Analiza tetrahidrofurfurilnog derivata 3-makrozona i komponenata reakcijske smjese primjenom sustava LC-SPE/NMR

Sekula, Lucia Ema

Master's thesis / Diplomski rad

2021

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:086883

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-07-17

Repository / Repozitorij:

Repository of the Faculty of Science - University of Zagreb

Sveučilište u Zagrebu PRIRODOSLOVNO-MATEMATIČKI FAKULTET Kemijski odsjek

Lucia Ema Sekula

Analiza tetrahidrofurfurilnog derivata 3-makrozona i komponenata reakcijske smjese primjenom sustava LC-SPE/NMR

Diplomski rad

predložen Kemijskom odsjeku Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu radi stjecanja akademskog zvanja magistre kemije

Zagreb, 2021.

Ovaj znanstveni rad izrađen je u Zavodu za analitičku kemiju Kemijskog odsjeka Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu pod mentorstvom prof. dr. sc. Predraga Novaka i neposrednim voditeljstvom mag. chem. Ive Habinovec.

Znanstveni rad izrađen je u okviru projekta Hrvatske zaklade za znanost pod nazivom Makrozoni, novi konjugati makrolidnih antibiotika: Dizajn, priprava i interakcije (IP-2018-01-8098).

Zahvale

Prvenstveno zahvaljujem mentoru prof. dr. sc. Predragu Novaku što mi je pružio priliku da sudjelujem u projektima, usavršavam i širim svoja znanja kroz praktični rad te iskusim znanost u svim njezinim aspektima. Hvala što ste dio svojih znanja podijelili sa mnom te pridonijeli uvijek izvrsnoj radnoj atmosferi.

Od srca hvala mojoj dragoj neposrednoj voditeljici mag. chem. Ivi Habinovec, koja me strpljivo učila i radila sa mnom. Osobi koja možda i najbolje zna koliko nekada nije bilo lako, koliko je nekad izgledalo nemoguće, ali nikada nije dopustila da odustanemo. Hvala za svako zajedničko iščekivanje "pikova" i rješavanje svih mogućih errora koji su se pojavili. Toliko je novih situacija koje sam s tobom prošla i veselim se što ću sve naučeno primjenjivati i dalje u svom radu. Hvala i ekipi iz 106-ice, na svakoj pomoći, savjetu i dobrom društvu.

Od srca hvala mojoj (najdražoj) Boženi koja je sa mnom prolazila sve lijepe ali i one manje lijepe trenutke tijekom studiranja, koja je ovo studiranje učinila zabavnijim, veselijim i definitivno ludim iskustvom. Da nije tebe, ne bi bilo dobrih priča koje ću prepričati djeci. Za svaku top stvar, svaku drama stvar – sve smo prošle skupa.

Hvala mojoj Dorotei što me znala saslušati, oraspoložiti, pokazati da neke stvari nisu tako strašne kao što se čine. Najviše hvala što si mi pokazala da pravo prijateljstvo ne pita za rasporede i obaveze ili koliko dugo se ne vidimo, ono ostaje isto, unatoč svemu.

Mom Jakovu, hvala je mala riječ za sve što čini za mene, koliko se trudi oko mene i kolika mi je podrška u svemu što radim. Bila ja ljuta ili sretna, nikada nije odustao i ne postoje riječi kojima mu se mogu dovoljno zahvaliti na tome.

Veliko hvala svim mojim ljudima, cijeloj mojoj široj obitelji i svim prijateljima koji su bili tu za mene tijekom cjelokupnog školovanja.

Na kraju, hvala mojim roditeljima, bez kojih ništa od ovoga ne bi bilo moguće. Hvala za svaki put kada su moje brige, želje i prohtjeve stavili ispred svojih i neprekidno me poticali da budem bolja, da želim više i da ne odustajem od svojih ciljeva. Svakim danom, svojim primjerom pokazivali ste mi prave vrijednosti u životu, pružali neizmjernu ljubav i sigurne ruke kada je teško. Hvala vam što ste uvijek bili moji najbolji prijatelji i najveći kritičari – odmalena do sad, i uvijek. ♥

Sadržaj

SAŽ	ETAKVI
ABS	TRACT VII
§ 1.	UVOD
§ 2.	LITERATURNI PREGLED
2.1.	Azitromicin
2.2.	Sinteza i biološka aktivnost tiosemikarbazonskih derivata azitromicina6
2.2.1.	Tiosemikarbazonski derivati azitromicina
2.2.2.	Biološka aktivnost
2.3.	Analiza makrolida tehnikama HPLC i LC-MS14
2.3.1.	Analiza makrolida tehnikom HPLC
2.3.2.	Analiza makrolida tehnikom LC-MS
2.4.	Analiza makrolida spektroskopijom NMR20
2.4.1.	Strukturna karakterizacija i konformacijska analiza20
2.4.2.	Interakcije makrolida
§ 3.	EKSPERIMENTALNI DIO
3.1.	Materijali i kemikalije
3.2.	Radni uvjeti tekućinske kromatografije visoke djelotvornosti (HPLC)25
3.2.1.	Priprava pokretne faze za analizu tehnikom HPLC-SPE25
3.2.2.	Priprava uzoraka za analizu tehnikom HPLC-SPE25
3.3.	Radni uvjeti ekstrakcije na čvrstoj fazi (SPE)26
3.4.	Radni uvjeti semi-preparativne tekućinske kromatografije26
3.5.	Snimanje spektara NMR
3.5.1.	¹ H NMR
3.5.2.	Homonuklearni i heteronuklearni 2D spektri NMR27
3.6.	Spektrometrija masa
§ 4.	REZULTATI I RASPRAVA
4.1.	Analiza reakcijske smjese tetrahidrofurfurilnog derivata 3-makrozona
4.2.	Ekstrakcija spojeva iz reakcijske smjese tehnikom HPLC-SPE32
4.3.	Analiza glavne komponente tetrahidrofurfurilnog derivata 3-makrozona spektroskopijom NMR
4.4.	Analiza izoliranih onečišćenja spektroskopijom NMR38
4.4.1.	<i>Onečišćenje</i> 3-16- <i>a</i>

4.4.2.	Onečišćenje 3-16-b
4.4.3.	Onečišćenje 3-16-c
4.4.4.	Onečišćenje 3-16-i
4.4.5.	Onečišćenje 3-16-j
4.5.	Usporedba semi-preparativne tekućinske kromatografije i tehnike LC-SPE za izolaciju tetrahidrofurfurilnog derivata 3-makrozona50
§ 5.	ZAKLJUČAK
§ 6.	POPIS OZNAKA, KRATICA I SIMBOLA
§ 7.	LITERATURNI IZVORI
0 9	
8 9.	ŽIVOTOPISLVIII

Sveučilište u Zagrebu Prirodoslovno-matematički fakultet

Diplomski rad

Kemijski odsjek

SAŽETAK

ANALIZA TETRAHIDROFURFURILNOG DERIVATA 3-MAKROZONA I KOMPONENATA REAKCIJSKE SMJESE PRIMJENOM SUSTAVA LC-SPE/NMR

Lucia Ema Sekula

Makrozoni čine novu klasu spojeva nastalih konjugacijom azitromicina i derivata tiosemikarbazona koji su pokazali izvrsno antibakterijsko djelovanje in vitro na odabrane Gram-pozitivne i Gram-negativne bakterije. Velik porast rezistencije bakterija na postojeće antibiotike postao je globalni zdravstveni problem, pa je potreba za razvojem novih antibiotika jedan od glavnih ciljeva suvremene medicinske i farmaceutske kemije. Učinkovito i brzo pročišćavanje te izolacija novosintetiziranih bioaktivnih spojeva važan je korak u procesu sinteze koji prethodi biološkom testiranju novih molekula. Također, izolacija i karakterizacija onečišćenja važan je korak razvoja lijekova u farmaceutskoj industriji. Preparativna i semipreparativna tekućinska kromatografija su klasične tehnike pročišćavanja spojeva koje iziskuju mnogo vremena i veliku količinu otapala. S ciljem smanjenja trajanja analize i utroška otapala, novosintetizirane spojeve moguće je analizirati vezanim sustavima. U ovom je radu uspješno provedena izolacija i strukturna karakterizacija novosintetiziranog bioaktivnog tetrahidrofurfurilnog derivata 3-makrozona i nekih onečišćenja iz reakcijske smjese primjenom vezanog sustava LC-SPE/NMR. Strukture izoliranih spojeva predložene su na temelju analize jedno- i dvodimenzijskih spektara NMR te spektara MS. U radu su raspravljene glavne prednosti ovog pristupa u usporedbi s klasičnim tehnikama off-line.

(80 stranica, 35 slika, 16 tablica, 70 literaturnih navoda, jezik izvornika: hrvatski)

Rad je pohranjen u Središnjoj kemijskoj knjižnici Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu, Horvatovac 102a, Zagreb i Repozitoriju Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu.

Ključne riječi: azitromicin, LC-SPE/NMR, makrolidni antibiotici, makrozoni, profil onečišćenja, vezani sustavi

Mentor: prof. dr. sc. Predrag Novak Neposredni voditelj: Iva Habinovec, mag. chem.

Ocjenitelji:

1. prof. dr. sc. Predrag Novak

- 2. doc. dr. sc. Đani Škalamera
- 3. prof. dr. sc. Mirta Rubčić
- Zamjena: doc. dr. sc. Tomislav Jednačak

Datum diplomskog ispita: 16. srpnja 2021.

University of Zagreb Faculty of Science Department of Chemistry

ABSTRACT

THE ANALYSIS OF TETRAHYDROFURFURYL 3-MACROZONE DERIVATIVE AND REACTION MIXTURE COMPONENTS USING LC-SPE/NMR

Lucia Ema Sekula

Macrozones are novel bioactive conjugates of azithromycin and thiosemicarbazones that possess very good *in vitro* antibacterial activity against selected Gram-positive and Gram-negative bacteria. Due to a global problem of growing bacterial resistance, development of new antibiotics and understanding of resistance mechanisms is of an outmost importance for modern medicine and pharmaceutical chemistry. Efficient and rapid purification and isolation of newly synthesized bioactive compounds is a crucial step prior to biological evaluation. Furthermore, isolation and identification of impurities is important during the drug development process in the pharmaceutical industry. Preparative and semi-preparative liquid chromatography are classical, but time- and solvent-consuming purification methods. Using hyphenated systems enables shorter analysis time and reduces solvent consumption. In this study successful isolation and structural characterization of newly synthesized tetrahydrofurfuryl 3-macrozone derivative and some impurities from reaction mixture have been performed using the LC-SPE/NMR approach. Structures of the isolated compounds were proposed on the basis of the analyzed one- and two-dimensional NMR spectra and MS spectra, respectively. The main advantages of the LC-SPE/NMR approach over classical *off-line* techniques are discussed.

(80 pages, 35 figures, 16 tables, 70 references, original in Croatian)

Thesis deposited in Central Chemical Library, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia and in Repository of the Faculty of Science, University of Zagreb

Keywords: azithromycin, hyphenated system, impurity profiling, LC-SPE/NMR, macrozone, macrolide antibiotic

Mentor: Dr. Predrag Novak, Professor Assistant mentor: Iva Habinovec, mag. chem.

Reviewers:

Dr. Predrag Novak, Professor
 Dr. Đani Škalamera, Assistant Professor
 Dr. Mirta Rubčić, Professor
 Substitute: Dr. Tomislav Jednačak, Assistant Professor

Date of exam: July 16th 2021.

Diploma Thesis

§ 1. UVOD

Bakterijska rezistencija na postojeće antibiotike globalni je problem koji se nastoji nadvladati poboljšanjem postojećih i dizajnom novih antibiotika. Kao rezultat prekomjerne i neodgovorne upotrebe antibiotika, sve češće smo suočeni s rastućim brojem smrtnih slučajeva uzrokovanih bakterijskom rezistencijom.

Glavna komponenta antibiotika je djelatna tvar – bioaktivna molekula koja ostvaruje interakciju sa svojom ciljnom biomolekulom. Makrolidni antibiotici su skupina antibiotika koji se obično koriste za liječenje akutnih i kroničnih infekcija, a najčešće se koriste azitromicin, klaritromicin, eritromicin i roksitromicin. Semikarbazoni i tiosemikarbazoni također imaju antiinfektivno i protuupalno djelovanje pa se povezivanjem s makrolidima mogu pripraviti novi bioaktivni konjugati koje nazivamo makrozoni.

Razvoj novog lijeka uključuje postupak sinteze i pročišćavanja konačnog produkta od različitih onečišćenja iz sintetskog postupka ili nusprodukata reakcije, pri čemu je strogo propisano koliki udio onečišćenja smije biti prisutan u krajnjem produktu. U izradi profila onečišćenja svakog lijeka važna je identifikacija i strukturna karakterizacija prisutnih onečišćenja zbog njihove potencijalne toksičnosti i negativnog djelovanja na organizam.

Kvalitativna i kvantitativna analiza postiže se primjenom vezanih sustava. Najčešći sustavi koji se primjenjuju u farmaceutskim istraživanjima su vezani sustavi LC-SPE/NMR i LC-MS zbog svoje osjetljivosti i niskih granica detekcije. U farmaceutskoj industriji uvelike olakšavaju postupak analize složenih smjesa.

ie izolirati Cilj ovog rada i strukturno okarakterizirati novosintetizirani tetrahidrofurfurilni derivat 3-makrozona (u daljnjem tekstu 3-16) kao i neka onečišćenja iz reakcijske smjese primjenom vezanog sustava LC-SPE/NMR. Nakon odjeljivanja sastojaka reakcijske smjese na kromatografskoj koloni, odabrani analiti će biti ekstrahirani na SPEsorbense višestrukim ukoncentriravanjem (engl. multitrapping). Spojevi će biti eluirani sa SPEsorbensa deuteriranim otapalom u cjevčice NMR te će se snimiti jedno- i dvodimenzijski spektri NMR te spektri MS. Na temelju analize svih prikupljenih podataka predložit će se strukture izoliranih spojeva.

§ 2. LITERATURNI PREGLED

2.1. Azitromicin

Revolucionarni korak u znanstvenom svijetu predstavlja izum azitromicina, djelatne tvari poznatog antibiotika *Sumameda*® (proizvod tržišne marke Pliva u Hrvatskoj). Patent¹ je prijavljen 1980. kao proizvod hrvatske farmaceutske tvrtke PLIVA (Slika 1). Azitromicin se na tržištu pojavio tek nakon što je ostvarena suradnja s farmaceutskom velesilom, tvrtkom Pfizer.

Ur	nited S	tates Patent [19]				[11]	4,328,334
Kob	orehel et a	վ.		.		[45]	May 4, 1982
[54]	11-AZA-10 MYCIN A WELL AS PREPARA	-DEOXO-10-DIHYDROERYTHRO- AND DERIVATIVES THEREOF AS A PROCESS FOR THEIR TION	[52] [58] [56]	U.S. Cl. Field of	Search Re	ferences Cite	536/7.4; 424/180 536/9 d
[75]	Inventors:	Gabrijela Kobrehel; Gordana Radobolja; Zrinka Tamburasev; Slobodan Djokic, all of Zagreb, Yugoslavia	U.S. PATENT DOCUMENTS 3,478,014 11/1969 Djokic et al				
[73]	Assignee:	PLIVA Pharmaceutical and Chemical Works, Zagreb, Yugoslavia	Prima Attorn Pridd	ıry Exan 1ey, Ager Y	niner—J nt, or Fil	ohnnie R. Br m—Pollock,	own Vande Sande &
[21]	Appi. No.: Filed:	134,810 Mar. 28, 1980	[57]	-		ABSTRACT	
[30] A	Foreig pr. 2, 1979 [Y	n Application Priority Data [U] Yugoslavia	11-aza atives	a-10-deo thereof	xo-10-di , and pr	hydroerythro ocess for pre	mycin A and deriv- paration thereof.
[51]	Int. Cl.3	A61K 31/71; C07H 17/08	24 Claims, No Drawings				

Slika 1. Američki patent za azitromicin.¹

Sinteza ovog makrolidnog antibiotika uvelike je utjecala na daljnji razvoj znanosti i medicine, ali prvenstveno na poboljšanje kvalitete života. Makrolidi obuhvaćaju skupinu spojeva koji su poznati kao oralni antibiotici. Sadrže makrociklički laktonski prsten s 12, 14, 15 ili 16 ugljikovih atoma, a na aglikonskom prstenu glikozidno je vezan jedan ili više amino- i/ili neutralnih šećera (najčešće kladinoza i desozamin) (Slika 2). Uvođenjem dušikovog atoma u aglikonski prsten dobiveni su polusintetski derivati već postojećih makrolida – azalidi. Prvi takav petnaesteročlani makrolid, a ujedno i najpoznatiji predstavnik azalida, je azitromicin.

Azitromicin

Slika 2. Makrolidni antibiotici.

Tijekom vremena dokazani su mnogi pozitivni imunomodulatorni učinci azitromicina pa se njegova upotreba globalizirala. Glavne karakteristike azitromicina su jednostavna primjena, specifičan mehanizam kojim se implementira u tkiva i prenosi do mjesta infekcije te svojstvo postizanja izrazito visokih koncentracija u tkivima.^{2,3} Uočeno je pozitivno djelovanje ovog lijeka na široki spektar bakterijskih infekcija gornjih i donjih dišnih puteva, nekih kožnih infekcija te spolno prenosivih bolesti. Daljnja istraživanja djelovanja azitromicina pokazala su da se može koristiti i u terapiji za liječenje malarije.⁴

Farmakokinetička svojstva azitromicina i ostalih makrolida (eritromicin, klaritromicin, telitromicin, roksitromicin) široko su istraživana kako bi se što jasnije objasnili njihovi učinci i način unosa, transporta i akumulacije.⁵ Makrolidi općenito, a posebice azitromicin, imaju prepoznatljivo farmakološko svojstvo vrlo dobre penetracije u tkiva i makrofage. Azitromicin se akumulira u ljudskim plućima u razinama koje premašuju razine pronađene u plazmi za čak 1500 puta (Slika 3). Pretpostavlja se da u tkivima dolazi do "zarobljavanja" makrolidnog iona u stanici zbog protonacije u kiselom okolišu, a penetracija u neutrofile i druge stanice objašnjava se visokom lipofilnosti makrolida koja omogućuje njihovu difuziju kroz staničnu membranu. Nakon transporta makrolida do mjesta infekcije on se oslobađa fagocitozom.⁶

Slika 3. Azitromicin – projicirane serumske i tkivne koncentracije (MIK – minimalna inhibitorna koncentracija).³

Povećana bakterijska rezistencija na makrolidne antibiotike u zadnjih nekoliko godina predstavlja veliki problem i izaziva zabrinutost u znanstvenim krugovima.⁶ Rezistencija se definira kao sposobnost mikroorganizama da razviju otpornost na lijekove koji se koriste u liječenju infekcija uzrokovanih tim mikroorganizmima. Već dugi niz godina azitromicin je jedan od najsigurnijih antibiotika širokog spektra. Za razliku od ostalih makrolidnih antibiotika, azitromicin ne ostvaruje interakcije s citokromom P-450 čija je uloga oksidacija malih organskih molekula i toksina te njihovo uklanjanje iz tijela. To znači da ne reagira niti s drugim često korištenim lijekovima.⁷ Azitromicin se iz organizma uglavnom izlučuje ekskrecijom preko žuči, stolicom te transintestinalnom ekskrecijom. N-demetilacijom i O-demetilacijom te hidrolizom nastaju različiti metaboliti azitromicina, ali niti jedan nije bioaktivan.³

Međutim, porast bakterijske rezistencije rezultirao je smanjenjem primjene azitromicina za liječenje upalnih procesa⁸ (Slika 4) pa su liječnici primorani pronaći alternativne načine liječenja, a znanstvenici modificirati postojeće ili otkriti potpuno nove lijekove u svrhu prevladavanja rezistencije. Jedan od faktora koji utječu na porast broja rezistentnih bakterija je povećana koncentracija antibiotika u okolišu kao posljedica antropogenog djelovanja.⁴ Globalna stagnacija razvoja i odobravanja novih antibiotika djelomično je uvjetovana ekonomskim i regulatornim zahtjevima, a istraživanja su ograničena smanjenjem financijskih sredstava uslijed ekonomske krize.⁹

Slika 4. Broj propisanih terapija azitromicina u Sjedinjenim Američkim Državama.⁸

Genetička manipulacija organizmima koji proizvode makrolide omogućena je razumijevanjem biosinteze makrolida. Većina makrolida veže se između ribosomskog tunela i centra za peptidiltransferazu u velikoj podjedinici ribosoma.⁶ Upravo zato se nastoje sintetizirati mnogi derivati makrolida vezanjem bioaktivnih molekula na okosnicu makrolaktonskog (aglikonskog) prstena. Dodatak takvih molekula na odabranim položajima u strukturi azitromicina mogao bi povećati broj veznih mjesta za ribosom, odnosno povećati afinitet prema ribosomu.¹⁰

2.2. Sinteza i biološka aktivnost tiosemikarbazonskih derivata azitromicina

2.2.1. Tiosemikarbazonski derivati azitromicina

Tiosemikarbazoni i njihovi analozi s kisikom (semikarbazoni) su derivati hidrazona (Slika 5) koji se primarno koriste kao međuprodukti u sintezi mnogih heterocikličkih spojeva ili kao kelirajući agensi za neke metalne ione.^{11,12} Također je primijećeno da tiosemikarbazoni pokazuju mnoge pozitivne biološke učinke kao što su protuupalno, antitumorsko te umirujuće djelovanje na živčani sustav.¹³⁻¹⁶ Svrstavaju se u skupinu Schiffovih baza s općom formulom $R_1R_2C=N-NH-(C=S)-NR_3R_4$, a dijele se u dvije glavne skupine: monotiosemikarbazone i bistiosemikarbazone. Svima im je zajedničko prisustvo karakterističnih amidnih, iminskih i tionskih skupina koje ih čine polidentatnim ligandima. Te skupine su ujedno odgovorne i za kelirajuće svojstvo tiosemikarbazona koje omogućuje njihovu koordinaciju na metalne centre i time utječe na njihovu biološku aktivnost.¹⁷

Farmakofor tiosemikarbazon sadrži motiv izotiocijanata koji dokazano predstavlja zaštitu zdravih tkiva u organizmu od mogućih toksičnih učinaka protutumorskih lijekova.¹⁸ Daljnja istraživanja utjecaja tiosemikarbazona na razvoj tumorskih stanica pokazala su da prisutnost tiosemikarbazona utječe na mehanizam inhibicije aktivnosti ribonukleotid-reduktaze koja je neophodna za razvoj tumorskih stanica.¹⁹

Slika 5. Opća formula a) tiosemikarbazona i b) semikarbazona.

Sve veća rasprostranjenost patogena otpornih na antibiotike primorala je čovječanstvo da ulaže u znanost kako bi se riješio problem bakterijske rezistencije. Otkriće i razvoj novih antibiotika su neophodni i hitni jer je to jedino rješenje za rješavanje problema.

Do sada su objavljena istraživanja konjugata makrolidnih antibiotika i nekih heteroaromatskih spojeva^{20,21} (Slika 6) te konjugata makrolidnih antibiotika i makrolidnukleozida ili makrolid-nukleobaza.²² U tim istraživanjima potvrđeno je da je afinitet vezanja konjugata na ribosom veći u odnosu na osnovni makrolid.

Slika 6. Sinteza novih konjugata azalida konjugacijom s heteroaromatskim spojevima. Reakcijski uvjeti: *i* – akrilonitril, 60 °C, 10 h; *ii* – H₂/ 5% Pt / C, 5% HCl(aq), 4 bara, sobna temperatura, 40 h; *iii* – alkil ili aril izocijanat / izotiocijanat, CH₂Cl₂, sobna temperatura, 1 h; *iv* –1 mol L⁻¹ HCl(aq), sobna temperatura; *v* – 1 ekv. akrilonitril, CH₃OH, refluks, 10 h.²⁰

Zbog dokazanih brojnih pozitivnih učinaka tiosemikarbazona, upravo su oni odabrani za vezanje na odabrana mjesta azitromicina. Tiosemikarbazonski dio može interagirati s okosnicom azalida pa se pretpostavlja da će nastati potencijalne farmakološki aktivne molekule – makrozoni (Slika 7).²³⁻²⁵ Takvi derivati trebali bi imati sva dobra kemijska svojstva tiosemikarbazona te pozitivna svojstva ranijih generacija makrolidnih antibiotika. Također se pretpostavlja da bi derivati mogli imati poboljšanu biološku aktivnost u odnosu na azitromicin.

Konjugacijom makrolida i tiosemikarbazona očekuje se poboljšanje bioloških svojstava makrolida što će omogućiti čvršću vezu s biološkom metom. Daljnja istraživanja makrozona provode se s ciljem razvoja novih potencijalnih lijekova i generalnog napretka suvremene medicine.^{23,27}

Slika 7. (A) Opća strukturna formula makrozona 4"-, 9a- i 3-; (B) supstituenti R za sintezu tiosemikarbazona.²⁷

Sinteza makrozona odvija se u nekoliko složenih koraka, a obuhvaća: (1) Michaelovu adiciju akrilonitrila; (2) katalitičko hidrogeniranje uz PtO₂ pri čemu se dobije odgovarajući prekursor (γ -aminopropil)-azitromicin; (3) pripravu tiosemikarbazida reakcijom odgovarajućeg izotiocijanata s hidrazin hidratom; (4) pripravu tiosemikarbazona reakcijom 4-formilbenzojeve kiseline s tiosemikarbazidom i (5) reakciju amidacije tiosemikarbazona s prekursorom uz dodatak reagensa HATU i DIPEA u diklormetanu.²⁷

2.2.2. Biološka aktivnost

Nakon otkrića prvog makrolidnog antibiotika, eritromicina A, izoliranog 1952. iz mikroorganizma *Saccharopolyspora erythraea*²⁸, mnoga istraživanja usmjerila su se na sintezu njegovih polusintetskih analoga ili derivata s ciljem pojačanja bioaktivnosti i farmakokinetičkih svojstava. Kao rezultat takvih istraživanja otkriven je i azitromicin,¹makrolid druge generacije, koji pokazuje poboljšanu gastrointestinalnu toleranciju, stabilnost i farmakokinetiku, ali križnu rezistenciju s eritromicinom A.²⁹

Telitromicin, makrolid treće generacije koji posjeduje alkil-arilni bočni lanac na makrolaktonskom prstenu i keto skupinu umjesto kladinoze, pokazuje značajnu biološku aktivnost na neke rezistentne sojeve. Međutim, povučen je s tržišta nakon izvještaja o ozbiljnim nuspojavama, uključujući toksičnost za jetru, rizik od kardiovaskularnih bolesti, mučninu i proljev. Te nuspojave pripisuju se piridinskoj skupini koja se nalazi u strukturi telitromicina (Slika 2).³⁰

Za procjenu cjelokupnog biološkog profila koji obuhvaća fizikalno-kemijska svojstva i bioaktivnost makrolidnih antibiotika potreban je detaljan opis njihove strukture i interakcija s makromolekulskim receptorima. To omogućuje uvid u mehanizme vezanja makrolida i olakšava razumijevanje bioloških utjecaja makrolida na ljudski organizam.²⁴ U farmaceutskoj industriji, u procesu dizajniranja lijekova, neophodno je istražiti interakcije makrolida s drugim biološkim metama (bakterijske membrane, žućne kiseline, stanični proteini i sl.) i optimirati farmakokinetička svojstva bioaktivnih spojeva (topljivost, bioraspoloživost, distribucija, izlučivanje) s ciljem preciznog određivanja veznih mjesta na ribosomu i poboljšanja ukupne biološke aktivnosti (Slika 8).^{24,31-33}

Jedna od glavnih vrsta bakterijske rezistencije povezana je s metilazama koje su odgovorne za razvoj mehanizama rezistencije na makrolid, linkozamid i streptogramin (MLS) inducibilnog (iMLS) ili konstitutivnog (cMLS) tipa. Modifikacijama različitih položaja četrnaesteročlanih i petnaesteročlanih makrolida dobiveni su derivati od kojih su neki pokazivali veću, a neki manju antimikrobnu aktivnost.^{20,23-26} Posebno su zanimljivi derivati azitromicina s modificiranim položajem 4", 3 i 9a dok modifikacija na položaju dušika u desozaminu daje biološki inaktivne spojeve.²⁰⁻²⁷ Konjugacija s različitim molekulama na tim položajima pokazala je povećanu biološku aktivnost na neke susceptibilne i rezistentne sojeve bakterija (Tablica 1. - 3.). Dodatno je potvrđeno kako se povećala biološka aktivnost derivata petnaesteročlanih makrolida s (tio)ureom u odnosu na derivate sa sulfonilureom te da derivati uree i tiouree s 3-dekladinozil-

3-hidroksi azalidima imaju povećano antibakterijsko djelovanje u odnosu na derivate s (tio)karbamoilom.^{20,25,26}

Tablica 1. Antibakterijska aktivnost in vitro novih	konjugata azitromicina i sulfonamida (6a-
6d) i njihovih dekladinozilnih analoga (7a-7d). ²⁰	

Testni	Soj/MIC. (µg/m1)													
spoj	S. aureus Ery-S	S. pneumoniae Ery-S	S. pyogenes Ery-S	S. pyogenes iMLS ermTR	S. pyogenes cMLS	S. pyogenes M mefA	M. catarrhalis ATCC-0324	H. influenzae ATCC-0529	E. coli ATCC-0001					
1	0.5	≤0.125	≤0.125	8	64	2	≤0.125	0.25	1					
2	2	0.25	0.25	16	>64	16	NT	1	4					
6a	64	1	2	4	>64	>64	>64	32	>64					
6b	16	0.5	2	2	>64	32	64	32	>64					
6c	8	4	2	>64	>64	>64	4	64	>64					
6d	32	16	8	>64	>64	>64	8	>64	>64					
7a7d	>64	>64	>64	>64	>64	>64	>64	>64	>64					

iMLS: inducibilna rezistencija na makrolide, linkozamide i streptogramine; cMLS: konstitutivna rezistencija na makrolide, linkozamide i streptogramine; M: efluks rezistencija na makrolide; NT: nije testirano.

Tablica 2. Antibakterijska aktivnost <i>in vitro</i> 3-dekladinozil urea (6a , (±)- 6c i 9a-c , 9g) i
tiourea (7a , 7e i 10d – 10f) u usporedbi s azitromicinom(1). ²⁵

Testni spoj	6a	(±)-6c	7a	7e	9a	9b	(±)-9c	9g	10d	10e	10f	2	1
х	0	0	S	S	0	0	0	0	S	S	S	-	
R	н	н	Н	H	Н	Н	н	н	н	Н	Н	Н	
R ³	$\overline{\mathbb{Q}}$	È	$\overline{\mathbb{C}}$	T	$\overline{\mathbb{Q}}$	$\frac{1}{2}$	È	ζ,a	5	3	2		
S. aureus ATCC 29213	>64	16	>64	>64	>64	>64	>64	>64	>64	>64	>64	>64	0.5
S. pneumonia-eryS	1	< 0.125	1	4	16	NT	4	NT	NT	NT	NT	>64	< 0.125
S. pneumoniae-M	8	16	2	16	64	4	8	8	16	16	16	>64	8
S. pyogenes-eryS	2	< 0.125	8	32	16	8	4	>64	>64	>64	32	>64	<0.125
S. pyogenes-M	16	16	64	64	64	16	>64	>64	>64	>64	64	>64	4
M. catarrhalis ATCC 23246	2	4	0.5	4	8	2	4	8	2	8	8	NT	< 0.125
H. influenzae ATCC 49247	2	4	4	16	32	2	16	16	8	32	8	16	1
E. faecalis ATCC 29212	32	8	32	64	>64	32	64	>64	>64	>64	>64	NT	8
E. coli ATCC 25922	8	16	16	64	64	16	>64	>64	>64	>64	>64	16	2

eryS: osjetljiv na eritromicin, M: efluks rezistencija na makrolide, NT: nije testirano.

Tablica 3. Antibakterijska aktivnost in vitro a	analoga karbamoila (8a-	d, 8f, 8g) i tiokarbamoila
(10b-10f) u usporedbi s azitromicinom(1). ²⁶		

Testni spoj	8a	8b	8c	8d	8f	8g	8h	10b	10c	10d	10e	10f	1
х	0	0	0	0	0	0	0	S	S	S	S	S	
R'	\prec	\bigcirc	6	5			Ł		6	S	6		
S. aureus ATCC 29213	4	1	2	4	1	1	2	2	1	1	1	4	0.5
S. pneumoniae	≤0.125	≤0.125	≤0.125	≤0.125	≤0.125	≤0.125	≤0.125	≤0.125	≤0.125	≤0.125	≤0.125	≤0.125	≤0.125
S. pneumoniae-M	32	32	16	64	16	16	32	32	16	32	32	16	8
S. pneumoniae-cMLS	>64	>64	64	>64	64	32	16	>64	64	64	32	64	64
S. pyogenes	≤0.125	≤0.125	≤0.125	≤0.125	<0.125	≤0.125	<0.125	<0.125	≤0.125	≤0.125	≤0.125	<0.125	≤0.125
S. pyogenes-iMLS	32	16	16	32	8	16	8	32	16	8	8	32	8
S. pyogenes-M	32	32	8	64	8	8	8	32	8	16	16	32	4
M. catarrhalis ATCC 23246	0.5	4	0.5	16	0.5	1	0.5	4	1	2	4	4	≤0.125
H. influenzae ATCC 49247	4	8	4	32	4	2	2	16	4	4	4	8	1
E. faecalis ATCC 29212	64	32	32	64	16	16	16	>64	32	32	16	32	8
E. coli ATCC 25922	16	32	8	>64	8	32	32	>64	16	16	16	8	2

iMLS: inducibilna rezistencija na makrolide, linkozamide i streptogramine; cMLS: konstitutivna rezistencija na makrolide, linkozamide i streptogramine; M: efluks rezistencija na makrolide.

10

Slika 8. Kristalne strukture (**a**) eritromicina (PDB ID: 1YI2) i (**b**) azitromicina (PDB ID: 1M1K) vezanog za 50S podjedinicu ribosoma *H. marismortui*.²⁴

Neki novosintetizirani konjugati tiosemikarbazona i azitromicina pokazali su dobro antibakterijsko djelovanje na odabranim bakterijskim vrstama.²³ Među testiranim bakterijskim vrstama kao što su *E. coli, S. pneumoniae, A. baumannii, P. aeruginosa, H. influenzae, S. aureus, S. pneumoniae, S. pyogenes, E. faecalis,* novosintetizirani konjugati pokazali su najveću aktivnost prema soju *S. pneumoniae* (Tablica 4).

Spoj	7a	7b	7c	7d	7e	15a	15b	15c	15d	15e	Azitromicin	
Bakterijski soj	MIC (µg mL ⁻¹)											
S.pneumoniae ATCC 49619	<0.125	<0.125	<0.125	<0.125	<0.125	<0.125	0.25	0.5	0.5	0.5	<0.125	
S.pneumoniae B0326 (M)	2	<0.125	0.25	0.25	<0.125	<0.125	1	2	1	2	4	
S.pyogenes B0542	0.25	<0.125	0.25	0.5	0.25	0.25	1	1	1	1	< <mark>0.125</mark>	
S.aureus ATCC 29213	8	8	4	4	4	>64	16	32	32	32	1	
S.aureus B0331 (M)	64	8	8	4	4	>64	32	64	>64	>64	>64	
S.aureus B0330 (cMLS)	>64	>64	>64	>64	>64	>64	>64	>64	>64	>64	>64	
E.faecalis ATCC 29212	8	1	1	1	1	<0.125	8	8	8	8	4	
H.influenzae ATCC 49247	ND	16	16	16	8	64	64	64	64	64	2	
S.cerevisiae ATCC 7752	>64	>64	>64	>64	>64	2	>64	>64	>64	>64	>64	

Tablica 4. Antibakterijska aktivnost in vitro	novosintetiziranih makrozona u usporedbi s
azitromicinom. ²³	

Energija vezanja jednog od pripravljenih konjugata na peptidil-transferazni centar ribosoma iz bakterije *E. coli*, izračunata metodama molekulskog modeliranja, relativno je mala. Unatoč tome, molekularno pristajanje pokazuje učinkovito vezanje na ciljano inhibitorno područje ribosoma. Zanimljiv je i podatak da ovako modelirani kompleks ima jednak položaj makrolaktonskog prstena unutar peptidil-transferaznog centra kao i kompleks s azitromicinom (Slika 9). Vezanje je dodatno pojačano hidrofobnim interakcijama terminalnog benzenskog prstena tiosemikarbazona s dušičnim bazama velike podjedinice 23S rRNA. Za neke druge derivate izračunata je relativno visoka energija vezanja na peptidil-transferazni centar što ukazuje na jako vezanje.²³

Slika 9. Konjugat tiosemikarbazona i azitromicina vezan na peptidil-transferazni centar u stanju (**a**) minimalne energije i (**b**) energije 2,4 kJ mol⁻¹ veće od minimalne.²³

Osim navedenih istraživanja sve su češće računske simulacije interakcija makrolida kao sastavni dio procesa razvoja lijekova. One omogućuju bolje razumijevanje molekulskih mehanizama i dinamike uključenih u interakcije ligand-receptor. Simulacije molekulske dinamike, uz klasične eksperimentalne tehnike, daju informacije o strukturi, konformaciji i interakcijama bioloških meta i potencijalnih bioaktivnih molekula te fizikalno-kemijskim svojstvima odgovornima za bioaktivnost.³⁴ Kontinuirani tehnološki napredak značajno je olakšao daljnja istraživanja usmjerena na dizajn novih lijekova i poboljšanje njihove biološke aktivnosti.

2.3. Analiza makrolida tehnikama HPLC i LC-MS

Kemijski spojevi u farmaceutskim proizvodima određuju se primjenom različitih analitičkih tehnika. Većinom se koriste tehnike odjeljivanja komponenti smjesa kao što su tekućinska kromatografija visoke djelotvornosti (engl. *High-Performance Liquid Chromatography*, HPLC), plinska kromatografija (engl. *Gas Chromatography*, GC) i kapilarna elektroforeza (engl. *Capillary Electrophoresis*, CE), u sprezi s detektorom UV (engl. *Ultra Violet*, UV). Za izolaciju onečišćenja koriste se klasične metode ekstrakcije poput ekstrakcije na čvrstoj fazi (engl. *Solid-phase extraction*, SPE). Za strukturnu karakterizaciju onečišćenja najčešće se koristi spektrometrija masa (engl. *Mass Spectrometry*, MS).

Vezani sustav LC-MS povezuje tekućinsku kromatografiju i spektrometriju masa.

Spektrometrija masa, kao metoda detekcije analita, temelji se na nastanku molekulskog iona (iona prekursora) koji podliježe fragmentaciji pri čemu nastaje fragmentni ioni. Nakon toga se nastali ioni razdvajaju na temelju njihovih m/z i detektiraju. Tekućinski kromatograf i spektrometar masa u vezanom sustavu povezani su međuspojem (engl. *interface*) u kojemu se događa otparavanje tekućine, ionizacija neutralnih molekula te uvođenje analita u analizator.

Razvoj tehnologije i razumijevanje pojava na molekulskoj razini doprinijeli su razvoju različitih analizatora koji zahtijevaju različite ionizacijske izvore, a time i detektore. Metoda tekućinske kromatografije s tandemnom spektrometrijom masa, LC-MS/MS, napredna je metoda koja omogućava dodatnu fragmentaciju, bolju separaciju te analizu iona u vremenu/prostoru. Sve te karakteristike značajno olakšavaju kvalitetno i jednoznačno određivanje strukture analiziranog spoja.

2.3.1. Analiza makrolida tehnikom HPLC

Azitromicin i njegovi derivati u različitim uzorcima prvenstveno su određivani mikrobiološkim metodama.³⁵ Međutim, takve metode su dugotrajna, zahtjevne, niske preciznosti i nedovoljno niskih detekcijskih granica. U cilju prevladavanja ovih problema razvijene su različite vrste tekućinske kromatografije visoke djelotvornosti (HPLC). Validirana metoda za određivanje azitromicina u farmaceutskim pripravcima je metoda HPLC s UV detektorom, ali zbog slabe apsorbancije azitromicina pri valnim duljinama manjima od 220 nm osjetljivost metode je niska. Nadalje, zbog niske djelotvornosti kolone dolazi do pojave asimetričnih kromatografskih krivulja.^{36,37} Kako bi se riješili takvi problemi, razvijene su metode koje koriste detektor UV-

DAD (engl. *Diode Array Detector*, DAD) čime se postiže bolja osjetljivost, razlučivanje i preciznost.^{38,39}

Analize makrolida tehnikom HPLC uz odgovarajući detektor postale su suvremeno analitičko oruđe.⁴⁰⁻⁴⁸ Budući da se azitromicin sintetski dobiva iz eritromicina,¹ u reakcijskoj smjesi prisutna su različita onečišćenja u obliku polaznih reaktanata, međuprodukata i nusprodukata (analozi azitromicina i razgradni produkti). U farmaceutskoj industriji postoje strogi zahtjevi o udjelima onečišćenja u lijeku. Upravo zato je utemeljena Međunarodna konferencija o harmonizaciji (engl. International Conference on Harmonization, ICH) kojom su definirani standardi i legislative za proizvođače lijekova Europske unije, Japana i Sjedinjenih Američkih Država. Prema smjernicama ICH, onečišćenjem se smatra svaki sastojak lijeka koji nije ljekovita ili pomoćna tvar u gotovom proizvodu.⁴⁹ Kao metoda za analizu azitromicina u različitim gotovim lijekovima može se korisiti samo HPLC uz detektor UV koji daje točne i precizne rezultate, ali prisutna onečišćenja i razgradni produkti ne mogu se odijeliti uz zadovoljavajuće razlučivanje (Slika 10).43,44 Ta onečišćenja i razgradni produkti posebno su bitni ne samo za farmaceutsku industriju, već i za globalni problem rastuće bakterijske rezistencije. Razgradni produkti, kao i sam antibiotik, mogu utjecati na strukturnu, genetsku i funkcijsku raznolikost mikrobnih zajednica pa je precizna procjena utjecaja antibiotika na aktivnost i raznolikost mikrobnih zajednica u okolišu od iznimne važnosti.

Kontinuirano povećanje konzumacije antibiotika utječe na zagađenje okoliša. Transformacija i/ili razgradnja najvažniji su procesi koji određuju sudbinu antibiotika u tlima, a brzina transformacije i razgradnje uvelike ovisi o strukturi antibiotika. Interakcije tla, antibiotika i mikroorganizama su raznolike i mnogi čimbenici okoliša mogu utjecati na vrijednosti istraživanih parametara.⁵⁰ Makrolidni antibiotici su istaknuta skupina zagađivača koji se često nalaze u otpadnim vodama pa postoje validirane metode za simultano određivanje matičnih makrolidnih antibiotika (azitromicin, eritromicin, klaritromicin i roksitromicin), zajedno s njihovim razgradnim produktima, sintetskim međuproduktima i produktima transformacije u otpadnim i površinskim vodama. Zanimljivo je da su u otpadnim vodama farmaceutske industrije u Hrvatskoj pronađene izuzetno visoke koncentracije makrolida, čak do razine mg L⁻¹ što ukazuje na mogući izvor ukupnog opterećenja u okolnim vodama.⁵¹

Makrolidni antibiotici azitromicin (AZI), eritromicin (ERY) i klaritromicin (CLA) nedavno su uvršteni na popis zagađivača vodenog okoliša u EU nad kojima je potrebno provoditi redoviti nadzor.⁵² Analiza voda pokazala je najveću zastupljenost pojedinog makrolida, dok su se međuprodukti i produkti transformacije nalazili u znantno nižim koncentracijama. Značajne razine makrolida pronađene su u uzorcima podzemnih voda. Na temelju tih podataka procijenjeno je da se makrolidi i njihovi razgradni produkti zadržavaju u površinskom i/ili aluvijalnom sedimentu čak više od deset godina nakon njihovog ispuštanja u vodeni okoliš.⁵³

Slika 10. Reprezentativni kromatogrami azitromicina nakon izlaganja (**A**) danjem svjetlu i sobnoj temperaturi, (**B**) UV svjetlu, (**C**) toplini, (**D**) lužini koncentracije 1 mol dm⁻³, (**E**) kiselini koncentracije 1 mol dm⁻³ i (**F**) 30%-tnom vodikovom peroksidu. 1–azitromicin; 2,3,4,5,6 – razgradni produkti (onečišćenja).⁴⁴

Primjena makrolidnih antibiotika za sprječavanje i liječenje različitih infekcija, osim u humanoj medicini, česta je i u veterini kod životinja koje proizvode hranu ili se uzgajaju u prehrambene svrhe. Međutim, nepravilnom upotrebom ovih lijekova, oni se mogu akumulirati u prehrambenim proizvodima, što može imati neželjene učinke na zdravlje potrošača.

Prvenstveno se spominju nuspojave kao što su alergijske reakcije kod ljudi, pojava rezistentnih sojeva bakterija te križna rezistencija na druge makrolidne antibiotike. Kako bi se

izbjegle neželjene posljedice, postoje smjernice koje reguliraju maksimalne granice ostataka (engl. *Maximum Residue Limits*, MRL) lijekova u životinjskim proizvodima.⁴⁷

Tehnika HPLC-DAD omogućuje odjeljivanje većeg broja različitih makrolida u smjesi te istovremeno kvantitativno određivanje svakog pojedinog sastojka smjese pri različitim valnim duljinama (Slika 11). Također, međusobnom usporedbom vremena zadržavanja pojedinog makrolida u različitim uzorcima u odnosu na standardne uzorke, moguće je odrediti kojoj tvari odgovara pojedina kromatografska krivulja (Slika 12).⁴⁰

Slika 11. Kromatogrami smjese makrolidnih antibiotika snimljeni pri valnoj duljini 210 nm (plavo), 232 nm (crveno) i 287 nm (zeleno) dobiveni analizom ekstrakta goveđeg bubrega.
Kromatografske krivulje: (1) spiramicin, (2) tilmikozin, (3) eritromicin, (4) tilozin, (5) roksitromicin, (6) troleandomicin i (7) josamicin.⁴⁷

Slika 12. Reprezentativni kromatogrami dobiveni analizom HPLC-DAD: (**S**) smjese standardnih uzoraka makrolidnih antibiotika, (**A**) uzorka mišića piletine, (**B**) uzorka pileće jetre, (**C**) uzorka jetre svinje, (**D**) uzorka bubrega svinje.⁴⁰

2.3.2. Analiza makrolida tehnikom LC-MS

Nakon kromatografskog odjeljivanja vezanim sustavom LC-MS, moguće je strukturno identificirati makrolide, njihove razgradne produkte i derivate. U dobivenim spektrima primarno se nastoji identificirati signal koji odgovara molekulskom ionu jer nam on najbolje potvrđuje identitet spoja, posebice u slučaju molekula velike molekulske mase, kao što su makrolidi (Tablica 5). Zato je LC-MS odnosno LC-MS/MS u današnje vrijeme jedna od

najraširenijih metoda analize makrolida i njihovih derivata.⁴⁰⁻⁴⁸ Efekt matrice (međudjelovanje svih komponenti uzorka) često predstavlja glavni izazov u određivanju analita u tragovima. Odziv detektora u tehnici LC-MS/MS za izabrani analit obično je umanjen zbog interferencija u matrici, što negativno utječe na točnost i pouzdanost analize.⁴¹ Optimiranje parametara analize LC-MS/MS predstavlja ključan korak za učinkovitu analizu.^{42,45,46}

Tablica 5. Rezultati spektrometrije masa uz ionizaciju elektroraspršenjem u pozitivnom modu za uzorak kravljeg mlijeka. Signali molekulskih iona proučavanih analita jasno su detektirani na (M+1).⁴²

Spoj	Molekulska masa (Da)	Ion prekursor (m/z)	Fragmenti (m/z)
Eritromicin	733.4	734.0	158.1
		734.0	576.0
Azitromicin	748.5	749.5	158.2
		749.5	116.0
Spiramicin	842.5	843.0	174.0
		843.0	101.0
Tilmikozin	868.5	435.5	174.0
		435.5	143.3
		435.5	125.8
Tilozin	915.5	916.0	174.0
		916.0	101.0

2.4. Analiza makrolida spektroskopijom NMR

Spektroskopija nuklearne magnetne rezonancije (engl. *Nuclear Magnetic Resonance Spectroscopy*, NMR) uz spektrometriju masa najčešća je metoda za strukturnu karakterizaciju molekula. Vezani sustav LC-NMR široko se primjenjuje u biomedicini, farmaceutskoj industriji, analizi lijekova i metabolita te u analizi i zaštiti okoliša. Danas postoje različite jednodimenzijske i dvodimenzijske tehnike NMR (¹H; ¹³C; COSY; HSQC; HMBC; NOESY; ROESY), a moguće je provesti analizu u otopini i u čvrstom stanju (engl. *solid-state*). Pri snimanju spektra NMR analita niske koncentracije u otopini, najveći izazov predstavljaju signali otapala. Zato su razvijene tehnike supresije signala otapala koje otklanjaju i/ili umanjuju njihove signale. Time je znatno olakšana detekcija i strukturna karakterizacija analita zastupljenih u niskim koncentracijama.⁵⁴

2.4.1. Strukturna karakterizacija i konformacijska analiza

Spektroskopija NMR ima bitnu ulogu u određivanju strukture i dinamike molekula. S obzirom da su kemijski pomaci najjednostavniji i najtočnije mjerljivi parametri spektroskopije NMR, pravilnom interpretacijom snimljenih spektara moguće je odrediti i konformacije molekula kao što su makrolidi.⁵⁵⁻⁶³ Konformacijska analiza daje uvid u prisustvo različitih konformera iste molekule, a stabilnost pojedinog konformera dalje se predviđa kvantno-mehaničkim izračunima. Ova metoda provodi se mjerenjem konstanti sprege na sobnoj temperaturi i pri sniženim temperaturama u različitim otapalima. Također, često se primjenjuje i kao rutinska provjera u sintetskim postupcima gdje se nakon pojedinog koraka sinteze provjerava je li nastao željeni (među)produkt. Prema intenzitetu određenih signala može se predvidjeti i udio željenog (među)produkta u reakcijskoj smjesi.^{56,58}

Kombiniranjem različitih tehnika spektroskopije NMR i interpretacijom spektara moguće je razlikovati konformacijske i konfiguracijske izomere te odrediti konfiguraciju oko dvostruke veze u molekuli (Slika 13).⁵⁹ Te mogućnosti posebno su korisne za molekule koje sadrže veći broj kiralnih centara kao što su makrolidi.⁵⁷ Osim toga, u istraživanjima vezanima uz razvoj novih makrolidnih antibiotika, derivati poznatih antibiotika vrlo se lako određuju uspoređivanjem s već poznatim spojem jer se pomak u spektrima NMR uglavnom opaža na supstituiranom dijelu molekule. Budući da se derivatizacija često postiže dodatkom nekih manjih molekula, osnovne razlike u spektrima derivata (Slika 14) vide se uglavnom u području signala aglikonskog prstena (3,85 ppm – 6,70 ppm).^{60,61}

Slika 13. Struktura tugacina A - makrolidnog antibiotika izoliranog iz bakterije *Sorangium cellulosum*. Strukturni elementi određeni su kombiniranjem različitih tehnika spektroskopije NMR (prema signalima u spektrima COSY, HMBC i ROESY).⁵⁷

Slika 14. Struktura i pripadajuća numeracija (1) josamicina i njegovih hidroksiaminoalkilnih derivata (4 i 5) i reprezentativni spektri ¹H NMR u području od 3,85 ppm do 6,70 ppm.⁶⁰

Makrolaktonski prsten, kao glavna strukturna značajka makrolidnih spojeva, uvelike utječe na cjelokupnu konformacijsku savitljivost (fleksibilnost), a time i na trodimenzijsku strukturu makrolida. Daljnja istraživanja usmjerena su na karakterizaciju vezanja za biološke mete i interakcije s istima.⁶³

2.4.2. Interakcije makrolida

Makrolidni antibiotici kao biološku metu ciljaju bakterijski ribosom, koji se sastoji od dvije podjedinice: male (30S), gdje se genetski kod prevodi u aminokiselinski slijed, i velike (50S), odgovorne za stvaranje peptidne veze.

Strukture nekih kompleksa makrolid-ribosom određene su rendgenskom kristalografijom, a dobiveni rezultati dali su uvid i u mehanizme vezanja makrolida na ribosom (Slika 15). Mjerenjem kutova i intenziteta u difrakcijskom uzorku može se izraditi trodimenzionalna mapa elektronske gustoće. Pravilnom interpretacijom kristalografskih podataka određene su strukture kompleksa makrolida i ribosoma koje su se značajno razlikovale od prethodno prijavljenih. Međutim, strukturne značajke kompleksa u čvrstom stanju ne moraju odgovarati stanju u otopini. Zato proces dizajniranja lijekova podrazumijeva određivanje strukture kompleksa u otopini te proučavanje dinamike slobodnih makrolida i receptora te dinamiku njihovog kompleksa.²⁴

Slika 15. Telitromicin vezan na ribosom *E. coli*. Usporedba konformacija zabilježenih za telitromcin vezan za ribosom (23S rRNA *E. coli* – siva boja). Prikazani su modeli telitromicina iz *H. marismortui* (žuto), *D. radiodurans* (plavo) i *E. coli* (ružičasto).²⁴

Primarne interakcije makrolidni antibiotici ostvaraju s ribosomima ali postoje i različite interakcije s biološkim membranama, a te interakcije pridonose bioraspoloživosti makrolida. Proučavanjem interakcija makrolidnih antibiotika s membranskim mimeticima moguće je odrediti jačinu interakcije te mjesto i način vezanja. Spektroskopija NMR u kombinaciji s metodama molekularnog modeliranja praktičan je alat za karakterizaciju interakcija makrolidnih antibiotika s bakterijskim ribosomima te identifikaciju strukturnih elemenata

odgovornih za vezanje.^{32,64,65} Obzirom da se u interakcijama makrolidnih antibiotika i ostalih biomolekula najčešće radi o velikim biomolekulama (receptorima), tehnika STD-NMR (engl. *Saturation Transfer Difference*) često se primjenjuje jer ne postoje ograničenja s obzirom na molekulsku masu proučavanih spojeva. Osim toga, ne zahtjeva veliku količinu liganda s kojom makrolid intereagira, jer će signali u spektru odgovarati isključivo ligandima koji ostvaraju interakciju. Metoda STD često se koristi za određivanje epitopa vezanja (Slika 16).^{66,67}

Slika 16. (**A**) Spektar ¹H-NMR eritromicina (500 MHz), (**B**) Spektar ¹H-STD-NMR βglukozidaze (0,1 mM) i eritromicina (2 mM) (500 MHz), (**C**) Epitopi vezanja eritromicina A u interakciji s β-glukozidazom na temelju 2D STD-TOCSY NMR podataka. Zasjenjeni krugovi označavaju mjesta interakcije eritromicina i β-glukozidaze.⁶⁶

Istraženo je vezanje azitromicina, jednog od najhidrofobnijih makrolida, na žučne kiseline. U cilju smanjenja vezanja na žuč i brzinu izlučivanja, u budućnosti se preporuča sinteza i upotreba manje hidrofobnih antibiotika ukoliko se radi o dugotrajnoj terapiji. Međutim, treba uzeti u obzir da jače vezanje na žučne kiseline može biti korisno kada je potrebno brzo djelovanje na djelovanje na infekciju.³³

23

§ 3. EKSPERIMENTALNI DIO

3.1. Materijali i kemikalije

- ultračista voda pročišćena je korištenjem uređaja Milli-Q Integral Water Purification System, *Merck*, SAD
- acetonitril (CH₃CN), ≥ 99,9%, HPLC čistoće, *Fisher Chemical*, Ujedinjeno Kraljevstvo
- amonijev hidrogenkarbonat, ≥ 99%, Sigma Aldrich, Njemačka
- amonijak otopina min. 25 % p.a., Kemika, Hrvatska
- azitromicin, *Fidelta d.o.o.*, Hrvatska
- 3-aminopropil dekladinozil derivat azitromicina (prekursor S6), Zavod za analitičku kemiju, Prirodoslovno-matematički fakultet u Zagrebu, Hrvatska
- 4-((2-(tetrahidrofurfurilkarbamotioil)hidraziniliden)metil) benzojeva kiselina, Zavod za analitičku kemiju, Prirodoslovno-matematički fakultet u Zagrebu, Hrvatska
- N,N-diizopropiletilamin (DIPEA), > 99,5 %, Acros Organics, SAD
- HATU, 97%, Acros Organics, SAD
- CD₃CN, 99,80 %D, *Eurisotop*, Ujedinjeno Kraljevstvo
- diklormetan stabiliziran 2-metil-but-2-enom, (CH₂Cl₂), 99,5+%, T.T.T. d.o.o., Hrvatska
- metanol (CH₃OH), ≥ 99,9%, HPLC čistoće, *PanReac AppliChem*, SAD
- filtri za špricu s promjerom pora 0,45 μm, *Chromafil Xtra* PTFE- 45/25, *Macherey-Nagel*, Düren, Njemačka
- kromatografske kolone: Waters XBridge® Phenyl 150 mm × 4,6 mm; 3,5 μm; Zorbax Eclipse® XDB-C18 250 mm × 9,4 mm; 5,0 μm

3.2. Radni uvjeti tekućinske kromatografije visoke djelotvornosti (HPLC)

U ovom istraživanju korišten je tekućinski kromatograf visoke djelotvornosti, model Agilent 1260 Infinity. Uređaj sadrži kvaternu pumpu, automatski injektor i uzorkivač, termostatirani prostor za kromatografsku kolonu te detektor UV-DAD. Kromatografsko odjeljivanje postignuto je na kromatografskoj koloni Waters XBridge® Phenyl dimenzija 150 mm × 4,6 mm; 3,5 µm uz gradijentno eluiranje smjesom acetonitrila i 10 mmol dm⁻³ amonijačnog pufera pri pH 10 (Tablica 6.). Temperatura kolone održavana je na 25°C, protok pokretne faze postavljen na 1 mL min⁻¹, a volumen injektiranja iznosio je 15 µL. Valna duljina detekcije postavljena je na 210 nm. Nakon HPLC analize, dobiveni kromatogrami analizirani su u programskim paketima *Agilent OpenLab CDS ChemStation* (SAD) te *Bruker HyStar 3.2.* (SAD).

<i>t</i> / min	φ (eluent A) / %	φ (eluent B) / %
0	50	50
20	68	32
21	100	0
25	100	0
25,1	50	50
30	50	50

Tablica 6. Sastav	pokretne faze	za analizu	reakcijske	smjese 3-16.

3.2.1. Priprava pokretne faze za analizu tehnikom HPLC-SPE

Amonijačni pufer je pripravljen otapanjem 1,58 g amonijeva hidrogenkarbonata u 2 L deionizirane vode. Postupnim dodavanjem 25%-tne otopine amonijaka podešen je pH pripravljenog pufera na pH = 10 pomoću pH-metra. Dobivena otopina profiltrirana je prije upotrebe kroz filter papir veličine pora 0,22 μ m pod sniženim tlakom. Pripravljena otopina čuva se u hladnjaku.

3.2.2. Priprava uzoraka za analizu tehnikom HPLC-SPE

Otopina reakcijske smjese **3-16** pripravljena je otapanjem 92,2 mg reakcijske smjese u 10 mL acetonitrila pa je konačna koncentracija uzorka **3-16** iznosila 9,22 mg mL⁻¹. Otapanje uzorka

potpomognuto je postavljanjem tikvice s uzorkom u ultrazvučnu kupelj dok otopina ne postane potpuno bistra.

3.3. Radni uvjeti ekstrakcije na čvrstoj fazi (SPE)

U ovom istraživanju korišten je uređaj za ekstrakciju na čvrstoj fazi Prospekt2, proizvođača *SparkHolland*, Nizozemska. Uređaj se sastoji od automatskog izmjenjivača SPE-sorbensa (engl. *Automatic Cartridge Exchanger*, ACE), pumpe Knauer K-120 koja osigurava dodatni protok pokretne faze te visokotlačnog raspršivača s dvije injekcijske igle (engl. *High Pressure Dispenser*, HPD). Lijeva injekcijska igla služi za kondicioniranje i ekvilibriranje SPE-sorbensa acetonitrilom i vodom ili puferom prije analize. Desna injekcijska igla služi za eluiranje analita sa SPE-sorbensa deuteriranim otapalom u cjevčicu NMR. Za analizu dobivenih podataka korišten je programski paket *Bruker Hystar 3.2.* (SAD). Za ekstrakciju odabranih spojeva korišteni su C18 SPE-sorbensi. Svakoj analizi prethodilo je kondicioniranje SPE-sorbensa s 500 µL CH₃CN te ekvilibracija s 500 µL pripravljenog pufera pH 10. Nakon ekstrakcije analita na SPE-sorbense, sorbensi su sušeni 30 min u struji dušika. Za eluiranje analita sa SPE-sorbensa u cjevčice NMR korišteno je 200 µL CD₃CN.

3.4. Radni uvjeti semi-preparativne tekućinske kromatografije

U ovom istraživanju korišten je tekućinski kromatograf model Agilent 1260 Infinity II opremljen kvaternom analitičkom pumpom, binarnom pumpom za preparativnu i semipreparativnu kromatografiju, automatskim injektorom i uzorkivačem, termostatiranim prostorom za kromatografsku kolonu te detektorima UV-DAD, fluorescencijskim detektorom i detektorom ELSD. Kromatografsko odjeljivanje postignuto je na kromatografskoj koloni Zorbax Eclipse® XDB-C18 dimenzija 250 mm × 9,4 mm; 5,0 µm uz gradijentno eluiranje smjesom acetonitrila i 10 mmol dm⁻³ amonijačnog pufera pH 10 (Tablica 7.). Temperatura kolone održavana je na 25°C, protok pokretne faze bio je 4 mL min⁻¹, a volumen injektiranja iznosio je 60 µL. Valna duljina detekcije postavljena je na 210 nm. Dobiveni kromatogrami analizirani su u programskom paketu *Agilent OpenLab CDS ChemStation* (SAD). Priprava uzoraka za analizu ovom tehnikom te priprava pokretne faze opisani su u pododjeljcima *3.2.1.* te *3.2.2.* Odabrane kromatografske krivulje sakupljane su u 7 frakcija, istovrsne frakcije su spojene te uparene do suhog i izvagane. Suhi ostaci frakcija otopljeni su u 200 µL CD₃CN nakon čega su snimljeni spektri NMR.

<i>t /</i> min	φ (eluent A) / %	φ (eluent B) / %
0	50	50
20,88	68	32
21,92	100	0
26,10	100	0
27,14	50	50
32,00	50	50

Tablica 7. Sastav pokretne faze za analizu reakcijske smjese **3-16** semi-preparativnom tekućinskom kromatografijom.

3.5. Snimanje spektara NMR

Za izolirane komponente reakcijske smjese snimljeni su spektri: ¹H, COSY, ¹H-¹³C HSQC, ¹H-¹³C HMBC. Spektri NOESY snimljeni su za glavnu komponentu **3-16** te za dijastereoizomer **3-16-i**. Korišteni su pulsni programi sa supresijom signala otapala unutar programskog paketa *TopSpin 3.6.1*. Svi spektri snimljeni su na spektrometru *Bruker Avance NEO 600 MHz* s 5 mm BBO (engl. *broadband*) indirektnom Prodigy krio-probom i *z*-gradijentnom zavojnicom pri 298 K. Korišteno otapalo je CD₃CN, a za referentni signal korišten je tetrametilsilan (TMS). Analiza i obrada spektara provedena je u programu *TopSpin 3.6.1*.

3.5.1. ¹H NMR

Za snimanje spektara ¹H NMR izoliranih komponenti reakcijske smjese korišten je pulsni slijed *lc1pncwgpps* sa supresijom signala otapala. Korišteno je 128 – 512 snimaka (ovisno o koncentraciji analita), spektralna širina iznosila je 19,84 ppm, a digitalno razlučivanje 1,45 Hz.

3.5.2. Homonuklearni i heteronuklearni 2D spektri NMR

Za snimanje spektara COSY korišten je pulsni slijed *cosycwgppsqf*. Ovisno o omjeru signala i šuma u spektru ¹H, odabran je broj snimaka za homonuklearne i heteronuklearne eksperimente. Primijenjeni parametri su: 2048 točaka u F2 dimenziji i 256 inkremenata u F1

dimenziji, spektralno područje od 9615,39 Hz te relaksacijsko vrijeme odgode od 2 s. Digitalna rezolucija bila je 9,39 Hz po točki u F2 dimenziji, odnosno 37,56 Hz u F1 dimenziji.

Za snimanje spektara HSQC korišten je pulsni slijed *hsqcedetgpsp*. Primijenjeni parametri su: 4096 točaka u F2 dimenziji, 256 inkremenata u F1 dimenziji, relaksacijsko vrijeme odgode od 1,5 s, 50 snimaka po inkrementu, spektralna širina u F2 dimenziji od 9615,39 Hz, širina spektra od 27166,35 Hz u F1 dimenziji, digitalna rezolucija 4,70 Hz po točki u F2 dimenziji, odnosno 212,24 Hz u F1 dimenziji.

Za snimanje spektara HMBC korišten je pulsni slijed *hmbcgplpndqf*. Primijenjeni parametri su: 4096 točaka u F2 dimenziji, 256 inkremenata u F1 dimenziji, spektralna širina 9090,91 Hz u F2 dimenziji, odnosno 33204,15 Hz u F1 dimenziji, 80 snimaka po inkrementu, relaksacijsko vrijeme odgode od 1,5 s te digitalna rezolucija 4,44 Hz po točki u F2 dimenziji, odnosno 129,70 Hz u F1 dimenziji.

Za snimanje spektara NOESY korišten je pulsni slijed *noesyphpr*. Primijenjeni parametri su: 2048 točaka u F2 dimenziji, 512 inkremenata u F1 dimenziji, spektralna širina 11904,76 Hz u F2 dimenziji, odnosno 12003,42 Hz u F1 dimenziji, 72 snimaka po inkrementu, relaksacijsko vrijeme odgode od 2 s uz vrijeme miješanja 400 ms te digitalna rezolucija 11,63 Hz po točki u F2 dimenziji, odnosno 46,89 Hz u F1 dimenziji.

3.6. Spektrometrija masa

Analiza reakcijske smjese tehnikom LC-MS provedena je u Laboratoriju za spektrometriju masa na Zavodu za analitičku kemiju Prirodoslovno-matematičkog fakulteta u Zagrebu na instrumentu Agilent 6550 LC-QTOF-MS proizvođača *Agilent Technologies* koristeći metodu ionizacije elektroraspršenjem. Spektri ESI-MS snimljeni su u pozitivnom i negativnom ionizacijskom modu u rasponu m/z od 100 do 1000.
§ 4. REZULTATI I RASPRAVA

4.1. Analiza reakcijske smjese tetrahidrofurfurilnog derivata 3-makrozona

Sinteza spoja **3-16** (Slika 17) provedena je u laboratoriju Zavoda za analitičku kemiju, Kemijskog odsjeka, Prirodoslovno-matematičkog fakulteta u Zagrebu prema shemi na slici 17.

Slika 17. Shematski prikaz sinteze spoja 3-16.

Reakcijska smjesa novosintetiziranog makrozona analizirana je tehnikom HPLC. Kromatografsko odjeljivanje sastojaka reakcijske smjese postignuto je na kromatografskoj koloni Waters XBridge® Phenyl dimenzija 150 mm × 4,6 mm; 3,5 μ m uz gradijentno eluiranje smjesom acetonitrila i amonijačnog pufera pH 10 množinske koncentracije 10 mmol dm⁻³ (Tablica 6). Reprezentativni kromatogram reakcijske smjese prikazan je na slici 18.

Slika 18. Reprezentativni kromatogram reakcijske smjese spoja **3-16** masene koncentracije $9,22 \text{ mg mL}^{-1}$.

Kvantitativna analiza reakcijskih smjesa provedena je metodom normalizacije pikova⁶⁸ u kromatogramu reakcijske smjese koristeći program *Agilent OpenLab CDS ChemStation*. Tom metodom moguće je odrediti sadržaj pojedine komponente, a računa se kao omjer površine kromatografske krivulje određivane komponente i ukupne površine svih kromatografskih krivulja u kromatogramu. Bitno je naglasiti kako ova metoda ne uzima u obzir nedetektirane komponente reakcijske smjese te pretpostavlja jednaki odziv detektora za sve komponente reakcijske smjese. Moguće poboljšanje točnosti metode normalizacije pikova jest korištenje metode vanjskog standarda. Metodom normalizacije pikova određeni su udjeli pojedinih komponenata u reakcijskoj smjesi spoja **3-16** (Tablica 8). Izolirani spojevi nepoznate strukture koji su prisutni u reakcijskoj smjesi imenovani su kombiniranjem oznake glavne komponente **3-16** i malog slova abecede ($\mathbf{a} - \mathbf{j}$) prema redu eluiranja s kromatografske kolone (Slika 18).

Spoj	Vrijeme zadržavanja / min	Površina ispod kromatografske krivulje / mAU*s	
HATU	1,216	13555,8	18,413
3-16- a	1,847	16390,2	22,263
3	2,122	413,2	0,561
3-16-b	2,399	5392,1	7,324
5	2,740	230,5	0,313
6	2,876	227	0,308
7	3,119	1064,4	1,446
8	3,369	360,1	0,489
3-16-с	3,808	10041,7	13,640
3-16-d	4,311	2869,1	3,897
3-16-е	4,632	3070,5	4,171
12	5,228	97	0,132
3-16-f	5,880	1364,5	1,853
3-16-g	6,113	1555,1	2,112
15	6,414	127,8	0,174
3-16	7,197	7779,9	10,568
3-16-h	7,884	1067	1,449
18	8,373	63,7	0,087
19	8,945	88,6	0,120
3-16-i	9,503	4991,3	6,780
21	10,068	49,9	0,068
22	10,313	172,9	0,235
3-16-j	10,914	1500,9	2,039
24	11,349	17,6	0,024
25	11,729	20,8	0,028
26	12,034	14,9	0,020
27	12,607	343,9	0,467
28	13,690	168,2	0,229
29	14,937	33,1	0,045

Tablica 8. Primjena m	etode normalizacije	e pikova na	kromatogram reakci	iske smjese	spoja 3-16.

Reakcijsku smjesu spoja **3-16** čini ukupno 29 različitih spojeva (Tablica 8). Glavna komponenta reakcijske smjese je novosintetizirani spoj **3-16** čiji udio u reakcijskoj smjesi iznosi samo 10,57 %, dok su ostali spojevi reaktanti u suvišku i/ili nusprodukti reakcije iz sintetskog postupka. Onečišćenje **3-16-a** izlazi s kolone pri t_R 1,847 min, a njegov udio u reakcijskoj smjesi iznosi 22,26 %. Onečišćenje **3-16-b** izlazi s kolone pri t_R 2,399 min, a njegov udio u reakcijskoj smjesi iznosi 7,324 %. Onečišćenje **3-16-c** izlazi s kolone pri t_R 3,808 min, a njegov udio u reakcijskoj smjesi iznosi 13,64 %. Onečišćenje **3-16-i** izlazi s kolone pri t_R 3,808 min, a njegov udio u reakcijskoj smjesi iznosi 13,64 %. Onečišćenje **3-16-i** izlazi s kolone pri t_R 10,914 min, a njegov udio u reakcijskoj smjesi iznosi 2,039 %. Iz kromatograma je vidljivo da 3 od 5 odabranih onečišćenja imaju kraća vremena zadržavanja u odnosu na glavnu komponentu, pa zaključujemo da su ta onečišćenja polarnija od glavne komponente, dok se onečišćenja **3-16-i** i **3-16-j** zadržavaju dulje na kromatografskoj koloni u odnosu na glavnu komponentu pa su manje polarna.

4.2. Ekstrakcija spojeva iz reakcijske smjese tehnikom HPLC-SPE

Iz uzorka reakcijske smjese **3-16** masene koncentracije 9,22 mg ml⁻¹ uspješno su ekstrahirane sljedeće komponente: (1) glavna komponenta **3-16**, (2) onečišćenje **3-16-a**, (3) onečišćenje **3-16-b**, (4) onečišćenje **3-16-c**, (5) onečišćenje **3-16-i** te (6) onečišćenje **3-16-j** (Slika 19). Spojevi su ekstrahirani na SPE-sorbense punjene nepokretnom fazom C18 višestrukim ukoncentriravanjem: 43 puta za glavnu komponentu **3-16**, odnosno 43 puta za onečišćenje **3-16-b**, 206 puta za onečišćenje **3-16-c**, 50 puta za onečišćenje **3-16-i** i 50 puta za onečišćenje **3-16-j**, uz dodatni protok 1,5 ml min⁻¹ amonijačnog pufera pH 10. Onečišćenje **3-16-a** izolirano je semi-preparativnom tehnikom LC spajanjem 14 frakcija. Mase ekstrahiranih spojeva prikazane su u Tablici 9.

Slika 19. Izolirane komponente prikazane u kromatogramu reakcijske smjese **3-16**. Kromatografske krivulje **3-16-(b – j)** izolirane su tehnikom LC-SPE, a kromatografska krivulja **3-16-a** izolirana je semi-preparativnom tehnikom LC.

Spoj	Masa spoja / mg
3-16-a	0,16
3-16-b	0,26
3-16-с	0,06
Glavni spoj 3-16	1,20
3-16-i	2,46
3-16-ј	0,15

Tablica 9. Mase ekstrahiranih spojeva iz reakcijske smjese 3-16.

4.3. Analiza glavne komponente tetrahidrofurfurilnog derivata 3makrozona spektroskopijom NMR

Nakon ekstrakcije glavne komponente iz reakcijske smjese primjenom tehnike LC-SPE uz višestruko ukoncentriravanje na SPE-sorbense s nepokretnom fazom C18, spoj je eluiran u 3 mm cjevčice NMR te su snimljeni spektri ¹H, COSY, ¹H-¹³C HSQC, HMBC i NOESY u deuteriranom acetonitrilu pri 298 K.

U spektru ¹H NMR (Slika 20) prisutan je triplet pri 7,29 ppm koji odgovara protonu iz amidne veze (H3d, Slika 22), čime je potvrđena uspješnost zadnjeg koraka sinteze makrozona (reakcija amidacije). U spektru COSY (Slika D1) vidi se korelacija protona iz amidne skupine s metilenskom skupinom aminopropilnog lanca vezanog na azitromicin (H3c, Slika 22) čiji je signal kvartet i ima kemijski pomak pri 3,44 ppm. Dodatna potvrda novosintetiziranog makrozona je korelacija amidnog protona H3d s karbonilnim ugljikovim atomom C15 u spektru HMBC čiji je kemijski pomak pri 166,3 ppm te korelacija s metilenskim ugljikovim atomom C3c pri 37,58 ppm (Slika 21). Iz spektra HMBC također je vidljivo da metilenski protoni H3c imaju korelacije s C15 (166,3 ppm), C3a (72,85 ppm) i C3b (30,15 ppm). Signali hidroksilnih skupina vezanih na makrolaktonski prsten i na desozamin (6OH i 2'OH) te signal sekundarne amino skupine tiosemikarbazonskog dijela (H22a) nisu opaženi zbog izmjene s deuterijem iz acetonitrila korištenog za snimanje spektara NMR. Međutim, opaženi su signali hidroksilnih skupina 11OH i 12OH pri 2,16 ppm, odnosno pri 2,85 ppm. Signali protona iz benzenskog prstena tiosemikarbazonskog dijela makrozona vidljivi su u području od 7,78 ppm do 7,82 ppm. Izraženi singlet pri 7,96 ppm odgovara protonu iz imino veze (H22) koji u spektru HSQC (Slika D2) ima odgovarajući signal ugljikovog atoma C22 pri 141,55 ppm. U spektru HMBC vidi se korelacija protona H22 s ugljikovim atomima C18 i C20 iz benzenskog prstena (127,11 ppm) te korelacija s kvaternim ugljikovim atomom C19 pri 136,67 ppm. Kemijski pomaci ¹H i ¹³C za spoj 3-16 asignirani u CD₃CN prikazani su u Tablici 10. Snimljeni spektar MS u pozitivnom ionizacijskom modu sadrži signal $[M+H]^+$ pri m/z 937,57 što potvrđuje molekulsku masu spoja 3-16 koja iznosi 936,56 Da (Slika D3a). Analizom jedno- i dvodimenzijskih spektara NMR te spektra MS glavne komponente izolirane iz uzorka reakcijske smjese potvrđeno je da se radi o tetrahidrofurfurilnom derivatu 3-makrozona čija je struktura prikazana na Slici 22.

Detaljnija analiza spektra MS za **3-16** prikazana je na slici D3 u Dodatku. U spektru MS (Slika D3a) vidljiv je ion prekursor pri m/z 937,57 koji potvrđuje novosintetizirani spoj. Na

34

temelju dodatne fragmentacije iona prekursora (Slika D3b) te usporedbom s literaturnim podacima predložena je fragmentacija novosintetiziranog spoja **3-16** (Slika D3c).^{69,70}

Slika 21. Spektar HMBC spoja **3-16** snimljen u CD₃CN pri 25 °C.

Slika 22. Struktura makrozona 3-16.

Spoj	3-16				
Atom	<i>δ</i> (¹ H)/ppm	δ(¹³ C)/ppm	Atom	δ ⁽¹ H)/ppm	<i>δ</i> (¹³ C)/ppm
1	-	177,3	1'	4,43	101,65
2	2,78	44,3	2'	3,05	70,82
2Me	1,25	15,64	2'OH	_ ^a	-
3	3,39	86,00	3'	2,48	65,28
4	2,10	37,50	3'NMe ₂	2,22	39,70
4Me	0,94	8,64	4'eq; 4'ax	1,62; 1,11	29,00
5	3,59	84,20	5'	3,47	68,93
6	-	73,04	5'Me	1,09	20,56
6Me	1,15	26,20	3 a	3,77	72,85
6OH	_ ^a	-	3 b	1,94	30,15
7eq; 7ax	1,51; 1,30	41,08	3c	3,44	37,58
8	1,84	26,07	3d	7,29	-
8Me	0,86	20,83	15	-	166,30
9eq; 9ax	2,40; 2,12	69,46	16	-	135,92
9a-N	2,28	35,82	17; 21	7,82	127,55
10	2,76	61,72	18; 20	7,78	127,11
10Me	1,02	6,39	19	-	136,67
11	3,53	76,05	22	7,96	141,55
110H	2,16	-	3-22a	_a	-
12	-	74,12	3-22b	7,97	-
12Me	1,00	16,22	23	-	178,2
12OH	2,97	-	24	3,81; 3,63	47,78
13	4,75	77,44	25	4,13	77,01
14eq; 14ax	1,81; 1,47	20,72	26	1,97; 1,63	28,40
14Me	0,83	10,36	27	1,88	25,41
			28	3,85; 3,71	67,70

Tablica 10. Kemijski pomaci ¹H i ¹³C za spoj **3-16** asignirani u CD₃CN.

^a nije opažen signal

4.4. Analiza izoliranih onečišćenja spektroskopijom NMR

Nakon ekstrakcije onečišćenja iz reakcijske smjese **3-16** primjenom tehnike LC-SPE uz višestruko ukoncentriravanje na SPE-sorbense s nepokretnom fazom C18 spojevi su eluirani u 3 mm cjevčice NMR te su snimljeni spektri ¹H, COSY, ¹H-¹³C HSQC i HMBC za svaki spoj.

4.4.1. Onečišćenje 3-16-a

Analizom spektra ¹H NMR onečišćenja **3-16-a** vidljivo je da su signali izoliranog onečišćenja usporedivi sa signalima prekursora **S6** za sintezu klase 3-makrozona, ali u spektru onečišćenja nedostaju signali aminopropilne skupine vezane na položaj 3 makrolaktonskog prstena (Slika 23). U spektru ¹H prekursora **S6** navedeni se signali javljaju pri 3,73 ppm (H3a), zatim pri 1,84; 1,74 ppm (H3b) te pri 2,81 ppm (H3c) (Slika 23b). Nadalje, u spektru ¹H NMR onečišćenja prisutan je novi signal pri 2,19 ppm koji bi mogao odgovarati metilnim protonima acetilne skupine (H11a) vezane na desozaminozu na položaju 2'. U spektru ¹H NMR onečišćenja također je prisutan dublet pri 4,52 ppm koji odgovara prvom protonu desozamina H1'. Signal dviju ekvivalentnih metilnih skupina 3'NMe₂ nalazi se pri 2,27 ppm, dok singlet metilne skupine 9a-N ima kemijski pomak pri 2,29 ppm. Korelacije protona kroz jednu vezu jasno se vide u spektru COSY (Slika 24). U spektru MS vidljiv je signal molekulskog iona pri *m/z* 633,44 (Slika D4) koji odgovara masi acetiliranog prekursora **S2** u sintezi spoja **3-16** (Slika 17). Na temelju analize snimljenih spektara predložena je struktura onečišćenja **3-16-a** asignirani u CD₃CN prikazani su u Tablici 11.

Slika 23. Spektar ¹H NMR a) onečišćenja **3-16-a** i b) prekursora **S6**.

Slika 24. Spektar COSY i glavne korelacije atoma onečišćenja **3-16-a** snimljen u CD₃CN pri 25 °C.

Slika 25. Predložena struktura onečišćenja 3-16-a.

Spoj	3-16-а			
Atom	δ ⁽¹ H)/ppm	Atom	δ (¹ H)/ppm	
1	-	11	3,58	
2	2,79	110H	_ ^a	
2Me	1,19	11a	2,19	
3	3,53 - 3,45	12	-	
4	2,18	12Me	1,03	
4Me	0,96	12OH	_ ^a	
5	3,70	13	4,85	
6	-	14eq; 14ax	1,84; 1,46	
6Me	1,20	14Me	0,83	
6OH	_ ^a	1'	4,52	
7eq; 7ax	1,68; 1,26	2'	3,13	
8	1,84	2'OH	_ ^a	
8Me	0,87	3'	2,55	
9eq; 9ax	2,63 - 2,51	3'NMe ₂	2,27	
9a-N	2,29	4'eq; 4'ax	1,70; 1,18	
10	2,79	5'	3,53 - 3,45	
10Me	1,04	5'Me	1,17	

Tablica 11. Kemijski pomaci ¹H onečišćenja **3-16-a** asignirani u CD₃CN.

^a nije opažen signal

4.4.2. Onečišćenje 3-16-b

Usporedbom spektara ¹H NMR glavne komponente i onečišćenja **3-16-b** (Slika 26) vidljivo je da onečišćenje ne sadrži makrolaktonski prsten niti desozamin, ali sadrži signale tiosemikarbazonskog dijela makrozona. Signal pri 8,02 ppm odgovara protonu amino skupine -NH (H3-8b). U spektru ¹H NMR onečišćenja prisutna su dva singleta pri 3,02 ppm, odnosno pri 2,92 ppm koji bi mogli odgovarati magnetski neekvivalentnim metilnim skupinama H16 i H17 (Slika 28). U spektru MS vidi se signal molekulskog iona pri m/z 335,16 u pozitivnom modu (Slika 27a) i m/z 333,14 u negativnom modu (Slika 27b) iz čega se može zaključiti da je molekulska masa spoja 334 Da.

Na temelju svega navedenoga predložena je struktura onečišćenja **3-16-b** prisutnog u reakcijskoj smjesi **3-16** koja odgovara sekundarnom amidu (Slika 28). Kemijski pomaci ¹H za onečišćenje **3-16-b** asignirani u CD₃CN prikazani su u Tablici 12.

Slika 26. Spektar ¹H NMR a) onečišćenja **3-16-b** i b) glavne komponente **3-16**.

Slika 27. Spektar ESI-MS onečišćenja **3-16-b** u a) pozitivnom i b) negativnom modu.

Slika 28. Predložena struktura onečišćenja 3-16-b.

Spoj		3-16-b	
Atom	δ (¹ H)/ppm	Atom	δ ⁽¹ H)/ppm
1	-	10	3,80; 3,62
2	-	11	4,12
3;7	7,43	12	1,97; 1,63
4;6	7,77	13	1,88
5	-	14	3,84; 3,71
8	7,98	15	3,02
3-8 a	_a	16	3,02
3-8 b	8,02	17	2,92
9	-		

Tablica 12. Kemijski pomaci ¹H NMR onečišćenja **3-16-b** asignirani u CD₃CN.

^a nije opažen signal

4.4.3. Onečišćenje 3-16-c

Usporedbom spektara ¹H NMR glavne komponente i onečišćenja **3-16-c** (Slika 29) vidljivo je da u spektru onečišćenja nema signala makrolaktonskog prstena, kao ni signala desozamina, ali su prisutni signali koji odgovaraju tiosemikarbazonskom dijelu molekule. U spektru onečišćenja nalazi se novi singlet pri 3,88 ppm koji bi mogao odgovarati metoksi skupini (H15, Slika 31). U spektru ¹H NMR onečišćenja također je prisutan signal pri 7,97 ppm koji odgovara protonu amino skupine -NH (H3-8b) te signali benzenskog prstena tiosemikarbazonskog dijela

makrozona. Kemijski pomaci metinskih skupina H3 i H7 te H4 i H6 mogu se jednoznačno odrediti u spektrima COSY (Slika D5) i HSQC (Slika D6). Signal pri 7,82 ppm odgovara protonima H3 i H7, dok signal pri 8,03 ppm pripada protonima H4 i H6. Odgovarajući signali ugljikovih atoma su pri 127,27 ppm za C3 i C7, odnosno pri 129,74 ppm za ugljikove atome C4 i C6. U spektru HSQC vidljiva je korelacija kroz jednu vezu metoksi-skupine i odgovarajućeg ugljikovog atoma C15 pri 51,80 ppm, a u spektru HMBC (Slika 30) vidljiva je korelacija metilne skupine H15 s karbonilnim ugljikovim atomom C1 (166,3 ppm). U spektru MS (Slika D7) vidi se signal molekulskog iona m/z 322,13 što odgovara masi metilnog estera. Na temelju analize snimljenih spektara predložena je struktura onečišćenja **3-16-c** prisutnog u reakcijskoj smjesi **3-16** (Slika 31). Kemijski pomaci ¹H i ¹³C za onečišćenje **3-16-c** asignirani u CD₃CN prikazani su u Tablici 13.

Slika 30. Spektar HMBC onečišćenja **3-16-c** snimljen u CD₃CN pri 25 °C.

Slika 31. Predložena struktura onečišćenja 3-16-c.

Spoj			3-16-с		
Atom	δ ⁽¹ H)/ppm	<i>δ</i> (¹³ C)/ppm	Atom	δ(¹ H)/ppm	δ(¹³ C)/ppm
1	-	166,30	9	-	178,36
2	-	131,21	10	3,81; 3,63	47,78
3;7	8,03	129,74	11	4,12	77,03
4;6	7,82	127,27	12	1,97; 1,63	28,36
5	-	138,45	13	1,88	25,42
8	7,98	141,20	14	3,85; 3,71	67,61
3-8 a	_ ^a	_	15	3,88	51,80
3-8b	7,97	_			

Tablica 13. Kemijski pomaci ¹H i ¹³C onečišćenja **3-16-c** asignirani u CD₃CN.

^a nije opažen signal

4.4.4. Onečišćenje 3-16-i

Usporedbom spektara ¹H NMR glavne komponente i onečišćenja **3-16-i** (Slika 32) vidljivo je da se oni ne preklapaju u potpunosti, odnosno da onečišćenje ima dodatne signale u aromatskom dijelu koji pripadaju još nekoj komponenti koja koeluira s onečišćenjem. Spektri COSY, HSQC i HMBC onečišćenja **3-16-i** nalaze se u Dodatku (Slika D8 – D10).

Na temelju analize snimljenih spektara može se pretpostaviti da je onečišćenje **3-16-i** dijastereoizomer glavne komponente. Da bi se odredilo o kojem se dijastereoizomeru radi, snimljeni su spektri NOESY za glavnu komponentu (Slika 33a) i onečišćenje **3-16-i** (Slika 33b). Spektri MS glavne komponente i onečišćenja **3-16-i** sadrže isti ion prekursor pri m/z 937,7 (Slika D11). Proširena područja spektra NOESY otkrivaju glavne razlike između glavne komponente i onečišćenja **3-16-i** te upućuju na dijastereoizomeriju na ugljikovom atomu C12 (Slika 34). Ključna razlika je korelacija atoma H13 s atomom 12OH vidljiva u spektru NOESY glavne komponente, dok u spektru NOESY onečišćenja **3-16-i** opisana korelacija u potpunosti izostaje. Kemijski pomaci ¹H i ¹³C za onečišćenje **3-16-i** asignirani u CD₃CN prikazani su u Tablici 14.

Slika 32. Spektar ¹H NMR a) onečišćenja **3-16-i** b) glavne komponente **3-16**.

Slika 33. Spektar NOESY a) glavne komponente i b) onečišćenja **3-16-i** snimljen u CD₃CN pri 25 °C.

Slika 34. Predložena struktura onečišćenja **3-16-i** s označenim mjestom dijastereoizomerije u odnosu na glavnu komponentu.

Spoj	3-16-i				
Atom	<i>δ</i> (¹ H)/ppm	<i>δ</i> (¹³ C)/ppm	Atom	δ ⁽¹ H)/ppm	<i>δ</i> (¹³ C)/ppm
1	-	177,1	1'	4,53	101,27
2	2,74	44,44	2'	2,97	71,12
2Me	1,24	15,64	2'OH	_ ^a	-
3	3,37	86,02	3'	supresija	supresija
4	2,04	37,01	3'NMe ₂	2,23	39,70
4Me	0,91	8,41	4'eq; 4'ax	1,71; 1,16	29,90
5	3,65	83,79	5'	3,47	68,39
6	-	73,00	5'Me	1,09	20,37
6Me	1,14	26,09	3a	3,76	72,89

Tablica 14. Kemijski pomaci ¹H i ¹³C onečišćenja **3-16-i** asignirani u CD₃CN.

6OH	_ ^a	-	3b	1,95	30,26
7eq; 7ax	1,49; 1,21	41,20	3c	3,45	37,66
8	1,83	26,32	3-O-3d	7,53	-
8Me	0,84	20,83	15	-	166,50
9eq; 9ax	2,37; 1,98	69,37	16	-	135,59
9a-N	2,25	35,74	17;21	7,75	127,27
10	2,64	62,06	18;20	7,72	127,41
10Me	0,99	6,37	19	-	136,65
11	3,48	75,71	22	7,95	141,73
110H	_ ^a	-	3-0-22a	8,14	-
12	-	74,18	3-O-22b	8,02	-
12Me	0,97	16,43	23	-	178,21
12OH	_ ^a	-	24	3,79; 3,60	47,84
13	4,78	77,35	25	4,12	77,11
14eq; 14ax	1,81; 1,45	20,85	26	1,96; 1,62	28,28
14Me	0,81	10,25	27	1,87;1,64	25,32
			28	3,83; 3,70	67,92
			29	_	175,5
			30	2,09	21.0

^anije opažen signal

4.4.5. Onečišćenje 3-16-j

Usporedbom spektara ¹H NMR glavne komponente i onečišćenja **3-16-j** (Slika 35) vidljivo je da se oni ne preklapaju u potpunosti, odnosno da onečišćenje ima dodatne signale koji pripadaju još nekoj komponenti koja koeluira s onečišćenjem. Značajnija razlika u kemijskim pomacima uočena je za atom H14Me čiji se signal u spektru glavnog spoja opaža pri 0,83 ppm, a u spektru **3-16-j** pri 0,64 ppm. Spektri COSY, HSQC i HMBC onečišćenja **3-16-j** nalaze se u Dodatku (Slika D12 – D14). Spektri MS glavne komponente i onečišćenja **3-16-j** sadrže isti ion prekursor pri m/z 937,57 (Slika D15).

Na temelju ovih podataka može se zaključiti da je onečišćenje **3-16-j** također dijastereoizomer glavne komponente. Da bi se odredilo o kojem se točno dijastereoizomeru radi, potrebno je snimiti spektar NOESY, što nije bilo moguće u ovom slučaju zbog nedovoljne količine izoliranog onečišćenja. Kemijski pomaci ¹H i ¹³C za onečišćenje **3-16-j** asignirani u CD₃CN prikazani su u Tablici 15.

Slika 35. Spektar ¹H NMR a) onečišćenja **3-16-j** b) glavne komponente **3-16**.

Spoj		3-16-ј				
Atom	<i>δ</i> (¹ H)/ppm	<i>δ</i> (¹³ C)/ppm	Atom	δ(¹ H)/ppm	<i>δ</i> (¹³ C)/ppm	
1	-	176,64	1'	4,44	101,65	
2	2,77	44,5	2'	3,07	70,82	
2Me	1,18	15,18	2'OH	_ ^a	-	
3	3,39	85,6	3'	2,53	65,28	
4	2,09	37,50	3'NMe ₂	2,27	39,71	
4Me	0,93	8,57	4'eq; 4'ax	1,19; 1,12	29,28	
5	3,57	84,2	5'	3,47	68,9	
6	-	73,04	5'Me	1,10	20,56	
6Me	1,15	26,34	3 a	3,80	72,29	
6OH	_ ^a	-	3 b	1,94	30,15	
7eq; 7ax	1,53; 1,33	41,9	3c	3,42	37,52	
8	1,84	26,32	3-0-3d	7,32	-	
8Me	0,86	20,98	15	-	166,6	
9eq; 9ax	2,44; 2,12	70,4	16	-	135,9	
9a-N	2,27	35,82	17;21	7,85	127,63	
10	2,77	61,72	18;20	7,76	127,1	
10Me	1,02	6,93	19	-	136,8	
11	3,47	74,5	22	7,95	141,61	
110H	_a	-	3-22a	_ ^a	-	
12	-	74,5	3-22b	7,96	-	
12Me	1,01	17,14	23	-	178,3	
12OH	_ ^a	-	24	3,82; 3,63	47,73	
13	4,82	77,7	25	4,12	76,92	
14eq; 14ax	1,84; 1,42	21,27	26	1,95; 1,64	28,48	
14Me	0,64	10,21	27	1,88	25,41	
			28	3,85; 3,71	67,75	

Tablica 15. Kemijski pomaci ¹H i ¹³C onečišćenja **3-16-j** asignirani u CD₃CN.

^anije opažen signal

4.5. Usporedba semi-preparativne tekućinske kromatografije i tehnike LC-SPE za izolaciju tetrahidrofurfurilnog derivata 3-makrozona

Semi-preparativna tekućinska kromatografija je jedna od najčešće korištenih tehnika za izolaciju i pročišćavanje novosintetiziranih spojeva i/ili onečišćenja. Njezine prednosti su jednostavnost izvedbe i mogućnost izolacije veće količine analita, uz uvjet da je analit zastupljen u uzorku u prihvatljivoj količini. Nedostaci ove tehnike su dugotrajnost te utrošak velike količine organskih otapala i uzorka.

U ovom je radu načinjena usporedba utroška organske pokretne faze i uzorka tijekom izolacije tetrahidrofurfurilnog derivata 3-makrozona tehnikom LC-SPE i semi-preparativnom tekućinskom kromatografijom. Parametri navedenih metoda opisani su ranije u poglavljima 3.2. i 3.4. Budući da je količina uzorka bila ograničena, broj injektiranja bio je minimalan. Rezultati su prikazani u Tablici 16.

Tablica 16. Usporedba utroška organske pokretne faze i uzorka tijekom izolacije tetrahidrofurfurilnog derivata 3-makrozona tehnikom LC-SPE i semi-preparativnom tekućinskom kromatografijom.

Analiza	Broj injekt.	Masa izoliranog spoja / mg	Volumen injekt. / µl	Trajanje analize / min	Ukupni utrošak CH ₃ CN / mL	Cijena / HRK
LC-SPE ¹	7	0,12	15	30	93,8	8,68
Semi-prep LC ²	7	0,75	60	32	401	37,10

¹ uz protok pokretne faze od 1 mL min⁻¹

² uz protok pokretne faze od 4 mL min⁻¹

Prema rezultatima u Tablici 16. vidljivo je da je za izolaciju tetrahidrofurfurilnog derivata 3-makrozona semi-preparativnom tehnikom bila potrebna oko četiri puta veća količina organske pokretne faze i uzorka. Količina spoja izoliranog tehnikom LC-SPE bila je dovoljna za snimanje jedno- i dvodimenzijskih spektara NMR na temelju kojih je određena struktura izoliranog spoja. Vrijeme analize kod obiju tehnika približno je isto, ali ako uzmemo u obzir

dodatno vrijeme potrebno za obradu frakcija izoliranih semi-preparativnom kromatografijom, onda tehnika LC-SPE ima prednost jer se izolirani spojevi izravno eluiraju sa SPE-sorbensa u cjevčice NMR i snimaju se spektri. Nadalje, zbog minimalne obrade analita izoliranih tehnikom LC-SPE, gubitak uzorka je vrlo mali, a izolirani spojevi imaju veću čistoću. Učinkovitost analize tehnikom LC-SPE značajno ovisi o vrsti SPE-sorbensa, dodatnom protoku pokretne faze i topljivosti analita u deuteriranim otapalima koja se koriste za eluiranje sa SPE-sorbensa.

§ 5. ZAKLJUČAK

Tehnika LC-SPE/NMR uspješno je primijenjena u ovom istraživanju za analizu reakcijske smjese novog bioaktivnog makrozona, tetrahidrofurfurilnog konjugata azitromicina i tiosemikarbazona. Pojedine komponente reakcijske smjese učinkovito su odijeljene tekućinskom kromatografijom visoke djelotvornosti na kromatografskoj koloni Xbridge Phenyl. Odabrani analiti su zatim uspješno ekstrahirani višestrukim ukoncentriravanjem na SPE-sorbense. Nakon interpretacije snimljenih jedno- i dvodimenzijskih spektara NMR te spektara MS predložena je struktura novosintetiziranog tetrahidrofurfurilnog derivata 3-makrozona i 5 različitih onečišćenja iz reakcijske smjese. Pokazano je da su izolirana onečišćenja strukturno slična novosintetiziranom makrozonu te da pripadaju razgradnim produktima i nusproduktima nastalima tijekom sinteze. Provedeno istraživanje omogućilo je strukturnu karakterizaciju onešišćenja u reakcijskoj smjesi na puno brži i učinkovitiji način od standardnih metoda *off-line*, uz utrošak znatno manjih količina uzorka i otapala.

Zbog mogućnosti višestrukog ukoncentriravanja na SPE-sorbense metoda LC-SPE/NMR je pouzdana, brza i učinkovita za analizu komponenata prisutnih u složenim smjesama spojeva čak i za one komponente prisutne u vrlo niskim koncentracijama To je vrlo bitno u istraživanju i razvoju novih farmaceutskih pripravaka i lijekova, jer je određivanje porofila svih onečišćenja važan preduvjet za registraciju lijekova.

§ 6. POPIS OZNAKA, KRATICA I SIMBOLA

AU – jedinica apsorpcije (engl. Absorbance Unit)

CD₃CN – deuterirani acetonitril

CE – kapilarna elektroforeza (engl. Capillary Electrophoresis)

cMLS - konstitutivna rezistencija na makrolide, linkozamide i streptogramine (engl.

Constitutive Macrolide Lincosamide Streptogramin Resistance)

COSY – korelacijska spektroskopija (engl. Correlation Spectroscopy)

DAD - detektor s nizom fotodioda (engl. Diode Array Detector, DAD)

GC – plinska kromatografija (engl. Gas Chromatography)

HATU -1-(bis(dimetilamino)metilen)-1H-1,2,3-triazolo[4,5b]piridinijev 3-oksid

heksafluorofosfat

HMBC - heteronuklearna korelacijska spektroskopija NMR kroz više kemijskih veza (engl.

Heteronuclear Multiple Bond Correlation)

HPLC – tekućinska kromatografija visoke djelotvornosti (engl. *High-Performance Liquid Chromatography*)

HSQC – heteronuklearna korelacijska spektroskopija NMR koja koristi koherenciju od jednog kvanta (engl. *Heteronuclear Single Quantum Coherence*)

iMLS – inducibilna rezistencija na makrolide, linkozamide i streptogramine (engl. *Inducible Macrolide Lincosamide Streptogramin Resistance*)

MS – spektrometrija masa (engl. Mass Spectrometry)

NMR – nuklearna magnetna rezonancija (engl. Nuclear Magnetic Resonance Spectroscopy)

NOESY - heteronuklearna korelacijska spektroskopija NMR na temelju nuklearnog

Overhauserovog efekta kroz prostor (engl. Nuclear Overhauser Enhancement Spectroscopy)

SPE – ekstrakcija na čvrstoj fazi (engl. Solid-phase extraction, SPE)

STD-NMR – spektroskopija NMR na temelju na razlike prijenosa zasićenja (engl. *Saturation Transfer Difference*)

§ 7. LITERATURNI IZVORI

- G. Kobrehel, G. Radobolja, Z. Tamburasev, S. Djokic, *11-aza-10-deoxo-10-dihydroerythromycin A and dervatives thereof as well as a process for their preparation*, U. S. Patent 4328334, 1982.
- 2. Z. Banić Tomišić, Kem. Ind. 60 (2011) 603–617.
- 3. I. Francetić, Medicus 17 (2008) 9–14.
- 4. B. Arsić, J. Barber, P. Novak, *Macrolides: Properties, Synthesis and Applications*, De Gruyter, Berlin, 2018.
- 5. V. Munić, Z. Kelnerić, L. Mikac, V. Eraković Haber, Eur. J. Pharm. Sci. 41 (2010) 86–95.
- 6. L. Katz, A.S. Mankin, u M. Schaechter (ur.), *Macrolides*, *Encyclopedia of Microbiology* (*Third Edition*), Academic Press, 2009, str. 532–534.
- M. J. Parnham, V. Erakovic Haber, E. J. Giamarellos–Bourboulis, G. Perletti, G. M. Verleden, R. Vos.. *Pharmacol Ther.* 143 (2014) 225–245.
- 8. <u>https://www.statista.com/statistics</u> (datum pristupa 1. travnja 2021.)
- 9. C. L. Ventola, *P T*. **40** (2015) 277–283.
- H. Čipčić Paljetak, D. Verbanac, J. Padovan et al, *Antimicrob. Agents Chemother*. 60 (2016) 5337-5348.
- 11. A. E. Liberta, D. X. West, *BioMetals* 5 (1992) 121–126.
- A. E. Liberta, D. X. West, S. B. Padhye, R. C. Chikate, P. B. Sonawane, A. S. Kumbhar, R. G. Yerande, *Coord. Chem. Rev.* 123 (1993) 49–71.
- 13. P. Bindu, M. R. P. Kurup, T. R. Satyakeerty, Polyhedron 18 (1999) 321-331.
- R. A. Finch, M. C. Liu, S. P. Grill, W. C. Rose, R. Loomis, K. M. Vasquez, Y. C. Cheng, A. C. Sartorelli, *Biochem. Pharmacol.* 59 (2000) 983–991.
- 15. A. Altun, M. Kumru, A. Dimoglo, J. Mol. Struct. (Theochem) 535 (2001) 235-246.
- 16. L. Tripathi, R. Singh, Asian J. Chem. 23 (2011) 447-450.
- S. Adsule, S. Banerjee, F. Ahmed, S. Padhye, F. H. Sarkar, *Bioorg. Med. Chem. Lett.* 20 (2010) 1247–1251.
- 18. K. Pičuljan, *Struktura i vodikove veze derivata tiosemikarbazona u otopini*, Doktorski rad, Prirodoslovno–matematički fakultet, Sveučilište u Zagrebu, 2014., str. 5–10.

- J. A. Lessa, I. C. Mendes, P. R. da Silva, M. A. Soares, R. G. dos Santos et al. *Eur. J. Med. Chem.* 45 (2010) 5671–5677.
- M. Bukvić Krajačić, P. Novak, M. Cindrić, K. Brajša, M. Dumić, N. Kujundžić, *Eur. J. Med. Chem.* 42 (2007) 138–145.
- C. Agouridas, A. Denis, J. Auger, Y. Benedetti, A. Bonnefoy, F. Bretin, J. F. Chantot, A. Dussarat, C. Fromentin, S. G. D'Ambrieres, S. Lachaud, P. Laurin, O. Le Martret, V. Loyau, N, Tessot, *J. Med. Chem.* 41 (1998) 4080–4100.
- J. Esteban, A. M. Costa, M. C. Cruzado, M. Faja, P. García, J. Vilarrasa, *Tetrahedron Lett.* 47 (2006) 1919–1922.
- I. Grgičević, I. Mikulandra, M. Bukvić, M. Banjanac, V. Radovanović, I. Habinovec, B. Bertoša, P. Novak, *Int. J. Antimicrob. Agents.* 56 (2020) 106–147.
- 24. T. Jednačak, I. Mikulandra, P. Novak, Int. J. Mol. Sci. 21 (2020) 77-99.
- M. Bukvić Krajačić, M. Dumić, P. Novak, M. Cindrić, S. Koštrun, A. Fajdetić, S. Alihodžić, K. Brajša, N. Kujundžić, *Bioorg. Med. Chem. Lett.* 21 (2011) 853–856.
- M. Bukvić Krajačić, P. Novak, M. Dumić, M. Cindrić, H. Čipčić Paljetak, N. Kujundžić, *Eur. J. Med. Chem.* 44 (2009) 3459–3470.
- 27. <u>https://makrozoni.chem.pmf.hr/</u> (datum pristupa 1. travnja 2021.)
- 28. D. Jelić, R. Antolović, Antibiotics 5 (2016) 29.
- 29. R. Leclercq, Clin. Infect. Dis. 34 (2002) 482-492.
- 30. M. Turner, G. R. Corey, E. Abrutyn, Ann. Intern. Med. 144 (2006) 144, 447-448.
- 31. P. Novak, P. Tepeš, V. Lazić, Croat. Chem. Acta 80 (2007) 211-216.
- S. Kosol, E. Schrank, M. B. Krajačić, G. E. Wagner, N. H. Meyer, C. Göbl, G. N. Rechberger, K. Zangger, P. Novak, J. Med. Chem. 55 (2012) 5632–5636.
- S. Glanzer, S. A. Pulido, S. Tutz, G. E. Wagner, M. Kriechbaum, N. Gubensäk, J. Trifunovic, D. Markus, W. M. F. Fabian, P. Novak, *Chem. Eur. J.* 21 (2015) 4350–4358.
- J. Mortier, C. Rakers, M. Bermudez, M. S. Murgueitio, S. Riniker, G. Wolber, *Drug Discov. Today* 20 (2015) 686–702.
- 35. A. Breier, C. Garcia, T. Oppe, J. Pharm. Biomed. Anal. 29 (2002) 957-961.
- P. Zubata, R. Ceresole, M. Rosasco, M. T. Pizzorno, J. Pharm. Biomed. Anal. 27 (2002) 833–836.
- 37. Z. Yang, L. Wang, X. Tang, J. Pharm. Biomed. Anal. 49 (2009) 811-815.

- R. T. Branquinho, V. C. Mosqueira, E. K. Kano, J. de Souza, D. D. Dorim, D. A. Saúde-Guimarães, M. de Lana, J. Chromatogr. Sci. 52 (2014) 19–26.
- P. Viñas, N. Balsalobre, C. López-Erroz, M. Hernández-Córdoba, J. Chromatogr. A. 1022 (2004) 125–129.
- M. Horie, K. Saito, R. Ishii, T. Yoshida, Y. Haramaki, H.i Nakazawa, J. Chromatogr. A 812 (1998) 295–302.
- 41. C. Tang, Q. Huang, Y. Yu, X. Peng, Chin. J. Anal. Chem. 37 (2009) 1119-1124.
- 42. B. F. Spisso, R. G. Ferreira, M. U. Pereira, M. A. Monteiro, T. Á. Cruz, R. P. da Costa, A. M. Lima, A. W. da Nóbrega, *Anal. Chim. Acta*. 682 (2010) 82–92.
- 43. F. Al-Rimawi, M. Kharoaf, J. Chromatogr. Sci. 48 (2010) 86-90.
- A. Zeng, X. Liu, S. Zhang, Y. Zheng, P. Huang, K. Du, Q. Fu, Asian J. Pharm. Sci. 9 (2014) 107–116.
- 45. L. Jank, M. T. Martins, J.B. Arsand, T. M. Campos Motta, R. B. Hoff, F. Barreto, T. M. Pizzolato, *Talanta* **144** (2015) 686–695.
- R. Codony, R. Compañó, M. Granados, J. A. García-Regueiro, M. D. Prat, J. Chromatogr. A 959 (2002) 131–141.
- H. Berrada, F. Borrull, G. Font, J. C. Moltó, R. M. Marcé, J. Chromatogr. A. 1157 (2007) 281–288.
- 48. Y. Chang, L. Wang, Y. Li, C. Hu, J. Chromatogr. Sci. 54 (2016) 187-194.
- 49. <u>https://www.ich.org/</u> (datum pristupa 2. travnja 2021.)
- 50. M. Cycoń, A. Mrozik, Z. Piotrowska-Seget, Front. Microbiol. 10 (2019) 1-45.
- 51. I. Senta, I. Krizman-Matašić, S. Terzic, M. Ahel, J. Chromatogr. A. 1509 (2017) 60-68.
- 52. Commission Implementing Decision (EU) 2015/495 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/EC of the European Parliament and of the Council, http://eurlex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2015.078.01.0040. 01.ENG
- 53. I. Senta, S. Terzic, S, M. Ahel, M. Environ Pollut. 273 (2021) 116433.
- 54. P. Novak, Kem. Ind. 53 (2014) 441-447.
- 55. D. R. McMullin, B. D. Green, J. D. Miller, Phytochem. Lett. 14 (2015) 148-152.
- 56. L. Liu, P. Xu, L. Zhou, P. S. Lei, Chin. Chem. Lett. 19 (2008) 1-4.
- H. Steinmetz, H. Irschik, B. Kunze, H. Reichenbach, G. Höfle, R. Jansen, *Chem. Eur. J.* 13 (2007) 5822–5832.

- T. Sugimoto, T. Tanikawa, K. Suzuki, Y. Yamasaki, *Bioorg. Med. Chem.* 20 (2012) 5787–5801.
- S. Schieferdecker, S. König, C. Weigel, H. M. Dahse, O. Werz, M. Nett, *Chem. Eur. J.* 20 (2014) 15933–15940.
- 60. P. Przybylski, K. Pyta, J. Stefańska, B. Brzezinski, F. Bartl, Magn. Reson. Chem. 48 (2010) 286–296.
- H. Nakano, A. Sugawara, T. Hirose, H. Gouda, S. Hirono, S. Ōmura, T. Sunazuka, *Tetrahedron*. **71** (2015) 6569–6579.
- 62. L. Volpon, J. M. Lancelin, FEBS Letters. 478 (2000) 137-140.
- I. Ćaleta, A. Čikoš, D. Žiher, I. Đilović, M. Dukši, D. Gembarovski, I. Grgičević, M. Bukvić Krajačić, D. Filić, D. Matković-Čalogović, I. Malnar, S. Alihodžić, *Struct. Chem.* 23 (2012) 1785–1796.
- 64. P. Novak, I. Tatic, P. Tepes, S. Kostrun, J. Barber, *J. Phys. Chem. A* **110** (2006) 572–579.
- P. Novak, J. Barber, A. Čikoš, B. Arsic, J. Plavec, G. Lazarevski, P. Tepes, N. Košutić-Hulita, *Bioorg. Med. Chem.* 17 (2009) 5857–5867.
- A. Sadeghi-Khomami, M. D. Lumsden, D. L. Jakeman, *Chem. Biol. (Oxford, U. K.)* 15 (2008) 739–749.
- 67. P. Novak, T. Jednačak, u Z. Mandić (ur.), *Physico-Chemical Methods in Drug Discovery and Development*, Vol. 5, IACP Publishing, Zagreb, 2012, str.189-220.
- S. Erturk, E. S. Aktas, L. Ersoy, S. Ficicioglu, J. Pharm. Biomed. Anal. 33 (2003) 1017– 1023.
- A. Likhtarovich, V. Luhin, O. Sovastei, P. Zukowski, M. Dado, *Acta Phys. Pol. A* 128 (2015) 901–904.
- D. Debremaeker, D. Visky, H. K. Chepkwony, A. Van Schepdael, E. Roets, J. Hoogmartens, *Rapid Commun. Mass Spectrom.* 17 (2003) 342–350.

§8. ŽIVOTOPIS

Osobni podatci

Ime i prezime: Lucia Ema Sekula Datum rođenja: 6. kolovoza 1997. Mjesto rođenja: Zagreb

Obrazovanje

20042012.	Osnovna škola Ivo Andrić, Zagreb			
20072012.	Osnovna glazbena škola Zlatko Baloković, Zagreb			
20122016.	XV. gimnazija, Zagreb			
	Srednja glazbena škola Zlatko Baloković, Zagreb			
20162019.	Preddiplomski studij kemije, Kemijski odsjek, Prirodoslovno-			
	matematički fakultet, Sveučilište u Zagrebu			
2019	Diplomski studij kemije, smjer: analitička kemija i biokemija, Kemijski			
	odsjek, Prirodoslovno-matematički fakultet, Sveučilište u Zagrebu			

Nagrade i priznanja

2020.	Rektorova nagrada
	Kategorija: Nagrada za individualni znanstveni i umjetnički rad
	Podkategorija: Prirodne znanosti
	Rad: Izolacija i strukturna karakterizacija komponenata reakcijske
	smjese 9a- i 4"- tetrahidrofurfuril makrozona primjenom sustava LC-
	SPE/NMR

Sudjelovanja u popularizaciji znanosti

2016., 2017.	Otvoreni dan Kemijskog odsjeka (Dan i noć na PMF-u)
2018., 2019.	Članica organizacijskog odbora Simpozija studenata kemije
2020.	Smotra Sveučilišta u Zagrebu

Sudjelovanja na znanstvenim skupovima

1. <u>L. E. Sekula</u>, I. Habinovec, I. Mikulandra, J. Gašperov, P. Novak, I. Grgičević, M. Bukvić, Isolation and Structural Characterization of 9a- And 4"- Tetrahydrofurfuryl Macrozone Reaction Mixture Components Using the LC-SPE/NMR, 4th Adriatic NMR Conference, Peroj, 2020., Book of abstracts p.38

2. L. E. Sekula, <u>I. Habinovec</u>, I. Mikulandra, E. Hošnjak, P. Novak, Rapid Characterization of Tetrahydrofurfuryl 3-Macrozone Derivative Reaction Mixture Components Using LC-SPE/NMR Approach, 17th EUROMAR Conference, Portorož, 2021., Book of abstracts p.202

§9. DODATAK

Slika D1. Spektar LC-SPE COSY izoliranog spoja **3-16** snimljen u CD₃CN pri 25 °C.

Slika D2. Spektar HSQC izoliranog spoja **3-16** snimljen u CD₃CN pri 25 °C.

Slika D4. Spektar ESI-MS onečišćenja 3-16-a.

Slika D5. Spektar COSY onečišćenja **3-16-c** snimljen u CD₃CN pri 25 °C.

Slika D7. Spektar ESI-MS onečišćenja 3-16-c.

450 500 550 600 650 Counts vs. Mass-to-Charge (m/z) 70⁰

750

800

850

900

950

1000

0 100

200

250

300

150

350

400

Slika D8. Spektar COSY onečišćenja **3-16-i** snimljen u CD₃CN pri 25 °C.

Slika D9. Spektar HSQC onečišćenja **3-16-i** snimljen u CD₃CN pri 25 °C.

Slika D11. Spektar ESI-MS onečišćenja 3-16-i.

Slika D13. Spektar HSQC onečišćenja **3-16-j** snimljen u CD₃CN pri 25 °C.

D14. Spektar HMBC onečišćenja **3-16-j** snimljen u CD₃CN pri 25 °C.

