumc − k2 − k ·p2)pµ1 + (mbmc − k2 − k ·p1)pµ2

(k2 −m2
c)((k + p1)2 −m2

b)((k + p2)2 −m2
u)

ò
(A.1)
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The integral is solved by imposing the Cutkosky rules

1

(p1+k)2 −m2
1 + iε

→ −2πiδ((p1+k)2 −m2
1)θ(k0+p0

1)

1

(p2+k)2 −m2
2 + iε

→ −2πiδ((p2+k)2 −m2
2)θ(k0+p0

2)

1

k2 −m2
3 + iε

→ −2πiδ(k2 −m2
3)θ(−k0)

(A.2)

using the integrals from appendix A.2.1 which gives the discontinuity of the ampli-

tude in the p2
1 and the p2

2 channel, and then using the double dispersion relation

Π
(0)
P,i(p

2
1, p

2
2, q

2) = − 1

(2π)2

∫∫ D[Π
(0)
P,i(s1, s2, q

2)]

(s1 − p2
1)(s2 − p2

2)
ds1ds2 (A.3)

where D is a symbolic way of writing down the discontinuity of the amplitude, the

perturbative contribution is obtained. The integration is performed after the Borel

transformation

B−p2
1
(M2

1 )B−p2
2
(M2

2 )→ −M
−2
1 M−2

2

(2π)2

∫∫
D[Π

(0)
P,i(s1, s2, q

2)]e
− s1
M2

1
− s2
M2

2 ds1ds2 (A.4)

over a phase space up until some effective thresholds s0
1 and s0

2, which come as

phenomenological parameters in the calcuation. Here they are evaluated by requiring

that the decay constants reproduce the lattice results, which are known, in the QCD

sum rules approach. The final expressions are

D[Π
(0)
P,1] =

3

λ
3
2

Å(
mc(mu −mc) +

s2 +m2
c −m2

u

2

)
λ

+M(s1, s2, q
2)
(
2s2(s1 +m2

c −m2
b)− (s2 +m2

c −m2
u)(s1 + s2 − q2)

)ã
D[Π

(0)
P,2] =

3

λ
3
2

Å(
mc(mb −mc) +

s1 +m2
c −m2

b

2

)
λ

+M(s1, s2, q
2)
(
2s1(s2 +m2

c −m2
u)− (s1 +m2

c −m2
b)(s1 + s2 − q2)

)ã (A.5)

where additional shorthand notation has been introduced,

λ ≡ λ(s1, s2, q
2) = (s1 + s2 + q2)2 − 4s1s2. (A.6)

183



QCDSR expressions

• Bc → D∗

Since in the Bc → D∗ case the procedure is the same as in the case of the decay to

pseudoscalar meson, here only the densities are given

D
[
ΠV,0

]
= 3

ß
(mb −mc)

m2
cλ(s1, s2, q

2) + s1∆2
2 + s2∆2

1 −∆1∆2u[
λ(s1, p2

2, q
2)
] 3

2

+
m2
c[

λ(s1, p2
2, q

2)
] 1

2

(mc −mu −mb) +
mc[

λ(s1, p2
2, q

2)
] 1

2

(u
2

+mbm2

)
− (mc −mu)

∆1

2
[
λ(s1, s2, q2)

] 1
2

− (mc −mb)
∆2

2
[
λ(s1, s2, q2)

] 1
2

™
,

D
[
ΠV

]
= 3
{

(mc −mb)
2s2∆1 −∆2u[
λ(s1, s2, q2)

] 3
2

+ (mc −mu)
2s1∆2 −∆2u[
λ(s1, s2, q2)

] 3
2

+
mc[

λ(s1, s2, q2)
] 1

2

}
,

D
[1
2

(ΠA
1 + ΠA

2 )
]

=
3

2
[
λ(s1, s2, q2)

] 5
2

ß[
(mu −mc)

(
2s1∆2 −∆1u

)
+ (mb −mc)

(
2s2∆1 −∆2u−

− 2m2
c(u− 2s2)

)
− 2mc(2s2∆1 −∆2u)

]
λ(s1, s2, q

2)+

+ 2(mb −mc)
[
∆1∆2(2u2 + 4s1s2 − 6s2u)− 3u(s1∆2

2 + s2∆2
1) + 6s2

2∆2
1+

+ 2s1s2∆2
2 + ∆2

2u
2
]
−mc

[
λ(s1, s2, q

2)
]2™

,

D
[1
2

(ΠA
1 − ΠA

2 )
]

=
3

2
[
λ(s1, s2, q2)

] 5
2

ß[
(mu −mc)

(
2s1∆2 −∆1u

)
+ (mb −mc)

(
2s2∆1 −∆2u−

− 2m2
c(u+ 2s2)

)
+ 2mc(2s2∆1 −∆2u)

]
λ(s1, s2, q

2)+

+ 2(mb −mc)
[
∆1∆2(2u2 + 4s1s2 + 6s2u)− 3u(s1∆2

2 + s2∆2
1)− 6s2

2∆2
1−

− 2s1s2∆2
2 −∆2

2u
2
]
−mc

[
λ(s1, s2, q

2)
]2™

.

(A.7)
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where some shorthand notation is introduced

∆1 ≡ s1 +m2
c −m2

b ,

∆2 ≡ s2 +m2
c −m2

u,

u ≡ s1 + s2 − q2.

(A.8)

A.1.2. Nonlocal quark and quark-gluon condensate terms

• Bc → D

The quark condensate contribution to the Bc → P correlation function is

Π
(3)µ
P (p1, p2) = −3 i4

12

∫∫
d4x d4y e−i(p1x−p2y)〈ūa(0)ua(y)〉Tr

[
Sc(x, y)γ5γ

µ(1−γ5)Sb(0, x)γ5

]
,

(A.9)

where the color trace has been taken. By expanding the q̄q operator one gets

〈q̄(0)q(y)〉 ≈ 〈q̄q〉 − g y
2

16
〈q̄σµνGµνq〉+ . . . , (A.10)

which, in order to model the nonlocal effects is then substituted with

〈q̄(0) exp

{
ig

∞∫
0

dyµA
µ(y)

}
q(y)〉 = 〈q̄q〉f(y2). (A.11)

After the Fourier transforming of propagators and evaluating the trace we obtain

Π
(3)µ
P (p1, p2) = 〈q̄q〉

∫
d4k

(2π)4

(mb −mc)k
µ −mcp

µ
1

(k2 −m2
c)((k + p1)2 −m2

b)
f̃(k + p2), (A.12)

where f̃(k+ p2) is the Fourier transform of the chosen model function in coordinate

space f(y2). Then it’s easy to express the Borel-transformed contribution to the
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form factors as

B−p2
1
(M2

1 )B−p2
2
(M2

2 )Π
(3)
P,1(q2) =

4π2 i 〈q̄q〉
Å

4

m2
0

ã2ï
mcI0(M2

1 ,M
2
2 , q

2; 1, 1) + (mc −mb)I1(M2
1 ,M

2
2 , q

2; 1, 1)

ò
,

B−p2
1
(M2

1 )B−p2
2
(M2

2 )Π
(3)
P,2(q2) =

4π2 i 〈q̄q〉
Å

4

m2
0

ã2ï
(mc −mb)I2(M2

1 ,M
2
2 , q

2; 1, 1)

ò
.

(A.13)

The mixed quark-gluon condensate contribution amounts to

Π
(5)µ
P (p1, p2) = −i4

g

2 · 192

∫∫
d4x d4y d4z e−i(p1x−p2y)zα

〈ū(0)(σ ·G)u(y)〉Trc
[
tctc
]Å

Tr
[
Sc(x, z)γβSc(z, y)γ5σαβγ

µ(1− γ5)Sb(0, x)γ5

]
+ Tr

[
Sc(x, y)γ5σαβγ

µ(1− γ5)Sb(0, z)γ
βSb(z, x)γ5

]ã
.

(A.14)

The quark-gluon condensate can be approximated in terms of the quark condensate

as [213]

g〈q̄(0)(σ ·G)q(y)〉 ≈ m2
0〈q̄(0)q(y)〉. (A.15)

After the Fourier transformation the amplitude becomes

Π
(5)µ
P (p1, p2) = im2

0

〈q̄q〉
96

∫
d4k

(2π)4

∂

∂qαß
Tr
[ /k + /q +mc

(k + q)2 −m2
c

γβ
/k +mc

k2 −m2
c

γ5σαβγ
µ(1− γ5)

/k + /q + /p1
+mb

(k + q + p1)2 −m2
b

γ5

]
+ Tr

[ /k + /q + /p1
+mb

(k + q + p1)2 −m2
b

γβ
/k + /p1

+mb

(k + p1)2 −m2
b

γ5

/k +mc

k2 −m2
c

γ5σαβγ
µ(1− γ5)

]™
q=0

· f̃(k + p2),

(A.16)
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or, after differentiating

Π
(5)µ
P (p1, p2) = −im2

0

〈q̄q〉
96

∫
d4k

(2π)4
f̃(k + p2)ß

Tr
[ /k +mc

k2 −m2
c

γα
/k +mc

k2 −m2
c

γβ
/k +mc

k2 −m2
c

γ5σαβγ
µ(1− γ5)

/k + /p1
+mb

(k + p1)2 −m2
b

γ5

]
+ Tr

[ /k +mc

k2 −m2
c

γβ
/k +mc

k2 −m2
c

γ5σαβγ
µ(1− γ5)

/k + /p1
+mb

(k + p1)2 −m2
b

γα
/k + /p1

+mb

(k + p1)2 −m2
b

γ5

]
+ Tr

[ /k + /p1
+mb

(k + p1)2 −m2
b

γα
/k + /p1

+mb

(k + p1)2 −m2
b

γβ
/k + /p1

+mb

(k + p1)2 −m2
b

γ5

/k +mc

k2 −m2
c

γ5σαβγ
µ(1− γ5)

]™
.

(A.17)

The integrals are done with complete analogy to the previous case, with one dif-

ference. Now, due to the differentiation, additional powers of squares of external

momenta are present in the trace, so one needs to Borel-transform according to the

rule

I
(m)
[in] (M2

1 ,M
2
2 , q

2; a, b) ≡ B−p2(M2)
[
(−p2)mĨ[in](p

2
1, p

2
2, q

2; a, b)
]

= (M2)m
Å

∂

∂M2

ãm
[(M2)mB−p2(M2) I[in](M

2
1 ,M

2
2 , q

2; a, b)],

(A.18)

where again, ”[in]” stands for any of the indices of the integrals in Eq. (A.54), so

that finally, for the Borel-transformed quark-gluon contribution to the correlation
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function we have

B−p2
1
(M2

1 )B−p2
2
(M2

2 )Π
(5)
P,1(q2) =

iπ2

6
〈q̄q〉
Å

4

m2
0

ãß
− 40mcI0(M2

1 ,M
2
2 , q

2; 2, 1) + 32(mb −mc)I1(M2
1 ,M

2
2 , q

2; 2, 1)

+ 8(mb − 2mc)I0(M2
1 ,M

2
2 , q

2; 1, 2) + 16(mb −mc)I1(M2
1 ,M

2
2 , q

2; 1, 2)

+ 8mc

(
mb −mc

)2
I0(M2

1 ,M
2
2 , q

2; 2, 2)

+ 8
[
(mb +mc)

3 − 4mbmc(mb +mc)
]
I1(M2

1 ,M
2
2 , q

2; 2, 2)

− 8mcI
(1)
0 (M2

1 ,M
2
2 , q

2; 2, 2)− 8(mb +mc)I
(1)
1 (M2

1 ,M
2
2 , q

2; 2, 2)

™
,

B−p2
1
(M2

1 )B−p2
2
(M2

2 )Π
(5)
P,2(q2) =

iπ2

6
〈q̄q〉
Å

4

m2
0

ãß
32(mb −mc)I2(M2

1 ,M
2
2 , q

2; 2, 1) + 16(mb −mc)I2(M2
1 ,M

2
2 , q

2; 1, 2)

+ 8
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(mb +mc)

3 − 4mbmc(mb +mc)
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I2(M2

1 ,M
2
2 , q

2; 2, 2)

− 8(mb +mc)I
(1)
2 (M2

1 ,M
2
2 , q

2; 2, 2)

™
.

(A.19)

• Bc → D∗

The quark condensate contribution to the Bc → V correlation function is

Π
(3)µν
V (p1, p2) =

3 i5

12

∫∫
d4x d4y e−i(p1x−p2y)〈ūa(0)ua(y)〉Tr

[
Sc(x, y)γνγµ(1−γ5)Sb(0, x)γ5

]
,

(A.20)

so that, after Fourier transforming the propagators, and evaluating the trace we

obtain

Π
(3)µν
V (p1, p2) =

i〈q̄q〉
∫

d4k

(2π)4

(
k2 + (k · p1)−mbmc

)
gµν + kνpµ1 − pν1kµ + iεµναβkαp1β

(k2 −m2
c)((k + p1)2 −m2

b)
f̃(k + p2).

(A.21)
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Then it’s easy to express the Borel-transformed contribution to the form factors as

B−p2
1
(M2

1 )B−p2
2
(M2

2 )Π
(3)
V,0(q2) =

4π2 i 〈q̄q〉
Å

4
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0

ã2ï
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0 (M2

1 ,M
2
2 , q
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ò
,
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1
(M2
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2 )Π
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2) = 4π2 i 〈q̄q〉
Å

4

m2
0

ã2

I2(M2
1 ,M

2
2 , q

2; 1, 1).

The mixed quark-gluon condensate contribution amounts to

Π
(5)µν
V (p1, p2) = i5

g

2 · 192

∫∫
d4x d4y d4z e−i(p1x−p2y)zα

〈ū(0)(σ ·G)u(y)〉Trc
[
tctc
]Å

Tr
[
Sc(x, z)γ

βSc(z, y)γνσαβγ
µ(1− γ5)Sb(0, x)γ5

]
+ Tr

[
Sc(x, y)γνσαβγ

µ(1− γ5)Sb(0, z)γ
βSb(z, x)γ5

]ã
.

(A.22)

Or, completely analogously to the previous case, by differentiating we get

Π
(5)µν
V (p1, p2) = −m2

0

〈q̄q〉
96

∫
d4k

(2π)4
f̃(k + p2)ß

Tr
[ /k +mc

k2 −m2
c

γα
/k +mc
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c

γβ
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c
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]
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b
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b

γ5

]
+ Tr
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b

γα
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+mb
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b

γβ
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b

γ5

/k +mc
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c
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µ(1− γ5)

]™
.

(A.23)
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The final contributions are then
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A.1.3. Gluon condensate terms

The gluon condensate
〈
αs
π
GaµνGa

µν

〉
≡
〈
αs
π
G2
〉

contributions are computed in the

Fock-Schwinger gauge. Since, due to translational non-invariance, this is not tech-

nically a gauge, one should be careful when applying it - it can be shown that

gauge-invariant quantities should recover translational invariance. Usually the ori-

gin x0 = 0 is chosen as the fixed point, and then the contributing diagrams are

calculated in that gauge. Then, the gluon field can be written just using Ga
µν and

its covariant derivative, becoming (to first order in momentum space):

Aµ(k) = −i
(2π)4

2
Gαµ(0)

∂

∂kα
δ(4)(k) + . . . (A.24)

It is obvious that, if one wants to correct the perturbative part of the correlation

function with the operator 〈G2〉, the corrections will come from inserting the external
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field twice (in the Feynman diagram sense), associating i -th gluon line with the factor

of

i /A(ki)
d4ki
(2π)4

, (A.25)

and then integrating over the momenta ki. Since gluon field is proportional to deriva-

tive of delta function with respect to ki, effectively one needs just to differentiate

the amplitude resulting from expanded quark propagators and inserted vertices with

respect to the momenta of inserted external fields, and then say that all external

momenta are zero, ki → 0. After using the fact that

〈
Ga
µν(0)Gb

αβ(0)
〉

=
1

96
δab(gµαgνβ − gµβgνα)

〈
Gc ρσGc

ρσ

〉
, (A.26)

the tensor reduction of the loop integral to D-dimensional scalar integrals of the

type

ID0 (a, b, c) =

∫
dDk

(2π)D
1[

k2 −m2
3

]a[
(k + p1)2 −m2

1

]b[
(k + p2)2 −m2

2

]c , (A.27)

can be done automatically, using the ROLI package [281] (implemented in Wolfram’s

Mathematica). In order to Borel-transform the correlation function it was found that

Bp2
1
(M2

1 )Bp2
2
(M2

2 ) ID0 (a, b, c) =
i

(4π)D/2
(−)a+b+c

Γ(a)Γ(b)Γ(c)
(M2

1 )D/2−a−c(M2
2 )D/2−a−b

×
∫ ∞

0

dy(y +M2
1 +M2

2 )a+b+c−DyD/2−1−b−c exp

ß
−B−

y
−B0 −B+y

™
,

(A.28)

where additional functions are defined as

B− =
m2

2M
4
1 +m2

1M
4
2 +M2

1M
2
2 (m2

1 +m2
2 −Q2)

M2
1M

2
2

,

B0 =
M2

1 (m3
2 +m2

3) +M2
2 (m2

1 +m2
3)

M2
1M

2
2

, B+ =
m2

3

M2
1M

2
2

,

(A.29)
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and also

Bp2
1
(M2

1 )Bp2
2
(M2

2 ) (p2
1)m1(p2

2)m2ID0 (a, b, c) = (M2
1 )m1(M2

2 )m2
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d(M2
1 )m1

dm2

d(M2
2 )m2

ï
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1 )m1(M2
2 )m2Bp2
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(M2

1 )Bp2
2
(M2

2 ) ID0 (a, b, c)

ò
,

(A.30)

so that the gluonic contribution to the correlation function is

Πnonpert
µν =

〈αs
π
G2
〉 1

96
(gραgσβ − gρβgσα)

∑
i

(2π)2
[
ID0 (a, b, c)

]
i

[
Γαβρσµν

]
i
. (A.31)
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A.2. Master integrals

The perturbative loop integrals are most easily evaluated in the Bc meson rest frame

defined through

pµ1 ≡

√s
~0

 ; pµ2 ≡

 p0
2

−~p2

 ; q2 ≡ (p1 − p2)2. (A.32)

The delta functions are integrated over first over k0, then
∣∣∣~k∣∣∣, and lastly cos θ, where

θ is the angle between ~p2 and ~k. Therefore

δ(k2 −m2
3) = δ(k2

0 − |~k|2 −m2
3) =

δ(k0 +
»
|~k|2 +m2

3 )

2
»
|~k|2 +m2

3

δ((p1+k)2 −m2
1)→ δ(s− 2

√
s
»
|~k|2 +m2

3 +m2
3 −m2

1) =
δ(|~k| −

√
λ(s,m2

3,m
2
1)

2
√
s

)

2
√
s

√
λ(s,m2

3,m
2
1)

s+m2
3−m2

1

,

(A.33)

where the arrow implies the form the δ-functions take after integrating over k0. After

integrating over
∣∣∣~k∣∣∣ the first delta function looks like

δ(k2 −m2
3)→

δ(k0 +
s+m2

3−m2
1

2
√
s

)

2(
s+m2

3−m2
1

2
√
s

)
, (A.34)

and

δ((p2+k)2 −m2
2)→ δ(p2

2 − 2p0
2

»
|~k|2 +m2

3 − 2|~k||~p2| cos θ +m2
3 −m2

2)

→ 4s
δ(cos θ − cos θ0)

2
√
λ(s,m2

3,m
2
1)
√
λ(s, p2

2, q
2)
.

(A.35)
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In the last expression the first arrow implies integration over k0, and the second one

integration over
∣∣∣~k∣∣∣. In the B meson rest frame |~p2| = (2

√
s)−1

√
λ(s, p2

2, q
2), and

cos θ0 ≡ 4s
−2p0

2

»
|~k|2 +m2

3 + p2
2 +m2

3 −m2
2

2|~k||~p2|

→ −(s+ p2
2 − q2)(s+m2

3 −m2
1) + 2s(p2

2 +m2
3 −m2

2)√
λ(s,m2

3,m
2
1)
√
λ(s, p2

2, q
2)

.

(A.36)

Since the cosine always gives values between −1 ≤ cos θ0 ≤ 1, this constrains the

range of integration.

A.2.1. Perturbative master integrals

Rank 0 integral

It is instructive to firstly integrate just the phase space integral containing the phase

space Φk,

I(0) = 3

∫
d4k

(2π)4
Φk =

3s

λ(s,m2
3,m

2
2)
√
λ(s, p2

2, q
2)

∫
dk0
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|~k|2d|~k|d(cos θ)×
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√
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3,m
2
1)

2
√
s

)δ(cos θ − cos θ0) =
3

4

[
λ(s, p2

2, q
2)
]− 1

2 ,

(A.37)

where Φk is

Φk

(2π)3
≡ δ((p1+k)2 −m2

1)δ(k2 −m2
3)δ((p2+k)2 −m2

2)

→ s
δ(k0 +

»
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3 )

λ(s,m2
3,m

2
2)
√
λ(s, p2

2, q
2)
δ(|~k| −

√
λ(s,m2

3,m
2
1)

2
√
s

)δ(cos θ − cos θ0).

(A.38)

Rank 1 integral

Now the following integral is evaluated

Iµ(1) = 3

∫
d4k

(2π)4
Φkk

µ (A.39)
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Considering the Lorentz structure, the integral can be decomposed as

Iµ(1) = C1p
µ
1 + C2p

µ
2 , (A.40)

where C1 and C2 are functions of Lorentz invariants. The left-hand side and the

right-hand side are then multiplied by each momenta, after which the system of

equations is easily solvable.

Iµ(1)p1µ = C1s+
C2

2
(s+ p2

2 − q2)

Iµ(1)p2µ =
C1

2
(s+ p2

2 − q2) + C2p
2
2

(A.41)

1. Iµ(1)p1µ:

Iµ(1)p1µ = 3

∫
d4k

(2π)4
Φk(k · p1) = 3

∫
d4k

(2π)4
Φk(
√
sk0)

=
3s
√
s

λ(s,m2
3,m

2
2)
√
λ(s, p2

2, q
2)

∫
dk0

∫∫
|~k|2d|~k|d(cos θ)×

× k0δ(k0 +
»
|~k|2 +m2

3 )δ(|~k| −
√
λ(s,m2

3,m
2
1)

2
√
s

)δ(cos θ − cos θ0)

= −3
s+m2

3 −m2
1

8
√
λ(s, p2

2, q
2)
.

(A.42)

2. Iµ(1)p2µ:

Iµ(1)p2µ = 3

∫
d4k

(2π)4
Φk(k · p2) = 3

∫
d4k

(2π)4
Φk(p

0
2k0 − |~k||~p2| cos θ)

= −3
p2

2 +m2
3 −m2

2

8
√
λ(s, p2

2, q
2)
.

(A.43)

The coefficients are then

C1 = 3
2p2

2(s+m2
3 −m2

1)− (p2
2 +m2

3 −m2
2)(s+ p2

2 − q2)

4
[
λ(s, p2

2, q
2)
] 3

2

C2 = 3
2s(p2

2 +m2
3 −m2

2)− (s+m2
3 −m2

1)(s+ p2
2 − q2)

4
[
λ(s, p2

2, q
2)
] 3

2

(A.44)
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Rank two integrals

For the following integral

Iµν(2) = 3

∫
d4k

(2π)4
Φkk

µkν , (A.45)

the decomposition goes as

Iµν(2) = D1g
µν +D2p

µ
1p

ν
1 +D3p

µ
2p

ν
2 +D4(pµ1p

ν
2 + pµ2p

ν
1) (A.46)

where D1−4 are functions of Lorentz invariants. Contracting the integral with, repec-

tively, gµν , p1µp1ν , p2µp2ν ans p1µp2ν a system of equations is acquired

Iµν(2)gµν = 4D1 + sD2 + p2
2D3 + (s+ p2

2 − q2)D4,

Iµν(2)p1µp1ν = sD1 + s2D2 + (s+ p2
2 − q2)2D3

4
+ s(s+ p2

2 − q2)D4,

Iµν(2)p2µp2ν = p2
2D1 + (s+ p2

2 − q2)2D2

4
+ p4

2D3 + p2
2(s+ p2

2 − q2)D4,

Iµν(2)p1µp2ν = (s+ p2
2 − q2)

D1

2
+ s(s+ p2

2 − q2)
D2

2
+ p2

2(s+ p2
2 − q2)

D3

2
,

+
[1
4

(s+ p2
2 − q2)2 + sp2

2

]
D4

(A.47)

1. Iµν(2)gµν :

Iµν(2)gµν = 3

∫
d4k

(2π)4
Φkk

2 = 3
m2

3

4
√
λ(s, p2, q2)

(A.48)

2. Iµν(2)p1µp1ν :

Iµν(2)p1µp1ν = 3

∫
d4k

(2π)4
Φk(sk

2
0) = 3

(s+m2
3 −m2

1)2

16
√
λ(s, p2

2, q
2)

(A.49)

3. Iµν(2)p2µp2ν :

Iµν(2)p2µp2ν = 3

∫
d4k

(2π)4
Φk(p

0
2k0 − |~p2||~k| cos θ)2 = 3

(p2
2 +m2

3 −m2
2)2

16
√
λ(s, p2

2, q
2)

(A.50)

4. Iµν(2)p1µp2ν :

Iµν(2)p1µp2ν = 3

∫
d4k

(2π)4
Φk(
√
sk0)(p0

2k0 − |~p2||~k| cos θ) = 3
(s+m2

3 −m2
1)(p2

2 +m2
3 −m2

2)

16
√
λ(s, p2

2, q
2)

(A.51)
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So that the coefficients are:

D1 =
3

8

m2
3λ(s, p2

2, q
2) + s∆2

Ψ32 + p2
2∆2

B31 −∆Ψ32∆B31u[
λ(s, p2

2, q
2)
] 3

2

,

D2 =
3

4

2m2
3p

2
2λ(s, p2

2, q
2) + 6p4

2∆2
B31 + 2sp2

2∆2
Ψ32 + ∆2

Ψ32u
2 − 6p2

2u∆B31∆Ψ32[
λ(s, p2

2, q
2)
] 5

2

,

D3 =
3

4

2m2
3sλ(s, p2

2, q
2) + 6s2∆2

Ψ32 + 2sp2
2∆2

B31 + ∆2
B31u

2 − 6su∆B31∆Ψ32[
λ(s, p2

2, q
2)
] 5

2

,

D4 = −3

4

m2
3uλ(s, p2

2, q
2)− 4sp2

2∆Ψ32∆B31 + 3u(s∆2
Ψ32 + p2

2∆2
B31)− 2u2∆B31∆Ψ32[

λ(s, p2
2, q

2)
] 5

2

,

(A.52)

where a shorthand notation has been introduced

∆B31 ≡ s+m2
3 −m2

1,

∆Ψ32 ≡ p2
2 +m2

3 −m2
2,

u ≡ s+ p2
2 − q2.

(A.53)

A.2.2. Non-perturbative master integrals

The master integrals used in the calculation of nonlocal condesate contributions to

correlation function are

I ′0(p2
1, p

2
2, q

2; a, b) =

∫
d4k

(2π)4

1

[k2 −m2
c ]
a[(k + p1)2 −m2

b ]
b
eA(k+p2)2

= Ĩ0(p2
1, p

2
2, q

2; a, b) ,

I ′µ1 (p2
1, p

2
2, q

2; a, b) =

∫
d4k

(2π)4

kµ

[k2 −m2
c ]
a[(k + p1)2 −m2

b ]
b
eA(k+p2)2

= Ĩ1(p2
1, p

2
2, q

2; a, b) pµ1 + Ĩ2(p2
1, p

2
2, q

2; a, b) pµ2 ,

I ′µν2 (p2
1, p

2
2, q

2; a, b) =

∫
d4k

(2π)4

kµkν

[k2 −m2
c ]
a[(k + p1)2 −m2

b ]
b
eA(k+p2)2

= Ĩ00(p2
1, p

2
2, q

2; a, b)gµν + Ĩ11(p2
1, p

2
2, q

2; a, b)pµ1p
ν
1

+ Ĩ12(p2
1, p

2
2, q

2; a, b)pµ1p
ν
2 + Ĩ21(p2

1, p
2
2, q

2; a, b)pµ2p
ν
1

+ Ĩ22(p2
1, p

2
2, q

2; a, b)pµ2p
ν
2 ,

(A.54)
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where, for brevity A = 4/m2
0. After symbolically denoting the operation of Borel

transformation of independent tensor structures by the letter B, we can write

B−p2
1
(M2

1 )B−p2
2
(M2

2 )Ĩ[in](p
2
1, p

2
2, q

2; a, b) = I[in](M
2
1 ,M

2
2 , q

2; a, b) , (A.55)

where ”[in]” stands for any of the indices from Eq. (A.54), and

I0(M2
1 ,M

2
2 , q

2; a, b)

=
(−1)a+b

(a− 1)!(b− 1)!

i

(4π)2

1

M2
1

Å
A(M2

1 +M2
2 )

M2
1 (AM2

2 − 1)

ãa−2Å
A
M2

2

M2
1

ãb−1

F(M2
1 ,M

2
2 ; q2),

I1(M2
1 ,M

2
2 , q

2; a, b) =
M2

2

M2
1

I2(M2
1 ,M

2
2 , q

2; a, b)

=
(−1)a+b+1

(a− 1)!(b− 1)!

i

(4π)2

1

M4
1

Å
A(M2

1 +M2
2 )

M2
1 (AM2

2 − 1)

ãa−3Å
A
M2

2

M2
1

ãb−1

F(M2
1 ,M

2
2 ; q2),

I00(M2
1 ,M

2
2 , q

2; a, b)

=
(−1)a+b+1

(a− 1)!(b− 1)!

i

(4π)2

1

2M4
1

Å
A(M2

1 +M2
2 )

M2
1 (AM2

2 − 1)

ãa−3Å
A
M2

2

M2
1

ãb−2

F(M2
1 ,M

2
2 ; q2),

I11(M2
1 ,M

2
2 , q

2; a, b)

=
(−1)a+b

(a− 1)!(b− 1)!

i

(4π)2

1

M6
1

Å
A(M2

1 +M2
2 )

M2
1 (AM2

2 − 1)

ãa−2Å
A
M2

2

M2
1

ãb−3

F(M2
1 ,M

2
2 ; q2),

I12(M2
1 ,M

2
2 , q

2; a, b) = I21(M2
1 ,M

2
2 , q

2; a, b)

=
(−1)a+b

(a− 1)!(b− 1)!

i

(4π)2

1

M4
1M

2
2

Å
A(M2

1 +M2
2 )

M2
1 (AM2

2 − 1)

ãa−3Å
A
M2

2

M2
1

ãb−2

F(M2
1 ,M

2
2 ; q2),

I22(M2
1 ,M

2
2 , q

2; a, b)

=
(−1)a+b

(a− 1)!(b− 1)!

i

(4π)2

1

M2
1M

4
2

Å
A(M2

1 +M2
2 )

M2
1 (AM2

2 − 1)

ãa−4Å
A
M2

2

M2
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ãb−1

F(M2
1 ,M
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(A.56)

and

F(M2
1 ,M

2
2 ; q2) ≡ 1

AM2
2 − 1

exp

ï
−A M2

1 +M2
2

M2
1 (AM2

2 − 1)
m2
c − A

M2
2

M2
1

m2
b +

AM2
2 − 1

M2
1 +M2

2

q2

ò
.

(A.57)
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B. LCSR higher-twist

expressions

The twist-three LCSR parameters relevant for symmetric wave functions (explored

in this thesis) are defined through

zµz
ν 〈Ω| q̄σµωγ5gsGνωq |Mf〉 = 2if3Mf

(p · z)2,

zµz
ν 〈Ω| q̄

Å
σµωγ5[iDν , gsGνω]− 3

7
izλ
←−
∂λσ

µωγ5gsGνω

ã
q |Mf〉 =

3

14
if3Mf

ω3Mf
(p · z)3,

(B.1)

with the momentum definitions from section 2.2, while the twist-four parameters

are

〈Ω| q̄γαgsG̃µαq |Mf (pf )〉 = ipfµfMf
δ2
Mf
,

〈Ω| q̄
Å

[iDµ, gsGνω]− 4

9
i
←−
∂µgsG̃νω

ã
γωq |Mf (pf )〉 = fMf

δ2
Mf
ω4Mf

Å
pfµpfν −

1

4
m2
Mf
gµν

ã
.

(B.2)

All of the parameters renormalize [119]. The parameters enter the twist-three wave

functions like

φp3;Mf
(u;µ2) = 1 + 30

f3Mf

µMf
fMf

C
1/2
2 (2u− 1)− 3

f3Mf
ω3Mf

µMf
fMf

C
1/2
4 (2u− 1),

φσ3;Mf
(u;µ2) = 6u(1− u)

Ç
1 + 5

f3Mf

µMf
fMf

(1− ω3Mf

10
)C

3/2
2 (2u− 1)

å
,

Φ3;Mf
(α{1,2,3};µ

2) = 360α1α2α
2
3

[
1 +

ω3Mf

2
(7α3 − 3)

]
,

(B.3)
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and the twist-four wave functions like

Φ4;Mf
(α{1,2,3};µ

2) = 120δ2
Mf

(− 8

21
ω4Mf

)(α1 − α2)α1α2α3,

Ψ4;Mf
(α{1,2,3};µ

2) = 30δ2
Mf

(α1 − α2)α2
3[

1

3
+ 2(− 8

21
ω4Mf

)(1− 2α3)],

Φ̃4;Mf
(α{1,2,3};µ

2) = −120δ2
Mf
α1α2α3[

1

3
+ (− 8

21
ω4Mf

)(1− 3α3)],

Ψ̃4;Mf
(α{1,2,3};µ

2) = 30δ2
Mf
α2

3(1− α3)[
1

3
+ 2(− 8

21
ω4Mf

)(1− 2α3)].

(B.4)
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C. Effective theory of weak

interactions

The WET Lagrangian describing b→ q (where q = c, u) transition, after integrating

all the degrees of freedom above the weak scale µ ≈ mW± , can be written as [282]

LWET = −GFVqb√
2

[(1 + VL)OVL + VROVR + SLOSL + SROSR + TLOTL ] .

The operators, including possible NP degrees of freedom are

OVL = (q̄γµ(1− γ5)b)
(
¯̀γµ(1− γ5)ν`

)
, OVR = (q̄γµ(1 + γ5)b)

(
¯̀γµ(1− γ5)ν`

)
,

OSL = (q̄(1− γ5)b)
(
¯̀(1− γ5)ν`

)
, OSR = (q̄(1 + γ5)b)

(
¯̀(1− γ5)ν`

)
,

OTL = (q̄σµν(1− γ5)b)
(
¯̀σµν(1− γ5)ν`

)
.

In the SM, the couplings VL,R, SL,R and TL are all exactly zero, and the only operator

contributing is OVL . Of course, the Lagrangian can be written in a different operator

basis [283] reproducing the same physics, so that

L̃WET =
4VubGF√

2
J had
µ (x)

[
¯̀(x)γµPLν`(x)

]
, (C.1)

where J had
µ (x) contains all the relevant quark field operators and couplings, and

PL = (1 − γ5)/2 is the left-handed projector. This is convenient when defining the

helicity form factor basis in a unified way, as made obvious in appendix D.1.
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D. Angular observables

D.1. Helicity form factors

For a generic Bq → Mf`ν̄` semileptonic decay, a set of helicity form factors can

be defined [284] that simplify expressions and differentiate between specific helicity

contributions to the semileptonic decay width. For a pseudoscalar meson Mf = Pf

in the final state this means

h0,t(q
2) = ε̃µ0,t(q) 〈Pf (p2)| J had

µ (0) |Bq(p1)〉 , (D.1)

where ε̃µ0,t(q) represents the polarization of the charged W± boson. Since the mesonic

transition is of the type 0− → 0−, the only polarizations of the W± contributing are

the longitudinal component ε̃µ0(q), and the timelike component ε̃µt (q). Equivalently,

for a vector meson Mf = Vf in the final state

H±(q2) = ε̃µ±(q) 〈Vf (p2; ε±)| J had
µ (0) |Bq(p1)〉 ,

H0,t(q
2) = ε̃µ0,t(q) 〈Vf (p2; ε0)| J had

µ (0) |Bq(p1)〉 ,
(D.2)

where now transverse components ε̃µ±(q) of the W± boson have been introduced, and

the amplitudes now contain helicity contributions from the Vf polarization. Since

Vf is produced on-shell, it has only three physical polarizations, unlike W± which

is produced off-shell, so also the timelike polarization is available.

The helicity form factors can be written up using the usual WS form factors,

but the exact expressions depend on the polarization bases. In section 5.2 the basis

from [284] is used in a SM analysis, so J had
µ (0) = ū(0)γµ(1−γ5)b(0), and the virtual
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boson polarization in the Bc rest frame is taken as

ε̃±µ =
1√
2


0

±1

−i

0

 , ε̃0µ =
1√
q2


|~q|
0

0

−q0

 , ε̃tµ =
1√
q2


q0

0

0

−|~q|

 , (D.3)

which amounts to quantizing along the z−axis. Additionaly, for the Vf meson the

polarizations are

ε±µ =
1√
2


0

∓1

−i

0

 , ε0µ =
1

mD∗


|~q|
0

0

ED∗

 . (D.4)

The Bc rest frame is actually defined by the momenta of the particles being

p1µ =


mBc

0

0

0

 , p2µ =


ED(∗)

0

0

|~q|

 , qµ =


q0

0

0

−|~q|

 . (D.5)

where it was chosen that the z-axis is aligned with the direction of D(∗), and with the

indices being made explicit in order to stress the covariant nature of our definitions.

The energy of the W boson, and the D(∗) in this frame amount respectively to

q0 =
m2
Bc
−m2

D(∗) + q2

2mBc

, ED(∗) =
m2
Bc

+m2
D(∗) − q2

2mBc

. (D.6)

In section 4.2 a different basis is used, equivalent to the one in Ref. [285]. Also,

the NP couplings have been pulled out of the helicity form factor definitions. There-

fore, the helicity form factors and the decay width expressions look differently, but

reproduce the same physics. A further difference between the two sections is the

complex phase between the helicity form factor definitions. This is a convention
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choice, in order to make the helicity form factors real in section 4.2.
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D.2. Angular observables

The general expressions for the two-fold differential distributions in Bq → Mf`ν̄`

semileptonic decays can be given as

d2Γ(Bq →Mf`ν̄`)

dq2d cos θ`
= a

Mf

θ`
(q2) + b

Mf

θ`
(q2) cos θ` + c

Mf

θ`
(q2) cos2 θ` , (D.7)

where θl is the angle between the lepton and the final state meson in the center-of-

momentum frame of the leptonic pair.

Two kinematical variables - q2 and θ`

The following angular observable definitions are often appropriated in SM tests when

the lepton angle is considered additional to the momentum transfer

1. The forward-backward asymmetry

A`FB(q2) =

Å ∫ 1

0
−
∫ 0

−1

ã
d cos θ

d2Γ(B1→Mf `ν̄`)

dq2 d cos θ

dΓ(Bq→Mf `ν̄`)

dq2

=
b
Mf

θ`
(q2)

2
Ä
a
Mf

θ`
(q2) + c

Mf

θ`
(q2)/3

ä ,
(D.8)

which measures the asymmetry in the angle at which the momenta of the

produced lepton propagates (with respect to the z-axis).

2. The convexity parameter

C`
F (q2) =

1
dΓ(Bq→Mf `ν̄`)

dq2

d2

d(cos θ)2

ï
d2Γ(Bq →Mf`ν̄`)

dq2 d cos θ

ò
=

c
Mf

θ`
(q2)

a
Mf

θ`
(q2) + c

Mf

θ`
(q2)/3

,

(D.9)

which is connected to the so-called ”flat term”

F `
H = 1 +

2

3
C`
F . (D.10)

In the SM both F `
H and A`FB are small for ` = e, µ, since they are proportional

to the lepton mass. This makes them appropriate SM tests.
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3. The lepton polarization

P `(q2) =

dΓ+(Bq→Mf `ν̄`)

dq2 − dΓ−(Bq→Mf `ν̄`)

dq2

dΓ(Bq→Mf `ν̄`)

dq2

, (D.11)

where the differential decay width is considered as a sum of contributions of left

and right lepton helicity projections along the z-axis, Γ− and Γ+ respectively.

4. If there is a vector meson Mf = Vf in the final state, a longitudinal polarization

fraction can also be investigated, as

F
Vf ,`
L (q2) =

dΓL(Bq → Vf`ν̄`)

dq2

¡
dΓ(Bq → Vf`ν̄`)

dq2
. (D.12)

Four kinematical variables - q2, θ`, θV , χ

If, additionally to the lepton angle and the momentum transfer, two other variables

are considered, describing the angle θV between the leptonic decay products of the

final state vector meson decay, and the angle χ between the planes of leptonic

decay, additional angular observables can be constructed, where in the case of Bc →
(J/ψ → µ+µ−)`ν̄` they have been defined using (section 4.2)

TVL = sin2 θV

(
2H2

00(sin2 θ` + 2δτ cos2 θ`) + 4δτH
2
t0

)
+ 8H2

++ sin2 θ`
2

sin4 θV
2

(
2δτ cos2 θ`

2
+ sin2 θ`

2

)
+ 8H2

−− cos2 θ`
2

cos4 θV
2

(
2δτ sin2 θ`

2
+ cos2 θ`

2

)
+H++H−− sin2 θ` sin2 θV cos 2χ(1− 2δτ )

− 8 sin θ` sin θV cosχH00×

×
(
H++ sin2 θV

2
(sin2 θ`

2
+ δτ cos θ`) +H−− cos2 θV

2
(cos2 θ`

2
− δτ cos θ`)

)
+ 8δτ sin θ` sin θV cosχHt0

(
H++ sin2 θV

2
−H−− cos2 θV

2

)
− 8 sin θ2

V cos θ`δτHt0H00,

(D.13)
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T|VR|2 = sin2 θV

(
2H2

00(sin2 θ` + 2δτ cos2 θ`) + 4δτH
2
t0

)
+ 8H2

−− sin2 θ`
2

sin4 θV
2

(
2δτ cos2 θ`

2
+ sin2 θ`

2

)
+ 8H2

++ cos2 θ`
2

cos4 θV
2

(
2δτ sin2 θ`

2
+ cos2 θ`

2

)
+H++H−− sin2 θ` sin2 θV cos 2χ(1− 2δτ )

− 8 sin θ` sin θV cosχH00×

×
(
H−− sin2 θV

2
(sin2 θ`

2
+ δτ cos θ`) +H++ cos2 θV

2
(cos2 θ`

2
− δτ cos θ`)

)
+ 8δτ sin θ` sin θV cosχHt0

(
H−− sin2 θV

2
−H++ cos2 θV

2

)
− 8 sin θ2
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E. Bayesian analysis using EOS

EOS [286] is a software framework for use in high energy physics, specifically quark

flavor physics. With the source code written in C++14 and an interface in Python

3, EOS is very well equipped to deal with Bayesian analyses of both theoretical and

experimental data sets. To demonstrate how the uncertainty inferred from model

parameters propagates to physical observables, here the B meson mass estimation

from eq. (6.5) is presented in detail.

The initial probability distributions followed by the parameters are presented

in table 6.1. An initial distribution is called the prior, and each parameter is as-

sumed to follow a prior distribution independently of the other variables, i.e. in an

uncorrelated way. The posterior parameter distributions are obtained from Bayes’

theorem

p
Ä
~θ
∣∣ ~m2

B

ä
=
p
Ä
~m2
B

∣∣ ~θä p Ä~θ ä
N

, (E.1)

where ~θ and ~m2
B are vectors containing model parameters, and the B meson mass,

respectively. The probabilities p
(
x
∣∣ y) are read ”the probability of x given y”. On

the left-hand side is the target distribution, called the posterior distribution, while

on the right-hand side p
Ä
~m2
B

∣∣ ~θä is the probability of obtaining ~m2
B given ~θ (often

called the likelihood) multiplied by the prior p
Ä
~θ
ä
. The normalization is given by

N = p
Ä
~m2
B

ä
=

∫
d~θ p
Ä
~m2
B

∣∣ ~θä p Ä~θ ä . (E.2)
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For the likelihood, the d-dimesional multivariate gaussian distribution is chosen

p
Ä
~m2
B

∣∣ ~θä ≡ N Ä ~m2
B

∣∣ ~θä
=

1

(2π)d/2
|Σ|−1/2 exp

ï
−1

2
( ~m2

B − ~[m2
B]LCSR)TΣ−1( ~m2

B − ~[m2
B]LCSR)

ò
,

(E.3)

centered around ~m2
B with the covariance matrix Σ, and ~[m2

B]LCSR is defined in

eq. (6.5). Since the denominator doesn’t depend on ~θ, the Bayesian estimator is

obtained by maximizing the numerator of the right-hand side of eq. (E.1), as ex-

plained below.

In the next step the adaptive Metropolis-Hastings algorithm for Markov-Chain

Monte Carlo (MCMC) random walks is employed. The process is iterative, and k

chains are run in parallel in the following way:

1. For the 0-th iteration of k-th chain, a random point is sampled from the pro-

posal. The proposal is given by a multivariate gaussian, q(~θ′
∣∣ ~θ ) ≡ N (~θ′

∣∣ ~θ ),

initially with a diagonal covariance containing parameter variances from the

prior on the diagonal.

2. The proposed point is accepted with a probability

α
Ä
~θ, ~θ′
ä

= min

(
1,
p(~θ′)p( ~m2

B

∣∣ ~θ′)q(~θ ∣∣ ~θ′ )
p(~θ)p( ~m2

B

∣∣ ~θ)q(~θ′ ∣∣ ~θ )

)
, (E.4)

which comes from Bayes’ theorem. Otherwise, it is discarded. This is done for

N̄ iterations.

3. For the (N̄+1)-th iteration the proposal covariance matrix is slightly perturbed

for the first time, according to the rule

Σt = (1− at)Σt−1 + atSt, (E.5)

where t = 1 for the first perturbation (after N̄ iterations), t = 2 for the second

perturbation (after 2N̄ iterations), and so on, at = 1/tλ, λ ∈ [0, 1] is a weight
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chosen to make for a smooth transition from the initial guess to the target

covariance, and

[St]mn =
1

N̄ − 1

N̄t∑
i=N̄(t−1)

Ä
(~θi)m − EP [~θm]

ä Ä
(~θi)n − EP [~θn]

ä
, (E.6)

where i goes over iterations. The estimator for m-th parameter EP [~θm], is

introduced as

EP [~θm] =
1

N̄

∑
i

~θim. (E.7)

In summary, every N̄ iterations, the covariance is perturbed according to the

samples accepted in the prior chunk of iterations.

4. After the first perturbation, the proposal is different from the prior, and the

process is repeated for the next chunk of N̄ iterations with the new covariance

matrix, after which it is perturbed again. This iterative process is repeated

until convergence is declared in all chains if the sample acceptance rate satisfies

a criteria set beforehand.

5. After all k chains are run, the main chain is run, in which the covariance matrix

is set to the one the random walk converged to. This samples the posterior.

After a posterior for the parameters is sampled, and a set of chains is ran, the pro-

cedure is updated with the so-called Population Monte-Carlo (PMC) method [287],

which isn’t explained here. The parametric uncertainties are easily propagated to

the LCSR form factors by evaluating the form factors at each parameter point drawn

according to the posterior.

In EOS, a large set of (pseudo-)observables, parameters and constraints relevant

for flavour physics and QCD is readily available for statistical analysis. The observ-

ables range from decay widths and angular observables to form factors. Parameters

encompass for example the CKM matrix elements, decay constants and hadronic

spectra. Constraints are stored as dictionary classes, and include relevant informa-

tion on the likelihood distribution the specific constraint follows.

Also offered are numerical tools required for the analysis. This might include a

211



Bayesian analysis using EOS

simple evaluation of a parameter or an observable based on a set of parameters, but

more complicated multivariate analyses, such as the one explained in this appendix

section, are also very conveniently handled.
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