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SUMMARY

Transseries are formal (possibly infinite) sums of monomials that are formal products of
iterated exponentials, powers and iterated logarithms, with real coefficients (see e.g. [6],
[21]). We consider here a subclass of logarithmic transseries which contain only powers
and iterated logarithms. Transseries appear in many problems in mathematics ( [3], [11])
and physics ( [1]) as asymptotic expansions of certain important maps. In dynamics, for
example, transseries are related to the famous Dulac’s problem ( [7]) of non-accumulation
of limit cycles on a hyperbolic or semi-hyperbolic polycycle of a planar analytic vector
field. The problem was solved independently by Ilyashenko ( [10], [11], [12]) and Ecalle
( [3]), but the proofs are so far not well-understood, at least in the semi-hyperbolic case.
The study of the accumulation of limit cycles on a polycycle is naturally related to the
study of fixed points of the first return map of a polycycle (see e.g. [32]). The first re-
turn map of a hyperbolic polycycle is an analytic map on interval (0,d), d > 0, which
has a transserial asymptotic expansion at zero. In particular, its asymptotic expansion
at zero is a logarithmic series involving only polynomials in logarithms attached to each
power, which is called a Dulac series (see e.g. [12], [32]). The proof of the Dulac problem
strongly relies on the existence of a logarithmic asymptotic expansion of the first return
map. Although Dulac gave the proof ( [7]) of the mentioned problem, there was an impre-
cision in his proof. In particular, at some point in the proof, the statement that every first
return map of a hyperbolic polycycle is uniquely determined by its asymptotic expansion
is used. This is not correct in general for non-analytic maps on the real line, due to the
possibility of adding exponentially small terms, as opposed to the case of analytic maps
and their Taylor expansions. Ilyashenko corrected this imprecision in [11] by proving
that every such map can be analytically extended to a sufficiently large complex domain

called a standard quadratic domain and by applying the Phragmen-Lindeldof Theorem (a
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maximum modulus principle on an unbounded complex domain, see e.g. [11], [12]). The
existence of such analytic extension makes possible to conclude that the first return map

is uniquely determined by its logarithmic asymptotic expansion.

In this dissertation, we consider the so-called Dulac germs (called almost regular
germs in [12]), i.e., analytic germs on (0,d), d > 0, that have a Dulac series as their
asymptotic expansion at zero, and that can be analytically extended to a standard quadratic
domain. On the one hand, we consider normal forms of logarithmic transseries (the for-
mal part), and, on the other hand, analytic normalizations of hyperbolic and strongly
hyperbolic Dulac germs (the analytic part). We also generalize to their complex counter-
parts, called hyperbolic and strongly hyperbolic complex Dulac germs. We prove as well
that, for hyperbolic and strongly hyperbolic Dulac germs, the formal normalizations are

asymptotic expansions of their analytic normalizations.

In proving that the formal transserial normalization is an asymptotic expansion of the
analytic normalization, in general, there is a problem of a choice of the summation rule at
the limit ordinal steps. In particular, given some map f on open interval (0,d), d > 0, we
want to assign to the map f its asymptotic expansion at zero in power-iterated logarithm
scale. Up to the first limit ordinal it can be done following the usual Poincaré algorithm,
contrary to the limit ordinal steps where we have multiple choices of intermediate sums.
Therefore, we have to determine a summation rule at limit ordinal steps, which vary from
problem to problem (see e.g. integral summation rule in [20], [22]). Luckily, for hyper-
bolic and strongly hyperbolic Dulac germs the formal normalizations are Dulac series, so
standard Poincaré algorithm suffices. On the other hand, in case of parabolic Dulac germs,
itis proved in [22] that, in general, the formal normalization is of order type strictly bigger

than .

Normal forms and normalizations of standard power series are already known (see
e.g. [4], [12], [16]). Furthermore, in previous papers ( [21], [22]), normal forms for log-
arithmic transseries were obtained only for power-logarithm transseries, i.e., logarithmic
transseries that contain only powers and the first iterate of logarithm. The techniques used

in [21] are based on a transfinite algorithm of successive changes of variables. Here, we



Summary

generalize these results to a larger class of logarithmic transseries containing also iterated
logarithms. Additionally, as a normalization process we use fixed point theorems on var-
ious complete metric spaces of logarithmic transseries. In this way, normalizations are
given as limits (in appropriate topologies) of Picard sequences. This is important for the
future work because we think that this approach is better for revealing the summation rule

at limit ordinal steps.

In proving the existence of the analytic normalization of a hyperbolic Dulac germ,
we generalize the classical Koenigs Theorem (see e.g. [4], [14], [24]) for linearization of
analytic hyperbolic diffeomorphisms at zero. Recently, there have been some improve-
ments of this result for various classes of maps not necessarily analytic at 0. One such
generalization is a result of Dewsnap and Fischer [5] for C' real maps on an open interval
around zero with power-logarithmic asymptotic bounds. In this dissertation, we prove
a linearization theorem for analytic maps with power-logarithmic asymptotic bounds on
invariant complex domains, that can be seen as a generalization of both Koenigs Theorem
and the result of Dewsnap and Fischer from [5, Theorem 2.2].

In particular, we apply the mentioned linearization theorem to obtain the analytic lin-
earization of hyperbolic (complex) Dulac germs.

Finally, we also generalize the Bottcher Theorem (see e.g. [4], [24]) for germs of
strongly hyperbolic analytic diffeomorphisms at zero to strongly hyperbolic complex Du-

lac germs on standard quadratic domains.

Key words: logarithmic transseries, order of transseries, normal forms, normaliza-
tion, linearization, formal and analytic classification, (complex) Dulac germs, Dulac se-
ries, standard quadratic domains, local fixed point theory, fixed point theorems, iteration

theory, Koenigs sequence
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SAZETAK

Transredovi su formalne (beskonacne) sume formalnih umnoZaka iteriranih eksponenci-
jalnih funkcija, op¢ih potencija i iteriranih logaritama (koje nazivamo monomi) s realnim
koeficijentima (vidjeti npr. [6], [21]). U ovoj disertaciji bavimo se podklasom takozvanih
logaritamskih transredova Ciji monomi sadrZe samo opce potencije i iterirane logaritme.
Transredovi se pojavljuju u mnogim problemima u matematici ( [3], [11]) i fizici ( [1]) kao
asimptotski razvoji nekih znacajnih preslikavanja. U dinamickim sustavima transredovi
su primjerice povezani s poznatim Dulacovim problemom ( [7]) o neakumulaciji grani¢nih
ciklusa na hiperbolicki ili semi-hiperbolicki policiklus ravninskog analitickog vektorskog
polja. lako su navedeni problem nezavisno rijesili Ilyashenko ( [10], [11], [12]) i Ecalle
( [3]), rjesenja semi-hiperbolickog slucaja i dalje nisu u potpunosti shva¢ena. Akumu-
lacija granic¢nih ciklusa na policiklus se prirodno povezuje s teorijom fiksnih toc¢aka pres-
likavanja povrata (ili Poincaréovog preslikavanja) danog policiklusa (vidjeti npr. [32]).
Preslikavanje povrata hiperboli¢kog policiklusa je analiticko preslikavanje na intervalu
(0,d), d > 0, s transredom kao asimptotskim razvojem u nuli. Preciznije, njegov asimp-
totski razvoj u nuli je logaritamski red u kojem, uz svaku opcéu potenciju, stoji polinom
u logaritmima. Takav red nazivamo Dulacov red (vidjeti npr. [12], [32]). RjeSenje Du-
lacovog problema uvelike se oslanja na postojanje logaritamskog asimptotskog razvoja
preslikavanja povrata u nuli. Iako je Dulac dao rjeSenje navedenog problema, u nje-
govom rjesenju ( [7]) je postojala nepreciznost. Naime, bez dokaza je koriStena tvrdnja
da je svako preslikavanje povrata hiperbolickog policiklusa jedinstveno odredeno svojim
asimptotskim razvojem. Navedena tvrdnja opCenito nije istinita za realna preslikavanja
koja nisu analiti¢ka u nuli zbog moguénosti dodavanja eksponencijalno malih €lanova
u razvoju, za razliku od analitickih preslikavanja u nuli i njihovih Taylorovih razvoja.

Ilyashenko je u [11] otklonio navedenu nepreciznost dokazavsi da se svako preslikavanje
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povrata moze analiti¢ki proSiriti na dovoljno veliku kompleksnu domenu koju nazivamo
standardna kvadratna domena. Phragmen-Lindeldfov teorem (varijanta principa maksi-
muma na neomedenoj kompleksnoj domeni, vidjeti npr. [11], [12]) tada daje injektivnost
asimptotskog razvoja za preslikavanja povrata. Na taj nac¢in moZemo zakljuciti da je pres-

likavanje povrata jedinstveno odredeno svojim logaritamskim asimptotskim razvojem.

U ovoj disertaciji promatramo takozvane Dulacove klice (skoro regularne klice u
[12]), tj. analiti¢ke klice na (0,d), d > 0, kojima je asimptotski razvoj u nuli Dulacov red
te koje se mogu analiticki proSiriti na neku standardnu kvadratnu domenu. S jedne strane,
promatramo normalne forme logaritamskih transredova (formalni dio). S druge strane,
promatramo analiticke normalizacije (jako) hiperbolickih Dulacovih klica (analiticki dio)
te njihovih generalizacija koje nazivamo (jako) hiperbolickim kompleksnim Dulacovim
klicama. Takoder dokazujemo da je formalna normalizacija asimptotski razvoj analiticke

normalizacije (jako) hiperbolickih Dulacovih klica.

U dokazu da je formalna normalizacija asimptotski razvoj analiticke normalizacije
opcenito se javlja problem izbora sumacijskog pravila u koracima indeksiranim grani¢nim
ordinalima. Naime, pretpostavimo da Zelimo odrediti asimptotski razvoj u nuli u skali
op¢ih potencija i iteriranih logaritama za dano preslikavanje f na otvorenom intervalu
(0,d), d > 0. Koriste¢i standardni Poincaréov algoritam to se moZe napraviti do prvog
grani¢nog ordinala. U koracima odredenim grani¢nim ordinalima postoje viSestruki izbori
takozvanih medusuma. Upravo zbog toga je potrebno odrediti pravila sumacije, koja ovise
o problemu kojeg promatramo (vidjeti integralno pravilo sumacije u [20], [22]). Kod
hiperbolickih i jako hiperbolickih Dulacovih klica, formalne normalizacije su, sreCom,
Dulacovi redovi, pa nam je dovoljan Poincaréov algoritam za asimptotski razvoj. S druge
strane, u [22] je dokazano da je formalna normalizacija parabolickih Dulacovih klica

transred indeksiran ordinalom strogo ve¢im od ®.

Normalne forme i normalizacije standardnih redova potencija su otprije poznate (vid-
jeti npr. [4], [12], [16]). Nadalje, u prijasnjim radovima ( [21], [22]) normalne forme
su odredene samo za transredove tipa potencija-logaritam, tj. za logaritamske transre-

dove koji sadrzavaju samo opCe potencije i prvu iteraciju logaritma. Tehnike koriStene



Sazetak

u [21] temelje se na transfinitoj kompoziciji elementarnih zamjena varijabli. U ovoj dis-
ertaciji generaliziramo navedene rezultate na Siru klasu svih logaritamskih transredova
koji mogu sadrZavati i iterirane logaritme. Nadalje, u postupku normalizacije koristimo
teoreme fiksne tocke na potpunim metri¢kim prostorima logaritamskih transredova. Time
su normalizacije dane kao limesi (u odgovarajuéim topologijama) Picardovih iteracija.
Smatramo da je ovaj pristup problemu normalizacije bolji pri odredivanju sumacijskog

pravila na mjestima grani¢nih ordinala, $to ga Cini bitnim za na$ budu¢i rad.

U dokazu postojanja analiticke normalizacije hiperboli¢kih Dulacovih klica, gener-
aliziramo klasiéni Koenigsov teorem (vidjeti npr. [4], [14], [24]) koji daje linearizaciju
analitickih hiperbolickih difeomorfizama u nuli. Nedavno je ovaj rezultat poboljSan za
razne klase preslikavanja koja nisu nuzno analiticka u nuli. Jedno takvo poboljSanje
je Dewsnap-Fischerov rezultat [5] za realna preslikavanja klase C' na otvorenom in-
tervalu oko nule, s asimptotskim ocjenama tipa potencija-logaritam. U ovoj disertaciji
dokazujemo linearizacijski teorem za analiti¢ka preslikavanja s asimptotskim ocjenama
tipa potencija-logaritam na invariantnim kompleksnim domenama, koji moZemo smatrati
generalizacijom i Koenigsovog teorema i Dewsnap-Fischerovog rezultata iz [S, Theorem
2.2].

Nadalje, navedeni linearizacijski teorem primjenjujemo prilikom analiticke linearizacije
hiperbolic¢kih (kompleksnih) Dulacovih klica.

Naposljetku, generaliziramo Bottcherov teorem (vidjeti npr. [4], [24]) za jako hiper-
boli¢ke difeomorfizme u nuli, za klasu jako hiperbolickih kompleksnih Dulacovih klica

na standardnim kvadratnim domenama.

Kljucne rijeci: logaritamski transredovi, red logaritamskih transredova, normalne
forme, normalizacija, linearizacija, formalna i analiti¢ka klasifikacija, (kompleksne) Du-
lacove klice, Dulacovi redovi, standardne kvadratne domene, lokalna teorija fiksne tocke,

teoremi fiksne tocke, teorija iteracija, Koenigsov niz
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INTRODUCTION

Transseries are formal sums of products of powers, iterated logarithms and iterated ex-
ponentials with real coefficients and well-ordered supports (i.e., well-ordered index sets).
Through the years they have become a very useful tool for tackling a great variety of
problems in mathematics (see e.g. [3], [11]) and physics (see e.g. [1]). Transseries in the
broader sense are studied in [6]. In this dissertation, the main object of our interest are
logarithmic transseries, i.e., formal sums, with real (or complex) coefficients, of products

of powers and iterated logarithms with well-ordered supports.

The reason for that restriction comes from a particular problem in dynamics. Log-
arithmic transeries appear in the solution of the Dulac problem of non-accumulation of
limit cycles on hyperbolic or semi-hyperbolic polycycles of analytic planar vector fields
( [7]). In particular, the first return map (or Poincaré map) (see e.g. [31]) of a hyperbolic
polycycle has a logarithmic transseries as its asymptotic expansion at zero, see e.g. [32].
In the case of hyperbolic polycycles these asymptotic expansions are logarithmic series
of a particular type, and we call them Dulac series. One of the important properties of
Dulac series is that they do not involve iterated logarithms and that every power of the
variable is multiplied by a polynomial in the logarithm. However, the original Dulac’s
proof of non-accumulation theorem (see [7]) was incomplete, because he assumed (with-
out proving it) the nontrivial fact that every first return map of a hyperbolic polycycle
of an analytic planar vector field is uniquely determined by its asymptotic expansion.
Ilyashenko ( [10], [11]) and Ecalle ( [3]) independently solved the Dulac problem. In
particular, Ilyashenko, in the proof of the hyperbolic case, completed Dulac’s proof by
showing a nontrivial fact that every first return map can be analytically extended to a suffi-
ciently large complex domain. Such domains are called the standard quadratic domains,

since their boundaries are asymptotic to the graphs of quadratic real maps. Using the
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Phragmen-Lindelof Theorem (a maximum modulus principle on a particular unbounded
complex domain), Ilyashenko proved that the first return map of a hyperbolic polycycle
is uniquely determined by its asymptotic expansion, see [12]). This property is called
the quasi-analyticity. Analytic germs on standard quadratic domains with Dulac series as
their asymptotic expansions are called the almost regular germs in [10], [12]), but, in this
dissertation, we call them simply Dulac germs. By the above argument, they are uniquely

determined by their Dulac asymptotic expansion.

In this dissertation, the main objects of our interest are the logarithmic transseries and

the Dulac germs.

In the first part of the dissertation, we are interested in logarithmic transseries that
do not involve logarithms in their leading terms, i.e., that are of the form f = Az% +
“higher order terms”, for A, > 0. By definition, the Dulac series (i.e., the asymptotic
expansions of the Dulac germs) are a subclass of the logarithmic transseries. Follow-
ing [21, Definition 1.1], we distinguish three types of logarithmic transseries with real
coefficients: parabolic (ot = A = 1), hyperbolic (A # 1, a = 1) and strongly hyperbolic
(ax #1).

We consider the problem of finding the normal forms with the smallest number of
terms (or ”short” normal forms). More precisely, for a logarithmic transseries f = Az% +
h.o.t., A,a > 0, we find a logarithmic transseries g with the smallest number of terms,
such that the conjugacy equation @ o f o @ ! = g has a solution ¢ in the space of parabolic
logarithmic transseries. We call such g the normal form of f, and we call ¢ the normal-
ization of f.

For standard power series the normal forms and normalizations are well-understood
(see e.g. [4], [12], [16]). Furthermore, normal forms for power-logarithm transseries, i.e.,
transseries which do not involve iterated logarithms, were already found in [21, Theorem
A]. Here, we generalize these results to logarithmic transseries involving iterated log-
arithms, but using a different method. The method used in [21] is based on transfinite
compositions of parabolic elementary changes of variables, which are chosen step-by-
step in order to eliminate ferm-by-term in the original transseries. A generalization of this

method to logarithmic transseries involving iterated logarithms seems too complicated.
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In the case of logarithmic transseries involving iterated logarithms, there is also an
interesting phenomenon, which is new with respect to the non-iterated logarithmic case.
In [21], the ”short” normal forms of power-logarithm transseries are finite. However, this
is not the case even if we allow only two iterations of the logarithm. Normal forms for

hyperbolic and parabolic logarithmic transseries have, in general, infinitely many terms.

All this motivated us to develop a “less transfinite” method based on fixed point the-
orems. We prove in Proposition 1.2.12 an easy consequence of the Banach Fixed Point
Theorem motivated by the Krasnoselskii Fixed Point Theorem (see e.g. [36]), which plays
a crucial role in our proofs of the normalization theorems. More precisely, we trans-
form the conjugacy equation @ o fo @~ = g into a fixed point equation and prove the
existence and the uniqueness of the solution using a fixed point theorem. These fixed
point methods allow us to have better control of the support of the normalization, which
might also be useful to define the notion of transserial asymptotic expansions in future
work. More precisely, for logarithmic transseries with supports of order type @ we apply
the standard Poincaré term-by-term algorithm to get the unique logarithmic asymptotic
expansion. However, if the order type of logarithmic transseries is strictly bigger than
o, for a well-defined logarithmic asymptotic expansion, we have to specify a summation
rule, i.e., a canonical choice of germs at limit ordinal steps of the expansion. For example,

the integral summation rule from [20], [22] is an example of such summation rule.

In the case of hyperbolic and strongly hyperbolic logarithmic transseries, we gener-
alize two classical theorems from local complex dynamics: the Koenigs Theorem (see
e.g. [4], [14], [24]) and the Bottcher Theorem (see e.g. [4], [24]). These are normaliza-
tion theorems for hyperbolic and strongly hyperbolic germs of analytic diffeomorphisms
at zero. Here, for a hyperbolic logarithmic transseries f and its normal form fy, we
prove that the so-called generalized Koenigs sequence ( f(;’ (=n) oho f°”>n converges to
the normalization @ in an appropriate topology on the space of logarithmic transseries.
We prove a similar statement for strongly hyperbolic logarithmic transseries, motivated
by the Bottcher Theorem. Our results for hyperbolic logarithmic transseries are given in

preprint [29].

In the second part of the dissertation we consider the so-called complex Dulac germs,
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i.e., Dulac germs on standard quadratic domains with complex coefficients in their Dulac
asymptotic expansions. The partial results are published in [30]. We consider hyperbolic
and strongly hyperbolic complex Dulac germs and solve the analytic linearization (or nor-
malization) problem in the class of holomorphic Dulac germs. The linearization problem
for a real or complex map f in one variable, with an isolated fixed point zero, consists in
finding a number A and a change of coordinates @ that satisfy the Schrider’s equation

([33D)

?(f(2)) =2A9(2).

In the proof of the classical Koenigs Theorem, the change of coordinates ¢(z) = z+o0(z) is
obtained as the uniform limit of the so-called Koenigs sequence (4 - f °") - Throughout
the years many proofs have been given for the convergence of the Koenigs sequence
for different classes of germs, not necessarily analytic at the fixed point. For example,
Knaser ([13]) proved the convergence of the Koenigs sequence for a hyperbolic attracting
real germ of the form f(x) = Ax+ O(|x|' ™), as x — 0, where & > 0. In [35], Szekeres
proved the convergence of the Koenigs sequence for a continuous germ f which has a
strictly increasing differentiable representative on an open interval (0,d), d > 0, such that
0< f(x) <x, x€(0,d), and f'(x) =A+O0(xf), asx - 0, for 0< A <1 and € > 0.
Also, in [26], [34], Sternberg gave a proof of the convergence of the Koenigs sequence
for real germs of class C", n € N>,. For our application, the most interesting was the
result of Dewsnap and Fischer (see [5, Theorem 2.2]), which proves the convergence of
the Koenigs sequence for C! real germs admitting logarithmic asymptotic behavior at zero

of the form:

x)=f(0)-x+0 : ’
fx) =F10)-x+ (ylog(y)---log"”l(y)(log"”(y))M)

as x — 0, for € > 0 and p € N. Here, we denote y := —log(|x|). The addition of the
small shift € > 0 in the exponent above seems to be important for the convergence (i.e.,
for the linearization) for two reasons. The first reason is more an indication than a proof.
It is proved in the first part of the dissertation that a hyperbolic logarithmic transseries
f = Az+ "higher order terms” can be linearized if and only if f = Az+al;-- -K}f” +
and inductively ¢; :=

h.o.t., where £, := i=2,...,p, for a € R and

S 1
logz’ log(¢;i1)’
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n € N>1. The second reason is the counter-example given by Sternberg in [34]: Let
fix)=x (l — @), for x € (0,d], d > 0, and £(0) = 0. Its Koenigs sequence diverges
on (0,d] (see also [5], [26]).

Additionally, as an intermediate step of the proof of the linearization theorem for hy-
perbolic complex Dulac germs, in the second part of the thesis, we prove the convergence
of the Koenigs sequence for analytic maps with hyperbolic logarithmic asymptotic be-
havior on their invariant complex domains. In this sense, our linearization result can be
viewed as a generalization to complex domains of both the Koenigs Theorem and the
result of Dewsnap and Fischer from [5].

Similarly, motivated by the Bottcher Theorem, we prove that, for a strongly hyperbolic
complex Dulac germ f(z) = z% 4+ 0(z%), o > 1, there exists a unique parabolic complex
Dulac germ ¢ holomorphic on a standard quadratic domain, which normalizes f to its

first term, i.e., such that

P(f(2)) = (@)%

Finally, note that, in this thesis, we do not consider the analytic normalization of
parabolic Dulac germs using the fixed point theory. Other than difference in dynamics
that is sectorially attractive/repulsive, and the fact that the parabolic Dulac germs are far
from being globally linearizable on standard quadratic domains (by [20], their analytic
classes are given by a variant of Ecalle-Voronin moduli), the additional difference between
(strongly) hyperbolic and parabolic Dulac germs is that the formal normalization of a
(strongly) hyperbolic Dulac germ is a Dulac series, while for a parabolic Dulac germ,
in general, it is a much more complicated logarithmic transseries of order typer strictly

bigger than @. For more details, see [20] and [22].

Overview of the main results in the thesis

The main results of the thesis are in Chapter 2 and Chapter 3. The main theorems from
Chapter 2 are formal normalization theorems for hyperbolic, strongly hyperbolic and
parabolic logarithmic transseries stated in Theorems A, B and C, respectively. We state

below their ”’short” forms.
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Theorem A (short form). Every hyperbolic logarithmic transseries f = Az+0(z), 0 <
A <1, can be formally linearized by a parabolic logarithmic change of variables ¢ if and
only if f = Az+o(z£) ---é,ﬁ”), n>1.

Moreover, the parabolic linearization ¢ is unique and is given as the limit of the so-

()

called Koenigs sequence

n

in the appropriate formal topology.

In the general version of Theorem A in Section 2.1 we give the explicit ”short” normal

form and convergence of the generalized Koenigs sequence in non-linearizable case.

Theorem B (short form). Every strongly hyperbolic logarithmic transseries f = z% +
0(z%), a >0, a # 1, can be formally normalized to its first term fj := z* by the unique
parabolic logarithmic change of variables ¢.

Furthermore, if & > 1, @ is the limit of the so-called Bottcher sequence

(ZOCL” oho fo" ) .
in the appropriate formal topology, for every initial parabolic condition 4.
Theorem C (short form). Every parabolic logarithmic transseries

f=z+alep.. -£;* +higher order terms, a# 1,8 > 1,
can be formally reduced to its ’short” normal form

fei=z+alep.. L —i—czzﬁ_lf?’ﬁrl iy -K,E""H, cER,

by parabolic logarithmic change of variables ¢ that is of the same depth in logarithm as

f. Moreover, the so-called residual coefficient c is unique.

In Section 2.3 Theorem C is stated also for parabolic logarithmic transseries where

B = 1. The initial part of the ”short” normal form f, is more complicated in that case.

The main results from Chapter 3 are analytic normalization theorems for (complex)

Dulac germs stated in Theorem D and Theorem E. We state here their short forms.
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Theorem D (short form). Every hyperbolic (complex) Dulac germ f(z) = Az + o(z),
0 < |A| < 1, on a standard quadratic domain, can be analytically linearized by the unique

parabolic (complex) Dulac germ.

Theorem E (short form). Every strongly hyperbolic (complex) Dulac germ f(z) = z%+
0(z%), oo > 1, on a standard quadratic domain, can be analytically normalized to the map

z+ z% by the unique parabolic (complex) Dulac germ.

The structure of the thesis

The thesis is divided in three chapters.

Chapter 1 serves as a prerequisite for the remaining chapters. More precisely, in
Section 1.1 of Chapter 1 we define the differential algebra of logarithmic transseries,
some basic notions such as composition and blockwise notation, and prove the Taylor
Theorem in this formal setting. Section 1.2 is dedicated to proving a fixed point theorem
(stated in Proposition 1.2.12). The tools from Section 1.2 and Appendix B are the main
tools for solving the normalization equations in the next chapter.

In Chapter 2 we find normal forms of hyperbolic, strongly hyperbolic and parabolic
logarithmic transseries by solving the appropriate normalization equations. We use the
fixed point method from Chapter 1. The main normalization theorems for the three types
of the logarithmic transseries (Theorems A, B and C) are stated in Sections 2.1, 2.2 and
2.3 respectively.

The first two chapters represent the formal part of the thesis: the results are obtained
in the formal setting (in the differential algebra of logarithmic transseries). On the other
hand, Chapter 3 is the analytic counterpart to Chapter 2. In particular, in Chapter 3 we
apply the formal normalization results from Chapter 2 in order to obtain the analytic
normal forms for (strongly) hyperbolic complex Dulac germs on standard quadratic do-
mains. Chapter 3 is divided into three sections. Section 3.1 serves as a prerequisite for
the remaining two sections. In particular, in Section 3.1 we define basic notions such
as analytic germs on spiraling subdomains of the Riemann surface of the logarithm and
complex Dulac germs (series) on standard quadratic domains. In Sections 3.2 and 3.3 we

solve the normalization equations for hyperbolic (Theorem D) and strongly hyperbolic
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complex Dulac germs (Theorem E) respectively. In both sections we first solve the nor-
malization equations on appropriate invariant domains and then relate the solutions with
formal solutions obtained in Chapter 2 via asymptotic expansions.

Finally, in Appendix A and Appendix B we prove some useful technical results that
are used throughout the thesis. In Appendix A we give a list of useful formulas in differ-
ential algebras of logarithmic transseries, while in Appendix B we solve various differen-
tial equations in differential algebras of transseries. Technical results from Appendix A
are used to transform normalization equations in Chapter 2 into appropriate fixed point
equations, and to solve differential equations in Appendix B. The solutions to various dif-
ferential equations from Appendix B are used to apply fixed point theorem to appropriate

fixed point equations.



1. PRELIMINARIES

The main object of our study in this chapter are logarithmic transseries which are, roughly
speaking, formal sums of formal product of powers and iterated logarithms. They are
studied in [6] in more general form. On the other hand, in [21] and [22] they are studied
under additional restrictions and are used as tools for solving the particular dynamical
problems. In particular, we study here the logarithmic transseries without logarithms
in their leading terms. Among them we distinguish: parabolic, hyperbolic and strongly
hyperbolic logarithmic transseries. This chapter serves as a prerequisite for Chapter 2 and
Chapter 3. In Section 1.1 we introduce differential algebras of logarithmic transseries and
some basic notions. It is not necessary for a familiar reader to read this section in detail.
On the other hand, Section 1.2 is dedicated to developing the fixed point techniques that

are crucial for proving the normalization theorems in Chapter 2.

1.1. DIFFERENTIAL ALGEBRAS OF

LOGARITHMIC TRANSSERIES

We first recall in Subsection 1.1.1 the notions of well-ordered sets and of basic ordered al-
gebraic structures which are used to define the differential algebras of logarithmic transseries
£, £, and their subalgebras .%; and $k°° respectively, in Subsection 1.1.2. Furthermore,
in Subsection 1.1.3 and in preprint [29] we introduce the power-metric topology (the val-
uation topology from [6]), the product topology and the weak topology on these algebras.
The same topologies were already introduced in [21] for power-logarithmic transseries
without iterated logarithms.

We introduce the blockwise notation, where we consider a logarithmic transseries as
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a power series with blocks of logarithms as its coefficients, see also [29]. In Subsec-
tion 1.1.4, we define differential algebras of blocks. We consider blocks as elements of
£%, but in the variable —@ instead of z. Therefore, all notions in Subsection 1.1.4 are
similar to those defined in Subsection 1.1.2. Finally, in Subsection 1.1.5 and Appendix A
we define the composition of logarithmic transseries and prove the Taylor Theorem in the

formal setting.

1.1.1. Well-ordered sets and basic ordered algebraic structures

Well-ordered sets

We recall shortly the following standard definitions that can be found e.g. in [15].

Let (W, <) be an ordered set. We say that (W, <) is well-ordered if every nonempty
subset of W has a minimum.

The lexicographic order < on the product W; x --- x W, of ordered sets (W;, <;),
i =1,...,n, is the relation on Wy X --- X W, defined by: (wy,...w;,) < (vi,...,v,) if
(Wi,...wp) = (v1,...,vy) orif thereexists i € {1,...,n— 1} such that w; =vy,...,w; =v;
and w1 <jy1 Vig1.

In particular, in this thesis we consider the well-ordered subsets of Rxo x Z*, k € N,

with respect to the lexicographic order.

Example 1.1.1. Suppose that (@, ) is a strictly increasing sequence of real numbers tend-

ing to +oo. Then:

1. {(aty,—n):ne N} CR>p x Z is a well-ordered subset of R~ x Z, with respect to

the lexicographic order.

2. {(27% n) :n € N} CR>¢ x Z is not a well-ordered subset of R>( x Z, with respect

to the lexicographic order.

Ordered semigroups, monoids and groups

Recall that nonempty set S equipped with associative operation + : S X § — S is called a

semigroup.

10
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Let < be a total order on a semigroup S, that satisfies the property that a < b implies
that, for each ¢ € S, a+c¢ < b+ c. Then (S, +, <) is called ordered semigroup.

If S is additionally a monoid (a semigroup with neutral element), then we call S an
ordered monoid. 1f S is a group, we call S an ordered group.

For example, the set R x ZX, k € N, with component-wise addition, with (0,0,...,0) €
R x Zk as the neutral element, and with the lexicographic order, is an ordered Abelian
group. The set R>¢ x 7K, k € N, with the same structure as in 1, is an ordered Abelian

monoid.

Let S be an ordered semigroup and a € S. We set:

Ssq:={seS:s>a},
Ssa:={seS:s>a},
Sca:={seS:s<a},

Sca:={se€S:s<a}.

Note that, if S is an ordered monoid and a > 0, then S>, and S~ , are ordered semigroups.
Let S be a semigroup and A C S. The intersection of all sub-semigroups of S that
contain A is called the sub-semigroup of S generated by A, and is denoted by (A).
The set A is called a set of generators for (A).

Let S be an Abelian semigroup and A C S. It is easy to see that:
Ay ={ma1+---+npam :meN>,n; e N>1,q;, €A, i=1,...,m}.

Let G be an ordered group and (A) its sub-semigroup generated by A C G. It is natural
to ask the question: If A is a well-ordered subset of G, is (A) also well-ordered? The
answer to this question in the class of Abelian groups is given by the Neumann Lemma
(see e.g. [27]), which we state here without proof and use several times throughout the

thesis.

Theorem 1.1.2 (The Neumann Lemma, [27]). Let G be an ordered Abelian group and
A, B C G well-ordered subsets of G. Then:

11
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1. A+ B! is a well-ordered subset of G,

2. for each g € A+ B there exist only finitely many pairs (a,b) € A X B such that
g=a-+b,

3. if A C G+ is a well-ordered subset of G-, then (A) is also well-ordered. Moreover,
for each g € (A) there are only finitely many n € N> and finitely many n-tuples

(a1,...,an)€A” Suchthatg:a1+...+an.

1.1.2. Differential algebra of logarithmic transseries

From now on, we work in the ordered Abelian group R x Z*, for k € N, with respect to
the standard component-wise addition, and equipped with the lexicographic order.

In the sequel, we use the following notation for multi-indices:

1. n:= (ny,...ng), for n; € Z, and k € N> (it will be always clear from the context

which k € N> we consider),

2. a;:=(a,...,a); € R, for k € N>, where the subscript k means that (a,...,a); is

a k-tuple,
3. forn = (ny,...,n;) we put (n,a,,) := (ny,...,nk,4,...,a), form € N> .
m times
Furthermore, we often consider n := (ny,...,n;) as an element of R by the usual

identification n := (n,0,,), for k,m € N>;. With that identification we have the inclusion
R x ZF C R x Z¥™, for k,m € N. Similarly, for n := (ny,...,n;), k € N>, using the

identification n := (n,0,0,...) € RY>1, we consider n as an element of RN>1,

This section represents a generalization of the notions introduced in [21] for the dif-
ferential algebra .7} of power-logarithm transseries. Almost all notions from this section
are introduced in the preprint [29, Sections 2, 3]. In this chapter, z is a formal variable
and logz is a formal logarithm. Put £y := z, and inductively put

1
S ———
m—+1 log(em)7
ILet S be a semigroup, n € N>, and Si,...,S, € S. Then we define the set S; +---+S5, C S by

m € N.

S+ +Sy={s1+-+sp:85€8;,i=1,...,n}.

12
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Definition 1.1.3 (Logarithmic transseries of depth k, [29]). For every k € N we define
the logarithmic transseries of depth k as a formal sum:
f= Y agaz®--4F (1.1)
(ot,n)ER X ZK

where agn € R and

Supp (f) := {((x,n) ERXZF:agn 750}

is a well-ordered subset of R x Z* that contains only elements strictly bigger than 0 1.
We call Supp (f) the support of f. If Supp (f) = 0, we call f the zero transseries and
denote it by 0.

Remark 1.1.4.

1. Note that a transseries of depth zero is just a formal sum of powers with a well-

ordered subset of exponents with respect to the standard order on R+ .

2. Since Supp (f), for a logarithmic transseries f of depth k € N, is a well-ordered

subset of R x Z*, we can write:
o pn n,
f= Z Z Z Z agnz®l -0,
O(EAfm:Na "2:N(xﬁn1 nk:Na,nl#Mnkfl
where A is the projection of Supp (f) on the first coordinate. Hence, A is a well-
ordered subset of Supp (f). Note that some coefficients in above formal sum may

be equal to zero.

In the sequel we define important notions such as order, leading monomial, leading
term of a logarithmic transseries, etc., which are useful while working with logarithmic

transseries.

Definition 1.1.5 (Order of a logarithmic transseries, [29]). Let f be a logarithmic transseries
of depth k € N. If f = 0, we say that the order of f is infinity, and denote it by ord (f) = oo.
If f # 0, then the minimum of Supp (f) is called the order of f and denoted by ord (f).

Remark 1.1.6. To be precise, in Definition 1.1.5 above, we consider the extension of the
lexicographic order to the set (IR x Z¥) U {eo}, by posing (o, n) < oo, for every (a,n) €
R x ZF, k € N. Note that the zero transseries has the maximal order in the set of all

logarithmic transseries.

13
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Definition 1.1.7 (The coefficient of order (¢, n) in a logarithmic transseries, [29]). Let
f= Y  agat® -4}
(ot,n)ERXZK
be a logarithmic transseries of depth k € N. We call aq n the coefficient of order (o,n) in

the logarithmic transseries f, and denote it by [f], -

We call z%€}" ---£;* the monomial of order (ot,n) and agnz®€}"' -+ - £, agn # 0, the
term of order (o, m). Furthermore, we call a term of order 0| a constant. Note that the

Zero transseries 1s not a constant, since it is of order oo.

For transseries f and g of depth k € N, we use the notation

f=g+h.o.t

(which means: higher order terms) if every term in f — g is of order that is strictly bigger

than the order of every term in g.

Definition 1.1.8 (Leading monomial and leading term of a logarithmic transseries, [29]).
Let f be a nonzero logarithmic transseries of depth k € N. We call the monomial (term)

of order ord (f) in f the leading monomial (leading term) of f, and denote it by Lm(f)
(Lt (f)-

We denote by 7} the set of all logarithmic transseries of depth k € N. Adopting the
notation from the beginning of the section for the multiindices, note that .%; C %, for
k € N. Put

L= U %
keN

We call £ the set of logarithmic transseries.

By £, k € N, we denote the set of all logarithmic transseries f as in (1.1), where we
allow that the support of f contains elements in R x Z¥ that are not necessarily strictly

bigger than 0y 1. Note that £° C £,

ol for each k € N. Furthermore, let

200 = U gkoo
keN



Preliminaries Differential algebras of logarithmic transseries

Note that .Z, C i’j{"", for k € N, and £ C £7. As for logarithmic transseries, we analo-
gously define the order, the leading term and the leading monomial of f € £%.

Note that %, £/, k € N, and £, £ are real linear spaces with respect to the usual
termwise addition and scalar multiplication. Furthermore, .} (£;”) is a subspace of

Livm (D%k"j’rm), m € N>, and of £ (£%).

Multiplication in £~

Let f,g € £7 be arbitrary. Suppose that f € .i”k"l" and g € jfk";, for k1,k» € N. Now, set
k := max {k;,ko}. Since Supp(f) C R x Z¥ and Supp(g) C R x Z*> are well-ordered
subsets of R x Z¥ (by the usual identification), by the Neumann Lemma (Theorem 1.1.2)
it follows that the multiplication on £7 can be defined fermwise. It is classically called
the convolution product.

If f=0o0rg=0, we define f-g :=0. Now, suppose that f,g = 0. Since ‘ch"l",.iﬂk"; C
£,°, we write f and g in the form:

f= Y agn®) -l g= ) bﬁmzﬁf'}“ el
(or,m)€Supp (f) (B,m)eSupp (g)
The product of f and g is defined by:
f-g:= Z ( Z da,nbﬁ,m> A
(rw)€RxZF ~(ot,n)+(B,m)=(y,u)

Now, it is easy to see that £ is an associative commutative R-algebra with unity, and a
field. Note that .Zf’, for k € N, are subalgebras and subfields of £. Furthermore, £ is a
subalgebra (without unity) of £%, and .Z is a subalgebra (without unity) of £, for each
k € N.

Remark 1.1.9 (£, k € N, as Hahn fields, see [6]). Let G be an ordered Abelian group

with neutral element 0. Let [F be a field and let F ((G)) be the set of all formal sums:
f = Z fg 8
geG

where f, € I, for each g € G, and Supp (f) := {g €G: fo# OF} is a well-ordered subset
of G called the support of f. Then F((G)) is a linear space with respect to the usual

addition and scalar multiplication.

15
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We define the multiplication in F ((G)) as:

fh=Y (L awhe) ),

geG "811+82=¢

foreach f,h € F((G)). By the Neumann Lemma, it follows that the multiplication defined
above is a well-defined operation. It can be shown that every nonzero element in IF ((G))
has a multiplicative inverse. Consequently, F ((G)) is an associative commutative algebra,
and a field. For F := R, we call R ((G)) the Hahn field (see e.g. [21]).

Note that fk"", k € N, is a particular Hahn field, where we set G to be the set of all
monomials in . with the multiplication as a commutative operation and with the order

induced by the lexicographic order on R x Z¥, i.e
zaﬂ'fl---fzk jzﬁﬂ'lnl -~ 0% ifand only if (o ,my,---,mg) < (B,my,...,mg).

Remark 1.1.10 (Remark 2.1, [29]). The collection £ introduced above is a subset of
the field of logarithmic-exponential series R (7)) defined in [6]. Notice that, while the
variable 7 in R ((z))"F is infinite, we prefer here to work with the infinitesimal variable
z=1t"!, which is more convenient in the framework of iteration theory. Actually, £ is
even contained in the subfield Tj,e of “purely logarithmic transseries” introduced in [2]
and studied from a model-theoretic point of view in [8]. More precisely, in £ the iterated
logarithms are raised to integer powers, whereas they are raised to arbitrary real powers

in Tlog .

Differential algebra £~

Note that £~ is a differential algebra with respect to the usual derivation d% (termwise),
and £, Z°, %, k € N, are its subalgebras.

Suppose that f € £~ has an antiderivative F. There exists ¢ € R, such that the an-
tiderivative F' — ¢ does not contain a constant term. For simpler computations in the se-
quel, we use the following convention: by | fdz we denote the antiderivative of f without
a constant term. For more about the antiderivative in £~ and .Z°, k € N, see Proposi-

tion B.2.1 in Section B.2.

The following definition is a generalization of the definition given in [21, Subsection

3.3] in the differential algebra .%].
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Definition 1.1.11 (The Lie bracket operator). Let [-,-] : £° x £° — £ be defined by

_,.af . dsg e
[f.8l:=¢ 1z fdz, f,eget”.

We call [+, -] the Lie bracket operator.

For some properties of the Lie bracket operator, see Lemma A.2.3 in Appendix A.

The blockwise notation for logarithmic transseries and its generalization

We call (1.1) the termwise notation for logarithmic transseries. It is often useful to re-write
logarithmic transseries in the so-called blockwise notation (see [29, Subsection 2.1]):

f= Z aamz“z;” ...ng
(or,n)ERXZK

-3 (L 1)

acR nezk

= Z ZOCRO(?

acR
where
. n 1y
Ra = Z aa7n£ll fk .
nezk

Note that R, can be considered as an element of .%;” ; in the formal variable £, instead of

Z.
We call %R, the a-block of f (or the block of order @ in z), for a € R. Moreover,
we call
Supp, (f) :={a € R: Ry # 0}
the support of f in z.

Since Supp, (f) is the projection of Supp (f) onto the first coordinate, Supp, (f) is a
well-ordered subset of R.

Similarly as before, for a logarithmic transseries f we define the order of f in z by
putting ord; (f) := oo, if f =0, and ord; (f) := min Supp, (f) otherwise. In this notation,

the zero transseries has the maximal order in z in the differential algebra £.

17
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If f # 0, we call the block of order ord; (f) in f the leading block of f in z, and de-

note it by Lb, (f). All these notions have an analogue in the larger differential algebra £%.

For f,g € £° we put
f=g+ho.b.(2)

(which means: higher order blocks) if every block in f — g is of order in z that is strictly

bigger than the order of every block in g.

Finally, for f € .4, we generalize the blockwise notation:

f= Z dan Zafllﬂ .. .[Zk

(or,n)ERXZK
_ apni n, Nm+1 . plk
= Z bl me( Z aa,nemH ¢ >
(OC,I’!],...,H,,,)GRXZ'” (merl,...Jlk)EZk*m
_ a gy n
= Z 2 Ry s
(0tynyyeeestiy) ERXZM
where
. Mn4-1 L%
R(x,nl,...,nm T Z aa-,ngm-i-l o 'gk :

(nm+17"'7nk)€Zk7m
We call 228" .. .&m Rop, ...y, the (0,01, . .. my)-block of f (or the block of order (o, ny, ... ,ny))
in variables z,£;,.... 4y, (a,ny,...,ny,) ERXZ™, for0 <m <k.

Since Supp (f) is a well-ordered subset of R x ZF, it can be proven that the set

Supp, 4, ..g, (f) :i={(0,n1,...;nm) ERXZ™ : Roy .., 70}

is a well-ordered subset of R x Z™ (with respect to the lexicographic order) which we
call the support of f in the variables z,¢;, ... ,L,. Note that Ry , ., can be considered
as an element of .ijjm in the formal variable £,,, instead of z. Similarly as in case
of the variable z, we define the order and the leading block of f € £ in the variables
2,81,.... 6.

The subspaces .2 C .Z°
Definition 1.1.12 (see [29]). Let W C R x 7k, for k € N. We define
L= {f e L Supp(f) CW}.

18
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Since the zero transseries has the empty support, it follows that the zero transseries is
an element of fkw, for W C R x Z*. Note that .,S,’jcw is a linear subspace of .Z;”.

The proof of the next proposition is elementary, and is, therefore, left to the reader.
Proposition 1.1.13 (Properties of spaces .i”kW, k € N).

1. If W is a sub-semigroup of R x ZX, then £Y is a subalgebra of £, for k € N.

2. If Wy CW, C R x Zk, for k € N, then .i”kW‘ is a subspace of .kaz.

3. Let (W;,i € I) be a family of subsets of R x ZX, for k € N. If (W;,i € I) are pairwise

disjoint, then .,iﬂku"el "i'is a direct sum of the family (.i”kW",i el),ie.

Z{Uielvvi _ @%Wz

icl
For every real number o > 1 and k € N, we define W := {(B,n) € Rx¢ x ZF: (B,n) > (1,04) }

and:
o . w
L& =LY,
>a . pRogxZk
L=, :

Note that £* and . are subalgebras of %, for & > 0, k € N.

Moreover, for every az®¢}' ---fzk, acR\{0}, (a,ny,...,m) € RxZK and W C

R x ZF such that (o, ny,...,n;) < w, for each w € W, we use the following notation:

az®€)' -+ LY = {az%) - L e e e LY}

Superlinear operators on £~

Definition 1.1.14 (Superlinear operators on £°). Let <7 be some subspace of £ and let

< o/ — £ be an operator such that

y(f): Z amny(zocellﬂ,..ng)’
(a,m)eSupp (f)
for each f:= Z agnz®l) - ‘EZ" € /. We call .7 a superlinear operator on <7 .

(a,n)€Supp (f)

Note that a superlinear operator is a linear operator, but the converse is not true in general.

19
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1.1.3. The three topologies on the differential algebra £

In the previous section we defined the differential algebra £~ and its differential sub-
algebras £, £, and %, for k € N. In this section (see also [29]) we introduce three
topologies on the differential algebra £°: power-metric (or valuation) topology (see [6]),
product topology and weak topology. They represent generalizations of the corresponding

topologies introduced in [21, Subsection 4.2] on the differential algebra .%}.

Power-metric topology

Letd, : £° x £° — R be a map defined by:

2o (f=8) ot
0, f=g

dz(fag) =

It is obvious that d; is a metric on £~ and (£>,d;) is a metric space. We call d; the power-
metric, and the induced topology 7 the power-metric topology on £ ( [29, Subsection
2.3]). Itis easy to see that the power-metric topology is the same as the valuation topology
defined in [6] and the formal topology defined in [21, Subsection 4.2] on .%;. Now, the
subalgebras £, .Z°, £, and the linear subspaces Z{W, for W C R x Z*, k € N, are metric
spaces with respect to the appropriate restrictions of the power-metric d..

In Example 1.1.15 and Proposition 1.1.16 we discuss the completeness of the metric

spaces (£7,d;), (£,d;) and also of subspaces .Z;°, %, for k € N,

Example 1.1.15. Consider the sequence (¢,) in £ defined by @, := Y"_,z'¢;, forn € N.

It is easy to check that (¢,) is a Cauchy sequence on (£,d;). Indeed, d.(Qn, Pnim) =

1
zordz (z”‘HCnJr 1)

space (£7,d;) to some ¢ € £°. Consequently, there exists k € N such that ¢ € £,

= 2,,%, for n € N and m € N>;. Now, suppose that (¢,) converges in the

Therefore, ord, (¢ — ¢,) < k+1, i.e., d.(Q,Q,) > ﬁ, for every n > k+ 1, which is a
contradiction with the assumption that (¢,) converges to @ in (£*,d;). By the definition
of £, it follows that (£%,d;) is not a complete metric space. Since (¢@,) is also a sequence

in £ and £ C £, it follows that (£,d.) is not a complete metric space.

In the previous example we showed that (£,d;) is not a complete metric space, by

constructing the Cauchy sequence (¢,) which does not converge. A crucial fact in the
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previous example is that there is no k € N, such that ¢, € .Z%, for all n € N. This leads us

to the next proposition.

Proposition 1.1.16 (Completeness of spaces .2, % and £, Proposition 3.6, [29]).
The spaces (£°,dz), (%, d) and (£ ,d.), for W C R x 7k, k € N, are complete.

Proof. We first prove that (i’f’,dz) is a complete space. Suppose that (g,) is a Cauchy
sequence in the space (Jk"",dz). Hence, for every a € R there exists ny € N, such that
p,q > ng implies ord; (g, —g4) > o. So, for every n > ng, every B < a and every
m ¢ 7Zk:

[8n]B.m = [8nalpm- (1.2)

We define an element g € RRxZ by setting, for every (o, m) € R x Z,

[g](x,m = [g”a]oc,m' (1.3)

It remains to prove that g is indeed an element of .#;°, and that (g,) — g in (Z:", dz). In
order to prove that g € %, it is enough to prove that Supp (g) C R x ZF is well-ordered.
Let A be a nonempty subset of Supp (g) and let (&, m) € A. It follows from the definition

of g that there exists nq € N such that [g], 1, = [8n4) o m- BY (1.2) we have

8155 = [8n5] 51 = 8ne - (1.4)

for every B < a and k € ZF. From (1.4) we deduce that

{(ﬁ7n) €A: (B?n) < (aam)} C Supp(g,,a).

Since Supp (g, ) is well-ordered, the set A admits a minimum element min A. This im-
plies that Supp (g) is a well-ordered subset of R x Z. Finally, it follows easily from (1.2)
and (1.3) that (g,) — g in (£, d;).

Now we prove that (£, d.) is a complete space. Since .2 C .4 and (£°,d;) is
a complete space, it is sufficient to prove that .i”kw is a closed subset of .Z;> with respect
to the power-metric topology. If fkw = %", then fkw is closed. Therefore, suppose
that & # £ Let f € £\ £ be arbitrary. Consequently, Supp (f) ¢ W. Since,
Supp (f) is a well-ordered set, let (a,n) := min (Supp (f) \ W). It is easy to check that the
open ball B(f, 2%) is a subset of .Z;°\ .Y . Indeed, for each g € B(f, 2%) it follows that

21
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ord; (f —g) > a. Therefore, [g]y , = [f]g.n # 0, which implies that (&, n) € Supp (g) \W.
Consequently, it follows that g € £\ .ka. Therefore, .27\ .;S,”kw is open, i.e., .,?j(w is
closed in (£, d;).

Since %, = .Zj{w, for the set W of all elements of R x Z* that are strictly bigger than

0y 1, it follows that (%%, d;) is a complete metric space, for k € N. [

Remark 1.1.17 (A sufficient condition for convergence of a sum of logarithmic transseries
in (%,d;), [29]). Let (¢,) be a sequence in %, k € N, such that (ord; (¢,)) is a strictly
increasing sequence of real numbers tending to +co. Then the series )" ¢, converges

in (%,d;). Indeed, since

n+m n
ord; (Y @i~ Y. 01) = ord (9:1),
i=0 i=0
it follows that d, (Y1) @i, X1 o @i) = m, which implies that the sequence of the

partial sums is Cauchy in (.%,d;). This implies that the series )" ¢, converges in

(. d.), since (%, d;) is complete, by Proposition 1.1.16.

The product topology

Let us consider £~ as a subspace of RRXZNEI, equipped by the product topology, where
the discrete topology is taken on each coordinate space R. We call the induced relative
topology on £ the product topology on £7, and denote it by .7,. In &}, it was already
introduced in [21, Subsection 4.2].

By the usual identification of R X 7k with a subset of R x ZN>1 we consider .Zj:",
k € N, as a subspace of the product REXZ™! We call the induced relative topology on
£ the product topology on .£;°, k € N. Since (£%,.7),) is not first countable, it follows
that (£%,.7),) is not a metrizable space. The same holds for its topological subspaces £
and £, ke N.

In the sequel we often consider the product topology on subspaces £ and %, k € N,
of space £7. It can be proven that £ and .%%, k € N, are not metrizable, since they are not
first countable (see e.g. [25]).

By the definition of product topology, it is clear that a sequence (¢,) in £ converges

to ¢ € £ if and only if, for each (a,n) € R x ZN=1 there exists nan € N such that, for
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every n > ngnp, [(Pn]a.,n = [(p]am. The same holds for ., and %}, k € N. Therefore,
to check the convergence of a sequence in £% in the product topology, one can equiv-
alently check that the sequences of coefficients eventually become stationary and that
Upnen Supp (¢,) is a well-ordered subset of R x Z¥, for some k € N. Their limits then

represent the appropriate coefficients of the limit transseries.

The following remark will be used for the definition of a composition in Subsec-
tion 1.1.5. It relates the notion of summable families to the convergence of series in £,

with respect to the product topology.

Remark 1.1.18 (Summable families and product topology, see [6]). Motivated by [29]
where the weak topology and summable families were related, here we relate the product
topology to the notion of summable families introduced in [6].

Let G be an ordered group of logarithmic monomials and let R((G)) be the Hahn field
(see Remark 1.1.9 or [6]). A family (fi,i € I) of elements of R((G)) is called summable
if:

1. the union J;c; Supp (f;) is a well-ordered subset of G,

2. forevery g € G, there exist only finitely many elements i € I such that g € Supp (f;).

If (fu,n € N) is a summable family in £ C R((G)), it is easy to prove that the series Y. f,,

converges in the product topology on £ to the sum of the family.

The weak topology

Let us consider £7 as a subspace of RRXZ">! equipped by the product topology, where
the Euclidean topology is taken on every coordinate space R. The induced topology on
£ is called the weak topology on £%, and denoted by .7,. In £ it was introduced
in [29, Subsection 2.3]. Analogously as in the definition of the product topology, we
consider the induced topology on .Z;°, £ and .Z%, k € N, of RRXZ2! The space £7 is
not first countable (see e.g. [25]), and therefore, £ is not metrizable. The same holds for
£, L, ke N, and £.

By the definition of the product topology, it is clear that a sequence (¢,) in (£~,.%,)

converges to ¢ € £ if and only if the sequence of coefficients ([@,], ,)n converges to

Oc,n)

23
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(@] in the Euclidean topology on R, for every (a,n) € R x ZN=1. Now, suppose that the

RxZN>1

limit ¢ is an element of R . If Upen Supp (¢,) is a well-ordered subset of R x Z¥,

for some k € N, then ¢ € £ C £~.

Properties and relations between the three topologies

Note that the power-metric topology is finer than the product topology which is finer than
the weak topology. In the sequel we give examples that show that .7, S .7, S .7, on the
differental algebra £~ and its subalgebras £ and .£;°, %, for k € N. Moreover, we show
that 7; = .7, on ZOW, in the case that W C R has no accumulation points with respect

to Euclidean topology on R>.

Example 1.1.19. (1) Let (¢,) be a sequence of logarithmic transseries in ., k € N>,
such that @, := £} +z, for n € N. Now, put ¢ :=id € .%;. For an arbitrary element
(o,m) € Rsq x ZF such that (a,m) # (1,0;), there exists ngp € N such that for every
n > ng, [@n] o m = 0and [@u]; g = 1. Therefore, it follows that (¢,) converges to ¢ in the
product topology in .Z; (or in £7).

On the other hand, since d; (@, Pnrm) = 2—10 =1, for every n,m € N, m > 1, it follows

that (¢,) does not converge in the power-metric topology in £ (or in .£;°, .%5).

(2) Example (1) shows that the power-metric and the product topology are not equal on
%, if k € N> 1. Consequently, the power-metric and the product topology are not equal on
£. On the other hand, suppose that k = 0. Let us define the sequence (¢@,) in % such that

Q=2 ~#T 424 forn € N. Asin Example (1), it is easy to see that (¢,) converges in the

product topology in .%j to the transseries ¢ = z* € .%. Since d,(Qy, Qpim) = 3% > 2—13
PR
for n,m € N, m > 1, it follows that (¢,) does not converge in the power-metric topology

on .%.

(3) In Example (2) we constructed a sequence (¢, ) in -2y which converges in the product
topology and does not converge in the power-metric topology. Note that 3 is an accu-
mulation point of |J,cry Supp (¢,) in the Euclidean space R. Now, suppose that (¢,) is a

sequence in %, which converges in the product topology to some ¢ € %, and such that
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Uen Supp (¢,) has no accumulation points in R. We prove that (¢,) converges to ¢ in
the power-metric topology on .%j.

Let a € R+ be arbitrary. Since there are no accumulation points of |J,cn Supp (@)
in R, there are only finitely many elements {o, ..., ,} of J,cnSupp (¢,) which are
smaller than or equal to a. Since (¢,) converges in the product topology, it follows that
there exists ng € N such that, for all n > no, [@a] 4, = [@],,, fori=1,...,m. It implies that
ord, (¢ — @,) > &, ie., d.(¢,¢,) < zia, for all n > ng. Since o € R+ is arbitrary, we get

that (¢@,) converges to ¢ in the power-metric topology on .%j.

(4) The product and the power-metric topology are equal on XOW if W C R>¢ has no
accumulation points with respect to the Euclidean topology on R>.

Indeed, suppose that W C R>( has no accumulation points with respect to the Eu-
clidean topology on R>o. We distinguish two cases. If W is finite, then it is clear that
£ is homeomorphic to the product Reard(W) of discrete spaces. Therefore, suppose that
W is infinite. Then there exists the strictly increasing sequence () of nonnegative real
numbers tending to oo such that W = {0, : n € N}. Let F : 4" — zR[[z]] be defined
by:

+o0 +o0
F(F o) = e
n=1 n=1

where zR[[z]] := 2 is the set of all power series f in the formal variable z, such that
f(0) =0. It is easy to see that F is a homeomorphism in both cases: if we consider the
power-metric topology on .%)" and R{[z]], or the product topology. Therefore, identify
£3" with the space of all power series R [[z]]. By Example (3), the product topology and

the power-metric topology are equal on R [[z]].

(5) Let (¢,) be the sequence of logarithmic transseries in %, k € N, such that @, :=
# .74z, for n € N. Since (ﬁ) — 0 in the Euclidean topology on R, it is easy to see

that (¢,) converges to @ := z” in the weak topology on .%. On the other hand, (¢,) does

not converge in the product topology on .Z} because the sequence ([@4]; 9,) = (ﬁ) does

not eventually become stationary.
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(6) We show here that, although £ and .Z;, k € N, are not metrizable with respect to the
weak topology, the space ZOW is metrizable for W C R>¢ with no accumulation points in
R>o.

Suppose that W C R has no accumulation points with respect to the Euclidean topol-
ogy on Rx. It was shown in Example (4) that .4)" and R [[z]] are homeomorphic, with
respect to the weak topology. The weak topology on R [[z]] is metrizable by e.g. the metric

Ry | a; —b;
d(/,8) = ;0 (zi N J‘rlyai —l|b,-]> ’

for f:=Y a7 and g := Y 15 biz'.

1.1.4. Differential algebras of blocks

In this subsection, for a fixed k € N>, we introduce and prove some basic properties
of what we call the differential algebras of blocks %,,, for 1 < m < k. This subsection
is partially taken from [29, Subsection 3.4], and used mostly in Subsections 2.1.2, 2.2.2
and 2.3.4 as a technical prerequisite for proving the steps of the normalizing algorithm,
and is not to be read independently. The definitions and statements in this subsection are

similar to those in Subsection 1.1.2.

Definition 1.1.20 (Block of level m). Letk € N>q, 1 <m < k. A logarithmic transseries
K € £ of the form
K:= ) PPN AETEY Sl
(0,71 . 1y ) ER X ZK
where ay,,, .., € R, is called the block of level m in .,ka“.

For k € N>, we denote by %,, C .£;°, 1 < m <k, the set of all blocks of level m.
Remark 1.1.21.

1. Note that the zero transseries and every constant are blocks of level m, for 1 <m <k,

and k € N> .

2. For k € N>, note that %, is a subalgebra and a subfield of .Z,”, with respect to the
standard addition and multiplication, for every 1 < m < k. Furthermore, %, is a

subfield of the field 4, for 1 <m <k—1.
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3. Note that %, C £;°, and thus depends on k € N>, but in the sequel it is always

clear which k € N> we consider.

4. Every block in %,, C .,?f’, 1 <m<k—1, ke N>, can be viewed as a Laurent
series in the variable £,,, with coefficients in the field %, 1, and every block in %,

can be viewed as a Laurent series in the variable £, with real coefficients.

Although %, is a differential algebra with respect to the derivation ﬁ, we do not
consider the derivation ﬁn because it is not a contraction on the space %4,,. The contrac-
tion property will be important for applications of fixed point theorems in Sections 2.1, 2.2
and 2.3. Therefore, in the next definition we introduce a slightly modified derivation op-

erator D,,,.

Definition 1.1.22 (Derivation operator Dy, [29]). Letk € N>j,andletm e N, 1 <m <k.
We define the operator D, : B, — %, by:

2 d

D, =0 - —.
m dfm

(1.5)

It is easy to check that Dy, is a derivation operator on %,, C .Z;°, for 1 <m < k.

The associative commutative algebra %, equipped with the derivation D,, will be

called the differential algebra of blocks of level m in Z7°.

2. d )
4z» We get:

Using convention £y := z and putting % := .Z;” and Dy := 2
Dm( nm—i—l) = emDm+l (f,rqlﬁ_l),

for every 0 < m < k— 1 and n € Z. For additional properties of derivations D,,, see Sec-

tion A.

In the sequel we generalize the results obtained in Subsection 1.1.2 for %y = £°
to B, C ,Zk”, 1 <m <k. As in Definition 1.1.11 in Section 1.1, we define the Lie
bracket operator (see [21, Subsection 3.3]) on differential algebra %,,, for 1 < m <k,
and k € N>, by

[K,G] :=G-Dy(K)—K-Dy(G), K,G¢€ By,

27
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For some properties of the Lie bracket operator on %, see Lemma A.2.5 in Appendix A.
dt
As before, by / K sz we denote the antiderivative (with respect to D,,) of K € %, C
m
.,Zj:" without a constant term.

Similarly as ord; in %, we define the order of an element of %,, C .£;” in the

variable £,,, (see [29]).

Definition 1.1.23 (Order of a block of level m in £, [29]). Let k € N> and let K €
By C Z°, 1 <m < k. If K =0, then we define the order of K in £, as infinity, and write
ordy, (K) = oo. If K # 0, we define the order of K in ¢,, as the minimal exponent of £,

and denote it by ord,, (K).

Note that ordy, (K), K € %, C .Z;”, belongs to the extended set Z U {eo}, where oo is
an element such that a < oo, for every a € Z. The zero transseries has thus the maximal

order in £,,, in space Z,,.

Definition 1.1.24 (The leading block in £,,, [29]). Letk € N>jand K € %, \ {0} C £,
1<m<k PutK:= Z;;";’%%Ki, for K; € By 1 and n,, € 7. We call £, K; the i-block of
K in ¢, for each i > n,,. Furthermore, we call £} K,, the leading block of K in ¢,,, and

denote it by Lby,, (K).
For K,G € %, C £,”, k € N>, we write
K=G+h.o.b.({,)

(which means: higher order blocks in £,,) if every block (in £,,) in K — G is of order in £,,,

that is strictly bigger than the order in £,, of every block (in £, in G.

Letk € N>y, 1 <m <k, and let W C {0}" x ZF=. Similarly as in Subsection 1.1.2

we denote by %’,‘f{ C Z” the set:
BY = {K € B, C L Supp(K) CW}.

Since the zero transseries has empty support, it follows that the zero transseries is an

element of %)) .
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Let k € N>j and 1 <m < k. The following spaces will often be used in the sequel:

B, ={K € By C L ord(K) >0}, (1.6)

By = {K € B C L ordy, (K) >0} (1.7)
For o € Rsg and W C {0} x Z¥ we denote:
2B = {z* K:Ke BY CL}-
Remark 1.1.25 (Properties of spaces of blocks).

1. For k € N>y and 1 < m < k, note that %, = BY, for W = {0} x N> x Zk-",
and B3, =AY, for V ={(o,n) € Rx ZF: (at,m) > Oy }.

2. For k € N>y and 1 < m <k, note that ‘%erm = BN L and B, C %gm Further-

more, %, = ,%’gm if and only if m = k.

3. Forke N>jand 1 <m <k—1, note that %’;mﬂ - ‘@erm’ but

By NBL, . ={0}.

4. For k € N>y and 1 <m <k, if W is a sub-semigroup of {O}erl X 7*k=™_then ,%’nvf

is a subalgebra of %,,. In particular, %’erm and 4B, are subalgebras of %,,.

5. Forke N>j,and for 1 <m <k, if W CW, CR x ZK, then %’,‘;Vl is a subspace of
BN

6. Let (W;,i € I) be a family of pairwise disjoint subsets of R x Z, for k € N>;. Then

5™ s a direct sum of the family (% ,i € 1), i.e.

a@anJiEIWi = @ﬁn‘?v

il
foreach1 <m <k.
A metric on spaces of blocks

In Subsection 1.1.3 we defined the power-metric d, on the differential algebra £7. Ob-

serve the sequence (K,) in % C .Z;°, k € N>, given by K, := £/, for n € N. Note
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that:

1 1
d(Kn, Knm) = o (66 20 1,

for each n,m € N> 1. From this example we deduce that the metric d; is useless on differ-
ential algebras %, C %, 1 <m <k, ke N>.
Therefore, in the next definition we define the m-metric on the differential algebra

By, for 1 <m <k,and k € N>.
Definition 1.1.26 (/m-metric, [29]). Let k,m € N> be such that 1 <m < k. The m-metric
dy : By X B — R on the differential algebra %, is defined as:

2 ot (K17H) K £ K,
0, K| =K.

dm(Kl ,Kz) =

The space (B, dn) is called the (metric) space of blocks of level m.

Similarly as in Proposition 1.1.16, it can be proven that metric spaces (%, d,,) and
(BY .d,), for W C R x 7k, are complete, for 1 <m <k, k € N> ;. In particular, (e%’;rm,dm)
and (%, ,d,,) are complete metric spaces.

m»

1.1.5. Composition of logarithmic transseries

In [6, Section 6] the general result on composition of transseries is proven. In our setting
of logarithmic transseries, we do not need the definition of composition in full generality.
Therefore, we define a composition only for the logarithmic transseries in the spirit of
the definition given in [21, Section 2] only for the logarithmic transseries of depth 1.
For our purpose in Sections 2.1, 2.2 and 2.3, it is important that the composition of two
logarithmic transseries in %% is again an element of .%;. This is not always the case.
Therefore, we restrict ourselves to the set Z{H of all logarithmic transseries in .%; without
logarithms in their leading term, as was done in [21] for power-logarithm transseries and
in [29, Subsection 3.2] for logarithmic transseries. More precisely, we denote by £/,

k € N, the set of all logarithmic transseries f € ., such that
f=1z%+ho.t.,

for A, a > 0. Furthermore, we put £/ := {J;cn .,Z”kH . We distinguish three types of loga-

rithmic transseries in £/ (see [21, Definition 1.1], [29, Subsection 2.1]).
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Definition 1.1.27 (Parabolic, hyperbolic and strongly hyperbolic transseries in £7). Let
f € £ such that f = Az% +h.o.t.,, o, A > 0. We say that f is:

1. parabolic,if ¢« = A =1,
2. hyperbolic,if e =1 and A >0, A # 1,
3. strongly hyperbolic, if &« >0, o # 1, and A > 0.

We denote by .Eko the set of all parabolic logarithmic transseries in ,ZkH . Furthermore,
we put £0:= ey L2

Finally, we define a composition of logarithmic transseries.

Definition 1.1.28 (Composition of logarithmic transseries). Let f € £ and g € £, for
keN. Let g = Az%+ g, for a,A > 0, and ord (g;) > (¢, 0;). Then, the composition of
f and g, denoted by f o g, is defined as:

() (A% .
fog:zf(lzo‘)Jer(i!Z)(gl)’, (1.8)

i>1

where the series on the right-hand side of (1.8) converges in the product topology.

In Proposition A.1.1 in Appendix A we prove that the series on the right-hand side of
(1.8) converges in the product topology, which implies that the composition of logarith-
mic transseries from Definition 1.1.28 is well-defined. In Appendix A we also prove the
formal Taylor Theorem (Proposition A.1.6) and the fact that we can compose logarithmic

transseries term-wise using formulas (A.1).

31



Preliminaries Fixed point theorems

32

1.2. FIXED POINT THEOREMS

In this section we state and prove a version of a fixed point theorem (Proposition 1.2.12)
(see [29, Proposition 3.2]), that we use in Sections 2.1, 2.2 and 2.3 to solve normalization
equations. In particular, we use the mentioned fixed point theorem on complete metric
spaces introduced in Subsections 1.1.3 and 1.1.4. The section is divided into three subsec-

tions: Lipschitz map and homothety, (i, 1> )-Lipschitz maps and Fixed point theorems.

1.2.1. Lipschitz map and homothety
In this subsection we recall some basic notions from [29, Subsection 3.1].

Definition 1.2.1 (Homothety, Definition 3.1, [29]). Let (X,d) and (Y, p) be metric spaces.
The map .7 : X — Y such there exists A € R~ with property that

p(y(xl),ﬂ(xz)) = ld(xl,xz),

for each xj,x; € X, is called the A-homothety. The coefficient A is called the coefficient
of homothety 7 .
If A =1, then .7 is called the isometry.

Remark 1.2.2. Note that, for the given A-homothety .7, the coefficient A is unique and
7 is injective. Therefore, there exists the compositional inverse .7 ! : .7 (X) — X which

ol
is a 7-homothety.

Definition 1.2.3 (Lipschitz map, Definition 3.1, [29]). Let (X,d) and (Y,p) be metric

spaces. The map . : X — Y such there exists it € R-¢ with the property that

p(S(x1), 7 (x2)) < pd(x1,x2), (1.9)

for all x1,xp € X, is called the u-Lipschitz map. The coefficient u is called the Lipschitz
coefficient (or the Lipschitz constant) of %

We call the smallest u € R~ (if such exists) such that (1.9) holds, the minimal Lips-
chitz coefficient of .7

In particular, if g < 1, then .% is called the u-contraction and the coefficient u is

called the coefficient of contraction of .7 .
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Example 1.2.4. Let <7 be a subspace of £° and .7 : &/ — £ a linear operator. If there

exists C € R~ such that:

1. ord, (7 (g)) = ord;(g) +C, for every g € o7, then 7 is a %—homothety, with re-

spect to the metric d,

2. ord; (7 (g)) > ord;(g) +C, for every g € o7, then 7 is a 2%—Lipschitz map, with

respect to the metric d.

Similarly, let P be a subspace of %, for 1 <m <k, k € N>y, and .7 : B — By a
linear operator which satisfies above (in)equality for ordy, instead of ord;, then .7 is a
2%—homothety (resp. Lipschitz), with respect to the metric d,,. These statements will be

used throughout the thesis.

Example 1.2.5. Letk € Nand W C R x Z*. Denote by Py : £ — &) the projection
operator to the subspace .ka C Z;°. Then the projection operator &y is a superlinear
1-Lipschitz operator, with respect to the metric d,.

Indeed, for every term M € . it follows that 2y (M) =0,if M ¢ £, and Py (M) =
M, if M € £} . Now, superlinearity follows immediately.

For every g € .Z;” it follows that
ord (Pw(g) = ord (Pw(g)) = ord(g).
By Example 1.2.4, it follows that &y is an 1-Lipschitz map.

Example 1.2.6. Let k € N> and 1 <m < k. By Example 1.2.4, note that the deriva-
tion D, : By — By, defined in (1.5) is a %—contraction on the space (%y,dy), since
ordg, (D (K)) = 1+ordy, (K), for every K € %4,, that is not a constant.

Furthermore, the restriction of D,, on the space Pofall K € %, which do not contain
constants is a %—homothety. Therefore, there exists the inverse D,,! of the restriction

Dy & which is a 2-homothety, with respect to the metric d,,,.

Now we state two examples of contractions that will be used throughout the Sec-

tions 2.1, 2.2 and 2.3 for solving normalization equations.
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Example 1.2.7. Let ¢ € Xky (see Subsection 1.1.2), fory>1and k € N. Let § > 1 and
let the operator . : fk‘s — .ij be defined as:
_ (i)  of
=) o€, (1.10)
i>2
for e € fk‘s. Then the operator .7 is %H—Lipschitz on the space (i’f, dz).

Moreover, —5--— is the minimal Lipschitz coefficient of ..

25+a—2
Proof. By the definition of the set .,2”,{5 and since 6,7 > 1, it can be shown that the series
in (1.10) converges in the product topology. Therefore, the operator .7 is well-defined.

Let €1, & € .Z2, such that € =# &. Then:

S(e) - S(e) =Y (<p(") ICEES)

i>2
i—1 1
_Z (g1 —&)- (Zelsé J) )
i>2 Jj=0

Now, ord, (L (&) — -7 (&)) > ord, (& — &) + 6 + y—2, which implies that . is a 25” 5=
Lipschitz operator.

If £ € £ such that ord,(€) = §, then ord(.(¢) — #(0)) = ord(¢ — 0) + & + a — 2.
Thus, 25%172 is the minimal Lipschitz coefficient of .. [ |

Since 7,0 > 1, note that . is a s-contraction if and only if y > 1 or 6 > 1.

25+y
Example 1.2.8. Letk € N>, 1 <m <k, and G; € %,,\ {0} C £, such that ord (G;) >
0.1, forevery i > 2. Let .7 : B} — B, be defined as:
=) Gi-0'
i>2
for Q € %} C %. The map . is a -contraction on the space (%}, dy).
Proof. Note that the series above converge in %,,, with respect to the metric d,,. Let
01,0, € B, C % such that Q1 # Q. We have:
Z(01)— () =Y, Gi- (0] — 0))

i>2

-3 (0@ (Zoier))

i>2

Using the following facts

ord (G;) > 01, ordg, (Q1),ordg, (Q2) >1



Preliminaries Fixed point theorems

and i > 2, we conclude that

ordy, (Z(01)—Z(02)) > ordy, (01— 0n)+ 1.

This implies that

'dm(QlaQ2)7

| —

dm('y(Ql)ﬂy(QZ)) <

that is, . is a -contraction on the space (%}, dy). [

1.2.2. (1, 4p)-Lipschitz map

In this subsection we define a (U1, itp)-Lipschitz map, which is, in some sense, a gener-
alization of the standard definition of a p-Lipschitz map on a metric space to a Cartesian
product of metric spaces. This notion is not needed in the proof of the fixed point theorem
stated in Proposition 1.2.12, but it will be needed in the sequel as a natural generalization

of Lipschitz maps.

Definition 1.2.9 ((u;, 4p)-Lipschitz map). Let Xj, X, and Y be metric spaces, and let
¢ : X; xXo — Y be amap. Let ; : X; — R be maps, for i = 1,2, such that € (x,-) :
X, — Y is a uy(xp)-Lipschitz map and € (-,x2) : X; — Y is a up(x)-Lipschitz map, for
every (x1,x2) € X1 x Xp. Then we call € a (Uy, lUp)-Lipschitz map.

If, additionally, in the above definition it holds that p;(x;),t2(x2) < 1, for every

(x1,x2) € X1 X X3, then we call € a (U, lp)-contraction.

Example 1.2.10. Letk € N>, % C 47, and € : 1 x %1 — % be a map defined by
% (K,G) := K -D;(G). By linearity of derivation D and of multiplication, it follows that

¢ isa (21 +°f:'e1 w5 +0r(1:1£1 © ) -Lipschitz map with respect to the metric d; on #.
In particular, if we restrict to %% x %7, then ¢ is a (2, Hm]jel w5 Hm]jzl ) ) -contraction.

1.2.3. Fixed point theorems
Recall the classical Banach Fixed Point Theorem.

Theorem 1.2.11 (Banach Fixed Point Theorem, see e.g. [19]). Let X be a complete

metric space and .’ : X — X a contraction. There exists a unique fixed point x € X of .7,

ie., S (x) =x.

35



Preliminaries Fixed point theorems

36

Furthermore, x is given as the limit of the Picard sequence:
x=1m("(xp)),
n
for any initial point xp € X.

Now we state a fixed point theorem which is an easy consequence of the Banach Fixed
Point Theorem. The idea of the proof is motivated by the Krasnoselskii’s Fixed Point

Theorem (see e.g. [36]). Proposition 1.2.12 is frequently used in proofs in Chapter 2.

Proposition 1.2.12 (Fixed point theorem, Proposition 3.2, [29]). Let X, Y be two metric
spaces and let X be complete. Let ., .7 : X — Y, such that:

1. . is a u-Lipschitz map,
2. .7 is a A-homothety,

3. u<A,

4. S (X)C T (X).

There exists a unique point x € X such that .7 (x) = .7 (x).

Furthermore, x is the limit of the Picard sequence:
x=1im((7 1 0. )"(x0)),
n
for any initial point xg € X.

Proof. Since .¥(X) C T (X), 7' 0.7 : X — X is well defined. The map .7 is a A-
homothety, so its inverse .7 “lisa %—homothety on . (X). Therefore, since % <1,
T 1o X > Xisa %—contraction on X. We conclude by the Banach Fixed Point
Theorem (Theorem 1.2.11). [



2. NORMAL FORMS OF LOGARITHMIC

TRANSSERIES

In this chapter the main object of our study is the conjugacy equation:

pofop =g, (2.1)

in the variable @ € £°, where f,g € £ are given. Equation (2.1) is solved in [21, The-
orem A] using a transfinite algorithm of elementary parabolic changes of variables, but
only for the logarithmic transseries of depth 1 (i.e., only one iteration of the logarithm).
We generalize these results for hyperbolic, strongly hyperbolic and parabolic logarithmic
transseries of an arbitrary depth. Our algorithm is less transfinite, and based on a fixed

point theorem stated in Proposition 1.2.12 in Section 1.2.

Note that equation (2.1) is equivalent to the equation:

pof=go0. 2.2)

In the next proposition we give a necessary condition on f and g for solvability of the

conjugacy equation (2.1).

Proposition 2.0.1 (Necessary condition for solvability of the conjugacy equation). Let
f,g € £H and let @ € £ be a solution to the conjugacy equation @ o fo @~! = g. Then,
Le(f) = Lt(g)-

Proof. Let @ =id+ ¢y, f =Lt(f)+ f1, and let g = Lt(g) + g1, for ¢y, f1,g1 € £. By the
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definition of the composition, it follows that:

(i)
(pof:er‘PlOf:Lt(f)+f1+(p1(Lt(f))+Z(plai“!t(f))

i>1

(fl)i7
gt i
gop=Li(e)+ai+) (o))
i>1 b
which implies that Lt(¢ o f) = Lt(f) and Lt(go ¢) = Lt(g). Since po f =gog, it
follows that Lt (f) = Lt(g). [

By Proposition 2.0.1, it follows that g in the conjugacy equation (2.1) is hyperbolic
(strongly hyperbolic, parabolic) if and only if f is hyperbolic (strongly hyperbolic, parabolic).
Moreover, we ask of g in equation (2.1) to be minimal in £H je., to have as little number
of terms as possible. We call such g the normal form of f, and denote it by fy. In that
case, the conjugacy equation @ o fo @~ ! = f is called the normalization equation, and

its solutions are called the normalizations of f.

In Sections 2.1, 2.2 and 2.3 we prove normalization theorems in all three cases: hyper-
bolic (Theorem A), strongly hyperbolic (Theorem B) and parabolic (Theorem C). These
theorems are proved by transforming a normalization equation to appropriate fixed point
equations on complete metric spaces and applying fixed point theorem stated in Proposi-
tion 1.2.12 on these spaces.

In order to use the fixed point theorem from Proposition 1.2.12, for f € £, we define
the operators .7 and . on the appropriate spaces. We use the results from Appendix B
for solving linear and various nonlinear equations to prove that 7y and ./ satisty all

assumptions of the fixed point theorem.

2.1. NORMAL FORMS OF HYPERBOLIC

LOGARITHMIC TRANSSERIES

In this section we present our results from [29]. They represent a generalization of the
results obtained in [21] for hyperbolic logarithmic transseries of depth 1, to hyperbolic

logarithmic transseries of an arbitrary depth, using fixed point theorems.
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In the sequel we assume that f € £, f = Az+h.o.t., A € Rug, A # 1, is a hyperbolic
logarithmic transseries.

In this section, we solve the conjugacy equation:

pofop =g, (2.3)

in variable ¢ € £°, for given f,g € £¥. By Proposition 2.0.1, it follows that, if the
conjugacy equation above has a solution in £°, then g = Az +h.o.t. In Proposition 2.1.1
(see [29, Subsection 4.3]) below, we generalize Proposition 2.0.1 for hyperbolic logarith-

mic transseries.

In Subsection 2.1.1 we state the complete normalization theorem (Theorem A) for
hyperbolic logarithmic transseries, which is the main theorem of this section. Further-
more, in Subsection 2.1.2 we prove statements 1 and 2, and in Subsection 2.1.4 we prove
statement 3 of the normalization theorem. The normalization theorem is constructive: in
Subsection 2.1.5, we give two algorithms for obtaining normal forms and normalizations.
Finally, in Subsection 2.1.6 we give the description of the support of the normalization
and prove that the support of the normalization depends only on the support of the initial

hyperbolic logarithmic transseries.

Proposition 2.1.1 (Necessary condition for solvability of normalization equation, [29]).
Let f € £ k € N, such that f = fy+h.o.t., for
for=2z+ Y, amdl]"---4* (2.4)
0, <m<1;
and m = (my,...,my). Let fi := f — fo and g € £ If the conjugacy equation ¢ o f o
¢~ ! = gis solvable in £, then g = fo +h.o.t.

Proof. Let k € N be minimal such that f,g € .Zj{H . Note that the conjugacy equation
pofop =g, @ e £0 is equivalent to the equation po f = go @. Let ¢ =id+ ¢y,
g = go + g1, where the order of every term in gg is smaller than or equal to 1;;, and
ord(g1) > 11 1. Now, by the Taylor Theorem (see Proposition A.1.6), we get the equiva-

lent equation:

(i) . (i)
wlsﬁﬂ(fﬂ’==&)+g1%2:(&yf§1>

i>1

fotfiteiofo+ ), (p1)"
i>1
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Since ord( (1) ) > 14 and £ (fO) (f1)! > 1441, for i € N>y, it is sufficient to con-

sider the equation:

()
fo+(P10fo—go+ZL
i>1

Now, put fo:=Az+zK, K € %’;, go:=Az+z20, 0 € %’;, and ¢; := zG+h.o.b.,

Ge Q%’JZF |- We get the equation:

Az+ 2K+ (zG)(Az) +ZM( K) =Az+ Q+ZM

i>1 i! i>1

(zG)’

Now, by Lemmas A.2.8, A.3.1, A.3.3, and by the fact that ord (D;(G)),ord (D1(G)) >

1., after dividing by z, it follows that:
K+AG+G-K=0+AG+Q-G.

Therefore, K- (1+G) = Q- (14 G) and K = Q, since 1 +G # 0. This implies that
Jo = go. n

Proposition 2.1.1 suggests the normal form of a hyperbolic transseries. Indeed, we
know that the initial part of f, fy as in (2.4), remains intact in the normal form. On the
other hand, it is proved in [21, Theorem A] that the normal form of hyperbolic transseries
fe L, f=Az4+adi+hot, A €Rog, A#1,a#0,in L is fo = Az+azly.

This suggests putting g := fo and seeking in the following subsection for a solution
of the conjugacy equation (2.3) with g = fy in £°. If such a solution exists, then, by
Proposition 2.1.1, fy is the normal form of the hyperbolic logarithmic transseries f.

Note that logarithmic transseries f; defined in (2.4) can be infinite. That depends on

the initial part of the original transseries f. This can be seen in the next example.
Example 2.1.2. Let A € R such that A # 1.

1. f(z) =Az+3z¢+hot €4,
fo(z) = Az+ 321, ¢ € £,

2. f(z) =Az+2z +hot. € A,
fole) =2z, ¢ € £,
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3. f(2) = Azl + 05+ 026,°) + 22477 + 3 € D,
fo(Z) =Az+ 7214, @ € fo,

4. f(z) = Az + (030 +0305 %+ €18 + 016285+ £1005 +0,0303°) + 236, 0+ 2457 € 4,
fo(z) = Az+z(€30 + 02057 + 016, +£16283), @ € LY,
Foo )
5. f(z) = lz—l—z( Y 66y 40,8,° +e%e4) +Y deke s,
i=2 k>2

+°o . .
fol)) =Ae+2( L 0o +014,7), 0 € 2.
i=2

For more examples see [29, Example 2.3].

2.1.1. Normalization theorem for hyperbolic logarithmic transseries

We consider the normalization equation @ o fo @' = fy, in the variable ¢ € £°, for a

hyperbolic logarithmic transseries f, and fj its initial part as defined in (2.4).

Proposition 2.1.3. Suppose that the conjugacy equation @ o fo @' = f; is solvable in
£9 for every hyperbolic logarithmic transseries f = Az+h.o.t., 0 < A < 1, and fp as
defined in (2.4). Then the same holds for all hyperbolic logarithmic transseries with the

leading term uz, for u > 1.

Proof. Let f = pz+h.o.t., for > 1. Then f~! = fz+h.o.t. and it = z+h.o.t. Now,
put A := ﬁ and (f~!)o be as defined in (2.4) with f~! instead of f. It can be shown that
(fo) ' = (f")o+h.o.t.. Since 0 < A < 1, by assumption, there exist @1, @, € £° such
that @10 f~ oot = (f71)o and @a0 (fo) Lo @y = (f71)o. Now, for y:= ¢, ' o g
we get yo f~loy ™! = (fy)~!. Taking compositional inverses on both sides of the above

equation, it follows that wo foy ! = f. [ |

By Proposition 2.1.3, it follows that it is sufficient to consider hyperbolic logarithmic

transseries f = Az+h.o.t., for0 <A < 1.

Theorem A (Normalization theorem for hyperbolic logarithmic transseries, Main The-
orem, [29]). Let f = Az+h.ot. € %, ke N, with A € Rop, A # 1, be a hyperbolic

logarithmic transseries. Write

f=Az+ Z amzl}" L +hot., m=(m,...,my),

0, <m<1y
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and

for=2z+ Y, amzl]'---4% (2.5)

0,<m<1;

Then:

1. There exists a unique parabolic logarithmic transseries ¢ = z+h.o.t. € £°, called

the normalizing transformation, such that:

Qofop ! =fp. (2.6)
Moreover, ¢ € ,,Sfjco.

2. The logarithmic transseries fy is minimal with respect to the inclusion of the sup-
ports, and the coefficients of fy are invariant, within the conjugacy class of f by

parabolic transformations in £°. Therefore, f; is a normal form of f.

In particular, f can be linearized in £° if and only if ord (f — A -id) > 1.

3. Let 0 < A < 1. For a parabolic initial condition & € £°, the generalized Koenigs

sequence

( £ ono fo”) 2.7)
n
converges to @ in the weak topology if and only if Lb, (h) = Lb, (¢).

In statement 3 of Theorem A, the generalized Koenigs sequence converges in the
weak topology which is the weakest of all topologies defined in Subsection 1.1.3. Indeed,
in the following example we give an example of a hyperbolic logarithmic transseries f
whose Koenigs sequence does not converge neither in the product nor in the power-metric

topology, which are finer than the weak topology.

Example 2.1.4 (Remark 2.2, [29]). Consider the logarithmic transseries f := Az + z°
with 0 < A < 1. Note that f € DS,”OH is a formal power series in the variable z with real
coefficients, and fy = A -id. Consequently, if we choose the initial condition % := id, the

generalized Koenigs sequence is, in fact, the standard Koenigs sequence

1 ony _ 1 2, L an2)\2
ﬁ'(hOf)—Z—F(;L—I—l—f—?L—Fle +2 )z +h.o.t.
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Since the coefficients of z> do not eventually become stationary, the generalized Koenigs
sequence does not converge in the product topology. Obviously, the sequence does not
converge in the power-metric topology. On the other hand, note that the sequence (% +

1+2A+A%+---+A"2), converges to % + ﬁ in the Euclidean topology.
Remark 2.1.5 (Remark 2.2, [29]).

1. The normalization ¢ for hyperbolic logarithmic transseries f € £ will be obtained
in Subsection 2.1.2 using the fixed point theorem stated in Proposition 1.2.12 on
suitable subspaces of %, for the minimal k € N such that f € .Z;. We show that
the normalization ¢ belongs to such % and, additionally, satisfies ord, (¢ —id) >
ord, (f — A -id).

2. In Subsection 2.1.6 we prove that the support of the normalization depends only on
the support of the original hyperbolic logarithmic transseries f € £, which means
that the support of the normalization does not depend on the chosen initial condition

he 0.

3. The proof of the existence of the normalization relies on a fixed point theorem
stated in Proposition 1.2.12. The normalization is given explicitely as the limit (in
the power-metric topology) of the Picard sequence related to the certain contraction
operator. However, this Picard sequence is not the generalized Koenigs sequence
given in (2.7). Nevertheless, in Subsection 2.1.4 we prove the convergence of the
generalized Koenigs sequence towards the normalization, for the appropriate initial
conditions. In Subsection 2.1.5 we explain in detail these two different algorithms

for obtaining the normalization.

Remark 2.1.6 (Remark 2.2, [29]). Let f = Az+hot.€ £, ke N, for0 <A <1, be
such that ord (f — A -id) > 1y, i.e., fo = A -id. By Theorem A, there exists the unique

normalization ¢ € £0. such that
pofop l=21-id.

By Theorem A, 1, it follows that ¢ € .iﬂko. In this case, we call ¢ the linearization of the

hyperbolic logarithmic transseries f and we say that f is linearizable.
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In the linearizable case, the generalized Koenigs sequence (2.7) becomes the standard

Koenigs sequence

(55 (o) |
where h € £0 is the initial condition. By Theorem A, 3, the Koenigs sequence (% .
(hofom) >n converges in the weak topology to the linearization ¢ if and only if Lb, (k) =
Lb, ().
In particular, if f satisfies that ord, (f — A -id) > 1, then by Theorem A, 3, and Re-
mark 2.1.5, 1, the Koenigs sequence ( % - (ho f°m) )n converges in the weak topology to
the linearization ¢ for any initial condition 2 € £° such that ord, (2 —id) > 1. In particular,

the sequence (% f O”) ) converges to the normalization ¢ in the weak topology.

2.1.2. Existence and uniqueness of the normalization

Transforming the normalization equation to fixed point equations

The idea of transforming the normalization equation to a fixed point equation came from
the classical Koenigs Theorem for complex hyperbolic germs of diffeomorphisms at zero.
Therefore, we first state the Koenigs Theorem (without the proof) and then proceed to the

transformation of our normalization equation.

Theorem 2.1.7 (Koenigs Theorem, see e.g. [4], [14], [24]). Let f € Diff(C,0) be a
hyperbolic analytic germ of diffeomorphism at zero such that f(z) = Az+o0(z), for A € C,
0 < |A| < 1. Then there exists an open neighbourhood U of 0 and a parabolic change of
variables ¢ € Diff (C,0), ¢(z) = z+0(z) such that (¢ o f)(z) = A¢(z) on U. Moreover,

the Koenigs sequence (% fO”)n converges uniformly to ¢ on U.

Since the parabolic change of variables ¢ in the Koenigs Theorem satisfies the con-
jugacy equation %(p o f = @, it is natural to consider the operator Zf(h) := % oho f, for
h € Diff (C,0) tangent to the identity, which we call the Koenigs operator, and to trans-
form the equation to the fixed point equation &;(¢) = ¢. By the Koenigs Theorem, it

follows that the sequence of iterations (£7;"(id)) converges uniformly to ¢.
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Our goal here is to generalize the Koenigs Theorem to hyperbolic logarithmic transseries.

From Proposition 2.1.1, it follows that the normal form for a hyperbolic logarithmic
transseries f is of the form g = fo +h.o.t., where fj is given in (2.5). Since we want
this normal form to be minimal, we try to solve the conjugacy equation o foo~! =g,
for g := fy. Therefore, we have to adapt the Koenigs operator for fy. Note that in the
Koenigs Theorem, the normal form is fo = A -id. Since f; I = % -id, the Koenigs opera-

tor is, in fact, Zr(h) = fo_1 ohof.

Definition 2.1.8 (Generalized Koenigs operator and sequence, [29]). Let f € £H, f =
Az+h.ot., 0 <A <1, be a hyperbolic logarithmic transseries and fj as in (2.5). Let
Pr £9 — £9 be the operator defined by:

Pr(h):=fylohof, he g (2.8)

We call &, the generalized Koenigs operator. In particular, if fy = A -id, then we call
P the Koenigs operator.
Moreover, we call (@;”(h)) the (generalized) Koenigs sequence with the initial
n

condition h € £9.

In the next example we show that &7 is not a contraction even on 9, with respect

to some standard metrics.

Example 2.1.9 (Noncontractibility of operator 2y in standard metrics). For simplicity,
we consider the space of formal power series zR [[z]] € .24 in the formal variable z. By
Example 1.1.19, (4), on zR[[z]] the product topology is the same as the power-metric
topology, so they are both metrizable by the power-metric ¢, defined in Subsection 1.1.3.
By Example 1.1.19, (6), the weak topology on zRR [[z]] is also metrizable by e.g. the weak

metric:

oo

|la; — bl
o (h o)
1) Zzt (1+|ai—bi])’

i=1

where hy,hy € ZR[[2]], by = L @iz’ hy := Y1 bz, for a;,b; € R and i € N.
We give below some examples that show that the operator &, f € zR[[z]], f = Az+
h.o.t, 0 < A < 1, is not necessarily a contraction with respect to the power-metric d;, nor

with respect to the weak metric d,, on z+2*R|[z]] C ..

45



Normal forms of logarithmic transseries Normal forms of hyperbolic transseries

(i) Takee.g. f:=Az+z%and g :=id. We get:

1

4.(0,8) = (0,24 (g)) = 5.

(ii) For f and g as above,

1

dy(0,8) = TiA

<=+

dw (0, 24(g))-

B
B
B

Since Zf is not a contraction in any of previously introduced metrics, not even on
.ZOO, we adapt the idea from [26, Chapter 3]. For a hyperbolic f € £, we define the

operator 7 : £iq — £+iq such that
H;(h) == Pr(id+h) —id,
where -4 := Uen -2, for Wy := {(at,n) € R x Z¥: (at,n) > (1,04)}, k € N,

Example 2.1.10 (Noncontractibility of the operator 77 in standard metrics). Let d; be
the power-metric and d,, the weak metric defined in Example 2.1.9 on zR [[z]]. We show
below that the operator 77, f € zR[[z]], for f = Az+h.o.t, 0 <A < 1, is not a contraction

with respect to the power-metric d, nor with respect to the weak metric d,, on z>R [[z]].

(i) Takee.g. f:=Az+z2+ho.t,0 <A <1, g:=2z% Since ord, (J;(0) — H#(g)) =
ord, (g) =2, we get:
1
d.(0,g) = dz(%‘(o)w%?‘(g)) = 4

(ii) In the weak metric d,,, for f and g as in (i), we get:

1
dw(O,g)Zg,
1 A 1 2 1 1
dw(jfjr(O),,%’}(g))ZZ 22 8 T2 e AT (2.9)
If we put A = 1, we get:
23 1
d(H7(0), 75 (8)) = 5o > g = dw (0:8).

Therefore, by continuity of (2.9) in the variable A, it follows that there exists 0 <
A <1 sufficiently close to 1, such that d,, (75 (0) , %5 (g) ) > % which implies that

7 is not a contraction in general.
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Since the operators & and .7/} are not contractions in any of our usual metrics, in
order to apply a fixed point theorem stated in Proposition 1.2.12, in the next proposition
we transform the equation J#7(¢) = ¢ to another fixed point equation .7;(¢) = .7#(¢)
for suitable operators .7y and .s. Such transformation of the equation is motivated by

the Krasnoselskii Fixed Point Theorem (see e.g. [36]).

Proposition 2.1.11 (Proposition 3.4, [29]). Letk € Nand f € %, f = Az+h.o.t., with
0<A<1. Let fi := f — fo, for fy as in (2.5). For ¢ € £2 and h:= ¢ —id € £-;q, the

following equations are equivalent:
L gofop~" = f,
2. Tp(h) = Z5(h),
where the operators .f, 771 £.iq — £-iq are given by:
Fr(h) == i(fl +(hof—ho fo) — (g0 (id+h) —go—go-h) >,
Tr(h) = i((l ch—h(A-id)) — (ho fo—h(A -id)) +g6~h>. (2.10)
Here, go := fo — A -id.

Proof. Note that the fixed point equation J¢(h) = .#¢(h) is equivalent to the equation
fi+hof—go(id+h)+ go = Ah. From the last equation, since f =id+ go + f; and
@ = id+ h, we get the equivalent equation o f —goo @ =A@, ie,pofop ' =f). N

By superlinearity of derivation, left multiplication and right composition (Proposi-

tion A.1.4), note that .7} is a superlinear operator.

Remark 2.1.12 (Expansions of the operators .7y and J%). Let f, fo, fi and go be as
in Proposition 2.1.11. By the Taylor Theorem (Proposition A.1.6) we have the following

expansions:

(i)

= (g gy zw),
=8 iz b
1 7L d -1
Tr(h) = h=h(A-id) _72 ! (80)' + 786+, @2.11)
z>l

for h € £<i4.
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By (2.11) and Example 1.2.7, if ord (fi) > 1, then ./ increases the order (in z) by
at least ord; (f;) — 1 on the space (.Zkordz f 1),dz). On the other hand, .7} is a superlinear
isometry on space (.Zkordz () ,d;). In that case, we can apply fixed point theorem stated in
Proposition 1.2.12 to the existence and the uniqueness of the solution of the fixed point
equation .7y (h) = .#f(h) on the space (.,iﬂkordz Y 1),dz).

However, if ord, (fi) = 1, then ord, (Jy(h)) = ord, (.#s(h)) = ord.(h). Since the
coefficient of the homothety .7+ and the minimal coefficient of the Lipschitz map . are
equal, we cannot apply the fixed point theorem from Proposition 1.2.12 directly. However,
Z increases the order by at least (0,1;_1,2) and, since ord (o) < (0,1x), I increases
the order of /4 by at most (0,1;). Therefore, the idea is to use a metric which captures
the increase in order, no matter how small (in which variable), even though there is no

increase in ord;. This motivates the definition of the so-called r-preserving metric.

Definition 2.1.13 (r-preserving metric). Letr: % — R”, for 1 < p <k+ 1. We say that
a metric d on the space %, k € N, is r-preserving if, for every M > 0, lexicographically,
there exists a constant 0 < s < 1, such that, for every g;, g such that r(g) +M < r(g2),
it holds that d(0, g2) < tpr-d(0,g1).

Proposition 2.1.14.
1. The power-metric d, on %%, for k € N, is ord,-preserving.
2. There are no ord-preserving metrics on %%, k € N> .
Proof. 1. LetM >0, and let g1,8> € % such that ord; (g1) + M < ord; (g2). Then
d(0,g) =270 (82) < p=Mp—ord: (81) — p=M g (0 g).

Put p1ys := 2~ < 1. Thus, we proved statement 1.
2. Suppose that d is an r-preserving metric on %%, k > 1, with respect to the r := ord :

% — R¥1 Take the sequence (g,) in % defined by g, := z£", for n € N. Evidently,
Ord(gn) :Ord(g0)+<07n70k—l)7 (212)

for n € N. Since d is ord-preserving, for M = (0,1,0;_1) there exists 0 < py < 1 such
that d(0, gn+1) < tam -d(0,8,), for n € N. Then, d(0,g,) < uy;d(0, go), for n € N. Taking
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the limit as n — 40, we get that

ngrfwd(o,gn) =0. (2.13)
However, by the definition of g,
5 1
ord (2) > ord (g,) + (5’0">’ (2.14)

for n € N. Since d is ord-preserving, there exists m > 0 such that d(z2,0) < ! d(gn,0),
for n € N. Passing to the limit as n — o0 and using (2.13), we get d(z?,0) = 0. This is
a contradiction with the definition of a metric. Therefore, an ord-preserving metric does

not exist. [ |

By Proposition 2.1.14, it seems useless to try to come up with a metric in which .
is a contraction and .77 is an isometry. Therefore, we split the proof of Theorem A in two

cases:
(a) ord; (f—fo) > 1,
(b) ord; (f—fo) =1.

In case (a) we proceed directly by the fixed point theorem from Proposition 1.2.12 to
prove the existence and the uniqueness of the solution 4 of the fixed point equation
Tr(h) = F¢(h), for h € £-iq. Then, by Proposition 2.1.11 ¢ = id + & is the unique
normalization satisfying equation @ o fo @~ = f;. In case (b), we first prenormalize the

hyperbolic logarithmic transseries f and then apply case (a) to the prenormalized f.

Proof of case (a): ord, (f — fo) > 1

In the following lemma we verify that the operators .77 and .7 satisfy the assumptions

of the fixed point theorem from Proposition 1.2.12.

Lemma 2.1.15 (Properties of the operators ff and ., Lemma 4.1, [29]). Let k€ N
and f = Az+h.o.t. € £, with0 < A < 1. Let f; be as defined in (2.5) and f; := f — fo.
Let B :=ord;(f1) > I and let .77 and .”f be the operators defined in (2.10). Then:

1. Xkﬁ is invariant under .7y and .,
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2. Syisa 2ﬁ¥7l—cont1raction on the space (.fkﬁ ,dz),
3. Jr is an isometry and a surjection on the space (fkﬁ ,dz).
The same holds for the spaces .Z,E , in place of P , forall m > k.

Proof. 1. Note that f] € .,Z”,E , for every m > k. The invariance of .%},, m > k, and of the
subspaces ,,5,”,5 under 77 and .%s follows easily from Remark 2.1.12.

2. In order to prove statement 2, we consider the expansion of the operator .%¢
from Remark 2.1.12. Let hy,hy € ,Z,E, m > k. Then ord; (h;),ord; (h;) > B. Since
B = ord, (f1), we obtain

oy, i whof, (1) fy, i
Ordz(Z —(f1) —Z.(f1)> _Ordz<, -.(fl)> @.15)

! !
=1 s

:Ol'dz(hl —hz)—l—ﬁ -1,

for the linear part of the operator .. For the non-linear part of .#¢, as in Example 1.2.7,
we get:
Ty o (S
i
ord; | Y %0-hy — Y 50h | = ord. Y 50 (y — o) ( Y iy )
J:

> b i>2 i>2

(2.16)
>ord; (h —h)+B—1.

The equations (2.15) and (2.16) imply that ¢ is a ﬁ—contraction on the space (%, d-),
as well as on the spaces (.Zg,dz), m>k.

3. We first prove that Zc is an isometry on (.Z,ﬁ ,dz), m > k. We use the expansion
of the operator .77 from Remark 2.1.12. Let h = z*Hy +h.0.b.(2) € .i”,ff, m > k, where
Hy € %), a > . Analyzing the orders of the terms of J(h) in the expansion from
Remark 2.1.12, expanding & (Az) by Lemma A.3.1, and using the fact that ord (go) >
(1,0,...,0);m+1 and A # 1, @ > 1, we conclude that

ord (J(h)) = ord (z*Hg).

Hence,

ord; (J¢(h)) = ord, (z2*Hy) = ord; (h). (2.17)

Therefore, .7 is a superlinear isometry on the spaces (02”,5 ,d2), m> k.
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It remains to prove that 7 : ‘Zf — .i”kﬁ is a surjection, and that this also holds if we
replace Xkﬁ by ,5,”,5 , m > k. Due to the superlinearity of .7%, it is sufficient to prove that,
for every block 7'M, € .i”kﬁ , My € %, there exists a block z%Hy, € .Zj(ﬁ , Hy € %, such
that

jf(zaHa) =7'M,. (2.18)
The idea there is to prove the existence of a solution to (2.18) by reformulating this equa-
tion as a fixed point equation for a suitable contraction on the complete space (#,d).

First, as % is an isometry, o = . Write gg = zQ, with Q € %’; 1- Using Lemma A.3.1,
Lemma A.2.7 and Lemma A.3.3, we regroup the elements of the left-hand side .77 (ZVHV)
of (2.18) as

AZ'Hy— (2"Hy) (Az) = (A — A7) 2"Hy — A7 (log A - Dy (Hy) 4+ 6, (Hy))
(20)" 7Hy = (0 + D1 (Q)) Hy,

ZVHy ()(/12) (20) = Z/AH. Z( ) (7QL>i+Zyc75/Q(H7),

i>1

Lo

where ¢ from Lemma A.3.1 is a superlinear %—contraction on (#1,d) and Fp :=

H (-,Q) from Lemma A.3.3 is a superlinear m—contraction on (%,d):

ordy, (6p(Hy)) > ordg, (Hy) + 1.

Finally, the operators D, ¢} and %y do not decrease the powers of the variables £,,,
for 1 < m < k. Hence, after dividing by z7, these identities allow to rewrite (2.18) as the
following fixed point equation:
Hy = 51 (Hy),
where .7 : A1 — 9 is the operator defined by
_ AT(log -Dy(H) + ), (H)) — H -D1(Q) + Hp(H)
A=AT+0-218 () (§)

Note that y > B > 1, so A — AY # 0. Hence, thanks to Example 1.2.6, .#] is an affine

M
S (H W Hem. 219

%—contraction on the space (%’hd 1), which is complete by Proposition 1.1.16. It follows

from the Banach Fixed Point Theorem (Theorem 1.2.11) that .%] has a unique fixed point
in A, so that the block z"My has a unique preimage z'Hy € P by J7.

Finally, thanks to the superlinearity of .7, we conclude that .7} is surjective on .ZE .

[
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Finally, we prove the case (a) of Theorem A.

Proof of case (a) of Theorem A. Let B := ord; (f — fo). By Proposition 1.1.16, the space
.,?j{ﬁ is complete. By Lemma 2.1.15 and the fixed point theorem from Proposition 1.2.12,
the equation .J7(h) = .#¢(h) has a unique solution & € .Zkﬁ . Since B > 1, it follows that
he L.

We now prove the uniqueness of the solution of
Ty (h) = S5 (h) (2.20)

in the larger space £-iq5. Suppose that there exists another solution 4, € £<q of (2.20),
such that iy # h. There exists the minimal m > k such that h; € .%,,.

We prove that ord; (2;) > B. To this end we introduce the operators

—~ 1
g (h):= > (fi+(hof—ho fo))
and
1
A
obtained by moving the last term of . (h) to .7 (h) (in (2.10)). So we have

Ty (h) := = (Ah =1 (A2)) = (ho fo —h(A2)) + g h+ (g0 (id+ ) — g0 — gy 1))

Tr () = Ty (hy). 2.21)
Since B = ord; (f1) and ord; (h;) > 1 for h; € £-4, by the Taylor Theorem (Proposi-
tion A.1.6) it follows that

ord, (%(hl)) > min {B,ord; (h1)+B -1} =B.

On the other hand, it can be seen as in (2.17) in the proof of Lemma 2.1.15 that we have
the identity
ord, (Fy(h1)) = ord; (k).

Comparing the orders of the left and the right-hand sides of (2.21), we obtain
ord; (hy) > B.

That is, hy € .Z,E . Recall that the space .i”,,lf ,m € N, is complete by Proposition 1.1.16.
Hence Lemma 2.1.15 and the fixed point theorem from Proposition 1.2.12 give the unique-
ness of the solution of (2.20) in anf . Now, since .i”kﬁ C .anf , both & and A belong to .ZE ,

which contradicts the uniqueness of the solution in .,2”,,[3 .
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Finally, by Proposition 1.2.12, the uniqueness of the solution / of the equation ./ (h) =
Jr(h) in £;q implies the uniqueness of the normalizing change of variables ¢ =id +h

in the space £0. This proves the case (a). |

Proof of case (b): ord, (f — fo) =1

Let f € £/ be a hyperbolic logarithmic transseries and f; be the initial part of f as defined
in (2.5). Suppose that ord; (f — fo) = 1. Since in this case .77 is an isometry and % is
a 1-Lipschitz map (where 1 is its minimal Lipschitz coefficient), we cannot apply the
fixed point theorem stated in Proposition 1.2.12 directly. Therefore, we proceed in the

following steps:

Step 1. We prenormalize the hyperbolic logarithmic transseries f, i.e., we solve a conju-

gacy equation:
@oofop, = fo+h.0b.(z), (2.22)

in the variable @y € £°. The solution is not unique in the space £°, since it obvi-
ously depends on higher order blocks of the right-hand side of (2.22). On the other
hand, in the proof of case (b) below, we show that, if we impose the canonical form

of ¢, i.e., oo =id+zH, for H € 93;1 C %, then ¢ is unique.

We call such ¢y the prenormalization (or prenormalizing transformation) of f and
equation (2.22) the prenormalization equation. The prenormalization ¢ is obtained
by transforming the prenormalization equation to the fixed point equation and using

the fixed point theorem stated in Proposition 1.2.12.
Step 2. We apply the procedure from case (a) to solve the conjugacy equation:
pro(@ofopy ') opr! = fo,
in the variable @, € £°. By case (a), it follows that such ¢; € £° is unique.

In the next lemma we first define the operators 7 and .#; on the complete space
(%;,dl) that transform a prenormalization equation (2.22) to the fixed point equation

(2.23).
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Lemma 2.1.16 (Transforming a prenormalization equation to the fixed point equation,
Lemma 4.2, [29]). Let k € N> and f(z) = Az +h.o.t. € £, with 0 < A < 1. Write
f = fo+ f1, where fy is defined as in (2.5), and ord; (f;) = 1.

A transseries @g = z+zH +h.0.b.(z), with H € %, satisfies a prenormalization

equation (2.22) if and only if H satisfies the equation
To(H) = S (H), (2.23)

where the operators %, . : A3, — B C %L, are defined by:

To(H) = (—llogk —(1+1ogA)Ry— A Z 1(1_—1)11) (io)l) Dy (H)+
+Dy(Ro)- (H+I>Z§l )—H-R,
Fo(H) = A, (H) + G, (H) — Hiy (H) + Hr(H) +R. (2.24)

Here, R € %’T C % is defined by f; = zR+h.0.b.(z), and Ry € %;1 C % is defined
by fo = Az+zRo. The operators ), Cry, Hr,, Hr : B — By C A7, are suitable

%-contraotions with respect to the metric d;.

The above %—contractions are obtained from the appropriate contractions from Lemma A.2.8,

Lemma A.3.1 and Lemma A.3.3. The precise definition of these contraction operators is

visible in the proof.

Proof. Setting ¢y = z+ zH +h.0.b.(z), where H € 93;, fo=Az+zRo and f = fy+
zR 4+ h.0.b.(z), we rewrite prenormalization equation (2.22) as an equation satisfied by
H, R and Ry. To this end, we use the Taylor Theorem (Proposition A.1.6) to expand the
compositions in (2.22) and compare the leading blocks (namely the blocks with ord, equal
to 1) of both sides of the equation. We obtain:
) Az),
AzH —AzH(Az) — Z‘,f (ZRO)

i>1

(zH)'+zR. (2.25)

\\/M
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By Lemma A.3.1 and Lemma A.3.3 we have:

AzH —AzH(Az) = —AlogA -zD1(H) — 126, (H),

(i) .
Z M(ZRO)I

|
i>1 L

=zH -Ry+zD(H ) ((1+log7L Ro—f—)tz( 1)1i> <I;f))i>+2(€RO(H)a
i>2 !

(2.26)

where € and €%, := € (-, Ro) are superlinear §-contractions on the space (#5,,d1) from
Lemma A.3.1 and Lemma A.3.3. Moreover, since ord (R) > (0,1;), by Lemma A.2.8,

Lemma A.3.1 and Lemma A.3.3, it follows that:

()
y (ZR;) (zH)' = 2Ro- H + 2D (Ro) - ") +odr(H), (227
i>1 : 1>2

) ®) .
Z M+ZRO) (zR)' = (zH)'(Az+zRo) - 2R+ ) (=H) (%ZjLZRO) (zR)' =

|
i>2 A

=zH -R+z#gr(H),

where the operator #g, := € (Ro,-) is a i—contraction on the space (%i l,dl) from
Lemma A 2.8, and ¥z is a superlinear J-contraction on the space (%<,,d;).

Now, eliminating z and using (2.26) and (2.27) in (2.25), we obtain:

(~AlogA — (1-+logA)Ry—2 Z El__l )1i) (T)) Dy(H)+ (2.28)

+Di(Ro)- <H+Z o

) H-R=
= A6y (H) +Cry(H) — g, (H) + Ar(H) +R

It follows that (2.28) is equivalent to % (H) = y(H), where .%, and % are defined in
(2.24). m

In the next lemma we prove that operators %) and .# defined in (2.24) satisfy all the

assumptions of the fixed point theorem stated in Proposition 1.2.12.

Lemma 2.1.17 (Properties of the operators .7 and .#), Lemma 4.3, [29]). Letk € N>
and f(z) = Az+hot. € LH, with0 <A < 1. Let f = fy+ g, where f; is defined as in
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(2.5),and ord (g) > 141, ord; (g) = 1. Let the operators %, .79 : ,%’; — B, ,%’; C %,
be defined as in (2.24). Then:

1. Qisa %—homothety on A7, with respect to the metric di,
2. SHisa %—contraction on ,@i | with respect to the metric d,
3. 5’0(%’;1) - %(%;).

Proof. 1. From the definition of .7 in (2.24), by Example 1.2.8 and Lemma A.2.11, we

deduce that
ord (Jo(Hy) — Jo(H,)) = ord (D\(H —Hy)), Hi,H, € #%,, Hy # H,.
In particular,
ordy, (Jo(H — T (H,)) = ordy, (D1 (Hy — H»)) = ordy, (Hy — H») + 1,

for H),H; € %’; | such that Hy # H,. Therefore, 7 is a %—homothety.

2. Part 2 follows directly from the definition of the operator .# in (2.24).

3. Let us prove that Yo(e%’;) C %(%’;). Let M € Yo(e%;). By (2.24), since
ord (zR) > 1;41, it follows that ord (zM) > 14, ;. We prove that M € %(%;1). Indeed,
dividing both sides of

J(H) =M (2.29)
by —AlogA — (1+1ogA)Rg—A Y>> % (%)l and applying Proposition B.5.1, we ob-
tain that there exists a H € %’; | such that (2.29) holds. [

Finally, we use Lemma 2.1.16 and Lemma 2.1.17 to prove the case (b) of Theorem A

(see [29, Subsection 4.2.3]).

Proof of case (b) of Theorem A. Note that the logarithmic transseries @y € £° satisfying

(2.22) is necessarily of the form
®0(z) =z+zH +hob.(z), HeHL C.%L,

for some m € N> .
By Lemma 2.1.16, to prove the existence of a solution ¢g of equation (2.22), it is

enough to prove the existence of a solution H € ,%’JZF | € &, of fixed point equation (2.23).
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By Lemma 2.1.17, equation (2.23) satisfies all the assumptions of the fixed point theorem
from Proposition 1.2.12 on spaces %; 1 € %, for every m > k. Therefore, there ex-
ists a unique solution H € %’;1 C %, m >k, of equation (2.23). By Lemma 2.1.16,
@o(z) = id+ zH +h.0.b.(z) is a solution of equation (2.22), which is unique in £° up to
h.0.b.(z). Therefore, we set @y := id +zH as the canonical form. With this convention,
the prenormalization ¢ in the canonical form is unique. Moreover, ¢ belongs to .%;, for
the smallest k € N> such that f € .Z.

Now we have that
Qyo fo (p(;1 = fo+ f2, for some f, € % such that ord, (f>) > 1.

Hence, we can apply case (a) to reduce fy+ f> to the normal form fy. By the proof of

case (a), we know that there exists a unique @; € £0, such that

gro(gnofopy oo = fo.

Moreover, @; € %, such that ord; (¢;) > ord; (f2).

Now, ¢ := @ 0 ¢y € & is the normalization in case (b), i.e.

Qofop~' = fo. (2.30)

It remains to prove the uniqueness of the whole normalization ¢ € £°. Suppose that
there exists another parabolic logarithmic transseries ¥ # ¢, y € £, satisfying (2.30).
Then y € ,Z,g, for some m > k. Let us decompose Y as ¥ = y o Yy, where Y is of the
form yp =id+zV +h.0.b.(z), V € %’; C %y, and ord, (y; —id) > 1. It is easy to see

that such V is unique. Now,

llfoofollf(f1 :‘I/flofoollfl = fo+21,
Pofop, =@ ofyopr = fotg,

where ord; (g1), ord; (g2) > 1, are both prenormalization equations for f. By the proof of
case (b), it follows that V = H.
Now put ¥ := wo(id+zV)~ ! € £2and @; := @o (id+2zV)~! € £°, where (id+2zV)~!

is the compositional inverse of the logarithmic transseries id +zV. Set f] := (id+zV)o
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fo(id+zV)~! = fo+h, ord, (h) > 1. Then:

viofiow ' = fo,
¢1Of10¢f1 = fo.

By the uniqueness in the proof of case (a), y; = @;. Therefore, ¥ = @. [

2.1.3. Proof of the minimality of the normal form f

Let f € £ be a hyperbolic logarithmic transseries and let f; be its initial part as defined
in (2.5). By Proposition 2.1.1 it follows that, for every g € £/ such that there exists a
solution of conjugacy equation @o fo@~' =g, ¢ € £°, we have that g = fy +h.o.t. On the
other hand, in Subsection 2.1.2 we have proved the existence of a parabolic ¢ € £° such
that @ o fo@~! = f. This implies that f; is indeed the minimal logarithmic transseries

to which f can be conjugated via parabolic change of variables ¢ € £°.

2.1.4. Proof of the convergence of the generalized Koenigs sequence

In the previous subsections, for every hyperbolic logarithmic transseries f € £, we
have constructed its normalization ¢ € #, which reduces f to its normal form f, given
in (2.5). Moreover, ¢ was obtained by a two-step algorithm: 1. the prenormalization, and
2. the normalization of the prenormalized hyperbolic logarithmic transseries.

Each of these steps can be realized as the limit of a Picard sequence of an appropriate
contraction on the appropriate complete metric space. In the prenormalization step, the se-
quence consists of the forward iterations of the contraction 90’1 0.7, and, in the normal-
ization step, the sequence consists of the forward iterations of the contraction 9[1 o.% fs
see [29]. Here we pose the following question: Although &7 is not a contraction in any
previously introduced metric on %%, do the forward iterations of &7y converge in some
natural topology on .£;? If the answer is positive, is their limit the unique normalization
o?

In what follows, we give sufficient and necessary conditions for the convergence of the
forward iterations of Z; in the weak topology. The proof relies on a transfinite induction

and is given in Proposition 2.1.25 at the end of the subsection. First we give the definition
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of the sequential continuity which is a special case of the transfinite sequential continuity

defined in [21, Subsection 4.2]).

Definition 2.1.18 (Sequential continuity, see e.g. [21]). Let¥ : o — %, k € N, be an
operator and let <7 be a differential subalgebra of .Z}. We say that ¢ is the sequen-
tially continuous operator on % if for every sequence (g,) in 7, with property that
Supp (g,) € W, for each n € N, where W is a common well-ordered subset of R x Z*
such that minW > 0,1, and such that (g,) converges in the weak topology to g € <7, it

follows that (¢(g,)) converges to ¢(g) (in the weak topology).

Remark 2.1.19. Suppose that ¢ : o/ — %, for a differential subalgebra <7 of %, is a
sequentially continuous bijection, such that its inverse ¢4~ is a sequentially continuous.
Then every sequence (g,) in .7, with property that Supp (g,) C W, for each n € N, where
W is a common well-ordered subset of R x Z* such that minW > 0, ;, converges in the
weak topology to g € <7 if and only if the sequence (¢(g,)) converges to ¥(g) (in the
weak topology).

Definition 2.1.20 (Right composition operator). Let ¢ € £ and let Ry : £ — £ be the
operator defined by Zy(g) = go ¢, for each g € £. We call %, the right composition

operator with respect to ¢.

Remark 2.1.21. Let ¢ € £, The right composition operator ¢ is a bijection and its

compositional inverse is equal to %(P_l ,1.e., (%(p)_1 = %(p_l.

The following proposition is needed for the proof of Proposition 2.1.25.

Proposition 2.1.22 (Sequential continuity of the right composition operator, Lemma 4.10,
[29]). Let @ € £/ and suppose that k € N is minimal such that ¢ € .i”kH . The right

composition operator %, is sequentially continuous on .Z,, for each r > k.

Proof. Let r > k be arbitrary. Since .Z; C %, we have ¢ € .%,. Therefore, our ambient
space in this proof is .Z,. Let (g,) be a sequence in ., and W a well-ordered subset
of R x Z" such that minW > 0,1, and Supp (g,) C W, for every n € N. Suppose that
g&n — 80, as n — oo, with respect to the weak topology. Put ¢ :=id + ¢;, where ¢, € .Z,,

ord (¢;) > (1,0,). By the definition of a composition, we have:
- g
8&no @ :gn(ld+<P1) Zgn+zi—!(pi, forn e N.

i>1
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By Proposition A.3.5, it follows that, for n € N, the supports of g, o ¢ are contained in the

semigroup G generated by W and
{((X— lam)7(07 1707'"50)r+17""(0707”'7071)r+1})

for (a,m) € Supp(¢;). Let w € G. By the Neumann Lemma (Theorem 1.1.2), there
exists ky € N and a linear real polynomial Py in ky variables (the coefficients of which

depend on ¢ but not on n € N), such that

(220 @]y = Py ([8nly, - [8nly,, ) - forn €N, 2.31)

Here, wy,...,wy, are finitely many elements of G, independent of n € N. By continuity

of polynomial functions, we have:

P ([8alw, ++- -+ [8alwg, ) = P ([80]w, +--- [80)w, ) - (2.32)

Thus, using (2.31) and (2.32), we obtain, for every w € G:

[8n o @)y —2 8000l
n

Remark 2.1.23. Let ¢ € .,%H , for k € N. By Proposition 2.1.22, Remark 2.1.19 and
Remark 2.1.21, it follows that:

Every sequence (g,) in .%,, r € N, with property that Supp (g,) C W, for each n € N,
where W is a common well-ordered subset of R x Z" such that minW > 0, |, converges
in the weak topology to g € .Z, if and only if the sequence (g, o @) converges to go @ (in

the weak topology).

The next lemma is an auxiliary technical lemma for the proof of Proposition 2.1.25.
We suggest the reader to skip it and read its proof only when it is required in the proof of

Proposition 2.1.25.

Lemma 2.1.24 (Lemma 4.11, [29]). Letm € N and f € £ be hyperbolic logarithmic
transseries. Let fy be its normal form given in (2.5) and let ¢ € ,Zn(z be its normalization.
Let 1 € £ be such that Lb,(h) = Lb, (¢) and let € be as in (2.40). Let Pg > Tor
(B,m) € 5 and n € N, be as in (2.42). Then

Py =Agm({Ppn: (v,m) € S, (yn) < (B,m)}) +AP~1PE  forneN.
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Here, for (f,m) € A, the Ap m are linear polynomials in the variables {P}, : (¥,n) €

H, (y,m) < (B,m)}, whose coefficients are independent of n. The coefficients depend

only on f, h and ¢.
Proof. Let Py, (V,r) € €, n €N, be as in (2.42). We define, for (y,r) € A, neN,
7 o(—n+1 . on
Ry, = [f0< n+ )o(1d+h1)of0 ]%r. (2.33)
First, we prove that

Ry =Bgm({Pfn: (Bm) €A, n<m})+AP-Py . (Bm)e, neN, (234)

where Bg . (B,m) € % are linear real polynomials in the variables {Pg n € Hin<
m}, whose coefficients are independent of n. Indeed, for any (8, m) € S, m = (my,...,my) €

7" andn € N,
(ngmzﬁeTl ) o fy = Pg,mgﬁzﬁwu -l (1+hoo.t.(%)).

Here, the notation h.o.t.(%)) means higher order terms lying in 9;. The statement (2.34)
then follows simply by fy "o (id+h1)o fit! = (fo "o(id+hi)o ffl) o fo and the Neumann

n-+

Lemma (Theorem 1.1.2). Indeed, it can be seen that the coefficient Rﬁ ! in step n+

m
1 can be expressed as a linear real polynomial, with coefficients independent of n, of
finitely many coefficients P”,n, n < m, from previous step and of Plrim' Here, A is as in
Proposition 2.1.25, defined by id+ /4, = ho @~ 1.

Let us prove that:

—~ 1
Pim =Com({Ryn'  (vm) €2, (v,m) < (B.m)}) +2RGG. (239)

Then, by (2.34), it follows that, for (8,m) € J# and n € N,

—

Pt =Cpm({Ryh (v;m) € A, (v,m) < (B,m)})

1 /1 7 — 143
+X'Bﬁ,m({Pﬁ,n3 (B,n) € 7, n<m}) +AB-1p m

=Apm({Pfn: (rm) €A, (v.m) < (B.m)}) +47~ 175

where Cg 1, and Ag p, are linear real polynomials in the variables { Py, : (¥,n) € A, (7,n) <

(B,m)}, whose coefficients are independent of n. This proves the lemma.
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In order to prove (2.35), let ko := f, - %id. It is easy to see that ko contains only

monomials which are of order 1 (in z). Let &, as before, be defined as id+ hy = ho (p*I,
and r by:

(55 o (id+h) o f5" ) = fo+r.

Then ord, (r) > 1 since ord; (h;) > 1. By the Taylor Theorem (Proposition A.1.6) we
obtain:

—1\O)
o(—n o(n . f ! f .
£ o (£ o (id+ Ry ) o 5T :ld+2(())(())r

i
!
1 1

>
()

. 1 ’ ko (fO) i
ld+<l+k0<f0)>r+i>zz T r
(@)

) 1 ky'(fo) ;
:1d+zr—|—z 0 22 H,

Clearly, by definition (2.33) of R,

1 } 1
—r = —R*L
|:l ﬁ,m l ﬁ7m

(2.36)
- K () : .
and (8,m) in };~; ="' can be realized as follows:
(Bam) = (Ylanl)+"'+(%7ni)+(1 —i,V),
= (’yl?nl) + (YZ_ 1,1’12) +oeet (%_ lani) +(07V)7 (237)

where (1—i,v) € Supp(k(()i)(fo)) and (y1,m1),...,(%,n;) € Supp(r). Note that y; > 1, j=

1,...,i,and v > 0,,. Note that, in (2.37), we can subtract -1 from any (i — 1) elements %,
k=1,...,i. Therefore, it follows from (2.37) that

(r1,m1),-., (%,m;) < (B,m).

Now (2.35) follows from the Neumann Lemma (Theorem 1.1.2), (2.36) and (2.37). N
In the next proposition we prove the statement 3 of Theorem A.

Proposition 2.1.25 (Convergence of the generalized Koenigs sequence, Lemma 4.9, [29]).
LetkeNand f € .ka be hyperbolic, and let f; be its formal normal form from (2.5).

For a parabolic initial condition / € £°, the generalized Koenigs sequence

Z7 ()= (5" oho f)

(2.38)
n
62



Normal forms of logarithmic transseries Normal forms of hyperbolic transseries

converges to the normalization ¢ € £° in the weak topology, as n — o, if and only if

Lb, (7) = Lb. (¢).

Proof. Let m € N be minimal such that f,h € £,,. We first prove the following: for
h, @ € £9, Lb, (h) = Lb, (¢) if and only if ord, (ho o — id) > 1.

(<) Leth e £° and let (NS fko be the normalization of f. Let m € N be the smallest
integer such that h € %) and m > k. Let ord, (ho @~! —id) > 1.

Since @o fo o~ ! = fo" for every n € N, it is easy to show that
P (h)o o ! = fg(fn) o(hogp Yo fs", foreveryneN.

Note that #"(h) o ¢! € £V, Therefore, by Remark 2.1.23 applied to g, := P (h) o
@' (which have support in the common well-ordered set HU {(1,0,,)}, for A given
below by (2.40)), in order to prove the convergence of (2.38) to the normalization @, it is

sufficient to prove the equivalent statement
o(—n) —1 on :
o(ho o —id
foo To(ho@ T )ofg" —

in the weak topology in .Z2.
Let iy be defined by ho @~! =id + h;. Then, by assumption, ord; (7;) > 1. By the
Taylor Theorem (Proposition A.1.6), it follows that
o(=n)\ (@) ¢ ron
fg(fn) o(ho (p_l) of = fg(fn) o(id+hy)o fy" =id+ Z —(f() i)‘ ")

i>1

)

(2.39)
By (2.39), for n € N, the leading block of fg(fn) o(ho@~')o f5mis equal to z. Let us
define the set %7 C Ry xZ" by

A= Supp(f5 ™ o (ho 9o f5" —id). (2.40)
neN

It can be shown, using (2.39) and the fact that fy contains only block of order 1 in z, that

J is well-ordered. It remains to prove that

5" o (ho@ )0 f5"] 4y =20

ok n—yoo
for every (a,k) € . We prove this by transfinite induction on .
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The induction basis. Let (0, ko) := mini?/, ko € Z™. By (2.39), since fo = A -id+
h.o.t.,
Le(f5 " o (id+hy) o fg" —id) = A" VLt (hy), forn €N, (2.41)

where « := ord, (h;). Therefore, by definition of A, ord (h1) = (0, ko). Now, by (2.41),
[f(;’(—n) o (hO (pfl) Of(sm} oo ko — l”l(aO*l) [hl] oo ko — 0, as n — oo,

since op—1>0and 0 < A < 1.

The induction step. For simplicity, let us denote, for (y,r) € A and n e N,
Proi= (15" o (id+ ) o £ - (2.42)
Suppose that (f,m) € A and (B,m) > (o, ko) and that
Py —0,asn— oo, forevery (y,r) € A, such that (7,r) < (B,m).

We prove that PEJH — 0, as n — oo,

Using inductively Lemma 2.1.24, we obtain:

P = Agm({Pn (v,m) €52, (v,m) < (B,m)})+
+ AP A m({P2RY: (vm) € A, (v,n) < (B,m)}) +...+
+ "B DAg W ({P2y s (im) € A, (v,m) < (B,m)}) +A DB p0

B,m
= Zz DAg m({Pia’: (y.m) € A, (y.n) < (B,m)}) + A DD 15

(2.43)

Note that, for (§,m) > (1,0,,), Pg m = [1]g.m- Let ayn € R be the nonzero coefficient of
Py, (it does not depend on n € N) in the polynomial Ag p, (1,0,,) < (7,n) < (B,m). We
prove that the sum

aynzw (B=1) pri (244)

converges to 0, as n — o. Then, since the first sum in the last row of (2.43) is a sum of
finitely many sums of type (2.44), it converges to 0, as n — co. Moreover, since 0 < |A| <
1, AB=D+1) s 0 asn — oo, Therefore, by (2.43), ngn] — 0, as n — oo. This proves the

induction step.
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It remains to prove the convergence of (2.44) to 0 as n — o. We observe that (2.44) is,

up to the factor ay p, the general term of the discrete convolution product of the sequence

(aiB-1)

]

and the sequence (P}",’n)ieN. The series ¥;en AP~ is absolutely conver-

gent and Yy ’/l"(ﬁfl) ) = . Hence, up to the multiplication by 1 — |4 |B ~! this

(A
convolution can be expressed as the product of the infinite vector (Pf,n) N by an infinite
) 1

Toeplitz matrix. It is well known (see for example [9, Section 2.16, Theorem 1]) that
such a product is a regular method of summability, which respects the limits of conver-

gent sequences. Since, by hypothesis, Pj",n — 0, it follows that (2.44) tends to 0 as n — oo.
7 oo

(=) Conversely, let 7 € £° and let m € N be the minimal integer such that &, f € .%,.

Suppose that
o(—n) —1 on :
foo TolhoeT)ofp" —id,
in the weak topology in £, and that ord, (ho @' —id) = 1. Setting ho ™' =z+zR+
h.o.b.(z), where R € %’; 1» R # 0, by the Taylor Theorem (Proposition A.1.6) we get:

o|—n on . On.R on
f()( )o(z—l—ZR—l—h.O.b.(z))of :ld—i_odi(o];o)
?zfo

Now, since f5" = A"z+h.o.t. and since Lt (R (f5")) = Lt(R), by (2.45) we get that

4o (2.45)

f0° o (z+zR+h.0.b.(z)) o fg" —id = zLt (R) +h.o.t. (2.46)

The first term does not change with n, and therefore the right-hand side of (2.46) does not

converge to 0 in the weak topology. |

2.1.5. Two normalizing sequences

In this subsection we explain two different algorithms for obtaining the normalization of
a hyperbolic logarithmic transseries f € £ to its normal form f; given in (2.5). In each
algorithm, the normalization is obtained as the limit of an appropriate sequence in appro-

priate spaces. Both algorithms begin with the same first step which is a prenormalization.

Step 1. - Prenormalization. By the proof of case (b) of Theorem A, the unique

prenormalization ¢y is given in the canonical form by @o = id+ zH, where H € 93’; isa
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unique solution of the fixed point equation 7 (H) = .y (H). Here, Jo, S : BL, — %%,
are the operators given in (2.24). By the fixed point theorem from Proposition 1.2.12, H

is the limit of the Picard sequence

((F5 "0 2)°"(Q)),» (2.47)

with respect to the metric d; on the space %<, and for any initial condition Q € %% .

Step 2. - Normalization

» Algorithm 1

Let f1:=@yofoq, !be the prenormalized logarithmic transseries from Step 1. By
the proof of case (a) of Theorem A, there exists the unique solution ¢; :=id+¢€
of the conjugacy equation @ o fi o @ = fo in the space £0, where € € £.q is the
unique solution of the fixed point equation .7, (¢) = 7, (€) in the space £-q, for
operators 7,7, + £-iq — £~iq given in (2.10). By the fixed point theorem from

Proposition 1.2.12, it follows that € is the limit of the Picard sequence

((‘qj{l Oyfl)on(h))na

with respect to the metric d_, for any initial condition & € £-q such that ord; (k) >
ord; (f1 — fo)-

Finally, we put @ := @1 o ¢, to get the normalization ¢ which reduces f to the

normal form fj.

* Algorithm 2

Let fi :=¢@go fo (po’l be as above. Since ¢y =id+zH, for H € %’;1, is the prenor-
malization, it follows that @y is the leading block (in z) of the whole normalization
¢. By statement 3 of Theorem A, it follows that the generalized Koenigs sequence
(23(h)),,, where Py, is defined as in (2.8), converges in the weak topology to the

normalization ¢, for any initial condition h € £° such that Lb, (k) = ¢y.

Remark 2.1.26 (The difference between the two algorithms). Note that the Picard se-

quence from the Step 2. of the first algorithm, in general, differs from the generalized
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Koenigs sequence from the Step 2. of the second algorithm. In particular, the first se-
quence converges in the power-metric topology and the second sequence converges in the
weak topology.

As opposed to the Picard sequence from the first algorithm which is deduced by the
Banach Fixed Point Theorem, the generalized Koenigs operator &y, as defined in (2.8),
is not a contraction in any of the introduced metrics (see Example 2.1.9). Furthermore, in
Subsection 2.1.4 we proved the convergence of the generalized Koenigs sequence in the
weak topology. It is proved using a transfinite induction and not as a direct consequence

of a fixed point theorem.

2.1.6. Control of the support of the normalization

In Theorem 2.1.28 at the end of the subsection, for a hyperbolic logarithmic transseries
f € £H, we determine the support of its normalizing change of variables ¢ € £°. More-
over, we prove that the support of ¢ depends only on f.

Let f € .%, for minimal k € N. The idea of the proof is to find a restricted space .2},
for a well-ordered W C R x ZK, min W > 0;. 1, which depends only on f, and such that
the proofs of case (a) and case (b) of Theorem A remain valid if we replace the space .Z;

by its subspace .%}" C %

In order to estimate the support of normalization ¢, we introduce a well-ordered set

Wg C R0 X 7K. Let W be the semigroup generated by

Supp(f)u{<a_17m) : ((X,m) € Supp(f_)‘ld)}u{(oﬂla70)k+17 "'9(07"'7071)k+]}’
(2.48)

Inductively, we define the sequence W,,, n € N> of semigroups, such that W, is gener-

ated by

WﬂU{(ﬁ17m1> +"'+(Bn+1>mn+1) - (I’l,()k) : (ﬂbmi) Wy, Bi > 1}' (2.49)

By the Neumann Lemma (Theorem 1.1.2), it follows that W,, is well-ordered, for each

n € N>j. Put:

W::UWn

n=1
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and
Wg:=Wn (Rsp x ZF). (2.50)
In the next proposition we prove that the set Wy is well-ordered.

Proposition 2.1.27 (Proposition 5.2, [29]). Let € R and suppose that Wg is as in
(2.50). Then Wp is a well-ordered set with the property that

(B17m1)++(ﬁm7mm)_(m_la0k)ewﬁ7 (251)
forall (By,my),...,(Bn,m,) € Wg, m > 2.

Proof. Property (2.51) follows directly from (2.49) and the fact that W is the increasing
union of the sets W,, n € N>.

Hence, we only need to prove that Wg is well-ordered. Since Wg = (R x 7w,
it is sufficient to prove that W is well-ordered. In general, an increasing union of well-
ordered sets may not be well-ordered. So, we give a proof based on the specific properties
of the sets W,. Let A be a nonempty subset of W, and let us prove that A admits a minimal
element.

Set Wy := 0 and let I be the set of all n € N such that AN (W, \W,_;) # 0. Let
W, := min (A N (W, \Wn,l)), n € 1. Such a minimum exists because the sets W, for
n € I, are well-ordered. We have now constructed a sequence (W, ), of minimal elements
of the sets AN (W, \ W,_1), n € I. Clearly, min A = min{w,, : n € I}. Therefore, it is
enough to prove that the family {w, : n € I} has the smallest element. Note that, by
(2.49), min(W,, N (R x Z*)) = min(W, 1 N (R x Z*)),n € N, and, therefore, min(W N
(R=1 x Z%)) = min(W; N (R+1 x ZF)). Now let

w :=min (W, N (R x Z¥)). (2.52)

Take mq € 1. By Archimedes’ Axiom and since the first coordinate of w is strictly greater
than 1, there exists ng > my, such that n-w— (n—1,0;) > Wy, for all n > ny. By (2.52),

w, >n-w—(n—1,0;) > w,,, for every n € I, n > ny. This implies that
minA = min{w, :n €I} =min ({w;:i € 1,i <no} U{Wpy,}).

The latter set is finite, therefore, the minimum exists. [ |
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Theorem 2.1.28 (Control of the support of the normalization, Proposition 5.4, [29]). Let
f(z)=Az+hot. € £, keN,0<A <1,andlet ¢ € 9%0 be the normalization of f to

its normal form f; from Theorem A.! Then

. W()UW\E
p—ide 2, ,

where B := ord; (1 — fo), B > 1, Wo := Supp (z~ ' (9o —id)),
W = (WoUWp ) 1 (Rop x 21, (2.53)

and

Wo := (1,04) + Wp. (2.54)

Here, in case (a) of Theorem A, we simply put Wy := 0.
In particular, the support of the normalizing change of variables ¢ depends only on

the support of the initial logarithmic transseries f.

Proof. Case (a). Here, we put Wy := 0, and therefore, Wy = 0 and Wﬁ = Wp. Itis enough
to check that the proof of Lemma 2.1.15 works the same if, in Lemma 2.1.15, we replace
.Zj{ﬁ by ng/s , where 3 := ord; (f — fp). First, we easily check, by Proposition 2.1.27 and
by the Taylor Theorem (Proposition A.1.6) of the operators .#y and .7 given in (2.10),
that they leave the spaces DZCWB invariant. Then we have to prove that .7% is a surjection
on .,Sﬂkwﬁ . That is, for a given block z'M,, € .fkwﬁ , we need to prove that its preimage by
T belongs to ngﬁ as well.

To this end, define, for a well-ordered subset V of {0} x 7k the set

H(V):= <VUSupp <z_1go> U{(O,l,O,...,O)kH,...,(0,0,...,1)k+1}>.

H (V) is also well-ordered, by the Neumann Lemma (Theorem 1.1.2). It is easy to see

that

%?(SUPP(MV)) C B,

is invariant under the action of .#], where .7} is as defined in (2.19). Note that z !g

is nothing but Q in the proof of Lemma 2.1.15. As the space (,%’fl(supp(MY)),dl) is

'In case (a) of Theorem A, let f; := f. In case (b), let f; € .% be the prenormalized transseries.

69



Normal forms of logarithmic transseries Normal forms of hyperbolic transseries

70

complete, it follows from the proof of Lemma 2.1.15 that .} has a unique fixed point in
S

%7 ( upP(MV)). Hence, the preimage z"Hy of zYMy by .7 belongs to .Zj(WB .

Therefore, we can apply Lemma 2.1.15 to restricted spaces .,Z”kwﬁ instead of .Zfﬁ to

conclude that ¢ —id € kaﬁ .

Case (b). Let @y be the prenormalizing transformation of transseries f = fy -+ h.o.t.
(where f and fj are as defined in the Theorem A), which contains only the leading block.
It is easy to see that Wy = Supp (zil (o — id)) depends only on the leading block of the
initial transseries f. Indeed, it is obtained as the limit of a Picard sequence (2.47) with
contraction operator depending only on the leading block of f, where the initial condition
Hy € %’; | can be chosen arbitrarily.

Let now 8 :=ord; (@oo fo @, '~ f5). Obviously, B > 1. Let Wg be as defined in
(2.50), where the initial f (before prenormalization) is used in definition (2.48) of Wy. It

can be checked by the Taylor Theorem (Proposition A.1.6) that
Supp (' (¢ ' —id)) € <W0U{(O,1,...,0)k+1,...,(O,...,O,l)k+1}>.

Then, for fi ::(pOOfO%_l,
\17
fi—foe L P,

It can be checked that the set WB satisfies property (2.51) from Proposition 2.1.27 and, by
the same reasoning as in case (a), that %W,; is invariant under .7, and ch. Therefore,

the normalization ¢ reducing f1 = @po fo @, !'to the normal form f belongs to ¢ —id €

W,

B
2" o
W()UWB

Finally, by (2.54), it holds that ¢ —id € .%, ]
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2.2. NORMAL FORMS OF STRONGLY

HYPERBOLIC LOGARITHMIC TRANSSERIES

This section represents a generalization of the results obtained in [21, Theorem A] for
strongly hyperbolic logarithmic transseries of depth 1 to strongly hyperbolic logarith-
mic transseries of an arbitrary depth. Instead of transfinite compositions of elementary
changes of variables used in [21], we use the fixed point techniques to obtain normal
forms.

We consider a strongly hyperbolic logarithmic transseries f € £, ie., f = Az% +
h.o.t, A, € R\ {1}. Note that yo foy~! =z%4h.o.t.,, where y := A@T-idis a
homothety. Therefore, without the loss of generality, we assume that f = z% +h.o.t. We

consider the conjugacy equation
pofopl=g ¢ef (2.55)

for g minimal in £ in the sense that g has as little number of terms as possible. By
Proposition 2.0.1, if conjugacy equation (2.55) has a solution, it follows that g = z* +

h.o.t. We set g := z% and, in the sequel, we consider the conjugacy equation:

o

pofop'=z% o¢ecg

Every solution ¢ of the above equation will, as before, be called a normalization of the
strongly hyperbolic logarithmic transseries f. Furthermore, logarithmic transseries z%

will be called the normal form of f.

In Subsection 2.2.1 we state the normalization theorem for strongly hyperbolic loga-
rithmic transseries. Subsections 2.2.2, 2.2.3 and 2.2.4 are dedicated to proving all three

statements of the normalization theorem, respectively.

2.2.1. Normalization theorem for strongly hyperbolic logarithmic transseries

In this subsection we state the normalization theorem for strongly hyperbolic logarithmic

transseries.
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Theorem B (Normalization theorem for strongly hyperbolic logarithmic transseries). Let

f € £ be such that f = z% +h.o.t., for & € R, & # 1. Then:

1. There exists a unique solution ¢ € £° of the normalization equation:

pofop !l =2z% (2.56)

Moreover, ord; (¢ —id) > ord; (f —z%) —a + 1.

Additionally, if f € £, then ¢ € £.

. If o > 1, then, for every initial condition & € £0 the Bottcher sequence

(2@ oho f), (2.57)

converges to the normalization ¢ in the weak topology on £° as n tends to +oo.
Moreover, the sequence (2.57) converges in the power-metric topology on £° if and

only if the initial condition 4 is such that Lb, (k) = Lb, (¢).

. Let f € %, k € N. The support Supp (¢) is contained in the semigroup generated

by (aP,Ok), peEN, (0,1,0,...,0)k+1, cee, (0,0,...,0,1)k+1, and ((Xm(’}/—OC),l’l),
for (y,n) € Supp (f —z%),m e N.

Remark 2.2.1.

1. Let fe ¥, f =z%+h.o.t., @ € Rug, o # 1, be a strongly hyperbolic logarithmic

transseries such that ord, (f —z%) > «, by statement 1 of Theorem B, it follows that
there exists a unique normalization @ € £0. It satisfies ord, (¢ —id) > ord, (f —
z%)—a+1 > 1. Therefore, ord; (¢ —id) > 1 and, consequently, Lb, (¢) = id. By
statement 2 of Theorem B, it follows that the Bottcher sequence (z% oho fo"),
converges to the normalization ¢ in the power-metric topology on £°, for each & €
£9 such that ord, (& —id) > 1. In particular, putting /4 := id, (zﬁ o f°"),, converges

to ¢ in the power-metric topology on £°.

. Notice that, by statement 3 of Theorem B, the support Supp (¢) depends only on

Supp (f). In particular, Supp (@) is independent of Supp (%), for the initial condition
he £l
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2.2.2. Proof of statement 1 of Theorem B

We first explain that, without the loss of generality, we can consider only the case when
ord, (f) > 1, for f € £H.
Suppose that f = z% 4 h.o.t., for 0 < & < 1. Note that f~! = zé +hot. If o € £0is

a solution of the conjugacy equation @ o fo @~! = z%* then
poflog = (pofop )= (z) " =zu.

. 1 S
Furthermore, it can be proven that ord, (f —z%) — ot = ord. (f - za) — é, which is im-

portant for statement 1 of Theorem B.

The structure of the proof is similar to the proof of the normalization theorem for hy-
perbolic logarithmic transseries stated in Theorem A in Section 2.1. We first transform
normalization equation (2.56) to the equivalent fixed point equation using the so-called
Bottcher operator in Lemma 2.2.4. Then, in Lemma 2.2.6, we give a sufficient and neces-
sary conditions for the contractibility of the Bottcher operator, with respect to the metric
d.. This forces us, as in Section 2.1, to distinguish two cases: ord; (f —z%) > 1 and
ord; (f —z%) = 1. In the first case, the Bottcher operator is a contraction and therefore,
the corresponding Picard sequence converges towards the normalization in the power-
metric topology. However, in the second case, as in Section 2.1, we first prenormalize the
initial strongly hyperbolic logarithmic transseries f, i.e., eliminate every term of order 1
(in z) except z*. After the prenormalization, we normalize the prenormalized transseries

f, as in the first case, using a variant of the Bottcher operator on the space of blocks.

Transforming the conjugacy equation to the fixed point equation

In this subsection, for a strongly hyperbolic logarithimc transseries f = z* +h.o.t., a €
R~ 1, we transform the conjugacy equation (2.56) to the fixed point equation, using the

so-called Bottcher operator which is motivated by the Bottcher Theorem.

Theorem 2.2.2 (Béttcher Theorem, see e.g. Theorem 4.1, [4], Theorem 9.1, [24]). Let
f € Diff(C,0) be a strongly hyperbolic complex analytic germ of diffeomorphism at zero,
i.e., f(z) = 7"+ o0(Z"), for n > 2. There exists a parabolic analytic change of variables

¢ € Diff(C,0), 9(z) = z+0(z), such that 9(f(2)) = (¢(2))".
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Motivated by the Béttcher Theorem, and the Koenigs Theorem stated in Theorem 2.1.7,
we define an analogue of the generalized Koenigs operator from (2.8) for strongly hyper-

bolic logarithmic transseries, which we call the Bottcher operator.

Definition 2.2.3 (Bottcher operator and Bottcher sequence). Let f = z%* +h.o.t., a €
R-1, and let 2 : £0 5 29 pe defined by:

P(h) i=zaohof, he gl (2.58)

The operator & is called the Bottcher operator.
We call (£77"(h)), the Bottcher sequence of the strongly hyperbolic logarithmic

transseries f with the initial condition h € £°.

Lemma 2.2.4 (Transformation of the conjugacy equation to a fixed point equation). Let
feth f=z%+ho.t, acR.q,and let 2/ be the Béticher operator defined in (2.58).
Then, ¢ € £° is a solution of the normalization equation (2.56) if and only if ¢ is a fixed

point of the operator .
Proof. Directly from (2.58) and normalization equation (2.56). |

Lemma 2.2.5. Let f € £/ be such that f = z* +h.o.t., & € R.1, and let 8 := ord, (f —
7%) —a+1. Let ¢ € £° be a solution of the normalization equation (2.56). Then ord, (¢ —
id) > B.

Proof. If B = 1, then obviously ord; (¢ —id) > B. Suppose that B > 1. Let ¢ be a
solution of the normalization equation (2.56). Put ¢@; := ¢ —id and f} := f —z%*. Note

that ord, (f;) = o+ B — 1. From the normalization equation (2.56) we get:

20 (%+ fi+@rof) =id+ @1,

() (o 1
fi | o1(z%) ®;’(z%) .1\« .
(1 G+ +,§1 L f)  =idran (2.59)

Suppose that ord; (¢ —id) < B, i.e., ord; (¢;) < B. Note that ord (z‘){ll) = B. Since

ord; (¢ —id) < B, by (2.59) and the first formula in (A.1), it follows that

¢1(2%)
aza—l

id+Lt( >+h.o.t.:id+(p1.



Normal forms of logarithmic transseries  Normal forms of strongly hyperbolic transseries

Therefore, the order (in z) of (g'z fi) is equal to the order (in z) of ¢, which implies

that a-ord; (¢;) —a+ 1 = ord;(¢y), i.e., ord;(¢;) = 1. Since ord(¢;) > (1,04), by

70— 1

Lemma A.3.2 and by multiplication by =, we get Lt( ks )> = aan Lt(¢;), for some

n € N, which is a contradiction. Therefore, ord; (¢ —id) > B. [ |

In the next proposition we give a sufficient and necessary condition for contractibility

of the Bottcher operator defined in (2.58).

Lemma 2.2.6 (Contractibility of the Bottcher operator 7). Let f € ZLH meN, be
such that f =z%+h.o.t., &« € R-y, and let &/ be the Bottcher operator defined by (2.58).
Then:

1. The space id—l—.i”kﬁ is Z-invariant, for every > 1 and k > m.

2. For every k > m, the operator #; is a contraction on the space (id +.Z P ,d) if and

only if 8 > 1. In that case, the operator &y is a m—contraction on the space

(id+.2P.d.), k>m.
Proof. 1. Let fi:=f—z%andleth € id+$kﬁ. Put i := h—id. Now we get:

e@f(h) :Z!?ohof

1

zeo(z%+ fi+hof)

:z(1+f1+hl(za) +¥

f{) “ (2.60)

Let

h
N (h) == )
(h) Z+ +,>1 Zl,

By the first formula in (A.1), we get:

Pp(h)=id+z Y ( ) ). (2.61)

Jj>1

It is obvious that Z(h) € £ and since ord, (h;) > B and ord,(fi) = a+ B —1, it

follows that:
i
Ordz (F) = ﬁ, (262)
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a
ord, (flzl()(tzl)) =a-ord; (h;))—a+1

=ord; (h1) + (a—1)-ord; (h) — (a —1)

> ord, () + (e —1)(B —1) (2.63)

and

() (o
ordz(z}wf{) > - (ord, (1) — 1) — (et — 1) +ord, (f1)
i>1 :
> o -ord; (hy)
=ord; (h)+(a—1)-ord; (h)

>ord; (h))+ (e —1)(B—1). (2.64)

Note that, if ord; (h;) = B, equality holds in (2.63). From (2.62), (2.63) and (2.64), we
get that ord, (z.#"(h)) > B, and, therefore, by (2.61),

ord; (Z¢(h) —id) > B.

This implies that 2 (id +.27) Cid+.2F.

2. Letid+hy,id+hy € id—l—i’j{ﬁ. Using (2.61), (2.63), (2.64), we get:

ord, (e@f(idJrhl) — ng(id+h2)) = ord, (;ZJV(hl) — OtZJV(hz))
>ord; (hy —hy)+(a—1)(B—1). (2.65)

From (2.65), we conclude that ¢ is a W—Lipschitz map. Suppose that ord; (A —
hy) = B. Then, the equality holds in (2.63). Hence, the equality holds also in (2.65).
Therefore, W is the minimal Lipschitz coefficient of &7¢. Consequently, it follows
that & is a contraction on the space id + .i”kﬁ if and only if B > 1. In that case, Zris a

m—contraction on the space id + ,fkﬁ . [ |

Let f € £, k€N, be such that f =z%* +h.o.t., « € Roy, and let f := f —z%. If
ord; (f1) > o, then > 1. By Lemma 2.2.6 and the Banach Fixed Point Theorem (The-
orem 1.2.11), it follows that there exists a unique fixed point ¢ of the Bottcher operator
in every space id + .ZE , m > k. Since, by Lemma 2.2.5, every solution of the normal-

ization equation (2.56) belongs to some id + ,Zmﬁ , m > k, by contractivity of the Bottcher
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operator, it follows that ¢ is unique in £°. Moreover, ¢ is obtained as the limit of the
corresponding Picard sequence, with respect to the power-metric topology, for any initial
condition.

However, if ord; (fi) = «, then B = 1. By Lemma 2.2.6, the operator ¢ is not

a contraction on the space .2},

m > k, and we cannot apply the Banach Fixed Point

Theorem. Thus, we proceed in two steps:

Step 1. We prenormalize f, i.e., we solve a prenormalization equation:
@ofog, ' =z%+hob.(z), ¢ €L (2.66)

We call a solution ¢y a prenormalization of f. We prove that ¢p is unique up
to blocks of higher order. Thus, if we impose the canonical form ¢y = id + zH,

He %’;1 C %, then @y is unique in £0,

Step 2. We solve the normalization equation in the variable ¢:

o

pro(goofogy opr! =z
in the space £° using the discussion above.

Finally, ¢ := @ o @y is the desired normalization in £°.

Proof of step 1 (prenormalization)

In order to apply Lemma 2.2.6, we first prenormalize logarithmic transseries f € £7,

f=z%+h.o.t., a € R.y. That is, we solve prenormalization equation (2.66).

Definition 2.2.7 (Béttcher operator on the space id +z%>1). Let f € £H, k€ N>y, be
such that f =z%+z%Ry +h.0.b.(z), x € R~ j,and Ry € %;1 C % LetZy: id—l—z%’;1 —
id+ ze%’;, be the operator defined by:

Ry(d+H) =270 (id+zH) o (% + 2%Rq), HeE B, C %. (2.67)
The operator %y is called the Bottcher operator on the space id + ze@;r 1-

In the next lemma we transform prenormalization equation (2.66) (where we consider

only canonical solutions) to the fixed point equation on the space id + z %< 1
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Lemma 2.2.8. Let f € .2, k € N>y, be such that f = z% 4+ z%Rq +h.0.b.(z), @ € Roq,
Ry € %;1 \ {0} C %, and let Z be the Béttcher operator on the space id +Z%§ A
defined in (2.67). Parabolic logarithmic transseries ¢y = id+ zH, H € %; | € L is
a solution of prenormalization equation (2.66), if and only if ¢y is a fixed point of the

operator Z .

Proof. Let 99 =id+zH, H € 95’; | € % be a solution of prenormalization equation
(2.66). Put g := @po fo@, Vand fi := f — (z* 4+ z%Ry). By the Taylor Theorem (Propo-

sition A.1.6), it follows that:

(2% +2%Ry) Lo f = (2% +2%Ry) ' o (2% 4+ 2%Re + f1)

o o —I\(@) (0 o
:id+z“((Z +2%Rq) i‘) (2 +2%Ra)

i,

i>1
so ord; ((z* +2%Rg) o f—id) > 1. Put f5 := (z* +2%Rg) "' o f. Note that ord; (f> —
id) > 1 and f = (z*+2z%R¢q) o f». Since g = @po fo @, |, we get gpo f = go ¢y, i.e.

zéo(poo(zoq—zo‘Ra):zéogo(poofz_l. (2.68)

Note that the left-hand side of equation (2.68) consists only of a 1-block, so zé ogo@yo
fr I also consists only of a 1-block. Furthermore, since g = z% 4+ h.0.b.(z), it follows that
7@ og=id+h.o.b.(z). Since ord, (f» —id) > 1, we conclude that ord, (f, ' —id) > 1, and
therefore, Qg ofz_1 = @p+h.0.b.(z). Now, from (2.68) we conclude that Z@o @oo (2% +
2*Ra) = @0, i.e., Z5(0) = Po.

To prove the converse, suppose that ¢y = id+zH, H € %’;1 C %, is such that
(o) = @o,i.e., Poo(z2*+2%Rq) =z% 0 @y. Since @po f = @po (z* +2%Ry)+h.0.b.(2),
it follows that gy o f = z%* o @y +h.0.b.(z), i.e., po fo (P(;1 =z%+h.0.b.(2). [

Unfortunately, the following examples show that the Bottcher operator on the space
id —I—z%;, defined in (2.67), is not a contraction, in general, in any of the metrics intro-

duced in Section 2.1.

Example 2.2.9 (Non-contractibility of the Bottcher operator % on the space id + zﬂg -
1. Let k € N> be arbitrary. Take metric d on the space id +Z%; | €2, defined by:
ooy (R=5) gy
0, R=S.

d(id+zR,id +zS) :=
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Now, consider id and id + z¢; in id—i—z,%’;r |- Itis easy to see that d(id + z€1,id) = % Take
f=72%4+z%Ry+h.0b(z), x € Ry, and Ry € %’i C %, ordg, (Rg) > 2. Notice that:

R ( 1d—|—ZZ< )Rix,

i>1

and
Ry(id+ ) = zwo (id+z£1) o (2% +7z%Ry)
1
=id+ *Zzl +h.o.t.

a

Therefore, Z(id 4 2£1) — % (id) = éz[l + h.o.t., which implies that
. . 1 . .
d(Z;(id+z281),%5(id)) = 5= d(id+z£y,id).

Thus, % is not a contraction on the space id + A8 1 € £0, with respect to the metric d.

2. Let d be the metric on the space id + z%>l , defined by:

. _ =1 |ani—ag
d(id+zT,id+20) = Y - =
(id+27y,id +273) ;21 1+ |a1,;—az,

where T ;=Y Va1 £, T, := Y ar €. Let f:=z%+az%, a € Roq, a € Ry Itis

easy to see that d(id,id +z£;) = 1. Notice that:

1
1
R d a A+ 20,4+ — (=1 £ +ho.t. 2.
1+Zl;(’> =id+ 11—1—2 <a )az +h.o (2.69)

and

Ry(id+281) = 22 o (id + 21) 0 (z% +az%€y)

1 1 1 /1 1\2
=id+—(at— ety + ( (==1)(a+) +az> 2} +hot.
(04 o 20 \ o o o

By (2.69) and (2.70), it follows that:

1_ 20 , 1 a
()87 380) > 55 +1 Lt i +<(1 )1<)(2+ +?)++ |
o o

As a tends to 1 and a tends to +oo, d(%(id), Zf(id+z£1)) tends to 3 - 5+ -1 = 1. Since

d(id,id+z¢;) = %, there exists sufficiently small & € R~ and sufficiently big a € R,

such that Z; is not a contraction on the space (id+z%%,,d).
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Now, similarly as in Section 2.1 for hyperbolic logarithmic transseries, we transform
prenormalization equation (2.66) to a fixed point equation, in order to use the fixed point
theorem stated in Proposition 1.2.12 to prove the existence and the uniqueness of the

solution.

Lemma 2.2.10 (A fixed point equation for the canonical prenormalization). Let f €
.,ZCH, k € N>, be such that f = z%* +z%Rq +h.0.b(z), a € Ro, and Ry € 93; C % A
logarithmic transseries ¢y =id+zH, H € %; | € %, is a solution of prenormalization

equation (2.66) if and only if H is a solution of the fixed point equation
Ty(H) = S¢(H), 2.71)

where T, S : %; | %; | are the operators defined by:

Ty(H):=Hoz%+(Hoz%)-Ry— Y (?) H', He BL C 4, (2.72)

i>1

and

Fy(H) == —Rq— (D1 (H)) 02%) - (

' ) —r,(H), HeBL C%,

1>2

(2.73)
where €, 1= (-,Rq) is a superlinear }-contraction on the space (@;r 1»d1) from Lemma A.3.4.

Proof. Let f =z%+z%Ry +h.0b.(z), ¢ € Roy, Ry € %;1 C %. By Lemma 2.2.8, it
follows that @9 =id+zH, H € %’; 1 € %4, is a solution of prenormalization equation

(2.66) if and only if ¢y is a fixed point of the operator % defined by (2.67), i.e.

Zt(P0) = Po,
(id—l-zH)O(z —l—zo‘Ra) (id+zH)%,
*+2%Rg+2%-H +Z O‘Ra)i =% +2%) (?)H (2.74)
i>1 i>1

From the last line of (2.74) and Lemma A.3.4, we conclude that:

) =5 (7)o

(2.75)

2

Ry +H(z*)+H(z") Ry + ((D1(H))02%) - (Ra+z

i>2
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for a superlinear %—contraction CRy - %;1 — A such that 6, := €(-,Ry), where € is

the operator from Lemma A.3.4. By (2.75), it follows that:

Hoz®+(Hoz®) Ry~ Y (‘J_‘)Hf — Ry~ ((D1(H))02%)- (Ra+z (_?iljkg) —r, (H),

i>1 \ ! i>2 i(i

that is,
%(H):yf(l‘l), fOl‘HEgg;l C%.
[ |

Proposition 2.2.11 (Properties of the operators 75 and .s). Let f € .Z " ke N>, be
such that f =z%+z%*Rg +h.0.b.(z), x € R~ |, and Ry € %;1 C L. Let 77, ,%’; —
,%’; | be the operators defined by (2.72) and (2.73) respectively. Then:

1. J is an isometry and a surjection on the space (%3 ,,d)).
2. s is a -contraction on the space (#3,,d)).

Here we state and prove a technical lemma that is needed in the proof of Proposi-

tion 2.2.11.

Lemma 2.2.12. LetR,M < %gz C %, keNsy, andleth: =Y ;> (Ol.‘)xi be formal power

series in the variable x, for o € R~ . Then, there exists H € 93’;2, such that:
(Hoz®)-(1+R)—oaH—h(H)=M. (2.76)
Proof. Let My,R; € 95’; and M3,R3 € %23 be such that:

M = M, + M3,

R:R2+R3.

Put H .= H, + H;, H, € g%’zr, H; € %’;3. By the Taylor Theorem, note that h(H) =

(i) .
h(H3) 4 Y1 h (H3)H5. Now, equation (2.76) is equivalent to the equation:

WO (H) .
((F-+ H3) 052) - (14 Ry -+ Ro) et + ) —h(11y) — Y ")y — a4
i>1 :

2.77)
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By Remark B.5.6 there exists Hz € 95’;3 such that:
(1—o+R3)-H3—h(H3) = M;. (2.78)

By Lemma A.3.2, it follows that Toz* =T +.#(T), T € %’;2, where 7 : %’;2 — %’;2
is a superlinear operator and a %—contraction on the space (%gz,dz). Now, from (2.77)
and (2.78) we get the equation:

K0 (H3)
il

Hy-(1—o+R—H(H3))+ (A (Hy)+ . (H3)) - (1+R)— )

i>2

H) =M, —R, - Hs,

(2.79)

in the variable H, € %’; .Let 9,9 %; — %; be the operators defined by:

KO (H) .
#T’Jer—Rz'H&
l

S(T) = —(1+R)- (A (T)+ 7 (H3)) + ¥,
i>2

H(T):=(1—o+R—N(H3))-T, TeB.
Now equation (2.79) is equivalent to the fixed point equation 7 (T) = S (T), T € %’; .
By Example 1.2.8, it is easy to see that .% is a %—contraction and, since o¢ > 1, 9 is
an isometry and a surjection on the space (%5 ,d>). By the fixed point theorem stated
in Proposition 1.2.12, there exists H, € %’JZFZ, such that % (H,) = .%3(H,). Now, H :=

H, + Hj is a solution of equation (2.76). |

Proof of Proposition 2.2.11. Statement 2 follows directly from (2.73).

1. Let us prove that J; is an isometry on the space (%’;,dl). Let Hi,H, € %’;1,
H, # Hp. By Lemma A.3.2, it follows that (H; — Hp) 0z% = %Lt (Hy — Hy) +h.o.t., for
n:=ordy, (Hy — Hy) > 0. Thus,

1
Ty(Hy) — Tp(Hy) = (oT - a>Lt (H, — H>) +h.o.t.
Since n > 0, it follows that % — o # 0, and, therefore, ordy (77(Hy) — T7(H2)) =

ordy, (H; — Hy), which implies that .7 is an isometry on the space (%g 1»dh).

Let us prove that 7 is a surjection. Let M € %<, and let M1,R| € %] and My, R; €

%iz be such that M = M|+ M, and Ry, = R; +Ry. Put h := Z (
= i

i>2

a\ )
)x’, where x is a

formal variable. We prove that the equation Jy(H) =M, i.e.

Hoz*+(Hoz%)-Rqy—aH —h(H) =M, (2.80)
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has a solution H € %’;1. Let us decompose H as H = Hy + H,, where H, € %, and

H, e %’;2. By the Taylor Theorem (Proposition A.1.6), it follows that (2.80) is equivalent

to:
Hyoz% (14 Ry) — aH; + (Hyo2%) - (1+Ry) — aHy — h(Hy) - Y h(i)f‘HZ)H{
i>1 :
=M, +M,— (Hyoz%)-Ry. (2.81)
By Lemma 2.2.12, there exists Hp € %’;2, such that:
(Hy0z%) - (1+Ry) — aHy — h(Ha) = M. (2.82)
Now, by putting (2.82) in (2.81), we get the equation:
Hioz% (1+Rq)—aH — ) Ho (Hz)Hf =M, — (Hyoz%)-Ry. (2.83)

i
> b

in the variable H| € %’T Let A, 9 - %T — %’T be the operators defined by:

WO (H,) .
A(T):=—(Toz%) R +Z;2)T'+M1 — (Hy02%) Ry,

i>2

T(T):=(Toz%)-(1+Ry)—aT —h (Hy)-T, T €% . (2.84)

By Example 1.2.8 and since ordy, (Ry) > 1, it is easy to see that .7 is a %—contraction on
the space (ggf,dl ). Furthermore, it is easy to see 