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Prema kvantnim staklima: nered u topološki
frustriranim kvantnim sustavima

Sažetak

Jednodimenzionalni XY model u transverzalnom magnetskom polju predstavlja pro-

totip egzaktno rješivog kvantnog sustava s netrivijalnim faznim dijagramom kojega

karakteriziraju dva kvantna fazna prijelaza na temperaturi nula. Koristeći Jordan-

Wignerovu transformaciju, ovaj model se uvijek može preslikati u sustav slobodnih

fermiona.

U ovom se radu fokusiramo na zatvoreni XY lanac bez vanjskog magnetskog polja

i sa neparnim brojem spinova, odnosno sustav koji je podložan frustraciji u slučaju

dominantne antiferomagnetske interakcije—nemogućnosti istovremenog minimiziranja

globalnog Hamiltonijana i svih lokalnih. Za ovaj sustav je demonstrirano da pokazuje

zanimljiva svojstva ovisno o vrijednosti parametra anizotropije φ koji odred̄uje rela-

tivnu magnitudu i predznak interakcija u x i y smjeru. Uz to, ovisno o vrijednosti

tog parametra, razlikujemo tri faze u kojima se sustav može naći: ured̄enu (1.),

mezoskopsku (2.) i nesrazmjernu (3.) temeljem dosad pokazanih rezultata.

Nakon pronalaska svojstvenih stanja i spektra modela koristeći JW transforma-

ciju i Bogoljubovljevu rotaciju, okrećemo se računanju korelacijskih funkcija jednog

(magnetizacija) i dvaju operatora i to za statički i dinamički vremenski okvir. Di-

namički okvir je posljedica globalne promjene parametra φ u trenutku t = 0.

U statičkom režimu t = 0, referiramo se na poznate asimptotske rezultate i disku-

tiramo slaganje s izrazima do kojih smo došli. Nastavno na to, koristeći dinamičke

izraze koje smo dobili rješavanjem problema vremenske evolucije za XY model, is-

tražujemo valjanost principa dekompozicije nakupina za 6 evolucija koje počinju u

nekoj od prve dvije faze. Dolazimo do nekoliko zanimljivih rezultata, posebno pos-

tojanja mezoskopskog ponašanja CD za razmjerno velike brojeve spinova. Konačno,

diskutiramo brzine trnjenja DN na temelju fizikalnih argumenata i naglašavamo da je

analiza evolucija koje započinju u trećoj fazi zahtjevnija zbog narušenja translacijske

invarijantnosti sustava te stoga ostavljena za predstojeći članak.

Ključne riječi: 1D XY model, degenerirana osnovna stanja, spinski lanac, frustracija,

princip dekompozicije nakupina



Towards quantum glasses: disorder in
topological frustrated quantum systems

Abstract

The one-dimensional XY model in a transverse field is a prototypical exactly solv-

able quantum system with nontrivial phase diagram, characterised by two different

quantum phase transitions, i.e. ones at temperature zero. Using the Jordan-Wigner

transformation, the model can always be mapped into a system of free fermions.

In the thesis, we focus on the closed XY chain without external magnetic field and

with odd number of spins, conducive to the phenomenon of frustration in case of

the dominant antiferromagnetic interaction, i.e. the inability of minimising all of the

local interactions simultaneously. This system was shown to exhibit interesting prop-

erties depending on the value of the anisotropy parameter φ determining the relative

magnitude and sign of the x and y direction interactions. Also depending on this

value, we make distinction between three phases, denoted ordered (1), mesoscopic

(2) and incommensurate (3) based on the previously obtained results for each.

After solving the XY model for its ground states and spectra via the Jordan-

Wigner transformation and Bogoliubov rotation, we focus on calculating the one-

and two-point static and dynamic correlation functions after the system has under-

gone a global quench at t = 0, only changing its anisotropy parameter φ. In the

t = 0 limit, we discuss the agreement of our results with known analytic limiting be-

haviour. Furthermore, using the dynamic expressions calculated through solving the

time-evolution problem for the XY model, we explore the validity of the cluster decom-

position hypothesis for all evolutions starting in one of the first two phases. In this

way, several interesting results are obtained, namely the emergence of mesoscopic

behaviour in the long-time regime for several evolutions and also a usual exponen-

tial decay of the cluster decomposition for the remaining ones. We discuss the rates

of decay and emphasise that the evolutions starting in the third phase require addi-

tional subtlety to be analysed properly due to the breaking of translational invariance

and are thus left for an upcoming paper.

Keywords: 1D XY model, degenerate ground states, spin chain, frustration, cluster

decomposition hypothesis
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1 Introduction and motivation

It is well known that the vast majority of the most striking aspects and results of

modern physics lies in the study of complex systems. Their eponymous attribute,

while providing a plethora of novel and interesting phenomena, simultaneously rep-

resents a substantial difficulty since most of the relevant problems are extremely

difficult or even impossible to solve exactly or otherwise. Obviously, this has granted

more than enough incentive to physicists and other scientists to develop an enor-

mous toolbox used to attack said phenomena in a variety of ways. Consequences of

this progress could hardly be more dramatic, both in the sense of expansion of our

collective knowledge, but also in everyday use of technology we can fortunately take

for granted in the current era.

One of the most prominent among such advances in course of the previous cen-

tury is indeed "the creation of quantum mechanics"1 and despite its somewhat trau-

matic youth and the inconvenient fact that it is still not fully understood in many

respects even today, QM has given birth to several extremely useful frameworks2

inside which one can analyse different aspects of modern physical systems.

Well established among these frameworks is the quantum many-body theory that

allows treating quantum systems with macroscopic number of particles. The fact

that this type of treatment is problematic even in classical mechanics renders the

formalism that more remarkable.

Let us now motivate the system we will explore with two additional concepts, the

first of three being the aforementioned many-body theory.

We start with a question of what is a quantum phase transition? Returning to clas-

sical physics, we know that the classical phase transitions are determined by their

critical temperature and a relevant correlation length that becomes divergent at that

critical temperature: arbitrarily little change is still felt throughout the significant

portion of the system, corresponding to our everyday intuition as well. How would

one go about translating this into the quantum regime? As it turns out, quantum sys-

tems exhibit more versatile types of change. First off, the quantum phase transitions

are happening at zero temperature3—to induce this type of a change, we alter the

1One W.K. Heisenberg was awarded a Nobel prize with this lauding description in 1932.
2Many-body theory, quantum field theory, renormalisation group, etc.
3Shortly, classical phase transitions occur due to thermal fluctuations at finite temperature and

quantum ones due to quantum fluctuations at zero temperature.
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values of some of the Hamiltonian parameters. We also know empirically that such

phase transitions are indeed as exotic as they sound, as per superconductor-insulator

transition, Mott insulation, Ising-nematic ordering of the Fermi liquid [1], etc. Mott

insulator transition, for example, happens at zero temperature and is not a result of

usual energy-entropy competition driving the classical phase transitions, but rather

an energy-energy competition that is decided by changing the value of, e.g. lattice

interaction strength.

A convenient way to represent such transitions is using a phase diagram, i.e. a set

of curves in the space of dimension corresponding to number of the parameters of

the Hamiltonian that are able to change. For example, standard example in the clas-

sical physics is the phase diagram of water, dependent on temperature, volume and

pressure. As we have stated, quantum phase transitions occur at zero temperature

and thus coordinates in the phase diagram will be the parameters of the Hamiltonian,

instead of, e.g. temperature.

As a third point, let us consider an important concept deeply rooted in our present

work and the works we will be referencing, i.e. the phenomenon of frustration, final

part of our picture.

Informally, frustration4 corresponds to the inability of simultaneous minimisation

of the global Hamiltonian and all the local ones, usually due to competing inter-

actions. Classic example of frustration is a system of three spins arranged in a 2D

triangular configuration and antiferromagnetic interaction between each pair, as de-

picted in Figure 1.1. Wishing to minimise the total energy of the system, one could

choose any of the two spins to be antiparallel so their local interaction is minimal, so

let us choose spins 1 and 2, as in said figure. It is easy to see that this corresponds

to the global minimum as well, regardless of the third spin. However, since the two

spins are opposite, one of them will be parallel to the third spin (in our case spin 1 is

parallel to spin 3) and thus their interaction will not be minimal, i.e. global energy

minimum does not correspond to sum of the local minima. Based on this discussion,

one can immediately see that the spin chain in our model is frustrated for every odd

N > 1, i.e. if we start from arbitrary spin and align every subsequent spin by al-

ternating between up and down direction, we see that when we arrive to the final

4To begin our short discussion on frustrations, we note that an enormous body of work has been
done on them and instruct the reader to consult the relevant literature [2–8].

2
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Figure 1.1: Frustrated system of three spins in triangular 2D configuration. There is
no way of orienting the spins so that all of the local interactions are minimal.
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Figure 1.2: Frustrated system of nine spins in 2D configuration. There is no way
of orienting the spins so that all of the local interactions are minimal, however we
note that the amount of frustration is constant, i.e. there is only one nonminimal
interaction regardless of the number of spins, as long as it is odd.

interaction, it ought to be between the aligned spins, i.e. not a minimum, as can

be seen in the Figure 1.2. We also notice that, regardless of the system size for odd

spin number, this effect remains only between two spins (one interaction) and thus

corresponds to weak (nonextensive) frustration.

Classically, we note that the nonminimised interaction can be placed between any

two spins and thus the system is 2N degenerate, where N is the spins number. Since

the system is doubly degenerate for even N (order the spins as we have described

above to get the first ground state, then flip them all for the second), we see that for

large N , i.e. thermodynamic limit, there is a massive increase/decrease in degener-

acy as one adds one by one spin to the chain, i.e. the frustration effect is generally of

nonperturbative nature.

We now wish to connect the three concepts we have introduced: many-body the-

ory, (nontrivial) quantum phase diagram and frustration. To this end, let us present

the XY model for the spin chain of length N , i.e. a generalisation of the 1D quantum

3



Ising model with additional interaction along the axis (say y) orthogonal to the one

in Ising model (say x) and with the magnetic field along the third direction (say z).

First off, this model is in general given by the Hamiltonian that is elementary enough

to be exactly solvable using the many-body formalism, i.e. it permits a straightfor-

ward diagonalisation. Second, despite its apparent simplicity, this model admits a

highly nontrivial quantum phase diagram5. Precisely, if we write its Hamiltonian

in terms of three parameters6: interaction strength J , anisotropy parameter γ and

magnetic field h:

H =
J

2

N∑
j=1

[(
1 + γ

2

)
σxj σ

x
j+1 +

(
1− γ

2

)
σyjσ

y
j+1 + hσzj

]
, (1.1)

with σµ, µ ∈ x, y, z customarily denoting the Pauli matrices. Also note that the sum is

over all the spin sites in the system. Setting J = −1, one notices that the Hamiltonian

is symmetric under the exchange γ  −γ since this leads to the exchange x↔ y and

exchange h  −h corresponds to reflecting all of the spins with respect to the xy

plane. Thus, for the phase diagram in the (γ, h) space we can only focus on the

upper right quadrant γ, h ≥ 0 since the other three are related by symmetries. Phase

diagram of the XY model is given in Figure 1.3. We note that the two wavy lines

represent the critical segments and that the quantum phase transitions correspond

to crossing them. First one is at γ = 0. Upon crossing this line, one can see that

the terms in Hamiltonian (1.1) change their relative magnitude, while keeping their

signs. In this way, the dominant interaction changes and thus the (non)vanishing

order parameter7 switches from x to y and viceversa for another direction of crossing.

On the other hand, when crossing the h = 1 line, one crosses between the phase in

which the ground state is nondegenerate and the one in which it is doubly degenerate

(particularly, it is doubly degenerate for h < 1).

The phase diagram of the XY model is not directly relevant to our present work,

but due to its importance the author not only decided to include its extremely short

description, but also boldly state that every physicist should at least once take a

5It is arguably the simplest model to exhibit two quantum phase transitions.
6We will soon introduce another notation and remove two of the parameters since that will be

the model of interest to us, however for completeness and historical reasons [9] we present the basic
properties of the general XY model as well.

7This order parameter is magnetisation in, e.g. x direction defined as an expectation value of the
σx operator in the ground state.

4



γ

h

1

1

IsingXX

critical

critical

0
Figure 1.3: Phase diagram for the XY model in magnetic field h and with anisotropy
parameter γ. There are two critical segments denoted by the wavy lines, i.e. the one
at γ = 0 and the other at h = 1. The point (γ, h) = (0, 1) at which the two critical
segments intersect is called the bi-critical point. Furthermore, we see that for γ = 0
the model reduces to the 1D XX model (blue line) and for γ = 1 the regular quantum
Ising model (red line).

detailed look into its derivation and consequences, for education both in physics and

history.

Since we have discussed the nontriviality of the XY model phase diagram, we

move to the third point, i.e. the connection between the XY model and frustration.

To this end, we will introduce another form of the Hamiltonian (1.1) by making two

changes. Anisotropy parameter γ will be replaced by the anisotropy parameter φ

that will take range of angular variable. In this way, we can keep track only of the

relative signs and magnitudes of the x and y direction interaction since this will be

the only data of importance. Furthermore, the magnetic field h is set to zero. Thus,

the Hamiltonian in this convenient form becomes:

H =
N∑
j=1

[
cosφ σxj σ

x
j+1 + sinφ σyjσ

y
j+1

]
, (1.2)

where σ operators again evidently denote the Pauli matrices for spin operators and

the anisotropy is provided by the parameter φ. As announced, since there is no global

constant in the Hamiltonian, we can see that only the relative sign and magnitude of

5



the two interactions will be of interest. Also note that, had we retained the magnetic

field in z direction, choosing φ = π/4 or φ = 3π/4 would reduce H to the XX model

and choosing φ = kπ/2 for k ∈ {0, 1, 2, 3} to the Ising model. One should note the

correspondence with particular values of γ in Figure 1.3 in these limits. To further

connect this new notation with the phase diagram in Figure 1.3, we note that crossing

φ = π/4 or φ = 3π/4 will serve the same purpose as crossing the γ = 0 line, i.e. it

will keep the signs of the interactions, while taking their relative magnitude across

the value 1.

Further still, it is easily seen from (1.2) that shifting8 φ by π/2 interchanges x and

y interactions and based on this and the periodicity of the parameter, we conclude

that it is sufficient to restrict oneself to one half of the unit circle. This is what we

will indeed do and consequently distinguish between three different phases of our

system:

• The first phase, in which φ ∈ 〈−3π/4,−π/4〉 we demarcate as the ordered phase

based on the magnetisation along the y axis for periodic boundary conditions

and odd number of spin sites [10].

• The second one, in which φ ∈ 〈−π/4, 0〉 we denote as the mesoscopic phase

since in it appears an algebraically decaying ferromagnetic magnetisation in

x direction9, again for the periodic boundary conditions and odd site number

[10].

• Finally, the third phase, i.e. φ ∈ 〈0, π/4〉 we name incommensurate phase af-

ter the novel type of antiferromagnetic order was observed (again for periodic

boundary conditions and odd spin number); one that spontaneously breaks

translational invariance and is modulated in an incommensurate way [11].

For the three phases we will occasionally use the abbreviations 1O, 2M and 3I,

respectively.

From their short descriptions, one can immediately see that in each of the phases

it was emphasised that the spin system has periodic boundary conditions, i.e. it cor-

responds to a closed chain and also that the number of spins in the chain was odd.

8One should convince oneself that this is equivalent to the exchange γ  −γ.
9Since the interaction in x direction is antiferromagnetic, one would expect for magnetisation to

be staggered.
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As one can recall from our discussion complementary to Figure 1.2, these conditions

correspond to the spin chain with frustrated boundary conditions. We underline the

fact that, as was explained in detail in previous works [10–12], there are several lay-

ers in which the frustrated boundary conditions and the type of interaction affect the

system properties. In the first phase, the system displays what we termed the frus-

trated boundary conditions, but since the interaction is ferromagnetic, the system

is not frustrated since there are no competing dominant antiferromagnetic interac-

tions10. However, the odd number of spins is necessary since in that case there is

degeneracy and thus a nonvanishing order parameter. In the case of even spin num-

ber, the ground state would not be degenerate and thus said order parameter would

have nonvanishing value only in the thermodynamic limit in which the ground states

coincide. Thus, we will ocassionally refer to this phase as the unfrustrated phase. On

the contrary, in the third and the second phase the frustration is absolutely essential

to emergence of the interesting phenomena we pointed out. Opening the chain (so

it does not exhibit periodic boundary conditions), considering the chain with even

number of spins or switching the dominant interaction from antiferromagnetic to

ferromagnetic eradicates these behaviours.

Also, introducing some terminology, requirement of odd spin number and the

periodicity of the chain can be condensed into one term—frustrated boundary condi-

tions.

Thus, a nontrivial phase diagram, along with its exact solvability11 and its remark-

able behaviour under frustrated boundary conditions render the one-dimensional12

XY model13 a pertinent one, both in terms of its educational relevance and research

applicability [10,13–15].

Having introduced the frustration and the three distinct phases, we emphasise

that it will be of great importance for us to be able calculate one- and two-point

correlation functions. However, one-point correlations are difficult to access directly,

mainly due to the fact that our diagonalisation process will separate the Hamiltonian

10Recall that our toy model in Figure 1.2 assumed the antiferromagnetic interaction between adja-
cents spins.

11In general, XY model with interaction strength, anisotropy parameter and magnetic field is ex-
actly solvable when at least one of the three parameters is equal to zero.

12A somewhat more general advantage of considering 1D systems is, besides a wide range of exact
results, the fact that many methods, especially powerful approximate ones have been developed for
these systems and have been well understood for decades.

13Of course, as previously stated and quantified in (1.2), the magnetic field in our work will hence-
forth be set to zero.
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into two distinct terms, each one with different parity along the z direction14 and

thus the ground states of the system obtained by our solving procedure have definite

parity along the z-axis and are mutually orthogonal. This in turn means that the

expectation values of σx and σy necessarily vanish15 in those states since their action

changes the z-parity of the ground state.

However, since the Hamiltonian is degenerate in all three phases, there is a way

to construct the states with definite x and y parities as well [10,11]. Using this idea,

one can obtain the expectation values of interest directly and this is indeed what we

will do in present work.

One way of trying to circumvent the aforementioned difficulty is using the cluster

decomposition hypothesis (CDH in the following), i.e. the idea that:

lim
r→∞

[〈
σµj σ

µ
j+r

〉
−
〈
σµj
〉 〈
σµj+r

〉]
= 0 , (1.3)

with µ denoting the direction (x, y, or z). Essentially, it conjectures that the two-point

correlations between different sites can be evaluated as independent expectation val-

ues in the limit of their diverging distance. In this context, divergence implies that

the two sites are separated as far as possible, i.e. that they are at antipodal points in

the closed spin chain of diverging total length. In addition, there is subtlety in this

behaviour since it is also interesting to see what type of approach of the two terms in

(1.3) is and thus at which values of the chain lengths does it start to be a reasonable

approximation.

First problem with the CDH is the fact that the proper procedure of taking the

limit is not always immediately evident. For example, let us denote the separation of

the two sites in question by r, as in (1.3) and the (odd) number of spins by N . Then

the expressions such as r/N can be evaluated in two ways16. One could either take

the limit of diverging N first, in which case the expression tends to zero, or one could

take r to be the distance between antipodal sites, i.e. r = (N ± 1) /2, and in this case

one is left with a leading term of 1/N . In previous works [10], this difference has

been shown to yield differing results for magnetisation in certain direction and it thus
14Parity operators will be defined later; they correspond to products of spin matrices of certain

direction over all the spin sites in the system.
15To play the role of an order parameter, i.e. to signal the rise of a macroscopic order, an operator

must violate at least one of the symmetries system of the system.
16This ambiguity emerges when there is an algebraic decay of correlation functions and not for an

exponential one [15].
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implies a certain ambiguity in the CDH approach. Therefore, it is of great use to be

able to access said magnetisations directly. Besides this, there is no general proof for

the CDH at the time of writing of this thesis, although it has been shown that it holds

in static conditions for gapless systems [16], as was found in previous work [10] and

also confirmed by our analysis at t = 0.

Regarding the present work and its objective, we wish to generalise these results

to the case of dynamically evolving XY model (specifically after a global quench17

at t = 0) and explore the validity of the CDH. Furthermore, not only will we be

considering its behaviour inside different time regimes and for thermodynamic limit

of diverging spin chain length, but also the functional dependence of its decay, i.e.

how fast do the terms converge to their limiting values with increasing chain length.

First we discuss the dependence of CDH on the number of spin sites in the static

case, i.e. at t = 0 and show that it corresponds to previous results [10]. After this,

we consider two regimes of the time evolution of the CDH, specifically very short and

very long times. In this way, we obtain enough points for the long time regime and

average them out to check the CDH at long times as a function of the number of spin

sites. In each case, the two spin sites we consider correspond to antipodal points in

the chain, i.e. 1 and r = (N + 1)/2. We also note that in the first two phases, one can

take any two sites, as long as they are antipodal, but in the third, these expression

depend on the site choice, i.e. translational invariance does not hold anymore, as will

be seen from analytic expressions. This is one of the reasons why only the evolutions

starting in first two phases were considered in the present work, although we note

that there is no such problem when evolving into the third phase, as will be discussed

in Chapter 418.

This succinctly described process is actually carried out in several steps. We begin

by solving the XY model in Chapter 2 by means of the Jordan-Wigner transforma-

tion, followed by a Fourier transform into the momentum space and finishing with

diagonalisation using the Bogoliubov rotation. In Chapter 3, we calculate the static

(for pedagogical purposes) and dynamic two-point correlation functions for all three

17Quench of a system is usually defined as an instant change of some of the Hamiltonian parameters
[17, 18]. We focus on changing the parameter φ and we do so globally, i.e. the interaction remains
uniform along the chain. In this way, as discussed in the section on symmetry properties of the model,
the system retains all of its initial symmetries and thus the form of the spectrum and similar properties
as well.

18Discussion of evolutions starting in the third phase requires additional subtlety and is thus left
for an upcoming paper.
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spatial directions and phases, corresponding to the first term in (1.3). For the sec-

ond term in this expression, we turn to calculating the dynamic magnetisations, i.e.

one-point expectation values and emphasise the use of the ground states with well-

defined parities along each spatial direction; this is done in Chapter 4. Finally, in

Chapter 5 all of the results are discussed in a systematic way.

We also note that several appendices are referenced at natural points throughout

the calculations and discussions, each included either to facilitate intuitive under-

standing of the methodology and physics of the process or as an overview of addi-

tional results that would unnecessarily clutter the body of the thesis.

In the end, besides reiterating the importance of the problem we are considering

based on the presence of CDH in general use, we remark that the spin chains such

as the ones we consider can be designed and realised experimentally as well. This is

due to the rapid development of experimental techniques in recent times, especially

manipulation of cold atoms [19] which introduce the possibility of constructing es-

sentially arbitrary spatial configuration and interaction between the spins.
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2 Solving the XY model

2.1 Introduction

The first solution to the XY model was presented by Lieb, Schultz and Mattis in

1961 [9] with the aim of investigating the effect of anisotropy in the Heisenberg

model, i.e. the one in which the strength of interaction is not necessarily the same

in the x and y direction, also with the z axis interaction omitted. This was later ex-

panded by Barouch and McCoy in series of seminal papers on the general statistical

properties and associated quantities of interest (most notably spin correlation func-

tions and magnetisations) for the XY model [20] with external magnetic field in the

transverse direction which is set to zero in our analysis. Besides this, other quantities

such as nonelementary correlators, entropies and out-of-equilibrium properties were

obtained as well [21–24], although these are not directly relevant to our present

work.

Rough outline of our approach to solving the XY model will be to use the Jor-

dan–Wigner transformation to turn the spin system into a fermionic one and after a

Fourier transform, use Bogolioubov rotation to diagonalise it. During this approach,

we mostly follow [13]. But before solving the model, we provide a detailed look into

the symmetry properties of the model so that the steps in solving it can be appreciated

in full.

2.2 Symmetry properties of the XY model

As announced, we begin our analysis by discussing the importance of symmetry in

the XY model.

To do so, we reiterate the corresponding Hamiltonian (1.2):

H =
N∑
j=1

[
cosφ σxj σ

x
j+1 + sinφ σyjσ

y
j+1

]
, (2.1)

with φ denoting relative strength and sign of interactions in the x and y directions,

the only information regarding interaction of interest to present work. This was the

case in some of the previous papers as well [10, 11], since both the destruction of

local order and occurence of phase transitions were consequences of said relative

11



strength and sign. Furthermore, variable j runs over spin sites, the total number of

which is N .

First obvious symmetry of the system is the invariance under spatial translations

if we choose to work with the closed spin chain19, meaning that the spins at sites

j = 1 and j = N are adjacent. We choose the basis of the N -spin Hilbert space to

consist of kets of the form:

|ψ〉 =
N⊗
j=1

(
σ−j
)nj |↑j〉 , (2.2)

with |↑j〉 defined to acquire a vain +1 factor when acted upon with σzj and n1, n2, ..., nN

taking values of either 0 or 1. The raising and lowering operators are defined as usual:

σ±j =
1

2

[
σxj ± ıσ

y
j

]
. (2.3)

The translation operator T can then be introduced in a natural way:

T |ψ〉 =
N⊗
j=1

(
σ−j
)nj+1 |↑j〉 , (2.4)

with identification for the closed chain nN+j ≡ nj. First important property of this

operator is unitarity, which is evident from its defining relation since 〈T †T 〉 = 1 holds

for all the basis vectors and hence for all the vectors in the Hilbert space:

T †T = 1 , (2.5)

which can also be interpreted as the operator T † providing translation in the opposite

direction of that of operator T . Furthermore, since there are N spins in the chain, it

is evident that N successive applications of the translation operator should leave the

system invariant (idempotence of order N), i.e.:

TN = 1 , (2.6)

from which it is immediately seen that its eigenvalues are the N -th roots of unity, i.e.

19We will indeed choose to do so since, as was announced in the Introduction, the closed spin
chains with odd N exhibits frustration.

12



eıq with

q ∈
{
−N − 1

N
π, ..., − 2

N
π, 0,

2

N
π, ...,

N − 1

N
π

}
. (2.7)

To mathematically state the translational invariance of the system, we write the

spin operators as external products of the basis states to immediately observe that

they are translated by action of T and its inverse:

T †σµj T = σµj+1 , µ = x, y, z , (2.8)

where σµN+j = σµj as before. Now it is seen that the translation operator commutes

with the Hamiltonian of the system (1.2):

[
T,H

]
= 0 , (2.9)

which is the formal formulation of its translational invariance.

We proceed by defining the parity operator along the z axis

Πz :=
N⊗
j=1

(
1− 2c†jcj

)
=

N⊗
j=1

σzj . (2.10)

To make sense of its name, observe that it represents the product of all the spin

orientations along the z axis in the system at hand and it is therefore equal to −1

when the number of down spins (along the z axis) is odd and +1 otherwise.

From (2.8) we see that, exploiting (2.5) repeatedly, the translation operator com-

mutes with the parity operator along the z axis as well. Furthermore, since the former

relation is valid for all three axes, we conclude that it will commute with the parity

operators along all three spatial directions:

[
T,Πµ

]
= 0 , µ = x, y, z , (2.11)

with the parity operator along the axis µ defined as expected:

Πµ :=
N⊗
j=1

σµj . (2.12)

The parity operators along all three spatial axes commute with the Hamiltonian
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(1.2) as well: [
Πµ, H

]
= 0 , µ = x, y, z . (2.13)

This is seen easily from (anti)commutation relations for Pauli matrices, i.e.:

[
σµj , σ

ν
j

]
= 2ıεµνρσρj and

{
σµj , σ

ν
j

}
= 2δµν1 . (2.14)

Intuitively, each term in Hamiltonian flips (up to a factor) two spins at a time, thus

preserving the parity.

We remark that (2.13) would cease to be valid along certain axes upon introduc-

ing, e.g. the magnetic field along said axes. Models of this kind are analysed in works

such as [20].

Another relevant property of the parity operators are their mutual (anti)commutation

relations which rely on the fact that the number of spins in the chain N is odd, i.e.

that the system displays the frustrated boundary conditions. First note that for equal

µ and ν it holds that

µ = ν : {Πµ,Πν} = 2

(
N⊗
j=1

σµj

)2

= 2 (2.15)

and

µ = ν : [Πµ,Πν ] = 0 (2.16)

since squares of Pauli matrices are equal to unity and also the operators on different

sites commute since they belong to different Hilbert spaces. Furthermore, for µ and

ν different we obtain:

µ 6= ν : {Πµ,Πν} =

(
N⊗
j=1

σµj

)
⊗

(
N⊗
j=1

σνj

)
+

(
N⊗
j=1

σνj

)
⊗

(
N⊗
j=1

σµj

)

= (σµ1σ
ν
1 ) · · · (σµNσ

ν
N) + (σν1σ

µ
1 ) · · · (σνNσ

µ
N)

=
[
1 + (−1)N

]
(σµ1σ

ν
1 ) · · · (σµNσ

ν
N)

=0 ,

(2.17)

where we have exchanged the µ and ν operators in the second row to get to the third

one, with each exchange introducing a factor of −1. To obtain the final row, we have

used the fact that the number of spins N is odd.
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We can obtain the final commutation relation in a similar manner if we use the

previous calculation with the − sign in the square brackets to obtain:

µ 6= ν : [Πµ,Πν ] =2 (σµ1σ
ν
1 ) · · · (σµNσ

ν
N)

= {use the relation: σµσν = δµ,ν1 + ıεµνρσ
ρ}

=2 (εµνρ)
N ıN (σρ1 · · ·σ

ρ
N)

=2ıεµνρ (−1)
N−1

2 Πρ ,

(2.18)

where we have used the property of Levi-Civita symbol εN = ε since it only takes on

values of ±1 and 0 and the fact that N is odd, i.e. of form N = 2k + 1, k ∈ Z for the

penultimate row. The final row is obtained by recognising the definition of the parity

operator (7.5).

All of the (anti)commutation relations can now be condensed in the following

two relations:

{Πµ,Πν} = 2δµ,ν (2.19)

and

[Πµ,Πν ] = 2ıεµνρ (−1)
N−1

2 Πρ , (2.20)

with µ, ν, ρ = x, y, z.

The fact that the different parity operators commute with the Hamiltonian of

the system, but not with each other implies the existence of degeneracies. This is a

known quantum mechanical result [25] and also easily seen since a generic eigen-

state of the Hamiltonian and the same state when acted upon with, e.g. Πx will have

different parities along the z axis, but the same energy, implying the existence of

at least twofold degeneracy. We will discuss the importance of this degeneracy in a

moment.

Furthermore, we see that, because of the degeneracy and the fact that parity

operators commute with the Hamiltonian, one can in general construct a linear com-

bination of the states that will be eigenstate of the Hamiltonian, but not of the parity

operator along the z axis20. Thus, we see that the initial21 Z2 symmetry is broken.

Another relevant symmetry of the system is upon mirror imaging with respect to

20Indeed, we will construct such states.
21This symmetry corresponds to the model being invariant under flipping of all the spins, as can

easily be seen from its Hamiltonian since the spin products come in pairs.
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arbitrary spin site. If we consider again a spin chain with N sites for odd N , we can

see that the mirroring of the jth site with respect to the kth site is obtained22 by the

transformation j  2k−j. Using this fact, we can write the defining equation for the

mirror operator with respect to the kth site Mk through its action on the basis kets

(2.2)

Mj |ψ〉 =
N⊗
l=1

(
σ−l
)n2j−l |↑l〉 . (2.21)

As with the translation operator, we deduce the unitarity of the mirror operator:

M †
jMj = 1 , ∀j (2.22)

and the idempotence of order 2 since applying the mirroring an even amount of times

leaves the system invariant:

M2
j = 1 , ∀j , (2.23)

implying that its only eigenvalues are ±1. Along this, from the previous two equa-

tions it is seen that the mirror operator Mj is Hermitian as well, i.e.:

M †
j = Mj . (2.24)

Mirror operators on different spin sites are related by the translation operator:

T †MjT = Mj+1 , ∀j , (2.25)

as is seen in a manner analogous to (2.8). This last equation allows us to express

the mirror operators with respect to all the sites if only one of them is known. We

will exploit this fact in the end of this chapter to prove a convenient result for mirror

operator action on ground states of the system.

Finally, we note that the mirror operator obviously does not change the parity of

the system along any direction since it only permutes the sites and the parity is given

by their product, which is a commutative operation:

[
Mj,Π

µ
]

= 0 , µ = x, y, z . (2.26)

22If j < k we can interpret this transformation as first going to the kth site which is the center of
reflection and then subsequent k − j steps from it, i.e. at the same distance at which the jth site was
before, only in the opposite direction. For j > k the line of reasoning is similar.
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Having finished the discussion on mirror and translation operators, we return

shortly to the parity operators to emphasise one additional point which we will rely

on regularly in the following chapters. This is related to the fact that the ground

states of the system always come in pairs, at least one for each parity. However, there

is a more transparent (and somewhat obvious) way of deducing this fact. As per

(2.13), we know that the Hamiltonian commutes with the parity operators along all

three axes. Howewer, by (2.19), as we have discussed, the parity operators mutually

anticommute and this implies the existence of degenerate eigenstates. Then, taking

into account that, e.g. the parity operator Πx commutes with the Hamiltonian as

well, a certain eigenstate of the Hamiltonian will remain an eigenstate when acted

upon by Πx (or Πy). However, because the number of spins in the chains we will

consider N is odd, Πx,y will change their z parity, as is seen through an elementary

action of Pauli matrices for x and y directions on the eigenstates of the z parity

operator. It will turn out that it is of great convenience to use only the state from

one sector and express the other one as the first, but acted upon by one of these

parity operators since we will be able to relatively easily write the parity operators

in terms of string of operators whose expectation values are analytically calculable.

Also, since construction of the states with definite parities in the directions other

than z allows us to access certain quantities of interest directly as was demonstrated

in [10] and [11], we have also obtained a way of checking whether or not the cluster

decomposition hypothesis is valid in the dynamic case. To this end, we will use the

fact that the generator of time evolution, the Hamiltonian, commutes with the parity

operators, thus allowing us to carry out calculations in a way that is analogous to the

static case. This will also imply that the Hamiltonian retains its original symmetries

during its time evolution.
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2.3 Jordan–Wigner transformation

After discussion on general symmetry properties, we turn to solving the XY model.

As was announced in the introduction to this chapter, the first step is the so called

Jordan–Wigner transformation which will emerge naturally as an amendment to a

naive approach to diagonalisation of the Hamiltonian (1.2).

Upon inserting the raising and lowering operators (2.3) into (1.2), we use the

following relation:

σxj σ
x
j+1 =

(
σ+
j + σ−j

) (
σ+
j+1 + σ−j+1

)
= σ+

j σ
+
j+1 + σ+

j σ
−
j+1 + σ−j σ

+
j+1 + σ−j σ

−
j+1 (2.27)

and also an analogous one for the y direction, along with trigonometric relations

cosφ+ sinφ =
√

2 cos
(
φ− π

4

)
,

cosφ− sinφ = −
√

2 sin
(
φ− π

4

) (2.28)

to transform the Hamiltonian into

H = −
√

2
N∑
j=1

[
sin
(
φ− π

4

)
σ+
j σ

+
j+1 − cos

(
φ− π

4

)
σ+
j σ
−
j+1

]
+ H.c. , (2.29)

with H.c. denoting the Hermitian conjugate of the total expression preceding it.

Should the H.c. label be inside any type of bracket, it shall denote the Hermitian

conjugate of the total expression preceding it inside said bracket. The same will hold

for the complex conjugate later on, denoted by c.c.

Having written the Hamiltonian in this manner, we proceed with consulting the

properties of spin operators σµj bearing in mind the already employed (anti)commutation

relations for Pauli matrices (2.14):

• σ±j =
(
σ∓j
)† since σµj are Hermitian,

•
(
σ±j
)2

= 0 since
(
σµj
)2

= 1 ,

• for spin operators on the same site
{
σ±j , σ

∓
j

}
= 0 and

{
σ±j , σ

±
j

}
= 1 as per

properties of Pauli matrices,

• for spin operators on different (j 6= k) sites
[
σ±j , σ

∓
k

]
=
[
σ±j , σ

±
k

]
= 0 since they

are members of independent vector spaces.
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It is now evident from the third point that spin operators demonstrate fermionic

(in sense of their anticommutation relations) behaviour on the same spin site, but

considering the fourth point we see that their behaviour is bosonic on different

sites in terms of their commutation relations [25] (fermionic operators anticommute,

while bosonic ones commute and this ought to hold both for same and different sites).

To diagonalise the Hamiltonian, it is necessary to express it in terms of fully bosonic

or fully fermionic operators. A bosonic choice, in form of the Holstein–Primakoff

transformation [26] will not be exploited here since, firstly, upon using it, one needs

to introduce a strong repulsive interaction to truncate the Hilbert space of states.

Secondly, the fermionic states are, because of the Pauli exclusion principle, signifi-

cantly simpler to construct and endow with further excitations. With this in mind,

we choose the Jordan–Wigner (JW) transformation [27] with cost of the system be-

coming highly nonlocal.

Hence we define a new set of JW creation and annihilation operators in the fol-

lowing manner23,24

c†j :=

(
j−1⊗
l=1

σzl

)
⊗ σ−j and cj :=

(
j−1⊗
l=1

σzl

)
⊗ σ+

j . (2.30)

It is instructive to ponder the correspondence of the transformed creation operator c†j

to the annihilation spin operator σ−j and convince oneself that this choice is physically

consistent since the notion of transformed spin states is more of a bookkeeping than

a physical one.

Moreover, since
(
σzj
)2

= 1, it holds that:

c†jcj = σ−j σ
+
j and cjc

†
j = σ+

j σ
−
j (2.31)

from which we can also infer an inverse JW transformation, i.e. from cj to σµ opera-

23These operators are sometimes [9] defined with another choice of factors, namely
exp

(
ıπσ+

j σ
−
j

)
= 1 − 2σ+

j σ
−
j = −σzj 6= σzj and since σzj operators determine the parity (which we

will define soon), we defined the transformation using them directly to render subsequent calcula-
tions more natural. Note also that it holds σzj = 1− 2c†jcj .

24The intuitiveness of the JW transformation can be seen the most easily considering action of
the spin operator on the fermionic state in occupation number representation—all of these operators
commute, i.e. there are no emerging minus signs upon their exchange, which should exist for the
fermionic operators. Now one can convince oneself that adding the factors of z projections of all the
spins before the site at hand effectively serves so as to add a sign each time our fermionic operator is
exchanged with one of those defining the state. E.g. consider the state |1, 0, 1, 1, 0, · · ·〉 = c†1c

†
3c
†
4 · · ·

|0, 0, 0, 0, 0, · · ·〉 and the action of both the spin operator and c operator on it.

19



tors. Relations in the previous equation imply that the same site fermionic anticom-

mutation relations are satisfied as well:

{
cj, c

†
j

}
= 1 . (2.32)

To verify the consistency of fermionic nature, we are also interested in anticommu-

tation relations when the sites are different (j 6= k and suppose that j > k since H.c.

of the following calculation yields the opposite case immediately):

{
cj, c

†
l

}
= σ+

j

(
j−1⊗
m=1

σzm

)(
l−1⊗
n=1

σzn

)
σ−l +

(
j−1⊗
m=1

σzm

)
σ−l σ

+
j

(
l−1⊗
n=1

σzn

)

=

(
j−1⊗
m=l

σzm

)[
σ+
j , σ

−
l

]
= 0 ,

(2.33)

where we have used the JW transformation in the first equation and commutation

relations for spin operators and the identity

1− 2σ+
j σ
−
j = −σzj (2.34)

in the second and the third.

We condense the anticommutation properties (2.32) and (2.33) into a singular

equation: {
cj, c

†
l

}
= δjl . (2.35)

The other anticommutation relations are obtained completely analogously and

upon using the commutation properties of Pauli matrices we find that:

{cj, cl} =
{
c†j, c

†
l

}
= 0 . (2.36)

It is now evident that JW operators cj satisfy both the same and different site

fermionic anticommutation relations. Finally, we note for completeness that both

(2.30) and (2.36) directly imply that their squares are zero:

(cj)
2 =

(
c†j

)2

= 0 , (2.37)
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as is consistent with Pauli’s principle of exclusion. These results demonstrate that the

JW operators introduced in (2.30) are indeed fermionic.

Before expressing the Hamiltonian in terms of the JW operators, let us emphasise

several important points. First of all, note that relations (2.37) would not hold for

bosonic operators and many of the contractions we have been able to make would

not hold, so most of the terms would be significantly more complicated. Secondly,

initial spin raising and lowering operators corresponded to flipping of physical spin

states |↑〉 and |↓〉. However, JW particles corresponding to introduced cj operators are

spinless fermions and their two available states correspond to vacant and occupied

states.

To obtain the transformed Hamiltonian, we calculate the particular terms in (2.29)

using JW transformation and obtain:

σ+
j σ

+
j+1 =− cjcj+1 , j 6= N

σ+
j σ
−
j+1 =− cjc†j+1 , j 6= N .

(2.38)

Why have we restricted these equations to j 6= N? Peculiarity of the JW transforma-

tion is the fact that it breaks the translational invariance of the initial problem (1.2)

by singling out a particular initial site (j = 1) and thus there are potential inconsis-

tencies when the spin system is closed, i.e. when the first and the N th spins interact.

We reiterate that the closed spin chains with odd number of sites (N = 2k−1, k ∈ Z)

will be in the centre of our research since they demonstrate extraordinary proper-

ties when subjected to particular boundary conditions and interaction parameter φ

values. With this in mind, we impose cyclicity on our system by requiring that

σµj+N ≡ σµj (2.39)

and calculate the remaining Hamiltonian terms explicitly:

c†Nc
†
1 =

(
N−1⊗
j=1

σzj

)
σ−Nσ

−
1 =

= −

(
N⊗
j=1

σzj

)
σ−Nσ

−
1 =

= −Πzσ−Nσ
−
1

(2.40)
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upon recalling (2.10) and, analogously:

c†Nc1 = −Πzσ−Nσ
+
1 . (2.41)

We are now able to write the Hamiltonian explicitly in terms of JW fermions

(along with exchange of the written part in (2.29) and its H.c.):

H = −
√

2

[
N∑
j=1

[
sin
(
φ− π

4

)
c†jc
†
j+1 − cos

(
φ− π

4

)
c†jcj+1

]
+

+Πz
√

2
[
sin
(
φ− π

4

)
c†Nc

†
1 − cos

(
φ− π

4

)
c†Nc1

]]
+ H.c.

(2.42)

To advance towards the eigenstates and eigenvalues of H, we recall from the

preceding section that Πz commutes with the Hamiltonian, i.e.:

[
Πz, H

]
= 0 (2.43)

and point out that this relation can also be seen from (2.42) since neither the BCS

terms nor the number operator terms alter the total parity of the system.

Consequently, since Hamiltonian and the z parity operator commute, they admit

a complete set of common eigenstates. These eigenstates are divided by the latter

into two sectors, one corresponding to each of its eigenvalues ±1. In terms of JW

operators25 representation of the parity operator, eigenvalue Πz = −1 corresponds to

states with odd number of JW fermions and Πz = +1 to states with an even one.

Given the two parity sectors, we must deduce how to consistently connect the

boundary JW terms on our closed spin chain. Mathematically, it is seen from (2.42)

that interaction consistency implies that

Πz = + 1 =⇒ c+
j+N = −c+

j (anti-periodic b.c.; even number of JW particles),

Πz =− 1 =⇒ c+
j+N = c+

j (periodic b.c.; odd number of JW particles).

(2.44)

Notice the introduction of ± marks to imply the type of boundary conditions (b.c.)

25We emphasise that JW particles and their number should not be confused with the number of
sites N . Also, positivity of eigenvalue of the JW operator implies that a certain position is vacated by
a JW fermion, while that of the spin operator regards the upward orientation of spin on the same site.
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in use. We can interpret these conditions in a more physically transparent way. Due

to a highly nonlocal mapping, JW operators further from the beginning site at j = 1

(in the direction of increasing j) will pick up more and more phase factors which

cancel out in Hamiltonian terms (e.g. in (2.38)) unless we complete a path around

the chain—this phase is then given by the total parity operator which is independent

from the first site choice and thus persists as a phase factor (e.g. in (2.40) and

(2.41)).

With the aforementioned sector separation in mind, we separate the Hamiltonian

as well, using two projectors that in sum project on the total Hilbert space:

H =

(
1 + Πz

2

)
H+

(
1 + Πz

2

)
+

(
1− Πz

2

)
H−

(
1− Πz

2

)
. (2.45)

Introducing the boundary conditions (2.44), we see that both H± can be written in

a compact form:

H± = −
√

2
N∑
j=1

[
sin
(
φ− π

4

)
c±†j c

±†
j+1 − cos

(
φ− π

4

)
c±†j c

±
j+1

]
+ H.c. (2.46)

Although the form of both Hamiltonians is expectedly (remember our mathematical

argument for b.c.) the same, it is important to note that the Fock spaces that their

eigenstates span are distinct.

2.4 Fourier transform of the Hamiltonian in JW form

The next step towards the solution is transforming H into the momentum26 (Fourier)

space while taking b.c. into account. We define a symmetric discrete Fourier trans-

form (FT) as follows27:

c±j =
1√
N

∑
q

eıqjbq ↔ bq =
1√
N

∑
j

e−ıqjc±j . (2.47)

26A Fourier transform is useful when solving certain classes of condensed matter Hamiltonians such
as the one of the XY model since the differences between operators are replaced with simple phase
factors.

27We could have added a factor of exp (ıπ/4) in the FT definition to render the subsequent step,
Bogoliubov rotation, a true O(2) rotation. However, we chose a symmetric version of the FT since it
will make future calculations and referencing the papers more natural. For the former, consult [13].
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The bq operators are fermionic28 as well, as we demonstrate in Appendix A. Further-

more, observe that the Fourier transform implies that c±j+N = eıqjc±j and thus for

periodic b.c. it holds that

q ∈ Γ+ =

{
−N − 2

N
π, ..., − 1

N
π,

1

N
π, ...,

N − 2

N
π, π

}
, (2.48)

while for anti-periodic b.c. it holds that29

q ∈ Γ− =

{
−N − 1

N
π, ..., − 2

N
π, 0,

2

N
π, ...,

N − 1

N
π

}
, (2.49)

as is seen from (2.44). It is important to note that the b operators have no ± sector

reference, since the information on parity sector restrictions is conveyed by the al-

lowed q values. Also, only the 0 and π modes have no negative counterparts—these

modes will be fundamental in forthcoming calculations.

Having defined the values which the modes q can assume, we can state a more

precise form of our FT:

c±j =
1√
N

∑
q∈Γ±

eıqjbq ↔ bq =
1√
N

N∑
j=1

e−ıqjc±j . (2.50)

We are now ready to calculate the Hamiltonian terms explicitly:

N∑
j=1

c±†j c
±†
j+1 =

N∑
j=1

 1√
N

∑
q∈Γ±

e−ıqjb†q

( 1√
N

∑
k∈Γ±

e−ık(j+1)b†k

)

=
1

N

∑
q,k∈Γ±

b†qb
†
ke
−ık

N∑
j=1

e−ıj(q+k)

=
∑
q∈Γ±

eıqb†qb
†
−q

(2.51)

upon using the FT expression (7.15) in the first equation and the delta function

identity
N∑
j=1

exp (−ıj(q + k)) = Nδq,−k in the third one. Completely analogously, the

28Note that this can be deduced from the symmetry of the Fourier transform as well.
29Recall that this range of values of modes emerged in (2.7) and that they correspond to roots of

unity.
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second term is obtained as well:

N∑
j=1

c±†j c
±
j+1 =

∑
q∈Γ±

eıqb†qbq . (2.52)

Inserting these into (2.46) and using the symmetry properties of trigonometric func-

tions as well as the fact that the center of mass of a homogenous regular polygon

defined by N th roots of unity lies at the origin of the complex plane (specifically∑
q∈Γ± cos q = 0), we write the Hamiltonian in a convenient matrix form:

H± =
∑
q∈Γ±

(
b†q b−q

) Cq,φ −ıSq,φ
ıSq,φ −Cq,φ

 bq

b†−q

 (2.53)

upon introducing abbreviations

Cq,φ =
√

2 cos
(
φ− π

4

)
cos q and Sq,φ =

√
2 sin

(
φ− π

4

)
sin q . (2.54)

The initial problem of diagonalising H± has reduced to diagonalising the matrices

in (2.53), all having the same general form. We diagonalise each of them by the

method of Bogoliubov rotation [28], discussed in the forthcoming section.

2.5 Bogoliubov rotation

Noting the equality between matrix elements in (2.53) and following the diagonali-

sation in Appendix B, we define the Bogoliubov angle θq as follows:

θq := arctan
|eı2q cosφ+ sinφ| − [cosφ+ sinφ] cos q

[cosφ− sinφ] sin q
for q 6= 0, π . (2.55)

This choice of this definition is discussed in said appendix and is due to the fact that

we expect the sine and cosine of θq to behave in a natural way30, i.e.:

cos θ−q = cos θq and sin θ−q = − sin θq (2.56)

and also lest we have troubles with multiple-valued quantities (note that definitions

in terms of trigonometric functions of 2θq are inherently ambiguous when seeking

30Notice also that sin θq and cos θq are defined uniquely by (2.55).
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θq).

We hold off the discussion of q = 0 and π modes for now and proceed to apply

the standard procedure of diagonalising a matrix of form (2.53), although it is useful

to note that said matrix is diagonal for these two modes and hence there is no need

for Bogoliubov rotation. We also remark that this method is more of an algebraic

one, since it is essentially a problem of diagonalising a form quadratic in fermionic

operators. Most elementary, by requiring that the linear combinations of b operators

yield a new quadratic form with vanishing nondiagonal (mixed) terms [9], we obtain

that the desired transformation into operators a in terms of which the Hamiltonian

is diagonal is given by: aq

a†−q

 =

 cos θq ı sin θq

ı sin θq cos θq

 bq

b†−q

 for q 6= 0, π . (2.57)

The appropriateness of this transformation can be seen in yet another way—write

cos(2θq) and sin(2θq) in terms of Cq,φ and Sq,φ and then interpret the transformation

as rotation31,32 of the Hamiltonian into the diagonal form, accomplished by wedging

it between the rotation matrix and its inverse. Also note that, consistent with this

argument, is the fact that the angle in transformation matrix (2.57) is θq, while the

matrix elements of (2.53) are, by virtue of (2.54), those of angles 2θq.

Since operators aq are given as linear combinations of the JW fermions which are

themselves obtained by transforming spin operator, the excitations of the system will

in general be quasiparticles, i.e. collective phenomena. It is shown in Appendix A

that the aq operators are fermionic as well. Furthermore, it is important to remark

that the general a†−q can be obtained directly from the expression for aq in (2.57) and

that it is consistent with (2.56), as it ought to be.

Exploiting (2.57), as well as anticommutation relations for operators aq obtained

from those for operators bq, Hamiltonian (2.53) finally becomes:

H± =
∑
q∈Γ±

ε(q)

[
a†qaq −

1

2

]
for q 6= 0, π and ε(q) = 2

√
1 + sin(2φ) cos(2q) .

(2.58)

As a useful consistency control, in Appendix A we rewrite (2.58) to obtain the ex-
31Another convincing property of this matrix is the fact that its determinant is 1.
32It is also seen that the following transformation is consistent with rotation by redefining the sine

in the Hamiltonian matrix (2.53) to be real.
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pression (15) from [10] and observe that the two are equal.

Let us now turn to discussing the q = 0, π modes which were excluded from our

expressions each time.

We start by noting that the dispersion in (2.58) is manifestly nonegative. How-

ever, if we turn back to the unrotated Hamiltonian (2.53), by direct calculation (with

nondiagonal terms vanishing) we see that the correct expressions for the energies of

0 and π modes are given by:

εcorr(0) = −εcorr(π) = 2
√

2 cos
(
φ− π

4

)
= 2 [cosφ+ sinφ] , (2.59)

both of which can obviously assume negative values, depending on the parameter

φ. Having shown the potential negativeness of the energies of these modes, it is

instructive and also necessary for future calculations to elucidate where and how has

our method of Bogoliubov rotation failed. To see this, we use the defining relation

for the Bogoliubov angle (2.55) to calculate its value for the 0 mode. Inserting q = 0

explicitly into said equation, we obtain for φ ∈ 〈−π/4, π/4〉 a seemingly undefined

relation 0/0 since it holds that | cosφ+sinφ| = cosφ+sinφ. However, upon exploiting

the L’ Hospital’s rule once, it is seen that in this range we obtain the zero value for the

Bogoliubov angle. Conversely, for the parameter range φ ∈ 〈−π/2,−π/4〉 we obtain a

nonzero expression in the numerator, while the expression in the denominator tends

to zero so the Bogoliubov angle is calculated to be that of arctan of infinity, which is

π/2. These results can be written in the following manner:

θ0 =


π
2

; φ ∈ 〈−π
2
,−π

4
〉 ,

0 ; φ ∈ 〈−π
4
, 0〉 ,

0 ; φ ∈ 〈0, π
4
〉 .

(2.60)

Analogous calculation for the π mode yields:

θπ =


0 ; φ ∈ 〈−π

2
,−π

4
〉 ,

π
2

; φ ∈ 〈−π
4
, 0〉 ,

π
2

; φ ∈ 〈0, π
4
〉 .

(2.61)
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Turning back to (2.53), as already mentioned, we see that in q = 0 and q = π

cases the matrix is diagonal so it should not be rotated. However, consulting (2.57),

(2.60) and (2.61), it is seen that for some parameter φ ranges, there will be unwanted

rotations when using the notation introduced for Bogoliubov rotation. This implies

that, when carrying out calculations with general Bogoliubov angles later on, it will

be necessary to exclude the faulty angles explicitly. We will denote these angles with

standard θq symbol and the correct ones as θcorr
0,π = 0 , ∀q, φ.

2.6 Ground states and spectra of the system

Studying the ground states of the XY model for three different parameter φ ranges,

we will see that they correspond to three different types of thermodynamic behaviour.

2.6.1 First (ordered)—1O phase

The first distinct kind of ground states is obtained when the parameter φ takes on

values in the interval 〈−π/2,−π/4〉, a phase we have denoted ordered (1O) due to

the presence of order parameter (magnetisation) at t = 0, as was explained in the

Introduction. From (2.59) we observe that:

εcorr(0) < 0 and εcorr(π) > 0 (2.62)

and from (7.14) it is seen that the negative energy 0 mode belongs to the odd parity

sector. Upon remembering the parity constraints in (2.44), we construct the ground

states for each parity sectors taking into account that even (odd) sector must have

an even (odd) number of JW fermions and that all the modes have positive energies

besides the 0 one, as seen from (2.62). This means that the minimum energy will

correspond to no JW particles in the even sector, but since there ought to be an

odd number of them in the odd sector, we construct the ground state by adding the

lightest possible excitation, that of a 0 mode. Then the ground states for each of the

sectors are:

even: |g+〉 = |0+〉 and odd: |g−〉 = a†0 |0−〉 , (2.63)

with |0±〉 denoting the quasiparticle vacua corresponding to each parity sector de-

fined in a natural way by demanding that they yield zero when acted upon by their
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respective annihilation operators:

aq∈Γ± |0±〉 = 0 . (2.64)

Analogously to a standard BCS derivation, it can be shown that these vacua33 are

given explicitly by:

|0±〉 =
⊗

0<q<π; q∈Γ±

[
cos θq − ı sin θq b†qb

†
−q

]
|0〉 . (2.65)

with |0〉 denoting the JW fermion vacuum determined by

bq |0〉 = 0 ∀q . (2.66)

One can also convince oneself of expressions (2.65) by acting upon them with aq

operators explicitly.

We proceed with calculating the ground state energies. We do so by acting upon

ground states wave functions (2.65) with the Hamiltonian (2.58), but taking (2.59)

into account. In this way, we obtain for the even parity sector:

H+ |g+〉 =
∑
q∈Γ+

ε(q)

[
a†qaq −

1

2

]
|0+〉 = −1

2

∑
q∈Γ+

ε(q) |0+〉 =⇒ E+
0 = −1

2

∑
q∈Γ−

ε
(
q +

π

N

)
.

(2.67)

It is important to notice the sum over the Γ− sector, which we have obtained from

sum over Γ+ sector by shifting the argument of the dispersion by π/N (cf. (7.13) and

(7.14)). This is done so as to allow to easily take the thermodynamic limit N → ∞

later on.

Calculation for the odd parity sector is a tad more subtle since the 0 mode has

negative energy (as shown in (2.59)) and thus has to be explicitly corrected in the

sum in (2.58) so that the correct Hamiltonian is:

H− = εcorr(0)

[
a†0a0 −

1

2

]
+

∑
q∈Γ−\{0}

ε(q)

[
a†qaq −

1

2

]
. (2.68)

33Notice that the products in these wave functions are only over the positive modes of respective
parity sectors. This has to do with the fact that the Hamiltonian (2.58) can be written as two times
the same expression (each nondiagonal matrix in the sum corresponds to the subspace of q and −q
modes simultaneously), but factored only over positive modes with terms corresponding to 0 and π
modes being added explicitly later on since they have no negative counterparts (the corresponding
matrices are diagonal).
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Its action on the odd parity ground state is then given by:

H− |g−〉 = εcorr(0)

[
a†0a0 −

1

2

]
a†0 |0−〉+

∑
q∈Γ−\{0}

ε(q)

[
a†qaq −

1

2

]
a†0 |0−〉 , (2.69)

inside of which we use the anticommutation relations for a operators (A.5) in the

first term:

[
a†0a0 −

1

2

]
a†0 |0−〉 = a†0

[{
a0, a

†
0

}
− a†0a0

]
|0−〉 − 1

2
a†0 |0−〉 =

1

2
a†0 |0−〉 , (2.70)

which upon reinserting into (2.69) and using (2.64) yields:

H− |g−〉 =
1

2

εcorr(0)−
∑

q∈Γ−\{0}

ε(q)

 |g−〉 =
1

2

−ε(0)−
∑

q∈Γ−\{0}

ε(q)

 |g−〉
=− 1

2

∑
q∈Γ−

ε(q) |g−〉 =⇒ E−0 = −1

2

∑
q∈Γ−

ε(q) .

(2.71)

It is of paramount importance to notice from (2.67) and the previous expression

that the two ground-state energies, each corresponding to respective parity sector,

are degenerate34 for odd N and thus the general ground-state wave function is their

linear combination.

Regarding the spectrum of the system, in the φ range we are currently discussing

φ ∈ 〈−π/2,−π/4〉 we see from (2.59) that:

εcorr(0) ∈ 〈−2, 0〉 and εcorr(π) ∈ 〈0, 2〉 (2.72)

and also that for the rest of the spectrum it holds that

ε(q 6= 0, π) = 2
√

1 + 2 sin(2φ) cos(2q) ≥ 2
√

1 + 2 sin(2φ) cos(2π) (2.73)

and since the 0 mode has the lowest energy and the rest of the spectrum has energy

greater or equal to that of the π mode, we conclude that there exist a gap in the

spectrum of the system, as depicted in Fig. 2.1. It is worth noting that this gap in the

spectrum persists in the thermodynamic limit since no energies can be negative and

the 0 mode energy does not shift toward 0 as N →∞.

34For an another perspective on the degeneracy (a deeper physical one), consult [29].
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εcorr(0)E0(GS)

ε = 0

εcorr(π)
rest of the spectrumrest of the spectrum

Figure 2.1: Spectrum of the system for φ ∈ 〈−π/2,−π/4〉 with relevant energies
labeled, along with the one of ground state (GS). Note that the continuousness of
the spectrum above a certain energy is present only in the thermodynamic limit and
also that the energy of the ground state is given with respect to the quasiparticle
vacuum energy.

2.6.2 Second (mesoscopic)—2M phase

In the mesoscopic phase, the parameter φ takes on values in the interval 〈−π/4, 0〉.

From (2.59) we observe that:

εcorr(0) > 0 and εcorr(π) < 0 (2.74)

and from (7.13) it is seen that the negative energy mode π belongs to the even

parity sector. As in the previous section, we refer to the parity constraints in (2.44)

and construct the ground states for each parity sector, taking into account that even

(odd) sector must have and even (odd) number of JW fermions and that all the

modes besides the π one have positive energies. This will imply that it would be

energetically favourable to excite the π mode in the even parity sector, however, there

must be an even number of particles in it and the inequality in (2.73) implies that

their energy will be greater in absolute value than that of a π mode, so the minimal

energy configuration for the even parity sector is that of no particles. Regarding the

odd parity sector, the lowest energy excitation will be the 0 mode (albeit of positive

energy) and thus the ground states for each of the sectors are as before:

even: |g+〉 = |0+〉 and odd: |g−〉 = a†0 |0−〉 , (2.75)

but with a significant difference in the spectrum which is observed after using (2.59)

to obtain:

εcorr(0) ∈ 〈0, 2〉 and εcorr(π) ∈ 〈−2, 0〉 . (2.76)

31



εcorr(π)

E0(GS)

ε = 0

εcorr(0)
rest of the spectrumrest of the spectrum

Figure 2.2: Spectrum of the system for φ ∈ 〈−π/2,−π/4〉 with relevant energies
labeled, along with the one of ground state (GS). Note that the continuousness of
the spectrum above a certain energy is present only in the thermodynamic limit and
also that the energy of the ground state is given with respect to the quasiparticle
vacuum energy.

The spectrum in this phase is gapless since the energies above the ground state form

a continuous range in the thermodynamic limit, as is depicted in Fig. 2.2. We also

remark that the two ground states are again degenerate, completely analogously

to the analysis in the preceding section for the first phase—this is evident since the

ground states are of the same form so the derivations leading up to (2.67) and (2.71)

are identical.

To recapitulate, we have shown that in the first two phases a twofold degeneracy

is present in the ground state of the system with the same energies in both phases.

However, the essential difference lies within the existence of spectrum gap in the first

and lack thereof in the latter.

We also point out the effect of frustration—the negative energy mode has moved

into the even parity sector and thus cannot be excited alone. This makes the lowest

possible energy higher than what it would be were there no parity constraints.

2.6.3 Third (incommensurate)—3I phase

We conclude the calculation of ground state wavefunctions and spectra with the third

phase. In it, the parameter φ takes on values in the interval 〈0, π/4〉. As we have

noted, the ground states in the first two phases are doubly degenerate—we have also

explicitly shown in (2.73) that the rest of the spectrum energies are greater than

those of 0 and π modes. This conclusion hinged on the fact that for all φ ∈ 〈−π/2, 0〉

it holds that sin(2φ) < 0. However, in the third phase, the last inequality obviously

does not hold and thus the ground state(s) will be different than in FM and FM-AFM

phases. Let us find them.
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We first recall (2.59) and see that in the current phase it holds that:

εcorr(0) > 0 and εcorr(π) < 0 , (2.77)

i.e. the π mode still has the lowest possible energy in the system. However, new

minima emerge with energies less than that of the 0 mode—from (2.58) we see

that these would in general correspond to ±π/2 modes. Since these are not present

among the allowed modes except in the thermodynamic limit, we see that the modes

closest to them depend on the remainder of N when divided by 4. In the even sector,

we denote them with ±p′ ∈ Γ+ , given by:

p′ =


π
2

(
1 + 1

N

)
; N mod 4 = 1 ,

π
2

(
1− 1

N

)
; N mod 4 = 3

(2.78)

and in the odd sector with ±p ∈ Γ− , given by:

p =


π
2

(
1− 1

N

)
; N mod 4 = 1 ,

π
2

(
1 + 1

N

)
; N mod 4 = 3 .

(2.79)

Having these minimum energy modes in mind, we proceed to construct the ground

states in each sector. Since the π mode belongs to the even sector and its energy is

negative, we see that we can construct the ground state starting with the quasiparticle

vacuum and adding both π and one of the ±p′ modes since absolute values of their

energies are less than that of the π mode and thus the states

|±p′〉 = a†±p′a
†
π |0+〉 (2.80)

will have less energy than the |0+〉 quasiparticle vacuum state. Analogously, to con-

struct the ground state in the odd sector, we have to add at least one JW particle and

thus we choose those with minimum energies to obtain the following two ground

states:

|±p〉 = a†±p |0−〉 . (2.81)

We now proceed to calculate the associated energies of the four obtained states by
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acting with Hamiltonian (2.58) upon them:

H+ |±p′〉 =
∑

q∈Γ+\{π,±p′}

ε(q)

[
a†qaq −

1

2

]
a†±p′a

†
π |0+〉+

+ε(±p′)
[
a†±p′a±p′ −

1

2

]
a†±p′a

†
π |0+〉+ εcorr(π)

[
a†πaπ −

1

2

]
a†±p′a

†
π |0+〉 .

(2.82)

As for (2.71), we use the anticommutation relations for operators a and the fact that

aq∈Γ± |0±〉 = 0 to obtain:

H+ |±p′〉 =

−1

2

∑
q∈Γ+\{π,±p′}

ε(q) +
1

2
ε(p′) +

1

2
εcorr(π)

 |±p′〉 (2.83)

and after remembering that εcorr(π) is negative, we add it to the sum and arrive at:

E+
0 (±p′) = −1

2

∑
q∈Γ+\{±p′}

ε(q) +
1

2
ε(±p′) , (2.84)

where we note for clarity that ±p in the sum does not imply that both terms are

excluded, but rather only one of them.

Regarding the odd sector and the |±p〉 states, we obtain the similar expression

completely analogously:

E−0 (±p) = −1

2

∑
q∈Γ+\{±p}

ε(q) +
1

2
ε(±p) , (2.85)

where we again note that±p′ in the sum does not imply that both terms are excluded,

but rather only one of them.

We now observe that, besides the obvious double degeneracies both in the even

and odd sector, there is also a general quadruple degeneracy between all four states

since simple trigonometric arguments demonstrate that energies in (2.84) and (2.85)

are the same. Thus the ground state in the AFM phase is in general quadruply de-

generate and a linear combination of all four states |±p′〉 and |±p〉, with spectrum

depicted in Fig. 2.3. Hereby the process of calculation of ground states and spectra

is concluded for all three phases, i.e. parameter φ ranges.
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ε = 0
E0(GS)

εcorr(π)

ε(±p,±p′)
rest of the spectrumrest of the spectrum

Figure 2.3: Spectrum of the system for φ ∈ 〈0, π/4〉 with relevant energies labeled,
along with the one of ground state (GS). Note that the continuousness of the spec-
trum above a certain energy is present only in the thermodynamic limit and also that
energies are given with respect to the quasiparticle vacuum energy.

2.7 Symmetries revisited

Having obtained the spectra of the XY model for all three phases of interest and

having introduced three types of operators along the way (cj, bq and aq), we return to

point out two additional results to be used later to calculate the correlation functions

and magnetisations.

2.7.1 One translation theorem

The eigenstates of the translation operator (2.4) are the states of form

b†q1b
†
q2
· · · b†qm |0〉 , (2.86)

with m odd and q1, q2, ..., qm ∈ Γ−. Their eigenvalues are exp
[
ı
∑m

j=1 qj

]
, i.e.:

T
(
b†q1b

†
q2
· · · b†qm |0〉

)
= exp

[
ı

m∑
j=1

qj

] (
b†q1b

†
q2
· · · b†qm |0〉

)
. (2.87)

The proof of this relation will be omitted since it is given in detail in [11] and is

also similar to the forthcoming proof regarding the mirror operator which we will

write out in detail. We instruct the reader to consult the following derivation for an

argument on why this relation holds for the a operators as well, only with the ground

states being the quasiparticle vacua.

2.7.2 One mirroring theorem

As we have stated in the section on symmetry properties of the XY model, relation

(2.25) is useful since, if it is possible to find some result of interest for mirroring with
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respect to one spin site, it allows us to relate it to all the other sites as well. This is

indeed possible to do for the operator MN acting on a general state of JW fermions:

MN

(
a†q1a

†
q2
· · · a†qm |0

−〉
)

= a†−qma
†
−qm−1

· · · a†−q1 |0
−〉 . (2.88)

We now prove this relation and emphasize once again that the proof of (2.87) is

analogous and given in detail [11].

To begin, let us remember that we want to obtain the relation in terms of a oper-

ators, but if we observe that

a†q |0−〉 ∝
[
cos θqb

†
q − ı sin θqb−q

] [
cos θq − ı sin θqb†qb

†
−q

]
|0〉

=
[
cos2 θq + sin2 θ1

]
b†q |0〉 = b†q |0〉

(2.89)

upon using (2.57) and (2.65), we conclude that we can prove an analogous relation

for the b operators and the |0〉 vacuum rather than start with the quasiparticle vacuum

and then need to do an additional transformation in the proof. Thus, we introduce

the notation for an ordered product of m raising operators b†:(
m∏
j=1

b†qj

)
|0〉 := b†q1b

†
q2
· · · b†qm |0〉 . (2.90)

Our goal is to arrive at the spin operators since the basis (2.2) in which the action of

the mirror operator is known is of those operators. To this end, we first turn to the c

operators via the Fourier transform (7.15):

(
m∏
j=1

b†qj

)
|0〉 =

1

Nm/2

N∑
j1=1

· · ·
N∑

jm=1

eıq1j1 · · · eıqmjmc†j1 · · · c
†
jm
|0〉

=
1

Nm/2

N∑
j1,...,jm=1

eı
∑m
l=1 qljl

m∏
n=1

c†jn |0〉 .

(2.91)

Important and soon to be used point to notice from the last expression is the fact that

it vanishes unless all jl are different since the cj operators are fermionic and thus the

Pauli exclusion principle applies.

We turn the cj operators into spin ones exploiting (2.30), for which the next
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example is useful—consider three cj operators being turned into spin ones:

c†1c
†
4c
†
2 |0〉 = −c†1c

†
2c
†
4 |0〉 = −σ−1 [σz1]σ−2 [σz1σ

z
2σ

z
3]σ−4

N⊗
j=1

|↑j〉 = −σ−1 σ−2 σ−4
N⊗
j=1

|↑j〉 ,

(2.92)

with the fermionic anticommutation relations used in the first equality, JW trans-

formation (2.30) and the definition of the vacuum states35 in terms of spin kets in

the second and finally the commutation of spin operators for different sites for the

last one. The process of bringing all the σzj operators to the vacuum state will al-

ways be the same when cj are ordered as in the second expression since they never

cross the σ−j operators of the same site and yield +1 when acting on the up spin

states |↑〉. This implies that the sign of the spin operators will correspond to the

permutation that brings the tuple of indices of operators to ascending order, in this

case {1, 4, 2}  {1, 2, 4} with the − sign. We demarcate this permutation sign with

S [{jl}] and use it to immediately obtain the final expression in (2.91):

1

Nm/2

N∑
j1,...,jm=1

eı
∑m
l=1 qljl

m∏
n=1

c†jn |0〉 =
1

Nm/2

N∑
j1,...,jm=1

S [{jl}] eı
∑m
l=1 qljl

m⊗
n=1

(
σ−jn
) N⊗
s=1

|↑s〉 .

(2.93)

This form of the expression of interest is convenient since we can now easily act with

MN on it, having (2.21) in mind:

MN

(
m∏
j=1

b†qj

)
|0〉 =

1

Nm/2

N∑
j1,...,jm=1

S [{jl}] eı
∑m
l=1 qljlMN

(
m⊗
n=1

(
σ−jn
) N⊗
s=1

|↑s〉

)
.

(2.94)

Since we intend to act on the spin site index jn of the σ− operators, we need a

transformation inverse to that of (2.21), i.e. the inverse of j  2N − j, but this

transformation is its own inverse so we need only make exchange jn  2N − jn in

the previous equation:

MN

(
m∏
j=1

b†qj

)
|0〉 =

1

Nm/2

N∑
j1,...,jm=1

S [{jl}] eı
∑m
l=1 qljl

m⊗
n=1

(
σ−2N−jn

) N⊗
s=1

|↑s〉 . (2.95)

We emphasize two points. First off, the choice of the N th site for the mirror operator

35Note that, since we have related c†j with σ−j in JW transformation (2.30), the vacuum state is a
product of up spin states.
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MN is now seen to be appropriate since all the momenta q are in the odd Γ− sector

and thus, from (7.14), it holds that exp [±ı2Nq] = 1 and we can make the following

exchange:

eıqljl = eı(−2Nql)eı(−ql)(−jl) = eı(−ql)(2N−jl) . (2.96)

Without choosing theN th site as the origin of reflection, we would have had lingering

phase factors to complicate our discussion. However, as was already mentioned,

because of (2.25) we can find the desired expression for the mirror operator on this

convenient site and then use the translation operator for the others.

Secondly, since the number of elements m of a tuple {jl} is odd, sign of the

permutation S{[jl]} will evidently be the same as S{[2N − jl]} up to a factor of

(−1)(m−1)+(m−2)+···+1 = (−1)
m(m−1)

2 (emerging when operators are placed in inverse

order) if all of its elements are different than zero (recall that periodicity of the spin

chain would imply that the zero index corresponds to the N th position in the chain).

We now remember the demonstrated fact that all jl must be different for the expres-

sion of interest not to vanish, so at most one term of the form 2N − jl can be zero.

Then the normal ordering of {jl} would place that element at the first place and we

would need m − 1 exchanges of creation operators to put it in its appropriate N th

place. However, since m is odd, this process does not induce the sign. Along this,

the factor in the exponent should be changed as well, but since the expressions for

the 0 or N in exponents both give the factor of 1, this exchange can be done with no

introduction of additional factors as well. These arguments imply that we can write

our expression of interest as follows:

MN

(
m∏
j=1

b†qj

)
|0〉 =

(−1)
m(m−1)

2

Nm/2

N∑
j1,...,jm=1

S [{2N − jl}] eı
∑m
l=1(−ql)(2N−jl)

m⊗
n=1

(
σ−2N−jn

) N⊗
s=1

|↑s〉 .

(2.97)

Since the relative ordering of terms in the exponent and the spin operator product is

not relevant, we can equate the indices l and n to obtain:

MN

(
m∏
j=1

b†qj

)
|0〉 =

(−1)
m(m−1)

2

Nm/2

N∑
j1,...,jm=1

S [{2N − jl}] eı
∑m
l=1(−ql)(2N−jl)

m⊗
l=1

(
σ−2N−jl

) N⊗
s=1

|↑s〉 .

(2.98)

This expression is in the form appropriate for renaming the index 2N − jl as jl and

noticing that, because of the periodicity of the chain, the sums will stay the same and
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run through all of the same terms:

MN

(
m∏
j=1

b†qj

)
|0〉 =

(−1)
m(m−1)

2

Nm/2

N∑
j1,...,jm=1

S [{jl}] eı
∑m
l=1(−ql)jl

m⊗
l=1

(
σ−jl
) N⊗
s=1

|↑s〉 .

(2.99)

We now compare this equation with (2.93) since they have the same form, only with

the momenta values negative to obtain:

MN

(
m∏
j=1

b†qj

)
|0〉 = (−1)

m(m−1)
2

(
m∏
j=1

b†−qj

)
|0〉 , (2.100)

which, taking into consideration the discussed equivalence of this result for a and b

operators and also the fact that the factor in front corresponds to inverting the order

of operators, yields the desired expression (2.88):

MN

(
a†q1a

†
q2
· · · a†qm |0

−〉
)

= a†−qma
†
−qm−1

· · · a†−q1 |0
−〉 . (2.101)

Our proof is hereby concluded.

39



3 Correlation functions

3.1 Introduction

Correlation functions36 are an especially useful way of analysing several properties of

a given system. Their use encompasses a broad range in science and technology, from

spectral analysis and autocorrelation functions in signal processing [30] to quantum

field theory where they are interpreted as propagation amplitudes [31, 32]. The

particular ones which will be of importance to our present work are the one- and two-

point correlation functions of the spin operators since they will serve as a measure of

the order in the system at hand and for evaluating other interesting properties, such

as magnetisations. This approach has already been used to identify emergence of

interesting types of magnetisations and phase transitions in previous works [10,11].

3.2 Static correlation functions

Since we have naturally obtained the ground states in the momentum space, we will

begin by calculating the particular terms necessary for our end goal, the physically

relevant spin correlation functions 〈σµj σ
µ
k 〉.

Since the process is somewhat lengthy, but straightforward, full calculations will

be given for the representative examples and other ones will be cited only. As for

motivating our starting point, we cite the result from the succeeding section (3.2.2)

to write the spin correlation function in the, e.g. x direction as:

〈σxj σxl 〉 = (−ı)l−j〈BjAj+1Bj+1 · · · Al−1Bl−1Al〉 = (−ı)l−j〈
l−1⊗
m=j

BmAm+1〉 , (3.1)

where Aj and Bj are the Majorana fermionic operators and are defined as follow:

Aj :=

(
j−1⊗
l=1

σzl

)
⊗ σxj = c†j + cj and Bj :=

(
j−1⊗
l=1

σzl

)
⊗ σyj = ı

(
c†j − cj

)
. (3.2)

As is further discussed in said section, by use of the Wick’s theorem, we reduce the

problem of finding the correlation functions of form (3.1) to calculating the correla-

36The correlation functions and the expectation values of similar type are often denoted shortly as
correlators in literature.
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tion functions of the following three terms:

〈AjBl〉 , 〈AjAl〉 and 〈BjBl〉 , (3.3)

but since these will by (3.2) in general be sums of terms of the two-operator correla-

tion functions of the c operators, we see that terms of form 〈cjcl〉 are needed. These,

on the other hand, can be calculated from 〈bqbk〉 terms by using the Fourier trans-

form (7.15), while 〈bqbk〉 terms can be calculated from the 〈aqak〉 terms by means of

the transformation (2.57). Why have we gone all the way to the a operators? Well,

since we will be seeking the correlation functions (expectation values) in the ground

states, we need to start from the aq operators because their37 action on the ground

state wavefunctions is known from (2.64).

Before turning to each of the three phases we note that, because of the identical

form of the ground states for the first two, i.e. (2.63) and (2.75), we can evaluate

the correlation functions for them simultaneously and only in the end add appropri-

ate corrections to the Bogoliubov angles, as described by (2.60) and (2.61) and the

corresponding discussion. By this, we mean that we will write the correct Bogoliubov

angles first for the Majorana correlation functions since only they are of direct inter-

est for further calculations. Henceforth, it is explicitly assumed that corrections must

be made in other types of correlation functions (expectation values).

3.2.1 1O and 2M phases—static Majorana correlation functions

Since the correlation functions in general differ for the two ground states |g±〉, we

evaluate them separately. As announced, we do this in several steps, with Majorana

correlation functions as the end goal. Begin with the + one and use (2.63) in the

first equality, the definition of anticommutator in the second and relations (A.5) and

(2.64) in the third:

〈g+| aqa†k |g
+〉 = 〈0+| aqa†k |0

+〉 = 〈0+|
{
aq, a

†
k

}
− a†kaq |0

+〉 = δq,k 〈0+|0+〉 = δq,k .

(3.4)
37Using (2.65) we can work with bq operators directly. For pedagogical purposes, we will use the

longer method first for static correlation functions and then exploit the said more direct method when
calculating the dynamic correlation functions so as to demonstrate both of them.
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and similarly for the rest of the combinations of a operators:

〈g+| a†qak |g+〉 = 〈0+| a†qak |0+〉 = 0 , (3.5a)

〈g+| aqak |g+〉 = 〈0+| aqak |0+〉 = 0 , (3.5b)

〈g+| a†qa
†
k |g

+〉 = 〈0+| a†qa
†
k |0

+〉 = 0 , (3.5c)

where we can, beside the referenced expressions, use the fact that there must be the

same number of creation and annihilation operators for the correlation function (ex-

pectation value) not to vanish. It is also instructive to notice that (3.4) and the first

equation in (3.5) are consistent with the anticommutation relations (A.5) for opera-

tors aq, while the other two equations in (3.5) are related by a Hermitian conjugate

and index exchange.

We continue with expressions for the |g−〉 state:

〈g−| aqa†k |g
−〉 = 〈0−| a0aqa

†
ka
†
0 |0−〉

=− 〈0−| aqa0a
†
ka
†
0 |0−〉

=− 〈0−| aq
[{
a0, a

†
k

}
− a†ka0

]
a†0 |0−〉

=− δ0,k 〈0−| aqa†0 |0−〉+ 〈0−| aqa†ka0a
†
0 |0−〉

=− δ0,kδq,k + δq,k = δq,k [1− δq,0] ,

(3.6)

where we have used the definition of the ground state (2.63) and (2.75) in the

first row, the anticommutation relations for aq operators (A.5) in the second, third

and fourth row and the property of orthonormality of fermionic states with different

occupation numbers for the final row.

We cite the results for the other three correlation functions in the |g−〉 state:

〈g−| a†qak |g−〉 =δq,kδq,0 , (3.7a)

〈g−| aqak |g−〉 =0 , (3.7b)

〈g−| a†qa
†
k |g
−〉 =0 , (3.7c)

As before, notice the consistencies between the previous four equations.

As announced in the beginning of this section, we proceed with the correlation

functions for bq operators by exploiting the just obtained correlation functions along
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with the transformation (2.57), which we repeat and expand here for convenience:

aq = cos θq bq + ı sin θq b
†
−q , (3.8a)

a†−q =ı sin θq bq + cos θq b
†
−q (3.8b)

and also write out its inverse explicitly:

bq = cos θq aq − ı sin θq a†−q , (3.9a)

b†−q =− ı sin θq aq + cos θq a
†
−q . (3.9b)

Using these equations, along with (3.4) and (3.5), we obtain:

〈g+| bqb†k |g
+〉 = 〈g+|

[
cos θq aq − ı sin θq a†−q

] [
ı sin θk a−k + cos θk a

†
k

]
|g+〉

= 〈g+| cos θq cos θk aqa
†
k |g

+〉

=
1 + cos(2θq)

2
δq,k .

(3.10)

Similarly, for the remaining three correlation functions in the |g+〉 state we obtain:

〈g+| b†qbk |g+〉 =
1− cos(2θq)

2
δq,k , (3.11a)

〈g+| bqbk |g+〉 = ı
sin(2θq)

2
δq,−k , (3.11b)

〈g+| b†qb
†
k |g

+〉 = ı
sin(2θq)

2
δq,−k . (3.11c)

Notice that the last two equations are connected by a Hermitian conjugate and index

exchange. Similarly, sum of (3.10) and the first equation in (3.11) is consistent with

the anticommutation relations for c operators (2.35).

We continue with calculations in the |g−〉 state and use (3.9), along with (3.6)

and (3.7):

〈g−| bqb†k |g
−〉 = 〈g−|

[
cos θq aq − ı sin θq a†−q

] [
ı sin θk a−k + cos θk a

†
k

]
|g−〉

= 〈g−| cos θq cos θk aqa
†
k + sin θq sin θk a

†
−qa−k |g−〉

=− cos(2θ0)δq,kδq,0 +
1 + cos(2θq)

2
δq,k .

(3.12)
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The remaining correlation functions are:

〈g−| b†qbk |g−〉 = cos(2θ0)δq,kδq,0 +
1− cos(2θq)

2
δq,k , (3.13a)

〈g−| bqbk |g−〉 = ı
sin(2θq)

2
δq,−k , (3.13b)

〈g−| b†qb
†
k |g
−〉 = ı

sin(2θq)

2
δq,−k . (3.13c)

One should again convince oneself of the internal consistency of these equations, as

we have remarked for the |g+〉 state.

Having obtained the correlation functions in the Fourier space, we turn back to

the coordinate space by means of an inverse Fourier transform (7.15). We begin with

the |g+〉 state once again:

〈g+| cjc†l |g
+〉 = 〈g+|

 1√
N

∑
q∈Γ+

eıqjbq

( 1√
N

∑
k∈Γ+

e−ıklb†k

)
|g+〉

=
1

N

∑
q,k∈Γ+

eı(qj−kl) 〈g+| bqb†k |g
+〉

=
1

N

∑
q,k∈Γ+

eı(qj−kl)
1 + cos(2θq)

2
δq,k

=
1

N

∑
q∈Γ+

eıq(j−l)
[

1 + cos(2θq)

2

]
,

(3.14)

where we have used (3.12) to obtain the third row. The rest of the correlation func-

tions for the c operators in the |g+〉 state are:

〈g+| c†jcl |g+〉 =
1

N

∑
q∈Γ+

eıq(j−l)
[

1− cos(2θq)

2

]
, (3.15a)

〈g+| cjcl |g+〉 =
1

N

∑
q∈Γ+

eıq(j−l)
[
ı
sin(2θq)

2

]
, (3.15b)

〈g+| c†jc
†
l |g

+〉 =
1

N

∑
q∈Γ+

eıq(j−l)
[
−ısin(2θq)

2

]
. (3.15c)

Procedure for the c operators in the |g−〉 state is completely analogous and yields:
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〈g−| cjc†l |g
−〉 =

1

N

∑
q∈Γ−

eıq(j−l)
[

1 + cos(2θq)

2

]
− cos(2θ0) , (3.16a)

〈g−| c†jcl |g−〉 =
1

N

∑
q∈Γ−

eıq(j−l)
[

1− cos(2θq)

2

]
+ cos(2θ0) , (3.16b)

〈g−| cjcl |g−〉 =
1

N

∑
q∈Γ−

eıq(j−l)
[
ı
sin(2θq)

2

]
, (3.16c)

〈g−| c†jc
†
l |g
−〉 =

1

N

∑
q∈Γ−

eıq(j−l)
[
−ısin(2θq)

2

]
. (3.16d)

upon using (3.9), (3.12) and (3.13), along with properties (2.56). Notice also that

the terms including the faulty Bogoliubov angles must be substituted with the correct

ones θcorr
0 in the previous eight equations, as was remarked in the beginning of this

section.

To proceed, we find the announced Majorana correlation functions, which are

necessary for calculating the physical spin correlation functions. We reiterate the

definitions of the Majorana fermionic operators (3.2) here for convenience:

Aj :=

(
j−1⊗
l=1

σzl

)
⊗ σxj = c†j + cj and Bj :=

(
j−1⊗
l=1

σzl

)
⊗ σyj = ı

(
c†j − cj

)
. (3.17)

Using the previous two equations, we obtain the first Majorana correlation func-

tion for the |g+〉 state:

〈g+|AjBl |g+〉 =ı 〈g+|
[
c†j + cj

] [
c†j − cj

]
|g+〉

=ı 〈g+| c†jc
†
l − cjcl |g

+〉+ ı 〈g+| cjc†l − c
†
jcl |g+〉

=
1

N

∑
q∈Γ+

eıq(j−l) [sin(2θq)] +
1

N

∑
q∈Γ+

eıq(j−l) [ı cos(2θq)]

=
ı

N

∑
q∈Γ+

eıq(j−l)e−ı2θq

=
ı

N

∑
q∈Γ+

eı2θqe−ıq(j−l) ,

(3.18)

where we have used (3.14) and (3.15) to get from the second to the third row and

the property of the Bogoliubov angle (B.8) to get the final equation.
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Similar calculation for the |g−〉 state yields:

〈g−|AjBl |g−〉 =
ı

N

∑
q∈Γ−

eı2θqe−ıq(j−l) − 2ı

N
cos(2θ0) . (3.19)

We have written the correlation functions for both states since, as we will soon see,

they reduce to a more compact form upon introducing the corrections to Bogoliubov

angles.

First of all, from (2.60) and (2.61) we see that in the + sector the only potentially

faulty angle is that of the π mode and in the 1O phase it is correct as it is so we can

write:

〈g+|AjBl |g+〉1O, corr
=

ı

N

∑
q∈Γ+

eı2θqe−ıq(j−l) . (3.20)

In the 2M phase however, we must exclude it, but we wish to keep the form of∑
Γ+ because it will make the expression much more elegant and easier to use in

calculations:

〈g+|AjBl |g+〉2M, corr
=

ı

N

∑
q∈Γ+\{π}

eı2θqe−ıq(j−l) +
ı

N
eı2θ

corr
π e−ıπ(j−l) (3.21)

and now we add and subtract the incorrect term so that we can retain the original

form of the sum:

〈g+|AjBl |g+〉2M, corr

=
ı

N

∑
q∈Γ+\{π}

eı2θqe−ıq(j−l) +
ı

N
eı2θ

corr
π e−ıπ(j−l) +

ı

N
eı2θπe−ıπ(j−l) − ı

N
eı2θπe−ıπ(j−l)

=
ı

N

∑
q∈Γ+

eı2θqe−ıq(j−l) +
2ı

N
(−1)j−l .

(3.22)

Analogous analysis for the |g−〉 state, upon noticing that the problematic mode in

this sector is the 0 mode, yields:

〈g−|AjBl |g−〉
1O, corr

=
ı

N

∑
q∈Γ−

eı2θqe−ıq(j−l) (3.23)
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and also

〈g−|AjBl |g−〉
2M, corr

=
ı

N

∑
q∈Γ−

eı2θqe−ıq(j−l) − 2ı

N
. (3.24)

Results given in (3.20), (3.22), (3.23) and (3.24) can be written in a more concise

manner upon defining the function:

f±φ (j − l) :=

0 ; φ ∈ 〈−π
2
,−π

4
〉 ,

− (∓1)j−l+1 ; φ ∈ 〈−π
4
, 0〉 .

(3.25)

Now the Majorana correlation functions for the first two phases phases can be written

(omitting the corr denotation) as:

〈g±|AjBl |g±〉 =
ı

N

∑
q∈Γ±

eı2θqe−ıq(j−l) +
2ı

N
f±φ (j − l) . (3.26)

In the end of this section, we turn to the more elementary 〈AjAl〉 and 〈BjBl〉

correlation functions. As is easily seen, their final expressions contain no references

to Bogoliubov angles so no amendments are needed:

〈g±|AjAl |g±〉 = 〈g±|
[
c†j + cj

] [
c†l + cl

]
|g±〉

= 〈g±| c†jc
†
l + cjcl |g±〉+ 〈g±| c†jcl + cjc

†
l |g
±〉

=
1

N

∑
q∈Γ±

eıq(j−l)

=δj,l ,

(3.27)

where we have used (3.2) for the first equality; relations (3.14), (3.15) and (3.16)

for the third row and then the delta function relation
∑

q∈Γ± e
ıq(j−l) = Nδj,l to obtain

the final equality.

Similar calculation for the Bj operators yields the same expression and we thus

write both of them as:

〈g±|AjAl |g±〉 = 〈g±|BjBl |g±〉 = δj,l . (3.28)
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3.2.2 1O and 2M phases—static spin correlation functions

We now seek to evaluate the physically relevant two-point spin correlation functions

which are in general of the form:

Cµ
jl = 〈σµj σ

µ
l 〉 = 〈g±|σµj σ

µ
l |g

±〉 µ = x, y, z . (3.29)

To do this, calculations must be carried out separately for each of the three directions.

Let us do so.

Begin with the x direction:

Cxx
jl = 〈g±|σxj σxl |g±〉

= 〈g±|
[
σ−j + σ+

j

] [
σ−l + σ+

l

]
|g±〉

= 〈g±|
[
c†j + cj

]( j−1⊗
m=1

σzm

)(
l−1⊗
n=1

σzn

)[
c†l + cl

]
|g±〉

= 〈g±|
[
c†j + cj

] [
1− 2c†jcj

]( l−1⊗
m=j+1

σzm

)[
c†l + cl

]
|g±〉

= 〈g±|
[
c†j − cj

]( l−1⊗
m=j+1

[
c†m + cm

] [
c†m − cm

]) [
c†l + cl

]
|g±〉

=(−ı)l−j 〈g±|
l−1⊗
m=j

BmAm+1 |g±〉 ,

(3.30)

where we have used (2.3) for the second row, (2.30) for the third,

[
c†j + cj

] [
1− 2c†jcj

]
= c†j + cj − 2

[
1− c†jcj

]
cj = c†j − cj , (3.31)

(
σzj
)2

= 1 and

[
c†m + cm

] [
c†m − cm

]
= −c†mcm+cmc

†
m = −c†mcm+1−c†mcm = 1−2c†mcm = σzm (3.32)

for the fifth row and (3.2) for the last one.

Analogous calculations demonstrate that for the other two directions, i.e. y and
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z, similar relations for the correlation functions hold:

Cyy
jl =(ı)l−j 〈g±|

l−1⊗
m=j

AmBm+1 |g±〉 , (3.33a)

Czz
jl =− 〈g±|AjBjAlBl |g±〉 . (3.33b)

We now state an extraordinarily useful theorem—Wick’s theorem [33]—in copi-

ous use both in condensed matter physics and quantum field theory.

Theorem 1 (Wick’s theorem for fermionic operators) Let Oj be a linear combina-

tion of the fermionic operators dl and d†l :

Oj =
∑
l

[
ujld

†
l + vjldl

]
, (3.34)

where ujl and vjl are in general ∈ C. Then the expectation value of the product of n

such operators in their corresponding vacuum state |0〉d defined by

dj |0〉d = 0 , ∀j (3.35)

is a sum over all distinct contractions of pairs, taking into account the permutation sign:

〈0|d O1O2 · · ·On |0〉d

=
∑

k1<j1, k2<j2,···, kn<jn
j1<j2<···<jn

(−1)p 〈0|d Oj1Ok1 |0〉d 〈0|d Oj2Ok2 |0〉d · · · 〈0|d OjnOkn |0〉d .

(3.36)

The permutation sign (−1)p is defined as one encountered when permuting the sequence

ordered as 1, 2, · · ·, n into j1, k1, · · ·, jn, kn.

As for important remarks, first note that we have implicitly assumed that n is even

in the final sentence of the theorem. This is beacuse the expectation value in (3.36)

is zero for odd n, as is easily seen since when the number is odd, all the operators

except for one can be contracted in pairs, but its expectation value in the ground

state will be zero— 〈0|d dj |0〉d = 0 by definition (3.35) and 〈0|d d†j |0〉d = 0 because

the different occupation states for fermions are orthonormal (this line of thought is,
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of course, valid for the former equation as well). Secondly, the operators for which

we will apply the Wick’s theorem are the c operators to calculate the expansions such

as (3.30) and (3.33). Fourier transform (7.15), along with (2.66), implies that the

vacua for bq and cj operators are the same:

cj |0〉 = 0 ∀j . (3.37)

We now proceed to write out the expression for the x direction correlation func-

tion Cxx
jl , given by (3.30). We see that by the Wick’s theorem 1, we will need to

evaluate three types of terms:

〈AjBl〉 , 〈AjAl〉 and 〈BjBl〉 . (3.38)

Since the latter two terms vanish for operators on different sites (indices) by virtue

of (3.28), it is seen from (3.30) that the only nonvanishing contractions will be those

of form 〈AjBl〉, given by (3.26). Thus, the expression (3.36) can be reduced to such

terms, where we now denote the sum as that over all permutations P , each of which

has a corresponding sign p, as defined before:

Cxx
jl = (−ı)l−j

∑
P

(−1)p 〈0|BjAP (j+1) |0〉 〈0|Bj+1AP (j+2) |0〉 〈0|BjAP (j+1) |0〉 ···〈0|Bl−1AP (j) |0〉

(3.39)

and the sum is recognised to have the form of the determinant [34]. Upon defining

the abbreviations (the second equality is easily seen by using (3.2))

G(j − l) := −ı 〈g±|AjBl |g±〉 = ı 〈g±|BlAj |g±〉 (3.40)

this expression takes on the following form:

Cxx
jl = (−1)r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

G(1) G(0) G(−1) . . . G(2− r)

G(2) G(1) G(0) . . . G(3− r)

G(3) G(2) G(1) . . . G(4− r)
...

...
... . . . ...

G(r) G(r − 1) G(r − 2) . . . G(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (3.41)

where we have defined the distance between the two spin sites of interest r = l − j.
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We observe that this expression is dependent only on said distance between the sites

and thus write it in terms of r only:

Cxx(r) := Cxx
jl , r = l − j . (3.42)

Analogous calculation for the y direction yields:

Cyy(r) := Cyy
jl = (−1)r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

G(−1) G(−2) G(−3) . . . G(−r)

G(0) G(−1) G(−2) . . . G(1− r)

G(1) G(0) G(−1) . . . G(2− r)
...

...
... . . . ...

G(r − 2) G(r − 3) G(r − 4) . . . G(−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.43)

upon using r = l − j.

The z direction operator has the most elementary form and it is easily seen from

the Wick’s theorem (3.36) that, upon expanding (3.33), we obtain:

Czz(r) := Czz
jl =

∣∣∣∣∣∣G(0) G(−r)

G(r) G(0)

∣∣∣∣∣∣ , (3.44)

with r = l − j, as before.

An astute reader has noticed that all three matrices in (3.41), (3.43) and (3.44)

have the special structure in the sense that all of the elements on their left-to-right

diagonals have the same values—these matrices are known as Toeplitz matrices. Co-

incidentially, development of the theory of the asymptotic forms of their determi-

nants—Toeplitz determinants—has been intimately related to the analysis of the XY

and Ising models [20,35] and a vast amount of literature on their properties is acces-

sible. The most useful among them, however, are those of the asymptotic behaviour

of their determinants, as used in, e.g. [10]. In the present work (especially the forth-

coming section 3.3), we will seek to evaluate the dynamic correlation functions with

corresponding deteminants which will in general be extremely tedious or impossible

to evaluate or expand by hand or not Toeplitz in their form and we will thus resort

to numerical analysis for calculating their determinants for different numbers of spin

sites N .
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3.2.3 3I phase—static Majorana correlation functions

We now set out to calculate the Majorana correlation functions for the third phase.

As we have discussed in the previous subsection, the most general ground state

wavefunction is a linear combination of four states defined in (2.80) and (2.81).

In this work, we choose a linear combination of only the two |±p〉 states, as was

done in [11]:

|u1, u2〉 := u1 |p〉+ u2 |−p〉 . (3.45)

This is partially due to the fact that the p and −p states belong to the same (odd)

energy sector and thus the state in the previous equation has a definite parity along

the z axis, which will allow38 us to apply the Wick’s theorem.

Furthermore, the states in one sector can be obtained by acting with the parity

operators Πx,y on the states in the other, if they are the eigenstates of the parity

operator along the z axis, which they are by construction. Along this, the restriction

to the odd parity sector will be used to identify a special type of behaviour and

eliminate the other ones, specifically the most interesting one. Since the process

of calculating these functions is conceptually similar to the ones encountered in the

previous sections for the first two phases, we only cite the final results of interest

here and relegate the rest to the Appendix C which contains all of the intermediary

results.

Then the Majorana correlation functions are:

〈AjBl〉u1,u2 =
ı

N

∑
q∈Γ−

eı2θqe−ıq(j−l) − 2ı

N
cos [p (j − l)− 2θp]−

2ı

N

(
u∗1u2e

−ıp(j+l) + c.c.
)
,

(3.46)

with c.c. denoting the complex conjugate and 〈〉u1,u2 denoting the expectation value

in the |u1, u2〉 state given by (3.45) and also:

〈AjAl〉u1,u2 = 〈BjBl〉u1,u2 = δj,l −
2ı

N

(
|u1|2 − |u2|2

)
sin [p (j − l)] . (3.47)

38Recall that, for the Wick’s theorem to be applicable, the operators in question ought to have
vanishing expectation values. One can convince oneself that this does not hold for a general linear
combination of all four states of the third phase.
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3.2.4 3I phase—static spin correlation functions

As for the first two phases, we calculate the correlation functions for the products of

two spin operators along one of the directions. Since these operators are the same

for all three phases, we can replicate the results from the previous section up to the

point of writing the expectation values in terms of the matrix determinants:

Cxx
jl =(−ı)l−j 〈u1, u2|

l−1⊗
m=j

BmAm+1 |u1, u2〉 ,

Cyy
jl =(ı)l−j 〈u1, u2|

l−1⊗
m=j

AmBm+1 |u1, u2〉 ,

Czz
jl =− 〈u1, u2|AjBjAlBl |u1, u2〉 ,

(3.48)

where we have used the expectation values in the most general ground state of the

odd parity sector |u1, u2〉 defined in (3.45).

Wishing to write these expectation values in terms of determinants as for the other

two phases, we first note that these expressions will not be translationally invariant as

the preceding ones since the Majorana correlation function (3.46) depends explicitly

on both j and l, not only their difference. Because of this, the total matrix will not

be of Toeplitz form. Furthermore, consulting (7.35), we see that 〈AA〉 and 〈BB〉 will

generally not be equal to Kronecker deltas, however, we will set |u1| = |u2| = 1√
2

in later calculations since this choice will maximise the magnetisations we seek to

obtain and it is thus appropriate to make this choice here as well, making these two

correlation functions translationally invariant. Having all of this in mind, the train of

thought for writing the determinants is the same as before (besides the Toeplitz form

of matrices):

Cxx
jl = (−1)l−j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H(j + 1, j) H(j + 1, j + 1) H(j + 1, j + 2) . . . H(j + 1, l − 1)

H(j + 2, j) H(j + 2, j + 1) H(j + 2, j + 2) . . . H(j + 2, l − 1)

H(j + 3, j) H(j + 3, j + 1) H(j + 3, j + 2) . . . H(j + 3, l − 1)
...

...
... . . . ...

H(l, j) H(l, j + 1) H(l, j + 2) . . . H(l, l − 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(3.49)
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with the function H(j, l) defined as follows:

H(j, l) := −ı 〈u1, u2|AjBl |u1, u2〉 = ı 〈u1, u2|BlAj |u1, u2〉 , (3.50)

with imaginary unit factor in front to render the terms real. Later on, for simplicity

we will not use this factor.

Analogous calculation for the y and z directions yields:

Cyy
jl = (−1)l−j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H(j, j + 1) H(j, j + 2) H(j, j + 3) . . . H(j, l)

H(j + 1, j + 1) H(j + 1, j + 2) H(j + 1, j + 3) . . . H(j + 1, l)

H(j + 2, j + 1) H(j + 2, j + 2) H(j + 2, j + 3) . . . H(j + 2, l)
...

...
... . . . ...

H(l − 1, j + 1) H(l − 1, j + 2) H(l − 1, j + 3) . . . H(l − 1, l)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(3.51)

and

Czz
jl =

∣∣∣∣∣∣H(j, j) H(j, l)

H(l, j) H(l, l)

∣∣∣∣∣∣ . (3.52)

Note that all three of these matrices would essentially be of the same form as those

for the first two phases were their corresponding correlation functions translationally

invariant.

3.3 Dynamic correlation functions

Having obtained the static correlation functions, we now turn to the temporal evo-

lution of the XY model, specifically its dynamic correlation functions. The particular

circumstance which we will consider is that of a quench of the Hamiltonian (1.2)

parameter39 φ. The change we will analyse is from φ0 to φ1 and in general between

the same phase and also the different ones. However, before we begin developing

the theory of the dynamic behaviour of the XY model, let us provide a short outline

of the process. We start with obtaining the time evolved versions of the ground states

for all three phases by emphasising the importance of the 0 and π modes. Here, the

fact that their respective Hamiltonians are diagonal will come into play. We will con-

tinue with calculating the dynamic Majorana correlation functions and observe that

39Recall our discussion given in the section on symmetry properties of the model in which we have
remarked that the Hamiltonian will retain its symmetries once it is evolved in time in this way.

54



the temporal evolution introduces additional terms in each. Finally, we will find the

dynamic spin correlation functions in matrix form and see that their form will in gen-

eral be that of a Pfaffian matrix, a short introduction to which is given in Appendix

E.

3.3.1 General temporal evolution problem

As was announced while solving the XY model, the fact that its Hamiltonian is sepa-

rable into subspaces corresponding to q and −q modes simultaneously for each q for

which the matrix is nondiagonal (all modes except 0 and π) has the factorisation of

the vacuum wavefunction over the positive modes q (besides π) as a direct conse-

quence. From this, we observe that it is possible to evolve the each term in the wave

function separately40.

Taking the aforementioned into consideration, we write the expression for time

evolution of the general vacuum states:

|Ψ(t)〉 =
⊗

0<q<π; q∈Γ±

|ψq,φ1(t)〉 =
⊗

0<q<π; q∈Γ±

Uq,φ1(t) |ψq,φ0〉 . (3.53)

The previous equation implies that the vacuum state of the system was given by

product of ground states of the Hamiltonian with parameter φ0 at the initial moment

t = 0. At that same moment, quench of the system transformed the Hamiltonian into

the one of same form, but with the parameter φ1. Temporal evolution of each term in

the product of states is given by their respective evolution operators Uq,φ1(t), which

are determined from the time evolution differential equation [36]:

ı
d
dt
Uq,φ1(t) = Uq,φ1(t)Hφ1,q , (3.54)

with Hφ1,q denoting the Hamiltonian term corresponding to the subspace of q and

−q modes. Notice that the 0 and π modes will again demonstrate peculiar behaviour

since the chosen basis for the Hamiltonian:

|0q, 0−q〉 := |0q〉 |0−q〉 and |1q, 1−q〉 := a†qa
†
−q |0q, 0−q〉 (3.55)

40Formally, this fact corresponds to the time evolution matrix being block diagonal and we are thus
able to separate the corresponding blocks according to the subspaces in which they act. The important
property is also that the values q of different modes do not depend on the parameter φ, implying that
the form of products such as (2.65) will persist even after the system has evolved in time.
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is ill defined for these modes41.

Let us thus solve the equation (3.54) for all modes except 0 and π. To do so,

expand its matrix form:

ı

U̇11
q,φ1

(t) U̇12
q,φ1

(t)

U̇21
q,φ1

(t) U̇22
q,φ1

(t)

 = 2

U11
q,φ1

(t) U12
q,φ1

(t)

U21
q,φ1

(t) U22
q,φ1

(t)

Cq,φ1 −ıSq,φ1
ıSq,φ1 −Cq,φ1

 , (3.56)

where the factor of two has emerged since for all the modes q except 0 and π the

Hamiltonian term for the −q is the same as the one for q, as we have indicated

explicitly. The four equations separate into two for U11 and U12 and two for U21 and

U22. We write out the first two:

U̇11
q,φ1

(t) =− 2ıCq,φ1U
11
q,φ1

(t) + 2Sq,φ1U
12
q,φ1

(t) ,

U̇12
q,φ1

(t) =− 2Sq,φ1U
11
q,φ1

(t) + 2ıCq,φ1U
12
q,φ1

(t) .
(3.57)

These elementary equations are solved, e.g. by differentiating the second with re-

spect to time, inserting into it the expression for U̇11
q,φ1

from the first and then finally

rewriting U11
q,φ1

from the second. In this way, we obtain:

Ü12
q,φ1

(t) + λ2
q,φ1

U12
q,φ1

(t) = 0 . (3.58)

Reinserting this into the two initial differential equations yields the same equation

for U11
q,φ1

and those for U22
q,φ1

and U21
q,φ1

follow by symmetry. We must now endow

these equations with initial conditions, which are determined from the fact that the

evolution matrix at time t = 0 is an identity Uq,φ1(0) = 1, i.e.:

U11
q,φ1

(0) = U22
q,φ1

(0) = 1 and U12
q,φ1

(0) = U21
q,φ1

(0) = 0 (3.59)

and also from the expression (3.56) upon inserting the equations we have just ob-

41Notice that, e.g. |10, 10〉 = 0 because of the Pauli exclusion principle.
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tained:

U̇11
q,φ1

(0) =− 2ıCq,φ1 , (3.60a)

U̇12
q,φ1

(0) =− 2Sq,φ1 , (3.60b)

U̇21
q,φ1

(0) =2Sq,φ1 , (3.60c)

U̇22
q,φ1

(0) =2ıCq,φ1 . (3.60d)

As is easily shown, the initial conditions altogether imply the solutions for the whole

matrix42 U :

U11
q,φ1

(t) = cos [λq,φ1t]− ı
2Cq,φ1
λq,φ1

sin [λq,φ1t] , (3.61a)

U12
q,φ1

(t) =− 2Sq,φ1
λq,φ1

sin [λq,φ1t] , (3.61b)

U21
q,φ1

(t) =
2Sq,φ1
λq,φ1

sin [λq,φ1t] , (3.61c)

U22
q,φ1

(t) = cos [λq,φ1t] + ı
2Cq,φ1
λq,φ1

sin [λq,φ1t] . (3.61d)

Having obtained the evolution operator, we can write the time evolved wavefunctions

for all the modes except 0 and π:α̃q(t)
β̃q(t)

 =: |ψq(t)〉 = Uq,φ1(t) |ψq〉 =

U11
q,φ1

(t) U12
q,φ1

(t)

U21
q,φ1

(t) U22
q,φ1

(t)

αq
βq


=

U11
q,φ1

(t)αq,φ0 + U12
q,φ1

(t)βq,φ0

U21
q,φ1

(t)αq,φ0 + U22
q,φ1

(t)βq,φ0


=

αq,φ0 cos [λq,φ1t] + 2
λq,φ1

[−ıCq,φ1αq,φ0 + Sq,φ1βq,φ0 ] sin [λq,φ1t]

βq,φ0 cos [λq,φ1t] + 2
λq,φ1

[−Sq,φ1αq,φ0 + ıCq,φ1βq,φ0 ] sin [λq,φ1t]

 ,

(3.62)

upon introducing the time-dependent wave function coefficients α̃q(t) and β̃q(t) which

are understood to describe the system during the moment of and after the quenching

of the Hamiltonian parameter from φ0 to φ1. We have herein exploited the relations

(3.61) and (B.10) with (B.11).

Now that the time evolution is solved, it is important to emphasize several nota-

tional changes we have made—static coefficients in each mode wave function that

42One should convince oneself that the matrix U is unitary for all q and φ, as it should be.
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we have denoted with αq and βq in Appendix B and are essentially sine and cosine

of Bogoliubov angle θq per (B.11), now have an additional subscript describing the

Hamiltonian parameter φ, explicitly αq,φ and βq,φ. Along this, the same letters with

overset tilde will be used to denote said coefficients when evolved in time. It is obvi-

ous that we have omitted the reference to parameter on the former lest it clutter the

calculations of the static correlation functions. Hence, we will do the same for the

latter43 since the time-dependent coefficients will be used to calculate the dynamic

correlation functions.

The previous line of equations demonstrates that the expressions for time-dependent

wave function coefficients are cumbersome to work with, so we will identify their

one44 useful property and work with general expression in body of the thesis—this

property is behaviour under usual q  −q transformation, which can be deduced

from (2.54) and (B.11) to be:

α̃−q(t) = −α̃q(t) and β̃−q(t) = β̃q(t) . (3.63)

We now turn to the 0 and π modes. The first important fact to emphasise is that

the already used base (3.55)45 is obviously not appropariate for these modes since

for the 0 mode the expression |10, 10〉 = 0 because of the Pauli exclusion principle

and the π mode has no negative counterpart. The appropriate basis for these modes

would be that of occupancy or vacancy of each mode. Specifically, for the 0 mode

subspace:

|10〉 =

1

0

 and |00〉 =

0

1

 (3.64)

and for the π mode subspace:

|1π〉 =

1

0

 and |0π〉 =

0

1

 . (3.65)

It is obvious from the form of Hamiltonian (2.58) that it will look the same in this
43Also note that omitting the reference to the parameter φ in the time-dependent coefficients α̃q(t)

and β̃q(t) is convenient as well since they must respectively reduce to αq,φ0
and βq,φ0

for t = 0 since
the interaction parameter is equal to φ0 at that moment and we thus avoid this potential ambiguity.

44Note that these coefficients do not have a particularly convenient form when subjected to com-
plex conjugation.

45Or (B.2).
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basis (albeit with corrected energies), although it is instructive to obtain this result

starting from (2.46) as well:

H0,φ|{|10,00〉} =
√

2 cos
(
φ− π

4

)1 0

0 −1

 and

Hπ,φ|{|1π ,0π〉} =−
√

2 cos
(
φ− π

4

)1 0

0 −1

 ,

(3.66)

with Hq,φ denoting the term corresponding to the particular mode subspace in sum

of form (2.46) or (2.58). Another peculiarity of the 0 mode is that it is excited in

the ground state wavefunctions (2.63) and (2.75). However, because of the inde-

pendence of different subspaces, this is not that great of an inconvenience since we

can work with the 0 mode subspace separately. This is obviously true for the π mode

as well. Following the discussion for the other modes and upon realising that the di-

agonal form of the Hamiltonian terms for these two modes renders the calculations

somewhat trivial, we omit writing the solutions to (3.54) and immediately write the

evolved wave functions as:

|ψ0(t = 0)〉 = |10〉 =⇒ |ψ0(t)〉 = e−ı
√

2 cos(φ−π4 )t |10〉 , (3.67a)

|ψ0(t = 0)〉 = |00〉 =⇒ |ψ0(t)〉 = eı
√

2 cos(φ−π4 )t |00〉 , (3.67b)

|ψπ(t = 0)〉 = |1π〉 =⇒ |ψπ(t)〉 = eı
√

2 cos(φ−π4 )t |1π〉 , (3.67c)

|ψπ(t = 0)〉 = |0π〉 =⇒ |ψπ(t)〉 = e−ı
√

2 cos(φ−π4 )t |0π〉 (3.67d)

Having these expected simple time evolution factors in mind, we may once again con-

sider the ground state wave functions in the first two phases (2.63) and (2.75). Since

the general wavefunctions are the linear combinations of those particular terms, one

of which has the 0 mode excited and the other π mode not excited, we see that the

time factors originating from said modes will be the same in both cases. Thus, al-

though these terms exist in the full expressions for the time-evolved ground states in
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the first two phases:

|g+(t)〉 =
⊗

0<q<π; q∈Γ+

[
α̃q(t) |1q, 1−q〉+ β̃q(t) |0q, 0−q〉

]
⊗ e−ı

√
2 cos(φ−π4 )t |0π〉 , (3.68a)

|g−(t)〉 =
⊗

0<q<π; q∈Γ−

[
α̃q(t) |1q, 1−q〉+ β̃q(t) |0q, 0−q〉

]
⊗ e−ı

√
2 cos(φ−π4 )t |10〉 , (3.68b)

we are able to extract and furthermore omit them on the account of arbitrariness of

the global phase factor of the wave function.

Analysing the temporal evolution in the third phase is somewhat elementary now

that we have derived most of the relations for the previous two phases. First off,

when considering the ground states (2.80) and (2.81), we see that the ones in the

even sector have the π mode excited while for those in the odd sector the 0 mode is

not. Considering (3.67), we thus conclude that once again these potentially problem-

atic modes will induce only an irrelevant global phase factor when evolved in time.

Furthermore, if we consider the states in the odd parity sector (since they are of the

simpler form for this; compare this fact to the previous two phases), one of the ±p

modes is excited in those states so we need to account for this in the time evolution.

To obtain a tad more illuminating form of these terms, we act on the vacuum states

(2.65) with the creation operators while using (3.8):

a†p [cos θp |0p, 0−p〉 − ı sin θp |1p, 1−p〉]

=
[
cos θpb

†
p − ı sin θpb−p

]
[cos θp |0p, 0−p〉 − ı sin θp |1p, 1−p〉]

=
[
cos2 θp + sin2 θp

]
|1p, 0−p〉

= |1p, 0−p〉

(3.69)

and similarly for its negative counterpart:

a†−p [cos θp |0p, 0−p〉 − ı sin θp |1p, 1−p〉] = |0p, 1−p〉 , (3.70)

as expected. A simplifying circumstance is that, as is evident from the previous ex-

pression, the ket belonging to the ±p modes will not be evolved in time since the

terms in the Hamiltonian (2.58) corresponding to these kets are zero; this is readily

seen from (3.56). Therefore we can, using the already calculated expression for the

other modes (3.62), write the expression for the time evolved ground state wave-
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functions in the third phase:

|±p(t)〉 =

 ⊗
0<q<π;q∈Γ−\{p}

[
α̃q(t) |1q, 1−q〉+ β̃q(t) |0q, 0−q〉

]⊗|1±p, 0∓p〉⊗eı√2 cos(φ−π4 )t |00〉 .

(3.71)

As for the even parity sector, in accordance with the discussion on the symmetry

properties of the model, we will not need the time evolution of its ground states

(albeit it is analogous to the given one) and express them by action with the parity

operators on the even sector ones.

The main results from this section which we will use repeatedly in the following

are (3.68) and (3.71), which determine the time evolution for all the modes in both

parity sectors. The process of evaluating the correlation functions will follow the one

of the static case in full.

3.3.2 1O and 2M phases—dynamic Majorana correlation functions

In the first two phases, we start with the even parity sector and discuss the odd parity

sector using the symmetry properties of the model discussed in the introduction. The

form of the ground states enables us to immediately find the actions of bq operators:

bq |g+(t)〉 ∝ bq

[
α̃q(t) |1q, 1−q〉+ β̃q(t) |0q, 0−q〉

]
⊗ e−ı

√
2 cos(φ−π4 )t |0π〉 [1− δq,π] +

+ bπ |ψq(t)〉 ⊗ e−ı
√

2 cos(φ−π4 )t |0π〉 δq,π

=α̃q(t) |0q, 1−q〉 ⊗ e−ı
√

2 cos(φ−π4 )t |0π〉 [1− δq,π] ,

(3.72)

where the Kronecker-delta symbols have come in handy for writing the total wave

function as a sum of two terms, depending on whether the annihilation operator is

that of the π mode or not. Contributions that have vanished have done so because

of their respective annihilation operators. We have also exploited (3.62) to write the

unaltered time-evolved wave functions for modes other than π. A similar calculation

for the creation operators yields:

b†q |g+(t)〉 =β̃q(t) |1q, 1−q〉 |1q, 0−q〉 ⊗ e−ı
√

2 cos(φ−π4 )t |0π〉 [1− δq,π] +

+ |ψq(t)〉 ⊗ e−ı
√

2 cos(φ−π4 )t |1π〉 δq,π .
(3.73)

61



It is important to notice, as in the previous section, that the time evolution factor for

the π mode is the same in both cases so it can be omitted as the global phase factor

which will vanish once the expectation values of interest are calculated. This goes

for the 0 mode in the odd parity sector as well. We can now proceed with obtaining

the correlation functions (expectation values):

〈g+(t)| bqb†k |g
+(t)〉 =|β̃q(t)|2δq,k [1− δq,π] + δq,kδq,π

=|β̃q(t)|2δq,k + |α̃π(t)|2δq,kδq,π ,
(3.74)

where we have exploited the orthonormality of the fermionic states for all the modes

in the even parity sector and also the fact that each of the wave functions in (3.68) is

normalised. However, another important remark is in order. Since we have written

the correct form of the time evolution of the wave function corresponding to the π

mode, the emergence of the Bogoliubov angle for the π mode may be unexpected,

but it is of mathematical nature since we have chosen to write the result in a more

convenient form; the expressions for the faulty Bogoliubov angles ought to be consid-

ered as they were when the static correlation functions were calculated. Continuing

in a similar manner, we obtain the rest of the bq operator expectation values:

〈g+(t)| b†qbk |g+(t)〉 =|α̃q(t)|2δq,k [1− δq,π] , (3.75a)

〈g+(t)| bqbk |g+(t)〉 =− α̃q(t)β̃∗q (t)δq,−k [1− δq,π] [1− δk,π] , (3.75b)

〈g+(t)| b†qb
†
k |g

+(t)〉 =α̃∗q(t)β̃q(t)δq,−k [1− δq,π] [1− δk,π] , (3.75c)

where the last terms in the last two equations are redundant, but written for clarity.

As before, it is useful to check the internal consistency of these results.

We continue with the cj operators correlation functions46 and exploit (3.74):

〈g+(t)| cjc†l |g
+(t)〉 =

1

N

∑
q,k∈Γ+

eı(qj−kl) 〈g+(t)| bqb†k |g
+(t)〉

=
1

N

∑
q,k∈Γ+

[
|β̃q(t)|2δq,k + |α̃π(t)|2δq,kδq,π

]
=

1

N

∑
q∈Γ+\{π}

eıq(j−l)|β̃q(t)|2 +
1

N
(−1)j−l

(3.76)

46It is useful to notice that the following sums are over all the modes since they stem from the
Fourier transform, not the ground state wave functions.
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and similarly for the rest of the expectation values:

〈g+(t)| c†jcl |g+(t)〉 =
1

N

∑
q∈Γ+\{π}

e−ıq(j−l)|α̃q(t)|2 , (3.77a)

〈g+(t)| cjcl |g+(t)〉 =
1

N

∑
q∈Γ+\{π}

eıq(j−l)
[
−α̃q(t)β̃∗q (t)

]
, (3.77b)

〈g+(t)| c†jc
†
l |g

+(t)〉 =
1

N

∑
q∈Γ+\{π}

e−ıq(j−l)
[
α̃∗q(t)β̃q(t)

]
. (3.77c)

After the obligatory internal consistency checks, we proceed with the Majorana cor-

relation functions and exploit (3.76) and (3.77) along with the properties (3.63) to

obtain:

〈AjBl〉g+(t) = ı〈(c†j + cj)(c
†
l − cl)〉g+(t)

=
ı

N

∑
q∈Γ+\{π}

[
α̃∗q(t)β̃q(t)e

−ıq(j−l) + α̃q(t)β̃
∗
q (t)e

ıq(j−l)

−|α̃q(t)|2e−ıq(j−l) + |β̃q(t)|2eıq(j−l)
]

+
ı

N
(−1)j−l .

(3.78)

The previous equation is now amended, just as in the case of the static correlation

functions, by adding and subtracting the faulty Bogoliubov angles to the sums so as

to render turning to integrals in the thermodynamic limit N →∞ possible. It is also

observed that a completely analogous calculation yields the result for the ground

state of the odd sector |g−(t)〉 as well. In this way, a joint expression for the time-

dependent Majorana correlation functions is obtained for the first two phases and

also both parity sectors:

〈AjBl〉g±(t) =
ı

N

∑
q∈Γ±

[(
|β̃q(t)|2 − |α̃q(t)|2

)
cos [q (j − l)] +

+ ı
(
α̃q(t)β̃

∗
q (t)− α̃∗q(t)β̃q(t)

)
sin [q (j − l)]

]
+

2ı

N
f±φ0 (j − l)

, (3.79)

with the function appearing in the last term defined in (3.25). Firstly, it is important

to notice that this relation reduces to (3.26) for t = 0, as it should. Furthermore, the

only47 potentially faulty Bogoliubov angles will be those in the beginning, i.e. for the

initial parameter value φ0.

In a similar manner, the remaining correlation functions are obtained for the first
47This can also be seen from the time-evolved coefficients in (3.62) since the Bogoliubov angles

appear only for the initial parameter value φ0.
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two phases as well:

〈AjAl〉g±(t) = δj,l −
ı

N

∑
q∈Γ±

(
α̃∗q(t)β̃q(t) + α̃q(t)β̃

∗
q (t)
)

sin [q (j − l)] (3.80)

and

〈BjBl〉g±(t) = δj,l +
ı

N

∑
q∈Γ±

(
α̃∗q(t)β̃q(t) + α̃q(t)β̃

∗
q (t)
)

sin [q (j − l)] , (3.81)

which both correctly reduce to (3.28) for t = 0.

3.3.3 1O and 2M phases—dynamic spin correlation functions

Calculation of the dynamic Majorana correlation functions will be more complicated

than that of their static counterparts since, as per (3.80) and (3.81), the 〈AjAl〉 and

〈BjBl〉 terms are generally different from Kronecker deltas. This implies that (again,

in general) there will be significantly more nonvanishing contractions of these op-

erators and to find the appropriate representations in terms of matrix determinants

we need the concept of Pfaffian, which is defined and motivated with its properties

explained in Appendix E and the reader should give it a read before continuing.

For the corresponding determinants we will define three types of abbreviations,

having in mind the fact that all three dynamic Majorana correlation functions are

translationally invariant in the sense that they only depend on the difference between

the two sites of interest r = l − j. The first one is the time-dependent version of

(3.40):

F̃2(j − l) := 〈g±(t)|AjBl |g±(t)〉 = −〈g±(t)|BlAj |g±(t)〉 , (3.82)

where the time dependence of F̃2 is implied, but omitted in writing lest it clutter the

succeeding equations. Also note that the imaginary factor is omitted48 in front of

the correlation function. This is due to the fact that it will make writing the final

expressions simpler, i.e. without lurking factors attached to each term. Secondly,

since the 〈AjAl〉 and 〈BjBl〉 expectation values are now different, we define the

48Remember that these factors were used previously to render the abbreviations real.
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appropriate function for each one:

F̃1(j − l) := 〈g±(t)|AjAl |g±(t)〉 (3.83)

and

F̃3(j − l) := 〈g±(t)|BjBl |g±(t)〉 , (3.84)

with the numbers 1, 2 and 3 chosen by the lexicographic order of expectation values.

Then for the expectation values of operators such as (3.30) and (3.33) we will have

the matrix of each dimension twice as large as that of the static case. Note also that

these operators are the same for all phases and both static and dynamic regimes.

More precise argumentation and additional literature required for obtaining these

expressions is, as was already mentioned, relegated to Appendix E. The first matrix

of interest is for the x direction:[
(−ı)r C̃xx

jl (t)
]2

:=
[
(−ı)r C̃xx

j−l(t)
]2

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 F̃1(−1) . . . F̃1(1− r) F̃2(1) F̃2(0) . . . F̃2(2− r)

F̃1(1) 0 . . . F̃1(2− r) F̃2(2) F̃2(1) . . . F̃2(3− r)
...

... . . . ...
...

... . . . ...

F̃1(r − 1) F̃1(r − 2) . . . 0 F̃2(r) F̃2(r − 1) . . . F̃2(1)

−F̃2(1) −F̃2(2) . . . −F̃2(r) 0 F̃3(−1) . . . F̃3(1− r)

−F̃2(0) −F̃2(1) . . . −F̃2(r − 1) F̃3(1) 0 . . . F̃3(2− r)
...

... . . . ...
...

... . . . ...

−F̃2(2− r) −F̃2(r − 1) . . . −F̃2(1) F̃3(r − 1) . . . F̃3(r − 2) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(3.85)
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Similarly, for the yy correlation function we obtain:

[
(−ı)r C̃yy

jl (t)
]2

:=
[
(−ı)r C̃yy

j−l(t)
]2

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 F̃1(−1) . . . F̃1(1− r) F̃2(−1) F̃2(−2) . . . F̃2(−r)

F̃1(1) 0 . . . F̃1(2− r) F̃2(0) F̃2(−1) . . . F̃2(1− r)
...

... . . . ...
...

... . . . ...

F̃1(r − 2) F̃1(r − 3) . . . 0 F̃2(r − 2) F̃2(r − 3) . . . F̃2(−1)

−F̃2(−1) −F̃2(0) . . . −F̃2(r − 2) 0 F̃3(−1) . . . F̃3(1− r)

−F̃2(−2) −F̃2(−1) . . . −F̃2(r − 3) F̃3(1) 0 . . . F̃3(2− r)
...

... . . . ...
...

... . . . ...

−F̃2(−r) −F̃2(r − 1) . . . −F̃2(1) F̃3(1− r) . . . F̃3(r − 2) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(3.86)

with the distance between two sites of interest r = l−j, as before. These two matrices

are both of dimension 2r × 2r.

Finally, for the z direction correlation function we obtain in a similar way:

[
−C̃zz

jl (t)
]2

:=
[
−C̃zz

j−l(t)
]2

=

∣∣∣∣∣∣∣∣∣∣∣∣

0 F̃1(−r) F̃2(0) F̃2(−r)

F̃1(r) 0 F̃2(r) F̃2(0)

−F̃2(0) −F̃2(r) 0 F̃3(−r)

−F̃2(−r) −F̃2(0) F̃3(r) 0

∣∣∣∣∣∣∣∣∣∣∣∣
.

(3.87)

3.3.4 3I phase—dynamic Majorana correlation functions

The time evolved ground states of the odd sector ground states in the third phase are

given by (3.71). Following the preceding sections, the calculations of the dynamic

Majorana correlation functions are analogous to the ones in previous two phases and

thus we only cite the final expression here and list the results for each step in the
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calculations in Appendix D:

〈AjBl〉u1,u2(t)

=
ı

N

∑
q∈Γ−

[(
|β̃q(t)|2 − |α̃q(t)|2

)
cos [q (j − l)]− ı

(
α̃∗q(t)β̃q(t)− α̃q(t)β̃∗q (t)

)
sin [q (j − l)]

]
−

− 2ı

N

[(
|β̃p(t)|2 − |α̃p(t)|2

)
cos [p (j − l)]− ı

(
α̃∗p(t)β̃p(t)− α̃p(t)β̃∗p(t)

)
sin [p (j − l)]

]
−

− 2ı

N

(
u∗1u2e

−ıp(j+l) + c.c.
)

(3.88)

and we note that for t = 0 the first row reduces to the first term in (3.46), the second

row to the second term and the third row to the third term in the same equation. The

other two Majorana correlation functions of interest are:

〈AjAl〉u1,u2(t)

=δj,l −
ı

N

∑
q∈Γ−

(
α̃∗q(t)β̃q(t) + α̃q(t)β̃

∗
q (t)
)

sin [q (j − l)] +

+
2ı

N

(
α̃∗p(t)β̃p(t) + α̃p(t)β̃

∗
p(t)
)

sin [p (j − l)]− 2ı

N

(
|u1|2 − |u2|2

)
sin [p (j − l)]

(3.89)

and

〈BjBl〉u1,u2(t)

=δj,l +
ı

N

∑
q∈Γ−

(
α̃∗q(t)β̃q(t) + α̃q(t)β̃

∗
q (t)
)

sin [q (j − l)]−

− 2ı

N

(
α̃∗p(t)β̃p(t) + α̃p(t)β̃

∗
p(t)
)

sin [p (j − l)]− 2ı

N

(
|u1|2 − |u2|2

)
sin [p (j − l)]

,

(3.90)

both of which reduce to (7.35) for t = 0, as they should.

3.3.5 3I phase—dynamic spin correlation functions

Comparing the forms of the dynamic Majorana correlation functions for the first two

phases and the third one we see that, since the two point spin operators we seek to

evaluate are the same, the correlation functions will have the same form, although it

is evident that the translational invariance in this case will be violated for the 〈AjBl〉

terms, as seen from (7.44). As for the static spin correlation functions in the AFM

phase, this will indeed be the case. Also, consulting the form of (7.42) and (7.43) we

see that, regardless of choice of the coefficients in ground states (2.81), the 〈AjAl〉
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and 〈BjBl〉 correlation functions will in general be different from Kronecker deltas.

Thus, we ought to combine the lack of translational invariance as well as the fact

that the matrices will have both dimensions twice as large. As before, we begin by

defining the appropriate abbreviations for all the Majorana correlation functions

H̃u1,u2
2 (j, l) := 〈AjBl〉u1,u2(t) = −〈BlAj〉u1,u2(t) , (3.91)

H̃u1,u2
1 (j − l) := 〈AjAl〉u1,u2(t) (3.92)

and

H̃u1,u2
3 (j − l) := 〈BjBl〉u1,u2(t) (3.93)

since the translational invariance still holds for 〈AjAl〉 and 〈BjBl〉 terms. It is instruc-

tive to note that we have once again omitted the imaginary unit perfactor in the first

abbreviation since it would unnecessarily complicate the form of matrices we will

soon write.

Operators for the two-point correlation functions are still of the same form given

by (3.30) and (3.33) and their corresponding matrices49 are (on the following page):

49We mention once again that the discussion of this and similar previous and forthcoming results
are given in Appendix E.
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Finally, for the z direction correlation function we obtain in a similar way:

[
−C̃zz

j−l(t)
]2

:=
[
−C̃zz

jl (t)
]2

=

∣∣∣∣∣∣∣∣∣∣∣∣

0 F̃1(j, l) F̃2(j, j) F̃2(j, l)

F̃1(l, j) 0 F̃2(l, j) F̃2(l, l)

−F̃2(j, j) −F̃2(l, j) 0 F̃3(j, l)

−F̃2(j, l) −F̃2(l, l) F̃3(l, j) 0

∣∣∣∣∣∣∣∣∣∣∣∣
.

(3.96)
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4 Dynamic magnetisations

Having obtained all of the relevant combinations of the time-dependent correlation

functions, we now take up calculating the magnetisations in different directions for

the different phases. However, what interest us the most is the dynamic case in pres-

ence of frustration. The dynamic case with no frustration was already studied [37],

as well as the frustrated static case [10]. We have successfully reproduced all of

the correlation functions from both of these papers and will henceforth focus on

the dynamic two-point correlation functions (static ones are there also for consis-

tency checks and getting acquainted with the calculation process) and corresponding

magnetisations. The reason we will employ these functions in the unfrustrated first

phase50 as well is that we intend to evolve the system between three different phases

to observe potential peculiarities in its behaviour.

The way in which we will proceed was announced in the body of this work, but

we reiterate and expand the discussion on the importance of parity once more in

this introductory segment. Setting the two-point correlation function to be between

antipodal points in the system and the taking its square root as a way of obtaining

the one-point correlation function (which is essentially magnetization) relies on the

cluster decomposition hypothesis, i.e. a supposition that the relation (1.3) 51 holds:

lim
r→∞

[〈
σµj σ

µ
j+r

〉
−
〈
σµj
〉 〈
σµj+r

〉]
= 0 . (4.1)

However, it was shown in previous works [10] that it can fail or be ambiguous in the

presence of frustration in the static case and thus we seek to explore this possibility

here as well, only for the time-evolving systems.

Obviously, for this test, a way of obtaining the one-point expectation values such

as the ones appearing in the previous expression would be needed and it is difficult,

as was previously explained based on parities of different states. However, for the

Hamiltonian which we are working with (2.58), such a procedure was introduced

in [10] and we will exploit it here as well. The main point relies on the fact that

the ground states such as (2.63), (2.75), (2.81) and (2.80) have well defined parity

50Recall that, regardless of the boundary conditions, there is no frustration in this phase since the
minimal energy mode is in the odd sector and can thus be excited alone.

51Formally, the limit of infinity corresponds to some fraction of number of spin sites N in the
thermodynamic limit.
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along the z axis, but not along the other two. This was not a problem for two-

point correlation functions since their consecutive action on any of these ground

states did not change the z parity, but the one-point ones evidently do. Thus, it

is necessary to construct states that have well-defined x or y parities so that the

expectation values do not vanish immediately. Of course, when constructing these

states, we are restricted to linear combinations of the eigenvectors of the system.

4.1 1O and 2M phases—dynamic magnetisations

Bearing in mind the preceding discussion, we observe that in the first two phases,

the state |g+(t)〉 is in the even z parity sector and thus the state Πx |g+(t)〉 will be in

the odd one. Because of this and the fact that the parity operators commute with

the Hamiltonian, its energy will be the same and it will thus, up to a phase factor, be

equal to the ground state in the odd sector |g−(t)〉. However, we wish to construct

this type of state at the initial moment t = 0 and then evolve it in time—this is easily

carried out since the parity operators commute with the Hamiltonian and the time-

evolution operator is an exponentiated Hamiltonian52 and thus the parity operators

will commute with the time evolution operator. To put this into writing, we construct

the time-dependent ground state with definite x parity53,54 as follows:

|gx(t)〉 =U(t)
([

cos θ + sin θeıψΠx
]
|g+(t = 0)〉

)
=
[
cos θ + sin θeıψΠx

]
U(t) |g+(t = 0)〉

=
[
cos θ + sin θeıψΠx

]
|g+(t)〉 ,

(4.2)

where we see that the proper choice based on the well-defined x parity requirement

is θ = π/4 and ψ = 0 since then it is obvious that, when acting with the Πx on this

state, we will obtain the same state as per (Πx)1 = 1. However, we will keep θ and

ψ general for now to demonstrate that this choice leads to the maximum value of

magnetisation as well. We also note that we have used the commutativity of the

parity and time-evolution operators to get to the second row.

We now choose a generic site j of the spin chain and on it we evaluate the mag-

netisation in the x direction. This magnetisation is defined in the usual way as the

52Because the Hamiltonian does not depend on time.
53This is one of the two announced states that break the Z2 symmetry.
54Note that the magnetisation along the other two axes vanishes in this state.
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expectation value of the corresponding spin operator:

mx
j (t) = 〈gx(t)|σxj |gx(t)〉

= cos2 θ 〈g+(t)|σxj |g+(t)〉+ sin2 θ 〈g+(t)|Πxσxj Πx |g+(t)〉+

+ sin θ cos θ
[
eıψ 〈g+(t)|σxj Πx |g+(t)〉+ e−ıψ 〈g+(t)|Πxσxj |g+(t)〉

]
= sin (2θ) cosψ

[
eıψ 〈g+(t)|σxj Πx |g+(t)〉+ e−ıψ 〈g+(t)|σxj Πx |g+(t)〉

]
= sin (2θ) cosψ 〈g+(t)|Πx

j |g+(t)〉 ,

(4.3)

where, since both |g+(t)〉 and Πx |g+(t)〉 are eigenstates of Πz, the states in the inner

products in 〈g+(t)|σxj |g+(t)〉 and 〈g+(t)|Πxσxj Πx |g+(t)〉 will belong to different z par-

ity sectors and these products will necessarily vanish. The final row is obtained upon

noticing that Πxσxj = σxj Πx and introducing the operators:

Πα
j :=

⊗
l 6=j

σαl (4.4)

that commute with the parity operator along the z axis since the number of spins N

is odd and thus their expectation values can be different than zero.

To continue, we first notice that, as announced, the maximum absolute value of

the magnetisation in the x direction (4.3) will be obtained for ψ = 0 and θ = π/4

and this is the state we choose in the following. The magnetisation then turns into

an expectation value of the operator Πx
j that commutes with Πz:

mx
j (t) = 〈g+(t)|Πx

j |g+(t)〉 , (4.5)

meaning that it can be expressed in terms of Majorana correlation functions A and

B. To find this expansion, we choose, e.g. the N th site to calculate the magnetisation

(the choice of the site is arbitrary, but the expansions are different so we ought to
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make it) and recall the formulae (3.2) to obtain:

Πx
N =σx1σ

x
2 . . . σ

x
N−2σ

x
N−1

= [A1] [σz1A2] . . .
[
AN−2σ

x
1 . . . σ

x
N−3

] [
σx1 . . . σ

x
N−2AN−1

]
= [A1σ

z
1]A2 . . .

[
AN−2σ

z
N−2

]
AN−1

= (−ı)
N−1

2 B1A2B3A4 . . . BN−2AN−1

= (−ı)
N−1

2

N−1
2⊗
j=1

B2j−1A2j ,

(4.6)

since the squares of all the spin operators are equal to identity.

Returning this expression into (4.5) we argue as before for its matrix form (notice

that the step between the arguments of adjacent matrix elements is two in this case,

as opposed to one in two-point functions) and we repeat the process55 in full for the

y direction as well, using

Πy
N = (ı)

N−1
2

N−1
2⊗
j=1

A2j−1B2j . (4.7)

If we now recall the appropriate abbreviations (3.82), (3.83) and (3.84), we can

finally write both of the relevant matrices56 (on the following page):

55Note that the state with well defined parity along the y axis that also maximises the magnetisation
in the same direction is |gy(t)〉 = 1√

2
[1 + Πy] |g+(t)〉 .

56Reader should consult Appendix E for a short and incomplete introduction to this procedure.
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Expression for the z direction magnetisation is the most elementary one since

the states |g±(t)〉 already have a well defined parity along the z axis and the expec-

tation values of operators σzj is equal for both of them and thus for all their linear

combinations:

mz
j(t) = 〈g±(t)|σzj |g±(t)〉 = −ı 〈g±(t)|AjBj |g±(t)〉 = −ı〈AjBj〉g±(t) (4.10)

upon using the following line of calculation:

σzj =1− 2c†jcj = cjc
†
j − c

†
jcj = c2

j −
(
c†j

)2

+ cjc
†
j − c

†
jcj

=
(
cj − c†j

)(
cj + c†j

)
= −ıAjBj .

(4.11)

Equation (4.10) is already in the form known from (7.44).

4.2 3I phase—dynamic magnetisations

To obtain the magnetisations in the third phase we exploit an idea similar in nature

to the one for the first two phases regarding the parity properties of ground states.

However, here we will use a linear combination of two of the four ground state

vectors and specifically those that have the opposite eigenvalues of the translation

operator, soon to be motivated. From (2.87), the action of parity operator along the

x direction (2.10) (which induces a minus sign because the number of spins N is

odd) and the definitions of ground states in the AFM phase (2.81) and (2.80), it is

observed that the eigenvalues of |±p〉 = a†±p |0−〉, i.e. eı(±)p are the exponentiated

negatives of the eigenvalues of |±p′〉 = a†±p′a
†
π |0+〉, i.e. e(ıπ±p′) = eı(∓p) by virtue of

(2.79) and (2.78). Thus, we can identify, up to a global phase:

Πx |∓p〉 ∝ |±p′〉 . (4.12)

It is now evident that the linear combinations of vectors having the opposite eigenval-

ues of the translation operator are, in pairs, |p′〉 and Πx |p〉; |−p′〉 and Πx |−p〉. As has

been observed in [10] and [11], choosing a linear combination of two of these four

vectors with the same eigenvalue with respect to the translation operator, we observe

the behaviour termed Mesoscopic ferromagnetic order and for vectors with opposite

eigenvalues, one termed Incommensurate antiferromagnetic order (IAO). Choosing
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the most general ground state, i.e. a linear combination of all four vectors, mix of

these effects emerges with one term corresponding to each. As will be explained

in the following, we wish to focus on the incommensurate antiferromagnetic order

and thus choose the state to be a linear combination of two of these with opposite

eigenvalues (both pairs of opposites yield the same result and we choose the absolute

values57 of the coefficients to be equal since, as for the previous two phases, since

this will maximise the absolute value of the magnetisation):

|gIAO(t)〉 =U(t)

(
1√
2

[
|p(t = 0)〉+ eıθΠx |−p(t = 0)〉

])
=

1√
2

[
|p(t)〉+ eıθΠx |−p(t)〉

]
,

(4.13)

with θ once again denoting a phase factor between two vectors. We have exploited

the fact that the time-evolution operator, dependent on the Hamiltonian only, com-

mutes with the parity operators, specifically Πx in this case.

We define the magnetisation on a certain site as for the other two phases to be the

expectation value of the spin operator corresponding to that site. For the x direction,

this yields:

mx
j (t) = 〈gIAO(t)|σxj |gIAO(t)〉

=
1

2

[
〈p(t)|+ e−ıθΠx 〈−p(t)|

]
σxj
[
|p(t)〉+ eıθΠx |−p(t)〉

]
=

1

2

[
〈p(t)|σxj |p(t)〉+ 〈−p(t)|Πxσxj Πx |−p(t)〉+

(
eıθ 〈p(t)|σxj Πx |−p(t)〉+ c.c.

)]
=

1

2

(
eıθ 〈p(t)|σxj Πx |−p(t)〉+ c.c.

)
=Re

[
eıθ 〈p(t)|Πx

j |−p(t)〉
]
,

(4.14)

where we have, as before, used the fact that the parity operator Πx and σxj commute,

as well as the fact that both |p(t)〉 and Πx |−p(t)〉 are eigenstates of Πz and thus the

states in the inner products in 〈p(t)|σxj |p(t)〉 and 〈−p(t)|Πxσxj Πx |−p(t)〉 will belong

to different z parity sectors so these products necessarily vanish.

We now exploit the mirroring and translation operators, introduced in the section

on symmetry properties of the system. As we will soon see, the expectation value

57Note that the relative phase θ has not been set to zero; we will see that this factor will induce
modulation of the magnetisation.
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inside the expression for the magnetisation in the preceding equation will be purely

real when we evaluate it on the N th site, i.e. choose j = N . For the y direction, it will

be purely imaginary and thus can in both cases be written in a particularly concise

manner. We are able to exploit this fact to write operators of this kind for general j

in terms of that for j = N since, because of relation (2.8), each spin operator can be

connected to the one on the N th site via

σαj =
(
T †
)j
σαN (T )j (4.15)

and we thus obtain for the general expression in (4.14) (note that the translation

operator commutes with the time-evolution operator because of (2.9)):

〈p(t)|σxj Πx |−p(t)〉 = 〈p(t)|
(
T †
)j
σxj (T )j Πx |−p(t)〉

= 〈p(t)|
(
T †
)j
σxj Πx (T )j |−p(t)〉

=e−ı2pj 〈p(t)|Πx
N |−p(t)〉 ,

(4.16)

upon using the commutation of the parity and the translation operators (2.11) as

well for the second row and the eigenvalue equation of the former (2.87) for the

final row.

The N th site is special in the respect of demonstrating purely real/imaginary

expectation values because the JW transformation breaks the translational invariance

of the system by identifying the first (and consequently the last) site of the spin chain.

We now show that, as announced, this expectation value is purely real. To do so, use

the action of the mirror operator on general state with odd number of excitations

(2.88) and switch p and −p states in the expectation value (we use its Hermitian

nature as well, specifically (2.24)):

〈p(t)|Πx
N |−p(t)〉 = 〈−p(t)|MNΠx

NMN |p(t)〉 = 〈−p(t)|MNσ
x
NΠxMN |p(t)〉

= 〈−p(t)|MNσ
x
NMNΠx |p(t)〉 ,

(4.17)

upon remembering the commutation of the mirror operators with the parity opera-

tors (2.26). We further note that mirror operator with respect to the N th site will
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obviously leave the spin operator on the same site invariant:

MNσ
x
NMN = σxN , (4.18)

finally yielding for the desired expectation value:

〈p(t)|Πx
N |−p(t)〉 = 〈−p(t)|Πx

N |p(t)〉 = (〈p(t)|Πx
N |−p(t)〉)

∗ , (4.19)

implying that this quantity is real. Consequently, upon returning to (4.14), we obtain

the following expression:

mx
j (t) = Re

[
eı(θ−2pj)

]
〈p(t)|Πx

N |−p(t)〉 = cos (2pj − θ) 〈p(t)|Πx
N |−p(t)〉 . (4.20)

Analogous calculation for the y direction demonstrates that the expectation value

〈p(t)|σyNΠx |−p(t)〉 is purely imaginary. All the other steps being the same, we use

(2.20) to obtain Πx = (−ı)N ΠyΠz and also the fact that Πz |±p〉 = ± |±p〉 and then

insert both of these into (4.14):

〈p(t)|σyNΠx |−p(t)〉 = (−ı)N 〈p(t)|σyNΠyΠz |−p(t)〉 = −(−ı)N 〈p(t)|σyNΠy |−p(t)〉

(4.21)

and thus the purely imaginary character of this quantity is evident since 〈p(t)|σyNΠy |−p(t)〉

is purely real58 and N is odd. From this we can infer the expression for the magneti-

sation in the y direction for a general site:

my
j (t) =Re

[
−eı(θ−2pj) (−ı)N 〈p(t)|σyNΠy |−p(t)〉

]
=Re

[
−eı(θ−2pj−Nπ

2 )
]
〈p(t)|σyNΠy |−p(t)〉

=− cos

(
2pj − θ +

Nπ

2

)
〈p(t)|σyNΠy |−p(t)〉

= cos

(
2pj − θ +

Nπ

2
+ π

)
〈p(t)|Πy

N |−p(t)〉 .

(4.22)

We can write both x and y direction magnetisations in a more convenient form

if we note that (2.79) implies that p = π
2

+ π
2N

(−1)(N+1)/2 and also define the func-

58This is shown in the same manner as for the σxNΠx since all of the deductions remain valid in
both cases.
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tion dependent on the the phase of the wavefunction (4.13), direction and the total

number of spins in the system N :

f(α, θ,N) :=

 (−1)
N−1

2 θ ; α = x ,

(−1)
N−1

2 θ + π
2

; α = y

. (4.23)

Then the expression for both x and y direction magnetisations on a general spin site

and wave function phase finally becomes:

mα
j (t) = (−1)j cos

[
jπ

N
+ f(α, θ,N)

]
〈p(t)|Πα

N |−p(t)〉 , α = x, y . (4.24)

As before, we will seek to write the previous expectation value as a product of

Majorana operators A and B. Remembering that we have obtained the expecta-

tion values of their two-operator products in a general state of the odd parity sector

|u1, u2〉, given by (3.45), we can see somewhat easily that the announced combina-

tion of ground states in the odd sector with u1 = 1/
√

2 and u1 = ±1/
√

2 yields the

following result (the 〈p| · · · |p〉 and 〈−p| · · · |−p〉 terms cancel out):

〈Πx
j 〉u1= 1√

2
,u2= 1√

2
− 〈Πx

j 〉u1= 1√
2
,u2=−1√

2
= 〈p(t)|Πx

j |−p(t)〉+ 〈−p(t)|Πx
j |p(t)〉 (4.25)

and, since we have demonstrated that the expectation values on the RHS of the

previous equation are purely real (and upon inserting j = N):

〈p(t)|Πx
N |−p(t)〉 =

1

2

(
〈Πx

N〉u1= 1√
2
,u2= 1√

2
− 〈Πx

N〉u1= 1√
2
,u2=−1√

2

)
, (4.26)

which is appropriate since the operator Πx
N can be expressed in terms of Majorana

ones, as was done in (4.6). An analogous relation holds for the y direction as well.

However, we now have to take into account the fact that 〈AB〉 Majorana correla-

tion functions are not translationally invariant, as is evident from (7.44). With this

in mind, we use the appropriate abbreviations (3.91), (3.92) and (3.93) to write the

matrix representation (on the following page):
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Finally, we seek the z direction magnetisations, which are obtained in the same

way as for the previous two phases since the calculation to obtain (4.10) are the same

in the AFM phase, only with different ground states, yielding:

mz
j(t) = −ı〈AjBj〉u1,u2(t) (4.29)
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Figure 5.1: Static cluster decomposition (t = 0) for (a) x direction, 1O (φ = −π/3.5);
(b) y direction, 1O (φ = −π/3.5); (c) x direction, 2M (φ = −π/5.2); (d) y direction,
2M (φ = −π/5.2).

5 Results

5.1 Static cluster decomposition (t = 0)

We have obtained the static CD results by taking only the first points in its time

evolution. In this case we observe the expected behaviour, i.e. all of the CD terms

decay as the size of the system increases.

In the first phase, one observes an exponential decay for both the x and y direc-

tion, while in the second phase, on the contrary, one observes algebraic decay, i.e.

one with negative power law.

These four results are depicted in Figure 5.1.

We can see that the first three include all of the spin sites, corresponding to

monotonous decay such as, e.g. the one depicted in Figure 5.2, i.e. that of x di-

rection in the first phase.

On the other hand, for the y direction in the second phase, we see a peak at
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Figure 5.2: Static cluster decomposition (t = 0) for (a) x direction, phase 1O, all spin
lengths; (b) x direction, phase 1O, half of spin lengths. Notice that we have discarded
the lower spin numbers in the (b) part of the figure to demonstrate that, regardless
of the current length, CD of the longer chain will be significantly lower in value; this
behaviour echoes the exponential decay of CD as the chain length increases.

lower chain length and then again a decay, albeit an algebraic one. This behaviour

is depicted in Figure 5.3 and is indicative of the fact that one should consider only

those numbers of spins that are a part of the decaying behaviour to avoid potential

finite size effects.

Since the first phase corresponds to the unfrustrated case and the second to the

frustrated one, we immediately see that our results are consistent with the known

ones, both numeric and analytic [38–41]. Mathematically, the reason for the alge-

braic decay in the frustrated case is the extra term emerging in correlation function

(3.26), i.e. the f term that vanishes in the first phase. Physically, this term corre-

sponds to a single delocalised excitation present in the ground state of the system.

Thinking classically, one would naively expect this constant term to be insignificant,

however it is important to notice that this excitation is delocalised and thus can have

significant effect on the system, even in the thermodynamic limit, as has been shown

repeatedly [10,11].

5.2 Long times

In Table 5.1, behaviour of the CD averaged out over long times is given for six pos-

sible transitions starting from the first two phases. Since all of them fall either into

algebraic or exponential decay, we have only denoted the type in the table and left

the precise numbers for the plots. However, one should note that the exponents usu-
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Figure 5.3: Nonscaled static cluster decomposition for y direction and phase 2M
(φ = −π/5.2). One can see that, due to finite size effects, there is a peak in the CD at
low spin numbers, but as one enlarges the spin chain, it starts following an algebraic
decay law.

ally depend on the initial and final parameter values and are thus not to be taken as

a particularly relevant information.

We further emphasize that the averaging is done by means of a root-mean-square

average since the CD expressions are in general oscillatory and thus cancellation

can yield some unseemly results. However, in the dominant majority of the cases,

averaging over the values directly would be sufficient, but our choice makes more

sense intuitively as well since we are interested in how close the two terms in CDH

are, not particularly which one is larger.

For the transitions, several different parameter values are shown in the forthcom-

ing figures, noting that the behaviour persists over the range of values inside each

phase, as long as we are not too close to its boundary so as not to approach a phase

transition.

Let us start with six transitions from the first phase, as depicted in Figure 5.4.

We see that all decays except one are exponential (CD is exponentially decreasing

with the system size). In general, there is a significantly faster decay of the CD when

one evolves from 1O to 3I than from 1O to 2M. This is intuitively understood due

to the fact that the spectra of the system for the first two phases both demonstrate
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Table 5.1: Table of averaged long time values of CD for evolutions starting in first
two phases.

final
initial

1 2

1 CDx alg CDy exp CDx exp CDy exp
2 CDx exp CDy exp CDx alg CDy alg
3 CDx exp CDy exp CDx exp CDy exp

the lowest energy excitations as those of zero and π modes and also have the same

form of the ground states in both parity sectors. However, this picture is altered in

the third phase since the four modes ±p and ±p′ become of lower energy than the

0 mode. Thus, the ground states are significantly different and as a consequence all

the expectation values (hence their products and difference as well) decay rapidly as

there is no overlap between the excited modes59.

Furthermore, we have observed over several choices of initial and final parame-

ters that the decay is also faster when evolving from the first phase to the second one

than when remaining inside the first phase. Again, this is understood to be a conse-

quence of the difference in spectra of the system in first two phases, i.e. existence of

the energy gap in the first and lack thereof in the second.

Finally, one can also notice in Figure 5.4 that some of the spin number ranges

start at higher numbers, again due to peaks that are consequences of finite size ef-

fects. One such behaviour is depicted in Figure ??. It was also observed over several

different parameter choices that decay for 1O 1O evolutions is delayed, i.e. shifted

towards higher spin chain lengths, such as the one in Figure 5.5.

Further still, one can see that in Figure 5.4, plot (d) is over larger chain lengths

N than the rest. This is due to the fact that the system exhibits finite size effects at

smaller N and these follow a significantly different law, as can be seen in Figure 5.6.

The CD value exhibits a peak at very low chain lengths and then proceeds to decay

with a reasonably precise power law.

Finally, one should observe a different behaviour of the y direction CD when

the evolution remains in the first phase. It is of algebraic decay with power of ap-

proximately two for several parameter ranges and thus corresponds to mesoscopic

behaviour in the sense that it vanishes in the thermodynamic limit, but is present for

59Note that, since the Hamiltonian after the quench commutes with the translation operator (all of
the symmetries remain because quench is global), total momentum is conserved.
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Figure 5.4: Long time average of CD for transitions starting in the first
phase (a) x direction, 1O 1O (−π/3.0 −π/3.5) (b) x direction, 1O 2M
(−π/3.3 −π/5.2) (c) x direction, 1O 3I (−π/3.0 +π/4.5) (d) y direction,
1O 1O (−π/2.5 −π/3.5) (e) y direction, 1O 2M (−π/3.0 −π/4.9) (f) y di-
rection, 1O 3I (−π/3.0 +π/4.5) .

finite systems. This is in agreement with the fact that the decay is shifted towards

higher spin numbers for this type of evolution.

It is also noticeable that there are some deviations of points from the lines of

precise decay laws, but these are due to our relatively imprecise method of averaging

over 100 points in an interval that is the same for most of the evolutions. In those

that did not display precise agreement with the fits, averaging was carried out over
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Figure 5.5: Long time average of cluster decomposition for y direction and evolution
1O 1O (−π/2.5 −π/3.5). One can see that, due to finite size effects, there is a
peak in the CD at low spin numbers, but as one enlarges the spin chain, it starts
following an exponential decay law. Furthermore, in a range of cases of 1O 1O
evolution, it was observed that the decay is shifted towards higher chain lengths.
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Figure 5.6: Long time average of CD for 1O 2M (−π/2.5 −π/3.5) evolution and
y direction without any scaling of the axes. We see that, due to finite size effects,
there is a peak in CD at low chain length and that the first part of the plot does not
follow the decay behaviour observed for larger chain lengths.

longer time intervals. In practice, to obtain even more precise results, one ought to do

averages of this kind over several intervals of different length and number of points
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Figure 5.7: Long time average of CD for transitions starting in the second
phase (a) x direction, 2M 1O (−π/4.8 −π/3.0) (b) x direction, 2M 2M
(−π/4.5 −π/5.0) (c) x direction, 2M 3I (−π/4.5 +π/4.5) (d) y direction,
2M 1O (−π/4.8 −π/3.0) (e) y direction, 2M 2M (−π/4.5 −π/5.0) (f) y di-
rection, 2M 3I (−π/4.5 +π/4.5) .

to check at what range does the average become stable and proceed accordingly.

The evolutions starting from the second phase in the long time regime yield simi-

lar results as the ones starting from the first phase and are shown in Figure 5.7.

First, the exponential decays when crossing the φ = 0 are, over a range of param-

eter values, larger than the ones when crossing between 1O and 2M and vice versa.

Once again, this is due to the significant difference in lowest energy modes and thus
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the form of ground state as well. Similarly, there are mostly exponential decays for

the rest, but expectedly with the decay rates higher when crossing between phases

than remaining in the same one, as is reasonable based on the presence of the energy

gap in the first phase and lack thereof in the second.

As for the evolutions starting in the first phase, one observes an algebraic decay

of the magnetisation along both x and y directions when the system remains in the

second phase during evolution, again implying a mesoscopic regime in which the CD

persists for finite systems.

To conclude, we reiterate the important observation of the emergence of meso-

scopic magnetisation in three of the long-time regimes in which we remain inside the

first two phases. This term was coined and demonstrated in previous work [10] and

has now been shown to hold for several dynamic regimes as well. Besides this, we

have observed a delayed decay, i.e. the one shifted towards higher spin numbers of

the y direction long time CD when the system remains in the same phase during the

evolution, albeit with different parameter value, i.e. 1O 1O and 2M 2M. At the

moment, we intend to explain this behaviour after obtaining the data for the remain-

ing 3 time evolutions starting in the third (3I) phase since in this phase the system is

frustrated as well and could thus shed some light on the observed phenomena.

Finally, we briefly mention that the CDH was not discussed for the z direction

since its expressions tend to be trivial in the sense of exponential decay regardless

of the phase, as was shown in the static case [10]. This is due to the fact that the

matrices corresponding to their correlation functions are of fixed size, i.e. they do

not scale with the system size as, e.g. the ones for x and y directions do.

91



6 Conclusion

The aim of this thesis was to explore the validity of the cluster decomposition hy-

pothesis and its behaviour for the long time ranges in different phases of the 1D XY

model, both for x and y directions.

Process was carried out in several steps, starting with solution to the model in

absence of external magnetic field by means of the Jordan-Wigner transformation

and Bogoliubov rotation, along with introduction of the three distinct phases based

on the value of the anisotropy parameter φ. In this way, we have obtained the ground

states and spectra of the model and shown that it is doubly degenerate in the first two

phases and quadruply degenerate in the third one. Based on these results, we have

derived the analytic expressions for the two-point correlation functions in both static

and dynamic case for all three phases. Afterwards, dynamic one-point correlation

functions were obtained as well by evaluating them in the ground states of well-

defined parities along the x and y directions. This was possible since the ground

state was degenerate in all three phases and we were consequently able to construct

the appropriate states as linear combinations of degenerate ones.

We continued by discussing the static correlation functions as a t→ 0 limit of the

dynamic ones. It was shown that their behaviour is in agreement with known results

and that the cluster decomposition decays with system size in different phases. In

the first phase, i.e. unfrustrated one it was shown that the decay was exponential.

On the contrary, in the second, i.e. frustrated phase it follows an algebraic law in the

system size.

For the evolutions crossing the φ = 0 threshold, we have demonstrated that all of

the CD expressions decay exponentially, as was expected due to the significant differ-

ence of the minimal energy states above and below φ = 0. Furthermore, we have also

analysed the cluster decomposition behaviour in long-time regime for the evolutions

between the first two phases and shown that, when there is crossing between 1O and

2M, the CD once again demonstrates an exponential decay, although at consistently

slower rate compared to the φ = 0 crossing. This type of decay is understandable

due to presence of energy gap in the first phase but not in the second.

The conclusion is similar for the 1O 1O long-time evolutions and CD in the y

direction, but not the x. This regime, along with both directions in 2M 2M demon-
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strate an algebraic decay with system size. This implies a mesoscopic behaviour and

CDH that does not hold for finite sized systems. Furthermore, at least one of these

evolutions, the long-time CD in the y direction and the first phase displays decay

shifted towards higher spin numbers, implying again that the two-point correlation

functions cannot be decomposed until the system is very large.

At the moment, we intend to explain this last couple of behaviours after analysing

the data for the remaining time-evolutions starting in the third (3I) phase since in this

phase the system is frustrated as well and could thus shed light on this phenomenon.

Such evolutions will be explored in an upcoming paper since, when starting in the

third phase, translational invariance is broken and there are thus additional sub-

tleties in both the definition and evaluation of the cluster decomposition hypothesis,

compared to the first two.

In the end, we emphasise that the importance of our result lies in the fact that

it implies constraints on the validity of the often used cluster decomposition princi-

ple and in certain phases prevents one from exploiting it without ensuring that the

system is sufficiently large, which requires an additional layer of rigour and care

compared to how this principle is usually used.
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Appendices

Appendix A Miscellaneous

The purpose of this appendix is to list the results which are obtained and consistent

with previous papers and elucidate some of the calculations done while solving the

XY model as well.

A.1 Consistency with previous papers

Dispersion given in (2.58) is equal to the one given by (15) in [10], as we show

working backwards, i.e. by starting with the equation from the paper:

ε(q) = 2|eı2q cosφ+ sinφ| =2

√
(cosφ cos(2q) + sinφ)2 + (cosφ sin(2q))2

=2
√

1 + sin(2φ) cos(2q) X
(A.1)

Furthermore, we mention the correlation functions given by (3.28) and (3.26)

which correspond, respectively, to (18) in [10], while (7.35) and (3.46) correspond

to (55) and (56) in [11], respectively.

A.2 Fermionic nature of the bq operators

As was mentioned after introducing the Fourier transform (7.15), the fermionic na-

ture of the bq operators is seen from the symmetry of the Fourier transform (7.15),

but we demonstrate it here nevertheless:

{
bq, b

†
k

}
=

1

N

∑
q,k∈Γ±

e−ı(qj−kl)
{
cj, c

†
l

}
=

1

N

∑
q∈Γ±

e−ıq(j−l) = δq,k (A.2)

using (7.15), (2.35) and the delta function identity
∑

q∈Γ± e
−ıq(j−l) = Nδj,l. Similarly,

for the other anticommutators:

{bq, bk} =
1

N

∑
q,k∈Γ±

e−ı(qj+kl) {cj, cl} = 0 (A.3)
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upon using the relation (2.36) and the final relation is obtained by taking the Hermi-

tian conjugate of the preceding one:

{
b†q, b

†
k

}
= 0 . (A.4)

Hence, we have demonstrated that the bq operators are consistently60 fermionic.

A.3 Fermionic and collective nature of the aq operators

To demonstrate the fermionic nature of the aq operators, we use the results for the bq

operators obtained in the preceding section and the transformation (2.57):

{
aq, a

†
k

}
=
{

cos θqbq + ı sin θqb
†
−q, cos θkb

†
k − ı sin θkb−k

}
= cos θq cos θk

{
bq, b

†
k

}
+ sin θq sin θk

{
b†−q, b−k

}
= cos2 θqδq,k + sin2 θqδq,k

=δq,k ,

(A.5)

specifically upon using (A.2), (A.3) and (A.4).

Continuing, we obtain the other anticommutation relations of interest in a similar

manner:

{aq, ak} =
{

cos θqbq + ı sin θqb
†
−q, cos θkbk + ı sin θkb

†
−k

}
=ı cos θq sin θk

{
bq, b

†
−k

}
+ ı sin θq cos θk

{
b†−q, bk

}
=− ı cos θq sin θqδq,−k + ı sin θq cos θqδq,−k

=0 ,

(A.6)

upon using the same formulae again. Taking the Hermitian conjugate of the preced-

ing equation also yields: {
a†q, a

†
k

}
= 0 . (A.7)

Zeros of the squares of these operators are, as usual, seen from the anticommuta-

tion relations of the same operators, i.e. (A.6) and (A.7).

Having proven their fermionic nature, it is illustrative to ponder their collective

nature, which is evident from the transformation (2.57) since they represent linear

60That their squares are zero is seen easily from (A.3) and (A.4).
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combinations of Fourier transforms of the physical spin operators. Much has been

written on the topic of quasiparticles and collective phenomena in general and we

thus refer the reader to the standard literature [42, 43]. However, for intuitive con-

venience, we will emphasise here that the excitations we mention in the body of the

thesis ought to be interpreted as collective excitations of the physical system as a

whole, rather than imagining them as single particles. Furthermore, the high non-

locality of the JW transformation implies that the distinct parts of the system will

be parts of excitations simultaneously; dramatic consequences of this fact in terms

of boundary conditions being enough to destroy the local order or induce a phase

transition even in the thermodynamic limit of macroscopic number of spin sites have

already been demonstrated [10,11].

Appendix B Diagonalisation and the Bogoliubov angle

definition

We will solve the eigenvalue problem for the matrix in (2.53), i.e.: Cq,φ ıSq,φ

−ıSq,φ −Cq,φ

 (B.1)

by diagonalising it directly to illustrate some of the peculiarities that arise in the

frustrated case. We remark that this corresponds not to analysing the system all at

once, but rather inspecting the subspaces spanned by the two opposite momenta q

and −q and seeking to solve their eigenvalue problem. From this it is also evident

that the basis61,62 in which the previous matrix is given is that of the vectors:

|0q, 0−q〉 := |0q〉 |0−q〉 and |1q, 1−q〉 := a†qa
†
−q |0q, 0−q〉 , (B.2)

where the first vector corresponds to
(

0
1

)
and the second one to

(
1
0

)
.

It is easily seen that the energy of the quasiparticle vacuum state λq,φ of a given

61It is evident from (B.1) that there are no mixed basis elements, such as |0q, 1−q〉.
62Furthermore, to prove that the matrix (B.1) is indeed correct in a given basis, it is easy to calculate

the matrix elements in, e.g. (2.46).
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subsystem is obtained by solving the equation:

λ2
q,φ − 4

(
C2
q,φ + S2

q,φ

)
= 0 , (B.3)

and the appropriate choice of the minus sign gives the energy as:

λq,φ = −2
√
C2
q,φ + S2

q,φ =− 2
√

(1 + sin(2φ)) cos2 q + (1− sin(2φ)) sin2 q

=− 2
√

1 + sin(2φ) cos(2q) = −2|eı2q cosφ+ sinφ| ,
(B.4)

where we have exploited (A.1) to write λq,φ in two convenient equivalent forms. Note

that the factor of two has emerged in the Hamiltonian terms since for all the modes

q except63 0 and π the Hamiltonian term for the −q is the same as the one for q and

thus we have indicated this directly. Furthermore, observe that this implies that the

total energy of the vacuum state of the system is given by the sum of λq,φ over all of

the positive momenta q and reduces to (2.67), as it should.

With eigenenergies known, we solve for the vacuum state wavefunction |ψq,φ〉 =[
βq + αqa

†
qa−q†

]
|0q, 0−q〉 for each q and −q momenta pair:

 Cq,φ ıSq,φ

−ıSq,φ −Cq,φ

αq
βq

 = λq,φ

αq
βq

 , (B.5)

yielding64:

|ψq,φ〉 ∝
[
1− ı

(
|eı2q cosφ+ sinφ| − Cq,φ

Sq,φ

)
b†qb
†
−q

]
|0q, 0−q〉

=
[
1− ı tan θq b

†
qb
†
−q

]
|0q, 0−q〉 ,

(B.6)

where the Bogoliubov angle θq is defined uniquely by the arctangent function as:

θq := arctan
|eı2q cosφ+ sinφ| − Cq,φ

Sq,φ
= arctan

|eı2q cosφ+ sinφ| − [cosφ+ sinφ] cos q

[cosφ− sinφ] sin q
.

(B.7)

To justify the rigmarole the previous couple of equations are, note that θq defined in

63The Hamiltonian for these two modes has no factor of two.
64It is instructive to act upon this wave function with appropriate annihilation operator aq and

demonstrate that it yields zero, as it should by (2.64). The ground state in the latter is a product state
of those of form (B.6).
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this way is endowed with the property:

θ−q = −θq (B.8)

and thus it holds for the coefficients in the wavefunction that:

cos θ−q = cos θq and sin θ−q = − sin θq . (B.9)

It is now more transparent that we have made this choice since it is somewhat natural

in terms of the expected behaviour of sine and cosine functions. Notice that if we

had written the coefficients in (B.6) straight away as sine and cosine, they would

have properties opposite to those in (2.56) so this process was indeed necessary for

our convenience. We furthermore note that there would be no physical difference

when calculating the ground states and correlation functions since this exchange

would alter the wave functions up to a factor of minus, however in other calculations

differences arise [11] and it is important to be consistent with the unique choice we

make throughout the calculations.

We can now finally write the normalised wavefunction (B.6) of the quasiparticle

vacuum as:

|ψq〉 =
[
cos θq − ı sin θq b†qb

†
−q

]
|0q, 0−q〉 , (B.10)

where it is evident that we have identified:

αq = −ı sin θq and βq = cos θq , (B.11)

from which it immediately holds that:

α−q = −αq and β−q = βq . (B.12)

Notice also that (B.10) is invariant under the transformation q  −q since |1q, 1−q〉 =

a†qa
†
−q |0q, 0−q〉 = −a†−qa†q |0q, 0−q〉 = |1−q, 1q〉 for the fermionic qusiparticles deter-

mined by the a operators and this was to be expected because the exchange of these

modes does not induce any changes in the system. With opposite properties (2.56),

the wave function would gain a minus sign upon said transformation, which again

adds only an arbitrary phase to the wavefunction and thus leaves the physics of the
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system invariant.

In the end, we reiterate that the total vacuum wave function is a state product of

terms of the form (B.10):

|0±〉 =
⊗

0<q<π; q∈Γ±

[
cos θq − ı sin θq b†qb

†
−q

]
|0〉 (B.13)

and again notice that the product goes over only the positive modes q, as is congruent

with the fact that the Hamiltonian (2.58) can be written in such a way, albeit with the

diagonal matrices corresponding to 0 and π modes written separately since they have

no negative counterparts. This fact will be quite useful when considering the time

evolution of the system, since it will be possible to analyse the subspaces of different

modes separately similarly to the process of diagonalisation.

Appendix C Static correlation functions for the 3I phase

In this appendix we provide an overview of all the results necessary for deriving the

relevant correlation functions (3.46) and (7.35) in the third phase. Note, however,

that the state of interest is (3.45) and thus the expectation values of different kind

will be needed. To explicitly see exactly which terms are of importance, let us express

the expectation value of a generic operator O in the |u1, u2〉 state:

〈O〉u1,u2 = [u∗1 〈p|+ u∗2 〈−p|]O [u1 |p〉+ u2 |−p〉]

=|u1|2 〈p|O |p〉+ |u2|2 〈−p|O |−p〉+ (u∗1u2 〈p|O |−p〉+ c.c.)
(C.1)

and we thus conclude that four types of expectation values will be needed in general.

As we will soon see, many of them are equal or related in a trivial manner.

C.1 Majorana correlation functions for the 3I phase

Begin with the correlation function terms in terms of the operators aq and use the

definition of the ground state wave function (2.81). The relevant combinations of
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the operators are:

〈±p| aqa†k |±p〉 =δq,k [1− δq,±p] , (C.2a)

〈±p| aqa†k |∓p〉 =− δq,∓pδk,±p , (C.2b)

〈±p| a†qak |±p〉 =δq,±pδk,±p , (C.2c)

〈±p| a†qak |∓p〉 =δq,±pδk,∓p , (C.2d)

〈±p| aqak |±p〉 = 〈±p| aqak |∓p〉 = 〈±p| a†qa
†
k |±p〉 = 〈±p| a†qa

†
k |∓p〉 = 0 . (C.2e)

As before, it is instructive to notice the internal consistency of these equations, re-

garding the anticommutation relations for the aq operators (A.5), (A.6) and (A.7).

We continue with turning to the bq operators, exploiting (3.9) to obtain:

〈±p| bqb†k |±p〉 =− cos2 θpδq,±pδk,±p + sin2 θpδq,∓pδk,∓p +
1 + cos(2θq)

2
δq,k , (C.3a)

〈±p| bqb†k |∓p〉 =− δq,∓pδk,±p , (C.3b)

〈±p| b†qbk |±p〉 = cos2 θpδq,±pδk,±p − sin2 θpδq,∓pδk,∓p +
1− cos(2θq)

2
δq,k , (C.3c)

〈±p| b†qbk |∓p〉 =δq,±pδk,∓p , (C.3d)

〈±p| bqbk |±p〉 =− ısin(2θ±p)

2
[δq,±pδk,∓p − δq,∓pδk,±p] + ı

sin(2θq)

2
δq,−k , (C.3e)

〈±p| bqbk |∓p〉 =0 , (C.3f)

〈±p| b†qb
†
k |±p〉 =− ısin(2θ±p)

2
[δq,±pδk,∓p − δq,∓pδk,±p] + ı

sin(2θq)

2
δq,−k , (C.3g)

〈±p| b†qb
†
k |∓p〉 =0 . (C.3h)

Internal consistency checks should not even be mentioned at this point, but it is also

useful to notice the similarities between the functions for the first two phases and the

importance of certain modes (0 mode for those two phases and the ±p modes for the

third phase), both for aq and bq operators.

Finally, we return to the coordinate space via the inverse Fourier transform (7.15)
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to obtain the correlation functions in terms of the cj operators:

〈±p| cjc†l |±p〉 =
1

N

∑
q∈Γ−

eıq(j−l)
1 + cos(2θq)

2
+

1

N

[
sin2 θpe

−ı(±p)(j−l) − cos2 θpe
ı(±p)(j−l)] ,

(C.4a)

〈±p| cjc†l |∓p〉 =− 1

N
e−ı(±p)(j+l) , (C.4b)

〈±p| c†jcl |±p〉 =
1

N

∑
q∈Γ−

eıq(j−l)
1− cos(2θq)

2
+

1

N

[
− sin2 θpe

ı(±p)(j−l) + cos2 θpe
−ı(±p)(j−l)] ,

(C.4c)

〈±p| c†jcl |∓p〉 =
1

N
e−ı(±p)(j+l) , (C.4d)

〈±p| cjcl |±p〉 =
ı

N

∑
q∈Γ−

eıq(j−l)
sin(2θq)

2
+

1

N
sin(2θ±p) sin [±p (j − l)] , (C.4e)

〈±p| cjcl |∓p〉 =0 , (C.4f)

〈±p| c†jc
†
l |±p〉 =− ı

N

∑
q∈Γ−

eıq(j−l)
sin(2θq)

2
− 1

N
sin(2θ±p) sin [±p (j − l)] , (C.4g)

〈±p| c†jc
†
l |∓p〉 =0 . (C.4h)

It is from this last set of equations that the relations (3.46) and (7.35) are obtained.

We also remark that, since the problematic mode in the odd sector which our ground

state |u1, u2〉 is a part of is the 0 mode and upon exploiting (2.60) it is seen that

there is no need for the correction of the Bogoliubov angle in the third phase we are

considering at the moment.

Appendix D Dynamic correlation functions for the 3I

phase

In this appendix, we list the relevant results necessary to calculate the dynamic cor-

relation functions in the third phase. We exploit the expression for the time-evolved

ground states in the odd sector of this phase (3.71) and first find the actions of the
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bq operators on them to be:

bq |±p(t)〉 ⊗
0<q<π;q∈Γ−\{1,p}

α̃q(t) |0q, 1−q〉

⊗ |1±p, 0∓p〉 ⊗ eı√2 cos(φ−π4 )t |00〉 [1− δq,p] [1− δq,−p] [1− δq,0] +

+

 ⊗
0<q<π;q∈Γ−\{p}

[
α̃q(t) |1q, 1−q〉+ β̃q(t) |0q, 0−q〉

]⊗ |0p, 0−p〉 ⊗ eı√2 cos(φ−π4 )t |00〉 δq,±p

(D.1)

and

b†q |±p(t)〉 ⊗
0<q<π;q∈Γ−\{1,p}

β̃q(t) |1q, 0−q〉

⊗ |1±p, 0∓p〉 ⊗ eı√2 cos(φ−π4 )t |00〉 [1− δq,p] [1− δq,−p] [1− δq,0]−

−

 ⊗
0<q<π;q∈Γ−\{p}

[
α̃q(t) |1q, 1−q〉+ β̃q(t) |0q, 0−q〉

]⊗ |1±p, 1∓p〉 ⊗ eı√2 cos(φ−π4 )t |00〉 δq,∓p+

+

 ⊗
0<q<π;q∈Γ−\{p}

[
α̃q(t) |1q, 1−q〉+ β̃q(t) |0q, 0−q〉

]⊗ |1±p, 0∓p〉 ⊗ eı√2 cos(φ−π4 )t |10〉 δq,0

,

(D.2)

with the expressions written out in a somewhat cumbersome fashion to again illus-

trate a slightly different way of calculating the correlation functions and as a consis-

tency check.

We proceed with calculating all of the expectation values (correlation functions)

for the bq operators and write the delta terms in a shorter way (one should convince
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oneself of its validity):

〈±p(t)| bqb†k |±p(t)〉 =|β̃q(t)|2δq,k [1− δq,p − δq,−p − δq,0] + δq,kδq,∓p + δq,kδq,0 , (D.3a)

〈±p(t)| bqb†k |∓p(t)〉 =− δq,∓pδk,±p , (D.3b)

〈±p(t)| b†qbk |±p(t)〉 =|α̃q(t)|2δq,k [1− δq,p − δq,−p − δq,0] + δq,kδq,±p , (D.3c)

〈±p(t)| b†qbk |∓p(t)〉 =δq,±pδk,∓p , (D.3d)

〈±p(t)| bqbk |±p(t)〉 =− α̃q(t)β̃∗q (t)δq,−k [1− δq,p − δq,−p − δq,0] , (D.3e)

〈±p(t)| bqbk |∓p(t)〉 =0 , (D.3f)

〈±p(t)| b†qb
†
k |±p(t)〉 =α̃∗q(t)β̃q(t)δq,−k [1− δq,p − δq,−p − δq,0] , (D.3g)

〈±p(t)| b†qb
†
k |∓p(t)〉 =0 (D.3h)

and check the internal consistency as before while also noting that they correctly

reduce to (C.3) for t = 0.

We continue with the corresponding relations for the cj operators, exploiting the

Fourier transform (7.15) to obtain:

〈±p(t)| cjc†l |±p(t)〉 =
1

N

∑
q∈Γ−\{p,−p,0}

eıq(j−l)|β̃(t)|2 +
1

N

[
eı(∓p)(j−l) + 1

]
, (D.4a)

〈±p(t)| cjc†l |∓p(t)〉 =− 1

N
e−ı(±p)(j+l) , (D.4b)

〈±p(t)| c†jcl |±p(t)〉 =
1

N

∑
q∈Γ−\{p,−p,0}

eıq(j−l)|α̃(t)|2 +
1

N
e−ı(±p)(j−l) , (D.4c)

〈±p(t)| c†jcl |∓p(t)〉 =
1

N
e−ı(±p)(j+l) , (D.4d)

〈±p(t)| cjcl |±p(t)〉 =− 1

N

∑
q∈Γ−\{p,−p,0}

eıq(j−l)α̃q(t)β̃
∗
q (t) , (D.4e)

〈±p(t)| cjcl |∓p(t)〉 =0 , (D.4f)

〈±p(t)| c†jc
†
l |±p(t)〉 =− 1

N

∑
q∈Γ−\{p,−p,0}

eıq(j−l)α̃∗q(t)β̃q(t) , (D.4g)

〈±p(t)| c†jc
†
l |∓p(t)〉 =0 , (D.4h)

which are internally consistent and also reduce to (C.4), as they ought to.

It is from this last set of equation that the expressions (7.44), (7.42) and (7.43)

are obtained. Notice that, as for the static correlation functions in this phase, there

is no need of eliminating any faulty Bogoliubov angles.
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Appendix E Expectation values, determinants and Toeplitz

matrices

As can be observed throughout the thesis body, most of the important physical are

reduced to problems of evaluating matrix determinants. Furthermore, these matrices

are always of one of two forms: Toeplitz matrices or Pfaffians.

To begin, let us consider the matrix in (3.41). We first observe that it has a par-

ticular form, i.e. that its left-to-right diagonals all have the same value—these matri-

ces are known as Toeplitz matrices and study of their determinants, especially their

asymptotic behaviour is a branch in and of itself. Coincidentally, their development

is intimately related to research on the properties of Ising and XY models [35]. Being

able to write the physical quantities in this way is extremely useful since it is then

possible to obtain analytic expressions for their expansions. This was done formally

for the systems we are interested in and it has been shown that the unfrustrated (1O)

and frustrated (2M) phases exhibit exponential and algebraic decay of the two-point

correlation functions, respectively [41]. This fact is based on the extra constant term

emerging in the matrix entries in the frustrated case due to the single delocalised

excitation in the ground state.

To obtain their Toeplitz form based on different contractions of operators, we

consult the determinant formulation of Wick’s theorem for certain systems [9, 44].

From a practical viewpoint, we can just write all of the operators in particular order

both as the rows and columns and then fill the matrix with their contractions (one

should convince oneself of this process intuitively by focusing on one row in the

determinant and consider the possible contractions inside the Wick’s theorem). To

this end, we also note that 〈AjAl〉 and 〈BjBl〉 contractions vanish except for j = l, but

these terms will be the reason for the matrix reducing to Toeplitz form. Particularly,

let us consider formula (3.41) with the sites being j = 1 and l = 3. Then, as per

expression (3.30) there will be four Majorana operators: A2, A3, B1, B2
65 Ordering

these operators as suggested and contracting them (beearing in mind that 〈AjAl〉

and 〈BjBl〉 are Kronecker-deltas, but also that the determinant is antisymmetric)

65Note that there will be some additional factors based on interchanging these operators since they
are fermionic, but we are only interested in matrix form at the moment.
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yields:

A2 A3 B1 B2

A2 0 0 〈A2B1〉 〈A2B2〉

A3 0 0 〈A3B1〉 〈A3B2〉

B1 〈B1A2〉 〈B1A3〉 0 0

B2 〈B2A2〉 〈B2A3〉 0 0

. (E.1)

Furthermore, to simplify this expression, we first recall that switching operators Aj

and Bl induces only a minus sign and also that the upper left and lower right blocks

in it are zero matrices. Thus, the matrix is of the form: 0 D

−DT 0

 (E.2)

and using the result  0 D

−DT 0

 =

D 0

0 DT

 0 1

−1 0

 , (E.3)

one gets that this expectation value can be written in terms of the upper right corner

of (E.4), i.e. it is reducible to Toeplitz form66.

To generalise this result to the case of more complicated 〈AjAl〉 and 〈BjBl〉 terms,

i.e. not Kronecker-deltas, we proceed as before and take a look at the same example

(again note that the diagonal terms are zero because of total antisymmetry):

A2 A3 B1 B2

A2 0 〈A2A3〉 〈A2B1〉 〈A2B2〉

A3 〈A3A2〉 0 〈A3B1〉 〈A3B2〉

B1 〈B1A2〉 〈B1A3〉 0 〈B1B2〉

B2 〈B2A2〉 〈B2A3〉 〈B2B1〉 0

(E.4)

and upon using the fact that Aj and Bl are fermionic, we see that this matrix is indeed

totally antisymmetric and that it has a form of a Pfaffian. As for Toeplitz matrices,

exploration of Pfaffians is a huge body of research [45–47] and will be not be pursued

66E.g. one can write the easy determinant expansion in full for this case and then proceed induc-
tively for general dimension.
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in the current work since we have made use of numerical evaluation because of the

analytic expression being extremely tedious and cumbersome to evaluate. However,

we will mention that one can see that for vanishing upper left and lower right blocks

in the matrix (i.e. the determinant reducible to Toeplitz form), one can use the

Pfaffian property for matrix A of dimension N :

pf

 0 A

−AT 0

 = (−1)
1
2
N(N−1) detA (E.5)

and we see that reduces it to Toeplitz form directly.

In the end, we emphasize that essentially all of the expectation values for both

one- and two-point correlation functions are of this form and that this is a conse-

quence of the fact that they emerge from the Wick’s theorem for the operators that

are fermionic, i.e. their products are antisymmetric upon changing their order.
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7 Prošireni sažetak

7.1 Uvod

Jednodimenzionalni XY lanac egzaktno je rješiv model koji predstavlja generalizaciju

jednodimenzionalnog Isingovog modela uz dodatnu interakciju u smjeru ortogonal-

nom na inicijalnu. Odnos med̄u ove dvije interakcije opisan je parametrom ani-

zotropije φ u kojem su sadržani njihova relativna magnituda i predznak pa je stoga

njegov Hamiltonijan jednak:

H =
N∑
j=1

[
cosφ σxj σ

x
j+1 + sinφ σyjσ

y
j+1

]
, (7.1)

gdje σx,y uobičajeno označavaju spinske Paulijeve matrice. Vidimo da ovaj model

posjeduje razne simetrije poput one translacijske, ali i činjenice da transformacija

φ φ+ π/2 zamjenjuje interakcije u x i y smjeru. Na temelju potonje, zaključujemo

da bez smanjenja općenitosti možemo restringirati vrijednosti φ na jednu polovinu

jedinične kružnice, odnosno intervala od 0 do 2π.

Da bismo motivirali interes za proučavanjem ovog modela, zadržimo se kratko na

konceptu frustracije. Neformalno, frustracija odgovara nemogućnosti istovremene

minimizacije globalnog Hamiltonijana i svih njegovih lokalnih podsustava, što je

obično posljedica više sukobljenih interakcija. Konkretno, možemo promotriti spin-

ski sustav s antiferomagnetskom interakcijom na Slici 7.1. Želeći da sve interakcije

med̄u spinovima budu minimalne, krenemo od prvog spina i svaki idući orijentiramo

suprotno. Vidimo da kada dod̄emo do posljednjeg, on će nužno biti paralelan sa

početnim; ovakva nemogućnost se javlja u svim zatvorenim lancima sa neparnim

brojem spinova N .

Nastavno na spomen frustracije i činjenicu da je dovoljno promatrati polovinu

jedinične kružnice, uvedimo oznake za tri različite faze u kojima se naš sustav može

naći ovisno o vrijednosti parametra φ:

• 1. faza (ured̄ena): φ ∈ 〈−3π/4,−π/4〉—ime joj potječe od neiščezavajućeg

parametra ured̄enja (magnetizacije)
〈
σyj
〉

u slučaju zatvorenog spinskog lanca

(periodičkih rubnih uvjeta) i neparnog broja spinova u njemu N

• 2. faza (mezoskopska): φ ∈ 〈−π/4, 0〉—ime joj potječe od pojave feromagnetske
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↑1

↓2

↑3

↓4

↑5

↓6

↑7

↓8

↑9

–
–

–

–

–

–
–

–

+

Slika 7.1: Frustrirani sustav od devet spinova u 2D konfiguraciji takvoj da spinove
nije moguće orijentirati tako da su sve lokalne interakcije istovremeno minimalne.

magnetizacije u x smjeru koja pada polinomno s veličinom spinskog lanca u

slučaju periodičkih rubnih uvjeta i neparnog broja spinova N

• 3. faza (nesrazmjerna): φ ∈ 〈0,+π/4〉—ime joj potječe od nesrazmjerno mod-

uliranog antiferomagnetskog ured̄enja, takod̄er uočenog za lanac s periodičkim

rubnim uvjetima i neparnim brojem spinova N

Iz njihova kratkog opisa, da se zaključiti da su u sve tri faze periodički rubni uvjeti

i neparan broj spinova ključni za pojavu navedenih fizikalnih obilježja. Ova dva

zahtjeva označavamo terminom frustrirani rubni uvjeti. Ipak, treba biti pažljiv i

napomenuti da sustav u prvoj fazi ne pokazuje frustraciju jer je dominantna in-

terakcija feromagnetska. S druge strane, neparan broj spinova je nužan za pojavu

neiščezavajućeg parametra ured̄enja jer je osnovno stanje sustava u tom slučaju de-

generirano, a u suprotnom parametar ured̄enja iščezava. U drugoj i trećoj fazi sustav

uistinu jest frustriran zato što mu je, osim frustriranih rubnih uvjeta, dominantna

interakcija antiferomagnetska. U sve tri faze, izostanak frustriranih rubnih uvjeta

uništava opaženo ponašanje.

Nakon što smo predstavili tri faze u kojima se sustav može naći, naglasimo da

će nam od velike važnosti biti mogućnost računanja očekivanih vrijednosti jednog i

dvaju spinskih operatora, odnosno redom magnetizacija
〈
σµj
〉

i korelacijskih funkcija〈
σµj σ

µ
l

〉
. Magnetizacije je obično teško računati direktno, posebno zbog činjenice da

naš postupak dijagonalizacije Hamiltonijan razdvaja u dva nepreklapajuća sektora

pariteta duž osi z i to s osnovnim stanjima koja imaju dobro definiran paritet duž te

osi. Naravno, očekivane vrijednosti operatora σxj i σyj u tim stanjima iščezavaju jer
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djelovanje tih operatora nužno mijenja paritet stanja. No, kako je Hamiltonijan de-

generiran u sve tri faze, moguće je konstruirati stanja s dobro definiranim paritetima

u x i y smjerovima.

Jedan način da se pokuša zaobići ova poteškoća je korištenje principa dekompozi-

cije nakupina (PDN):

lim
r→∞

[〈
σµj σ

µ
j+r

〉
−
〈
σµj
〉 〈
σµj+r

〉]
= 0 , (7.2)

gdje µ označava smjer (x, y ili z). U suštini, ovaj princip pretpostavlja da se korelacija

med̄u dva spinska položaja može izračunati kao umnožak pojedinih očekivanih vri-

jednosti u slučaju kada njihova udaljenost divergira. U ovom kontekstu, divergencija

znači da su pozicije antipodalne u lancu čija duljina raste neograničeno. Uz ovo, pos-

toji i dodatna suptilnost ovisno o tome koliko brzo se ova vrijednost približava nuli,

polinomno ili eksponencijalno.

Prva poteškoća u primjeni PDN leži u činjenici da nije uvijek očito na koji način

uzeti limese, kao što je diskutirano u prijašnjim radovima [10], odnosno trebamo li

prvo uzeti limes divergirajućeg N ili prvo postaviti r iz jednadžbe (7.2) na udaljenost

antipodalnih točaka (N ± 1)/2 pa tek onda uzeti limes za N . U navedenom radu je

pokazano da ova dvosmislenost vodi na dva bitno različita ponašanja za očekivanu

vrijednost spinskog operatora, odnosno magnetizaciju u smjeru x.

Cilj ovog diplomskog rada je proširiti ovu diskusiju na slučaj vremenski ovisnog

PDN tako što ćemo promotriti evoluciju sustava nakon globalne promjene parametra

φ u t = 0.

7.2 Rješenje XY modela

7.2.1 Simetrijska svojstva XY modela

Prva očita simetrija modela je njegova translacijska invarijantnost, koju matematički

formuliramo kao komutaciju unitarnog operatora translacije po spinskim položajima

i Hamiltonijana:

[T,H] = 0 , (7.3)
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gdje je operator translacije definiran pomoću:

T |ψ〉 =
N⊗
j=1

(
σ−j
)nj+1 |↑j〉 . (7.4)

Uz ovo, definiramo i operatore pariteta po svakoj od osiju kao operatore koji u

suštini broje koliko je preokrenutih spinova u lancu u pojedinom smjeru:

Πµ :=
N⊗
j=1

σµj , (7.5)

gdje µ označava smjer x, y ili z.

Operatori pariteta komutiraju s Hamiltonijanom (7.1), ali antikomutiraju med̄u-

sobno u slučaju neparnog N , implicirajući barem dvostruku degeneraciju svakog os-

novnog stanja, neovisno o fazi.

Konačno, uvodimo operator zrcaljenja u odnosu na k-tu poziciju u lancu:

Mj |ψ〉 =
N⊗
l=1

(
σ−l
)n2j−l |↑l〉 (7.6)

koji očito komutira s operatorima pariteta, a koristan je za izračun očekivanih vrijed-

nosti spinskih operatora u trećoj fazi.

7.2.2 Jordan-Wignerova transformacija

Da bismo pronašli svojstvena stanja i energije Hamiltonijana (7.1), krećemo od stan-

dardnog pokušaja kvantizacije, odnosno zapisa spinskih operatora pomoću operatora

dizanja i spuštanja:

σ±j =
1

2

[
σxj ± ıσ

y
j

]
. (7.7)

Nakon što Hamiltonijan zapišemo koristeći isključivo njih, primijetimo da je konzis-

tentna kvantizacija onemogućena činjenicom da su operatori σ± fermionski na istom

položaju u lancu, ali bozonski na različitima. Da bismo mogli nastaviti, uvodimo novi

skup Jordan-Wignerovih (JW) operatora cj koji su povezani s operatorima dizanja i

spuštanja na sljedeći način:

c†j :=

(
j−1⊗
l=1

σzl

)
⊗ σ−j i cj :=

(
j−1⊗
l=1

σzl

)
⊗ σ+

j . (7.8)

110



Može se pokazati da su operatori ci konzistentno fermionski i stoga naš Hamiltonijan

prelazi u pogodan oblik jednom kad ga napišemo koristeći samo njih:

H = −
√

2

[
N∑
j=1

[
sin
(
φ− π

4

)
c†jc
†
j+1 − cos

(
φ− π

4

)
c†jcj+1

]
+

+Πz
√

2
[
sin
(
φ− π

4

)
c†Nc

†
1 − cos

(
φ− π

4

)
c†Nc1

]]
+ H.c. .

(7.9)

S obzirom da H i operator pariteta u z smjeru Πz komutiraju, imaju zajednička

svojstvena stanja. Kako paritet u smjeru z može poprimiti samo dvije vrijednosti±1, s

obzirom na odabir rubnih uvjeta u (7.9), H možemo razdvojiti na dva nepreklapajuća

sektora pariteta:

H =

(
1 + Πz

2

)
H+

(
1 + Πz

2

)
+

(
1− Πz

2

)
H−

(
1− Πz

2

)
, (7.10)

gdje oba člana imaju sličan oblik, iako odgovaraju različitim Fockovim prostorima:

H± = −
√

2
N∑
j=1

[
sin
(
φ− π

4

)
c±†j c

±†
j+1 − cos

(
φ− π

4

)
c±†j c

±
j+1

]
+ H.c. (7.11)

Paritet pojedinog sektora označava parnost broja JW fermiona koji su u njemu pobud̄eni.

7.2.3 Fourierov transformat

Da bismo različite položaje u spinskom lancu pretvorili u fazne faktore, definiramo

diskretni Fourierov transformat JW operatora cj:

c±j =
1√
N

∑
q

eıqjbq ↔ bq =
1√
N

∑
j

e−ıqjc±j (7.12)

i primjećujemo da iz njegove definicije slijedi da su modovi po kojima sumiramo u

dva sektora pariteta:

q ∈ Γ+ =

{
−N − 2

N
π, ..., − 1

N
π,

1

N
π, ...,

N − 2

N
π, π

}
(7.13)

te

q ∈ Γ− =

{
−N − 1

N
π, ..., − 2

N
π, 0,

2

N
π, ...,

N − 1

N
π

}
. (7.14)
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Na temelju ovih skupova vrijednosti, naš FT zapisujemo preciznije:

c±j =
1√
N

∑
q∈Γ±

eıqjbq ↔ bq =
1√
N

N∑
j=1

e−ıqjc±j . (7.15)

Zamjenom JW operatora u (7.11) njihovim FT, dolazimo do oblika koji se može za-

pisati na elegantan način kao suma po svim modovima:

H± =
∑
q∈Γ±

(
b†q b−q

) Cq,φ −ıSq,φ
ıSq,φ −Cq,φ

 bq

b†−q

 (7.16)

uz pokrate

Cq,φ =
√

2 cos
(
φ− π

4

)
cos q i Sq,φ =

√
2 sin

(
φ− π

4

)
sin q . (7.17)

7.2.4 Bogoljubovljeva rotacija

Da bismo dijagonalizirali svaki od sumanada u (7.16), rješavamo problem dijagonal-

izacije 2× 2 matrice tako da zahtijevamo da bude dijagonalna u operatorima aq koji

su linearne kombinacije operatora bq: aq

a†−q

 =

 cos θq ı sin θq

ı sin θq cos θq

 bq

b†−q

 za q 6= 0, π , (7.18)

gdje je Bogoljubovljev kut θq definiran pomoću:

θq := arctan
|eı2q cosφ+ sinφ| − [cosφ+ sinφ] cos q

[cosφ− sinφ] sin q
za q 6= 0, π . (7.19)

Primijetimo da je Hamiltonijan dijagonalan za modove 0 i π te da stoga nema potrebe

za Bogoljubovljevom rotacijom.

Koristeći (7.18), Hamiltonijan (7.16) uistinu svodimo na dijagonalan oblik koji

zapisujemo kao:

H± =
∑
q∈Γ±

ε(q)

[
a†qaq −

1

2

]
za q 6= 0, π i ε(q) = 2

√
1 + sin(2φ) cos(2q) . (7.20)

Iz ovog konačnog izraza napokon možemo odrediti svojstvena stanja i energije sus-

tava u sve tri faze.
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7.2.5 Svojstvena stanja i spektri

Prva (ured̄ena) faza U ovoj fazi je energija moda 0 negativna, a moda π i svih os-

talih modova pozitivna. Na temelju zahtjeva parnog broja čestica u parnom sektoru,

za njegovo osnovno stanje uzimamo kvazičestični vakuum; a u neparnom sektoru

moramo pobuditi barem jedan mod pa biramo onaj najmanje energije, odnosno mod

0. Tada su osnovna stanja u svakom od sektora:

parni: |g+〉 = |0+〉 i neparni: |g−〉 = a†0 |0−〉 , (7.21)

gdje kvazičestični vakuum |0±〉 poništavaju operatori aq.

Analogno standardnom rješenju BCS problema, može se pokazati da je osnovno

stanje u svakom od sektora dano izrazom:

|0±〉 =
⊗

0<q<π; q∈Γ±

[
cos θq − ı sin θq b†qb

†
−q

]
|0〉 , (7.22)

gdje |0〉 označava vakuum za operatore b.

Djelovanjem Hamiltonijana u obliku (7.20) na svako od ovih stanja, pokazuje se

da su njihove energije jednake za neparan N i da stoga sustav pokazuje dvostruku

degeneraciju osnovnog stanja. Usto, kako je energija moda 0 manja od svih ostalih,

a ujedno i veća od energije moda π (i to s razlikom koja se ne smanjuje u termod-

inamičkom limesu N → ∞), zaključujemo da u prvoj fazi postoji procjep u energi-

jskom spektru sustava.

Druga (mezoskopska) faza U ovoj fazi je energija moda π negativna, a moda 0 i

svih ostalih modova pozitivna. Na temelju zahtjeva parnog broja čestica u parnom

sektoru, za njegovo osnovno stanje uzimamo kvazičestični vakuum, jer iako mu mod

π pripada i mogao bi smanjiti energiju osnovnog stanja, zbog zahtjeva parnosti broja

pobud̄enja bismo morali dodati još barem jedno pobud̄enje, a sva ostala imaju en-

ergiju po iznosu veću od one moda π. U neparnom sektoru moramo pobuditi barem

jedan mod pa ponovno biramo onaj najmanje energije med̄u onima koji pripadaju

tom sektoru, odnosno mod 0. Tada su osnovna stanja u svakom od sektora kao i u

prvoj fazi:

parni: |g+〉 = |0+〉 i neparni: |g−〉 = a†0 |0−〉 . (7.23)

113



Kao i u prvoj fazi, djelovanjem Hamiltonijana u obliku (7.20) na svako od ovih

stanja, pokazuje se da su njihove energije jednake za neparan N i da stoga sustav

pokazuje dvostruku degeneraciju osnovnog stanja. No, u ovom slučaju je spektar

sustava kontinuiran u termodinamičkom limesu zato što se energije ostalih modova

mogu proizvoljno približiti energiji moda 0.

Treća (nesrazmjerna) faza U trećoj fazi do izražaja dolaze modovi ±p′ ∈ Γ+:

p′ =


π
2

(
1 + 1

N

)
; N mod 4 = 1 ,

π
2

(
1− 1

N

)
; N mod 4 = 3

(7.24)

i ±p ∈ Γ−:

p =


π
2

(
1− 1

N

)
; N mod 4 = 1 ,

π
2

(
1 + 1

N

)
; N mod 4 = 3

(7.25)

koji imaju niže energije od moda 0 i stoga nova osnovna stanja postaju:

|±p′〉 = a†±p′a
†
π |0+〉 i |±p〉 = a†±p |0−〉 (7.26)

takva da im je energija jednaka, odnosno da je osnovno stanje četverostruko degener-

irano.

7.3 Statičke korelacijske funkcije

Kao što je najavljeno u motivacijskom dijelu, od interesa su nam korelacijske funkcije

i magnetizacije, a krećemo od računanja korelacijskih funkcija jer je jednostavnije.

Naravno, nas zanimaju korelacijske funkcije za operatore σµj , no osnovna stanja

sustava nisu zadana pomoću njih. Stoga, ove operatore pretvorimo u operatore cj

koristeći JW transformaciju, onda njih u operatore bq pomoću FT i konačno u aq koris-

teći Bogoljubovljevu rotaciju. Na ovaj način, dolazimo do operatora čije je djelovanje

na stanja sustava jasno i stoga lako koračanjem unatrag dod̄emo do korelacijskih

funkcija za spinske operatore.

Zbog kompleksnosti pripadnih izraza, definiramo Majorana fermionske operatore:

114



Aj :=

(
j−1⊗
l=1

σzl

)
⊗ σxj = c†j + cj i Bj :=

(
j−1⊗
l=1

σzl

)
⊗ σyj = ı

(
c†j − cj

)
(7.27)

pomoću kojih je korelacijske funkcije moguće izraziti kao npr.

Cxx
jl = 〈g±|σxj σxl |g±〉 = (−ı)l−j 〈g±|

l−1⊗
m=j

BmAm+1 |g±〉 (7.28)

u prve dvije faze i slično za smjerove y i z.

Očekivane vrijednosti umožaka fermionskih operatora zapisujemo u pogodnom

matričnom obliku koristeći Wickov teorem za fermionske operatore pa npr. očekivana

vrijednost u izrazu (7.28) odgovara determinanti:

Cxx
jl = (−1)r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

G(1) G(0) G(−1) . . . G(2− r)

G(2) G(1) G(0) . . . G(3− r)

G(3) G(2) G(1) . . . G(4− r)
...

...
... . . . ...

G(r) G(r − 1) G(r − 2) . . . G(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(7.29)

uz

G(j − l) := −ı 〈g±|AjBl |g±〉 = ı 〈g±|BlAj |g±〉 . (7.30)

Valja primijetiti da u ovoj fazi, od tri moguće vrste kontrakcija Majorana operatora Aj

i Bj: 〈AjAl〉, 〈BjBl〉 i 〈AjBl〉 susrećemo samo posljednju, što je odraz translacijske

invarijantnosti korelacijske funkcije. Slično vrijedi i za drugu fazu, dok se u trećoj

javljaju i 〈AjAl〉 i 〈BjBl〉 članovi.

Analitički izraz za svakog od njih izračunat je koristeći prethodno opisani proces67

te se pokaže da za prve dvije faze vrijedi:

〈g±|AjAl |g±〉 = 〈g±|BjBl |g±〉 = δj,l (7.31)

67Uz odred̄ene suptilnosti vezano za činjenicu da Bogoljubovljeva rotacija u pojedinim fazama vodi
na rotaciju Hamiltonijana za modove 0 i π u kojima je već dijagonalan. Za ove modove treba napraviti
korekcije u sumama.
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i

〈g±|AjBl |g±〉 =
ı

N

∑
q∈Γ±

eı2θqe−ıq(j−l) +
2ı

N
f±φ (j − l) (7.32)

uz

f±φ (j − l) :=

0 ; φ ∈ 〈−π
2
,−π

4
〉 ,

− (∓1)j−l+1 ; φ ∈ 〈−π
4
, 0〉 .

(7.33)

Primijetimo da funkcija f±φ iščezava u prvoj fazi, u skladu s činjenicom da sustav u

njoj ne pokazuje frustraciju jer je dominantna interakcija feromagnetska.

Analogni račun za treću fazu daje

〈AjBl〉u1,u2 =
ı

N

∑
q∈Γ−

eı2θqe−ıq(j−l) − 2ı

N
cos [p (j − l)− 2θp]−

2ı

N

(
u∗1u2e

−ıp(j+l) + c.c.
)

(7.34)

i

〈AjAl〉u1,u2 = 〈BjBl〉u1,u2 = δj,l −
2ı

N

(
|u1|2 − |u2|2

)
sin [p (j − l)] . (7.35)

7.3.1 Problem vremenske evolucije

Da bismo mogli doći do dinamičkih korelacijskih funkcija i magnetizacija, trebamo

riješiti problem vremenske evolucije za XY model.

U tu svrhu koristimo vremensku neovisnost njegova Hamiltonijana i separabil-

nost po potprostorima da riješimo diferencijalnu jednadžbu vremenske evolucije koja

odgovara globalnoj promjeni parametra φ u t = 0:

ı
d
dt
Uq,φ1(t) = Uq,φ1(t)Hφ1,q , (7.36)

a za modove 0 i π daje trivijalne evolucije koje predstavljaju samo zajedničke globalne
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faktore, dok za ostale daje:α̃q(t)
β̃q(t)

 =: |ψq(t)〉 = Uq,φ1(t) |ψq〉 =

U11
q,φ1

(t) U12
q,φ1

(t)

U21
q,φ1

(t) U22
q,φ1

(t)

αq
βq


=

U11
q,φ1

(t)αq,φ0 + U12
q,φ1

(t)βq,φ0

U21
q,φ1

(t)αq,φ0 + U22
q,φ1

(t)βq,φ0


=

αq,φ0 cos [λq,φ1t] + 2
λq,φ1

[−ıCq,φ1αq,φ0 + Sq,φ1βq,φ0 ] sin [λq,φ1t]

βq,φ0 cos [λq,φ1t] + 2
λq,φ1

[−Sq,φ1αq,φ0 + ıCq,φ1βq,φ0 ] sin [λq,φ1t]

 ,

(7.37)

uz pokrate

αq = −ı sin θq i βq = cos θq . (7.38)

7.3.2 Dinamičke korelacijske funkcije

Jednom kada smo pronašli kako osnovna stanja sustava u sve tri faze izgledaju ti-

jekom evolucije u vremenu, potpuno analognim postupkom kao i za statički slučaj

dolazimo do rezultata za korelacijske funkcije Majorana operatora.

Tako u prve dvije faze vrijedi:

〈AjAl〉g±(t) = δj,l −
ı

N

∑
q∈Γ±

(
α̃∗q(t)β̃q(t) + α̃q(t)β̃

∗
q (t)
)

sin [q (j − l)] (7.39)

i

〈BjBl〉g±(t) = δj,l +
ı

N

∑
q∈Γ±

(
α̃∗q(t)β̃q(t) + α̃q(t)β̃

∗
q (t)
)

sin [q (j − l)] (7.40)

te

〈AjBl〉g±(t) =
ı

N

∑
q∈Γ±

[(
|β̃q(t)|2 − |α̃q(t)|2

)
cos [q (j − l)] +

+ ı
(
α̃q(t)β̃

∗
q (t)− α̃∗q(t)β̃q(t)

)
sin [q (j − l)]

]
+

2ı

N
f±φ0 (j − l)

. (7.41)
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S druge strane, za treću fazu vrijedi:

〈AjAl〉u1,u2(t)

=δj,l −
ı

N

∑
q∈Γ−

(
α̃∗q(t)β̃q(t) + α̃q(t)β̃

∗
q (t)
)

sin [q (j − l)] +

+
2ı

N

(
α̃∗p(t)β̃p(t) + α̃p(t)β̃

∗
p(t)
)

sin [p (j − l)]− 2ı

N

(
|u1|2 − |u2|2

)
sin [p (j − l)]

(7.42)

i

〈BjBl〉u1,u2(t)

=δj,l +
ı

N

∑
q∈Γ−

(
α̃∗q(t)β̃q(t) + α̃q(t)β̃

∗
q (t)
)

sin [q (j − l)]−

− 2ı

N

(
α̃∗p(t)β̃p(t) + α̃p(t)β̃

∗
p(t)
)

sin [p (j − l)]− 2ı

N

(
|u1|2 − |u2|2

)
sin [p (j − l)]

(7.43)

te

〈AjBl〉u1,u2(t)

=
ı

N

∑
q∈Γ−

[(
|β̃q(t)|2 − |α̃q(t)|2

)
cos [q (j − l)]− ı

(
α̃∗q(t)β̃q(t)− α̃q(t)β̃∗q (t)

)
sin [q (j − l)]

]
−

− 2ı

N

[(
|β̃p(t)|2 − |α̃p(t)|2

)
cos [p (j − l)]− ı

(
α̃∗p(t)β̃p(t)− α̃p(t)β̃∗p(t)

)
sin [p (j − l)]

]
−

− 2ı

N

(
u∗1u2e

−ıp(j+l) + c.c.
)

,

(7.44)

gdje valja primijetiti da korelacijske funkcije više ne ovise samo o razlici j i l, odnosno

da je translacijska invarijantnost narušena.

Lako se pokazuje da se svi ovi izrazi svode na izračunate statičke očekivane vri-

jednosti u limesu t = 0. Takod̄er, fizikalne korelacijske funkcije ponovno su dane de-

terminantama matrica, ali složenijeg oblika nego u statičkom slučaju zato što članovi

〈AjAl〉 i 〈BjBl〉 više nisu Kronecker-delte. Jedan takav primjer je matrica korelacija
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u y smjeru za sustav čija evolucija kreće iz jedne od prve dvije faze:

[
(−ı)r C̃yy

jl (t)
]2

:=
[
(−ı)r C̃yy

j−l(t)
]2

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 F̃1(−1) . . . F̃1(1− r) F̃2(−1) F̃2(−2) . . . F̃2(−r)

F̃1(1) 0 . . . F̃1(2− r) F̃2(0) F̃2(−1) . . . F̃2(1− r)
...

... . . . ...
...

... . . . ...

F̃1(r − 2) F̃1(r − 3) . . . 0 F̃2(r − 2) F̃2(r − 3) . . . F̃2(−1)

−F̃2(−1) −F̃2(0) . . . −F̃2(r − 2) 0 F̃3(−1) . . . F̃3(1− r)

−F̃2(−2) −F̃2(−1) . . . −F̃2(r − 3) F̃3(1) 0 . . . F̃3(2− r)
...

... . . . ...
...

... . . . ...

−F̃2(−r) −F̃2(r − 1) . . . −F̃2(1) F̃3(1− r) . . . F̃3(r − 2) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(7.45)

gdje funckije F̃1(r), F̃3(r) i F̃2(r) do na faktore redom odgovaraju korelacijskim

funkcijama 〈AjAl〉, 〈BjBl〉 i 〈AjAl〉 i 〈AjBl〉 uz r = l − j.

7.3.3 Dinamičke magnetizacije

Nakon što su sve korelacijske funkcije izračunate, okrećemo se suptilnijem problemu

računanja magnetizacija. Naime, svojstvena stanja Hamiltonijana su istovremeno i

svojstvena stanja operatora pariteta u smjeru z pa stoga operatori σxj i σyj mijenjaju

njihov paritet te njihova očekivana vrijednost u njima nužno iščezava. No, s obzirom

na degeneraciju stanja sustava u sve tri faze, moguće je konstruirati linearne kombi-

nacije osnovnih stanja kojima ove očekivane vrijednosti ne iščezavaju.

Kao primjer takve konstrukcije, promotrimo vremenski ovisna osnovna stanja oba

sektora u prve dvije faze |g±(t)〉. S obzirom na to da operator pariteta u npr. x smjeru

Πx mijenja z paritet ovog stanja, vidimo da će npr. stanje Πx |g+(t)〉 do na fazni po-

mak odgovarati stanju |g−(t)〉. Stoga, možemo konstruirati općenito osnovno stanje

kao kombinaciju |g+(t)〉 i Πx |g+(t)〉 uz odred̄ene relativne koeficijente. Pokazuje

se da postoji njihov odabir takav da dobiveno stanje bude svojstveno stanje opera-

tora Πx te istovremeno da očekivana vrijednost istog operatora (magnetizacija) bude

maksimalna. To stanje s neiščezavajućim paritetom u smjeru x je

|gx(t)〉 =
1√
2

[1 + Πx] |g+(t)〉 (7.46)
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te analogno za y smjer.

Očekivane vrijednosti pojedinih operatora se sada, koristeći ovako konstruirana

stanja, ponovno mogu prikazati pomoću determinanti vremenski ovisnih matrica.

Za magnetizacije u prve dvije faze postupak je jednostavniji nego za treću. Naime,

u trećoj fazi je potrebno koristiti rezultate koji opisuju djelovanje operatora zrcaljenja

i translacije na stanja sustava te na taj način doći do prikladnog izraza za njihovu vri-

jednost. U ovom se slučaju dolazi do najavljene magnetizacije koja je nesrazmjerno

modulirana duž spinskog lanca. Takod̄er, u ovoj fazi dijelovi matrica korelacijskih

funkcija više ne ovise samo o udaljenosti dvaju položaja r nego i o njihovim po-

jedinačnim vrijednostima, sukladno s činjenicom da korelacijske funkcije više nisu

translacijski invarijantne.

7.4 Rezultati i zaključci

Analiza statičkog principa dekompozicije nakupina u prve dvije faze prikazana je na

Slici 7.2 i pokazuje slaganje sa poznatim rezultatima [10, 41]. Konkretno, u prvoj

(nefrustriranoj) fazi sve korelacije pa tako i DN trnu eksponencijalno, dok u drugoj

(frustriranoj) dominantni članovi postaju algebarski (polinomni)) u veličini sustava

N .

Rezultati analize principa dekompozicije nakupina za duga vremena i 6 evolu-

cija koje počinju u jednoj od prve dvije faze prikazani su na Slikama 7.3 i 7.4 na

kojima se da uočiti da većini evolucija odgovara eksponencijalno trnjenje DN, no u

tri se javlja algebarsko, implicirajući da u sustavu postoji mezoskopsko ponašanje,

odnosno korelacijske funkcije se ne mogu rastavljati za konačne sustave. Uz ovo,

u barem jednoj od evolucija, uočljiva je odgoda trnućeg ponašanja prema većem

broju spinova, u skladu s prethodnim zaključkom. Podaci u ovom režimu dobiveni su

tako da se usrednji po 100 točaka u nekom intervalu koji je udaljen od vremenskog

ishodišta. S obzirom na oscilatornu prirodu članova u PDN, usrednjavanje je vršeno

kvadratno, što ima i intuitivnog smisla jer nas u suštini zanima koliko su dva člana u

(7.2) udaljena, a ne nužno koji od njih je veći.

Da zaključimo, podsjetimo se bitne pojave mezoskopskog ponašanja u nekoliko

režima dugih vremena u kojima prilikom evolucije ostajemo u jednoj od prve dvije

faze. Ovakvo ponašanje detaljno je diskutirano u prethodnim radovima [10] te je
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Slika 7.2: Statički princip dekompozicije nakupina za (a) x smjer, 1O (φ = −π/3.5);
(b) y smjer, 1O (φ = −π/3.5); (c) x smjer, 2M (φ = −π/5.2); (d) y smjer, 2M
(φ = −π/5.2).

ovim radom pokazano da se javlja i u vremenski ovisnim sustavima. Trenutni plan za

objašnjenje ovog ponašanja je analogna analiza za evolucije koje kreću iz treće faze

jer je u njoj sustav takod̄er frustriran pa se ima smisla nadati da će moći pružiti bolji

uvid u opažene fenomene.

Na kraju, ističemo važnost dobivenih rezultata s obzirom da daju ograničenja na

primjenjivost principa dekompozicije nakupina i u odred̄enim sustavima sprečavaju

njegovo korištenje za konačne veličine. U takvim situacijama, potreban je dodatan

sloj rigora i pažnje u odnosu na to kako se ovaj princip uobičajeno primjenjuje.
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Slika 7.3: Usrednjene vrijednosti DN za vremenske trenutke daleko od t = 0 i evolu-
cije koje počinju u prvoj fazi (a) x smjer, 1O 1O (−π/3.0 −π/3.5) (b) x smjer,
1O 2M (−π/3.3 −π/5.2) (c) x smjer, 1O 3I (−π/3.0 +π/4.5) (d) y smjer,
1O 1O (−π/2.5 −π/3.5) (e) y smjer, 1O 2M (−π/3.0 −π/4.9) (f) y smjer,
1O 3I (−π/3.0 +π/4.5) .
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Slika 7.4: Usrednjene vrijednosti DN za vremenske trenutke daleko od t = 0 i evolu-
cije koje počinju u drugoj fazi (a) x smjer, 2M 1O (−π/4.8 −π/3.0) (b) x smjer,
2M 2M (−π/4.5 −π/5.0) (c) x smjer, 2M 3I (−π/4.5 +π/4.5) (d) y smjer,
2M 1O (−π/4.8 −π/3.0) (e) y smjer, 2M 2M (−π/4.5 −π/5.0) (f) y smjer,
2M 3I (−π/4.5 +π/4.5) .
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5.1 Statički (t = 0) princip dekompozicije nakupina za x i y smjerove u

prve dvije faze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
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