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Vjernost osnovnog stanja u frustriranim i
nefrustriranim kvantnim modelima

Sažetak

Sustav koji ima frustrirane rubne uvjete, tj. neparan broj spinova spojenih u prsten

ili periodičke rubne uvjete, uz antiferomagnetično ured̄enje, nazivamo frustriranim.

Posljednjih godina pokazano je da rubni uvjeti mogu utjecati na svojstva sustava.

U ovom radu odred̄uju se svojstva geometrije osnovnog stanja XY lanca računan-

jem vjernosti (engl. fidelity) i pripadajuće susceptibilnosti kako bi se usporedili frus-

trirani i nefrustrirani sustav te na taj način proučio utjecaj frustracije na spomenuta

svojstva i veličine sustava. Kao sustav izabran je 1D XY model jer je egzaktno rješiv.

Korištena je vjernost budući da mjeri udaljenost tj. sličnost dvaju stanja, te bi kao

takva, pri nailasku na kritičnu točku tijekom variranja parametara hamiltonijana,

trebala imati (gotovo) diskontinuirani pad. Nadalje, računajući susceptibilnost vjer-

nosti u regijama gdje ga je moguće definirati, odred̄en je kvantni metrički tenzor koji

opisuje geometriju osnovnog stanja sustava.

Najprije je riješen XY model te je klasificirano njegovo osnovno stanje ovisno

o parametru vezanja J , paritetu broja spinova i sektora te s obzirom na poziciju u

parametarskom prostoru. Posebno pomno praćeno je osebujno ponašanje uzroko-

vano frustracijama. Nakon toga, izračunata je vjernost svih osnovnih stanja te disku-

tiran rezultat u ovisnosti o regiji parametarskog prostora kojoj sustav pripada. Vjer-

nost je pokazala padove na očekivanim kritičnim linijama h=1,γ =0, no takod̄er

i mnoštvo egzaktnih diskontinuiteta u frustriranoj regiji parametarskog prostora.

Spomenuti diskontinuiteti potječu od promjene energetskih nivoa uzrokovanih prom-

jenom ekscitacije u osnovnom stanju koje ovisi o parametrima h i γ. Kako je vjernost

identički nula, susceptibilnosti vjernosti ne može se niti definirati u frustriranoj regiji.

Stoga je uvedena nova mjera, reducirana vjernost kako bi se "omekšala" ortogonal-

nost i omogućio izračun susceptibilnosti. Pomoću navedene mjere pokazano je da

navedeni pomaci energetskih nivoa nestaju u termodinamičkom limesu te nisu znak

faznog prijelaza, što je prvi, nama poznat, protuprimjer široko priznatoj pretpostavci

da se vjernost može koristiti za karakterizaciju sustava bez a priori znanja o sustavu.

Ključne riječi: frustracija, vjernost, susceptibilnost vjernosti, 1D XY model



Ground-state fidelity in frustrated and
unfrustrated models

Abstract

A system with frustrated boundary conditions, which consist of an odd number of

spins enclosed in a antiferromagnetic ring (or have periodic boundary conditions), is

frustrated. In recent years it has been shown that boundary conditions can affect the

system’s characteristics.

In this work, we compute the properties of the ground state geometry for the

XY chain by means of calculating the fidelity and its susceptibility to compare the

unfrustrated and frustrated models and observe the effects of frustration on it. The

1D XY model is chosen for its exact analytical solution. Fidelity is used because, as

a measure of the states overlap, it is supposed to show (almost) discontinuous drops

upon reaching critical points in slow variation of the parameters of the Hamiltonian.

Moreover, the quantum metric tensor, describing the ground state manifold of the

system, can be constructed by calculating fidelity susceptibility.

We start by comprehensively solving the XY chain and classifying its ground

states according to J coupling, the parity of the number of spins and different regions

of the parameter space. Special care was taken of the peculiar behaviour due to

frustration.

Next, we compute the overlaps for all ground states and discuss the results based

on regions. The fidelity drops at the expected critical lines h = 1 and γ = 0, but

also shows exact discontinuity in the frustrated region h < 1− γ2. These correspond

to level-crossings generated by change of excitation in the ground state which is de-

pendant on the parameters h and γ. This hindered efforts to calculate the associated

susceptibility, so a new measure was used reduced fidelity to "soften" the orthogonal-

ity and facilitate the calculation of susceptibility. We discover these level-crossings

vanish in the thermodynamic limit and do not constitute phase transitions, which

is, to our knowledge, the first counter example to the widely-accepted assumption

that the fidelity approach can be used to characterise systems without any a priori

knowledge of the system.

Keywords: frustration, fidelity, fidelity susceptibility, 1D XY model
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1 Introduction

“The whole is greater than the sum of its parts.” A (sort of) misquoted Aristotle’s

saying is often used to express the emergent nature of many-body systems. Namely,

when a (large) collection of items exhibits some phenomena or property which is

not present at the level of each constituent, that system has displayed emergence.

Whereas complex systems surrounding us in basically every aspect of human life can

have other manifestations of complexity (such as chaotic behavior associated with,

among others, severe sensitivity to initial conditions), the term many-body system

is generally pertaining to the physical category of large systems consisting of many

particles with, predominately quantum, interactions. Many is then understood as

anything larger than the number two, although systems of three and four “bodies”

are customarily separated and referred to as “few-body problems” because they can

still be treated using some specific methods. Although, in principle, one could de-

scribe a system with an effectively infinite number of components by writing the

Schrödinger’s equation, including all its interactions, the solution of that system of

equations is, for all intents and purposes, impossible. Thus, solving these problems

chiefly entails creating models which capture the relevant interactions (relying on

a great number of approximations), as opposed to the reductionist approach of ex-

plaining systems through their parts. In physics, emergence implies the existence of

traits at macroscopic and their non-existence at microscopic scales. This is in contrast

with the often-used approach of studying a macroscopic system through an ensemble

of microscopic systems.

A star of the reductionist approach is the Landau-Ginzburg theory. With its con-

cept of a local order parameter being the main characterization of a phase transition,

it perfectly embodies the endeavor of encompassing as many situations as possible

under a single umbrella of a framework containing as few variables as possible. This

order parameter grows from zero to a finite value by crossing over a point/line (in

parameter space) which is then called critical. If it grows continuously, the transition

is deemed second order, where if it does so with a discontinuity it is a first order

transition. The key idea of the theory rests on symmetries of the system, as the or-

der parameter is associated with a breaking of a specific symmetry. Other aspects,

such as the boundary conditions, are not relevant for the forming of a specific order.
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Since the 1950s the Landau formulation has been used to classify classical many-body

systems [1]. Moving onto quantum systems, the theory has been reapplied without

much adjustment [2]. However, soon thereafter it became clear it was not well suited

for the decidedly richer landscape of quantum complex systems [3]. For instance, re-

cently, the notion that boundary conditions are negligible has been challenged. It was

observed that a specific set of boundary conditions can induce a phenomenon termed

frustration which affects and modifies various system characteristics, e.g. the energy

gap, or even destroy the order parameter [4–7]. While frustration is a broad concept,

fundamentally, it stems from the impossibility to satisfy all constraints of the system

at the same time. Moreover, although most quantum Hamiltonians consist of terms

which impose competing orders, geometrical frustration is the one usually referred

to. Its essence can be understood through a fairly simple “model”. First, picture an

antiferromagnetic, square "chain" with four spins in its vertices. To satisfy antifer-

romagnetic conditions, all one needs to do is alternately put spins up or down, as

shown on Figure 1.1a). In another setting, for example a triangle, when the same

is tried, one finds it is impossible. We say the system is frustrated as it cannot meet

its boundary conditions, which consist of an odd number of spins enclosed in a anti-

ferromagnetic ring. This type of boundary conditions are named frustrated boundary

conditions or FBC. The ring structure can also be exchanged for periodic boundary

conditions.

Figure 1.1: A schematic depiction of frustration in a closed "chain" system. In a) we
can see a normal antiferromagnetic system, where in b) the system cannot meet its
boundary conditions and is therefore frustrated.

The main goal of this work will be to study the geometrical effects of frustration

through comparison with the unfrustrated situation. In other words, we will examine

the ground state manifold induced by the quantum metric tensor. The quantum

2



metric tensor is the real, symmetric part of a complex quantum geometric tensor,

and it fulfills the role of measuring the distance (i.e. the overlap) between two states,

i.e., the role of a metric. Using the metric tensor, we can visualize the ground state

manifold and build an equivalent surface [8, 9]. This analysis will be based on the

XY chain in a transverse magnetic field.

The one-dimensional XY model in a transverse magnetic field is chosen for a

variety of reasons. As a generalization of the Ising model, it is a prototypical quan-

tum mechanical model for magnetic-orderings in spin systems. Along with the Ising

model next-neighbour xx interaction and an external magnetic field, it includes an

interaction in the y components which differs from the x interaction in a way de-

scribed by the anisotropy parameter γ. The Hamiltonian is given by

H =
J

2

N∑
j=1

(
1 + γ

2
σxj σ

x
j+1 +

1− γ
2

σyjσ
y
j+1

)
− h

2

N∑
j=1

σzj , (1.1)

and it describes a 1D lattice with N sites, and on each site there is a three-dimensional

1/2 spin given by Pauli matrices. For γ = 0 the system reduces to an isotropic XX

model, where for γ = ±1, one gets the 1D quantum Ising model. As for the coupling

J , in this definition the J < 0 corresponds to the ferromagnetic ordering whereas

the J > 0 case would describe antiferromagnetic order. We take these parameters

to be dimensionless from now on. To check this it is enough to reduce the system

to the Ising scenario by setting γ = 1, h = 0 where it is easy to see that J < 0

brings a parallel alignment of spins while J > 0 creates antiparallel neighbouring

spins. Furthermore, in order to study frustration, we will assume periodic boundary

conditions, i.e., a closed chain. Finally, we will work in the first quadrant of the

parameter space γ ≥ 0, h ≥ 0 as the symmetries of the model guarantee allow

access to the rest of the parameter space. Strictly speaking, a γ → −γ transformation

is achieved by a rotation π/2 around the z-axis and corresponds to a switch between

x and y interaction. On the other hand, by mirroring the z-axis to change its direction

and then rotating by π/2 around it h < 0 can be reached. The XY chain Hamiltonian

also commutes with the parity operator P =
∏N

l=1 σ
z
l , which implies that it possesses

a Z2 symmetry.

One of the biggest advantages of this model is that it is exactly solvable, which

makes it ideal for testing out new methods. Essentially any quantity, from the ground

3



state and its excitations, to the free energy and entanglement entropy, can be found

analytically and exactly. Despite having an analytical solution, it is not overly simple

but it has a rich (quantum) phase diagram at absolute zero T = 0 consisting of two

phase transitions. Quantum phase transitions (QPTs), unlike classical phase transi-

tions which are caused by thermal fluctuations, are caused by quantum fluctuations

at absolute zero temperature. The quantum fluctuations involve (drastic) changes in

the ground state properties of a system, induced by variation of the system’s driving

parameters, i.e. the interactions between the system’s components. As already men-

tioned, QPTs are also treated by the classical Landau-Ginsburg approach, albeit with

some caveats. For example, quantum phase transitions have created the need for

expanding on the premise of order parameters from local to not-so-local and even

global parameters in order to preserve the idea that a critical point must separate

two phases with different macroscopic behaviours.

The XY chain has two critical lines in its quantum phase diagram, one correspond-

ing to the Ising transition at h = 1 and the other γ = 0, matching the so-called XX

model. The h = 1 transition is associated with the Z2 symmetry breaking, as the

system crosses from a non-degenerate state in h > 1 into a degenerate state for h < 1

in the thermodynamic limit, while crossing the γ = 0 transition switches the roles of

x and y.

When frustration is brought into the mix, another interesting region emerges. For

the ground state of the system in region h < 1 − γ2, the system favors a particular

excited state over the expected vacuum, as a result of frustration. These excitations

will then induce a series of level-crossings which, despite (technically) persevering

in the thermodynamic limit, do not constitute a phase transition.

To investigate how frustration affects the geometrical properties of the ground

state, we will not use the standard technique, but a novel approach which has been

put forward in recent years. As more and more quantum information measures have

proved useful in other areas of physics, fidelity and its susceptibility has been intro-

duced as a new approach to phase transition analysis [10–16]. Fidelity is basically

an overlap function, and as such, it is a measure of the closeness between two states.

F (Ψ′,Ψ) = | 〈Ψ′|Ψ〉 |, (1.2)

4
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Figure 1.2: Phase diagram at T=0 for the 1D XY chain. The γ = 0 line matches the
XX model, and it is critical for h ≤ 1. The γ = 1 line corresponds to the Ising model
and it intersects the critical h = 1 line.

where |Ψ〉 and |Ψ′〉 are two normalized states. If two states are identical, it pro-

duces unity, while for two orthogonal states it gives zero. Since QPTs are directly

evidenced by a sudden change in the ground state, the potential usefulness of fidelity

can be promptly recognized. Suppose a parametric Hamiltonian H(~λ) had a QPT

at a critical point ~λc. If one were to move through the parameter space with some

change d~λ and map the fidelity between each two ground states associated with two

points differing by d~λ, they would see a clear signature of that transition. In most

of the parameter space, the overlap between two points is as close to 1 as the step

allows. However, at (and slightly around it) ~λc the ground state changes dramatically

between two points and consequently the overlap will have a drop. That drop will

become sharper and deeper as the system size is increased, turning into a divergence

in the thermodynamic limit. By furthering the analysis and looking at the fidelity sus-

ceptibility, in addition to critical points the critical exponents can be extracted [15].

Moreover, it has been shown that from the susceptibility it is possible to construct a

metric tensor in parameter space, whose components become singular at quantum

critical points [9], which is one of the reasons why this particular method has been

chosen.
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However, in systems encountering a series of level-crossings systems a different

approach is required. One such approach is reduced fidelity, an overlap between

subsystems which then reduces the degree of orthogonality and allows for further

inspection. [17, 18] It is defined as a fidelity between two reduced density matrices

instead of full density operators. Fidelity can also be written in a more general way

as

F(ρ, σ) := tr
(√

ρ1/2σρ1/2
)
. (1.3)

By tracing out a part of the system, we obtain a formula for the reduced fidelity.

FR = Tr
√
ρ1/2ρ̃ρ1/2. (1.4)

Up to now, it has been widely presumed that the real advantage of the fidelity

approach is that it does not require any a priori knowledge about the system, such as

the order parameter or symmetries, except its ground state geometry. In this work,

by analysing the changes in the geometry of the XY chain ground state induced by

frustration, we have encountered exact discontinuities in the fidelity which, through

further analysis, have been proven not to be phase transitions, effectively acting as

a counter example to the aforementioned presumption and potentially ridding the

method of fidelity and its derivatives of its most promising feature.

We start by thoroughly solving the XY chain through standard procedure, and

classifying its ground states according to J ordering, the parity of the number of

spins and different regions of the parameter space in Section 2. In the next Section

3 we calculate the overlaps for relevant ground states and discuss the results based

on regions in 3.1. We also derive and examine the associated susceptibility. Next, we

calculate the correlation functions of the model in order to study the reduced fidelity

and its susceptibility in 3.2.
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2 Solving the quantum XY model

The XY chain was introduced as an exactly solvable model similar to the Heisenberg

model by Lieb, Schultz and Mattis in 1961 [19], where it was solved in the absence of

a magnetic field. Works including a finite magnetic field apperead soon after [20,21].

The problem is solved by mapping the chain to a system of free fermions. The XY

Hamiltonian with anisotropy γ in a transverse magnetic field of strength h reads

H =
J

2

N∑
j=1

(
1 + γ

2
σxj σ

x
j+1 +

1− γ
2

σyjσ
y
j+1

)
− h

2

N∑
j=1

σzj . (2.1)

It is expressed in terms of Pauli spin operators

σx =

 0 1

1 0

 , σy =

 0 −i

i 0

 , σz =

 1 0

0 −1

 . (2.2)

In a system described by this Hamiltonian, there is a 1D lattice with N sites, and

on each site there is a three-dimensional 1/2 spin. In the presence of a magnetic

field, the interaction between neighbours in the direction of the external magnetic

field can be neglected. In (2.1), that direction is z. For γ = 0 the system reduces to a

isotropic XX model, where for γ = ±1, one gets the 1D quantum Ising model. Also,

it is important to emphasise that we have assumed periodic boundary conditions

σαN+1 = σα1 .

This section will go over the well-established solution procedure consisting of a

Jordan Wigner mapping from spins to fermions, tranforming those into Fourier space

and rotating through a Bogoliubov transformation (Subsection 2.1) to finally obtain

the diagonal Hamiltonian. Then, Subsection 2.2 will go into a detailed analysis of

the ground state and the corresponding energies across different regions of the pa-

rameter space.

2.1 Solution procedure

2.1.1 Jordan Wigner transformation

Spins, even the simplest 1/2’s, make mathematical manipulation hard since they are

nor bosons nor fermions. That is why the Jordan-Wigner transformation is a powerful

tool which enables us to map a system of, in this situation spins, to an equivalent
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system of fermions, thereby immediately allowing an easier study and transfer of

known properties to an unknown problem. By transforming N spins to N fermions,

we get a Hamiltonian that can be further simplified, in the end giving us a clean

diagonal quadratic fermion Hamiltonian whose ground state and energy are easily

acquired, unlike our starting Hamiltonian.

It is convenient to write Hamiltonian (2.1) using Pauli raising and lowering oper-

ators ((2.2) for explicit definition of Pauli matrices used)

σ+,− =
1

2
(σx ± iσy). (2.3)

Then, (2.1) reads (h.c. stands for the hermitian conjugate of the expression in brack-

ets)

H =
J

2

N∑
j=1

(
σ+
j σ
−
j+1 + γσ+

j σ
+
j+1 + h.c.

)
−

N∑
j=1

hσzj . (2.4)

Reviewing the known properties of Pauli spin operators, we can see they are not

Fermi operators

[σαj ,σ
β
j ] = 2iεαβγ σ

γ
j , (2.5a)

[σαi ,σ
β
j ] = 0 for i 6= j. (2.5b)

{σαj ,σ
β
j } = 2δαβ, (2.5c)

Latin letters i, j stand for particular sites, while Greek letters α, β, γ stand for x, y

or z. εαβγ is the Levi-Civita symbol and δαβ the Kronecker delta. As these relations

show, Pauli spins satisfy fermionic anti-commutation relations only on a particular

site (2.5c), while between different sites they act bosonically. Furthermore, it can be

shown (using (2.3) and (2.6)) that the set of operators σ−j , σ
+
j and σzj is also not a set

of Fermi operators.

[σ+
i ,σ

−
j ] = δi,jσ

z
j , (2.6a)

[σzi ,σ
+
j ] = δi,jσ

+
j , (2.6b)

{σ+
j ,σ

−
j } = 1, (2.6c)

{σzj ,σ+
j } = 0. (2.6d)
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That is why we introduce the Jordan-Wigner transformation for the XY model;

the Fermi annihilation and creation operators are, respectively

ψj =

(
j−1∏
l=1

σzl

)
σ+
j , (2.7a)

ψ†j =

(
j−1∏
l=1

σzl

)
σ−j , (2.7b)

for j = 1, 2, ..N . The product
∏

is used in place of tensor product symbol
⊗

for

simplicity. Using the definition of these Fermi operators and properties of Pauli oper-

ators, it can be shown that ψj and ψ†j are Fermi operators

{ψi, ψj} = 0, (2.8a)

{ψi, ψ†j} = δij. (2.8b)

This system’s Hilbert space is a tensor product of N spin 1/2 Hilbert spaces, and

its basis are product spin states |n1〉 ⊗ |n2〉 ⊗ ... |nN〉 or shortly |n1 n2...nN〉. The ni

stands for ↑ or ↓. If we identify ↑ with 0 and ↓ with 1, and use σz |↑〉 = |↑〉 and

σz |↓〉 = − |↓〉, it follows

ψj |n1 . . . nj = 0 . . . nN〉 = 0, (2.9a)

ψj |n1 . . . nj = 1 . . . nN〉 = (−1)n1(−1)n2 . . . (−1)nj−1 |n1n2 . . . nj = 0 . . . nN〉 , (2.9b)

ψ†j |n1 . . . nj = 0 . . . nN〉 = (−1)n1(−1)n2 . . . (−1)nj−1 |n1 . . . nj = 1 . . . nN〉 , (2.9c)

ψ†j |n1 . . . nj = 1 . . . nN〉 = 0, (2.9d)

and finally,

ψ†jψj |n1...nj...nN〉 = nj |n1...nj...nN〉 . (2.9e)

As it naturally stems from (2.7), spin downs ↓ correspond to particles and spin ups

↑ to holes. It is convenient to define also the inverse relations for Pauli operators in

terms of Fermi operators for j = 1, .., N
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σzj = 1− 2ψ†jψj, (2.10a)

σ+
j =

(
j−1∏
l=1

1− 2ψ†lψl

)
ψj, (2.10b)

σ−j =

(
j−1∏
l=1

1− 2ψ†lψl

)
ψ†j . (2.10c)

Applying (2.10) to (2.4) we obtain

H =− J

2

N−1∑
j=1

(
ψjψ

†
j+1 + γψjψj+1 + h.c.

)
+
J

2
P
(
ψNψ

†
1 + γψNψ1 + h.c.

)
+ h

N∑
j=1

ψ†jψj −
1

2
Nh.

(2.11)

We isolated the j = N case because defining a ψN+1 operator would tamper with the

Fermi commutation relations. We also introduced the Hermitian parity operator

P =
N∏
l=1

σzl =
N∏
l=1

(
1− 2ψ†lψl

)
. (2.12)

The parity operator simply gives a plus (minus) sign on a state with even (odd)

number of particles. Since the Hamiltonian (2.11) only has terms quadratic in Fermi

operators (they come in pairs such as ψiψj), the number of particles also only changes

in pairs. Therefore, the Hamiltonian commutes with the parity operator [H,P ] = 0.

We see that (2.11) is not quadratic in Fermi operators, but if we separate our problem

into two sectors based on parity P, we will have a quadratic form Hamiltonian in each

sector, bringing us closer to the final diagonal form. We can do this by writing the

Hamiltonian (2.11) as follows

H =
1 + P

2
H+1 + P

2
+

1− P
2

H−
1− P

2
. (2.13)
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Explicitly, H+ and H− are equal to (2.11), substituting P with ±1

H± =− J

2

N−1∑
j=1

(
ψjψ

†
j+1 + γψjψj+1 + h.c.

)
± J

2

(
ψNψ

†
1 + γψNψ1 + h.c.

)
+ h

N∑
j=1

ψ†jψj −
1

2
Nh,

(2.14)

Also, now there is a convenient way to define ψN+1 that will allow us to write (2.14)

in a more concise way

ψN+1 |P = 1〉 = −ψ1 |P = 1〉 , (2.15a)

ψN+1 |P = −1〉 = ψ1 |P = −1〉 , (2.15b)

brings us

H± = −J
2

N∑
j=1

(ψjψ
†
j+1 + γψjψj+1 + h.c.) + h

N∑
j=1

ψ†jψj −
1

2
Nh. (2.16)

2.1.2 Fourier transform of Fermi operators

We can define new operators ψq that play a role of a Fourier transform (for confirma-

tion and informal proof see Appendix A.1)

ψq ≡
1√
N

N∑
l=1

ψle
−i 2π

N
ql, (2.17)

for any q ∈ XN , with XN = {x0, x0 + 1, x0 + 2, ..., x0 + N − 1} and x0 = 1/2 in the

even sector and x0 = 0 in the odd sector. These operators are periodic with period N

ψq = ψq+N so we can technically talk about all q ∈ XN + Z. It can be shown using

(2.17), (2.8) and (A.1) that ψq are also Fermi operators

{ψq, ψq′} = 0 (2.18a)

{ψq, ψ†q′} = δqq′ (2.18b)
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Now, using (2.17), (2.18) and (A.1) we obtain the following

N∑
j=1

ψ†jψj+1 =
∑
q

ψ†qψqe
i 2π
N
q, (2.19a)

N∑
j=1

ψ†jψ
†
j+1 =

∑
q

ψ†qψ
†
−qe

i 2π
N
q = i

∑
q

sin

(
2π

N
q

)
ψ†qψ

†
−q, (2.19b)

N∑
j=1

ψ†jψj =
∑
q

ψ†qψq, (2.19c)

Furthermore, we will redefine ψq by adding a phase factor (not harmful to Fermi

relations (2.18)) to get rid of the imaginary unit

ψq ≡
eiπ/4√
N

N∑
l=1

ψle
−i 2π

N
ql. (2.20)

We now have Hamiltonians (2.16) in a form that is simpler to diagonalize

H± =
∑
q

[
J cos

(
2π

N
q

)
+ h

](
ψ†qψq −

1

2

)
+

1

2
Jγ
∑
q

sin

(
2π

N
q

)(
ψ†qψ

†
−q + ψ−qψq

)
.

(2.21)

An extra term −J
2

∑
q cos 2π

N
q = 0 was added for aesthetic reasons.

2.1.3 Bogoliubov transformation

Bogoliubov transformation is a transformation that can be thought of as essentially a

rotation of phase space which allows us to change Hamiltonian basis to one in which

the Hamiltonian is diagonal. In the process, it will give us new creation and annihi-

lation operators which will tell us the structure of the elementary excitations in our

system. It will be the final step that will bring us to the free fermionic Hamiltonian

in diagonal form.

The last formulation of Hamiltonians (2.21) can now be written in simple matrix

notation

H± =
1

2

∑
q

(
ψ†q ψ−q

)
Mq

 ψq

ψ†−q

 , (2.22)
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where Mq are 2× 2 symmetric matrices

Mq =

 h+ J cos
(
2π
N
q
)

−γ sin
(
2π
N
q
)

−γ sin
(
2π
N
q
)
−
[
h+ J cos

(
2π
N
q
)]
 =

 aq bq

bq −aq

 , (2.23)

with coefficients:

aq ≡ h+ cos

(
2π

N
q

)
, (2.24a)

bq ≡ −γ sin

(
2π

N
q

)
. (2.24b)

It is obvious that the matrix Mq is diagonal for q = 0 in the odd sector, while for

q = N/2 it depends on the parity of N. It is convenient to also define

k =
2π

N
q.

With this definition it is easy to see why q = N/2 can, and will be referred to as the

π-mode. Further in this work we will use q or k solely based on convenience. The

matrices Mk for the 0 and π mode are

Mk=0 =

 h+ J 0

0 −(h+ J)

 , Mk=π =

 h− J 0

0 −(h− J)

 . (2.25)

Now, let us examine the case(s) when k 6= 0, π. In this case(s) the matrix Mq is

not diagonal but it is symmetric so it can be diagonalized by an orthogonal matrix Oq

Mq = OT
q DqOq, (2.26)

with Dq being a diagonal matrix. We can define Oq as a rotation matrix

Oq =

 cos θq − sin θq

sin θq cos θq

 , (2.27)

which allows us to write

Oq

 ψq

ψ†−q

 =

 cos θqψq − sin θqψ
†
−q

sin θqψq + cos θqψ
†
−q

 . (2.28)
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Since the columns of OT
q are the eigenvectors of Mq, we get the expressions for

cos θq and sin θq by solving the eigenvalue problem for the matrix Mq (2.23). By this

procedure we will also get the diagonal matrix Dq. Here are the results

cos θq =
bq

√
2
√
a2q + b2q − aq

√
a2q + b2q

, (2.29a)

sin θq =
aq −

√
a2q + b2q

√
2
√
a2q + b2q − aq

√
a2q + b2q

, (2.29b)

and

Dq =

 Λq 0

0 −Λq

 (2.30)

with Λq:

Λq ≡ Λ

(
2π

N
q

)
≡

√[
h+ J cos

(
2π

N
q

)]2
+ J2γ2 sin2

(
2π

N
q

)
. (2.31)

It is convenient to define the function Λk to incorporate the special modes k = 0, π.

Λk=0 = |h+ J |, (2.32a)

Λk=π = |h− J |. (2.32b)

This is an important addition to the energy function Λq. It turns out that, although

the function obtained by diagonalization is strictly positive, for specific momenta

k = 0, π, diagonalization is avoided and by that the obligatory positivity. In these

special momenta it is possible to have negative energy, depending on the value of h

and both the magnitude of J and its sign. The gravity of this fact and its consequence

will be discussed further in the next subsection.

Now, looking at (2.28) and considering the property

cos θ−q = − cos θq, sin θ−q = sin θq, (2.33)

(which comes out of (2.29)) we can see it is convenient to define operators

χq ≡ cos θqψq − sin θqψ
†
−q, (2.34)
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because then we have

Oq

 ψq

ψ†−q

 =

 χq

−χ†−q

 . (2.35)

However, special care is needed for k = 0, π momenta. Since the trigonometric

coefficients (2.29) are not well defined, the operators aren’t either. Using some rear-

ranged trigonometric expressions of (2.29) (see Appendix (A.3)), we simply define

operators χq so (A.3b) is fulfilled and take any cos θq and sin θq that are consistent

with that. The simplest definition of χq for q = 0, N/2 then is

χq=0 = ψq=0 (2.36a)

χq=N/2 = ψq=N/2 (2.36b)

It can be shown that operators χq are also fermionic and periodic with period N

{χq, χq′} = 0 (2.37a)

{χq, χ†q′} = δqq′ . (2.37b)

By reformulating the Hamiltonian (2.21) using operators (2.34) we finally get a di-

agonal free fermion Hamiltonian

H± =
∑
q

Λq

(
χ†qχq −

1

2

)
. (2.38)

2.2 Ground state

Continuing with the solution of the XY model by discussing the ground state, it is im-

portant to remind ourselves that the Hamiltonian from 2.1.3 is actually two Hamilto-

nians, H+ and H− and the Hamiltonian that describes our system is actually (2.13).

To solve the full Hamiltonian, we need to solve both H+ and H−. Each of them have

2N eigenstates, but as they go into the full Hamiltonian only if they satisfy the parity

condition, and that happens half the time for the respective H+,−, in the end we will

have 2N−1 + 2N−1 = 2N eigenstates for the full Hamiltonian, exactly as we should.

We will split our solution into two categories multiple times. First, we will look
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at the ferromagnetic case for completeness. Then, we will focus on the more inter-

esting case of an antiferromagnetic alignment where we will look separately at the

unfrustrated (N is even) and the frustrated (N is odd) case.

The analysis will be made simpler by looking only at the quadrant (y ≥ 0, h ≥ 0)

in the parameter space. It is easy to see that by a π/2 rotation along the z-axis, a

γ → −γ equivalent transformation is achieved, whereas a spin reflection across the

x-y plane corresponds to h→ −h.

2.2.1 Ferromagnetic case

Ferromagnetic order corresponds to a negative coupling constant J < 0. For simplic-

ity, we will use J = −1. As mentioned, we will look separately at the even and odd

sector.

Even sector The ground state of the H+ Hamiltonian is its vacuum state, which

we’ll label by |GS+〉

χq |GS+〉 = 0 for any q ∈
{

1

2
,
1

2
+ 1, ...,

1

2
+N − 1

}
. (2.39)

As we can see from (2.38), the ground state energy is given by

E+
0 = −1

2

N−1∑
q=0

Λq+1/2. (2.40)

Wanting to find the explicit expression for the ground state, we start by using opera-

tors (2.20) and their property

ψq |0〉 = 0 for any q. (2.41)

By expanding this equation using (2.37), and using properties of sin θq and cos θq, we

get (see Appendix B)

χq(cos θq + sin θq ψ
†
qψ
†
−q) |0〉 = 0. (2.42)

Given equation (2.42), one can check that the ground state of the even sector Hamil-
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tonian H+, normalized, is

|GS+〉 =

⌊
N
2

⌋
−1∏

q=0

(
cos θq+1/2 + sin θq+1/2 ψ

†
q+1/2ψ

†
−(q+1/2)

)
|0〉 . (2.43)

The product goes only up to the
⌊
N
2

⌋
− 1 as the other half of indices would just

produce the same state, just with a minus sign in front, resulting in zero.

Moreover, as we can see, the operators ψq occur in pairs. By the definition (2.20), that

means that ψj also occur in pairs, which leads to the |GS+〉 (2.43) having even parity.

An even parity ground state in the even sector means (2.43) is also an eigenstate of

the Hamiltonian (2.13).

Odd sector We proceed analogous to the even sector, but we will label the vac-

uum state as |GS∗〉 for reasons that will become clear later

χq |GS∗〉 = 0 for any q ∈
{

0, 1, ..., N − 1
}
. (2.44)

We have an analogous situation to the even sector with (2.42), and the ground state

for the Hamiltonian H− is

|GS∗〉 =

⌊
N−1
2

⌋∏
q=0

(
cos θq + sin θqψ

†
qψ
†
−q

)
|0〉 . (2.45)

As this is essentially the same expression as the ground state of the even sector (2.43),

it also has even parity, which means that it gets canceled by the operator 1−P . There-

fore, to find the eigenstate of the full Hamiltonian, we need to add an excitation. If

we minimize the expression (2.31) we get that the lowest energy excitation is for

q = 0, so the common eigenstate of the odd sector and full Hamiltonian with the

lowest energy is gained by adding an excitation at q = 0 to (2.45)

|GS−〉 = χ†q=0 |GS∗〉 = ψ†q=0

⌊
N−1
2

⌋∏
q=0

(
cos θq + sin θqψ

†
qψ
†
−q

)
|0〉 . (2.46)

Let us find the corresponding energies. Here, we will need to differ between h > 1

and h < 1 (usually it would be h > or h < than J, this is purely because of our choice
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J = −1). In both scenarios we’re starting with the energy of the vacuum, which is

equal to the energy of the vacuum (and even sector) E+
0 (2.40) to which we’re adding

the contribution of the added Bogoliubov particle with q = 0. Remember that, with

J = −1, that contribution can be positive or negative (see (2.25)).

h > 1.

The contribution is positive, but it is still the minimal possible addition which is

necessary to keep parity odd, and the energy is simply

E−0 = −1

2

N−1∑
q=1

Λq +
1

2
(h− 1). (2.47)

h < 1.

This time the contribution is negative. However, it is possible to neatly incorporate it

into the vacuum sum.

E−0 = −1

2

N−1∑
q=1

Λq +
1

2
(h− 1), h− 1 = −Λ0,

E−0 = −1

2

N−1∑
q=0

Λq.

The corresponding energies are

E−0 =


−1

2

∑N−1
q=0 Λq for h ≤ 1,

−1
2

∑N−1
q=0 Λq + (h− 1) for h ≥ 1.

(2.48)

The rest of the eigenstates can be reached by applying the creation operators χq in

pairs, on states (2.43) and (2.46). This concludes the discussion of the ferromagnetic

XY chain.

2.2.2 Antiferromagnetic case

Moving onto antiferromagnetic order and setting J = 1, we will first need to con-

struct the parameter space of the system (h, γ). As we will see, for a certain combina-
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tion of parameters there will appear new local minima or maxima, which are directly

related to frustration and will lead to a difference in ground state in regards to the

unfrustrated (and ferromagnetic) case. Moreover, the special momenta k = 0, π will

switch places, further complicating things and allowing for frustration to occur. Table

2.1 classifies the placement of the modes across sectors and for different N.

N sector 0 π

even
even × ×
odd X X

odd
even × X
odd X ×

Table 2.1: The distribution of k = 0, π modes over sectors for different N in the
antiferromagnetic ordering.

Considering J is now positive, we have a slightly altered energy function Λk, so

we need to check the stationary points of this new function in order to be able to

construct the ground state of the system across sectors. The function Λk is now

Λk =
√

(h+ cos k)2 + γ2 sin2 k. (2.49)

Along with two familiar points analogous to the ferromagnetic case, k = 0, π, another

one emerges. Or, to be precise, since it’s no longer a limiting point which has no

opposite value like the first two, two new extremes emerge.

k1 = 0, (2.50a)

k2 = π, (2.50b)

±k∗ = ± arccos
h

γ2 − 1
. (2.50c)

Because k∗ is defined over a arccos, it exists only for

|h| ≤ |γ2 − 1|. (2.51)

The equality in this inequality defines a parabola which will prove to be crucial in the

analysis of this model.
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Even N For even N, the antiferromagnetic case barely differs from the ferromag-

netic case (2.2.1). The only difference is that the energies of k = 0 and k = π modes

switch places, so k = π is now the minimum instead of k = 0. However, that is not

a problem since, again, both momenta are in the odd sector (2.1). Therefore, in the

odd sector the excitation we add is for k = π instead of 0, but the energy remains the

same. The ground states and energy spectra are given here

|GS+〉 =

⌊
N
2

⌋
−1∏

q=0

(
cos θq+1/2 + sin θq+1/2 ψ

†
q+1/2ψ

†
−(q+1/2)

)
|0〉 , (2.52)

|GS−〉 = χ†q=π

⌊
N−1
2

⌋∏
q=0

(
cos θq + sin θqψ

†
qψ
†
−q

)
|0〉 . (2.53)

and the energies are, in the end, completely the same

E+
0 = −1

2

N−1∑
q=0

Λq+1/2, (2.54)

E−0 =


−1

2

∑N−1
q=0 Λq for h ≤ 1,

−1
2

∑N−1
q=0 Λq + (h− 1) for h ≥ 1.

(2.55)

Odd N We have reached the final scenario. Since we have periodic boundary con-

ditions, antiferromangetic coupling and now also an odd number of spins in a chain,

we have all the conditions necessary for frustration to arise. As we will see, the

presence of frustration will depend on the combination of parameters h and γ.

On account of that fact, we will approach the search for the ground state by

dividing the parameter space into four regions. See Figure 2.1 for illustration of the

parameter space with all the main parameter configurations.

Even sector The Hamiltonian of the even sector in this case is the following

H+ =
∑

x∈X+\N/2

Λq

(
χ†qχq −

1

2

)
+ (h− 1)

(
χ†N/2χN/2 −

1

2

)
, (2.56)
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Figure 2.1: An illustration of the parameter space. Red and blue lines depict the
parabola under which the special momenta ±k∗ exists. h = 1.0 is also an important
line as it affects the sign of the k = 0.π energies whereas γ = 1.0 was added for
completeness. The regions noted I − IV will be used in the analysis of the ground
state.

with:

X+ =

{
1

2
,
1

2
+ 1, ...,

1

2
+N − 1

}
.

We have extracted the π mode to further emphasize its specific energy.

So far, in the even sector we were content with the vacuum as the ground state.

It had correct parity and by no excitations, the lowest energy. This is no longer the

only option.

Let us look at the graph of the function of energy Λk. We will look at the absolute

value of the function, and in that way we will also include the values of the energy

for k = π (k = 0 is no longer in this sector).

As we can see from the Figure 2.2, for a certain combination (h, γ), two local ex-

tremes appear with momenta k = ±k∗. The interesting situation is when those ex-

tremes are minima, corresponding to region I from 2.1, whereas the maxima version

corresponds to region IV . In regions II and III the Λk function will take shape of

the top graph.

Before dwelling into that scenario, we will look at the other regions, as they still
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Figure 2.2: These graphs demonstrate how the λk function behaves for different
configuration of parameters h and γ. The absolute value is put over Λ to emphasize
we’re comparing absolute values of energies, which is important because of the π
mode. The top graph displays the Λk function in regions II and III, whereas the
middle graph corresponds to region IV . The bottom graph showcases the behaviour
which is behind the peculiar nature of region I.

mostly similar to the even N chain 2.2.2. For regions II − IV we can "copy" what we

did so far and recognize the vacuum as the ground state.

|GS+
II,III〉 =

⌊
N
2

⌋
−1∏

q=0

(
cos θq+1/2 + sin θq+1/2 ψ

†
−(q+1/2)ψ

†
q+1/2

)
|0〉 . (2.57)

The reason why the area is split into different regions will become clear as we look

at the energy of the vacuum. If we recall (2.66), we can see that the energy (vacuum

energy, regardless of there being an excitation or not)of the π mode (q = N
2

) can be

negative for h ≤ 1. That is why we divide into regions although the ground state is

the same. Furthermore, since both regions II and IV are located under the h = 1

line, we can merge the two regions into region II ′ and conclude that the parabola

h = γ2−1 does not represent any relevant curve, at least for the ground state analysis.

Again starting with the simpler area, for h ≥ 1 we have region III, where the

energy of the π mode is positive. It is actually equal to the value of the Λk function

for k = π and as such can be naturally incorporated into the sum, thereby achieving
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a "normal" vacuum energy

EIII = −1

2

N−1∑
q=0,q 6=N/2

Λ
q+

1
2
− 1

2
(h− 1), (2.58)

EIII = −1

2

N−1∑
q=0

Λ
q+

1
2
, (2.59)

where in the last line we used

(h− 1) = |h− 1| = Λπ.

The reason we say this is "normal" vacuum energy is because in the newly-merged

region II ′ the ground state is the vacuum but the energy exhibits different behaviour

which is the following

EII′ = −1

2

N−1∑
q=0,q 6=N/2

Λ
q+

1
2
− 1

2
(h− 1), (2.60)

EII′ = −1

2

N−1∑
q=0

Λ
q+

1
2

+ |h− 1|, (2.61)

EII′ = −1

2

N−1∑
q=0

Λ
q+

1
2

+ Λπ, (2.62)

since now

(h− 1) = −|h− 1| = −Λπ.

This is a significant result since it shows that although the ground state is the vac-

uum and there is no excitation, the system behaves as if there is an excitation of a

Bogoliubov particle with momentum k = π. This is frustration in effect.

Now is the time for the most special region, the region I under the parabola

h = 1− γ2. In this region the condition for ±k∗ is fulfilled. Even further, the ±k∗ are

minima, corresponding to the third plot in Figure 2.2.

Turns out, it is possible to create a combination of excitations (a pair) which will

simultaneously preserve parity and achieve energy lower than having no excitations

at all. How is that possible?

The answer lies in the π mode energy. If you carefully look at the third plot of

Figure 2.2, you can see the absolute value of π mode energy, or the Λπ is greater
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than the (degenerate) energies of ±k∗. Because region I is below the h = 1 line,

this energy is in reality negative. If we add a k∗ excitation along with a π excitation

we have successfully obtained a lower energy than a simple vacuum state would

have. One could argue that it is not a given that the k∗ mode is necessary in the

even sector. However, that is not an issue, since in that case we would just add the

closest momenta to k∗ which is the minimum in that sector. Furthermore, since k∗

and −k∗ modes are degenerate, we actually have a linear combination for a ground

state. Considering they are perfectly symmetric, is is enough to simply give them the

same weight which also normalizes the state. The ground state in region I is then

|GS+, I〉 =
1√
2

(
χ†πχ

†
k∗ + χ†πχ

†
−k∗

) ⌊
N
2

⌋
−1∏

q=0

(
cos θq+1/2 + sin θq+1/2 ψ

†
q+1/2ψ

†
−(q+1/2)

)
|0〉 .

(2.63)

The energy of this state again behaves a bit differently than the actual situation.

The π excitation is absorbed into the sum, and the energy seems to show only the

±k∗ excitation

EI = −1

2

N−1∑
q=0,q 6=N/2

Λ
q+

1
2
− 1

2
(h− 1) + (h− 1) + Λ∗, (2.64)

EI = −1

2

N−1∑
q=0

Λ
q+

1
2

+ Λ∗. (2.65)

The system would rather have an excitation (or two to be precise), than be in a

vacuum state - this is the consequence of frustration.

However, it is not this simple. It must not be overlooked that k∗ directly depends on

h and γ (2.50c). Any change in the parameters that does not preserve the relation

cos k∗ = h
γ2−1 implies a different k∗, signifying sort of a continuous series of level-

crossings signifying each change. More on that later.

Odd sector The Hamiltonian of the odd sector is

H+ =
∑

x∈X−\0

Λq

(
χ†qχq −

1

2

)
+ (h− 1)

(
χ†0χ0 −

1

2

)
, (2.66)
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with

X+ = {0, 1, ..., N − 1} .

To find the ground state in the odd sector, we need to know which momentum

excitation will lead to the lowest energy increase. It is impossible to achieve a lower

energy, as the only negative contribution would come from the π mode, which is not

in this sector. Considering the energy function Λq shown in 2.2 is valid for the whole

antiferromagnetic case, it is easy to recognize the minima, or to be more precise, the

minimal values of Λ in different areas of the parameter space. The problem is that the

π momentum has the lowest energy everywhere for h > 1−γ2. Since we cannot take

that momentum, we will take second best. Turns out the Λk function is symmetric

based on k = π → q = N
2

, so these "second-best" will be doubly-degenerate (see

Figure 2.3).

0 1 2 3 4 5 6
k

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

k

even sector
odd sector

Figure 2.3: The available momenta in the even and odd sector respectively for N =
27. It is easy to see the peak centered on k = π has symmetric points in both sectors,
leading to a double-degeneracy when the π mode is not in the needed sector. Also, it
can be seen that around the peaks of ±k∗ the distribution of points is asymmetrical
which confirms that there is no degeneracy when adding the closest momenta to k∗

as in the even sector.

We will split the parameter space in only two regions, as we’re only interested in
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the minima and for that we have two options.

Under the parabola h < 1−γ2 will be area A (using A and B will help differentiate

from the even sector solutions) and there the minima are±k∗ respectively. In the case

±k∗ are not in the odd sector, the reasoning is the same as in the even sector: for

sure there is a unique (for each well) minimum so we will just take those points (see

Figure 2.3 for proof), but for simplicity we will stick with the notation of k∗. The

ground state is then

|GS−A 〉 =
1√
2

(
χ†k∗ + χ†−k∗

) ⌊
N
2

⌋
−1∏

q=0

(
cos θq+1/2 + sin θq+1/2 ψ

†
q+1/2ψ

†
−(q+1/2)

)
|0〉 (2.67)

Region B comprises of the are above the parabola h > 1 − γ2 where π is the

minimum. As mentioned, here we are unable to excite the π mode so we need to

take the next in line, which introduces degeneracy

|GS−B〉 =
1√
2

(
χ†N−1

2

+ χ†N+1
2

) ⌊
N
2

⌋
−1∏

q=0

(
cos θq+1/2 + sin θq+1/2 ψ

†
q+1/2ψ

†
−(q+1/2)

)
|0〉

(2.68)

The energy is then simply given by the vacuum energy plus the excitations we

have added

E−0 =

 −
1
2

∑N−1
q=0 Λq + Λ∗, A : h ≤ 1− γ2

−1
2

∑N−1
q=0 Λq + ΛN−1

2

, B : h > 1− γ2
(2.69)

The true ground state of the system switches between odd and even sectors mov-

ing through the parameters. However, very quickly with increasing N the energies

of the sectors entwine closer and closer together, especially rapidly for the frustrated

region (see Figure 2.4). Already for N > 10 they are very similar (depending on the

fixed parameter of course) and since we’re interested essentially in the thermody-

namic limit, we will assume degeneracy and only look at the even sector most of the

time.

This concludes the solution of the one-dimensional quantum XY model.
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Figure 2.4: The energies of different sectors for the ferromagnetic (F) and antiferro-
magnetic (AF) coupling with different chain lengths. We see even for still quite short
chains, the energies are very similar, especially in the region of interest h < 1. All
four graphs energies have been calculated for γ = 0.5.

3 Fidelity

Fidelity is a function of overlap between two quantum states. By measuring the simi-

larity between two states corresponding to systems with slightly different parameters,

fidelity can be used to effectively identify critical points by recognizing the orthog-

onality emerging at those points, which is (often) a signature of QPTs. Given two

quantum states described by density operators ρ and σ, fidelity is defined as [22]

F(ρ, σ) := tr
(√

ρ1/2σρ1/2
)
. (3.1)

In the case of pure states, (3.1) reduces to the overlap between two states. Given
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ρ = |ψZ〉 〈ψZ | and σ = |ψZ̃〉 〈ψZ̃ |, the fidelity of pure states is then

F(Z, Z̃) = | 〈ψZ |ψZ̃〉 |. (3.2)

By this notation, we presume Z and Z̃ are two states with parameters differing by a

(not necessarily infinitesimal) small step (h, γ)→ (h+ dh, γ + dγ).

As was mentioned in Section 1, it will be necessary to slightly alter our approach

by introducing a partial measurement called reduced fidelity to fully characterize our

system due to the specific geometry in the frustrated region causing exact orthogo-

nality. This implies using reduced density matrices in place of "regular" full-system

density matrices which will entail calculating the necessary, in this case, two-point

correlation functions. Since we will be calculating also reduced fidelity, we will refer

to the "regular" fidelity as global fidelity.

3.1 Global fidelity

The global fidelity will be evaluated for the vacuum states (F0), states with one exci-

tation (F1) and for the doubly excited, doubly degenerated states (F2). The former

will cover the fidelity for the ferromagnetic chain for h > 1, and the fidelity in the

antiferromagnetic regions II ′ and III. The state with one excitation is the ground

state of the ferromagnetic h < 1 region and the former is important for the frustrated

region I of the antiferromagnetic chain. The reason why we only look at the fidelity

between states with an equal number of excitations is that we are interested only in

parameter-induced differences in ground states, since they are the ones who are sup-

posed to signal the presence of a phase transition. "Regular" orthogonalities between

fundamentally distinct states such as states with a different number of excitations are

of no interest to us; their overlaps vanish even for identical parameters.

3.1.1 Analytical expression

Vacuum To help obtain the fidelity, we will use an equivalent but slightly different

way of expressing the vacuum state

|vac〉 =

⌊
N
2

⌋
−1⊗

q=0

cos θ
q+

1
2
|0〉

q+
1
2
|0〉
−
(
q+

1
2

) + sin θ
q+

1
2
|1〉

q+
1
2
|1〉
−
(
q+

1
2

) . (3.3)
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Using this notation, it is pretty straightforward to obtain the overlap

F0 = |〈vac| ṽac〉| (3.4)

=

⌊
N
2

⌋
−1∏

q=0

(
cos θ

q+
1
2

cos θ̃
q+

1
2

+ sin θ
q+

1
2

sin θ̃
q+

1
2

)
. (3.5)

The vacuum fidelity is then

F0 =

⌊
N
2

⌋
−1∏

q=0

cos

(
θ
q+

1
2
− θ̃

q+
1
2

)
. (3.6)

One excitation Moving on to states with one excitation, we will look first at a

general excitation Q. The fidelity we want to calculate is then

F1 = | 〈vac|χQ χ̃Q |ṽac〉 |. (3.7)

The idea is to use the definition of the χq operators (2.34), as well as the recently

introduced notation for the vacuum state (3.3) to expand the expression and (2.9)

to simplify and obtain the end result (see Appendix C.1 for details)

F1 =

⌊
N−1
2

⌋∏
q=0,q 6=Q

cos
(
θq − θ̃q

)
. (3.8)

Of course, if we’re only interested in true ground state fidelity, the momentum Q = 0

as it corresponds to the ground state of the ferromagnetic chain for h < 1. However,

we will see it will prove to be useful to have done this calculation for the general

momentum Q.

Two excitations Before calculating the fidelity of the ground state (2.63), it is cru-

cial to take into account that the ±k∗ momenta depends on parameters h and γ,

thereby greatly affecting the overlap of the two states.

The following expression clearly states the issue

cos k∗ =
h

γ2 − 1
. (3.9)
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As soon we change h or γ, no matter by how little, we obtain a different momentum

and therefore excite a different Bogoliubion particle, effectively rendering the fidelity

exact zero

Fa2 = 〈GS2|G̃S2〉 = 0, k∗ 6=, k̃∗ (3.10)

where we use |GS2〉 as a shorter notation for the ground state (2.63).

The only way to avoid this is to keep the ratio in (3.9) constant, which entails moving

along a family of parabolas

h = c(1− γ2), (3.11)

keeping c ∈ [−1, 1] constant for a specific k∗.

Because of this peculiar geometry, it is reasonable to introduce different variables,

i.e. natural variables. Parameter c already imposed itself as one. It will define the

direction tangent to the parabola, i.e. varying c moves along a parabola. By some

manipulation it is possible to obtain also the normal direction, let’s denote it by δ

(see Appendix C.2).  c = h
1−γ2 , −1 ≤ c ≤ 1

δ = −γ2

2
− h2 + ln γ, δ ≥ − ln γ + γ2

2
.

(3.12)

However, to obtain the formula itself we don’t need to specify which parameters

we are using just yet. We’re looking at the expression

F2 =
1

2

∣∣ 〈vac|χπ(χk∗ + χ−k∗
)(

χ̃†k∗ + χ̃†−k∗
)
χ̃π |ṽac〉

∣∣ (3.13)

=
1

2

∣∣ 〈vac|(χk∗χ̃†k∗ + χk∗χ̃
†
k∗

)
|ṽac〉

∣∣. (3.14)

Looking at the first line, we can start by eliminating the cross products containing

both k∗ and −k∗ as those states will definitely differ and be orthogonal regardless of

the change in parameters since they will simply have different excitations.

Another piece brings us to the next line, and that is the fact that the π excitation

proves to be irrelevant overlap-wise. Since for k = π there is no rotation, there is no

dependence on parameters

χ̃π = χπ = ψπ. (3.15)

There is no acquired phase (it is +1) from (2.9) so what is left in (3.14) is basically
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a one excitation fidelity which we have already calculated in (3.8) so the result is

F2 =

⌊
N
2

⌋
−1∏

q=0,
2πq
N
6=k∗

cos

(
θ
q+

1
2
− θ̃

q+
1
2

)
δk∗k̃∗ . (3.16)

The δk∗k̃∗ function is there to remind us that this expression is only valid if we keep

k∗ constant while varying h and γ.

3.1.2 Results

The global fidelity is always given by a product of cosines of the difference of Bogoli-

ubov angles. The only thing that differs in non-vacuum states is that the momenta

which are excited are omitted from the product. However, while the overlap of

vacuum states exhibits fairly smooth behaviour, the two excitation overlap abruptly

drops to zero every time k∗ changes, displaying a highly singular nature.

Based on these expressions, we produced graphs showing the behaviour of global

fidelity across the parameter space, with keeping one parameter constant and varying

the other. For ferromagnetic order, the fidelity clearly shows the expected peaks at

the well known h = 1 Ising transition (see Figure 3.1) and γ = 0 XX transition

points (see Figure 3.2). Both graphs display that the peak sharpens and increases

with increasing N. This is a signature of the fact that in the thermodynamic limit

N → ∞ this dip becomes a real discontinuity. The parity of N plays no role here,

as for the ferromagnetic order there can be no frustration. The global fidelity of

antiferromagnetic order for even N show the same behaviour. Both of these cases

correspond to either vacuum or 0 or π excitations states, depending on parameters,

as per 2.2.1 and 2.2.2.

New cases arise when we move into frustrated territory. As we found in 2.2.2 Odd

N paragraph, the ground state for h < 1 − γ2 is either vacuum excited only by k∗ or

both k∗ and π. Furthermore, in region dubbed II ′ in the 2.2.2 paragraph we have

frustrated vacuum (vacuum that acts as if there is a π excitation in its energy). Con-

centrating on the first scenario involving a k∗ excitation, we encounter the already

mentioned issue. As k∗ changes going through the parameters h and γ the fidelity

drops to zero identically as the two states become orthogonal. Then, moving out of

region I/A the fidelity shots back up near the value of 1, dropping again at the Ising
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Figure 3.1: Fidelity in the case of ferromagnetic order J = −1 with fixed anisotropy
γ = 0.5 in range h = [0.01, 1.2]. A clear dip is seen at h = 1.0 that increases with
increasing N.

transition h = 1 (or the γ = 0 when varying γ). The described situation is displayed

in Figure 3.3 for variation of h and in Figure for variation of γ.

This fact is further affirmed in Figure 3.5. When γ is varied not for fixed h, but

along a specific parabola (3.11), the discontinuities encountered when moving in

other directions are avoided and we’re left with a clear drop signalling only the γ = 0

transition.

The aforementioned drops in the fidelity and shown in 1D variations of h and γ

separately are further corroborated in 3.6, which clearly demonstrates that fidelity

can be used to (re)-construct a phase diagram of a system.

3.1.3 Fidelity susceptibility

The definition of fidelity given by (3.2) implies a subtle dependence on the size of

steps used to move in parameter space dh and dγ. However, it is possible to avoid

that by looking at fidelity susceptibility [9]. If we write more explicitly the afore-

mentioned dependence we can expand the fidelity around the starting parameters
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Figure 3.2: Fidelity in the case of ferromagnetic order J = −1 with fixed magnetic
field h = 0.6 in range γ = [−0.2, 1.0]. A clear dip is seen at γ = 0.0 that increases with
increasing N.

(h, γ).

F =
∏
q′

cos [θq′(h+ dh, γ + dγ)− θq′(h, γ)] . (3.17)

We expand first the argument of the cosine up to first order but also the cosine itself,

to second order:

=
∏
q′

cos

(
−∂θq

′

∂h
h− ∂θq′

∂γ

)
, (3.18)

≈
∏
q′

[
1− 1

2

(
∂θq′

∂h
h+

∂θq′

∂γ
γ

)2
]
. (3.19)

Now, writing it in in a shorter fashion

F = 1 +
1

2

∑
i,j

gijdλidλj, (3.20)
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Figure 3.3: Fidelity in the case of antiferromagnetic order J = +1 with fixed
anisotropy γ = 0.5 in range h = [0.1, 1.2]. We see multiple discontinuities where
F = 0, whose number is increasing with N . The Ising peak h = 1.0 is still there.

where the sum i, j goes over available parameters, in this case h and γ. gij is the

metric tensor and its components are fidelity susceptibilities:

gi,j = −
∑
q′

∂iθq′ ∂jθq′ . (3.21)

q′ is used as a wrap notation for all versions of the available momenta.

The quantum metric tensor is symmetric under exchange of the index i and j.

It is the real part of a more generalized quantum geometric tensor of the ground

state. By taking the thermodynamic limit the sum can be replaced by an integral∑
k′ → [N/(2π)]

∫ π
0
dx. These integrals are then calculated using complex integration.

Then, the components of the metric tensor, with a switch to an intensive quantity
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Figure 3.4: Fidelity in the case of antiferromagnetic order J = +1 with fixed mag-
netic field h = 0.2 in range γ = [−0.1, 1.0]. We see multiple discontinuities where
F = 0, whose number is increasing with N . The γ = 0 peak is still there.

gij → qij/N , are given by

ghh =
1

16


1

|γ|(1−h2) , |h| < 1

|h|γ2

(h2−1)(h2−1+γ2)3/2
, |h| > 1

(3.22a)

gγγ =
1

16


1

|γ|(1+|γ|)2 , |h| < 1[
2

(1−γ2)2

(
|h|√

h2−1+γ2
− 1

)
− |h|γ2

(1−γ2)(h2−1+γ2)3/2

]
, |h| > 1

(3.22b)

ghγ =
1

16

0, |h| < 1

−|h|γ
h(h2−1+γ2)3/2

, |h| > 1

(3.22c)

However, because of continuous divergences in region I of the antiferromagnetic

chain h < 1− γ2, it is important to notice that these expressions are not valid in this

region; we will need a different approach. Since the fidelity function is not analytical

we cannot even define the second derivative in general. Nonetheless, we can define

it moving strictly along each parabola given by (3.11). Keeping c a parameter which

chooses which parabola we’re on, we have a relation how h changes for a given γ.
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Figure 3.5: Fidelity in the case of antiferromagnetic order J = +1 with varying γ in
range [−0.1, 1.0]. along parabola h = 1− γ2

(a) Parameter space vs. fidelity for J = −1,
N = 207.

(b) Parameter space vs. fidelity for J = 1, N =
107.

Figure 3.6: Simultaneous varying of both h and γ displayed in the contour technique
for a) Ferromagnetic b) Antiferromagnetic order. Although h = 1 is less strong than
the rest, the graphs clearly show the drops in fidelity occurring for all the expected
parameters, h = 1, γ = 0 and the k∗ level-crossings. In Figure C.1 you can see how
the continuous limit takes place, already for N = 507.

By using h = c(1 − γ2) in our definition of θq (A.3a) we obtain the susceptibility

for region I. Let us denote it as g̃γγ to differentiate from the "normal" susceptibility
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Figure 3.7: Illustration of each component of the metric tensor by varying h and γ
separately. This is defined outside of region I of parameter space and is independent
of length of chain N . We can see the expected h = 1 and γ = 0 transitions clearly.

already calculated.

g̃γγ = − 1

N

∑
k,k 6=k∗

(
∂θk
∂γ

)2

, (3.23)

= −1

2

1

4π

∫ π

0

dk

{
c(1 + γ2) + cos k

[c(1− γ2) + cos k]2 + γ2 sin2 k

}2

sin2 k +
1

N

(
∂θ∗
∂γ

)2

(3.24)

While the k∗ term can be calculated by straight forward derivation, the integral

is a bit more complicated and can be calculated through contour integration in the

complex plane. See Appendix C.4 for more details on that. The fidelity susceptibility

along the parabolas in region I is

g̃γγ = − 1

16

1 + c2(1 + γ)3(3γ − 1)

γ[1 + γ)2(1− c2(1− γ2)2]
+

1

4N

c2(1− c2)
[1− c2(1− γ2)]2

. (3.25)

Since we are moving along parabolas, we expect to see only the γ = 0 transition,

and that is exactly what happens, even for smaller N . This is an excellent example

of how the susceptibility is a "cleaner" measure. However, one could argue that it is

still effectively an intensive quality as the 1/N correction is so small it does not affect

the curve.
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Figure 3.8: Fidelity susceptibility in the case of antiferromagnetic order J = +1 along
a chosen parabola c = 0.7 in range γ = [−0.1, 1.0]. We see a clean discontinuity at
γ = 0 as expected.

Although we did obtain an analytical expression for susceptibility in the most

problematic region I, alas only along each parabola respectively. The inability to

define it moving in any direction differing from the parabolas renders further attempt

at criticality analysis in this way futile. That is why we proceed with a slightly altered

version of fidelity, called reduced fidelity.

3.2 Reduced fidelity

We have shown in Section 3.1 that global fidelity and its susceptibility, albeit conve-

nient for analysis in "normal" circumstances, which involve every part of the ferro-

magnetic and antiferromagnetic parameter space except for the area bounded by the

parabola h < 1− γ2, is unfit to describe and even undefinable in the aforementioned

region I. Furthermore, looking to future experimental realizations, it is advisable to

look for more adequate quantities whose measurements will be more feasible and

attainable.

Both of these arguments can be fulfilled in reduced fidelity, an alternative method

38



that has been proposed and applied to models with continuous level-crossings, like

the Heisenberg chain. [17,18]. It is based on taking reduced density matrices of the

system, thereby examining a subsystem instead of the whole system

FR = Tr
√
ρ1/2ρ̃ρ1/2, (3.26)

where the notation follows from before, with ρ denoting the reduced density matrix

of the ground state (h, γ), and ρ̃ = ρ(h + dh, γ + dγ). The idea behind this approach

is that although the ground state of the full system is represented by a pure state, the

ground state of the reduced system is instead generally described by a mixed state,

thereby reducing the degree of orthogonality and allowing for deeper analysis.

We opted for a two-site reduced density matrix, which can be expressed using

two-point correlation functions as follows [23]

ρij =
3∑

α,β=0

〈σαi σ
β
j 〉 σαi ⊗ σ

β
j , (3.27)

where σ0 denotes the 2×2 identity matrix, and indices 1−3 stand for x, y, z. Because

of symmetries, most of the coefficients 〈σαi σ
β
j 〉 vanish. For example, reflection sym-

metry around any site implies ρij = ρji. The Hamiltonian being real means ρ∗ij = ρij.

Furthermore, the system preserves parity (2.12).

The calculations for obtaining the one and two-point correlators in the ground

state are rather involved. We’re interested in 〈σαi σ
β
j 〉, but the only expectation we

know is for the Bogoliubov fermions 〈χqχ(†)
q′ 〉. We will need to use all the transforma-

tions we used to solve the XY chain and go backwards through them to connect the

sought after correlator, and the one we know.

3.2.1 Correlation functions

We start by expressing the "regular" Pauli matrices σαi , that is, their two-point corre-

lation functions over the lowering and raising operators. Of course, the σzi operator

stays the same and we only transform the σxi and σyi operators. Using (2.3) and the

aforementioned symmetries of the system, we prove that the mixed correlators van-

ish and all that is left are the 〈σαi σαj 〉 functions, along with one-point functions 〈σzi 〉.
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〈σx,yi σx,yj 〉 = ±〈σ+
i σ

+
j ± σ+

i σ
−
j ± σ−i σ+

j + σ−i σ
−
j 〉, (3.28a)

〈σxi σ
y
j 〉 = 〈σxi σzj 〉 = 〈σyi σzj 〉 = 0. (3.28b)

Finally expanding (3.27), in the basis {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉},the reduced density ma-

trix takes the form

ρij =
1

4


a+ 0 0 c−

0 b c+ 0

0 c+ b 0

c− 0 0 a−

 , (3.29)

with

a± = 1± 〈σzi 〉 ± 〈σzj 〉+ 〈σzi σzj 〉, (3.30a)

b = 1− 〈σzi σzj 〉, (3.30b)

c± = 〈σxi σxj 〉 ± 〈σ
y
i σ

y
j 〉. (3.30c)

The next step is relating these σ±,z operators to fermions, i.e., again doing a

Jordan-Wigner transformation (2.7). While doing that, we will introduce a new pair

of operators which are standard in this procedure, and which will, surprisingly, help

us declutter the notation.

If we start transforming, for example, 〈σxi σxj 〉 into the Jordan-Wigner fermions we

will have

〈σxi σxj 〉 =
〈 i−1∏
l=j

(1− 2ψ†lψl)(ψi + ψ†i )(ψj + ψ†j)
〉
. (3.31)

Now we define the new operators Ai and Bi

Ai ≡ ψ†i + ψi, Bi ≡ ψ†i − ψi, (3.32)
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which, with a little manipulation (see Appendix (D.1)), allow us to write:

=
〈 i−1∏
l=j

AlBlAiAj

〉
=
〈 i−1∏
l=j+1

AjAjBjAlBlAi

〉
(3.33)

=
〈 i−1∏
l=j+1

BjAlBlAi

〉
. (3.34)

Similarly, we obtain the other two correlators. Writing them all in one place we have

〈σxi σxj 〉 =
〈
BjAj+1Bj+1Aj+2Bj+2 · · · · · Ai−1Bi−1Ai

〉
, (3.35a)

〈σyi σ
y
j 〉 =

〈
Bj+1AjBj+2Aj+1 · · · · ·BiAi−1

〉
, (3.35b)

〈σzi σzj 〉 =
〈
AiBiAjBj

〉
. (3.35c)

Luckily, we can turn this result back to two-point correlators by using Wick’s theo-

rem [24]. Wick’s theorem states that if we have a linear combination of fermionic

operators (which Ai and Bi are), the expectation of a product of an even number of

those operators in the vacuum state can be decomposed into a sum over all distinct

combinations of two-point expectations multiplied by a permutation sign factor. If

the product is of an odd number of operators, it is immediately zero.

We proceed with using Wick’s theorem on the correlators, choosing pairings of 〈BkAl〉

and fixing the sign to permutations of A. The correlation functions are now

〈σxi σxj 〉 =
∑
p

(−1)p
〈
BjAP (j+1)

〉〈
Bj+1AP (j+2)

〉
· · · · ·

〈
Bi−1AP (i)

〉
, (3.36a)

〈σyi σ
y
j 〉 =

∑
p

(−1)p
〈
Bj+1AP (j)

〉〈
Bj+2AP (j+1)

〉
· · · · ·

〈
BiAP (i−1)

〉
, (3.36b)

〈σzi σzj 〉 =
〈
BiAi

〉〈
BjAj

〉
−
〈
BiAj

〉〈
BiAj

〉
. (3.36c)

One can notice there are missing
〈
AiAj

〉
and

〈
BiBj

〉
correlators. That is because

they vanish, as is shown in Appendix D.1.

Turns out, this expression coincides with the Leibniz formula for the determinant

of a matrix. The two-site x correlation function written as a matrix determinant is
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then

〈σxi σxj 〉 =

∣∣∣∣∣∣∣∣∣∣∣∣

〈
BjAj+1

〉 〈
BjAj+2

〉
· · ·

〈
BjAi

〉〈
Bj+1Aj+1

〉 〈
Bj+1Aj+2

〉
· · ·

〈
Bj+1Ai

〉
...

... . . . ...〈
Bi−1Aj+1

〉 〈
Bi−1Aj+2

〉
· · ·

〈
Bi−1Ai

〉

∣∣∣∣∣∣∣∣∣∣∣∣
. (3.37)

The expression for 〈σyi σ
y
j 〉 is similar

〈σyi σ
y
j 〉 =

∣∣∣∣∣∣∣∣∣∣∣∣

〈
Bj+1Aj

〉 〈
Bj+1Aj+1

〉
· · ·

〈
Bj+1Ai−1

〉〈
Bj+2Aj

〉 〈
Bj+2Aj+1

〉
· · ·

〈
Bj+2Ai−1

〉
...

... . . . ...〈
BiAj

〉 〈
BiAj+2

〉
· · ·

〈
BiAi−1

〉

∣∣∣∣∣∣∣∣∣∣∣∣
. (3.38)

Interestingly, the z correlator can also be written as a matrix determinant

〈σzi σzj 〉 =

∣∣∣∣∣∣
〈
BiAi

〉 〈
BiAj

〉〈
BiAj

〉 〈
BjAj

〉
∣∣∣∣∣∣ . (3.39)

Right now, we have a connection between operators A and B and the Jordan-

Wigner real-space fermions ψi. The next and final stage comprises of finding the

expectation of the Fourier-space fermions ψq and linking that to real-space fermions

through (2.20). The link between the real and Fourier space is given in the following

expressions

〈ψiψj〉 =
i

N

∑
k,q

ei
2π
N

(ki+qj)〈ψkψq〉, (3.40a)

〈ψ†iψ
†
j〉 =

−i
N

∑
k,q

e−i
2π
N

(ki+qj)〈ψ†kψ
†
q〉, (3.40b)

〈ψiψ†j〉 =
1

N

∑
k,q

ei
2π
N

(ki−qj)〈ψkψ†q〉, (3.40c)

〈ψ†iψj〉 =
1

N

∑
k,q

e−i
2π
N

(ki−qj)〈ψ†kψq〉. (3.40d)

Proceeding to the expectation of Fourier-space fermions, we have at last reached

the final transformation and the Bogoliubov fermion. This is where we consider

which ground state are we using. By reasoning mentioned before in Section 2.2.2,

we will consider only the even sector ground state. Up to this point the derivation
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has been completely general. Now we will choose to calculate the correlations in the

area outside of region I where the ground state is the vacuum, taking special care of

the differences occurring in the case of frustrated vacuum which is region II ′. After

completion, we will repeat the process for the double-degenerate, double-excited

ground state of region I.

Vacuum ground state We use (2.34), (2.33) and (2.42) to obtain the following

result

〈ψkψq〉 = − cos θk sin θqδk,−q, (3.41a)

〈ψ†kψ
†
q〉 = − sin θk cos θqδ−k,q, (3.41b)

〈ψkψ†q〉 = cos θk cos θqδk,q, (3.41c)

〈ψ†kψq〉 = sin θk sin θqδ−k,−q. (3.41d)

Finally, we combine this result with (3.40). To link that to the Ai and Bi correla-

tors, we have to do an another little reverse-transformation after all- writing Ai and

Bi again as real-space fermions.

〈
AiBi

〉
= 〈1− 2ψ†iψi〉 = 1− 2

N

∑
q

sin2 θq, (3.42a)

〈
AiBj

〉
= 〈(ψ†i + ψi)(ψ

†
j − ψj)〉

= − 1

N

∑
q

{
sin 2θq sin

[
2π

N
q(i− j)

]
+ cos 2θq cos

[
2π

N
q(i− j)

]}
,

(3.42b)

〈
BiAj

〉
= −

〈
AjBi

〉
=

1

N

∑
q

{
− sin 2θq sin

[
2π

N
q(i− j)

]
+ cos 2θq cos

[
2π

N
q(i− j)

]}
.

(3.42c)

In the last two equations we have used the fact we are summing, or in the thermody-

namic limit integrating, over the whole Brillouin zone and therefore we can discard

the odd (even) part of the exponential if multiplied by an even (odd) function.

Lastly, a quick calculation of the one-point function σzi , i.e. the magnetisation

along z, provides us with

〈σzi 〉 = 1− 2ψ†iψi =
〈
AiBi

〉
(3.43)
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Now that we have the elements of the matrices both, it is time to obtain the full

expression. Whilst expanding the θq in (3.42a), one should keep in mind that θπ = 0

which interferes with using (A.3b). While sin 2θπ is correctly zero, it is not enough to

simply take k = π because for h < 1 we obtain cos 2θπ = −1. That is why it in region

II ′ we need to separate it from the sum

〈
AiBj

〉
II′

=− 1

N

∑
q

{
sin 2θq sin

[
2π

N
q(i− j)

]
+ cos 2θq cos

[
2π

N
q(i− j)

]}
(3.44)

=− 1

N

∑
q 6=N/2

{
sin 2θq sin

[
2π

N
q(i− j)

]
+ cos 2θq cos

[
2π

N
q(i− j)

]}
(3.45)

− 1

N
cos

[
2π

N
q(i− j)

]
. (3.46)

Now, we can complete the sum by adding and subtracting the term corresponding to

the "wrong" definition of cos 2θπ

=− 1

N

∑
q

{
sin 2θq sin

[
2π

N
q(i− j)

]
+ cos 2θq cos

[
2π

N
q(i− j)

]}
(3.47)

− 1

N
cos

[
2π

N
q(i− j)

]
+
h− 1

Λπ

cos

[
2π

N
q(i− j)

]
(3.48)

〈
AiBj

〉
II′

=− 1

N

∑
q

{
sin 2θq sin

[
2π

N
q(i− j)

]
+ cos 2θq cos

[
2π

N
q(i− j)

]}
(3.49)

− 2

N
cos

[
2π

N
q(i− j)

]
. (3.50)

It is worth noticing that the correlator (3.42a) depends only on the difference i−j

and not i, j themselves. That greatly simplifies the matrices (3.37) and (3.38). If we

introduce a function g(r) as a shorthand

g(r) = g(i− j) =
〈
BiAj

〉
. (3.51)

The matrices are then given by

〈σyi σ
y
j 〉 =

∣∣∣∣∣∣∣∣∣∣∣∣

g(−1) g(0) · · · g(−r)

g(0) g(1) · · · g(r − 1)
...

... . . . ...

g(r − 2) g(r − 3) · · · g(−1)

∣∣∣∣∣∣∣∣∣∣∣∣
. (3.52)
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〈σyi σ
y
j 〉 =

∣∣∣∣∣∣∣∣∣∣∣∣

g(1) g(0) · · · g(−r − 2)

g(2) g(1) · · · g(−r − 1)
...

... . . . ...

g(r) g(r − 1) · · · g(1)

∣∣∣∣∣∣∣∣∣∣∣∣
. (3.53)

Region I Now that we have the correlation functions for the vacuum state, we

need to calculate them for the frustrated, double-degenerate, double-excited state of

region I (2.63). The computations follow naturally from the vacuum scenario and

are straight forward, yet they are considerably more tedious.

For each expectation we also need to separately consider the scenario q, k = π

because of (2.36). Luckily, since the ground state already has a π excitation, when

only one moment is π we can always achieve χ2
pi = 0. When both momenta are π it

is also very simple since we either have ψ2
pi = 0 right from the start, or we can use

(2.36) and have 〈χπ†χπ〉 = 0, whereas by (2.37) 〈χπχπ†〉 = 1.

As for the rest of the momenta, we had to use (2.37) excessively to manipulate the

16 terms per each expectation. Therefore, here we will only present the results. For

more details, see Appendix D.2.

〈ψkψq〉 =
1

2
sin 2θq δk,−q(1− δq,k∗ − δq,−k∗), (3.54a)

〈ψ†kψ
†
q〉 =

1

2
sin 2θq δ−k,q(δq,k∗ + δq,−k∗ − 1), (3.54b)

〈ψkψ†q〉 = −1

2
δk,−q(δq,k∗ + δq,−k∗) +

1

2
δk,q[2 sin2 θq + (δq,k∗ + δq,−k∗) cos 2θq], (3.54c)

〈ψ†kψq〉 = δk,q +
1

2
δk,−q(δq,k∗ + δq,−k∗)−

1

2
δk,q[2 sin2 θq + (δq,k∗ + δq,−k∗) cos 2θq].

(3.54d)

Combining these with the same expressions for expectations of
〈
AiBj

〉
as in the vac-

uum scenario 3.2.1, we obtain

〈
AiBi

〉
=
〈
AiBi

〉
vac +

2

N

(
cos

4π

N
k∗i− cos 2θ∗

)
, (3.55a)〈

AiBj

〉
=
〈
AiBj

〉
vac +

2

N
[sin 2θ∗ sin(i− j)k∗ − cos 2θ∗ cos(i− j)k∗ + cos(i+ j)k∗] .

(3.55b)

In region I we again have h < 1 and therefore obtain the π correction derived for
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region II ′.

Summing up, the correlation functions for the even sector ground states are given

by 〈
AiBj

〉
=
〈
AiBj

〉
0

+ C(1) + C(2)(h, γ), (3.56)

where we have dubbed the "normal" vacuum sum (with π included) with index 0 and

defined functions C(1) and C(2)
i,j (h, γ) which contain the necessary corrections.

C(1) =

−
2
N

cos
[
2π
N
q(i− j)

]
, h < 1

0, h > 1

(3.57)

C(2)(h, γ) =


2
N

(
cos 4π

N
k∗i− cos 2θ∗

)
, i = j, h < 1− γ2

2
N

[sin 2θ∗ sin(i− j)k∗ − cos 2θ∗ cos(i− j)k∗ + cos(i+ j)k∗] , i 6= j, h < 1− γ2

0, h > 1− γ2

(3.58)

Combining with (3.37), (3.38), (3.39) and (5.36), we have effectively calculated

the correlation functions for the vacuum. This concludes calculating the correlation

functions of the system. We proceed with analysing reduced fidelity and its suscepti-

bility.

3.2.2 Results

We study the two-point reduced fidelity for next neighbours spins which is displayed

in Figure 3.9. We observe oscillatory behaviour for small enough N . This comes

from the correction in the frustrated region (3.57), (3.58) which produces peaks

associated with k∗ but through trigonometric functions which induce oscillations.

These oscillations soon vanish with increasing N , as can be seen in the smaller graph

in Figure 3.9.

Nonetheless, there is one dominant peak which perseveres even when the oscil-

lations die out. That peak corresponds to the final parabola c = 1, that is, the edge

of region I and we will refer to it as the π-peak. It seems as if it could be a signature

of a phase transition between the frustrated region I and the rest. However, it also
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Figure 3.9: Reduced fidelity in the case of antiferromagnetic order J = +1 for next-
neighbours r = 1 with fixed anisotropy γ = 0.5 in region I h = [0.1, 0.75]. The smaller
graph is there to show the oscillations vanish already after the first increase by an
order of magnitude of N .

decreases with increasing N , albeit more slowly. That is why we check the amplitude

of the π-peak for N in increasing orders of magnitude in Figure 3.10.

It seems that even the π-peak disappears in the thermodynamic limit. What’s

more, it decreases essentially with 1
N2 . There is hope that maybe, instead of look-

ing at next-neighbours spins, taking an extensive distance in sites (r), for example

antipodal sites r = N−1
2

can offset the decrease and the π-peak might saturate into

some finite value. Unfortunately, Figure 3.11 is not the case.

Not only that the π-peak also decreases and vanishes in the thermodynamic limit, but

the exponent by which it decreases is, in effect, the same as for next neighbours 1
N2 .

In conclusion, unfortunately for experimental realizations, the two-point reduced

fidelity is able to capture all of the critical points only for finite size chains. In the

thermodynamic limit it loses characteristics imposed by frustration.
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Figure 3.10: The amplitude of the π-peak for next-neighbours r = 1 with fixed
anisotropy γ = 0.5 in region I h = [0.1, 0.75]. The amplitude decreases by N−a.

3.2.3 Reduced fidelity susceptibility

To be able to obtain an analytical expression for the reduced fidelity susceptibility it

is necessary to rearrange the basis into {|↑↑〉 , |↓↓〉 , |↑↓〉 , |↓↑〉}, turning (5.36) into a

block-diagonal matrix

ρij =
1

4


a+ c− 0 0

c− a− 0 0

0 0 b+ d c+

0 0 c+ b− d

 =
2⊕
l=1

ρl, (3.59)

with

d = 〈σzi 〉 − 〈σzj 〉. (3.60)

Then, the reduced fidelity susceptibility, assuming Tr ρl 6= 0 and det ρl 6= 0, is [18]

χλ = χ1,λ + χ2,λ, (3.61)
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Figure 3.11: The amplitude of the π-peak for extensive distance r = N−1
2

with fixed
anisotropy γ = 0.5 in region I h = [0.1, 0.75]. The amplitude decreases by N−a.

where

χl,λ =
1

4 Tr ρl

{[
Tr ∂λρl

]2 − 4 det(∂λρl) +
[∂λ det(ρl)]

2

det(ρl)

}
. (3.62)

Using numerical calculations, we were able to plot (3.61). The result is shown in

3.12 and it follows the expectations acquired in Figure 3.9. Oscillations for small N

are again present, and they again die out for large enough N . By studying the π in

3.13, we again obtain an exponent of around 2, implying a 1/N2 decrease.
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Figure 3.12: Reduced fidelity susceptibility for γ = 0.5 and nearest neighbours in the
case of antiferromagnetic ordering J = 1.
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4 Conclusion

The aim of this thesis was to study the effects of frustration on the geometrical prop-

erties of the ground state by comparison between the frustrated and unfrustrated

spin chain. We have chosen the one dimensional XY model for this purpose.

We began by examining the XY model and solving it analytically by mapping the

spin system to a free fermion system (Jordan-Wigner transformation), moving into

Fourier space and finally arriving at a diagonal Hamiltonian by a Bogoliubov rotation.

We classified the ground state in great detail, looking at both the ferromagnetic and

antiferromagnetic ordering, as well as even and odd number of spins, dividing the

parameter space into regions with different properties. We observed that in the case

of frustrated boundary conditions, i.e. antiferromagnetic periodic chains with an odd

number of spins, for h < 1 the system is frustrated and displays that through favoring

excited states as its ground state. One such excitation is especially intriguing as it

changes with the variation of parameters, thereby inducing level-crossings which in

the thermodynamic limit become continuous.

After setting up the model, we turned to the main objective of the thesis which

was analyzing the ground state geometry by calculating the fidelity and its suscep-

tibility between ground states with slightly varied parameters h and γ. Fidelity, an

overlap function is assumed to be able to construct the phase diagram of the given

system by exhibiting a sudden drop at the critical point. Calculating the overlap for

the different ground states of the system, we obtained the expression which was very

similar across regions but still managed to produce all the expected behaviour. The

well known phase transitions h = 1 and γ = 0 were retrieved by the fidelity approach.

However, we have found the fidelity drop to exact zero for the level-crossings induced

by the changing excitation momenta in the frustrated region, making susceptibility

undefinable except if moving along special curves in the parameter space.

These continuous level-crossings led us to look at a smaller subsystem by calculat-

ing the reduced fidelity, which is based on reduced density matrices. To do so we cal-

culated the two-point correlators by moving through the mentioned transformations

back and forth. What we discovered was that the almost continuous level-crossings

which should, by widely-accepted assumption, signal the existence of a phase tran-

sition vanished in the thermodynamic limit and thereby did not constitute as phase
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transitions. We have found a counter example for the well accepted notion that fi-

delity approach can be used to characterise systems without any a priori knowledge

of the system.
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Appendices

Appendix A Solution details

A.1 Fourier transform operators

If we notice that

x0 ∈ Z⇒ 1

N

∑
x∈XN

ei
2π
N
xn =

 1, n = kN, k ∈ Z

0, else

x0 = 1
2
⇒ 1

N

∑
x∈XN

ei
2π
N
xn =

 (−1)k, n = kN, k ∈ Z

0, else

(A.1)

then we can write the operator ψj for all j = 1, .., N like

ψj =
N∑
l=1

[
ψl

1

N

∑
x∈XN

e
2π
N
x(j−l)

]
. (A.2)

It is not important what we take for x0, an integer or 1/2. However, by choosing

x0 = 1/2 in the even sector and x0 = 0 in the odd sector, we’re able to continue

with periodic boundary conditions and define ψN+1 in line with (A.2). Now we see

why it’s convenient to define operators ψq like (2.17) and why we call them Fourier

transform of ψj.

A.2 Trigonometric properties

It is sometimes convenient to rearrange equations (2.29) into a different form

tan 2θq =
Jγ sin

(
2π
N
q
)

h+ J cos
(
2π
N
q
) , (A.3a)

ei2θq =
h+ J cos

(
2π
N
q
)

+ iJγ sin
(
2π
N
q
)√[

h+ J cos
(
2π
N
q
)]2

+ J2γ2 sin2
(
2π
N
q
) . (A.3b)
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Appendix B Ground state

To obtain the correct form for the ground state of the quantum XY chain, we start by

expanding (2.41) by the commutation relation for χq (2.37b).

1 · ψq |0〉 = 0,

χqχ
†
q + χ†qχq)ψq |0〉 = 0,

(cos θqψq − sin θqψ
†
−q)(cos θqψ

†
q − sin θqψ−q)ψq +

(cos θqψ
†
q − sin θqψ−q)(cos θqψq − sin θqψ

†
−q)ψq = 0.

Further expansion and manipulation is done by using (2.18)

ψ†qψq = 1− ψqψ†q, (ψq)
2 = (ψ†q)

2 = 0.

(χq cos θq + cosθqψq · sin θqψ†qψ
†
−q + sin2 θqψ

†
−qψ

†
−qψ

†
q) |0〉 = 0,

where it was possible to add the last term because it is 0

ψ†−qψ
†
−q = 0 ⇒ sin2 θqψ

†
−qψ

†
−qψ

†
q = 0.

Finally, we obtain the desired term

χq(cos θq + sin θq ψ
†
qψ
†
−q) |0〉 = 0.

54



Appendix C Global fidelity

C.1 One excitation fidelity

When we calculate the fidelity (3.7), what is important is that we have four differ-

ent combinations of ψQ fermion pairs. For example, in the calculation there is the

following term

〈vac| cos θq cos θ̃q ψQ ψ
†
Q

⌊
N−1
2

⌋⊗
q=0

(
cos θq |0〉q |0〉−q + sin θq |1〉q |1〉−q

)
(C.1)

The ψQ ψ
†
Q operators act as per (2.9) and only on the q = Q term from the product,

finally resulting in a factor of cos2 θq cos2 θ̃Q. This is multiplied by the rest of the

product for which there is only the vacuum (and therefore the result of the vacuum

fidelity). Doing the same for the rest of the terms we obtain

F1 =

⌊
N−1
2

⌋∏
q=0, q 6=Q

cos
(
θq − θ̃q

)
·
(

cos2 θq cos2 θ̃Q + cos2 θq sin2 θ̃Q (C.2)

+ sin2 θq cos2 θ̃Q + sin2 θq sin2 θ̃Q

)
(C.3)

=

⌊
N−1
2

⌋∏
q=0, q 6=Q

cos
(
θq − θ̃q

)
. (C.4)

It’s worth noting that in the case of Q = 0, π the whole bracket actually consists of

only a cos θq cos θ̃Q = 1, since instead of the whole expression for χQ we have a trivial

relation χ0,π = ψ0,π and there is no rotation, and therefore no θq.

C.2 Natural variables

Since in region I of the phase diagram u∗ is constant along parabolas of the form

h(γ) = C(1− γ2) (C.5)

Then we can look for the bundle of the orthogonal curves to these parabolas. These

will represent the direction over which the ground state changes.
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We can start by noticing that the parabolas satisfy

y′(x) = −2Cx

C = − y
′

2x

y′(x) = −2x y(x)

1− x2

(C.6)

Therefore, the set of orthogonal curves will satisfy

∫
1− x2

x
dx =

∫
2y dy

log x− x2

2
= y2(x) + δ

(C.7)

Then our mapping would be defined by solving

y = C(1− x2) (C.8a)

y2 +
x2

2
+ δ = log x (C.8b)

However, it can be simpler to study the inverse mapping

C =
h

1− γ2
(C.9a)

δ = −γ
2

2
− h2 + log γ (C.9b)

C.3 Global fidelity graphs

C.4 Fidelity susceptibility

First, we should notice that the integral goes over half the Brillouin zone. Luckily, the

integrand is an even function, so we can easily expand the integral
∫ π
0

= 1
2

∫ 2π

0
. Then,

by the standard substitution z = eiφ we turn the integral into a complex integral.

I = − 1

16π

∫ 2π

0

dk

{
c(1 + γ2) + cos k

[c(1− γ2) + cos k]2 + γ2 sin2 k

}2

sin2 k (C.10)

= − 1

16πi

∮
C

dz

z

{
[2zc(1 + γ2) + z2 + 1](z2 − 1)

[2zc(1− γ2) + z2 + 1]2 − γ2(z2 − 1)2

}2

(C.11)
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Figure C.1: Fidelity in the case of antiferromagnetic order J = 1 forN = 507. Already
at N = 507 we can see the level crossings become essentially continuous.

The contour for this integral is a simple unit circle. The poles of this integral, which

are found by looking for the points for which the denominator vanishes, are the

following

z±1 =
−c(1− γ2) + i

√
(1− γ2)[1− c2(1− γ2)]
1± γ

, (C.12a)

z±2 = z±1 , z0 = 0. (C.12b)

One can easily check, by keeping in mind we’re considering region I that, along

with z0, the poles inside the unit circle are z+1 and z+2 = z+1 . Utilizing the residuum

theorem we arrive at the solution

I =
1

16

1 + c2(1 + γ)3(3γ − 1)

γ(1 + γ)2(1− c2(1− γ2)2)
. (C.13)
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Appendix D Reduced fidelity

D.1 Operators A,B

Let us look at commutation relations of the newly defined operators Ai and Bi.

{Ai, Aj} = {ψ†i , ψ
†
j}+ {ψ†i , ψj}+ {ψi, ψ†j}+ {ψi, ψj} (D.1)

= 2δij (D.2)

= {Ai, A†j}. (D.3)

Doing the same for Bi brings us

{Bi, Bj} = −2δij{Bi, B
†
j}. (D.4)

Finally, Ai and Bi anti-commute

{Ai, Bj} = 0. (D.5)

The product of operators AiBi can be written over operators ψi in another way

AiBj = (ψ†i + ψi)(ψ
†
i − ψi) (D.6)

= −ψ†iψi + ψiψ
†
i (utilizing (ψi)

2 = 0)

= 1− 2ψ†iψi. (D.7)

We can easily show the correlator
〈
AiAj

〉
vanishes

〈
AiAj

〉
= 〈(ψ†i + ψi)(ψ

†
j + ψj)〉 = 〈ψ†iψj + ψiψ

†
j〉 = δij = 0,

where we have used the commutation relations (2.8) and the fact that i 6= j

always. An analogous procedure proves also
〈
BiBj

〉
= 0
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D.2 Frustrated ground state

We can start with the following expectation

〈ψkψq〉 = {k, q 6= π}

=
1

2

[
〈GS∗|χ∗kχπ + 〈GS∗|χ−k∗χπ

](
cos θkχk − sin θkχ

†
−k

)
(

cos θqχq − sin θχ†−q

)[
χ†πχ

†
k∗ |GS

∗〉+ χ†πχ−k∗ |GS∗〉
] (D.8)

We need to calculate different combinations of χq operators using their commutation

relations 2.37. For example, we can start by

χk∗χπχkχ
†
−qχ

†
πχ
†
k∗ = χk∗χπ(δk,−q − χ†−qχk)χ†πχ

†
k∗

= χk∗χπχ
†
π(δk,−q − χ†−qχk)χ

†
k∗

= χk∗(1− χπχ†π)δk,−qχk∗ − χk∗χπχ†πχ
†
−q(δk,k∗ − χ

†
k∗χk)

= χk∗δk−qχ
†
k∗ − χk∗(1− χπχ

†
π)δk,k∗χ

†
−q

= δk,−q − δk∗,−qδk,k∗

(D.9)

Similarly we get the other 15 terms

χk∗χπχkχ
†
−qχ

†
πχ
†
−k∗ = −δk∗,−qδk,−k∗, χ±k∗χπχ

†
−kχqχ

†
πχ
†
±k∗ = δ±k∗,−kδk∗,±q,

χ−k∗χπχkχ
†
−qχ

†
πχ
†
k∗ = −δ−k∗,−qδk,k∗, χ−k∗χπχkχ

†
−qχ

†
πχ
†
−k∗ = δk,−q − δ−k∗,−qδk,−k∗ ,

χ±k∗χπχkχqχ
†
πχ
†
±k∗ = 0, χ±k∗χπχ

†
−kχ

†
−qχ

†
πχ
†
±k∗ = 0,

(D.10)

〈ψkψq〉 =
1

2

{
− cos θk sin θq

(
δk,−q − δk,k∗δk∗,−q − δk,−k∗δk∗,−q − δk,k∗δ−q,−k∗ + δk,−q − δk,−k∗δ−q,−k∗

)
,

− sin θk cos θq
(
δk∗,qδ−k,k∗ + δ−k∗,qδ−k,k∗ + δk∗,qδ−k,−k∗ + δ−k∗,qδ−k,−k∗

)}
,

〈ψkψq〉 =
1

2
δk,−q cos θq sin θq

(
1− δq,−k∗ − δq,k∗

)
.

(D.11)

The rest of the correlators are obtained analogously.
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5 Prošireni sažetak

5.1 Uvod

"Cjelina je više od sume svojih dijelova”. Navodna Aristotelova izreka često se koristi

za opis sustava mnoštva čestica. Iako pronalazimo kompleksne sustave s različitim

manifestacijama kompleksnosti u svim sferama života, pojam sustavi mnoštva čestica

uglavnom se koristi u kontekstu fizikalnog sustava koji se sastoji od mnogo čestica te

su njihove interakcije najčešće kvantne prirode. Pod pojam mnoštvo tehnički spadaju

svi sustavi s više od 2 čestice, no sustavi od 3 i 4 čestice ipak čine posebnu kat-

egoriju sa svojim metodama rješavanja. Glavna je problematika sustava mnoštva

čestica ta što nije moguće riješiti sustav 1023 Schrödingerovih jednadžbi, čak i kada

bismo ih mogli napisati. Stoga, pristup rješavanju ove kategorije problema često odu-

dara od uobičajenog redukcionizma, tj. prikazu sustava kroz njegove konstituente.

Jedan od istaknutih primjera "uobičajenog“ pristupa je Landau-Ginzburg teorija koja

opisuje čitave klase problema kroz jedan parametar ured̄enja koji potječe od rele-

vantne simetrije sustava čiji lom uzrokuje fazni prijelaz. U toj teoriji, koja čini glavni

pristup i klasičnim i kvantnim faznim prijelazima, intenzivne odrednice poput rubnih

uvjeta odbacuju se kao nerelevantne za formiranje ured̄enja. No, posljednjih god-

ina opažaju se slučajevi gdje specifični rubni uvjeti utječu i izazivaju promjene na

sustavima. Ta vrsta rubnih uvjeta uzrokuje frustraciju te se zato naziva frustrirani

rubni uvjeti (engl. FBC). FBC odgovaraju sustavu koji ima antiferomagnetsko ure-

d̄enje, neparan broj "čestica“ (npr. spinova) i periodične rubne uvjete. Periodični

rubni uvjeti mogu se postići i spajanjem lanca u krug. Frustracija je širok pojam,

no u svojoj srži ona potječe od nemogućnosti sustava da ispuni zadane uvjete te

ju je najlakše objasniti kroz klasičnu geometrijsku frustraciju. Zamislimo kvadrat u

čijim su vrhovima postavljena četiri spina kao u "kvadratni lanac“. Spinovi interagi-

raju antiferomagnetski, što znači da se postavljaju antiparalelno. Nemamo nikakvih

problema ispuniti taj uvjet već samo izaberemo orijentaciju početnog spina i ostale

postavimo tako da ispunjavaju antiparalelnost. Kada bismo pokušali napraviti isto

na primjeru trokuta, ubrzo bismo saznali kako nije moguće postaviti spinove bez da

su barem dva paralelno postavljena – sustav je frustriran jer ne može ispuniti svoje

antiferomagnetsko ured̄enje. Glavni cilj ovog rada proučiti je utjecaj frustracije na

geometrijska svojstva osnovnog stanja kroz usporedbu frustriranog i nefrustriranog
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sustava. Geometrija osnovog stanja opisana je kroz kvantni metrički tenzor. Kvantni

metrički tenzor realni je i simetrični dio kompleksnog kvantnog geometrijskog ten-

zora. On mjeri udaljenost (tj. preklop) izmed̄u dvaju stanja. Za ovu analizu izabran

je jednodimenzionalni XY model u transverzalnom magnetskom polju, prototipični

kvantno-mehanički spinski model. Sastoji se od interakcije susjednih spinova xx i yy

komponenti čija se razlika opisuje parametrom anizotropije γ te interakcije s mag-

netskim poljem h u z smjeru.

H =
J

2

N∑
j=1

(
1 + γ

2
σxj σ

x
j+1 +

1− γ
2

σyjσ
y
j+1

)
− h

2

N∑
j=1

σzj . (5.12)

Radi se o 1D rešetci s N mjesta na kojima se nalazi trodimenzionalni spin od 1/2,

a parametar J opisuje glavno ured̄enje sustava. Za J < 0 radi se o feromagnet-

skom, a za J > 0 antiferomagentskom ured̄enju. Ovaj model ima egzaktno analitičko

rješenje, no netrivijalan fazni dijagram na apsolutnoj nuli temperatuer te je zato ide-

alan za testiranje novih metoda. Za γ = 0 model postaje tzv. izotropni XX model, dok

za h = 1 imamo Isingov model. Frustracija će dovesti do odvajanja posebne regije

h < 1 − γ2 koju će trebati posebno proučiti. Na apsolutnoj nuli temperature radi

se o kvantnim faznim prijelazima. Kvantni fazni prijelazi uzrokovani su kvantnim

fluktuacijama i podrazumijevaju (drastičnu) promjenu osnovnog stanja, no moguće

ih je tretirati Landau-Ginzburg formalizmom. Kako bismo proučili utjecaj frustracije

na geometriju osnovnog stanja koristit ćemo relativno novu metodu. Vjernost (engl.

fidelity) je veličina klasično korištena u kvantnoj informaciji, no uvedena je u ovo

područje kao potencijalno vrijedna metoda za proučavanje faznih prijelaza. Vjeruje

se da je uz pomoć vjernosti moguće konstruirati fazni dijagram sustava bez ikakvih

svojstava poznatih a priori. Vjernost je, u principu, funkcija preklopa dvaju stanja.

F (Ψ′,Ψ) = | 〈Ψ′|Ψ〉 |. (5.13)

Ideja je da se pri sporom variranju parametara h i γ gleda vjernost izmed̄u "sus-

jednih“ stanja. U slučaju drastične promjene trebalo bi doći do naglog pada u vrijed-

nosti vjernosti, efektivno signalizirajući postojanje faznog prijelaza. Takod̄er, moguće

je definirati susceptibilnost vjernosti koja direktno odgovara već spomenutom kvat-

nom metričkom tenzoru. U slučaju kontinuiranih energetskih prijelaza (engl. level-
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crossing) nije moguće definirati globalnu susceptibilnost već je potrebno otići korak

dalje te izračunati reduciranu vjernost. Reducirana vjernost promatra podsustave

umjesto cijelog sustava čime efektivno smanjuje "oštrinu“ ortogonalnosti te postaje

moguće definirati i izračunati susceptibilnost.

U Poglavlju 2 detaljno rješavamo XY lanac standardnom proceduro, a zatim i

proučavamo osnovno stanje sustava s obzirom na ured̄enje (J = ±1), paritet broja

spinova te položaj u parametarskom prostoru. U sljedećem, Poglavlju 3 računamo

vjernost za relevantna osnovna stanja sustava te diskutiramo razliku u rezultatima.

Finalno, u Poglavlju 3.2 računamo korelacijske funkcije kako bismo izračunali reduci-

ranu vjernost i njenu susceptibilnost.

5.2 Rješavanje XY lanca

Standardna procedura rješavanja XY lanca podrazumijeva Jordan-Wigner preslika-

vanje spinova u sustav fermiona kao prvi korak. Nakon toga slijedi dijeljenje hamil-

tonijana u dva sektora pomoću operatora pariteta. Tako podijeljeni hamiltonijani

mogu se dovesti u dijagonalnu formu slobodnih fermiona.

Zapisivanjem hamiltonijana preko Paulijevih operatora dizanja i spuštanja

σ+,− =
1

2
(σx ± iσy), (5.14)

dobivamo:

H =
J

2

N∑
j=1

(
σ+
j σ
−
j+1 + γσ+

j σ
+
j+1 + h.c.

)
−

N∑
j=1

hσzj . (5.15)

Ovaj hamiltonijan preslikava se u fermionski sustav pomoću Jordan-Wigner transfor-

macije

ψj =

(
j−1∏
l=1

σzl

)
σ+
j , (5.16a)

ψ†j =

(
j−1∏
l=1

σzl

)
σ−j . (5.16b)
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Ovi operatori zadovoljavaju fermionske relacije

{ψi, ψj} = 0, (5.17a)

{ψi, ψ†j} = δij. (5.17b)

Uvod̄enjem operatora pariteta [H,P ] = 0

P =
N∏
l=1

σzl =
N∏
l=1

(
1− 2ψ†lψl

)
, (5.18)

slijedi podjela hamiltonijana na sektore prema svojstvenim vrijednostima operatora

pariteta ±1.

H =
1 + P

2
H+1 + P

2
+

1− P
2

H−
1− P

2
, (5.19)

uz

H± =− J

2

N−1∑
j=1

(
ψjψ

†
j+1 + γψjψj+1 + h.c.

)
± J

2

(
ψNψ

†
1 + γψNψ1 + h.c.

)
+ h

N∑
j=1

ψ†jψj −
1

2
Nh.

(5.20)

Nakon prelaska u Fourierov prostor te Bogoljubove rotacije dolazimo do hamiltoni-

jana slobodnih fermiona

H± =
∑
q

Λq

(
χ†qχq −

1

2

)
, (5.21)

gdje su χq fermionski operatori u Fourierovom prostoru. Skup q po kojem se sumira

ovisi o sektoru. q ∈ XN , XN = {x0, x0 + 1, x0 + 2, ..., x0 + N − 1}, gdje je x0 = 1/2 u

parnom i x0 = 0 u neparnom sektoru.

Spektar je dan sa sljedećim izrazom

Λq ≡ Λ

(
2π

N
q

)
≡

√[
h+ J cos

(
2π

N
q

)]2
+ J2γ2 sin2

(
2π

N
q

)
. (5.22)

Treba uzeti u obzir da za specijalne momente k = 0, π energija nije definirana preko

navedene funkcije lambde nego je dana s h ± 1, što omogućuje negativne doprinose

sumi te, posljedično, frustraciju.
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U slučaju feromagentskog ured̄enja imamo jednostavno vakuum kao osnovo stanje

sustava u parnom sektoru, a u neparnom se sektoru dodaje ekscitacija q = 0 kako bi

se dobio potreban paritet. U termodinamičkom limitu ova dva sektora postaju de-

generirana.

|GS+〉 =

⌊
N
2

⌋
−1∏

q=0

(
cos θq+1/2 + sin θq+1/2 ψ

†
q+1/2ψ

†
−(q+1/2)

)
|0〉 = |vac〉 , (5.23)

|GS−〉 = χ†0 |vac〉 . (5.24)

U antiferomagnetskom ured̄enju za paran N imamo identičnu situaciju kao u fer-

omagnetskom slučaju samo s pobud̄enjem k = π umjesto k = 0. Za neparan N

dolazimo do zanimljivih pojava. Parametarski prostor se dijeli na 3 dijela u parnom

sektoru: h > 1, dok se h < 1 dijeli na h >,< 1− γ2. U području h < 1− γ2 pojavljuju

se specijalne točke simetričnih minimuma ±k∗ = arccos h
1−γ2 koje omogućuju da u

parnom sektoru dodamo negativni π mod.

|GS+, h > 1− γ2〉 = |vac〉 , (5.25)

|GS+, h < 1− γ2〉 = χ†π

(
χ†k∗ + χ†−k∗

)
|vac〉 . (5.26)

To je direktna posljedica frustracije. Takod̄er, ispostavlja se da u području 1 − γ2 <

h < 1, unatoč vakuumu kao osnovnom stanju dolazi do frustracije sustava, što je

vidljivo u energiji.

Eh>1 = −1

2

N−1∑
q=0

Λ
q+

1
2
, (5.27)

E1−γ2<h<1 = −1

2

N−1∑
q=0

Λ
q+

1
2

+ Λπ, (5.28)

Eh<1−γ2 = −1

2

N−1∑
q=0

Λ
q+

1
2

+ Λ∗. (5.29)

5.3 Globalna vjernost

Koristimo vjernost i pripadnu susceptibilnost kako bismo odredili geometrijska svo-

jstva osnovnog stanja sustava. Kako variramo parametre h i γ, očekujemo snažan

pad pri računanju vjernosti u blizini kritičnih točaka. Izveli smo izraz za vjernost sve
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tri neiščezavajuće kombinacije osnovnih stanja (preklop različitih stanja odmah daje

egazktnu nulu budući da su ortogonalna).

Ft =

⌊
N−1
2

⌋∏
q=0,q 6=Qt

cos
(
θq − θ̃q

)
. (5.30)

Sve tri kombinacije su dale isti izraz do na člana umnoška s momentom Q. Indeks

t označava o kojem osnovnom stanju se radi, dok je Qt pripadajući moment kojeg

izbacujemo iz umnoška. Q0 = 0, Q1 = 0, π, Q2 = k∗.

Susceptibilnost se može izvesti razvijanjem vjernosti u red po parametrima h i γ

gi,j = −
∑
q′

∂iθq′ ∂jθq′ . (5.31)

U nefrustriranom slučaju elementi kvantnog matričnog tenzora su

ghh =
1

16


1

|γ|(1−h2) , |h| < 1

|h|γ2

(h2−1)(h2−1+γ2)3/2
, |h| > 1

(5.32a)

gγγ =
1

16


1

|γ|(1+|γ|)2 , |h| < 1[
2

(1−γ2)2

(
|h|√

h2−1+γ2
− 1

)
− |h|γ2

(1−γ2)(h2−1+γ2)3/2

]
, |h| > 1

(5.32b)

ghγ =
1

16

0, |h| < 1

−|h|γ
h(h2−1+γ2)3/2

, |h| > 1

(5.32c)

U feromagnetskom slučaju jasno vidimo snažan pad u vjernosti za očekivane fazne

prijelaze h = 1 i γ = 0. S druge strane, pri antiferomagnetskom slučaju uz neparan

N , uz poznate fazne prijelaze vidimo još velik broj diskontinuiteta gdje vjernost pada

egzaktno na nulu. Ti prijelazi odgovaraju promjeni k∗ s promjenom parametara.

Budući da je vjernost identički nula u tim točkama, nije moguće definirati suscepti-

bilnost osim duž svake parabole h = c(1− γ2) koja drži k∗ konstantnim.

g̃γγ = − 1

16

1 + c2(1 + γ)3(3γ − 1)

γ[1 + γ)2(1− c2(1− γ2)2]
+

1

4N

c2(1− c2)
[1− c2(1− γ2)]2

. (5.33)
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5.4 Reducirana vjernost

Zbog nemogućnosti provedbe daljnje analize uzrokovane pojavom mnoštva energet-

skih prijelaza (koji bi u termodinamičkom limitu prešli u kontinuirane), prelazimo

na račun reducirane vjernosti

FR = Tr
√
ρ1/2ρ̃ρ1/2, (5.34)

gdje ρ označava reduciranu matricu osnovnog stanja (h, γ), a ρ̃ = ρ(h + dh, γ +

dγ) reduciranu matricu sustava s bliskim parametrima. Budući da ideja reducirane

vjernosti počiva na reduciranim matricama gustoće sustava, potrebne su nam ko-

relacijske funkcije. Odabrali smo promatrati korelatore dvaju spinova.

ρij =
3∑

α,β=0

〈σαi σ
β
j 〉 σαi ⊗ σ

β
j . (5.35)

Korelacijske funkcije smo računali na način da smo morali ponovno prolaziti kroz

transformacije već napravljene za rješavanje sustava, kako bismo došli do korelatora

čije vrijednosti znamo. Raspisujući gornje spomenutu definiciju matrice gustoće u

bazi {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉},dobivamo sljedeći izraz

ρij =
1

4


a+ 0 0 c−

0 b c+ 0

0 c+ b 0

c− 0 0 a−

 , (5.36)

s

a± = 1± 〈σzi 〉 ± 〈σzj 〉+ 〈σzi σzj 〉, (5.37a)

b = 1− 〈σzi σzj 〉, (5.37b)

c± = 〈σxi σxj 〉 ± 〈σ
y
i σ

y
j 〉. (5.37c)

Sljedeći korak prelazak je u Jordan-Wigner fermione

〈σxi σxj 〉 =
〈 i−1∏
l=j

(1− 2ψ†lψl)(ψi + ψ†i )(ψj + ψ†j)
〉
. (5.38)
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Sada uvodimo nove operatore Ai i Bi

Ai ≡ ψ†i + ψi, Bi ≡ ψ†i − ψi. (5.39)

Novodefinirani operatori omogućuju nam da 〈σαi σαj 〉 zapišemo kao očekivanje um-

noška takve forme koja nam nakon korištenja Wickovog teorema daje sljedeće izraze

〈σxi σxj 〉 =
∑
p

(−1)p
〈
BjAP (j+1)

〉〈
Bj+1AP (j+2)

〉
· · · · ·

〈
Bi−1AP (i)

〉
, (5.40a)

〈σyi σ
y
j 〉 =

∑
p

(−1)p
〈
Bj+1AP (j)

〉〈
Bj+2AP (j+1)

〉
· · · · ·

〈
BiAP (i−1)

〉
, (5.40b)

〈σzi σzj 〉 =
〈
BiAi

〉〈
BjAj

〉
−
〈
BiAj

〉〈
BiAj

〉
. (5.40c)

Prethodni izrazi mogu se prepoznati kao zapis determinante matrice.

Preostaje račun elemenata matrice kroz ponovno korištenje već dobro poznatih

transformacija. Treba imati na umu da će račun koji slijedi ovisiti s kojim osnovnim

stanjem radimo. Dosadašnji raspis bio je generalan.

Traženi elementi matrice za vakuumsko su osnovno stanje sljedeći

〈
AiBi

〉
= 〈1− 2ψ†iψi〉 = 1− 2

N

∑
q

sin2 θq, (5.41a)

〈
AiBj

〉
= 〈(ψ†i + ψi)(ψ

†
j − ψj)〉

= − 1

N

∑
q

{
sin 2θq sin

[
2π

N
q(i− j)

]
+ cos 2θq cos

[
2π

N
q(i− j)

]}
,

(5.41b)

〈
BiAj

〉
= −

〈
AjBi

〉
=

1

N

∑
q

{
− sin 2θq sin

[
2π

N
q(i− j)

]
+ cos 2θq cos

[
2π

N
q(i− j)

]}
.

(5.41c)

U regijama gdje postoji frustracija uz vakuumski doprinos dobiva se i član korek-

cije. Finalne verzije korelatora su:

〈
AiBj

〉
=
〈
AiBj

〉
0

+ C(1) + C(2)(h, γ), (5.42)
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gdje je s indeksom 0 označen temeljni vakuumski doprinos.

C(1) =

−
2
N

cos
[
2π
N
q(i− j)

]
, h < 1

0, h > 1

(5.43)

C(2)(h, γ) =


2
N

(
cos 4π

N
k∗i− cos 2θ∗

)
, i = j, h < 1− γ2

2
N

[sin 2θ∗ sin(i− j)k∗ − cos 2θ∗ cos(i− j)k∗ + cos(i+ j)k∗] , i 6= j, h < 1− γ2

0, h > 1− γ2

(5.44)

Nakon finaliziranih reduciranih matrica gustoće, gledali smo ponašanje reducirane

vjernosti kako variramo magnetsko polje h. Više ne primjećujemo diskontinuitete

kao u globalnoj vjernosti, što znači da je reducirana vjernost uspješna barem u tom

aspektu. No, vidimo drugo zanimljivo ponašanje. Za najnižu vrijednost N vidimo

postojanje padova čije amplitude osciliraju. Ta oscilacija dolazi od korekcije na ko-

relacijske funkcije uzrokovane frustracijom, koja sadrži članove koji osciliraju. Ko-

rekcija pada s 1/N što je, kao što vidimo, dovoljno brzo da već na sljedećem redu

veličine oscilacije potpuno iščeznu. Na samom kraju postoji jedan više puta veći pad

od oscilirajućih, koji opstaje i za veće N -ove. Taj pad odgovara posljednjoj paraboli

h = 1 − γ2. Budući da je tako dominantan te da se nalazi na samoj granici speci-

jalne regije parametarskog prostora, željeli smo provjeriti kako se amplituda tog pada

ponaša s daljnjim rastom broja spinova. No, i u slučaju najbližih susjeda, i u slučaju

ekstenzivne udaljenosti N−1
2

, amplituda tzv. π-vrha opada s otprilike 1/N2, te to čini

prilično pravilno.
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5.5 Zaključak

Cilj ovog diplomskog rada bio je proučiti efekte frustracije na geometrijska svojstva

osnovnog stanja kroz usporedbu frustriranog i nefrustriranog spinskog lanca. Kao

model sustav izabran je XY lanac.

Na početku je predstavljen 1D XY model te je riješen analitički koristeći poz-

natu proceduru preslikavanja spinskog sustava u fermionski (Jordan-Wigner), zatim

prelaska u Fourier prostor te Bogoljubov rotacije koja dovodi do konačnog dijago-

nalnog hamiltonijana. Analiza osnovnog stanja provedena je na vrlo detaljan način,

uzimajući u obzir oba magnetska ured̄enja, parnost broja spinova, parnost sektora

te poziciju kombinacije (h, γ) u parametarskom prostoru u odnosu na primijećene

regije koje krase različita svojstva. Pomno su proučeni efekti izazvani frustracijom

te je otkriveno da u slučaju antiferomagnetskog ured̄enja i neparnog broja spinova

cijela regija h < 1 u parnom sektoru postaje frustrirana, očitujući se kroz (efektivne)

ekscitacije u osnovnom stanju. Posebno je zanimljiva regija h < 1− γ2 gdje moment

jedne od ekscitacija ovisi o parametrima h i γ, time se mijenjajući kroz parametarski

prostor te izazivajući sve veći broj prijelaza energetskih razina s rastom broja spinova

N . U termodinamičkom limitu, ti prijelazi postaju kontinuirani.

Nakon postavljanja samog modela, vraćamo se cilju rada koji je analiza geometrije

osnovnog stanja kroz računanje vjernosti i pripadajuće susceptibilnosti izmed̄u os-

novnih stanja s blago različitim parametrima h i γ. Pretpostavlja se da bi vjernost

trebala omogućiti konstrukciju faznog dijagrama danog sustava bez ikakvog a priori

znanja o sustavu. Naime, vjernost, kao funkcija preklopa dvaju stanja, bi trebala

pokazati nagli i izraziti pad pri dolasku do kritične točke. Napravljen je izračun

preklopa stanja za sve neiščezavajuće kombinacije stanja (preklop različitih stanja

automatski daje nulu) te je dobiven izraz jednak do na moment koji je isključen iz

umnoška. Taj izraz je uspio generirati sve očekivano ponašanje. Uz poznate prijelaze

h = 1, i γ = 0, vjernost je pokazala vrhove egzaktnog diskontinuiteta u frustrira-

noj regiji, koji su posljedica već spomenutih prijelaza energetskih razina. Iako je

susceptibilnost vjernosti odred̄ena za ne-frustrirane regije, vjernost koje je gotovo

kontinuirano identički nula onemogućuje nastavak analize. Napravljena je jedino

susceptibilnost uzduž parabole, što je dodatno potvrdilo izvor tih diskontinuiteta.

Kako bi se ipak analizirala geometrijska svojstva te regije, uvedena je nova veličina

koja se inače koristi za kontinuirane prijelaze, bazirana na proučavanju podsustava
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umjesto čitavih sustava - radi se o reduciranoj vjernosti. Reducirana vjernost se

temelji na korištenju reduciranih matrica gustoće, što je zahtijevalo odred̄ivanje ko-

relacijskih funkcija dvostrukog spina (za različite regije). Ono što smo otkrili pro-

matrajući reduciranu vjernost i pripadajuću susceptibilnost, jest da ti diskontinuiteti,

koji bi po dosadašnjim pretpostavkama automatski trebali signalizirati fazni prijelaz,

zapravo nestaju u termodinamičkom limitu. Našli smo protuprimjer općeprihvaćenoj

pretpostavci da se analiza sustava kroz vjernost može koristiti za kompletnu izgrad-

nju bez ikakvog a priori znanja o sustavu.
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2.2 Ponašanje λk za različite konfiguracije parametara h i γ. . . . . . . . . 22

2.3 Dostupni momenti u parnom i neparnom sektoru . . . . . . . . . . . . 25

2.4 Odnos energija razlčitih sektora u ovisnosti o h i N . . . . . . . . . . . 27

3.1 Vjernost za feromagnetsko ured̄enje s fiksnom anizotropijom . . . . . . 32

3.2 Vjernost za feromagnetsko ured̄enje s fiksnim magnetskim poljem . . . 33

3.3 Vjernost za antiferomagnetsko ured̄enje s fiksnom anizotropijom . . . 34

3.4 Vjernost za antiferomagnetsko ured̄enje s fiksnim magnetskim poljem . 35

3.5 Vjernost za antiferomagnetsko ured̄enje uzduž parabole h = 1− γ2 . . 36

3.6 Konturni prikaz istovremenog variranja h i γ za feromagnetsko i antif-

eromagnetsko ured̄enje. . . . . . . . . . . . . . . . . . . . . . . . . . . 36
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