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SUMMARY

The topic of this work is ergodicity (stochastic stability) of variuos types of stochastic pro-

cesses. The urge for analysis of random processes exists in every area of science and real

life - medicine, biology, chemistry, physics, finance, etc., as many phenomena naturally

exhibit some sort of random behaviour in their movement. Mathematical models used

to describe those random movements are called stochastic differential equations (SDEs).

Since the solutions of SDEs often have a very complicated structure or are impossible to

obtain explicitly, it is usually hard to analyse them directly. Therefore, the emphasis has

been placed on analysing their long-term stability. This includes detecting their equilibria

(stacionary distributions) as well as the rate at which convergence occurs. The conver-

gence is observed with respect to some appropriate distance function. In my work the

emphasis has been placed on the quantitative aspect of this problem, namely, on finding

explicit bounds on the rate of the convergence with respect to two distance functions: to

total variation distance and the class od Wasserstein distances (which provides conver-

gence in some weaker sense). As most of the existing results in this area correspond to

the geometric ergodicity (that is, the case when the rate of the convergence is exponen-

tial), and known conditions ensuring sub-goemetric ergodicity are far from being optimal

because there are many known examples of sub-geometrically ergodic systems that do

not satisfy those conditions, the focus of my work is to find sharp and general conditions

in terms of coefficients of the process that will ensure sub-geometric ergodicity of a wide

range of processes.

The results of my research can be divided in two parts. Firstly, I will consider classical

diffusion processes - Markov processes with continuous trajectories (here, the class of

processes with singular diffusion coefficients will be of special interest as they were not

investigated so far).
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Summary

The second part of the research deals with somewhat more complicated random pro-

cesses - diffusion processes with Markovian switching, which are processes that, beside

the continuous, diffusive one, have a second, discrete component which changes the be-

haviour of the process at random times. This theory is relatively new so here we still have

many interesting open questions and uninvestigated phenomena that are not characteristic

for classical diffusion processs.

Also, in both cases, I will extend the results on a class of processes with jumps.

Keywords: stochastic differential equations, diffusion processes, diffusion processes

with Markovian switching, ergodicity, sub-geometric ergodicity, ϕ-irreducibility, aperi-

odicity, total variation distance, Wasserstein distance.
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SAŽETAK

Svrha mog rada je istražiti problem ergodičnosti (stohastičke stabilnosti) različitih tipova

slučajnih procesa. Slučajni procesi iznimno su važni jer se koriste za modeliranje pojava

u gotovo svim područjima znanosti i svakodnevnog života – primjenjuju se u medicini,

biologiji, kemiji, fizici, financijama itd. Naime, u svim tim područjima često se dolazi

do zaključka da se pojave ne mogu opisati determinističkim modelima jer su neki aspekti

njihovog ponašanja slučajni. Matematički modeli koji se koriste za opisivanje ovakvih

pojava su stohastičke diferencijalne jednadžbe (SDJ). Medutim, budući da rješenja SDJ-

ova imaju jako kompliciranu strukturu i iznimno ih je teško analizirati direktnim putem,

naglasak se stavlja na analizu njihove dugoročne stabilnosti. To uključuje odredivanje

njihovih ekvilibrija (stacionarnih distribucija), ali i brzine kojom konvergiraju prema tim

ekvilibrijima. Konvergencija se promatra s obzirom na neku odredenu funkciju udal-

jenosti. U mojem istraživanju naglasak je stavljen na kvantitativni aspekt ovog problema,

odnosno na eksplicitne ocjene brzine konvergencije s obzirom na dvije funkcije udal-

jenosti: udaljenost totalne varijacije i klasu Wassersteinovih udaljenosti (koja predstavlja

konvergenciju u nešto slabijem smislu). Kako se većina dosadašnjih rezultata odnosi na

geometrijsku ergodičnost (tj. slučaj kada je brzina konvergencije eksponencijalna), a poz-

nati uvjeti za subgeometrijsku ergodičnost nisu blizu optimalnih jer su poznati mnogi sub-

geometrijski ergodični sustavi koji te uvjete ne zadovoljavaju, fokus mog rada je pronaći

oštre i opće uvjete u terminima koeficijenata samog procesa koji će osigurati subgeometri-

jsku ergodičnost široke klase procesa.

Rezultate mog istraživanja mogu podijeliti u dvije cjeline. U prvoj ću proučavati

klasične difuzije - Markovljeve procese neprekidnih trajektorija (gdje će od posebnog

značaja biti klasa procesa sa singularnim difuzijskim koeficijentima koji do sada nisu

razmatrani).
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Sažetak

Drugi dio rada proučava nešto složenije procese - difuzije sa slučajnim prebacivanjem,

koji osim neprekidne, difuzijske komponente sadrže i drugu, diskretnu komponentu koja

u slučajnim trenucima mijenja ponašanje procesa. Ova teorija je relativno nova pa tu ima

još puno zanimljivih otvorenih pitanja i neistraženih pojava koje nisu karakteristične za

klasične procese difuzija.

Takoder, u oba slučaja, rezultate ću primijeniti na klasu procesa sa skokovima.

Ključne riječi: stohastičke diferencijalne jednadžbe, difuzije, difuzije sa slučajnim

prebacivanjem, ergodičnost, subgeometrijska ergodičnost, ϕ-ireducibilnost, aperiodičnost,

udaljenost totalne varijacije, Wassersteinova udaljenost.
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PROŠIRENI SAŽETAK

Svrha mog rada je istražiti problem ergodičnosti (stohastičke stabilnosti) različitih tipova

slučajnih procesa. Slučajni procesi iznimno su važni jer se koriste za modeliranje pojava

u gotovo svim područjima znanosti i svakodnevnog života – primjenjuju se u medicini,

biologiji, kemiji, fizici, financijama itd. Naime, u svim tim područjima često se dolazi

do zaključka da se pojave ne mogu opisati determinističkim modelima jer su neki aspekti

njihovog ponašanja slučajni. Matematički modeli koji se koriste za opisivanje ovakvih

pojava su stohastičke diferencijalne jednadžbe (SDJ). Medutim, budući da rješenja SDJ-

ova imaju jako kompliciranu strukturu i iznimno ih je teško analizirati direktnim putem,

naglasak se stavlja na analizu njihove dugoročne stabilnosti. To uključuje odredivanje

njihovih ekvilibrija (stacionarnih distribucija), ali i brzine kojom konvergiraju prema tim

ekvilibrijima. Konvergencija se promatra s obzirom na neku odredenu funkciju udal-

jenosti. U mojem istraživanju naglasak je stavljen na kvantitativni aspekt ovog problema,

odnosno na eksplicitne ocjene brzine konvergencije marginalnih distribucija procesa prema

invarijantnoj mjeri s obzirom na dvije funkcije udaljenosti: udaljenost totalne varijacije i

klasu Wassersteinovih udaljenosti (koja predstavlja konvergenciju u nešto slabijem smislu).

Kako se većina dosadašnjih rezultata odnosi na geometrijsku ergodičnost (tj. slučaj kada

je brzina konvergencije eksponencijalna), a poznati uvjeti za subgeometrijsku ergodičnost

nisu blizu optimalnih jer su poznati mnogi subgeometrijski ergodični sustavi koji te uvjete

ne zadovoljavaju, fokus mog rada je pronaći oštre i opće uvjete u terminima koeficijenata

samog procesa koji će osigurati subgeometrijsku ergodičnost široke klase procesa.

Rezultate mog istraživanja mogu podijeliti u dvije cjeline. U prvoj ću proučavati

klasične difuzije - Markovljeve procese neprekidnih trajektorija (gdje će od posebnog

značaja biti klasa procesa sa singularnim difuzijskim koeficijentima koji do sada nisu

razmatrani).
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Prošireni sažetak

Drugi dio rada proučava nešto složenije procese - difuzije sa slučajnim prebacivan-

jem, koji osim neprekidne, difuzijske komponente sadrže i drugu, diskretnu komponentu

koja u slučajnim trenucima mijenja ponašanje procesa. Ova teorija je relativno nova pa

tu ima još puno zanimljivih otvorenih pitanja i neistraženih pojava koje nisu karakter-

istične za klasične procese difuzija. Tako su za ovaj tip procesa do sada promatrane samo

eksponencijalne brzine konvergencije.

Takoder, u oba slučaja, rezultate ću primijeniti na dvije klase procesa sa skokovima.

Prvu klasu procesa ćemo dobiti tako da skokove dodamo putem infinitezimalnog genera-

tora (dodajući u generator Lévyjevu jezgru skokova ν). Drugu klasu procesa sa skokovima

ću dobiti subordiniranjem u smislu Bochnera: napravit ću promjenu u vremenskoj kom-

ponenti našeg procesa - umjesto da se uzme njegovu vrijednost u trenutku t, uzima se

vrijednost u trenutku St odredena nekim rastućim nenegativnim procesom {St}t≥0 kojeg

nazivamo subordinatorom.

Za dobivanje ergodičnosti koristit ću dvije osnovne metode. U slučaju udaljenosti

totalne varijacije, primjenit ću tzv. Lyapunovljevu metodu energije. Cilj ove metode je

pronaći odgovarajuću testnu funkciju za koju će tzv. Lyapunovljev uvjet drifta biti zado-

voljen. Dodatno, da bi se dobila konvergenciju s obzirom na udaljenost totalne varijacije,

proces mora imati odredena strukturalna svojstva koja će osigurati odredenu razinu regu-

larnosti. Preciznije, mora biti ϕ-ireducibilan i aperdiodičan. U slučaju kada to nije zado-

voljeno, konvergenciju moramo promatrati u nekom slabijem smislu. Tada se tipično u

literaturi koristi klasa Wassersteinovih udaljenosti kao funkcija udaljenosti izmedu mjera.

U tom slučaju, za dobivanje ergodičnosti primijenit ću tzv. metodu sparivanja refleksi-

jom. Tu će za dobivanje brzine konvergencije biti ključna pomoćna lema koja je zapravo

nadogradnja poznate Grönwallove leme. Obje metode su već poznate u literaturi, no ne u

obliku koji bi bio prikladan za ovaj tip procesa pa ću ih morati proširiti i prilagoditi.

Kako su strukturalna svojstva procesa nužna da bismo dobili konvergenciju, u radu ću

takoder razmotriti i neke dovoljne uvjete za dobivanje tih svojstava za sve tipove procesa,

a koji će biti jednostavniji za provjeriti od same definicije tih svojstava.

Osim predstavljanja samih rezultata i metoda, dat ću i primjere koji će ilustrirati prim-

jenu samih teorema na nekim konkretnim procesima.
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1.1 Itô’s Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 Semi-martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3 Stochastic Differential Equations . . . . . . . . . . . . . . . . . . . . . . 33

1.4 Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2 Diffusion Processes 54

2.1 Literature overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.2 Irreducibility and Aperiodicity . . . . . . . . . . . . . . . . . . . . . . . 57

2.3 Total Variation Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.3.1 Diffusion processes with jumps . . . . . . . . . . . . . . . . . . 71

2.4 Wasserstain Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.4.1 Ergodicity of jump-processes . . . . . . . . . . . . . . . . . . . 88

3 Diffusion Processes with Markovian Switching 92

3.1 Literature overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.2 Irreducibility and Aperiodicity . . . . . . . . . . . . . . . . . . . . . . . 97

3.3 Total Variation Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.4 Wasserstain Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.4.1 Regime-switching Markov processes with jumps . . . . . . . . . 137

Conclusion 144

viii



Contents Contents

Curriculum Vitae 153

ix



INTRODUCTION TO THE TOPIC

Stochastic modelling has come to play a very important role in science and industry. This

is due to the fact that randomness is incorporated in the behaviour of many phenomena

appearing in nature and everyday life. Numerous applications include modelling of finan-

cial markets, automatic control of stochastic systems, turbulent fluent and gas molecule

movements, modelling of population dynamics, disease transmission etc.

Mathematical models used to describe such movements are called stochastic differen-

tial equations (SDEs). However, real solutions of SDEs are often not explicitly known,

are hard to obtain or given in a closed form suitable to applications. They also often have

a very complicated structure so it is not easy to analyse them directly. For all these rea-

sons, the emphasis has been placed on analysing the stability of the considered stochastic

model. Accordingly, the first step is to seek for conditions that ensure a stable behaviour

of the model. That includes detecting both the equilibria as well as the rates at which con-

vergence occurs. Finding the rates is very important as it allows us to predict movements

of our process through time and detect expected period of stabilization. Such questions

have been tackled before for various types of processes. Depending on the class of the

process, certain aspects of the problem have been fully analysed, but usually most of them

are still completely or partially unsettled. In some cases the solution is given only within

very large boundaries. Therefore, the need for deeper studying of stochastic stability and

searching for more efficient solutions constantly exists.

This work studies such questions for two classes of processes: classical diffusion

processes and diffusion processes with switching. In classical literature a term diffusion

process corresponds to a stochastic process that has continuous trajectories, that is, the

process whose movement through time can be displayed by a continuous curve. Natu-

rally, the behaviour of many phenomena is much more complex than that and cannot be
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Introduction

captured by such models so they have gradually been generalized. One of the first steps

in that direction is to include jumps: this represents a situation in which the sample path

of our process exhibits jumps of random amplitude at random time points, and moves

continuously in between. The behaviour of classical diffusion (that is, the type of the

observed curve) is not changing with time: after the jump, the process continues to move

in the same way as before. Further generalization allows the process to ”change its mine”

and start to move in a different way at some point. The idea behind this upgrade of the

problem comes from observing hybrid models.

A random process is a movement that can not be completely predicted. Every time

we start the process from the beginning, it will exhibit a different curve. However, some

regularities in its behaviour do exist: certain values will be more or less likely to happen,

depending on the time point. For a fixed time point t, the probabilities of being at the

state x from the state space is determined by the so-called distribution function. The

distribution changes as time changes: it is not the same all the time. So, many things in

the behaviour of the process are random, but under certain conditions, we are hoping to be

able to predict its movement in the future to some extent, or at least to be able to control

it. The more control we have over the process, the nicer the process is to us: and nice

processes will be called stable.

Stability for random processes does not mean that we can determine its value in the

future since the movement is always random, but rather that we can control its distribution

with time. Precisely, for a stable process the distribution at time t is starting to look more

and more like some fixed distribution, usually denoted by π , as time passes by, that is, as

t grows. This problem can be schematically portrayed like this:

r(t)‖Pt − π ‖ ?−→
t→+∞

0,

where

• Pt ... distribution of the process at time t

• π ... equilibrium distribution

• r(t) ... rate of the convergence

2



Introduction

• ‖·‖ ... an appropriate norm (function that measures how far away we are at time t

from the equilibrium)

As the scheme suggests, the problem raises several questions (and we will try to an-

swer all of them in this work):

 under which conditions does the unique equilibrium state exist?

 if we use function ‖·‖ to measure the distance between two states (for us, states are

distributions), how far away our process is from that equilibrium at time t?

 does this distance becomes smaller with time and, possibly, goes to 0 as time goes

by? If so, we will say that our process converges to its equilibrium.

 at which rate does the convergence occur?

 do we get the same results for some more general processes, namely, for processes

that jump at random time points?

 can we extend this analysis to some even more general stochastic processes like

hybrid models (where we have a discrete component that changes the behaviour of

our process at random time points)?

To answer these questions, we will adopt two main techniques: the so called Lyapunov

energy method and the coupling method.

Lyapunov energy method relies on the idea of Aleksandr M. Lyapunov from 1892

which states that the energy of the stable system does not dissipate. How does this work?

Idea, that comes from physics, is to find a function that describes the total energy of the

system (Lyapunov function) and analyse its behaviour:

• if V is such a function and x a current state of the system (i.e. V (x) is the energy of

the system when it is in state x, so V̇ (x) can be interpreted as velocity of movement

or dissipation of that energy), we want

V̇ (x) = 〈∇V (x), ẋ〉 ≤ 0

– V̇ (x) ≥ 0 =⇒ the system is unstable as its energy has a tendency to leave the

center of the state space (the energy is dissipated in the space)

3
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– V̇ (x) ≤ 0 =⇒ the system is stable as its total energy is moving towards the

center of the state space (and therefore, it is being ”contained” in the sytem)

On the other hand, the idea of the coupling method is to construct the optimal coupling

strategy - in the sense of the optimal transport theory. This theory is concerned with the

problem of minimizing the cost of the transport of goods between producers (factories)

and consumers. If each factory can produce a limited number of products, the question

is which products should be delivered to which consumer so that all consumers get the

quantity they need and the total cost of the transport is as small as possible. Naturally,

the cost of the transport depends on the distance between the factory and a consumer: the

farther they are, the bigger the cost. In this sense, we will use this method to minimize

the dissipation of the energy of the system - we will try to keep it as low as possible.

4



1. PRELIMINARIES AND NOTATIONS

After the non-formal introduction to the topic of this work, we start by introducing nota-

tion and presenting objects and mathematical models that will be studied by giving their

formal definitions together with an overview of well-known results in the area of research.

The literature used includes [IW89], [Dur96], [LP17], [Zit15], [SV06], [GS79], [MT93a],

[MT93b].

All objects we consider will be connected to some probability space. Therefore, we

first define the setting that we will work around.

Fix a complete probability space (Ω,F ,P) with a right-continuous increasing family

{Ft}t≥0 of σ -fields of F . We call the space (Ω,F ,{Ft}t≥0,P) a stochastic basis that

satisfies the usual conditions, and {Ft}t≥0 a filtration on (Ω,F ,P).

Let I be some time space of interest (for example, some discrete set such as N, [0,+∞〉

or some finite interval [0,T ]). A stochastic process is a family of random variables X =

{Xt(ω) : t ∈ I} with values in Rd . We call X a discrete or continuous stochastic process

depending on set I being discrete or continuous set. Next, we list some properties a

stochastic process X might posses: X is called

• adapted to {Ft}t≥0 if Xt is Ft-measurable for all t ∈ I;

• predictable if the mapping (t,ω) 7→ Xt(ω) is (S ,B(Rd))-measurable, where

- S is σ -algebra generated by all left-continuous adapted processes;

• integrable if it is adapted to {Ft}t≥0 and E[Xt ]<+∞ for all t ∈ I;

- Similarly, we call X square integrable if it is adapted to {Ft}t≥0 and E[|Xt |2]<

+∞ for all t ∈ I.

5



Preliminaries and Notations

• increasing if X0 = 0 and t 7→ Xt is right-continuous and increasing (that is, non-

decreasing) function a.s.;

# It follows that Xt ≥ 0 a.s.

• continuous if t 7→ Xt is continuous function a.s.;

• of bounded variation on a finite interval [a,b] if

sup

¨
n−1

∑
i=0
|Xti+1−Xti| : a = t0 < t1 < .. . tn = b, n ∈ N

«
<+∞, a.s.

We can consider two random processes equal in several ways. In one case we identify

them if their trajectories agree up to a P-null set. It is also possible to identify them on

the basis of their properties.

Definition 1.0.1. • A random process Y = {Yt}t∈I is called a modification of a pro-

cess X = {Xt}t∈I if, for all t ≥ 0,

P({ω : Xt(ω) = Yt(ω)}) = 1.

• Two random processes X = {Xt}t∈I and Y = {Yt}t∈I are equal, or we call Y indis-

tinguishable from process X , if almost all of their trajectories are equal, that is,

if

P({ω : t ∈ I 7→ Xt(ω) coincide to t ∈ I 7→ Yt(ω)}) = 1.

• Two random processes X = {Xt}t∈I and Y = {Yt}t∈I are equal in distribution if

they have the same distribution, that is,

P(X ∈ A) = P(Y ∈ A), A ∈ C ,

where (C,C ) is a measurable space defined by the functions ω 7→ Xt(ω) and use

the filtration generated by ω(s), for s≤ t.

# Remark: if X and Y are continuous, and Y is a modification of X , then they

are indistinguishable (because then they are determined by their values on a

countable dense subset of [0,+∞〉).

6



Preliminaries and Notations

A standard situation in applications is to observe the value of the process at some

random time point of interest in the future. Naturally, in order to analyse them within

mathematical framework, we need to impose certain assumptions on those random times.

Definition 1.0.2. A random variable τ : Ω→ [0,+∞] is called a stopping time (with

respect to {Ft}t≥0) if for all t > 0, {τ < t} ∈Ft .

# Remark: since F is right-continuous and increasing family of σ -algebras, it is

equivalent to require that {τ ≤ t} ∈Ft for all t > 0.

In this work we discuss properties of some special types of stochastic processes. In

order to get there, we need to develop the theory for certain broad classes of processes

with some nice and useful properties and gradually extend it more and more. Therefore,

we continue by naming some classes of stochastic processes that will be of interest to us.

Definition 1.0.3. A real stochastic process {Xt}t∈I is called a martingale / submartin-

gale / supermartingale with respect to {Ft}t≥0 if

(i) Xt is integrable for all t ∈ I,

(ii) X is adapted to {Ft}t≥0,

(iii) E[Xt |Fs] = Xs / E[Xt |Fs]≤ Xs / E[Xt |Fs]≥ Xs a.s., for all s, t ∈ I such that s < t.

Next, we consider a version of such processes which are stopped at some random time

point in the future.

Definition 1.0.4. A stochastic process X = {Xt}t≥0 is called a local martingale with

respect to {Ft}t≥0 if it is adapted to {Ft}t≥0 and if there exists a sequence of (Ft)-

stopping times {τn}n≥0 such that τn < +∞ for all n ∈ N, τn ↑ +∞ and stopped processes

Xτn = {Xτn∧t}t≥0 is a martingale for all n ∈ N.

If, additinally, Xτn is a square integrable martingale for all n ∈ N, then we call X a

locally square integrable martingale with respect to {Ft}t≥0.

In many problems the observed motion posses the property that its future behaviour is

determined by a present state of the system, not the past ones. For a system whose paths
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evolve in a random fashion, this means that the current state fully determines the distri-

bution of the path from that point on, that is, it determines with what probability will the

system occupy some state from all possible states at all future time points. That property

is called the Markov property and is very well investigated in the literature since it entails

many other useful features. We discuss it for both discrete and continuous system.

Definition 1.0.5. A discrete stochastic process X = {Xn}n≥0 with values in a countable

set S (which we call the state space of the chain) is called a discrete-time Markov chain

if, for any n ∈ N and set of states i, i0, . . . , in ∈ S,

P(Xn+1 = i | X0 = i0, . . .Xn = in) = P(Xn+1 = i | Xn = in),

under assumption that both conditional probabilities are well defined, that is, P(X0 =

i0, . . .Xn = in)> 0.

A Markov chain is called

• time-homogeneous if the transition probability is independent of n, that is, for all

n ∈ N and i, j ∈ S

P(Xn+1 = i | Xn = j) = P(Xn = i | Xn−1 = j);

# Such a Markov chain is characterized by transition matrix P = (Pi, j)i, j∈S,

where Pi, j = P(Xn+1 = j | Xn = i), for all i, j ∈ S and n ∈ N.

• stationary if for all n,m ∈ N and i0, . . . , in ∈ S

P(X0 = i0, . . .Xn = in) = P(Xm = i0, . . .Xn+m = in);

• irreducible if it is possible to go from every state to every state (possibly in several

moves), that is, if for every i, j ∈ S such that P(X0 = i)> 0 there exists k ∈ N such

that P(Xk = j | X0 = i)> 0;

• aperiodic if all states i ∈ S have a period di = 1, where

- di := gcd{n ≥ 1 : P(Xn = i | X0 = i) > 0}, with the additional definition that

di =+∞, if P(Xn = i |X0 = i)= 0 for all n≥ 1. Here, gcd stands for calculating

the greatest common divisor.
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• ergodic if there is some n0 ∈ N such that for all n ≥ n0 and i, j ∈ S for which

P(X0 = i)> 0, P(Xn = j | X0 = i)> 0.

# Remark: it is equivalent to demand that X is irreducible and aperiodic Markov

chain.

A Markov chain is, thus, a process whose evolution in the future depends only in its

present state, and the switch to a following state in the next moment is determined by its

transition matrix P. In other words, whatever happened in the past, stays in the past - it

is no longer important. To consider such process in a continuous-time setting, we assume

the change of the state is again controlled by a transition matrix, but we need to determine

when it will happen. Since it can not happen in the next moment (because that means the

jump happens instantly, all the time, which makes no sense), we let the chain rest in a

present state for some time and then switch it. Of course, waiting times are random and,

to support the idea of a Markov property, independent of each other.

Definition 1.0.6. A continuous-time Markov chain is a continuous-time process {Xt}t≥0

on a state space S determined by two components:

(i) a transition matrix P (that corresponds to a discrete-time Markov chain - we call it

a jump chain or embedded Markov chain),

(ii) holding parameters q : S→ 〈0,+∞〉.

The waiting time in state i∈ S is exponentially distributed with parameter q(i). All waiting

times are mutually independent. After the waiting time passes by, the jump to the next

state is determined by the transition matrix P.

# So, we can think of a continuous-time Markov chain as a process that has a Markov

chain embedded in it: we first create a set of jumps according to the discrete-time

Markov chain (determined by a transition matrix P), and then we transfer it to a

continuous-time setting by taking a set of independent exponentially distributed

waiting times (in each state i ∈ S we let our process wait some time before jumping

to the next state - the same state where the Markov chain would jump after being in

the state i).

9
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# To see that these two objects indeed define a stochastic process (therefore, they are

also called the local characteristics of a Markov chain), we can look at the integral

equation, namely, it holds that for all i, j ∈ S and t > 0

P(Xt = j | X0 = i) = δi, je−q(i)t +
∫ t

0
q(i)e−q(i)s

∑
k 6=i

Pi,kP(Xt−s = j | X0 = k)ds.

A continuous-time Markov chain is called

• regular or non-explosive if its explosion time is infinite. More precisely, if we

denote the final state (sometimes called a cemetary) by ∂ and a time it reaches that

state (the so-called explosion time) by ζ , that is it holds that Xt = ∂ for t ≥ ζ , we

have

P(ζ =+∞ | X0 = i) = 1, i ∈ S.

# A non-explosive Markov chain indeed satisfies the Markov property, defined

below.

• irreducible if we can go with positive probability to any state, starting from any

state, that is, for all i, j ∈ S such that P(X0 = i)> 0, there is t0 > 0 such that

P(Xt0 = j | X0 = i)> 0.

# Irreducibility implies that P(Xt = j | X0 = i)> 0 for all t > 0, so this property

is also called aperiodicity.

• ergodic if it is irreducible (or aperiodic) and it possesses a stationary distribution,

that is, a probability distribution π such that

lim
t→+∞

P(Xt = j | X0 = i) = π( j), i, j ∈ S.

# Irreducible Markov chain has at most one stationary distribution.

# A continuous-time Markov chain on a finite state space S has at least one

stationary distribution, so, by the previous remark, it follows that it is ergodic

if, and only if, it is irreducible.

Since continuous-time Markov chains will have a very important role later in the this

work, we proceed by presenting some of their properties.

10



Preliminaries and Notations

Definition 1.0.7. With the help of the local characteristics of a Markov chain, we define

the generator matrix Q = (qi, j)i, j∈S by

qi, j =

−q(i), j = i,

q(i)Pi, j, j 6= i.

# Remarks: qi,i < 0 and qi, j ≥ 0 for all i, j ∈ S.

# ∑ j∈S qi, j = 0 for all i ∈ S.

# A generator matrix Q can be expressed in the form of two equations: if we denote

by P(t) the matrix (P(Xt = j | X0 = i))i, j∈S, then for all i, j ∈ S the function t 7→

P(Xt = j | X0 = i) is continuously differentiable and

– differential backward equation:

P′(t) = QP(t), t ≥ 0.

– differential forward equation:

P′(t) = P(t)Q, t ≥ 0.

A special case is for t = 0: we get that P′(0) = Q, that is,

qi, j = lim
h→0

P(Xh = j | X0 = i)
h

, i, j ∈ S.

# The Markov chain can also be obtained from a generator matrix, because we also

have to following equality: for h > 0 and i, j ∈ S,

P(Xh = j | X0 = i) =

1+qi, jh+o(h) = 1−q(i)h+o(h), i = j,

qi, jh+o(h), i 6= j,

so qi, j is also called the transition rate between states i and j from S.

# An invariant measure π for X satisfies:

π Q = 0.

If π is a probability measure, we call it an invariant distribution.

11
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# If µ = (µi)i∈S is an invariant measure for an embedded Markov chain, that is, µ =

µP, then π = (πi)i∈S defined by

µi = πiq(i), i ∈ S,

is an invariant measure for continuous-time Markov chain X .

Further generalisation of the notion of a Markov chain leads us to consider a process

that possesses a similar property of not depending on the past, but without assuming that

it changes values only at some discrete set of time points - so, we allow it moves around

all the time, and let the movement be determined only by a present state.

Definition 1.0.8. Let (S,S ) be a measurable space. An adapted stochastic process X =

{Xt}t≥0 with values in S is called the continuous-time Markov process (or a continuous-

time process possessing the Markov property) with respect to {Ft}t≥0 if for all A ∈S

and 0≤ s < t

P(Xt ∈ A |Fs) = P(Xt ∈ A | Xs).

# Remarks: alternatively, the Markov property can be stated in the following way: for

all f : S→ R, f ∈Bb(Rd), and all 0≤ s≤ t

E[ f (Xt) |Fs] = E[ f (Xt) | σ(Xs)].

- Here, Bb(Rd) stands for all Borel-measurable and bounded functions.

If there is a function p(s,x, t,A), where x ∈ S, A ∈S , 0≤ s≤ t, which satisfies

p(s,Xs, t,A) = P(Xt ∈ A | Xs)

and possesses the following properties:

(i) x 7→ p(s,x, t,A) is a non-negative measurable function;

(ii) A 7→ p(s,x, t,A) is a positive probability measure on S ;

(iii) for all x ∈ S, A ∈S and 0≤ s < t < T ,∫
S

p(s,x, t,dy) p(t,y,T,A) = p(s,x,T,A);

12
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we say that a Markov process X has a transition probability function or a transition

kernel p(s,x, t,A).

# Remark: transition probability plays the role of the transition matrix of a Markov

chain in a continuous setting.

# Property (iii) is called a Chapman-Kolmogorov equation.

A Markov process is called time-homogeneous if it satisfies additional assumption

that its transition probability depends on s and t only through their difference t − s.

Namely, p(s,x, t,A) = p(0,x, t − s,A) for all 0 ≤ s ≤ t, x ∈ S and A ∈ S , so we can

write p as a function of three variables: p(t,x,dy) = p(0,x, t,dy).

As before, there is a version of these properties concerning a stopped process.

Definition 1.0.9. Take a stochastic process X = {Xt}t≥0 with its natural filtration {Ft}t≥0

and a stopping time τ .

• Fτ := {A ∈F : ∀ t ≥ 0,{τ ≤ t}∩A ∈Ft}

• X is called a strong Markov process (or said to posses a strong Markov property)

if, conditional on {τ <+∞} and Xτ , Xτ+t is independent of Fτ .

# This definition is naturally transferred to a discrete setting: a Markov chain

X = {Xn}n≥0 has a strong Markov property if for i ∈ S, conditional on {τ <

+∞} and Xτ = i, {Xτ+n}n≥0 is a Markov chain starting from point i that is

independent of X0, . . . ,Xτ .

A very important example of a stochastic process, one of the most commonly used in

applications and researched in the literature, is certainly Brownian motion. Unintention-

ally discovered by the Scottish botanist Robert Brown in 1827, while observing move-

ment of pollen grains suspended in water under a microscope, it slowly started to play a

key role in most of the mathematical models used to describe phenomena from nature,

finance, physics and other science areas. First formal mathematical notions and analy-

sis of Brownian motion date back to the end of 19th century and are due to the Danish

astronomer Thorvald N. Thiele and the French mathematician Louis Bachelier who was

modelling stock and option markets.
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Definition 1.0.10. A stochastic process {Xt}t≥0 is called a (one-dimensional) Brownian

motion with the initial distribution µ if

(i) X0 follows the probability distribution µ ,

(ii) (independent increments) for every n ∈N and all 0 = t0 < t1 < .. . < tn the variables

X0,Xt1−Xt0 , . . . ,Xtn−Xtn−1 are mutually independent,

(iii) (normal increments) for all 0≤ s < t, Xt−Xs ∼ N(0, t− s),

(iv) (continuity) trajectories are a.s. continuous, i.e. t 7→ Xt(ω) is continuous for almost

every ω ∈Ω.

If µ ≡ 0, we call X a standard Brownian motion.

Furthermore, a d-dimensional process whose components are independent one-dimen-

sional Brownian motions is called a d-dimensional Brownian motion.

A concept of such a stochastic motion can be generalized - those processes are called

Lévy processes and we will mention the two most important representatives of that class.

One of them is Brownian motion, and the second will be a Poisson process.

Definition 1.0.11. A stochastic process {Xt}t≥0 that satisfies

(i) X0 = 0,

(ii) (independent increments) for every n ∈N and all 0 = t0 < t1 < .. . < tn the variables

X0,Xt1−Xt0 , . . . ,Xtn−Xtn−1 are mutually independent,

(iii) (stationary increments) for all 0 < s < t it holds that Xt−Xs
d
= Xt−s,

(iv) (continuity in probability) for all ε > 0 and s≥ 0

lim
t→s

P(|Xt−Xs|> ε) = 0,

is called a Lévy process.

# We can also assume that the trajectories t 7→ Xt are a.s. right continuous with exist-

ing left limits (a property that we call càdlàg), since we can always find a modifi-

cation of process X with that property.
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The next type of stochastic process that we will mention will be important to us when

we will move from continuous processes to a more general class of processes that include

jumps.

Definition 1.0.12. Let λ > 0.

• A Lévy process M for which Mt ∼ Poi(λ t) for t > 0 is called a Poisson process

with intensity λ .

# Remarks: variables Mt can be obtained in another way as well - take a se-

quence of random variables Sk ∼ Exp(λ ) for all k ∈ N. Then, Mt can be

defined as Mt = max{n ∈ N0 : ∑
n
k=1 Sk ≤ t} for t > 0.

# Poisson process is one type of a continuous-time Markov chain.

• The process M̃ = {M̃t}t≥0 defined by M̃t := Mt −λ t for t > 0 is called a compen-

sated Poisson process.

# Remark: this process is a martingale.

• For a sequence of Rd-valued random variables {Zn}n≥0 which are independent of

M, the stochastic process Y = {Yt}t≥0 defined by Yt := ∑
Mt
k=1 Zk for all t ≥ 0 is called

a compound Poisson process.

Fix some set E ⊆Rd and consider a measurable space (E,B(E)) and a σ -finite mea-

sure µ on it with the property that

µ(A)<+∞, for all A ∈Bb(E), (1.0.1)

where Bb(E) stands for all bounded elements of B(E).

Definition 1.0.13. • A function (random measure) N : (Ω,B(E))→ N0 is called a

Poisson random measure or a Poisson point process with intensity measure µ if

(i) N(ω, ·) is a N0-valued measure with the property (1.0.1) for a.e. ω ∈Ω,

(ii) for all B ∈Bb(Rd), the random variable N(B) follows a Poisson distribution

with parameter µ(B),
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(iii) for all n ∈ N and pairwise disjoint sets B1, . . . ,Bn ∈B(Rd), the random vari-

ables N(B1), . . . ,N(Bn) are independent.

• A random measure Ñ is called a compensated Poisson random measure if

Ñ(ω,B) = N(ω,B)−µ(B), B ∈Bb(Rd),ω ∈Ω,

and intensity measure µ is sometimes also called a compensator and denoted by

N̂.

# Remarks: note that this notation does not make sense if µ(B) = +∞ for some

B ∈ B(Rd) (in general, both N(B) and µ(B) may be infinite). Therefore,

we define this measure only for sets B such that µ(B) < +∞, and integrate

with respect to Ñ only for those functions f ∈ L1(E,B(E),µ) for which the

following notation makes sense:∫
f dÑ :=

∫
f dN−

∫
f dµ.

# If intensity measure µ is finite, then the compensated Poisson random measure

Ñ is indeed a signed measure.

The reason why a Poisson random measure is also called Poisson point process is

the fact that it can be represented as counting measure for sequence of random points.

Namely, for a Poisson random measure N with intensity µ , we can find a sequence of i.i.d.

random variables {Zn}n≥0 on E and a random variable K ∼ Poi(µ(E)) that is independent

of {Zn}n≥0 such that

N(A) =
K

∑
n=1

1A(Zn) =
K

∑
n=1

δZn(A), A ∈B(E),

where δZn stands for the Dirac measure at point Zn. Furthermore, by considering E as a

product space Rd× [0,T ] or [0,+∞〉×Rd , we can observe the function N as a stochastic

process (on the time interval [0,T ] or [0,+∞〉, respectively).

The questions of integration with respect to a Poisson point process is now resolved

since, for a.e. ω ∈ Ω, N(ω, ·) is a measure on E so we can use standard procedures for

integration from measure theory. Namely, for any measurable function f : E → R the
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integral
∫

E f (x)N(ω,dx) is well-defined (for a.e. ω ∈Ω). Moreover, the function
∫

E f dN

defined by ω 7→
∫

E f (x)N(ω,dx) is a random variable with expectation

E
�∫

E
f dN

�
=
∫

E
f dµ.

As we will talk about jump processes, we will now construct them starting from a

Poisson point process N viewed as a Poisson random measure N on E =Rd\{0}× [0,+∞〉

with intensity µ . As mentioned before, we can write N as

N =
+∞

∑
n=1

δ(Yn,Tn),

where (Yn,Tn) are mutually independent random variables. This will represent a jump

of size Yn at time Tn. For any f ∈ L1(E,B(E),µ) we obtain a stochastic process by

integrating f up to time t. More precisely, for any t ≥ 0, define

Xt :=
∫
[0,+∞〉

∫
Rd\{0}

f (x,s)1[0,t](s)N(dx,ds)

=
∫ t

0

∫
Rd\{0}

f (x,s)N(dx,ds)

= ∑
n≥1:Tn≤t

f (Yn,Tn).

So, we see that this process indeed jumps at times Tn.

If we integrate with respect to a compensated Poisson random measure Ñ = N− µ ,

we obtain the following process X̃ :

X̃t :=
∫
[0,+∞〉

∫
Rd\{0}

f (x,s)1[0,t](s)Ñ(dx,ds)

=
∫ t

0

∫
Rd\{0}

f dN−
∫ t

0

∫
Rd\{0}

f dµ, t ≥ 0.

Such a process is now a martingale with respect to the filtration F̃ , where

F̃t := σ{N(A) : A ∈ E }, t > 0.

It turns out that there is a connection between continuous-time Markov processes and

integrals with respect to a Poisson random measure. Let Λ = {Λt}t≥0 be the continuous-

time Markov chain with values in S= {1,2 . . .} (that is, it has countable state space) and

with the generator matrix Q = (qi, j)N×N. As discussed in [MY06, p. 46], any continuous-

time Markov chain can be written in the form of the stochastic integral with respect to the
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Poisson random measure (details can be found in [GS82, p. 226-227] and [GAM97]).

Hence, the {Λt}t≥0 has a following martingale form:

Λt =
∫ t

0

∫
Rd

h(Λs−,y)N(dx,ds), t ≥ 0, (1.0.2)

or, equivalently written, satisfies the following stochastic differential equation (we will

formally introduce the notion of a SDE later):

dΛt =
∫
Rd

h(Λt−,x)N(dx,dt), t ≥ 0 (1.0.3)

where N is a Poisson random measure with intensity dt × λ (dx) (in which λ is the

Lebesque mesure on Rd) and h : S×Rd → R is defined by:

h(i,x) :=

 j− i, x ∈ ∆i j for some j ∈ S,

0, otherwise,

for all i ∈ S and x ∈ Rd . Here {∆i, j : i, j ∈ S} is a family of disjoint intervals defined on a

non-negative part of the real line as follows

∆12 := [0,q12〉 ,

∆13 := [q12,q12 +q13,〉
...

∆21 := [q(1),q(1)+q21〉 ,

∆23 := [q(1)+q21,q(1)+q21 +q23〉 ,
...

where q(i) = ∑ j∈S\{i} qi j ∈ 〈0,+∞〉. If qi j = 0 for some i 6= j ∈ S, we define ∆i j = /0.

As mentioned, jump processes will be important to us as we will develop the theory

of ergodicity for them. So we proceed by formally defining jumps and their features.

Recall that a càdlàg process X has right-continuous sample paths with left limits,

namely, for any t > 0 the following limit exists:

Xt− = lim
h↓0

Xt−h.

Definition 1.0.14. • We say a càdlàg and adapted process X = {Xt}t≥0 jumps (or has

a discontinuity) at time t > 0 if

∆Xt := Xt−Xt− 6= 0.
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# Remarks: X can admit only countably many jumps, so jump times make a

countable set and we denote them by (Tn)n≥1, that is, {t ≥ 0 : ∆Xt 6= 0} =

Tn : n≥ 1.

# Tn for n≥ 1 are stopping times.

# Jump sizes are denoted by (Yn)n≥1, that is,

Yn := ∆XTn = XTn−XTn− ∈ Rd\{0}, n≥ 1.

Yn is FTn-measurable random variable for all n≥ 1.

• The sequence of jump times and jump sizes defines a jump measure JX of X by

JX(ω,A×B) := ∑
n≥1

δ(Tn(ω),Yn(ω))(A×B) = card{(t,∆Xt(ω)) ∈ A×B}, (1.0.4)

for ω ∈Ω,A×B ∈B([0,+∞〉×Rd).

# Remarks: a jump measure is a random measure on [0,+∞〉×Rd and for any

t ≥ 0 and B ∈B(Rd) the random variable JX([0, t]×B) counts the number of

jumps of X until time t such that their size is in B.

Since Lévy processes will be of our special interest, we investigate them further.

Definition 1.0.15. Let X = {Xt}t≥0 be a Lévy process. The Lévy measure or a Lévy

kernel of X is a measure ν on (Rd,B(Rd)) defined by:

ν({0}) = 0

ν(A) = E[JX([0,1]×B)] = E[card{t ∈ [0,1] : ∆Xt 6= 0, ∆Xt ∈ B}], B ∈B(Rd).

# Remarks: if B ∈B(Rd) is a compact set such that 0 /∈ B, then ν(B) is finite, since

there is ε > 0 such that B is contained in the complement of the ball around origin

of radius ε Bc
ε , and the monotonicity of measure ν then implies

ν(B)≤ ν(Bc
ε) = E[JX([0,1]×Bc

ε)]<+∞,

beacuse the right hand side is just a number of jumps in one time unit that are larger

in size than ε . As X is càdlàg, we have only finitely many such jumps. This means

that ν is a Radon measure on (Rd\{0},B(Rd\{0})).
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# It holds that ∫
Rd
(1∧|x|2)ν(dx)<+∞ ⇐⇒

∫
Rd

|x|2

1+ |x|2
ν(dx)<+∞.

This condition implies that X might have infinitely many small jumps

# ν does not need to be a finite measure on Rd: there might be infinitely many small

jumps on time interval [0,1], resulting in a measure ν having a singularity at the

origin.

# The jump measure JX is a Poisson random measure on [0,+∞〉×Rd\{0} with in-

tensity dtν(dx).

# For some ε > 0, the number of jumps until some time t ≥ 0 is finite, so we can

define for t ≥ 0

Nt := card{0≤ s≤ t : |∆Xs|> ε}.

Then, N = {Nt}t≥0 is a Poisson process. Particularly, N1 = JX([0,1]×Bc
ε) follows

a Poisson distribution with a finite parameter.

We are now ready to state the most important result regarding Lévy processes: a

theorem that says that any Lévy process is actually a linear combination of a Brownian

motion with drift and a countable sum of independent compound Poisson processes. A

reverse of the result states that such a decomposition is unique, hence, a Lévy process can

be characterized by a triplet of coefficients.

Theorem 1.0.16 (Lévy-Itô decomposition). Let X = {Xt}t≥0 be a Lévy process with

Lévy measure ν. Then there exists a vector β ∈ Rd , a positive, semi-definite, symmetric

matrix γ with all positive elements (i.e. γ > 0) and a standard Brownian motion B =

{Bt}t≥0 in Rd such that, for all t ≥ 0, Xt can be decomposed in the following way:

Xt = β t + γ
1/2Bt +X l

t + lim
ε↓0

X̃ε
t , (1.0.5)

where

X l
t :=

∫ t

0

∫
|x|>1

xJX(ds,dx),

X̃ε
t :=

∫ t

0

∫
ε<|x|≤1

xJ̃X(ds,dx) =
∫ t

0

∫
ε<|x|≤1

x(JX(ds,dx)−dsν(dx)).
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All terms in the decomposition are mutually independent. Convergence in the last term is

a.s. and uniform on any finite [0,T ] . The triplet (β ,γ,ν) is uniquely determined by X and

is called a Lévy triplet or a characteristic triplet .

# Remarks: if X is a continuous Lévy process, then its Lévy-Itô decomposition sug-

gests it can be decomposed as a sum of a drift and a Brownian motion - we have first

two terms of the decomposition in (1.0.5), since the last two terms encode jumps of

the process.

# As mentioned in the previous remark, the process Nt that counts the jumps until time

t, for all t ≥ 0, is a Poisson process. Next, one can show that the sizes of jumps are

i.i.d. variables (see [CT04, Proposition 3.3]). This, together with (1.0.4), implies

that X l = (X l
t )t≥0 is a compound Poisson process, and it follows from (1.0.4) that it

is actually summing only large jumps (more precisely, jumps larger than 1 in size).

So, X l is a compound Poisson process with a.s. finitely many jumps. This fact will

then imply that JX is a Poisson random measure, which we stated above.

# Similary, Xε is a compound Poisson process, too, taking into account small jumps of

sizes between ε and 1. Since X might have infinitely many small jumps, we cannot

simply integrate with respect to JX for such jumps. Hence, the limit limε↓0 X̃ε
t might

not exist too. So, in this case, we consider the compensated compound Poisson

process and integrate

# The threshold 1 that separates small and large jumps is arbitrary - any other thresh-

old could be used.

# Observe that the decomposition implies that Xt can be written as a sum of a Brow-

nian motion with drift and a, possibly infinite, sum of independent compound Pois-

son processes, since we can write the limit as a countable sum of Xεn+1−Xεn (which

are all independent compound Poisson processes), for some sequence (εn)n≥1 such

that εn ↓ 0 as n ↑+∞. Hence, we will be able to derive a diffusion process by using

some Lévy triplet.

# There is 1-1 correspondence between Lévy triplets and Lévy processes, as the re-

verse of the theorem holds true. Namely, if we are given a vector β ∈Rd , a positive,
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semi-definite symmetric matrix γ ∈Rd×Rd such that γ > 0, and a Radon measure

ν on Rd\{0} such that ν({0}) = 0 and∫
Rd
(1∧|x|2)ν(dx)<+∞,

then we can find a Lévy process X with the characteristic triplet (β ,γ,ν) that satis-

fies (1.0.5).

# If {Xt}t≥0 is a Rn-valued Lévy process with Lévy triplet (β ,γ,ν), the linear trans-

formation for some matrix σ ∈ Rd ×Rn, that is, the process (σXt)t≥0, is again a

Lévy process, and the Lévy triplet (βσ ,γσ ,νσ ) of it is given by (see e.g. [Sat13,

Proposition 11.10])

(βσ ,γσ ,νσ ) = (σβ +
∫
Rn

σy(1B1(0)(σy)−1B′1(0)
(y))ν(dy),σγσ

T ,νσ ),

where νσ (B) = ν({x ∈ Rn : σx ∈ B}) for B ∈B(Rd), B′1(0) = {y ∈ Rn : |y| ≤ 1}

and B1(0) = {x ∈ Rd : |x| ≤ 1}.

1.1. ITÔ’S CALCULUS

The problem that motivated the construction of the stochastic integral was the question

of calculating integral
∫ t

0 dxs in a case that xt is nowhere differentiable curve (trajectory).

Since this situation did not fit into the standard framework for integration, Itô introducted a

concept of integration that worked for stochastic processes that we call infinitely divisible

processes. Later on, the theory was extended to a class of stochastic processes called

semimartingales.

We observe stochastic process on time interval [0,+∞〉 and if X is an martingale, we

assume that t 7→ Xt is right continuous a.s. (since we can always find a modification of X

such that this holds).

Definition 1.1.1. • Define L2 to be the space of all real measurable processes X =

{Xt}t≥0 which are adapted to {Ft}t≥0 and such that

‖X‖2
2,T := E

�∫ T

0
X2

s ds
�
<+∞, ∀T > 0.
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• Define also L0 to be a subspace of L2 of such processes {Xt}t≥0 for which there is

a sequence of real numbers 0 = t0 < t1 < t2 < .. .→+∞ and a sequence of random

variables {Zn}n≥0 such that Zn is Ftn-measurable for all n∈N, supn∈N‖Zn‖∞ <+∞

and

Xt(ω) =

Z0(ω), if t = 0,

Zn(ω), if t ∈ 〈tn, tn+1] , for n = 0,1, . . .

# Remark: as a result, obviously, Xt(ω) can be expressed in the following form:

Xt(ω) = Z0(ω)1{t=0}}(t)+
+∞

∑
n=0

Zn(ω)1〈tn,tn+1](t), t ≥ 0.

For X ∈L2, let

‖X‖L2 :=
+∞

∑
n=1

2−n(‖X‖2,n∧1).

Then, together with a definition that two processes X and Y ∈L2 are equal if

‖X−Y‖2,T = 0, for all T > 0,

the function (X ,Y ) 7→ ‖X−Y‖L2 becomes a metric on space L2. It holds that for any X ∈

L2 there is another X ′ ∈L2 which is predictable and which is identical to X . Furthermore,

L2 is a complete metric space and L0 is dense in L2 in this metric.

Definition 1.1.2. • M2 := {X = {Xt}t≥0 is a square integrable martingale with re-

spect to {Ft}t≥0 and X0 = 0 a.s.}

• M c
2 := {X ∈M2 : t 7→ Xt is continuous a.s.}

We consider two processes X and Y from M2 to be equal if

t 7→ Xt and t 7→ Yt are equal a.s.

Furthermore, for X ∈M2, set

‖X‖T := E[X2
T ]

1
2 , for all T > 0,

and

‖X‖M2 :=
+∞

∑
n=1

2−n(‖X‖n∧1).
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Now the function (X ,Y ) 7→ ‖X −Y‖M2 makes M2 a complete metric space. Moreover,

M c
2 is a closed subspace of M2.

The first type of stochastic integration that we discuss will be integration with respect

to a Brownian motion {Bt}t≥0. Fix a standard Brownian motion {Bt}t≥0 on our probabil-

ity space (Ω,F ,P).

Definition 1.1.3. Take stochastic process X ∈L0. Then, we can write Xt(ω) = Z0(ω) ·

·1{t=0}}(t) + ∑
+∞

n=0 Zn(ω)1〈tn,tn+1](t), t ≥ 0. We define a stochastic integral of X with

respect to Brownian motion B to be∫ t

0
Xs(ω)dBs(ω) :=

n−1

∑
i=0

Zi(ω)(Bti+1(ω)−Bti(ω))+Zn(ω)(Bt(ω)−Btn(ω)),

if tn ≤ t ≤ tn+1,n ∈ N, and we use the notation
∫ t

0 XsdBs =
∫ t

0 Xs(ω)dBs(ω).

# Remark: note that the integral can be expressed in the following form as well:∫ t

0
XsdBs =

+∞

∑
i=0

Zi(ω)(Bt∧ti+1(ω)−Bt∧ti(ω)).

# Furthermore, it holds that the set of integrals I(X)t :=
(∫ t

0 XsdBs
)

t≥0 viewed as a

stochastic process (denote it by I(X)) is a continuous Ft-martingale, that is, it is an

element of M c
2 , and is independent of the choice of {tn}n≥0. It also holds that, for

all T > 0,

‖I(X)‖T = ‖X‖2,T and ‖I(X)‖M2 = ‖X‖L2.

After defining the integral for processes in L0, we extend the class of integrands first

to space L2, and then to all adapted processes.

First, since L0 is dense in L2, for a process X ∈L2 we can take an approximating

sequence {Xn}n≥0 from space L0, that is, the sequence satisfies

‖X−Xn‖L2 → 0, n→+∞.

Note that ‖I(Xn)− I(Xm)‖M2 = ‖Xn−Xm‖L2 , so {Xn}n≥0 is a Cauchy sequence in L2,

which implies that (I(Xn))n≥0 is a Cauchy sequence in M2. Since I(Xn)∈M c
2 , and M c

2 is

a closed subspace of M2, it follows that I(Xn) converges to a unique element Z = {Zt}t≥0

from the space M c
2 . Note that Z does not depend on the choice of {Xn}n≥0. We denote Z

by I(X) since it is clearly determined uniquely from the process X .
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Definition 1.1.4. Take a stochastic process X ∈ L2. The process I(X) ∈M c
2 defined

above is called the stochastic integral of X with respect to the Brownian motion B. We

use the following notation for I(X)t :
∫ t

0 XsdBs or
∫ t

0 Xs(ω)dBs(ω).

# Remark: the integral satisfies all properties of a linear functional.

We continue to expand the class of integrands to the following set.

Definition 1.1.5. • L loc
2 = {X = {Xt}t≥0 : X is a real measurable process adapted to

{Ft}t≥0 such that for all T > 0,
∫ T

0 X2
t (ω)dt <+∞ a.s}.

# Remark: similarly as before, we will need to identify two processes X and Y

from L loc
2 . This time, we write X = Y if for all T > 0 we have that∫ T

0
|Xt(ω)−Yt(ω)|2dt = 0 a.s.

# Furthermore, for any X ∈ L loc
2 we can find X ′ ∈ L loc

2 which is also pre-

dictable and such that X = X ′.

• M loc
2 := {X = {Xt}t≥0 is a locally square integrable martingale with respect to

{Ft}t≥0 and X0 = 0 a.s.}

• M c,loc
2 := {X ∈M loc

2 : t 7→ Xt is continuous a.s.}

Fix any X ∈L loc
2 . Now, define the sequence of stopping times

τn(ω) := inf{t ≥ 0 :
∫ t

0
X2

s (ω)ds≥ n}∧n, n ∈ N.

Then {τn}n≥0 obviously satisfies properties that τn < +∞ and τn ↑ +∞, as n→ ∞. Let

now X (n)
s (ω) = Xs(ω)1{s≤τn(ω)}. It holds that∫ +∞

0

�
X (n)

s (ω)
�2

ds =
∫

τn

0

�
X (n)

s (ω)
�2

ds≤ n,

so it follows that Xn ∈L2, for all ∈ N, and we have defined integrals of processes in L2.

So, we have I(X (n)) ∈M c
2 . Furthermore, since I(X (n))t∧τm = I(X (m))t , for all m < n, it

follows that the process I(X) defined by I(X)t := I(X (n))t , for t ≤ τn, is well-defined, it is

a continuous process and belongs to the space M c,loc
2 .
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Definition 1.1.6. For a stochastic process X ∈L loc
2 , the process I(X) ∈M c,loc

2 defined

above is called the stochastic integral of X with respect to the Brownian motion B and

I(X)t is denoted by
∫ t

0 XsdBs or
∫ t

0 Xs(ω)dBs(ω), as before.

We have successfully defined integration with respect to a Brownian motion for a wide

range of integrands. Now, further generalization leads us to consider a more general set

with respect to which we can integrate. Namely, we want to integrate with respect to

martingales and semi-martingales.

First, fix a martingale M ∈M2. Then, there exists (by the Doob-Meyer’s decomposi-

tion) a unique (up to a modification) integrable increasing process A = {At}t≥0 such that

(M2
t −At)t≥0 is a martingale.

Similarly, if M and N are in M2, then there exists a process {A′t}t≥0 which can be

expressed as a difference of two integrable increasing processes such that (MtNt−A′t)t≥0

is a martingale.

Definition 1.1.7. • Denote a unique integrable increasing process A defined above by

〈M〉= {〈M〉t}t≥0.

• A process A′ defined above is called quadratic variational process corresponding

to M and N and denoted by 〈M,N〉= {〈M,N〉t}t≥0.

# Remarks: 〈M,N〉 is the unique adapted and continuous process of bounded

variation on any finite interval such that 〈M,N〉0 = 0 and MN−〈M,N〉 is a

martingale.

# It holds that 〈M〉= 〈M,M〉.

Definition of integral with respect to a martingale follows the same procedure as in

the case of a Brownian motion. We just need to adapt the definition of spaces and corre-

sponding integrals.

Definition 1.1.8. Let L2(M) to be the space of all real predictable processes X = {Xt}t≥0

such that for all

(‖X‖M
2,T )

2 := E
�∫ T

0
X2

s d 〈M〉s
�
<+∞, ∀T > 0.

# Remark: if M is a Brownian motion, then L2(M) = L2 defined before.
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# since every process from the space L0 is left-continuous, therefore also predictable,

it holds that L0 ⊆L2(M).

For X ∈L2(M), let

‖X‖L2(M) :=
+∞

∑
n=1

2−n(‖X‖M
2,n∧1).

As before, we consider two processes X and Y from L2(M) to be equal, and write X =Y ,

if their difference is 0 in the corresponding norm, that is, if

‖X−Y‖M
2,T = 0, for all T > 0.

Now, we see that the function (X ,Y ) 7→ ‖X−Y‖L2(M) makes the space L2(M) a complete

metric space and it holds that L0 is dense in L2(M) with respect to this metric function.

First we define integral for integrands in X ∈L0. Since, for t ≥ 0, X can be written in

the following form: Xt(ω) = Z0(ω) ·1{t=0}}(t)+∑
+∞

n=0 Zn(ω)1〈tn,tn+1](t), we define

IM(X)t :=
n−1

∑
i=0

Zi(ω)(Mti+1(ω)−Mti(ω))+Zn(ω)(Mt(ω)−Mtn(ω)),

for tn ≤ t ≤ tn+1,n ∈ N. As before, the process IM(X) := (IM(X)t) is an element of M2

and it holds that ‖IM(X)‖M2 = ‖X‖L2(M). By using this equality, we extend the definition

of the process IM(X) for all X ∈L2(M).

Definition 1.1.9. For M ∈M2 and a stochastic process X ∈L2(M), the process IM(X)

is called the stochastic integral of X with respect to the martingale M and IM(X)t is

denoted by
∫ t

0 XsdMs or
∫ t

0 Xs(ω)dMs(ω).

# Remark: if M is a Brownian motion, I(X) defined above coincides with IM(X).

# If M ∈M c
2 , then IM(X) ∈M c

2 .

We further extend our definition of a stochastic integral to the case of local martin-

gales. The procedure starts by defining quadratic variation for such processes.

Take two processes M,N ∈M loc
2 . Then we can take a sequence of finite stopping

times {τn}n≥0 such that τn ↑ +∞ as n→ +∞ a.s. and stopped processes Mτn and Nτn

are elements of M2. Since the quadratic variational process is unique, it follows that, for

m < n,

〈Mτn,Nτn〉t∧τm
= 〈Mτm,Nτm〉 .
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Hence, there exists a unique predictable process 〈M,N〉 such that 〈M,N〉t∧τn
= 〈Mτn,Nτn〉t

for all n ∈ N and t ≥ 0. If M = N, we write 〈M,M〉= 〈M〉 .

Definition 1.1.10. Let M ∈M loc
2 . L loc

2 (M) = {X = {Xt}t≥0 : X is a real predictable

process such that there exists a sequence of stopping times {τn}n≥0 such that τn ↑+∞ as

n→+∞ a.s. and E
�∫ T∧τn

0 X2
t (ω)d 〈M〉t

�
<+∞ for all T > 0 and n ∈ N}.

# Remark: L loc
2 (M) = L loc

2 if M is a Brownian motion, since the condition on the

expectation is equivalent to that
∫ T

0 X2
t (ω)d 〈M〉t <+∞ for all T > 0 a.s.

We now proceed to define the integral in this case: fix M ∈M loc
2 and X ∈L loc

2 (M).

Then we can find a sequence of stopping times {τn}n≥0 such that τn ↑ +∞ as n→ +∞

a.s., the stopped process Mτn is in M2 and E
�∫ T∧τn

0 X2
t (ω)d 〈M〉t

�
< +∞ for all T > 0

and n ∈ N. Define X (n)
t (ω) := Xt(ω)1{t≤τn(ω)} and M(n) := Mτn . It holds that M(n) ∈M2

and X (n) = (X (n)
t )t≥0 ∈L2(M(n)), so by Definition (1.1.9) we can find IM(n)

(X (n)) and it

is easy to see that for m < n

IM(n)
(X (n))t∧τm = IM(m)

(X (m))t .

Therefore, there exists a unique process IM(X) = {IM(X)t}t≥0 for which it holds that

IM(X)t∧τn = IM(n)
(X (n))t for all n ∈ N and t ≥ 0. Obviously, IM(X) ∈M loc

2 .

Definition 1.1.11. For M ∈M loc
2 and X ∈L loc

2 (M), the process IM(X) defined above is

called the stochastic integral of X with respect to the local martingale M. As before,

IM(X)t is denoted by
∫ t

0 XsdMs or
∫ t

0 Xs(ω)dMs(ω).
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1.2. SEMI-MARTINGALES

As was discussed before, our goal is to create a mathematical framework which will allow

us to model some physical motions and phenomena in nature and real life. Here, we are

interested in situations where motions can not be described by a deterministic model

(some version of a differential equation) since certain level of randomness is incorporated

in their movement. One can think of modeling a random process as creating differential

equation in a random environment. Informally, that type of model can be written as an

equation of the following form:

dXt = b(Xt)dt +σ(Xt)dBt , t ≥ 0,

that is, the motion is a sum of a drift (trend or a mean motion) and a diffusion (fluctuation)

away from that trend. Randomness is incorporated in the movement of such a process via

a Brownian motion B, so such a process will be continuous. If we want to model a motion

that is not continuous by its nature, we would take a model that is moved by a random

process with jumps, for example, a Lévy process:

dXt = b(Xt)dt +σ(Xt)dLt , t ≥ 0,

where L is an underlying Lévy process. We then call such an SDE a Lévy-driven SDE.

To bring this notation to life, we introduce processes that will have such properties.

Definition 1.2.1. A real-valued stochastic process {Xt}t≥0 is called a on-dimensional

semi-martingale if Xt can be expressed in the following form: for t ≥ 0

Xt = X0 +At +Mt +
∫ t+

0

∫
Rd

f (x,s, ·)N(dx,ds)+
∫ t+

0

∫
Rd

g(x,s, ·)Ñ(dx,ds), (1.2.1)

where

• X0 is an F0-measurable random variable,

• M ∈M c,loc
2 ,

• the process A = {At}t≥0 is a continuous process adapted to F of bounded variation

(that is, its trajectories t 7→ At are of bounded variation on each finite interval) such

that A0 = 0 ,
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• N is a Poisson random measure with intensity µ and Ñ is its compensated version,

• f ∈ L1(E,B(E),µ) for E = Rd× [0, t〉 and g ∈ L2,loc
µ , where

- L2,loc
µ is the set of all (random) functions g(x, t,ω) which are predictable and

for which there is a sequence of stopping times τn such that τn ↑ +∞ and for

all n ∈ N and t > 0

E
�∫ t∧τn

0

∫
Rd
|g(x,s, ·)|2µ(dx,ds)

�
<+∞,

and it holds that

f g = 0. (1.2.2)

If Xt can be expressed only by first three terms in (1.2.1), we call it a continuous semi-

martingale.

# Remarks: since there are no non-trivial continuous local martingales of bounded

variation, it follows that the decomposition of a continuous semi-martingale in

(1.2.1) into the initial value, continuous local martingale and a continuous adapted

process of bounded variation is unique (and process M is called a continuous mar-

tingale part of X).

# Continuous semi-martingale is a continuous process.

# Any discontinuity that a semi-martingale X might posses comes from last two terms

in the decomposition (corresponding to the Poisson random measure).

# The property (1.2.2) means that last two terms in the decomposition do not have

any common discontinuities.

The generalisation to a multi-dimensional case is straightforward: a stochastic process

X = (X1, . . . ,Xd) = (X1
t , . . . ,X

d
t )t≥0 is called a d-dimensional semi-martingale if, for

t ≥ 0, Xt can be written as

X i
t = X i

0 +Ai
t +Mi

t +
∫ t+

0

∫
Rd

f i(x,s, ·)N(dx,ds)+
∫ t+

0

∫
Rd

gi(x,s, ·)Ñ(dx,ds), (1.2.3)

i = 1, . . . ,d, (1.2.4)

where
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• X i
0,A

i
t ,M

i
t , f i,gi,N and Ñ satisfy all conditions as corresponding objects above for

all i = 1, . . . ,d,

• (1.2.2) holds for f i and g j, for every i, j = 1, . . . ,d.

In previous sections we discussed integration with respect to, first, Poisson random

measures and compensated Poisson random measures, and, finally, local martingales.

This included adapted, continuous processes of bounded variation. Actually, it can be

shown that the linear combination of those processes form the largest class of integrators

that we can use, that is, that we know how to integrate with respect to.

In order to do that, we first define the quadratic variational process of a continuous

semi-martingale X = X0 +M+A to be

〈X〉t = X2
0 + 〈M〉t , t > 0.

Definition 1.2.2. Let L2(X) be the space of all real predictable processes H = {Ht}t≥0

such that for all T > 0 ∫ T

0
|Hs(ω)|d|A|s +

∫ t

0
H2

s d 〈M〉s <+∞ a.s.

Then, for H ∈L2(X), we define the stochastic integral of H with respect to the con-

tinuous semi-martingale X to be the process I(H;X) defined by

I(H;X)t =
∫ t

0
HsdAs +

∫ t

0
HsdMs, t ≥ 0, (1.2.5)

and we use the notation for I(H;X)t to be as before:
∫ t

0 HsdXs or
∫ t

0 HS(ω)dXs(ω).

# Remarks: note that the integral is well-defined since it is a sum of two integrals that

have been defined before: for H ∈L2(X),
∫ t

0 HsdAs is a standard Lebesgue-Stieltjes

integral and
∫ t

0 HsdMs is a stochastic integral with respect to a local martingale.

#
∫ t

0 HsdAs is an adapted process of bounded variation on finite intervals.

#
∫ t

0 HsdMs ∈M loc
2 .

# Therefore, I(H;X) is a continuous semi-martingale, and its decomposition is given

by (1.2.5) (it consists of two processes).
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We proceed by mentioning one of the most important tools one needs when analysing

semi-martingales - the famous Itô lemma, which says that a transformation of a semi-

martingale is again a semi-martingale and provides a way to calculate it (that is, its

integro-differential form). We give it in a multidimensional case.

Theorem 1.2.3. ( [IW89, Theorem 2.5.1]) Take {Xt}t≥0 to be a d-dimensional semi-

martingale and denote f = ( f 1, . . . , f d) and g = (g1, . . . ,gd). Assume that the function g

is bounded, that is,

gi(x, t,ω)≤M, ∀ i = 1, . . . ,d, t ≥ 0, x ∈ Rd, ω ∈Ω.

Take a function F ∈C2(Rd). Then, F(X) = (F(Xt))t≥0 is again a semi-martingale and we

can calculate the value of F(Xt) for t ≥ 0 via the following integro-differential formula:

F(Xt)−F(X0) =
d

∑
i=1

∫ t

0

∂F
∂xi

(Xs)dAi
s +

d

∑
i=1

∫ t

0

∂F
∂xi

(Xs)dMi
s

+
1
2

d

∑
i, j=1

∫ t

0

∂F
∂xi∂x j

(Xs)d
〈
Mi,M j〉

s

+
∫ t+

0

∫
Rd
(F(Xs−+ f (x,s, ·))−F(Xs−))N(dx,ds)

+
∫ t+

0

∫
Rd
(F(Xs−+g(x,s, ·))−F(Xs−))Ñ(dx,ds)

+
∫ t

0

∫
Rd

�
F(Xs +g(x,s, ·))−F(Xs)−

d

∑
i=1

gi(x,s, ·)∂F
∂xi

(Xs)

�
N̂(dx,ds).
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1.3. STOCHASTIC DIFFERENTIAL EQUATIONS

We are now ready to formalise the problem we are discussing in this work. In the previ-

ous section, we discussed that we are looking for a model that will describe movement

of a random process through time. Informally, one type of random movement will be

described by the equation of the following form:

dXt = b(Xt)dt +σ(Xt)dBt , t ≥ 0, (1.3.1)

where B is a standard Brownian motion and the process starts from some (possibly ran-

dom) point X0. Thus, the above equation assumes that our process follows some drift

function through time, which is given by a coefficient b, and it is randomly fluctuating

around it, which is governed by an independent path of Brownian motion that is addition-

ally transformed by a coefficient σ .

If we want to observe a d-dimensional stochastic process, the underlying random mo-

tion B can be a standard n-dimensional Brownian motion, where n is some other dimen-

sion than d. To make sense of the equation (1.3.1), we will consider Xt and Bt for all t ≥ 0

and b to be column vectors, and σ a d×n matrix.

If the starting position X0 is some fixed point x ∈Rd , we denote the process by Xx and

write the equation (1.3.1) in the following way:

dXx
t = b(Xx

t )dt +σ(Xx
t )dBt , Xx

0 = x ∈ Rd , (1.3.2)

Definition 1.3.1. The model (1.3.1) is called the stochastic differential equation (in

short we will write SDE) and a process X defined by (if the following integrals exist)

Xt := X0 +
∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dBs, t ≥ 0,

is called the strong solution of that equation Here, X0 is an F0-measurable variable, B is

a standard n-dimensional Brownian motion, σ : Rd → Rd×n, b : Rd → Rd .

# Remark: the term strong solution assumes that the process X is constructed from

a given (fixed) Brownian motion B. If we are allowed to construct the Brownian

motion and the solution at the same time, we would call X the weak solution.
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If X0 = x ∈ Rd , the solution of the SDE is a process Xx starting from the point x at time 0

and (if the integrals do exist) it is given by

Xx
t := x+

∫ t

0
b(Xx

s )ds+
∫ t

0
σ(Xx

s )dBs, t ≥ 0.

Definition 1.3.2. We call a solution of the SDE to be pathwise unique if, for any two

solutions Xx and X̃x starting from the same point x ∈Rd (that is, X0 = X̃0 = x) and driven

by the same Brownian motion B, it holds that their trajectories are a.s. equal, that is,

P(Xt = X̃t , ∀ t ≥ 0) = 1

(that is, Xx and X̃x are indistinguishable).

Naturally, the solution might or might not exist, depending on the existence of the

integrals from the definition, and in the case that it does exist, it can be more or less nice.

The theory that discusses the existence and uniqueness of the solution and its properties is

extensive and is a topic in itself. It is very well-studied in the literature, so there are many

references. However, it is beyond the scope of this work so we will just mention the most

common results in this area and restrict ourselves to the special case of our interest - the

so-called diffusion processes.

Definition 1.3.3. A diffusion process is a family of solutions of the SDE (1.3.1) (for each

starting point X0 = x0 ∈ Rd there is one process which solves the SDE) which is also a

strong Markov process with continuous paths.

# Remark: we will see that a diffusion process can be obtained in another way, by

considering a set of the so-called transition probabilities.

Standard assumptions that ensure existence and (pathwise) uniqueness of the solution

are local Lipschitz property together with the (at most) linear growth of coefficients b and

σ . Formally, assume the following:

(C1) local boundedness: for any r > 0,

sup
x∈Br(0)

(|b(x)|+‖σ(x)‖HS) < ∞ ;
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(C2) local Lipschitz property: for any r > 0 there is Γr > 0 such that for all x,y ∈ Br(0),

2〈x− y,b(x)−b(y)〉+‖σ(x)−σ(y)‖2
HS≤ Γr|x− y|2 ;

(C3) linear growth: there is Γ > 0 such that for all x ∈ Rd ,

2〈x,b(x)〉+‖σ(x)‖2
HS≤ Γ(1+ |x|2) ,

where Br(x) denotes the open ball with radius r > 0 around x∈Rd , and ‖M‖2
HS:=TrMMT

is the Hilbert-Schmidt norm of a real matrix M. Under (C1)-(C3), the solution to the SDE

is a diffusion process. More precisely, from these conditions we conclude that:

# (C2)& (C3) =⇒ the SDE in (1.3.2) admits a strong solution that is pathwise unique

(see, for example, [Dur96, Theorems 5.3.1 and 5.3.2]),

# pathwise uniqueness =⇒ uniqueness in distribution =⇒ Xx has a transition kernel

p(t,x,dy) = P(Xx
t ∈ dy), t ≥ 0, x ∈ Rd (see the proof of [Dur96, Theorems 5.4.1]),

# (C3) =⇒ the solution does not explode,

# construction of the solution (the so-called Picard’s iteration) ensures that sample

paths are a.s. continuous, that is, the solution is a continuous process,

# (C1)& (C3) =⇒ the solution is a strong Markov process (see [Dur96, Theorems

5.4.5, 5.4.6 and 5.6.1]),

# the solution X is also a Cb-Feller process, that is, the corresponding semigroup,

the set of linear operators defined by the kernel p(t,x,dy) with

Pt f (x) := Ex[ f (Xt)] =
∫
Rd

f (y)p(t,x,dy) , t ≥ 0 , x ∈ Rd , f ∈ Bb(Rd) ,

satisfies Pt(Cb(Rd))⊆Cb(Rd) ( [Maj16, Lemma 2.5]).

- Here, Bb(Rd) and Cb(Rd) denote the spaces of bounded Borel measurable

functions and bounded continuous functions, respectively.

- This property automatically implies that {Xt}t≥0 is a strong Markov process

with respect to the right-continuous and completed version of the underlying

natural filtration.
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- Remark: in the above-mentioned lemma the author assumes that b(x) is con-

tinuous, but the assertion of the lemma also holds true in the case when b(x)

is locally bounded (condition (C1)). In particular, this automatically implies

that {Xt}t≥0 is a strong Markov process with respect to the right-continuous

and completed version of the underlying natural filtration.

# If b(x) and σ(x) are Lipschitz continuous then {Xt}t≥0 is a C∞-Feller process, that

is, Pt(C∞(Rd)) ⊆ C∞(Rd) for all t ≥ 0 (see [RW00, page 164]), where C∞(Rd)

stands for the space of continuous functions vanishing at infinity.

A transition kernel of a Markov process will play a key role in determining a properties

of a solution of the SDE as it describes the movement of a process. Therefore, we list some

properties it possesses:

(i) there exists δ > 0 such that for all x ∈ Rd

lim
t→0

1
t

∫
Rd
|x− y|2+δ p(t,x,dy) = 0,

(ii) denote c(x) := σ(x)σ(x)T , then for all x ∈ Rd

(a)

lim
t→0

1
t

∫
Rd
(y− x)p(t,x,dy) = b(x),

(b)

lim
t→0

1
t

∫
Rd
(y− x)2 p(t,x,dy) = c(x).

# Remark: these properties can be used to take an alternative approach to a diffusion

process. Namely, a diffusion process can equivalently be defined as a Markov pro-

cess whose transition kernel satisfies (i) and (ii) for some functions c(x) and b(x),

called the diffusion and drift (or displacement) coefficient. One then shows that

conditions (C1)-(C3) ensure that a solution of the SDE is exactly a diffusion process

with diffusion coefficient being the function c(x) = σ(x)σ(x)T and drift coefficient

being the function b(x) given in the equation (1.3.2) (see [GS79, Theorem 3.10.2]).

# Another alternative way of looking at a diffusion process is via the theory of partial

differential equations ( [SV06]). Namely, we consider the fundamental solution
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p(s,x, t,y) of the equation

∂ p
∂ s

+
d

∑
j=1

b j(s,x)
∂ p
∂x j

+
1
2

d

∑
i, j=1

ai j(s,x)
∂ 2 p

∂xi∂x j
= 0.

Under (C1)-(C3), the fundamental solution exists. Take this function p(s,x, t,y) to

be the transition probability of a Markov process and call this process a diffusion

process with diffusion coefficent a and drift b. One can check that such a process

also coincides with the solution of the SDE with those coefficients.

# Finally, a last equivalent way to obtain a diffusion process is based on posing a

so-called martingale problem. In order to do that, we need to define a probability

space and a filtration on it. Since we will only be interested in the process X ,

and not the underlying space, we take the canonical (sample-path) space Ωc =

C([0,+∞〉;Rd) := { f : [0,+∞〉 → Rd : f is a continuous function }. Then, define

a process X = {Xt}t≥0 on Ωc by Xt(ω) = ω(t). We call X a projection process.

Let filtration {F c
t }t≥0 be its natural filtration, that is, the filtration generated by Xt

for 0 ≤ t < +∞. Then Ωc is a complete separable metric space with the topology

defined by uniform convergence on bounded intervals (that is, take F c to be the

completion of the natural filtration). For a set of coefficients c(x)∈Rd×d and b(x)∈

Rd for x ∈ Rd such that c(x) is a positive semi-definite matrix, define an operator L

on functions f ∈C2(Rd) by

L ( f )(x) = L f (x) :=
d

∑
j=1

b j(x)
∂ f
∂x j

+
1
2

d

∑
i, j=1

ai j(x)
∂ 2 f

∂xi∂x j
.

We say that a measure Px is a solution to the martingale problem for b and a

starting at the point x ∈ Rd if

(i) Px is a probability measure on (Ωc,F c) such that Px(X0 = x) = 1,

(ii) for all f ∈ C2(Rd), f (Xt)− f (x)−
∫ t

0 L f (Xs)ds is a local martingale with

respect to the space (Ωc,F c,Px).

One can show that, under (C1)-(C3), the solution to the martingale problem for

given coefficients a and b and a starting position x0 does exist, it is unique, and it is

equal to the solution of the SDE (1.3.2) with that same coefficients b and σ (where
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σ is a square root of a) in a sense that a solution to the martingale problem is the

distribution of the solution to the SDE ( [Dur96, Theorem 5.4.5]). Furthermore, the

process X is a strong Markov process with respect to the filtration {F c
t }t≥0 and it

has continuous sample paths.

Based on these different views over a diffusion process (that is, equivalences of the

definition of a diffusion process), we can deduce many useful properties of such a process.

Since some of them will be important for us later on, we briefly summarise the most

important ones:

• conditions (C1)-(C3) ensure that the solution to the SDE (1.3.2) exists, is unique

and possesses a strong Markov property. We denote it by {Xx
t }t≥0. This implies

that we can obtain a transition kernel for our p(t,x,dy) = P(Xx
t ∈ dy), t ≥ 0, x∈Rd .

Since there is 1-1 correspondence between distributions of solutions to the SDE and

solutions of the Martingale problem (which are distributions on the canonical space

(Ωc,F c), we conclude that our transition kernel defines a unique probability mea-

sure Px on the canonical space such that the projection process, denoted by {Xt}t≥0,

is a strong Markov process (with respect to the completion of the corresponding

natural filtration), it has continuous sample paths, and the same finite-dimensional

distributions (with respect to Px) as {Xx
t }t≥0 (with respect to P).

• Also, it holds that the martingale problem for b and a := σσT and starting position

x is well-posed, that is

f (Xt)− f (X0)−
∫ t

0
L f (Xs)ds , t ≥ 0 ,

is a Px-local martingale for every x ∈ Rd and every f ∈C2(Rd), where

L f (x) := 〈b(x),∇ f (x)〉+ 1
2

Trσ(x)σ(x)T
∇

2 f (x) .

As it turns out, the operator L defined above will play a key role in determining sta-

bility properties of a stochastic process. It has connections with an infinitesimal generator.

Definition 1.3.4. Let {Xt}t≥0 be an Rd-valued Markov process with semigroup {Pt}t≥0

(defined as above). The infinitesimal generator (with respect to (‖·‖∞,Bb(Rd))) is a
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linear operator A : DA → Bb(Rd) defined by

A f := lim
t→0

Pt f − f
t

, f ∈DA :=
§

f ∈ Bb(Rd) : lim
t→0

Pt f − f
t

exists in ‖·‖∞

ª
.

# If b(x) and σ(x) are continuous, then the infinitesimal generator (A ,DA ) of the

solution of the SDE {Xt}t≥0 (with respect to the Banach space (Bb(Rd),‖·‖∞))

satisfies C2
c (Rd)⊆DA and

A |DA
= L .

- ‖·‖∞ and C2
c (Rd) denote the supremum norm and the space of twice continu-

ously differentiable functions with compact support, respectively.

- Obviously, the domain of the operator L (denoted by DL ) is larger than

the domain of A , so we call L the extended generator of the process X

(see [MT93b, Section 1] for more details).
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1.4. ERGODICITY

In previous sections, by defining objects and mathematical models of our interest, we set

the basis for formalising the problem we want to tackle and methods that we will use.

Doing that will be the final step we will take before presenting all our results.

We want to discuss stochastic stability of a diffusion process X . Recall that such

a process has the transition probability p(t,x,dy) = Px(Xt ∈ dy) for t ≥ 0 and x ∈ Rd

which defines the set of linear operators {Pt}t≥0. Our problem is to investigate a possible

convergence of the process to some stable state - equilibrium. Mathematically, we can

write it in the following form:

r(t)‖Px(Xt ∈ ·)−π(·)‖ ?−→ 0,

where

• Px(Xt ∈ ·) is the distribution of the process at time t which started from point x,

• π(·) is its invariant distribution (the equilibrium),

• r(t) is the rate of the convergence,

• ‖·‖ is an appropriate norm.

A process that satisfies that will be called ergodic.

Namely, this problem raises the following questions:

 under which conditions on the coefficients does the diffusion process admit a unique

invariant probability measures?

 do the marginals of the process converge to the invariant measure, in some norm?

 at which rate does the convergence occur?

 do we get the same results for non-local operators (that is, when we add jumps to

our process)?

 can we extend this analysis to some more general stochastic processes?
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From an above formula we see that for an ergodic process the distribution at time t is

starting to look more and more like some fixed distribustion π that we call an invariant

distribution. This distribution itself has some nice properties - invariance and finiteness.

To define this, we will need the following notation: for a positive measure µ on a measur-

able space (Rd,B(Rd)) we write

µPt(A) =
∫
Rd

p(t,x,A)µ(dx) , t ≥ 0,A ∈B(Rd).

Definition 1.4.1. Let X be a Markov process. A (positive) measure π on (Rd,B(Rd)) is

called

• finite if π(Rd)<+∞, otherwise, it called non-finite,

• probability measure if π(Rd) = 1,

• invariant or stationary measure for X if

πPt = π, t ≥ 0.

Obviously, in order to check whether our process approaches to some equilibrium

state, we need to be able to measure how far away from it this process is at some point.

More precisely, we need some function that measures the distance between two distribu-

tions. In mathematics, such a distance function is called the norm. Therefore, ergodicity

properties of our process need to be discussed with respect to a certain norm function:

maybe convergence does not occur in one norm, but it does in some other. Hence, we pro-

ceed by naming several possible norms that will be of our interest. For a Borel-measurable

function g : Rd → R and a signed measure µ on (Rd,B(Rd)) denote

µ(g) :=
∫
Rd

g(x)µ(dx).

Definition 1.4.2. Let f : Rd → [1,+∞〉 be a Borel-measurable function. For a signed

measure µ on (Rd,B(Rd)) define the following norms:

• f -norm is ‖µ‖ f := supg:|g|≤ f |µ(g)|,

• the total variation norm is ‖µ‖TV := supA∈Rd µ(A)− infA∈Rd µ(A).
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# Remark: for f (x) = 1 for all x ∈ Rd , that is, for a constant function equal to 1, the

f -norm (i.e. 1-norm) is nothing more than the total variation norm.

# ‖µ‖TV = supB∈B(Rd) |µ(B)| for a signed measure µ on B(Rd).

As it turns out, in order to obtain convergence in f -norm (for a Borel function f ≥ 1)

one needs assume a certain level of regularity in the behaviour of a process X . Namely,

we will need to ensure the process is irreducible and aperiodic. This will usually be pro-

vided by imposing certain regularity assumptions (like uniform ellipticity) on a diffusion

coefficient c(x). In the case when c(x) is not regular enough, the topology induced by

the total variation distance becomes too “rough”, that is, it cannot completely capture the

singular behaviour of {Xt}t≥0. Formally, p(t,x,dy) cannot converge to the underlying

invariant probability measure (if it exists) in this topology, but it still might converge in

some other (see [San17] and the references therein). If we find it, this other topology will

then provide convergence in some weaker sense. In this situation, we naturally resort to

Wasserstein distances which, in a certain sense, do induce a finer topology, because, as we

will see, convergence with respect to a Wasserstein distance implies the weak convergence

of probability measures (see [Vil09, Theorems 6.9 and 6.15]).

Definition 1.4.3. Let ρ be a metric on Rd and p≥ 0.

• Let Rd
ρ denotes the topology induced by ρ and B(Rd

ρ) be the corresponding Borel

σ -algebra. So, (Rd
ρ ,B(Rd

ρ)) is a measurable space.

– An important example of a metric is the standard d-dimensional Euclidean

metric, denote it by ρE . Then Rd
ρ is the set of all open subsets of Rd , in

classical sense.

• Define Pρ,p to be the space of all probability measures µ on B(Rd
ρ) having finite

p-th moment, that is,∫
Rd

ρ(x0,x)p
µ(dx)< ∞, for some (and then any) x0 ∈ Rd.

– Pρ,0 := Pρ - this is just the space of all probability measures on B(Rd
ρ)

– PρE ,0 := Pp
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– PρE := P

• If p≥ 1 and µ,ν ∈Pρ , the L p-Wasserstein distance between µ and ν is defined

as

Wρ,p(µ,ν) := inf
Π∈C (µ,ν)

�∫
Rd×Rd

ρ(x,y)p
Π(dx,dy)

�1/p
,

where C (µ,ν) is the family of couplings of µ and ν , that is, Π ∈ C (µ,ν) if and

only if Π is a probability measure on Rd×Rd having µ and ν as its marginals.

# Remarks: Wρ,p satisfies the axioms of a (not necessarily finite) distance on Pρ .

– However, if we observe a restriction of Wρ,p to Pρ,p, such a distance function

is finite ( [Vil09, Theorem 6.4]).

# If (Rd,ρ) is a Polish space, then (Pρ,p,Wρ,p) is also a Polish space (see [Vil09,

Theorem 6.18]).

# Of our special interest will be the situation when ρ takes the form ρ(x,y) = f (|x−

y|) for x,y ∈ Rd (that is, ρ = f ◦ ρE), where f : [0,+∞〉 → [0,+∞〉 is a non-

decreasing concave function satisfying f (t) = 0 if and only if t = 0. In this sit-

uation, the corresponding Wasserstein space does not have to be a Polish space and

is denoted by

(Pρ,p,Wρ,p) := (P f ,p,W f ,p).

– If f (t) = 1〈0,+∞〉(t), then W f ,p(µ,ν) =‖µ−ν‖TV for all p≥ 1.

– If f (t) = t, then ρ is an Euclidean metric so Pρ,p = Pp and the correspond-

ing Wasserstein space is denoted just by (Pp,Wp) (which is always a Polish

space).

# Wasserstein distances metrize weak convergence. Namely, this means that, for a se-

quence of measures {µn}n≥0 in Pρ,p and a measure µ in Pρ , then the convergence

with respect to a Wasserstein distance implies the weak convergence of probability

measures. Mathematically, it holds that

Wρ,p(µn,µ)−→ 0 =⇒ µn
w−→ µ, n→+∞.
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– The weak convergence of µn to µ , denoted by µn
w→ µ , means that for any

g ∈Cb(Rd), µ(g)−→ µ(g).

# We mentioned that the control in Wasserstein distance is somewhat weaker then

the control in total variation distance. However, it holds that if (Rd,ρ) is a Polish

space, then for all x0 ∈ Rd

Wρ,p ≤ 2
1
p′
�∫

Rd×Rd
ρ(x0,x)p

�1/p
,

1
p
+

1
p′

= 1,

so in a special case that p = 1 and ρ(Rd)<+∞, we have that for all µ,ν ∈Pρ

Wρ,1(µ,ν)≤ D‖µ−ν‖TV, for some D > 0.

Now that we have discussed all aspects of the convergence, it is time to formally define

the convergence to an equilibrium itself.

Definition 1.4.4. We call a Markov process {Xt}t≥0 r-ergodic with respect to the norm

‖·‖ if it possesses an invariant probability measure π and there exists a non-decreasing

function r : [0,+∞〉 → [1,+∞〉 such that

lim
t→∞

r(t)‖p(t,x,dy)−π(dy)‖ = 0 , x ∈ Rd .

An ergodic process X is called

• geometrically (or exponentially) ergodic if

r(t) = eκt , for some κ > 0,

• sub-geometrically ergodic if

lim
t→∞

lnr(t)
t

= 0.

# Remarks: the speed of the convergence of a sub-geometrically ergodic process is

less than exponential.

In the discussion above we already mentioned that the type and speed of the con-

vergence we can obtain will depend on the structural properties of the process. The
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aim of this work is to detect those conditions and conlude what kind of a convergence

they imply. So, in order to do that, we will recall some of the features of Markov

processes together with the most import results concerning them. Our main references

are [MT93a], [Twe94], [BG68]) and [FR05].

As always, we have a stochastic basis (Ω,F ,{Ft}t≥0,{Px}x∈Rd), where p(t,x,dy) :=

Px(Xt ∈ dy), for t ≥ 0 and x ∈ Rd , correspond to a Markov process X with càdlàg sample

paths and state space (Rd,B(Rd)). Also, assume that p(t,x,dy) is a probability measure,

that is, {Xt}t≥0 does not admit a cemetery point in the sense of [BG68]. Observe that

this is not a restriction since, as we have already commented, our assumptions on the

coefficients will imply {Xt}t≥0 is non-explosive.

Definition 1.4.5. A Markov process X is called

• φ -irreducible if there exists a σ -finite measure φ on B(Rd) such that for all B ∈

B(Rd)

φ(B)> 0 =⇒
∫ +∞

0
p(t,x,B)dt > 0, for all x ∈ Rd;

# Remarks: the condition for φ -irreducibility is equivalent to asking that when-

ever φ(B)> 0, we have that

Ex
�∫ +∞

0
1B(Xt)dt

�
> 0, for all x ∈ Rd,

which can be interpreted as a condition that we expect our process to stay

sufficiently long (or positive amount of time) in any large-enough set (in a

sense that it is a set of positive measure).

# If X is φ -irreducible, then the irreducibility measure φ can be maximized (in

the sense of absolute continuity). More precisely, this means that there ex-

ists a unique “maximal” irreducibility measure ψ such that for any measure

φ̄ , {Xt}t≥0 is φ̄ -irreducible if and only if φ̄ is absolutely continuous with re-

spect to ψ (see [Twe94, Theorem 2.1]). In view to this, when we refer to an

irreducibility measure we actually refer to the maximal irreducibility measure.

# If π a an invariant measure, then π is a maximal irreducibility measure.

For a φ -irreducible process, we define a set C ∈B(Rd) to be
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– accessible if ψ(C)> 0,

– a petite set if there exists a probability measure ηC on B([0,+∞〉) and a non-

trivial σ -finite measure νC on B(Rd) such that∫ +∞

0
p(t,x,B)ηC(dt)≥ νC(B), x ∈C,B ∈B(Rd).

# Remarks: a meaning of a petite set is that it is small enough so that we can

guarantee that, starting from it, for any fixed set, the expected amount of time

our process stays in that fixed set is longer than some positive constant (which

depends on the size of that set).

# a φ -irreducible process always possesses an accessible closed petite set.

# if X is φ -irreducible and Cb-Feller process, then every compact set is petite.

A φ -irreducible process is further called

– transient if there exists a countable covering of Rd with sets {B j} j∈N ⊆

B(Rd), and for each j ∈ N there exists a finite constant γ j ≥ 0 such that∫
∞

0 p(t,x,B j)dt ≤ γ j holds for all x ∈ Rd;

# Remark: note that a transient Markov process cannot have a finite invari-

ant measure. Indeed, assume that {Xt}t≥0 is transient and that it admits a

finite invariant measure π , and fix some t > 0. Then, for each j ∈N, with

γ j and B j as above, we have

tπ(B j) =
∫ t

0
πPs(B j)ds ≤ γ jπ(Rd) .

Now, by letting t→∞ we obtain π(B j) = 0 for all j ∈N, which is impos-

sible.

– recurrent if for all B ∈B(Rd)

φ(B)> 0 =⇒
∫ +∞

0
p(t,x,B)dt =+∞, for all x ∈ Rd;

# Remarks: similarly as discussed above, the process will be transient if

we can cover the state space with sets which have the property that the

process cannot stay in them forever, that is, we expect the process to visit
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them only limited amount of time. On the other hand, the process is

recurrent if the process is expected to spend infinite amount of time in

any large-enough set (so, it must keep returning to any such set).

# Every ψ-irreducible Markov process is either transient or recurrent (see

[Twe94, Theorem 2.3]).

# If X is recurrent, then it possesses a unique (up to constant multiples)

invariant measure π (see [Twe94, Theorem 2.6]).

A recurrent process is called

* positive recurrent if its invariant measure is finite.

# Remark: in that case, the invariant measure may be normalized to a

probability measure.

* null-recurrent otherwise.

• open-set irreducible if the support of its maximal irreducibility measure ψ ,

suppψ = {x ∈ Rd : ψ(O)> 0 for every open neighborhood O of x} ,

has a non-empty interior;

# Remark: open-set irreducibility and Cb-Feller property ensure that every com-

pact set is petite (see [Twe94, Theorems 5.1 and 7.1]).

• aperiodic if it admits an irreducible skeleton chain, that is, there exist t0 > 0 and a

σ -finite measure φ on B(Rd), such that for all B ∈B(Rd)

φ(B)> 0 =⇒
∞

∑
n=0

p(nt0,x,B)> 0, for all x ∈ Rd.

# Remarks: this actually means that we can extract a Markov chain (Xnt0)n∈N

out of our process X such that it is a φ -irreducible Markov chain (that is, its

expected time of staying in any large-enough set is positive).

# a sufficient condition, perhaps more intuitive to think about because it brings

the meaning of aperiodicity to life, is the following: X is φ -irreducible and

there exist an accessible petite set C and t0 > 0 such that p(t,x,C)> 0 for all

x ∈C and t ≥ t0. Therefore, in this sense, the aperiodic process excludes any
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cyclic behaviour (which is precisely the definition of aperiodicity in a discrete

setting). Furthermore, [MT93a, Proposition 6.1] states that positive Harris-

recurrent and aperiodic process satisfies this condition.

• Harris-recurrent if there exist a σ -finite measure φ such that for all B ∈B(Rd)

φ(B)> 0 =⇒ Px
�∫ +∞

0
1A(Xt)dt = +∞

�
= 1, for all x ∈ Rd.

# Remarks: equivalently, we call X Harris-recurrent if there exist a σ -finite mea-

sure φ such that for all B ∈B(Rd)

φ(B)> 0 =⇒ Px (τB <+∞) = 1, for all x ∈ Rd,

where τB := inf{t ≥ 0 : Xt ∈ B} is the hitting time of set B.

# Obviously, Harris-recurrence implies φ -irreducibility and, hence, also recur-

rence as defined above.

# A Harris-recurrent (right-continuous) process does admit a (possibly infinite)

invariant measure.

A Harris-recurrent process is further called

– positive Harris-recurrent if its invariant measure is finite.

• Cb-Feller (or sometimes, weak Feller or just Feller) process if

Pt(Cb(Rd))⊆Cb(Rd).

• strong Feller process if

Pt(Bb(Rd))⊆Cb(Rd).

With this definition we close the discussion on the properties of a Markov process. It

remains to explain methods that we will adopt in order to obtain ergodic properties of our

process. In general, there are two basic methods that we will use: one is the so-called

Lyapunov energy method (and it will be used to obtain convergence with respect to a total

variation distance) and other is called the coupling method (and it will be used in the

case when we need to consider convergence in a weaker sence then with respect to a total

variation distance).
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Lyapunov energy method The idea is to observe the generator of our process L and

construct the appropriate energy function V (the so-called Lyapunov energy func-

tion). Then, LV describes the total dissipated energy of the system. So, if

• LV ≥ 0, then we have an unstable system;

• LV ≤ 0, then we have a stable system.

Furthermore, the better the bound is, the better our control over the dissipation

of the energy is. So, if we can obtain better results like

– LV ≤−V , we then know that the speed of the stabilization if exponen-

tial,

– LV ≤ −ϕ(V ), for some concave function ϕ , we can conclude that the

stabilization is happening, but at some slower pace, depending on the

function ϕ .

Mathematical object that decribes L could be

• ”derivative of the distribution Pt”, that is, an infinitesimal generator A from

the previous section. However, this approach will narrow down the domain of

L so it will be harder to find a function V .

• Therefore, we adopt the probabilistic approach to the generator L and con-

sider instead the extended generator defined by the martingale problem.

Such an technique has been used for determining stability of first, Markov chains

(see [Hai16]). It was called the Foster - Lyapunov method. Later, it was extended to

continuous-time Markov processes. The version for sub-geometric ergodicity was

developed in [DFG09]. The method itself consists of finding an appropriate petite

(recurrent) set C ∈ B(Rd), and constructing an appropriate function V : Rd →

[1,+∞〉 (the Lyapunov function) contained in the domain of the extended generator

A of the underlying Markov process {Xt}t≥0, such that the Lyapunov equation

(also called the drift inequality )

LV (x) ≤ −ϕ(V (x))+β1C(x) , x ∈ Rd , (1.4.1)
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holds for some β ∈ R (see [DFG09, Theorem 3.4]). Recall that for a diffusion

process we know how the extended generator looks like: its domain C2(Rd)⊆DL ,

and for every f ∈C2(Rd),

L f (x) := 〈b(x),∇ f (x)〉+ 1
2

Tr
�
σ(x)σ(x)T

∇
2 f (x)

�
.

The second step, after establishing the drift inequality, is to use the following result

(which we give here because of its importance):

Theorem 1.4.6. ( [DFG09, Theorem 3.2]) Let X be φ -irreducible and aperiodic

process. Assume that (1.4.1) holds for some C,V ,ϕ such that supC V < +∞ and

limt→+∞ ϕ ′(t) = 0. Then, for any probability measure λ such that λ (V ) < +∞,

there is an invariant measure π and it holds

lim
t→+∞

ϕ(Φ−1(t))
∫
Rd
‖δxPt−π‖TVλ (dx) = 0.

Furthermore, there exists D <+∞ such that, for all t ≥ 0 and x ∈ Rd

ϕ(Φ−1(t))‖δxPt−π‖TV ≤ DV (x).

# Remarks: the idea of the proof is to obtain ergodicity by applying the results

for Markov chain (since we have an irreducible skeleton chain).

# In full length, the theorem actually provides results for f -ergodicity for vari-

ous f -norms, not just the total variation norm. It then follows that the strength

of the norm is compensated by the rate of the convergence in a sense that the

stronger the norm, the slower the rate. The maximal rate is achieved with the

total variation norm, and the minimal with the f ∗-norm, where f ∗ := ϕ ◦V .

# The theorem gives the existence of the invariant distribution π . This is ob-

tained from the drift condition. Namely, the equation in (1.4.1) implies that

for any δ > 0 the ϕ ◦Φ−1-moment of the δ -shifted hitting time of set C

τδ
C := inf{t ≥ δ : Xt ∈ C} of {Xt}t≥0 on C (with respect to Px) is finite and

controlled by V (x) (see [DFG09, Theorem 4.1]), that is

Ex

�∫
τδ

C

0
ϕ ◦Φ

−1(s)ds

�
<+∞.

This implies that the process X is positive Harris-recurrent which then implies

that the invariant probability measure exists.
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# However, it is known that positive Harris-recurrence alone does not immedi-

ately imply ergodicity of {Xt}t≥0. Namely, we also need to ensure that a sim-

ilar property holds for any other “reasonable” set, which will be ensured by

assuming φ -irreducibility. Together with aperiodicity, or in this case, the prop-

erty of existence of a irreducible skeleton chain ( [MT93a, Proposition 6.1]),

the sub-geometric ergodicity will follow. Similar conditions are required to

obtain ergodicity in a discrete setting. There, {Xt}t≥0 can also show certain

cyclic behaviour which causes ergodicity not to hold (see [MT93a, Section

5] and [MT09, Chapter 5]), so aperiodicity is required (which excludes this

type of behaviour). Intuitively, petite sets take a role of singletons for Markov

processes on non-discrete state spaces (see [MT93a, Section 4] and [MT09,

Chapter 5] for details). To be more precise, the reasoning goes as follows:

- If {Xt}t≥0 is ψ-irreducible and C is a petite set, then indeed for any δ > 0

the ϕ ◦Φ−1-moment of τδ
B , for any B ∈B(Rd) with ψ(B) > 0, is again

finite and controlled by V (x) (see [DFG09, the discussion after Theorem

4.1]). Recall also that ψ-irreducibility implies that the state space (in

this case (Rd,B(Rd)) can be covered by a countable union of petite sets

(see [MT93a, Propositio 4.1].

- By assuming aperiodicity, the sub-geometric ergodicity of {Xt}t≥0 fol-

lows from [FR05, Theorem 1], which states that finiteness of the ϕ ◦

Φ−1-moment of τδ
C implies sub-geometric ergodicity of {Xt}t≥0 with rate

r(t) = ϕ(Φ−1(t)).

Coupling method As mentioned in the introduction, the aim of this method is to con-

struct the optimal coupling strategy so that we are able to control the dissipation

of the energy of the system. A usual approach is to control the dissipation by the

so-called asymptotic flatness condition, which we will state later in the work. In

general, this method is more flexible than the Foster - Lypaunov method as it al-

lows a certain level of singularity in the behaviour of the process.

The last note of this section is the reflection over some extensions and other versions of

the Foster - Lyapunov method that have appeared in the literature. An analogous approach
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was used in [Kha12, Chapter 4] to discuss positive recurrence of the process {Xt}t≥0 with

globally Lipschitz coefficients and with c(x) being positive definite (hence, according to

Theorem 2.2.1, {Xt}t≥0 is open-set irreducible and aperiodic). Based on this result, and

analysing polynomial moments of hitting times of compact sets, in [Ver97, Theorem 6]

polynomial ergodicity of {Xt}t≥0 has been obtained. In the follow up work, by using anal-

ogous techniques the same author established polynomial ergodicity of {Xt}t≥0 without

directly assuming ψ-irreducibility and aperiodicity of the process, but basing on a local

irreducibility condition which we discuss below (see [Ver99, Theorem 6]).

An alternative and, in a certain sense, more general approach to our problem is based

on a local irreducibility condition. In this approach, instead of (1.4.1), we assume a

slightly more general form of the Lyapunov equation:

LV (x) ≤ −ϕ(V (x))+β , x ∈ Rd , (1.4.2)

for some β ∈ R, and instead of assuming ψ-irreducibility and aperiodicity of {Xt}t≥0,

we assume the so-called (local) Dobrushin condition (also known as Markov-Dobrushin

condition): the Lyapunov function V (x) has precompact sub-level sets, and for every

γ > 0 there is tγ > 0 such that

sup
(x,y)∈{(u,v):V (u)+V (v)≤γ}

‖p(tγ ,x,dz)− p(tγ ,y,dz)‖TV < 1 , (1.4.3)

see [Hai16, Theorem 4.1] (see also [Kul15, Chapter 1.4] and [Kul18, Chapter 3]). Ob-

serve that this condition actually means that for each (x,y) ∈ {(u,v) : V (u)+V (v)≤ γ}

the probability measures p(tγ ,x,dz) and p(tγ ,y,dz) are not mutually singular. Intuitively,

the Dobrushin condition encodes ψ-irreducibility and aperiodicity of {Xt}t≥0, and pe-

titeness of sub-level sets of V (x). By using a coupling approach with an appropri-

ately chosen Markov coupling of {Xt}t≥0, say {Xc
t }t≥0, the Lyapunov equation and Do-

brushin condition, analogously as before, imply that the hitting (that is, coupling) time

τc := inf{t ≥ 0 : Mc
t ∈ diag} of {Mc

t }t≥0 on diag := {(x,x) : x ∈ Rd} is a.s. finite (with

respect to the probability measure corresponding to {Mc
t }t≥0 with any initial position

(x,y) ∈ Rd ×Rd). Moreover, it follows that the Φ−1-moment of τc is finite and con-

trolled by V (x)+V (y). Then from the coupling inequality it follows that {Xt}t≥0 admits
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a unique invariant π ∈P, and

sup
t≥0

ϕ(Φ−1(t))‖p(t,x,dy)−π(dy)‖TV < ∞ , x ∈ Rd ,

(see [Hai16, Theorem 4.1], or [Kul15, Chapter 1.4] and [Kul18, Chapter 3] for the skele-

ton chain approach).

Observe that (1.4.2) follows from (1.4.1). Also, ψ-irreducibility and aperiodicity (to-

gether with (1.4.1)) imply that the Dobrushin condition holds on the Cartesian product of

any petite set with itself. Namely, according to [MT93a, Proposition 6.1], for any petite

set C there is tC > 0 such that for the measure ηC (in the definition of petiteness) the Dirac

measure in tC can be taken (with some, possibly different, non-trivial measure νC). Thus,

p(tC,x,B)≥ νC(B) for any x ∈C and B ∈B(Rd), which implies

sup
(x,y)∈C×C

‖p(tC,x,dz)− p(tC,y,dz)‖TV < 1 . (1.4.4)

If in addition {Xt}t≥0 is Cb-Feller and open-set irreducible, as we have already com-

mented, every compact set is petite so the above relation holds for any bounded set C,

showing that, at least in this particular situation, the approach based on the Dobrushin

condition is more general than the approach based on ψ-irreducibility and aperiodicity.

In situations that we are interested in and will discuss, where we obtain conditions that

ensure these properties, like uniform ellipticity and Lipschitz continuity of c(x) or the

ones from Theorem 2.2.1, if we don’t make further regularity assumptions on b(x) and

c(x), it is not clear how to check the Dobrushin condition. Situations where it shows a

clear advantage are discussed in [Kul09] and [AV10]. In the first reference the author

considers a Markov process obtained as a solution to a Lévy-driven SDE with highly ir-

regular coefficients and noise term, while in the second a diffusion process with highly

irregular (discontinuous) drift function and uniformly elliptic diffusion coefficient has

been considered. In these concrete situations it is not clear whether one can obtain ψ-

irreducibility and aperiodicity of the processes, whereas the authors obtain (1.4.4) for any

compact set C (see [Kul09, Theorem 1.3] and [AV10, Lemma 3]). For more on ergodic

properties of Markov processes based on the Dobrushin condition we refer the readers

to [Hai16], [Kul15] and [Kul18].
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The theoretical framework in which we work is set, so we are ready to present our results

for the first type of processes that we will discuss - diffusion processes.

To repeat, we are interested in ergodicity of the solution of the following SDE

dXx
t = b(Xx

t )dt +σ(Xx
t )dBt , Xx

0 = x ∈ Rd , (2.0.1)

where {Bt}t≥0 is a standard n-dimensional Brownian motion (defined on a stochastic basis

(Ω,F ,{Ft}t≥0,P) satisfying the usual conditions), and the coefficients b : Rd→Rd and

σ : Rd → Rd×n satisfy conditions (C1)-(C3) from the previous chapter.

As discussed before, under (C1)-(C3), for any x∈Rd , the stochastic differential equa-

tion in (2.0.1) admits a unique strong non-explosive solution {Xx
t }t≥0 which is a strong

Markov process with continuous sample paths and transition kernel p(t,x,dy) = P(Xx
t ∈

dy), t ≥ 0, x ∈ Rd . In the context of Markov processes, it is natural that the underly-

ing probability measure depends on the initial conditions of the process. Using standard

arguments (Kolmogorov extension theorem), it is well known that for each x ∈ Rd the

above defined transition kernel defines a unique probability measure Px on the canoni-

cal (sample-path) space such that the projection process, denoted by {Xt}t≥0, is a strong

Markov process (with respect to the completion of the corresponding natural filtration), it

has continuous sample paths, and the same finite-dimensional distributions (with respect

to Px) as {Xx
t }t≥0 (with respect to P). Since we are interested in distributional proper-

ties of the solution to (2.0.1) only, in the sequel we rather deal with {Xt}t≥0 than with

{Xx
t }t≥0.

Testing the process (or a solution of the SDE) for ergodicity by checking whether

conditions in the definition hold or not can be tricky - it would require of us to know the

distribution (that is, the transition probability kernel) explicitly. However, the solutions
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of SDEs are rarely explicitly known. With the help of the Foster - Lypaunov method, this

issue was reduced to checking a certain drift condition (i.e. (1.4.1)), which is given in

terms of the extended generator of our process, together with some distributional proper-

ties of the process. Now, since the generator is given in terms of the coefficients of our

process (the drift b and diffusive coefficient σ ), which are known to us, we will be able

to check this drift condition for a certain process. In this way, by assuming our process

does possess those nice properties, we would be able to find sufficient conditions on the

coefficients of the process that would ensure the ergodicity to hold. The second step could

then be to check whether these conditions are sharp in the sense that we check whether

they could be strengthened.

2.1. LITERATURE OVERVIEW

As stochastic models appear as appropriate solutions to model various phenomena in

nature and everyday life, and their stability is one of the most interested features they pos-

sess, the research on this issue is vast and extensive. Here we present a brief overview of

the results concerning ergodicity of diffusion processes with respect to the total variation

norm and Wasserstein distances.

There are many books and articles that discuss ergodicity of diffusion processes. De-

pending on the type of the convergence we are interested in, there are more or less results

regarding it.

First, if we consider the qualitative aspect of the problem, we can see that it is very

well researched. For example:

• [MT93a], [MT93b]

# With the assumption on open-set irreducibility and aperiodicity, they prove

that ergodicity is equivalent to positive Harris-recurrence.

• [FR05]

# Discussion on the ergodicity with respect to the structural properties of the

process like positive recurrence and aperiodicity.

55



Diffusion Processes Literature overview

Secondly, from the quantitative aspect, we can divide results based on the obtained

rate of the convergence. Most results are for the case of geometric ergodicity.

• Geometric rate: most results in this case.

TV: Very well investigated situation. See [DMT95], [Wan08].

WASS: This case is considered in recent years. See [Ebe11], [Ebe15], [LW16],

[HMS11] (some contractivity results), [vRS05], [Wan16] or [Maj17].

• Sub-geometric ergodicity: there are results, but most of them are not optimal (we

can find examples of processes that can not be covered by existing results in the

literature).

TV: In this case, the problem ergodicity has been considered in the literature (see

[DFG09], [FR05], [Kul15], [Kul18], [San16a], [Ver97] and [Ver99]).

WASS: This case was considered only recently, so there are only few results (see

[DFM16], [But14]).
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2.2. IRREDUCIBILITY AND APERIODICITY

After an brief overview of the existing results regarding the ergodicity of diffusion pro-

cesses with and without jumps, we present our contribution to the topic. As our first step

is to consider ergodicity with respect to the total variation distance, and we have discussed

in the previous chapter that this will be possible only for processes that behave nicely in

a certain way, we start the analysis by looking for sufficient conditions that would ensure

these nice properties to hold and that would be easy to check (or at least easier than the

properties themselves).

More precisely, we have seen that the secret, but crucial ingredients in the Foster -

Lyapunov method that ensured the ergodic property were φ -irreducibility and aperiodic-

ity. Both of those conditions require one to know the transition kernel, that is the distri-

bution of the process, to be able to check them. As the explicit formula for the kernel

is known in only few special cases, these conditions would in general be hard to verify.

Since our problem is presented in the form of an SDE, the only information we do have

about our process are its drift coefficient b and diffusive coefficient σ . Therefore, we turn

our attention to finding conditions that would be given in terms of the coefficients of the

process and would imply irreducibility and aperiodicity.

A usual sufficient conditions for open-irreducibility and aperiodicity that can be found

in the literature are Lipschitz continuity and uniform continuity of the diffusion coefficient

c. The uniform ellipticity property holds for c if there is γ ≥ 1 such that

γ
−1|y|2 ≤ 〈y,c(x)y〉 ≤ γ|y|2, y ∈ Rd . (2.2.1)

Further requirement is the at most linear growth of b and σ , that is, the existence of Γ > 0

such that

|b(x)|2 +‖c(x)‖2
HS ≤ Γ(1+ |x|2) , x ∈ Rd . (2.2.2)

Now, assumptions (2.2.1) and (2.2.2), together with Lipschitz continuity of c and (C1)-

(C3), imply that

• X is a Cb-Feller and strong Feller process ( [RW00, Theorem V.24.1] and [Dur96,

Theorem 7.3.8]),
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• X is open-set irreducible and aperiodic ( [ST97, Remark 4.3])).

In the following theorem we show that {Xt}t≥0 will be open-set irreducible and ape-

riodic if b(x) and c(x) are δ -Hölder continuous (for some δ > 0) and c(x) is uniformly

elliptic on an open ball only (not he whole space), without assuming Lipschitz continuity

of c(x).

Theorem 2.2.1. Assume (C1)-(C3). Further, assume that there are x0 ∈ Rd and r0 > 0,

such that

(i) there are δ ,Γ,γ > 0, such that for all x,y ∈ Br0(x0) we have that

|b(x)−b(y)|+‖c(x)− c(y)‖HS ≤ Γ|x− y|δ and 〈y,c(x)y〉 ≥ γ|y|2 ;

(ii) Px(τBr0(x0) < +∞) > 0 for all x ∈ Rd , where τB := inf{t ≥ 0 : Xt ∈ B} is the first

hitting time of a set B⊆ Rd.

Then, {Xt}t≥0 is open-set irreducible and aperiodic.

Proof. Due to [Dur96, Theorems 7.3.6 and 7.3.7] there is a strictly positive function

q(t,x,y) on (0,∞)× B̄r0(x0)× B̄r0(x0), jointly continuous in t, x and y, and twice con-

tinuously differentiable in x on Br0(x0), satisfying

Ex( f (Xt),τB̄c
r0
(x0)

> t) =
∫

Br0(x0)
q(t,x,y) f (y)dy , t > 0, x ∈ Br0(x0), f ∈Cb(Rd) ,

where τB̄c
r0
(x0)

:= inf{t ≥ 0 : Xt ∈ B̄c
r0
(x0)}. Clearly, by employing dominated convergence

theorem, the above relation holds also for 1O, for any open set O⊆ Br0(x0). Denote by D

the class of all B ∈B(Br0(x0)) (the Borel σ -algebra on Br0(x0)) such that

Px(Xt ∈ B, τB̄c
r0
(x0)

> t) =
∫

B
q(t,x,y)dy , t > 0, x ∈ Br0(x0) .

Clearly, D contains the π-system of open rectangles in Br0(x0), and forms a λ -system.

Hence, by employing Dynkin’s π-λ theorem we conclude that D = B(Br0(x0)). Conse-

quently, for any t > 0, x ∈ Br0(x0) and B ∈B(Rd) we have that

p(t,x,B) ≥
∫

B∩Br0(x0)
q(t,x,y)dy .

58



Diffusion Processes Irreducibility and Aperiodicity

Set now φ(·) := λ (·∩Br0(x0)), where λ stands for the Lebesgue measure on Rd . Then, φ

is a σ -finite measure whose support has a non-empty interior.

Let us now show that {Xt}t≥0 is φ -irreducible. Let x ∈ Bc
r0
(x0) (for x ∈ Br0(x0) the

assertion is obvious) and B ∈B(Rd), φ(B)> 0, be arbitrary. For all s > 0 we have∫
∞

0
p(t,x,B)dt ≥

∫
∞

s
p(t,x,B)dt

=
∫

∞

s

∫
Rd

p(t− s,x,dy)p(s,y,B)dt

≥
∫

∞

s

∫
Br0(x0)

p(t− s,x,dy)p(s,y,B)dt

=
∫

Br0(x0)
p(s,y,B)

∫
∞

s
p(t− s,x,dy)dt ,

where in the second equality we used the Chapman-Kolmogorov equation.

The assertion now follows from the fact that p(s,y,B)> 0 for y ∈ Br0(x0), and∫
∞

s
p(t− s,x,Br0(x0))dt =

∫
∞

0
p(t,x,Br0(x0))dt = Ex

�∫
∞

0
1{Xt∈Br0(x0)} dt

�
> 0 ,

since {Xt}t≥0 has continuous sample paths, Br0(x0) is an open set and, by assumption,

Px(τBr0(x0) < ∞)> 0 for every x ∈ Rd .

Finally, let us prove that {Xt}t≥0 is aperiodic. We show that
∞

∑
n=1

p(n,x,B) > 0 , x ∈ Rd ,

whenever φ(B)> 0, B ∈B(Rd). Again, for x ∈ Br0(x0) the relation obviously holds. For

x ∈ Bc
r0
(x0) and B ∈B(Rd), φ(B)> 0, we have that

∞

∑
n=1

p(n,x,B) ≥
∫

Br0(x0)

∞

∑
n=1

p(n− t,x,dy) p(t,y,B) , t ∈ (0,1) .

Since p(t,y,B)> 0 for y ∈ Br0(x0), it suffices to show that

∞

∑
n=1

p(n− t,x,Br0(x0)) ≥ Px

�
∞⋃

n=1

{Xn−t ∈ Br0(x0)}
�

> 0

for some t ∈ (0,1). Assume this is not the case, that is,

Px

�
∞⋃

n=1

{Xn−t ∈ Br0(x0)}
�

= 0 , t ∈ (0,1) .

This, in particular, implies that

Px

� ⋃
q∈Q+\Z+

{Xq ∈ Br0(x0)}

�
= 0 ,
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which is impossible since {Xt}t≥0 has continuous sample paths, Br0(x0) is an open set and

Px(τBr0(x0) < ∞)> 0 for every x ∈ Rd . Thus,

∞

∑
n=1

p(n,x,B) > 0 , x ∈ Rd ,

whenever φ(B)> 0, which concludes the proof. �

The second assumption in Theorem 2.2.1 again requires computing the distribution of

the process X . So, we also provide a sufficient condition for this assumption to hold.

Proposition 2.2.2. Assume (C1)-(C3). Then for any x0 ∈ Rd and r0 > 0, provided that

c(x) is positive definite for all x ∈ Rd , |x− x0| ≥ r0, it holds that

Px(τBr0(x0) <+∞) > 0 , x ∈ Rd .

Proof. Let 0 < ε < r0, and let

V̄ (r) :=
∫ r

r0−ε

e−Ix0(u)du , r ≥ r0− ε .

Then, for r > r0− ε we have

V̄ ′(r) = e−Ix0(r) > 0 and V̄ ′′(r) = − V̄ ′(r)
r

ιx0(r) .

Further, let V : Rd → [0,∞), V ∈C2(Rd), be such that V (x) = V̄ (|x− x0|) for x ∈ Rd ,

|x− x0| ≥ r0. Now, for x ∈ Rd , |x− x0| ≥ r0, we have

2LV (x) = Cx0(x)V̄
′′(|x− x0|)+

V̄ ′(|x− x0|)
|x− x0|

(2A(x)−Cx0(x)+2Bx0(x))

=
V̄ ′(|x− x0|)
|x− x0|

(2A(x)−Cx0(x)+2Bx0(x)−Cx0(x)ι(|x− x0|))

≤ 0 .

Further, as we have already discussed, for every x ∈ Rd the process

V (Xt)−V (X0)−
∫ t

0
LV (Xs)ds , t ≥ 0 ,

is a local Px-martingale. For n ∈ N, define τn := τBc
n(x0). Clearly, τn, n ∈ N, are stopping

times such that (due to non-explosivity of {Xt}t≥0) τn→∞ Px-a.s. as n→∞ for all x∈Rd .

Hence, the processes

V (Xt∧τn)−V (X0)−
∫ t∧τn

0
LV (Xs)ds , t ≥ 0, n ∈ N ,
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are Px-martingales. Now, for x ∈ Rd , |x− x0| ≥ r0, we have

2Ex[V̄ (|Xt∧τn∧τBr0 (x0)
− x0|)]−2V̄ (|x− x0|) = 2Ex[V (Xt∧τn∧τBr0 (x0)

)]−2Ex[V (X0)]

= Ex
∫ t∧τn∧τBr0 (x0)

0
2LV (Xs)ds

≤ 0 ,

that is,

Ex[V̄ (|Xt∧τn∧τBr0 (x0)
− x0|)] ≤ V̄ (|x− x0|) .

Thus,

Ex[V̄ (|Xt∧τn− x0|)1{τBr0 (x0)
>τn}] ≤ V̄ (|x− x0|) , x ∈ Rd, |x− x0| ≥ r0 .

By letting t→ ∞ Fatou’s lemma implies

V̄ (n)Px(τBr0(x0) > τn) ≤ V̄ (|x− x0|) , x ∈ Rd, |x− x0| ≥ r0 .

Consequently, by letting n→ ∞, we conclude

Px(τBr0(x0) = ∞) ≤ V̄ (|x− x0|)
V̄ (∞)

< 1 , x ∈ Rd, |x− x0| ≥ r0 ,

that is, Px(τBr0(x0) < ∞)> 0 for all x ∈ Rd. �
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2.3. ERGODICITY IN THE TOTAL VARIATION

DISTANCE

We now continue by discussing the property of a stochastic process that we are most

interested in: ergodicity. In this sequel we obtain sub-geometric ergodicity of classical

diffusions and diffusions with jumps with respect to the total variation norm. Before

stating the main results, we introduce some notation we need in the sequel.

Fix x0 ∈ Rd and r0 ≥ 0, and put

c(x) := σ(x)σ(x)T ,

A(x) :=
1
2

Trc(x) , x ∈ Rd ,

Bx0(x) := 〈x− x0,b(x)〉 , x ∈ Rd ,

Cx0(x) :=
〈x− x0,c(x)(x− x0)〉

|x− x0|2
, x ∈ Rd \{x0} ,

γx0(r) := inf
|x−x0|=r

Cx0(x) , r > 0 ,

ιx0(r) := sup
|x−x0|=r

2A(x)−Cx0(x)+2Bx0(x)
Cx0(x)

, r > 0 ,

Ix0(r) :=
∫ r

r0

ιx0(s)
s

ds , r ≥ r0 .

The notation given here might seem complicated and puzzling. However, note that

all functions are defined by coefficients b and σ , they are some transformation of the

coefficients. Therefore, they somehow capture and describe the behaviour of our process.

The relation (2.3.1) that we will introduce below will summarize all this information about

the movement of the process in one single coefficient: Λ.

Theorem 2.3.1. Assume (C1)-(C3), and assume that {Xt}t≥0 is open-set irreducible and

aperiodic. Further, let ϕ : [1,∞)→ (0,∞) be a non-decreasing, differentiable and concave

function satisfying limt→∞ ϕ ′(t) = 0 and

Λ :=
∫

∞

r0

ϕ

�∫ u

r0

e−Ix0(v)dv+1
�

eIx0(u)

γx0(u)
du < ∞ (2.3.1)

for some x0 ∈ Rd and r0 ≥ 0, and assume that c(x) is positive definite for all x ∈ Rd ,

|x− x0| ≥ r0 (hence, the above functions and the relation in (2.3.1) are well defined).
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Then, {Xt}t≥0 admits a unique invariant π ∈P satisfying

lim
t→∞

ϕ(Φ−1(t))‖δxPt−π‖TV = 0 , x ∈ Rd ,

where

Φ(t) :=
∫ t

1

ds
ϕ(s)

, t ≥ 1 .

Proof. ∗Idea∗ We prove this result by using the Foster - Lyapunov method explained in

the previous chapter. There are two steps in this method:

• finding appropriate function V and petite set C so that the drift-inequality (1.4.1)

holds,

• applying Theorem 1.4.6 that would provide existence of the invariant probability

measure π and establish the convergence of the marginal distributions of the process

to π in total variation norm.

• Set ϕΛ(t) = ϕ(t)/Λ, where Λ is given in (2.3.1), and observe that ϕΛ(t) has the

same properties as ϕ(t). Next, define

V̄ (r) :=
∫ r

r0

e−Ix0(u)
∫

∞

u
ϕΛ

�∫ v

r0

e−Ix0(w)dw+1
�

eIx0(v)

γx0(v)
dvdu , r ≥ r0 .

Clearly, for r ≥ r0 it holds that

V̄ (r) ≤
∫ r

r0

e−Ix0(u)du , (2.3.2)

and

V̄ ′(r) = e−Ix0(r)
∫

∞

r
ϕΛ

�∫ u

r0

e−Ix0(v)dv+1
�

eIx0(u)

γx0(u)
du

V̄ ′′(r) = − ιx0(r)
r

e−Ix0(r)
∫

∞

r
ϕΛ

�∫ u

r0

e−Ix0(v)dv+1
�

eIx0(u)

γx0(u)
du−

ϕΛ

�∫ r
r0

e−Ix0(u)du+1
�

γx0(r)
.

Further, fix r1 > r0 and let V : Rd → [0,+∞〉, V ∈C2(Rd), be such that V (x) = V̄ (|x−

x0|)+1 for x ∈ Rd, |x− x0| ≥ r1. Now, for x ∈ Rd , |x− x0| ≥ r1, we have

LV (x) =
1
2

Cx0(x)V̄
′′(|x− x0|)+

V̄ ′(|x− x0|)
2|x− x0|

(2A(x)−Cx0(x)+2Bx0(x))

≤ −1
2

ϕΛ

�∫ |x−x0|

r0

e−Ix0(u)du+1
�
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≤ −1
2

ϕΛ(V (x)) ,

where in the final step we employed the fact that ϕ(t) (that is, ϕΛ(t)) is non-decreasing

and (2.3.2).

Define C = B̄r1(x0) (the topological closure of the open ball Br1(x0)). It is a closed set,

so ψ-irreducibility and Cb-Feller property imply that it is also petite. Also, supC V <+∞

because V is a continuous function.

Moreover, we have obtained the relation in (3.11) in [DFG09, Theorem 3.4 (i)] with

φ(t) = ϕΛ(t), C, and b = supx∈C |LV (x)|. Now, [Twe94, Theorems 5.1 and 7.1], together

with open-set irreducibility, aperiodicity and Cb-Feller property of {Xt}t≥0, imply that

{Xt}t≥0 meets the conditions of [DFG09, Theorem 3.2] with Ψ1(t) = t and Ψ2(t) = 1,

which concludes the proof. �

# Remarks: as mentioned before, the drift condition implies the existence of a unique

invariant probability measure.

# (C1)-(C3) imply existence of the solution that is a time-homogeneous and non-

explosive strong Markov process that also satisfies the Cb-Feller property.

# The drift inequality (for a function ϕ) together with aperiodicity imply sub-geometric

ergodicity. Namely, as mentioned before, the sub-geometric ergodicity with rate

r(t) = ϕ(Φ−1(t)) comes from finiteness of the ϕ ◦Φ−1-moment of δ -hitting time

of petite set C, which we denote by τδ
C , and aperiodicity, which says that the pro-

cess cannot exhibit any type of cyclic behaviour ( [FR05, Theorem 1]). Now, since

φ -irreducibility says that we can cover the state space with the countable union of

petite sets, we obtain the finiteness of the ϕ ◦Φ−1-moment of δ -hitting time of any

petite set, and thus conclude sub-geometric ergodicity.

# In our case, the role of petite set C is played by a closed ball around the origin

with large enough radius. Thus, in view of the previous remark, to obtain sub-

geometric ergodicity we need to control ϕ ◦Φ−1-moment of its δ -hitting time τδ
C

by function V . We do this through the relation (2.3.1), since this relation is crucial

in the construction of the appropriate Lyapunov function V (actually, it appears as

a part of it).
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# Observe that in the proof of Theorem 2.3.1 we did not use the fact that {Xt}t≥0

is a unique strong solution to (2.0.1). All that we needed is that the martingale

problem for (b,c) is well posed, which is equivalent to that (2.0.1) admits a unique

(in distribution) weak solution (see [RW00, Theorem V.20.1]).

# Even though the steps of the proof are precise and clear, note that the appropriate

Lyapunov function was presented out of the blue, without any clear motivation. It

is shown that it satisfies all conditions required and that it works for our purpose,

but it is not clear how one comes up with this formula. Actually, versions of this

formula did appear in the literature before and were used to obtain various types

of drift inequalities: LV ≤ 0 (which implies recurrency), LV ≥ 0 (which implies

transience), LV ≤ −V (to obtain geometric rate of the convergence) and so on

(see [Dur96, Section 6.6.4], [Bha78, Theorem 3.3], [MT93b, Theorem 9.1]). The

idea comes from solving a partial differential equation of order 2. For example, take

a solution to the SDE X and calculate its extended generator L - it is a second-order

partial differential operator. If f is twice-differentiable function, it is in the domain

of the extended generator and f (Xt)− f (X0)−
∫ t

0 L f (Xs)ds is a local martingale.

If f further satisfies L f = 0, then we know that Yt := f (Xt) is a local martingale,

it solves a martingale problem for drift coefficient 0 and some diffusive coefficients

h, so it follows that we can calculate Yt by time changing Brownian motion. Then,

Xt can be obtained as Xt := f−1(Yt) and it will have some nice properties like re-

currence. Similarly, if we are interested in geometric ergodicity, we need to solve

the partial differential equation (in short, PDE) L f =− f . By using techniques of

PDEs, one can obtain the solution in the form of the integral, as we have in our

proof.

From Theorem 2.3.1 we see that the rate of the convergence is equal to

r(t) = ϕ(Φ−1(t)).

So, by changing the the function ϕ , we get different rates: the convergence can be slower

or faster. As there are various similar results concerning sub-geometric ergodicity, our

result might coincide with some of those in some special cases. As mentioned before, it is
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important to position our result among existing ones and, also, check whether it is sharp

enough. In this case, it turns out that our result can be related to some other similar ones,

but some of them are far from being optimal and our result improves them. Here is a list

of some special cases:

(i) ϕ ≡ 1 =⇒ r(t) = 1, if
∫

∞

r0
eIx0 (u)

γx0(u)
du <+∞

# The same would follow for any bounded function ϕ .

# This is exactly the condition for (strong) ergodicity established in the paper

[Bha78, Theorem 3.5].

# In one-dimensional case, similar results can be found in [Wan08, Theorem

1.2] and [Man68, Chapter IV].

(ii) ϕ(t) = t =⇒ assumptions of the Theorem 2.3.1 not satisfied since limt→+∞ ϕ ′(t) =

1 6= 0.

# For such ϕ , in one-dimensional case exponential ergodicity was proven in

[Wan08, Theorem 1.3] under (2.3.1) (with ϕ(t) = t). In Proposition 2.3.6 we

extend this to the multi-dimensional case.

(iii) ϕ(t) = tα for 0 < α < 1 =⇒ r(t) = tα/(1−α) (if the corresponding Λ <+∞)

# Condition for sub-geometric ergodicity, precisely, the polynomial ergodicity.

# Similar results do exist already, see for example [DFG09, Theorem 5.4], [FR05,

page 1581], [Kul15, Theorem 1.30], [Kul18, Theorem 3.3.6], [San16a, Theo-

rem 3.3 (iv)], [Ver97, Theorem 6] and [Ver99, Theorem 6]. But they are not

sharp enough, as we discuss below.

The case of a polynomial rate that follows directly from Theorem 2.3.1 can be related

to [San16a, Theorem 3.3 (iv)]. There, the author has shown that {Xt}t≥0 will be sub-

geometrically ergodic with rate tα/(1−α) (that is, ϕ(t) = tα ), α ∈ (0,1), if there exist

γ > 0, Γ > 0 and r0 ≥ 0, such that

A(x)−
(

1− γ

2

)
C0(x)+B0(x) ≤ −Γ|x|γα−γ+2 , |x| ≥ r0 . (2.3.3)
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However, this results is not sufficiently sharp as there are examples that cannot be covered

by it, and they are covered by our result. Namely, in Proposition 2.3.3 we show that (2.3.3)

implies (2.3.1), and in Example 2.3.2 we give an example of a diffusion process satisfying

conditions from Theorem 2.3.1, but not the condition in (2.3.3).

Example 2.3.2. Let σ(x)≡ 1, and let b(x) be locally Lipschitz continuous and such that

b(x) =−sgn(x)(cosx+1) for all |x| large enough, where

sgn(x) :=

 1, x≥ 0 ,

−1, x < 0 .

Clearly, b(x) and σ(x) satisfy (C1)-(C3) and define, through (2.0.1), an open-set irre-

ducible and aperiodic diffusion process {Xt}t≥0. The condition in (2.3.1) now reduces to

showing that there is r0 ≥ 0 such that∫
∞

r0

�∫ u

r0

e2sinv+2v +1
�α

e−2sinu−2udu < ∞ ,

which can be obviously obtained for any 0 < α < 1. On the other hand, the condition in

(2.3.3) is equivalent to showing that there are γ > 0, Γ > 0 and r0 ≥ 0, such that

γ−1
2
− xsgn(x)(cosx+1) ≤ −Γ|x|γα−γ+2 , |x| ≥ r0 .

However, observe that in the points of the form x = (2k+1)π , k ∈ Z, the second term on

the left-hand side in the above inequality vanishes. Thus, we conclude that it is necessary

that 0 < γ < 1 and γα− γ +2 < 0, which is impossible. Note also that if we take b(x) to

be locally Lipschitz continuous and such that b(x) = −sgn(x)(cosx+ρ) for all |x| large

enough, where ρ > 0, then we again easily conclude that (2.3.1) holds for any 0 < α < 1.

On the other hand, by the same reasoning as above, (2.3.3) can never hold. Observe that

for 0< ρ < 1 the drift function generates a region in which the process is “pushed towards

infinity” (set of points for which sgn(x)b(x) > 0). The condition in (2.3.1) says that this

region is small compared to the region in which the process is “pushed towards the center

of the state space” (set of points for which sgn(x)b(x) < 0) and which is responsible for

the ergodic behavior.

Proposition 2.3.3. Assume (C1)-(C3). Further, assume that γ < 2/(1−α) and there are

r0 ≥ 0 and ∆≥ 1, such that ∆−1 ≤C0(x)≤ ∆ for all |x| ≥ r0. Then, (2.3.1) (with x0 = 0)

is a consequence of (2.3.3).
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Proof. We have that

ι0(r) = sup
|x|=r

2
(
A(x)−

(
1− γ

2

)
C0(x)+B0(x)

)
+(1− γ)C0(x)

C0(x)
≤ −2Γ

∆
rγα−γ+2 +1− γ

for all r≥ r1, for some r1 ≥ r0 large enough. Thus, there are Γ1 > 0 and r2 ≥ r1, such that

ι0(r) ≤ −Γ1rγα−γ+2 , r ≥ r2 .

This automatically implies that there are Γ2 > 0 and r3 ≥ r2, such that

I0(r) ≤ −Γ2rγα−γ+2 , r ≥ r3 .

Now, by employing L’Hospital’s rule (here we use the assumption γ < 2/(1−α)), we

have that

lim
u→∞

�∫ u
r3

e−I0(v)dv+1
�

e−I0(u)
= 0 .

Hence, there is r4 ≥ r3 such that∫ u

r3

e−I0(v)dv+1 ≤ e−I0(u) u≥ r4 .

Finally, we conclude∫
∞

r4

�∫ u

r4

e−I0(v)dv+1
�α

eI0(u)du ≤
∫

∞

r4

e(1−α)I0(u)du < ∞ ,

which proves the assertion. �

Condition in (2.3.1) might be hard to check since the formula is somewhat compli-

cated. Sometimes, another version of this condition might be easier to verify. In order

to obtain it, we first present an auxiliary result (the following Proposition 2.3.4, which

actually generalizes [Che00, Lemma 1.2] to the sub-geometric case) and then state the

sufficient condition in Corollary 2.3.5.

Proposition 2.3.4. Let c ≥ 0, and let ρ(t) be a non-negative and non-decreasing dif-

ferentiable function defined on [0,∞). Further, let f (r) and g(r) be non-negative Borel

measurable functions, also defined on [0,∞), satisfying

∆ := sup
r≥r0

ρ

�∫ r

r0

g(u)du+ c
�1+β ∫ ∞

r
f (u)du < ∞ (2.3.4)

for some r0 ≥ 0 and β ≥ 0. Then,
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(i) if β > 0,∫
∞

r
ρ

�∫ u

r0

g(v)dv+ c
�

f (u)du ≤ ∆(1+β )

β
ρ

�∫ r

r0

g(u)du+ c
�−β

, r ≥ r0 .

(ii) if β = 0, and
∫

∞

r0
g(r)dr < ∞ or ρ(t) is bounded,

∫
∞

r
ρ

�∫ u

r0

g(v)dv+ c
�

f (u)du ≤ ∆+∆ ln
ρ

�∫
∞

r0
g(u)du+ c

�
ρ

�∫ r
r0

g(u)du+ c
� , r ≥ r0 .

Proof. Set F(r) =
∫

∞

r f (u)du, r ≥ r0. Then, by assumption,

F(r) ≤ ∆ρ

�∫ r

r0

g(u)du+ c
�−1−β

, r ≥ r0 .

Consequently, for r ≥ r0, we have that∫
∞

r
ρ

�∫ u

r0

g(v)dv+ c
�

f (u)du

= −
∫

∞

r
ρ

�∫ u

r0

g(v)dv+ c
�

dF(u)

≤ ρ

�∫ r

r0

g(u)du+ c
�

F(r)+
∫

∞

r
ρ
′
�∫ u

r0

g(v)dv+ c
�

g(u)F(u)du

≤ ∆ρ

�∫ r

r0

g(u)du+ c
�−β

+∆

∫
∞

r
ρ
′
�∫ u

r0

g(v)dv+ c
�

g(u)ρ
�∫ u

r0

g(v)dv+ c
�−1−β

du .

Now, under the assumption in (i) we have that∫
∞

r
ρ

�∫ u

r0

g(v)dv+ c
�

f (u)du

≤ ∆ρ

�∫ r

r0

g(u)du+ c
�−β

− ∆

β

∫
∞

r
dρ

�∫ u

r0

g(v)dv+ c
�−β

≤ ∆ρ

�∫ r

r0

g(u)du+ c
�−β

+
∆

β
ρ

�∫ r

r0

g(u)du+ c
�−β

=
∆(1+β )

β
ρ

�∫ r

r0

g(u)du+ c
�−β

,

where in the second step we employed integration by parts formula. On the other hand,

under the assumptions in (ii),∫
∞

r
ρ

�∫ u

r0

g(v)dv+ c
�

f (u)du ≤ ∆+∆

∫
∞

r
d ln

�
ρ

�∫ u

r0

g(v)dv+ c
��

= ∆+∆ ln
ρ

�∫
∞

r0
g(u)du+ c

�
ρ

�∫ r
r0

g(u)du+ c
� ,

which concludes the proof. �
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With the help of Proposition 2.3.4, we now have a sufficient condition for the relation

(2.3.1).

Corollary 2.3.5. (2.3.1) holds true if for some β > 0:

sup
r≥r0

ϕ

�∫ r

r0

e−Ix0(u)du+1
�1+β ∫ ∞

r

eIx0(u)

γx0(u)
du < +∞.

As a final discussion regarding continuous diffusion, we present the extension of the

result from J. Wang from 2008 to the multi-dimensional process. We obtain the geometric

ergodicity for function ϕ that do not satisfy condition limt→∞ ϕ ′(t) 6= 0.

Proposition 2.3.6. If in Theorem 2.3.1 liminft→∞ ϕ ′(t) > 0, then {Xt}t≥0 is geometri-

cally ergodic.

Proof. First, observe that since ϕ(t) is differentiable and concave, t 7→ ϕ ′(t) is non-

increasing. Thus, since ϕ(t) is also non-decreasing, there are constants Γ ≥ γ > 0 such

that

γt− γ +ϕ(1) ≤ ϕ(t) ≤ Γt−Γ+ϕ(1) , t ≥ 1 .

Consequently, the condition in (2.3.1) is equivalent to

∫
∞

r0

�∫ u

r0

e−Ix0(v)dv+1
�

eIx0(u)

γx0(u)
du < ∞

(recall that ϕ(1) > 0). Denote this constant again by Λ. Analogously as in the proof of

Theorem 2.3.1, let

V̄ (r) :=
1
Λ

∫ r

r0

e−Ix0(u)
∫

∞

u

�∫ v

r0

e−Ix0(w)dw+1
�

eIx0(v)

γx0(v)
dvdu , r ≥ r0 ,

and, for arbitrary but fixed r1 > r0, let V : Rd→ [0,∞), V ∈C2(Rd), be such that V (x) =

V̄ (|x− x0|)+1 for x ∈ Rd, |x− x0| ≥ r1. Then, for all x ∈ Rd , |x− x0| ≥ r1, it holds that

LV (x) ≤ − 1
2Λ

V (x) , (2.3.5)

which is exactly the Lyapunov equation on [MT93b, page 529] with c = 1/2Λ, f (x) =

V (x), C = B̄r1(x0) and b = supx∈C |LV (x)|. The fact that C is a petite set follows

from [Twe94, Theorems 5.1 and 7.1], together with open-set irreducibility and Cb-Feller

property of {Xt}t≥0. Next, from [MT93a, Proposition 6.1], [MT93b, Theorem 4.2] and
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aperiodicity it follows now that the are a petite set C ∈B(Rd), T > 0 and a non-trivial

measure νC on B(Rd), such that νC (C )> 0 and

p(t,x,B) ≥ νC (B) , x ∈ C , t ≥ T , B ∈B(Rd) .

In particular,

p(t,x,C ) > 0 , x ∈ C , t ≥ T ,

which is exactly the definition of aperiodicity used on [DMT95, page 1675]. Finally,

observe that (2.3.5) is also the Lyapunov equation used on [DMT95, page 1679] with c =

1/2Λ, C = B̄r1(x0) and b = supx∈C |LV (x)|. The assertion now follows from [DMT95,

Theorem 5.2]. �

2.3.1. Diffusion processes with jumps

Whats happens with ergodicity when we add jumps to our process? After establishing

results for classical diffusions, which are continuous solutions of the SDE with coeffi-

cients b and σ , this question naturally appears. In order to see whether we can extend

our results to this case, we first need to define a jump-process. Actually, we can create

a jump-process in many ways, depending on the times of jumps and their size. We will

mention two types of jump-diffusions. In both cases, the results for ergodicity will come

up as an application of Theorem 2.3.1.

Recall that one way of defining a process is by through the martingale approach, that

is, by setting its extended generator. So, in the first case, we create jumps by adding a

”jump measure” to the generator of our process. This measure will determine the proba-

bility of any jump size, depending on the position of the process at the time of the jump.

We call it a Lévy measure, as it will correspond to a jump measure of some Lévy process

with jumps. Hence, we consider a jump-diffusion processes generated by the operator of

the form

L f (x) = 〈b(x),∇ f (x)〉+ 1
2

Trc(x)∇2 f (x)

+
∫
Rd

�
f (y+ x)− f (x)−〈y,∇ f (x)〉1B1(0)(y)

�
ν(x,dy) , (2.3.6)

where b(x) is an Rd-valued Borel measurable function, c(x) is a symmetric non-negative

definite d× d matrix-valued Borel measurable function, and ν(x,dy) is a non-negative

71



Diffusion Processes Total Variation Distance

Borel kernel on (Rd,B(Rd)) (or a Radon measure on Rd×{0}), called the Lévy kernel,

satisfying

ν(x,{0}) = 0 , and
∫
Rd
(1∧|y|2)ν(x,dy) < ∞ , x ∈ Rd .

# Remark: if ν(x,dy) is a null-measure, then L becomes a diffusion operator.

As before, we will need certain assumptions that will ensure the process is regular

enough to be a candidate for an ergodic process with respect to the total variation norm.

So, assume that

(A1) there is a càdlàg Markov process (Ω,F ,{Ft}t≥0,{θt}t≥0, {Xt}t≥0,{Px}x∈Rd), de-

noted by {Xt}t≥0 in the sequel, which we call jump-diffusion process, such that for

every f ∈C2(Rd) the process

f (Xt)− f (X0)−
∫ t

0
L f (Xs)ds , t ≥ 0 ,

is a Px local martingale for all x ∈ Rd under the natural filtration;

(A2) the process {Xt}t≥0 satisfies the Cb-Feller property;

(A3) the process {Xt}t≥0 is open-set irreducible and aperiodic;

(A4) there is ρ > 0 such that ν(x,Bc
|x|(−x)) = 0 and

∫
B1(0) |y|ν(x,dy)< ∞ for all x ∈Rd ,

|x| ≥ ρ;

(A5) the functions b(x), c(x) and x 7→
∫

B1(0) yν(x,dy) are continuous on Bc
ρ(0).

- C2
b(R

d) denotes the space of twice continuously differentiable functions with bounded

derivatives.

# Remarks: (A1) always holds for the infinitesimal generator (A ,DA ) of {Xt}t≥0

(see [EK86, Theorem 2.2.13 and Proposition 4.1.7]).

# Sufficient conditions, in terms of b(x), c(x) and ν(x,dy), ensuring (A1) and (A2)

are (see [BSW13, Theorems 2.37, 3.23, 3.24, 3.25] and [Str75, Remark after Theo-

rem 4.3]): b(x) is continuous and bounded, c(x) continuous, bounded and positive

definite, x 7→
∫

B(1∧|y|2)ν(x,dy) continuous and bounded for any B ∈B(Rd), and

(x,ξ ) 7→ i〈ξ ,b(x)〉+ 1
2
〈ξ ,c(x)ξ 〉+

∫
Rd

�
1− ei〈ξ ,y〉+ i〈ξ ,y〉1B1(0)(y)

�
ν(x,dy)
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is continuous. Namely, this condition imply that

(i) there is a unique non-explosive strong Markov process {Xt}t≥0 with infinites-

imal generator (A ,DA ) such that C∞
c (Rd) ⊆ DA , and A |C∞

c (Rd) takes the

form in (2.3.6), where C∞
c (Rd) stands for the space of smooth functions with

compact support;

(ii) the operator L := A |C∞
c (Rd) satisfies (A1);

(iii) the semigroup of {Xt}t≥0 satisfies the Feller and strong Feller property ,

# There are many conditions ensuring (A3), that is, open-set irreducibility and ape-

riodicity of jump-diffusion processes. References, depending on the type of the

process, are:

– the so-called stable-like processes: [Kol00] and [Kol11],

– jump-diffusion processes with bounded coefficients: [KS12], [KS13], [KC99],

[PS16, Remark 3.3] [San16b, Theorem 2.6] and [Str75],

– special case of a class of jump-diffusion processes obtained as a solution to

certain jump-type SDEs: [APS19], [BC86], [Ish01], [KK18], [Mas07,Mas09]

and [Pic96, Pic10],

– [Twe94, Theorem 3.2]: open-set irreducibility and aperiodicity are proven

in the case the process X is strong Feller (actually it suffices to assume that

{Xt}t≥0 is a T-model in the sense of [Twe94], which is a certain weak version

of the strong Feller property) and Px(Xt ∈ O)> 0 for every t > 0, x ∈ Rd and

non-empty open set O⊆ Rd .

# (A4) means that when {Xt}t≥0 is far away from the center of the state space, it

admits bounded jumps only, with maximal intensity equal twice the distance to the

origin. Also, with each jump, it comes closer to the center of the state space.

We are now ready to state the first result regarding these processes. We will use the

same notation as in Theorem 2.3.1, with the exception of

Bx0(x) :=
〈
x− x0,b(x)−

∫
B1(0)

yν(x,dy)
〉
, x ∈ Rd .
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Theorem 2.3.7. Let {Xt}t≥0 be an open-set irreducible and aperiodic jump-diffusion

process with coefficients b(x), c(x) and ν(x,dy), satisfying (A1)-(A5). Further, let ϕ :

[1,∞) −→ (0,∞) be a non-decreasing, differentiable and concave function satisfying

limt→∞ ϕ ′(t) = 0 and the relation in (2.3.1) for some x0 ∈ Rd and r0 ≥ ρ + |x0|, and

assume that c(x) is positive definite for all x ∈ Rd , |x− x0| ≥ r0. Then, {Xt}t≥0 admits a

unique invariant π ∈P such that

lim
t→∞

ϕ(Φ−1(t))‖δxPt−π‖TV= 0 , x ∈ Rd ,

where Φ(t) is as in Theorem 2.3.1.

Proof. We proceed as in the proof of Theorem 2.3.1. Define

V̄ (r) :=
∫ r

r0

e−Ix0(u)
∫

∞

u
ϕΛ

�∫ v

r0

e−Ix0(w)dw+1
�

eIx0(v)

γx0(v)
dvdu , r ≥ r0 ,

where ϕΛ(t) = ϕ(t)/Λ. Clearly,

V̄ (r) ≤
∫ r

r0

e−Ix0(u)du , r ≥ r0 , (2.3.7)

and, because of (A5), V̄ (r) is twice continuously differentiable on (r0,∞). Further, for

arbitrary, but fixed, r1 > r0 let Ṽ : [0,∞)→ [0,∞) be non-decreasing on [0,∞), Ṽ (r) =

V̄ (r) on [r1,∞), and such that V (x) := Ṽ (|x−x0|)+1 is twice continuously differentiable

on Rd . Now, because of (A1) and (A4), LV (x) is well defined and the process

V (Xt)−V (X0)−
∫ t

0
LV (Xs)ds t ≥ 0 ,

is a local martingale. For x ∈ Rd , |x| ≥ r1, we have that

LV (x) =
1
2

Cx0(x)V̄
′′(|x− x0|)+

V̄ ′(|x− x0|)
2|x− x0|

(2A(x)−Cx0(x)+2〈x− x0,b(x)〉)

+
∫
Rd

(
V (y+ x)−V (x)−〈y,∇V (x)〉1B1(0)(y)

)
ν(x,dy)

≤ 1
2

Cx0(x)V̄
′′(|x− x0|)+

V̄ ′(|x− x0|)
2|x− x0|

(2A(x)−Cx0(x)+2Bx0(x))

≤ − 1
2

ϕΛ

�∫ |x−x0|

r0

e−Ix0(u)du+1
�

≤ − 1
2

ϕΛ(V (x)) ,

where in the second step we used (A4) and properties of V (x) (that is, Ṽ (r)), and the

final step follows from (2.3.7). Finally, because of (A2) and (A5), as in the proof of
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Theorem 2.3.1, we are again in a position to apply [DFG09, Theorems 3.2 and 3.4 (i)]

and [Twe94, Theorems 5.1 and 7.1], which concludes the proof. �

# Remarks: If 2A(x)−Cx0(x)+2Bx0(x)≤ 0 for all x ∈ Rd , |x− x0| ≥ r0, then we can

replace γx0(r) and ιx0(r) by

γx0(r) = inf
|x−x0|=r

Nx0(x) , r > 0 ,

ιx0(r) = sup
|x−x0|=r

2A(x)−Cx0(x)+2Bx0(x)
Nx0(x)

, r > 0 ,

where

Nx0(x) =
〈x− x0,(c(x)+n(x))(x− x0)〉

|x− x0|2
, x ∈ Rd \{0} ,

and n(x) = (ni j(x))i, j=1,...,d with ni j(x) =
∫

B1(0) yiy jν(x,dy). Also, in this situation,

the requirement in Theorem 2.3.7 that c(x) is positive definite for all x ∈ Rd , |x−

x0| ≥ r0, can be replaced by the requirement that c(x)+n(x) is positive definite for

all x ∈ Rd , |x− x0| ≥ r0.

# If ϕ(t) is bounded, then (2.3.1) reads∫
∞

r0

eIx0(u)

γx0(u)
du < ∞ ,

and gives a condition for ergodicity (see [Wan08, Theorem 1.2] for the one-dimensional

case).

# If in Theorem 2.3.7 liminft→∞ ϕ ′(t)> 0 then, as in Proposition 2.3.6, we conclude

that {Xt}t≥0 is geometrically ergodic (see also [Wan08, Theorem 1.3] for the one-

dimensional case).

Let us now give an example satisfying conditions from Theorem 2.3.7.

Example 2.3.8 (Lévy-driven SDEs). Let {Yt}t≥0 be an n-dimensional Lévy process, and

let Φ : Rd → Rd×n be bounded and locally Lipschitz continuous. Then, in [SS10, Theo-

rems 3.1 and 3.5, and Corollary 3.3] (see also [BSW13, Theorem 3.8]) it has been shown

that the SDE

dXt = Φ(Xt−)dYt , X0 = x ∈ Rd , (2.3.8)
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admits a unique strong solution which is a non-explosive strong Markov process whose

semigroup satisfies the Feller and Cb-Feller property (thus (A2) holds true). Also, it has

been shown that {Xt}t≥0 satisfies (A1) with certain coefficients b(x), c(x) and ν(x,dy),

which in a special case we give below. Observe that the following SDE is a special case

of (2.3.8),

dXt = Φ1(Xt−)dt +Φ2(Xt−)dBt +Φ3(Xt−)dZt , X0 = x ∈ Rd , (2.3.9)

where Φ1 :Rd→Rd , Φ2 :Rd→Rd×p and Φ3 :Rd→Rd×q, with p+q= n−1, are locally

Lipschitz continuous and bounded, {Bt}t≥0 is a p-dimensional Brownian motion, and

{Zt}t≥0 is a q-dimensional pure-jump Lévy process (that is, a Lévy process determined

by a Lévy triplet of the form (0,0,νZ(dy))) independent of {Bt}t≥0. Namely, set Φ(x) =(
Φ1(x),Φ2(x),Φ3(x)

)
, and Yt = (t,Bt ,Zt)

T , t ≥ 0. Assume now that d = p = q = 1. Then,

from [SS10, Theorem 3.1] we see that the corresponding coefficients read

b(x) =

 Φ1(x) , Φ3(x) = 0 ,

Φ1(x)+
∫
R y
�
1B1(0)(y)−1B|Φ3(x)|(0)

(y)
�
νZ

�
dy

Φ3(x)

�
, Φ3(x) 6= 0 ,

c(x) = Φ
2
2(x)

ν(x,dy) =

 0 , Φ3(x) = 0 ,

νZ

�
dy

Φ3(x)

�
, Φ3(x) 6= 0 .

Take now, for simplicity,

Φ1(x) = Φ3(x) =


−1 , x ≥ 1 ,

−x , −1 ≤ x ≤ 1 ,

1 , x ≤ −1 ,

Φ2(x) = 1, and νZ(dy) = f (y)dy with f (y) being the probability density function of the

continuous uniform distribution on the segment [0,1]. It is straightforward to see that

{Xt}t≥0 satisfies (A4) and (A5). Open-set irreducibility and aperiodicity of {Xt}t≥0 have

been considered on [Mas07, page 43] (see also [KC99, Theorem 3.1]). Finally, since

B0(x) =


−1

2x , x ≥ 1 ,

1
2x , x ≤ −1 ,
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it is elementary to check that {Xt}t≥0 satisfies (2.3.1) with x0 = 0, r0 = 1 and ϕ(t) = tα ,

α ∈ (0,1). Thus, {Xt}t≥0 is sub-geometrically ergodic with rate tα/(1−α).

Observe that the same conclusion follows by employing a version of the relation

in (2.3.3) including jumps (see [San16a, Theorem 3.3]). However, if we take Φ1(x) =

−sgn(x)(cosx+ 3/2) (analogously as in Example 2.3.2), then it is not hard to see that

(2.3.3) does not hold. On the other hand, Theorem 2.3.7 (with x0 = 0, r0 = 1 and

ϕ(t) = tα , α ∈ (0,1)) implies that {Xt}t≥0 is again sub-geometrically ergodic with rate

tα/(1−α).

An alternative approach to obtain a class of Markov processes with jumps (from dif-

fusion processes) is through the Bochner’s subordination method.

Definition 2.3.9. • A subordinator {St}t≥0 is a non-decreasing Lévy process on

[0,+∞〉 with Laplace transform

E
�
e−uSt

�
= e−tφ(u) , u > 0, t ≥ 0 .

• A function φ : 〈0,+∞〉→ 〈0,+∞〉 is called a Bernstein function if it is of class C∞

and (−1)nφ (n)(u)≥ 0 for all n ∈ N.

# Remarks: the characteristic (Laplace) exponent φ of a subordinator is a Bernstein

function.

# Every Bernstein function admits a unique (Lévy-Khintchine) representation

φ(u) = bu+
∫
(0,∞)

(1− e−uy)ν(dy) , u > 0 ,

where b ≥ 0 is the drift parameter and ν is a Lévy measure, that is, a measure

on B((0,∞)) satisfying
∫
(0,∞)(1∧ y)ν(dy) < ∞. For more on subordinators and

Bernstein functions we refer the readers to the monograph [SSV12].

We will now define the jump process via the Bochner’s subordination. We start from

a Markov process {Xt}t≥0 with state space (Rd,B(Rd)) and transition kernel p(t,x,dy).

Definition 2.3.10. Let {St}t≥0 be a subordinator with characteristic exponent φ(u), inde-

pendent of a Markov process {Xt}t≥0. The process Xφ = {Xφ

t }t≥0 defined by Xφ

t := XSt ,

for t ≥ 0, is referred to as the subordinate process {Xt}t≥0 with subordinator {St}t≥0 in

the sense of Bochner.
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# Remarks: process Xφ is obtained from {Xt}t≥0 by a random time change through

{St}t≥0.

# {Mφ

t }t≥0 is again a Markov process with transition kernel

pφ (t,x,dy) =
∫
[0,+∞〉

p(s,x,dy)µt(ds) ,

where µt(·) = P(St ∈ ·) is the transition probability of St , t ≥ 0.

# π measures of both processes coincide. Namely, if π is an invariant probability

measure for {Xt}t≥0, then π is also invariant for the subordinate process {Xφ

t }t≥0.

# It has been proven (see [DSS17]) that if {Xt}t≥0 is sub-geometrically ergodic with

Borel measurable rate r(t) (with respect to the total variation distance), then {Xφ

t }t≥0

is sub-geometrically ergodic with rate rφ (t) = E[r(St)].

– This result implies that, as an direct application of Theorem 2.3.1, we obtain

sub-geometric ergodicity results for a class of subordinate diffusion processes.
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2.4. ERGODICITY WITH RESPECT TO THE

WASSERSTAIN DISTANCE

In order to obtain ergodicity in total variation norm (that is, to apply the Foster - Lyapunov

method), we had to impose certain regularity assumptions on our process. Namely, we

had to assume open-set irreducibility and aperiodicity. As we discussed later on, these

properties were sometimes hard to check, so we had found sufficient conditions ensur-

ing them. However, these conditions imposed quite strong regularity and smoothness

assumptions on the coefficient c(x). In a case this is not satisfied, for example, when the

diffusion coefficient σ is a singular matrix, we would not be able to derive ergodicity with

respect to the total variation norm. The case of a singular coefficient σ corresponds to the

situation when the diffusive part of the SDE corresponding to the Brownian motion can

be projected to a space of lower dimension.

In such cases we turn our attention to search for a different approach that will pro-

vide some type of the convergence, typically weaker in some sence. As we discussed,

we will consider the Wasserstein distances as our distance functions, and use the so-

called synchronous coupling method (see [Che05, Example 2.16] for details) to derive

sub-geometric ergodicity.

We start with the following auxiliary result, which will be crucial in the proofs of The-

orems 2.4.2 and 2.4.4, and which is a version of non-linear convex Gronwall’s inequality.

Lemma 2.4.1. Let Γ > 0, and let f : [0,T )→ [0,∞), with 0 < T ≤ ∞, and ψ : [0,∞)→

[0,∞) be such that

(i) f (t) is absolutely continuous on [t0, t1] for any 0 < t0 < t1 < T ;

(ii) f ′(t)≤−Γψ( f (t)) a.e. on [0,T );

(iii) ψ( f (t))> 0 a.e. on [0,T ), and Ψ f (0)(t) :=
∫ f (0)

t
ds

ψ(s) < ∞ for all t ∈ (0, f (0)].

Then,

f (t) ≤ Ψ
−1
f (0)(Γt) , 0≤ t < Γ

−1
Ψ f (0)(0)∧T .
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In addition, if there is κ ∈ [ f (0),∞] such that Ψκ(t) :=
∫

κ

t
ds

ψ(s) < ∞ for t ∈ (0,κ], then

f (t) ≤ Ψ
−1
κ (Γt) , 0≤ t < Γ

−1
Ψ f (0)(0)∧T .

Also, if ψ(t) is convex and vanishes at zero, then Ψ f (0)(0) =∞, that is, the above relations

hold for all t ∈ [0,T ).

Proof. By assumption,

−Ψ f (0)( f (t)) =
∫ f (t)

f (0)

ds
ψ(s)

=
∫ t

0

f ′(s)ds
ψ( f (s))

≤ −Γt , t ∈ [0,T ) .

Now, the first assertion follows.

The second claim follows from the fact that Ψ f (0)(t) ≤ Ψκ(t) for all t ∈ (0, f (0)],

while the last part follows from

ψ(t) = ψ(t +(1− t)0) ≤ tψ(1)+(1− t)ψ(0) = tψ(1) , t ∈ [0,1] .

�

Theorem 2.4.2. Let σ(x)≡ σ be an arbitrary d×n matrix, and assume (C1)-(C3). Fur-

ther, let p≥ 1 and let f ,ψ : [0,∞)→ [0,∞) be such that

(i) f (t) is concave, non-decreasing, absolutely continuous on [t0, t1] for any 0 < t0 <

t1 < ∞, and f (t) = 0 if and only if t = 0;

(ii) ψ(t) is convex and ψ(t) = 0 if and only if t = 0;

(iii) there are γ > 0, Γ > 0 and t0 > 0, such that f (t0)≤ γ and

f ′(|x− y|)〈x− y,b(x)−b(y)〉 ≤

 −Γ|x− y|ψ( f (|x− y|)) , f (|x− y|)≤ γ ,

0 , f (|x− y|)> γ ,

(2.4.1)

a.e. on Rd .

Then,

(a) for all x,y ∈ Rd , f (|x− y|)≤ γ , it holds that

W f ,p(δxPt ,δyPt) ≤ Ψ
−1
f (|x−y|)(Γt) , t ≥ 0 , (2.4.2)

where Ψκ(t) :=
∫

κ

t
ds

ψ(s) for κ > 0 and t ∈ (0,κ].
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(b) for all x,y ∈ Rd , f (|x− y|)≤ γ , and all κ ≥ γ it holds that

W f ,p(δxPt ,δyPt) ≤ Ψ
−1
κ (Γt) , t ≥ 0 . (2.4.3)

In addition, if Ψ∞(t) :=
∫

∞

t
ds

ψ(s) < ∞ for t ∈ (0,∞), then

W f ,p(δxPt ,δyPt) ≤ Ψ
−1
∞ (Γt) , t ≥ 0 . (2.4.4)

(c) for any x,y ∈ Rd it holds that

W f ,p(δxPt ,δyPt) ≤ dδ |x− y|eΨ−1
γ (Γt) , t ≥ 0 , (2.4.5)

where δ := inf{t > 0 : f (t−1) ≤ γ} and due denotes the least integer greater than

or equal to u ∈ R. Also, according to (b), Ψ−1
γ (Γt) in (2.4.5) can be replaced by

Ψ−1
κ (Γt) for any κ ≥ γ , and by Ψ−1

∞ (Γt) if Ψ∞(t)< ∞ for t ∈ (0,∞).

Proof. ∗Idea∗ The proof of Theorem 2.4.2 is based on the so-called synchronous coupling

method (see [Che05, Example 2.16] for details) and the asymptotic flatness condition

given in (2.4.1). The idea of the method is to choose two solutions to the SDE starting

from different positions (but corresponding to the same Brownian motion B) and observe

the time when they meet (the so-called coupling time). Note that we do not know that the

coupling time is finite, but it will be of no problem to us.

• Fix x,y ∈Rd , x 6= y, and let {Xt}t≥0 and {Yt}t≥0 be solutions to (2.0.1) starting from

x and y, respectively. Further, define τ := inf{t > 0 : Xt = Yt} and

Zt :=

 Yt , t < τ ,

Xt , t ≥ τ ,
t ≥ 0 .

By employing the strong Markov property it is easy to see that Py(Zt ∈ ·) = Py(Yt ∈ ·) for

all t ≥ 0. Consequently,

W f ,p(δxPt ,δyPt) ≤ (E( f (|Xt−Zt |)p))1/p , t ≥ 0 .

Next, since the mapping t 7→ |Xt − Zt | is absolutely continuous on [0,τ), the function

t 7→ f (|Xt−Zt |) is differentiable a.e. on [0,τ) and we have that

d
dt

f (|Xt−Zt |) =
f ′(|Xt−Zt |)
|Xt−Zt |

〈Xt−Zt ,b(Xt)−b(Zt)〉 ,
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a.e. on [0,τ). Now, by assumption, we get

d
dt

f (|Xt−Zt |) ≤ 0 ,

a.e. on [0,τ), which implies that the function t 7→ f (|Xt−Zt |) is non-increasing on [0,∞).

Take now x,y ∈ Rd such that 0 < f (|x− y|) ≤ γ (which exist by (iii)). Thus, for such

starting points, f (|Xt−Zt |)≤ γ on [0,∞). Now, by assumption,

d
dt

f (|Xt−Zt |) ≤ −Γψ( f (|Xt−Zt |)) ,

a.e. on [0,τ), which together with Lemma 2.4.1 gives

f (|Xt−Zt |) ≤ Ψ
−1
f (|x−y|)(Γt) , t ≥ 0 .

For t ≥ τ the term on the left-hand side vanishes, and the term on the right-hand side is

well defined and strictly positive (ψ(t) is convex and ψ(t) = 0 if and only if t = 0). Now,

by taking the expectation and infimum we conclude

W f ,p(δxPt ,δyPt) ≤ Ψ
−1
f (|x−y|)(Γt) , t ≥ 0 ,

which proves (a).

The relations in (b) now follow from (a) and Lemma 2.4.1.

Let us prove (c). If f (|x−y|)≤ γ for all x,y ∈Rd , then the assertion follows from (a).

Assume that there are x,y ∈ Rd such that f (|x− y|)> γ . Observe that, δ = 0 if and only

if f (t)≤ γ for all t ∈ [0,∞). Thus, δ > 0, and we have that

f
� |x− y|
dδ |x− y|e

�
≤ f (δ−1) ≤ γ .

Take z0, . . . ,zdδ |x−y|e ∈ Rd , such that z0 = x and

zi+1 = zi +
y− x

dδ |x− y|e
, i = 0, . . . ,dδ |x− y|e−1 .

By construction, f (|z0− z1|) = · · · = f (|zdδ |x−y|e−1− zdδ |x−y|e|) ≤ γ . Thus, using (b) we

conclude that for x,y ∈ Rd such that f (|x− y|)> γ ,

W f ,p(δxPt ,δyPt) ≤ W f ,p(δz0Pt ,δz1Pt)+ · · ·+W f ,p(δzdδ |x−y|e−1Pt ,δzdδ |x−y|ePt)

≤ dδ |x− y|eΨ−1
γ (Γt) , t ≥ 0 .

Finally, observe that if t > 0 is such that f (t)≤ γ , then δ ≤ 1/t, that is, δ t ≤ 1. Hence, for

x,y ∈Rd such that f (|x−y|)≤ γ we have dδ |x−y|e= 1, which concludes the proof. �
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# Remarks: we needed our two solutions to have the same underlying Brownian mo-

tion in order that the diffusive component σ is canceled when calculating d
dt f (|Xt−

Zt |).

# Observe that f (t) is B([0,+∞〉)-measurable, implying that the relation in (2.4.2) is

well defined.

This result is in general broader than the existing ones, but in some special cases it

coincides with some known ones. We proceed by listing some special cases of the theorem

and their connection with the existing results:

(i) ψ(t) = t =⇒ geometric rate of convergence with Ψ
−1
f (|x−y|)(Γt) = f (|x− y|)e−Γt

# This result can be obtained in an alternative way (without Lemma 2.4.1, that is,

Grönwall’s inequality), by applying Itô’s lemma to processes

{ f (|Xt−Zt |)}t≥0 and {eΓt f (|Xt−Zt |)}t≥0.

(ii) p = 2 and f (t) = ψ(t) = t =⇒ again Ψ
−1
f (|x−y|)(Γt) = |x− y|e−Γt

# In [vRS05] it has been shown that the relation in (2.4.2) is equivalent to the

asymptotic flatness condition (in the sense of [ABG12])

〈x− y,b(x)−b(y)〉 ≤ −Γ|x− y|2 , x, y ∈ Rd . (2.4.6)

# Even though at first sight the condition in (2.4.1) seems to be less restrictive

than the condition in (2.4.6), they are actually equivalent. This can be easily

observed by taking an equidistant subdivision of the line segment connecting

x and y, such that the distance between consecutive points is strictly less than

γ , and then applying triangle inequality. On the other hand, in the case when

ψ(t) is not the identity function this does not hold in general. Namely, ψ(t)

is not sub-additive, but super-additive. A typical example of a drift function

(in dimension d = 1) satisfying (2.4.1) (and (2.4.8)), but not (2.4.6), is b(x) =

−sgn(x)|x|p, p> 1, together with f (t)= t and ψ(t)= |t|p (see Example 2.4.5).

More generally, no drift function that is sub-linear near the origin can satisfy

(2.4.6), but it might satisfy (2.4.1).
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Let us now give several remarks regarding out result.

Remark 2.4.3. (i) If the condition in (2.4.1) holds for some γ > 0, then it also holds

for any 0 < γ̄ ≤ γ.

(ii) By replacing the condition in (2.4.1) with

f (|x− y|)p−1 f ′(|x− y|)〈x− y,b(x)−b(y)〉

≤

 −Γ

p |x− y|ψ( f p(|x− y|)) , f p(|x− y|)≤ γ ,

0 , f p(|x− y|)> γ ,

a.e. on Rd for γ > 0 and Γ > 0, leads to analogous results ( f (t) is replaced by f p(t)

in every relation).

(iii) For any µ,ν ∈P it holds that

W f ,p(µPt ,νPt) ≤ (δ Wp(µ,ν)+1)Ψ−1
γ (Γt) , t ≥ 0 .

In particular, for f (t) = t we have that

Wp(µPt ,νPt) ≤
�

Wp(µ,ν)

γ
+1

�
Ψ
−1
γ (Γt) , t ≥ 0 .

(iv) In the case when f (t) = ψ(t) = t, according to (2.4.6), we get

Wp(µPt ,νPt)≤Wp(µ,ν)e−Γt , p≥ 1 , µ,ν ∈P , t ≥ 0 , (2.4.7)

which is the same results as in [vRS05] (for p= 2). Also, by an analogous approach

as in the proof of Theorem 2.4.4, from (2.4.7) we see that {Xt}t≥0 admits a unique

invariant π ∈ ∩p≥1Pp such that

Wp(µPt ,π) ≤ Wp(µ,π)e−Γt , p≥ 1 , µ ∈Pp , t ≥ 0 .

(v) From (2.4.7) we see that the mapping P 3 µ 7→ µPt ∈P is a contraction for fixed

t > 0, that is, the right-hand side in (2.4.7) is strictly smaller than Wp(µ,ν). On the

other hand, in the general situation, this is not the case anymore (see (iii)). However,

if

f ′(|x− y|)〈x− y,b(x)−b(y)〉 ≤ −Γ |x− y|ψ( f (|x− y|)) , x,y ∈ Rd ,
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then from (2.4.2) we have that for all x,y ∈ Rd and all t ≥ 0,

W f ,p(δxPt ,δyPt) ≤ Ψ
−1
f (|x−y|)(Γt) ≤ Ψ

−1
f (|x−y|)(0) = f (|x− y|) ,

that is,

W f ,p(µPt ,νPt) ≤ W f ,p(µ,ν) , p≥ 1 , µ,ν ∈P , t ≥ 0 .

Thus, the mapping P 3 µ 7→ µPt ∈P is contractive for any fixed t ≥ 0.

Finally, as a consequence of Theorem 2.4.2 we conclude the following.

Theorem 2.4.4. In addition to the assumptions of Theorem 2.4.2 with f (t) = t, assume

〈x− y,b(x)−b(y)〉 ≤ −Γ|x− y|ψ(|x− y|) , x, y ∈ Rd . (2.4.8)

Then, the process {Xt}t≥0 admits a unique invariant π ∈ ∩p≥1Pp, and for any κ > 0,

p≥ 1 and µ ∈Pp,

Wp(µPt ,π) ≤
�

Wp(µ,π)

κ
+1

�
Ψ
−1
κ (Γt) , t ≥ 0 . (2.4.9)

Proof of Theorem 2.4.4. First, we prove that {Xt}t≥0 admits an invariant probability mea-

sure. According to [MT93a, Theorem 3.1], this will follow if we show that for each x∈Rd

and 0 < ε < 1 there is a compact set C ⊂ Rd (possibly depending on x and ε) such that

liminf
t↗∞

1
t

∫ t

0
p(s,x,C)ds ≥ 1− ε .

By taking y = 0 in (2.4.8) we have that

〈x,b(x)〉 ≤ 〈x,b(0)〉−Γ|x|ψ(|x|) ≤ |b(0)||x|−Γ|x|ψ(|x|) , x ∈ Rd .

In particular, for V (x) = |x|2 we have that

LV (x) = 2〈x,b(x)〉+Trσσ
T ≤ Trσσ

T +2|b(0)||x|−2Γ|x|ψ(|x|) , x ∈ Rd .

Now, since every super-additive convex function is necessarily non-decreasing and un-

bounded, we conclude that there is r0 > 0 large enough such that

Trσσ
T +2|b(0)||x| ≤ Γ|x|ψ(|x|) , |x| ≥ r0 ,
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that is,

LV (x) ≤
(
Trσσ

T +2|b(0)||x|−2Γ|x|ψ(|x|)
)
1Br0(x)

+
(
Trσσ

T +2|b(0)||x|−2Γ|x|ψ(|x|)
)
1Bc

r0
(x)

≤
(
Trσσ

T +2|b(0)||x|−2Γ|x|ψ(|x|)
)

1Br0(x)
−Γ|x|ψ(|x|)1Bc

r0
(x)

≤
(
Trσσ

T +2|b(0)|r0 +Γr0ψ(r0)
)
1Br0(x)

−Γr0ψ(r0) , |x| ≥ r0 .

Clearly, the above relation holds for all r ≥ r0 also. Now, according to [MT93b, Theorem

1.1] we conclude that for each x ∈ Rd and r ≥ r0 we have

liminf
t↗∞

1
t

∫ t

0
p(s,x, B̄r(0))ds ≥ Γrψ(r)

TrσσT +2|b(0)|r+Γrψ(r)
.

The assertion now follows by choosing r large enough.

Let us now show that any invariant π ∈P of {Xt}t≥0 has finite all moments. Fix

p≥ 2 and let Vp(x) = |x|p. By the same reasoning as above, it is easy to see that there are

rp > 0, Γp,1 > 0 and Γp,2 > 0 such that

LVp(x) ≤ Γp,11Brp(0)(x)−Γp,2|x|p−1
ψ(|x|) , x ∈ Rd .

Now, from [MT93b, Theorem 4.3] it follows that∫
Rd
|x|p−1

ψ(|x|)π(dx) ≤
Γp,1

Γp,2

for any corresponding invariant π ∈P .

Finally, let us prove that {Xt}t≥0 admits a unique invariant probability measure which

satisfies (2.4.9). Let π, π̄ ∈P be two invariant probability measures of {Xt}t≥0. Then,

for any κ > 0 and p≥ 1 Remark 2.4.3 implies that

Wp(π, π̄) = Wp(πPt , π̄Pt) ≤
�

Wp(π, π̄)

κ
+1

�
Ψ
−1
κ (Γt) , t ≥ 0 .

Now, by letting t→∞ we see that Wp(π, π̄) = 0, that is, {Xt}t≥0 admits a unique invariant

π ∈P. Finally, for any κ > 0, p≥ 1 and µ ∈Pp, by employing Remark 2.4.3 again, we

have that

Wp(π,µPt) = Wp(πPt ,µPt) ≤
�

Wp(π,µ)

κ
+1

�
Ψ
−1
κ (Γt) , t ≥ 0 ,

which concludes the proof. �
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A special case of this is result is again for ψ(t) = t. In this case, ergodicity results have

already been obtained, and they provide geometric rate of the convergence. However,

these results do require σ to be a regular matrix and they correspond to the following

version of an asymptotic flatness condition: there are some Γ1 > 0, Γ2 > 0 and ∆ > 0

such that

〈x− y,b(x)−b(y)〉 ≤

 Γ1|x− y|2 , |x− y| ≤ ∆ ,

−Γ2|x− y|2 , |x− y| ≥ ∆ ,
x, y ∈ Rd , (2.4.10)

The connection to our result is the following:

# If σ(x) ≡ σ is quadratic and non-singular matrix, and b(x) satisfies (2.4.10), by

using the so-called coupling by reflection method (see [Che05, Example 2.16] for

details), in [Ebe11] it has been shown that there is a concave function f (t) (given

explicitly in terms of the constants Γ1, Γ2 and ∆, and coefficients σ and b(x)) defin-

ing a metric ρ(x,y) = f (|x− y|) on Rd under which {Xt}t≥0 satisfies contraction

property of the type (2.4.5) with geometric rate of convergence, and geometric er-

godicity property of the type (2.4.9).

– An example from before: b(x) = −sgn(x)|x|p, p > 1, satisfies (2.4.1) and

(2.4.8), but clearly it also satisfies (2.4.10). However, if σ is non-singular, we

would not be able to use this result to obtain geometric ergodicity. On the

other hand, singularity does not impact the validity of Theorem 2.4.4 and we

can thus apply it in this case.

# If σ is non-singular, by taking y = 0 in (2.4.10), one can easily see that {Xt}t≥0 is

geometrically ergodic with respect to the total variation distance (see Proposition

2.3.6).

# In [BGG12] and [vRS05], the coupling approach and the asymptotic flatness prop-

erty in (2.4.6) are employed to establish geometric contractivity and ergodicity of

the semigroup of a diffusion process with possibly singular diffusion coefficient,

with respect to a Wasserstein distance.

As an illustration, we give a simple example satisfying (2.4.1) and (2.4.8).
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Example 2.4.5. Let p > 1, b(x) =−sgn(x)|x|p, σ(x)≡ σ ∈R, f (t) = t, γ > 0 and ψ(t) =

t p. Now, it is easy to see that b(x) cannot satisfy the relation in (2.4.6). On the other hand,

an elementary computation shows that there is Γ > 0 such that (2.4.1) holds true. Thus,

we have (2.4.5) with δ = γ−1. Also, limt→∞
p−1
√

tΨ−1
κ (t) = 1/ p−1

√
p−1, κ > 0.

Let us also remark that one can show that the same result holds in the multidimen-

sional case with b(x1, . . . ,xd) = (−sgn(x1)|x1|p, . . . ,−sgn(xd)|xd|p).

2.4.1. Ergodicity of jump-processes

Just as in the case of a total variation distance, so in the case of Wasserstein distances too

we take into account the situation of a jump-process and its ergodicity.

We will consider the situation where jumps come from a Lévy process. We considered

this situation in the case of the total variation distance too. More precisely, we are looking

at the solutions of a Lévy driven SDE that takes the form:

dXt = b(Xt)dt +dYt , X0 = x ∈ Rd , (2.4.11)

where {Yt}t≥0 be a d-dimensional Lévy process with Lévy triplet (β ,γ,ν) (coming from

the Lévy-Itô decomposition) and b : Rd → Rd a continuous function.

We impose the following conditions on the coefficients:

(J1) for any r > 0 there is Γr > 0 such that for all x,y ∈ Br(0),

〈x− y,b(x)−b(y)〉 ≤ Γr|x− y|2 ;

(J2) there is Γ > 0 such that for all x ∈ Rd ,

〈x,b(x)〉 ≤ Γ(1+ |x|2) .

# (J1)-(J2) imply that admits a unique strong non-explosive solution {Xt}t≥0 which is

a strong Markov process and satisfies the Cb-Feller property (see [Maj16, Theorem

1.1, and Lemmas 2.4 and 2.5]).

Lemma 2.4.6. Assume that E[|Y1|p] < ∞ (or, equivalently,
∫

Bc
1(0)
|y|pν(dy) < ∞) for

some p > 0. Then, there is a constant ∆ > 0 such that

Ex[|Xt |p
]
≤ (|x|p +1)e∆t , t ≥ 0 , x ∈ Rd .
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Proof. Let χ ∈C2(Rd) be such that χ(x)≥ 0, χ(x)≤ |x|p and χ(x) = |x|p for x ∈ Bc
1(0).

Further, for n ∈ N, let χn ∈ C2
b(R

d) be such that χn(x) ≥ 0, χn(x) = χ|Bn+1(0)(x) and

χn(x)→ χ(x) as n→ ∞, and τn := inf{t ≥ 0 : Xt ∈ Bc
n(0)}. Then, according to Itô’s

formula (see [ABW10, Remark 2.2]), we have that

Ex[χn(Xt∧τn)] ≤ χn(x)+∆n(t ∧ τn)+∆nEx
�∫ t∧τn

0
χn(Xs)ds

�
≤ χn(x)+∆nt +∆n

∫ t

0
Ex [χn(Xs∧τn)]ds , n ∈ N , t ≥ 0 , x ∈ Rd ,

where the constants ∆n > 0 depend on p, β , γ , b(x) and the constants
∫

B1(0) |y|
2ν(dy),

ν(Bc
1(0)), supx∈BR(0) |∇χn(x)| and supx∈BR(0) |∇

2χn(x)|, for R > 0 large enough. Clearly,

the functions χn(x) can be chosen such that ∆ := supn∈N∆n < ∞. Now, since the function

t 7→ Ex[χn(Xt∧τn)] is bounded and càdlàg, Gronwall’s lemma implies that

Ex[χn(Xt∧τn)] ≤ (χn(x)+1)e∆t−1 , n ∈ N , t ≥ 0 , x ∈ Rd .

By letting n→ ∞ monotone convergence theorem and non-explosivity of {Xt}t≥0 imply

that

Ex[χ(Xt)] ≤ (χ(x)+1)e∆t−1 , t ≥ 0 , x ∈ Rd .

Finally, we have that

Ex[|Xt |p
]
≤ Ex[χ(Xt)]+1 ≤ (χ(x)+1)e∆t ≤ (|x|p +1)e∆t , t ≥ 0 , x ∈ Rd .

�

Lemma 2.4.7. Assume that ν(Rd)<∞. Then, the sample paths of {Xt}t≥0 are piecewise

continuous Px-a.s.

Proof. Define τ0 := 0 and

τn := inf
{

t ≥ τn−1 : |Xt−Xt−|> 0
}
= inf

{
t ≥ τn−1 : |Yt−Yt−|> 0

}
, n≥ 1 .

Clearly, {τn}n∈N are i.i.d. and Px(τ1 > t)= e−ν(Rd)t (that is, τ1 is exponentially distributed

with parameter ν(Rd)) for any x ∈Rd . Hence, {Xt}t≥0 is continuous on [τn,τn+1), n≥ 0,

Px-a.s. for all x ∈ Rd . �
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In establishing ergodicity, we will need the help of a generator of our process. Under

certain additional conditions, we will be able to calculate it. Namely, let {Xt}t≥0 be a

solution to (2.4.11) with b(x) satisfying (J1) and (J2), and with {Yt}t≥0 having finite

p-th moment, p ≥ 1, and finite Lévy measure. Then, according to Lemmas 2.4.6 and

2.4.7, if b(x) satisfies (2.4.1) we conclude that {Xt}t≥0 satisfies (2.4.2), (2.4.3), (2.4.4)

and (2.4.5). Further, according to [ABW10] and [Mas07], for any f ∈C2(Rd) such that

x 7→
∫

Bc
1(0)

f (x+ y)ν(dy) is locally bounded,

f (Xt)− f (X0)−
∫ t

0
L f (Xs)ds, t ≥ 0,

is a local Px-martingale, x ∈ Rd , where

L f (x) =〈b(x),∇ f (x)〉+ 〈β ,∇ f (x)〉+ 1
2

Trγ ∇
2 f (x)

+
∫
Rd

�
f (y+ y)− f (x)−〈y,∇ f (x)〉1B1(0)(y)

�
ν(dy) .

Proposition 2.4.8. Let p≥ 1. Assume that b(x) satisfies (J1), (J2) and (2.4.8), and that

{Yt}t≥0 has finite p-th moment and finite Lévy measure. Then, {Xt}t≥0 admits a unique

invariant π ∈Pp such that for any κ > 0, 1≤ q≤ p and µ ∈Pq it holds that

Wq(π,µPt) ≤
�

Wq(π,µ)

κ
+1

�
Ψ
−1
κ (Γt) , t ≥ 0 . (2.4.12)

Proof. First, observe that

L f (x) =〈b(x),∇ f (x)〉+ 〈β +
∫

Bc
1(0)

yν(dy),∇ f (x)〉+ 1
2

Trγ ∇
2 f (x)

+
∫
Rd

( f (y+ y)− f (x)−〈y,∇ f (x)〉)ν(dy) .

By taking a non-negative Vp ∈ C2(Rd) such that Vp(x) = |x|p on Bc
1(0) from [APS19,

Lemma 5.1] we have that

sup
x∈Rd

∣∣∣∣∫Rd
(Vp(y+ y)−Vp(x)−〈y,∇Vp(x)〉)ν(dy)

∣∣∣∣ < ∞.

Now, by completely the same approach as in the proof of Theorem 2.4.4 we conclude

that {Xt}t≥0 admits a unique invariant π ∈P such that
∫
Rd |x|p−1ψ(|x|)π(dx)< ∞. Thus,

π ∈Pp, and the relation in (2.4.12) follows by the same reasoning as in the proof of

Theorem 2.4.4. �
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The second type of jump processes that we discuss will be, just like in the case of a

total variation distance, Markov processes with jumps obtained through Bochner’s subor-

dination method.

Proposition 2.4.9. Let {Xt}t≥0 be a Markov process with state space (Rd,B(Rd)) and

semigroup {Pt}t≥0. Let {St}t≥0 be a subordinator with characteristic exponent φ(u),

independent of {Xt}t≥0. Further, let ρ be a metric on Rd such that (Rd,ρ) is a Pol-

ish space and B(Rd
ρ) ⊆ B(Rd), that is, ρ induces a coarser topology than the stan-

dard d-dimensional Euclidean metric on Rd . Assume, that {Xt}t≥0 admits an invariant

π ∈P such that Wρ,p(δxPt ,π)≤ Γ(x)r(t), t ≥ 0, x ∈ Rd , where r : [0,+∞〉 → [1,+∞〉 is

Borel measurable and Γ(x) ≥ 0. Then, Wρ,p(δxPφ

t ,π) ≤ Γ(x)rφ (t), t ≥ 0, x ∈ Rd, where

rφ (t) = (E[rp(St)])
1/p .

Proof. First, recall that if π is an invariant measure for {Xt}t≥0, then it is also invariant

for {Xφ

t }t≥0. Next, [Vil09, Theorem 4.1] implies that for each s ∈ [0,∞) there is Πs ∈

C (δxPs,π) such that Wρ,p(δxPφ
s ,π) =

∫
Rd×Rd ρ(y,z)Πs(dy,dz). Now, we have that

W p
ρ,p(δxPφ

t ,π) = inf
Π∈C (δxPφ

t ,π)

∫
Rd×Rd

ρ
p(y,z)Π(dy,dz)

≤
∫
Rd×Rd

ρ
p(y,z)

∫
[0,∞)

Πs(dy,dz)µt(ds)

≤
∫
[0,∞)

W p
ρ,p(δxPs,π)µt(ds)

≤ Γ
p(x)

∫
[0,∞)

rp(s)µt(ds)

= Γ
p(x)E[rp(St)] ,

which completes the proof. �
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3. DIFFUSION PROCESSES WITH

MARKOVIAN SWITCHING

A problem that motivated the research of the so-called diffusion processes with switching

comes from physics - from observing systems which did not behave in the same way all

the time, but instead, they changed their behaviour every now and then, at some random

times. We call them hybrid systems. One can look at those systems as two-component

ones: one component is continuous, and corresponds to a classical diffusion, and another

is discrete, which corresponds to the notion of Markov chain. The role of the discrete

component, usually independent of the continuous one, is to say when is a time for a

continuous component to start behaving differently, and in what way (that is, how will

this new motion look like). The continuous motion will then remain the same, until the

discrete component changes its value again.

Mathematically, we say that such a system is a system with Markovian switching, or

a regime-switching system, and look at it as a paired process (X ,Λ), where Xt denotes

a position of our process at time t, and Λt the state of the discrete component at time t.

The value of X is constantly changing, and the value of Λt remains the same for a certain

period of time after changing. We call it a diffusion process with Markovian switching

or a regime-switching diffusion process. The model which describes the movement of

such a process can be written in the form of the SDE, just, unlike before, this SDE will be

a bit more complicated as all coefficients will depend on both components of the process.

Actually, one can think about this process as a diffusion living in an random environment

- and the environment is changing at discrete, random times.

We start the analysis by formally posing the problem, model and discussing its prop-

erties. Denote the process with regime-switching by (X ,Λ) = {(X(x, i; t),Λ(x, i; t))}t≥0.
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The first (continuous-state) component is given by

dX(x, i; t) = b
(
X(x, i; t),Λ(x, i; t)

)
dt +σ

(
X(x, i; t),Λ(x, i; t)

)
dB(t)

X(x, i;0) = x ∈ Rd

Λ(x, i;0) = i ∈ S ,

(3.0.1)

where {B(t)}t≥0 denotes a standard n-dimensional Brownian motion (starting from the

origin), and the second (regime-switching) component is a right-continuous and time-

homogeneous Markov chain with finite state space S. The processes {B(t)}t≥0 and

{Λ(x, i; t)}t≥0 are both defined on a stochastic basis (Ω,F ,{Ft}t≥0,P) satisfying the

usual conditions.

Then, Λ possesses the generator matrix (or the infinitesimal generator) Q(x) =

(qi, j(x))i, j∈S which describes the movement of this Markov chain (elements of Q(x) are

intensities of waiting times if this process which are exponentially distributed), where

x ∈ Rd is the starting point of the system. So, once we determing the starting position,

the behaviour of Λ is fixed, it stays the same till the end, and is not influenced by the

continuous-state component Xt . Recall, this matrix satisfies the following properties:

• qi, j(x) = limt→0
P(Λ(x,i;t)= j)

t for i 6= j,

• qi,i(x) =−∑ j 6=i qi, j(x).

Some properties:

• Continuous-state component X does have a continuous trajectories, and in the case

when we add jumps, they will be càdlàg.

• Maximum principle and Harnack inequalities do hold, see [CCTY19].

• The biggest structural difference between a regime-switched diffusion and a stan-

dard diffusion process is the fact the regime-switched process X is not a Markov

process - this is obvious because the value of X at time t does depend on the past

(through the discrete component Λt). Therefore, in order that the problem of ergod-

icity makes sense in this setting, we need to work with a joint process (X ,Λ) as this

will indeed be a Markov process. In this spirit, the problem of ergodicity can now

be portrayed as:
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r(t)‖Px,i((Xt ,Λt) ∈ ·)−π(·)‖ ?−→ 0,

and the same questions as before are being tackled. Similarly, all properties from

before will be defined in the same way, just on a product space instead.

• Feller and Cb-Feller properties: have been considered, see [KZ20].

However, we may ask ourselves, is this situation that much different than a normal,

standard diffusion process? The answer is: NO! There are some very big differences

between these two types of processes which make this analysis interesting and important.

Adding a switching mechanism does make the whole system much more complicated - it

can exhibit some strange behaviour.

# For example, it is possible that all diffusions which form a switching process are

positive recurrent, but the whole system is not. Or conversely, for all i ∈ S the

corresponding diffusions are transient, but the regime-switched diffusion as a whole

process is positive recurrent. See [PS92].

So, we proceed with the analysis. We assume that the coefficients b : Rd ×S→ Rd

and σ : Rd×S→ Rd×n, and the process {Λ(x, i; t)}t≥0 satisfy the following:

(A1) for any r > 0 and i ∈ S,

sup
x∈Br(0)

(
|b(x, i)|+‖σ(x, i)‖HS

)
< +∞,

(A2) for each (x, i)∈Rd×S the regime-switching stochastic differential equation (shortly

RSSDE) in eq. (3.0.1) admits a unique non-explosive strong solution {X(x, i; t)}t≥0

which has continuous sample paths,

(A3) the process {(X(x, i; t),Λ(x, i; t))}t≥0 is a temporally-homogeneous strong Markov

process with transition kernel p(t,(x, i),dy×{ j}) = P((X(x, i; t),Λ(x, i; t)) ∈ dy×

{ j}),

(A4) the corresponding semigroup of linear operators {Pt}t≥0, defined by

Pt f (x, i) :=
∫
Rd×S

f (y, j)p
(
t,(x, i),dy×{ j}

)
, f ∈Bb(Rd×S) ,

satisfies the Cb-Feller property, that is, Pt(Cb(Rd×S))⊆ Cb(Rd×S) for all t ≥ 0,
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(A5) for any (x, i) ∈ Rd×S and f ∈ C 2(Rd×S) the process§
f
(
X(x, i; t),Λ(x, i; t)

)
− f (x, i)−

∫ t

0
L f

(
X(x, i;s),Λ(x, i;s)

)
ds
ª

t≥0

is a P-local martingale, where

L f (x, i) = Li f (x, i)+Q(x) f (x, i)

with

Li f (x) =
〈
b(x, i),∇ f (x)

〉
+

1
2

Tr
(
σ(x, i)σ(x, i)T

∇
2 f (x)

)
, f ∈ C 2(Rd) ,

and

Q(x) f (i) = ∑
j∈S

f ( j)qi, j(x) , f ∈ SS .

- Br(x) denotes the open ball with radius r > 0 around x ∈ Rd ,

- 〈·, ·〉 stands for the standard scalar product on Rd ,

- |·| := 〈·, ·〉1/2 is the corresponding, Euclidean norm

- The symbols B(Rd ×S), Bb(Rd ×S), Cb(Rd ×S) and C 2(Rd ×S) stand for the

spaces of all functions f : Rd ×S→ R such that x 7→ f (x, i) is Borel measurable,

bounded and Borel measurable, bounded and continuous and of class C 2 for all

i ∈ S, respectively.

# Conditions ensuring (A1)− (A5) can be found in [FGC19], [KZ20] and [MY06])

3.1. LITERATURE OVERVIEW

The research on regime-switching diffusions started in the 90’s, after it was observed that

standard models can not capture some interesting movements. Namely, people started to

find examples of phenomena which change their behaviour at random time points. Such

system, called the hybrid system, were then modelled by two stochastic components: one

continuous, and one discrete.

As in the case of a classical diffusion, we can divide results based on the type of the

convergence.
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From the qualitative aspect, the properties of such models will relate to ones for stan-

dard SDE, since our process here (X ,Λ) is a Markov process. Thereforem , we will ob-

serve the same properties, just on a different space (everything will be done on a product

space instead of a just Rd).

• [MY06]

# The main reference for this topic. Provides sufficient condition for various

properties (for example, using the assumption of M-matrix).

• [KZ20]

# Here the authors discuss structural properties of regime-switching diffusions

like Feller and Cb-property and irreducibility.

From the quantitative aspect, we again have much more results concerning geometric

convergence with respect to the total variation norm.

• Geometric rate: as the whole theory itself, the results are quite recent for this case.

TV: Most results correspond to the total-variation distance. See [Sha13], [LX22]

or [Sha13].

WASS: Only few results. See [Sha14] and [CH15].

• Sub-geometric ergodicity: this situation was not yet discussed in the literature for

switching diffusions.
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3.2. IRREDUCIBILITY AND APERIODICITY

As we have thoroughly discussed in the previous chapter, the necessary ingredient to use

with a Foster - Lypaunov method is to assume open-set irreducibility and aperiodicity. As

we have done a lot of research on those properties for classical diffusions, we will be able

to extend those results to regime-switching diffusions as well.

We start by adapting the definitions of those properties to our new setting (the state

space of the process is not Rd any more, but rather a product space Rd×S).

Definition 3.2.1. The process {(X(x, i; t), Λ(x, i; t))}t≥0 is said to be

• φ-irreducible if there exists a σ -finite measure φ on B(Rd) (the Borel σ -algebra

on Rd) such that whenever φ(B) > 0 we have
∫

∞

0 p(t,(x, i),B×{ j})dt > 0 for all

(x, i) ∈ Rd×S and j ∈ S.

If it is φ-irreduciblen then we call it

- transient if there exists a countable covering of Rd with sets {Bk}k∈N ⊂

B(Rd), and for each k ∈ N there exists a finite constant ck ≥ 0 such that∫
∞

0 p(t,(x, i),Bk×{ j})dt ≤ ck holds for all (x, i) ∈ Rd×S and j ∈ S

- recurrent if φ(B) > 0 implies
∫

∞

0 p(t,(x, i),B×{ j})dt = ∞ for all (x, i) ∈

Rd×S and j ∈ S.

• open-set irreducible if the support of its maximal irreducibility measure ψ,

suppψ = {x ∈ Rd :ψ(O)> 0 for every open neighborhood O of x} ,

has a non-empty interior,

• aperiodic if it admits an irreducible skeleton chain, that is, there exist t0 > 0 and

a σ -finite measure φ on B(Rd), such that φ(B)> 0 implies ∑
∞
n=0 p(nt0,(x, i),B×

{ j})> 0 for all (x, i) ∈ Rd×S and j ∈ S.

Recall, a right-continuous temporally-homogeneous Markov chain {Λ(i; t)}t≥0 on S

given by state-independent generator Q is irreducible if for any i, j ∈ S, i 6= j, there are

m ∈ N and k0, . . . ,km ∈ S with k0 = i, km = j and kl 6= kl+1 for l = 0, . . . ,m−1, such that
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qklkl+1 > 0 for all l = 0, . . . ,m−1. Due to finiteness of S, it is well known that {Λ(i; t)}t≥0

is then geometrically ergodic. Let {Λ̄(i; t)}t≥0 be an independent copy of {Λ(i; t)}t≥0.

Put

τi j :=

 inf{t > 0: Λ(i; t) = Λ̄( j; t)} , i 6= j ,

0 , i = j ,

and ζ := infi, j∈SP(Λ(i;1) = j). Observe that 0 < ζ < 1 (recall that S is finite and

{Λ(i; t)}t≥0 is irreducible). Define ϑ :=− log(1−ζ ). It holds that

P(τi j > t) ≤ e−ϑbtc (3.2.1)

for all i, j ∈ S and t ≥ 0.

Lemma 3.2.2. For {Λ(i; t)}t≥0 irreducible and {Λ̄(i; t)}t≥0 its independent copy,

τi j =

 inf{t > 0: Λ(i; t) = Λ̄( j; t)} , i 6= j ,

0 , i = j ,

ζ = infi, j∈SP(Λ(i;1) = j) and ϑ =− log(1−ζ ). Then,

P(τi j > t) ≤ e−ϑbtc.

for all i, j ∈ S and t ≥ 0.

Proof. First, observe that for any initial distribution µ = (µi)i∈S of {Λ(i; t)}t≥0 and all

j ∈ S it holds that

∑
i∈S

P(Λ(i;1) = j)µi ≥ ζ . (3.2.2)

Thus, for any initial distribution Π = (Πi, j)i, j∈S of {(Λ(i; t), Λ̄( j; t))}t≥0 we have that

∑
i, j∈S

P(Λ(i;1) 6= Λ̄( j;1))Πi, j

= ∑
i, j∈S

∑
k∈S

P(Λ(i,1) 6= Λ̄( j;1), Λ(i;1) = k)Πi, j

= ∑
i, j∈S

∑
k∈S

(
P(Λ(i;1) 6= Λ̄( j;1), Λ(i;1) = k)+P(Λ(i;1) = Λ̄( j;1), Λ(i;1) = k)

−P(Λ(i;1) = Λ̄( j;1), Λ(i;1) = k)
)

Πi, j

= ∑
i, j∈S

∑
k∈S

P(Λ(i;1) = k)Πi, j− ∑
i, j∈S

∑
k∈S

P(Λ(i;1) = k, Λ( j;1) = k)Πi, j

= 1− ∑
i, j∈S

∑
k∈S

P(Λ(i;1) = k)P(Λ̄( j;1) = k)Πi, j

≤ 1−ζ .

(3.2.3)
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Let t ≥ 1 be arbitrary. Then, t = btc+ s for some s ∈ [0,1). We have that

P(τi j > t) = P(τi j > t, τi j > t−1) ≤ P(Λ(i; t) 6= Λ̄( j; t), τi j > t−1) .

Observe that {τi j > t− 1} ∈ F̄t−1. Here, {F̄t}t≥0 stands for the natural filtration of the

process {(Λ(i; t), Λ̄( j; t))}t≥0. This and eq. (3.2.3) imply

P(Λ(i; t) 6= Λ̄( j; t), τi j > t−1)

=
∫
{τi j>t−1}

P(Λ(i; t) 6= Λ̄( j; t) | F̄t−1)dP

=
∫
{τi j>t−1}

P
(
Λ(Λ(i; t−1);1) 6= Λ̄(Λ̄( j; t−1);1)

)
dP

≤ (1−ζ )P(τi j > t−1) .

Thus,

P(τi j > t) ≤ (1−ζ )P(τi j > t−1) .

Iterating this procedure we arrive at

P(τi j > t) ≤ (1−ζ )btc = e−ϑbtc

for all t ≥ 1. However, it is clear that the relation holds for all t ≥ 0. �

We now move to discuss irreducibility and aperiodicity properties of (X ,Λ).

Fix i ∈ S and consider the following stochastic differential equation (SDE):

dX (i)(x; t) = b
(
X (i)(x; t), i

)
dt +σ

(
X (i)(x; t), i

)
dB(t)

X (i)(x;0) = x ∈ Rd .
(3.2.4)

Assume the following:

(A1) for each i∈ S and x∈Rd the SDE in eq. (2.3.1) admits a unique nonexplosive strong

solution {X (i)(x; t)}t≥0 which has continuous sample paths and it is a temporally-

homogeneous strong Markov process with transition kernel

p(i)(t,x,dy) = P(X (i)(x; t)) ∈ dy),

(A2) there is ∆ > 0 such that for each i ∈ S, infx∈Rd qii(x)>−∆,
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(A3) there are ∆,α > 0 such that for all x,y ∈ Rd and i ∈ S,

∑
j∈S\{i}

|qi j(x)−qi j(y)| ≤ ∆ |x− y|α

,

(A4) there are x0 ∈ Rd and r0 > 0, such that

(i) there are α,∆,δ > 0, such that for all x,y ∈ Br0(x0) and i ∈ S,

|b(x, i)−b(y, i)|+‖σ(x, i)−σ(y, i)‖HS ≤ ∆ |x−y|α and |σ(x, i)′y| ≥ δ |y|

,

(ii) for all i ∈ S and x ∈ Rd ,

P
(
τ
(x,i)
Br0(x0)

< ∞
)
> 0 ,

where τ(x,i)Br0(x0)
:= inf{t ≥ 0 : X (i)(x; t) ∈ Br0(x0)}.

# Remark: conditions from [FGC19] ensuring (A1)-(A5) imply also (A1).

We now prove the main result of this section.

Theorem 3.2.3. Assume (A1)-(A5), (A1)-(A4) and that for any i, j ∈ S, i 6= j, there are

n ∈N and k0, . . . ,kn ∈ S with k0 = i, kn = j and kl 6= kl+1 for l = 0, . . . ,n−1, such that the

set {x ∈ Br0(x0) : qklkl+1(x) > 0} has positive Lebesgue measure for all l = 0, . . . ,n− 1.

Then the process {(X(x, i; t),Λ(x, i; t)}t≥0 is open-set irreducible and aperiodic.

Proof. We show that for all (x, i) ∈ Rd×S and j ∈ S,∫
∞

0
p
(
t,(x, i),B×{ j}

)
dt > 0 and

∞

∑
m=0

p
(
m,(x, i),B×{ j}

)
> 0

whenever Leb(B∩Br0(x0)) > 0. In other words, we show that {(X(x, i; t),Λ(x, i; t)}t≥0

and the skeleton chain {(X(x, i;m),Λ(x, i;m)}m≥0 are φ-irreducible with φ(·) := Leb(·∩

Br0(x0)).
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From the proof of [FGC19, Theorem 4.8] we have that

p
(
t,(x, i),B×{ j}

)
≥ δi jP

(
X (i)(x; t) ∈ B

)
e−∆t

+(1−δi j)e−∆t
∞

∑
m=1

∫
· · ·
∫

0<t1<...<tm<t

∑
k0,...,km∈S

kl 6=kl+1
k0=i,km= j

∫
Rd
· · ·
∫
Rd

P
(
X (k0)(x; t1) ∈ dy1

)
qk0k1(y1)

P
(
X (k1)(y1; t2− t1) ∈ dy2

)
qk1k2(y2) · · ·qkm−1km(ym)P

(
X (km)(ym; t− tm) ∈ B

)
dt1 . . .dtm ,

(3.2.5)

where δi j is the Kronecker delta. In particular,

p
(
t,(x, i),B×{ j}

)
≥ δi jP

(
X (i)(x; t) ∈ B

)
e−∆t

+(1−δi j)e−∆t
∫
· · ·
∫

0<t1<...<tm<t

∫
Br0(x0)

· · ·
∫

Br0(x0)
P
(
X (k0)(x; t1) ∈ dy1

)
qk0k1(y1)

P
(
X (k1)(y1; t2− t1) ∈ dy2

)
qk1k2(y2) · · ·qkm−1km(ym)P

(
X (km)(ym; t− tm) ∈ B

)
dt1 . . .dtm ,

where for i 6= j, m ∈ N and k0, . . . ,km ∈ S are such that k0 = i, km = j, and kl 6= kl+1 and

Leb
(
{x ∈ Br0(x0) : qklkl+1(x)> 0}

)
> 0

for l = 0, . . . ,m−1. Next, assumptions of the theorem together with the proof of [LS21,

Theorem 2.3] imply that for B ∈B(Rd) with Leb(B∩Br0(x0))> 0,

(i) P
(
X (i)(x; t) ∈ B

)
> 0 for all x ∈ Br0(x0), i ∈ S and t > 0

(ii)
∫

∞

0
P
(
X (i)(x; t) ∈ B

)
dt > 0 for all i ∈ S and x ∈ Rd

(iii)
∞

∑
m=0

P
(
X (i)(x;m) ∈ B

)
> 0 for all i ∈ S and x ∈ Rd .

Thus, for all (x, i) ∈ Rd×S, j ∈ S and B ∈B(Rd) with Leb(B∩Br0(x0))> 0,∫
∞

0
p
(
t,(x, i),B×{ j}

)
dt > 0 and

∞

∑
m=0

p
(
m,(x, i),B×{ j}

)
> 0 ,

which proves the assertion. �

Let us now give several remarks.

Remark 3.2.4. (i) The conclusion of Theorem 3.2.3 also remains true in the case of

infinitely countable state space S (say S = N) if, in addition to the assumptions of
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the theorem, there is γ > 0 such that for all i, j ∈ S, i 6= j, supx∈Rd qi j(x) ≤ γ j3− j.

This additional assumption is required to conclude the relation in eq. (3.2.5) (see

[FGC19, Lemma 4.7]).

(ii) The problem of open-set irreducibility and aperiodicity of regime-switching diffu-

sion processes has already been considered in the literature (see [KZ20] and the

references therein). In all these works a crucial assumption is uniform ellipticity of

the matrix σ(x, i)σ(x, i)T , that is,

inf
x∈Rd ,y∈Rd\{0}, i∈S

|σ(x, i)T y|
|y|

> 0 . (3.2.6)

On the other hand, in Theorem 3.2.3 we require uniform ellipticity of σ(x, i)σ(x, i)T

on the open ball Br0(x0) only, while on the rest of the state space it can degenerate

provided P(τ(x,i)Br0(x0)
< ∞)> 0 for all i ∈ S and x ∈ Rd .

(iii) According to [LS21, Proposition 2.4], (A4) (ii) will hold if |σ(x, i)T y| > 0 for all

i ∈ S, x ∈ Rd and y ∈ Rd \{0}. Clearly, this condition is much weaker than (3.2.6).

A simple example of a regime-switching diffusion process satisfying (A4) (as well

as (A1)-(A5) and (A1)-(A3)) with degenerate σ(x, i)σ(x, i)T is given as follows.

Let S> ⊆ S, and let b1 ∈ C 1(Rd × S>), b2(x, i) = (b(1)2 (x, i), . . . ,b(d)2 (x, i)) with

b(k)2 ∈ C 1(Rd×Sc
>), k = 1, . . . ,d, and σ ∈ C 1(Rd×S) be such that:

(a) 0 < inf
x∈Rd

b1(x, i)≤ sup
x∈Rd

b1(x, i)< ∞ for all i ∈ S>;

(b) sup
x∈Rd\{0}

〈x,b2(x, i)〉/|x|2 < ∞ for all i ∈ Sc
>;

(c) for all i ∈ S>, σ(x, i)> 0 if, and only if, x ∈ Bri(0) for some ri > 0;

(d) σ(x, i)> 0 for all x ∈ Rd and i ∈ Sc
>.

Define

b(x, i) :=

 −b1(x, i)x , i ∈ S> ,

b2(x, i) , i ∈ Sc
> ,

and σ(x, i) := σ(x, i)Id , where Id stands for the d× d identity matrix. It is clear

that such a regime-switching diffusion process satisfies (A4) with x0 = 0 and any

0 < r0 < mini∈S> ri.
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3.3. ERGODICITY IN THE TOTAL VARIATION

DISTANCE

We start the discussion on ergodicity of a regime-switching diffusion by finding sufficient

conditions for recurrence and transience. Such questions naturally appear when address-

ing the stability of the process as positive recurrence is a necessary condition for existence

of an invariant probability measure.

Let us introduce the notation similar to the one in the previous chapter: Fix x0 ∈ Rd

and r0 ≥ 0, and put

c(x, i) := σ(x, i)σ(x, i)T , x ∈ Rd, i ∈ S,

A(x, i) := (1/2)Trc(x, i), x ∈ Rd, i ∈ S,

Bx0(x, i) := 〈x− x0,b(x, i)〉, x ∈ Rd, i ∈ S,

Cx0(x, i) := |x− x0|−2〈x− x0,c(x, i)(x− x0)〉, x ∈ Rd \{x0}, i ∈ S,

γ
x0
(r) := inf

i∈S
inf

|x−x0|=r
Cx0(x, i), r > 0,

γx0
(r) := sup

i∈S
sup

|x−x0|=r
Cx0(x, i), r > 0,

ιx0(r) := sup
i∈S

sup
|x−x0|=r

(2A(x, i)−Cx0(x, i)+2Bx0(x, i))/Cx0(x, i), r > 0,

Ix0,(r) :=
∫ r

r0

ιx0(s)
s

ds, r ≥ r0,

ιx0
(r) := inf

i∈S
inf

|x−x0|=r
(2A(x, i)−Cx0(x, i)+2Bx0(x, i))/Cx0(x, i), r > 0,

Ix0,(r) :=
∫ r

r0

ιx0
(s)
s

ds, r ≥ r0.

Now, similarly as in [Bha78], one obtains the following conditions ensuring recur-

rence and transience.

Theorem 3.3.1. Assume (A1)-(A5) and assume that the matrix c(x, i) is positive definite

for all x ∈Rd and all i ∈ S so that all functions above are well defined. If there exist some

x0 ∈ Rd and r0 ≥ 0 such that

(i) ∫ +∞

r0

e−Ix0(u)du =+∞,
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then the diffusion is recurrent,

(ii) ∫ +∞

r0

e−Ix0
(u)du <+∞,

then the diffusion is transient.

Proof. (i) A sufficient condition for a process to be recurrent is to find a Lyapunov

function V such that for all x ∈ Rd such that |x− x0| ≥ r0 and all i ∈ S

LV (x, i)≤ 0,

see [MT93b, Theorem 3.1.].

Define V : [0,+∞〉 −→ [0,+∞〉 by

V (r) =
∫ r

r0

e−Ix0(u)du, r ≥ r0.

Then fix r1 > r0 and define V : Rd × S→ [0,+∞〉 by V (x, i) = V (|x− x0|) + 1

for x ∈ Rd such that |x− x0| ≥ r1, and for all other x ∈ Rd in such a way that

x 7→ V (x, i) ∈ C2(Rd), for all i ∈ S. Since for any i ∈ S lim|x|→+∞ V (x, i) = +∞,

it holds that V is norm-like function, that is, a Lyapunov function. Note that the

function V (x, i) does not depend on the value i if |x− x0| ≥ r1. Since the sum of

elements in a row of the matrix Q is equal to 0, for all x ∈Rd such that |x−x0| ≥ r1

and all i ∈ S we have:

LV (x, i) =
1
2

Cx0(x, i)V
′′
(|x− x0|)+

V
′
(|x− x0|)

2|x− x0|
(2A(x, i)−Cx0(x, i)+2Bx0(x, i))

+ ∑
j∈S

qi, jV (x, j)

≤ Cx0(x, i)
2|x− x0|

[
− ιx0(|x− x0|)e−Ix0(|x−x0|)+

+ e−Ix0(|x−x0|)2A(x, i)−Cx0(x, i)+2Bx0(x, i)
Cx0(x, i)

]
+V (x, i)∑

j∈S
qi, j

≤ 0.

(ii) Define functions V and V as above, but using I instead of I. Then fix r1 > r0. So,

for all x ∈ Rd such that |x− x0| ≥ r1 and all i ∈ S, it holds that V
′
(|x− x0|)> 0, so
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we have that LV (x, i)≥ 0. Define

τ0 := inf{t > 0 : (Xt ,Λt) ∈ Br0(x0)×S},

τK := inf{t > 0 : |Xt | ≥ K}.

It holds that τK →+∞ as K→+∞ because the process is non-explosive.

By the optional sampling,

V (Xt∧τ0∧τK ,rt∧τ0∧τK)−
∫ t∧τ0∧τK

0
LV (Xs,rs)ds

is a P(x,i)-martingale, for |x− x0|< K. Hence,

Ex,i[V (Xt∧τ0∧τK ,rt∧τ0∧τK)]−V (x, i) = Ex,i

∫ t∧τ0∧τK

0
LV (Xs,rs)ds≥ 0.

Hence,

P(x,i)(τ0 > τK)
∫ K

r0

e−I(u)du≥
∫ |x−x0|

r0

e−I(u)du. (3.3.1)

Letting K→+∞ and using
∫+∞

r0
e−Ix0

(u)du <+∞, we obtain

Px,i(τ0 =+∞)> 0,

so the process is transient.

�

We proceed by giving the illustrating this result on two examples.

Example 3.3.2. Consider a regime-switching diffusion process in one dimension where

the Markov chain {Λt}t≥0 takes two values, that is S = {1,2}, the diffusion coefficient

σ ≡ 1 and the drift coefficient is as follows:

b(x,1) =−1
2

sgn(x)cos(x),

b(x,2) =−1
2

x.

Take x0 = 0 and r0 = 1. Then, for all x ∈ R and i ∈ S, it holds: C(x, i) = 1, A(x, i) = 1
2 ,

γ(r) = γ(r) = 1,

ι(r) = max
i∈S

max
|x|=r

2B(x, i)
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= max
x=±r
{−xsgn(x)cos(x),−x2}

= max{−r cos(r),−r2}=−r cos(r), r > 1,

I(r) =
∫ r

r0

ι(s)
s

ds =−
∫ r

1
cos(s)ds = sin(1)− sin(r).

Now, we have ∫ +∞

r0

e−Ix0(u)du =
∫ +∞

1
esin(u)−sin(1)du =+∞,

so by Theorem 3.3.1 the diffusion process is recurrent.

Example 3.3.3. Consider now a similar diffusion process with random switching as in

the previous example, but with the following drift coefficient:

b(x,1) =−1
2

sgn(x)(cos(x)−1),

b(x,2) = x.

Take again x0 = 0 and r0 = 1. Then, for all x ∈ R and i ∈ S, it holds: C(x, i) = 1,

A(x, i) = 1
2 , γ(r) = γ(r) = 1,

ι(r) = min
i∈S

min
|x|=r

2B(x, i)

= min
x=±r
{−xsgn(x)(cos(x)−1),2x2}

= min{−r(cos(r)−1),2r2}=−r(cos(r)−1), r > 1,

I(r) =
∫ r

r0

ι(s)
s

ds =−
∫ r

1
cos(s)−1 ds = sin(1)−1− sin(r)+ r.

Hence, ∫ +∞

r0

e−Ix0
(u)du =

∫ +∞

1
esin(u)−u−sin(1)+1du <+∞,

so by Theorem 3.3.1 the diffusion process is transient.

Since recurrence is not enough to conclude our process possesses an invariant proba-

bility measure, we need a stronger condition, namely, positive recurrence. In the spirit of

the previous theorem, we continue by providing a sufficient condition for this property as

well.

Theorem 3.3.4. Assume (A1)-(A5) and that the diffusion process is recurrent. If there

exist x0 ∈ Rd and r0 ≥ 0 such that
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(i) ∫ +∞

r0

eIx0(u)

γ
x0
(u)

du <+∞, (3.3.2)

and such that γ
x0
(r)> 0 for all r ≥ r0, then the process in positive recurrent.

(ii)

lim
K→+∞

∫ K
r0

e−Ix0(s)
∫ s

r0
eIx0 (u)

γx0
(u)du ds∫ K

r0
e−Ix0

(u)du
=+∞, (3.3.3)

and such that γx0
(r)<+∞ for all r ≥ r0, then the process is null-recurrent.

Proof. (i) Let V : [0,+∞〉 −→ [0,+∞〉 be such that

V (r) =
∫ r

r0

e−Ix0(u)
∫ +∞

u

eIx0(u)

γ
x0
(u)

du, r ≥ r0.

Similarly as before, fix r1 > r0 and define V : Rd × S → [0,+∞〉 by V (x, i) =

V (|x− x0|)+1 for x ∈ Rd such that |x− x0| ≥ r1, and for all other x ∈ Rd in such

a way that the function x 7→ V (x, i) ∈C2(Rd), for all i ∈ S. Because of (3.3.2), the

function V is well defined. Since value V (x, i) does not depend on the value i if

|x− x0| ≥ r1 and the sum of elements in a row of Q is 0, we obtain the following

for |x− x0| ≥ r1 and all i ∈ S:

LV (x, i) =
1
2

Cx0(x, i)V
′′
(|x− x0|)+

V
′
(|x− x0|)

2|x− x0|
(2A(x, i)−Cx0(x, i)+2Bx0(x, i))

+ ∑
j∈S

qi, jV (x, j)

=−1
2

Cx0(x, i)
ιx0(|x− x0|)
|x− x0|

e−Ix0(|x−x0|)
∫ +∞

|x−x0|

eIx0(u)

γ
x0
(u)

du

− 1
2

Cx0(x, i)e
−Ix0(|x−x0|) eIx0(|x−x0|)

γ
x0
(|x− x0|)

+
e−Ix0(|x−x0|)

2|x− x0|
·

·
∫ +∞

|x−x0|

eIx0(u)

γ
x0
(u)

du
2A(x, i)−Cx0(x, i)+2Bx0(x, i)

Cx0(x, i)
Cx0(x, i)

+V (x, i)∑
j∈S

qi, j

≤−1
2

Cx0(x, i)
ιx0(|x− x0|)
|x− x0|

e−Ix0(|x−x0|)
∫ +∞

|x−x0|

eIx0(u)

γ
x0
(u)

du
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+
e−Ix0(|x−x0|)

2|x− x0|

∫ +∞

|x−x0|

eIx0(u)

γ
x0
(u)

du ιx0(|x− x0|)Cx0(x, i)

− 1
2

Cx0(x, i)
γ

x0
(|x− x0|)

+V (x, i)∑
j∈S

qi, j

≤ 0− 1
2
+0 =−1

2
,

hence by [MT93b, Theorem 4.2.], our process is positive recurrent.

(ii) This time, define V : [0,+∞〉 −→ [0,+∞〉 by

V (r) =
∫ r

r0

e−Ix0(s)
∫ s

r0

eIx0(u)

γx0
(u)

du, r ≥ r0,

and, for a fixed r1 > r0, define function V : Rd×S→ [0,+∞〉 by V (x, i) = V (|x−

x0|) + 1 for x ∈ Rd such that |x− x0| ≥ r1, and for all other x ∈ Rd so that x 7→

V (x, i) ∈C2(Rd), for all i ∈ S. Now, for |x− x0| ≥ r1 and all i ∈ S:

LV (x, i) =−1
2

Cx0(x, i)
ιx0(|x− x0|)
|x− x0|

e−Ix0(|x−x0|)
∫ |x−x0|

r0

eIx0(u)

γx0
(u)

du

+
1
2

Cx0(x, i)e
−Ix0(|x−x0|) eIx0(|x−x0|)

γx0
(|x− x0|)

+
e−Ix0(|x−x0|)

2|x− x0|
·

·
∫ |x−x0|

r0

eIx0(u)

γx0
(u)

du
2A(x, i)−Cx0(x, i)+2Bx0(x, i)

Cx0(x, i)
Cx0(x, i)

+V (x, i)∑
j∈S

qi, j

≤ 0+
1
2

Cx0(x, i)
γx0

(|x− x0|)
+0

≤ 1
2
.

Now we proceed similarly as in the proof of Theorem 3.3.1: first, we define stop-

ping times τ0 and τK and obtain, for x ∈ Rd such that r1 ≤ |x− x0| ≤ K and i ∈ S,

2Ex,i[V (Xt∧τ0∧τK ,rt∧τ0∧τK)]−2V (x, i) = 2Ex,i

∫ t∧τ0∧τK

0
LV (Xs,rs)ds
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≤ Ex,i[t ∧ τ0∧ τK],

so by letting t→+∞, we get:

Ex,i[τ0∧ τK]≥ 2Ex,i[V (Xτ0∧τK ,rτ0∧τK)(1{τN<τ0}+1{τN≥τ0})]−2V (x, i)

≥ 2Ex,i[V (Xτ0∧τK ,rτ0∧τK)1{τN<τ0}]−2V (x, i)

= 2V (K)Px,i(τN < τ0)−2V (x, i)

≥ 2V (K)

∫ |x−x0|
r0

e−I(u)du∫ K
r0

e−I(u)du
−2V (x, i),

where in the last step we used (3.3.1). Finally, by letting K→+∞ and using (3.3.3),

we get:

Ex,i[τ0]≥ 2
∫ |x−x0|

r0

e−I(u)du lim
K→+∞

V (K)∫ K
r0

e−I(u)du
−2V (x, i) = +∞,

so by [ST97, Theorem 4.1.] the process is null-recurrent.

�

Example 3.3.5. Let σ ≡ 1 and the drift coefficient to be

b(x,1) =−1
2

sgn(x)

�
cos(x)+

1√
|x|

�
,

b(x,2) =−x.

Take again x0 = 0 and r0 = 1. Then, for all x ∈ R and i ∈ S, it holds: C(x, i) = 1,

A(x, i) = 1
2 , γ(r) = γ(r) = 1,

ι(r) = max
i∈S

max
|x|=r

2B(x, i)

= max
x=±r

¨
−xsgn(x)

�
cos(x)+

1√
|x|

�
,−2x2

«
= max

§
−r
�

cos(r)+
1√
r

�
,−2r2

ª
=−r cos(r)−

√
r, r > 1,

I(r) =
∫ r

r0

ι(s)
s

ds =−
∫ r

1
cos(s)+

1√
s

ds = sin(1)+2− sin(r)−2
√

r.

Firstly, we have: ∫ +∞

r0

e−Ix0(u)du =
∫ +∞

1
esin(u)+2

√
u−sin(1)−2du =+∞,
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so by Theorem 3.3.1 we conclude that the diffusion process is recurrent. Secondly,

∫ +∞

r0

eIx0(u)

γ(u)
du =

∫ +∞

1
esin(u)−2

√
u−sin(1)+2du <+∞,

so (3.3.2) holds and by Theorem 3.3.4 we conclude that the process is positive recurrent.

Example 3.3.6. Take again σ ≡ 1 and

b(x,1) =−1
2

sgn(x)cos(x),

b(x,2) =−1
2

sgn(x).

Take x0 = 0 and r0 = 1. Then, for all x ∈ R and i ∈ S, it holds: C(x, i) = 1,

A(x, i) = 1
2 , γ(r) = γ(r) = 1,

ι(r) = max
i∈S

max
|x|=r

2B(x, i)

= max
x=±r
{−xsgn(x)cos(x),−xsgn(x)}

= max{−r cos(r),−r}=−r cos(r),

I(r) =
∫ r

r0

ι(s)
s

ds =−
∫ r

1
cos(s)ds = sin(1)− sin(r), r > 1,

ι(r) = min
i∈S

min
|x|=r

2B(x, i)

= min
x=±r
{−xsgn(x)cos(x),−xsgn(x)}

= min{−r cos(r),−r}=−r,

I(r) =
∫ r

r0

ι(s)
s

ds =
∫ r

1
−1ds =−r+1, r > 1,

Now, we have ∫ +∞

r0

e−Ix0(u)du =
∫ +∞

1
esin(u)−sin(1)du =+∞,

so by Theorem 3.3.1 the diffusion process is recurrent. Furthermore,

lim
K→+∞

∫ K
r0

e−Ix0(s)
∫ s

r0
eIx0 (u)

γx0
(u)du ds∫ K

r0
e−Ix0

(u)du
= lim

K→+∞

∫ K
1 e−sin(r)+sin(1) ∫ r

1 esin(u)−sin(1)du dr∫ K
1 er−1dr

=+∞,

so by Theorem 3.3.4 the process is null-recurrent.
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We now address the main question of this chapter: sub-geometric ergodicity with

respect to the total variation distance. As we have seen, the regime-switching process

might have some unusual behaviour. Namely, since the process is basically made up

as a combination of standard diffusions, one might think it will inherit their properties.

So, if all diffusions are ergodic, the regime-switched process will be as well. However,

this might not be true. We first consider this special case and find condition that ensures

ergodicity of such a process.

Theorem 3.3.7. Assume (A1)-(A5) and that (Xt ,Λt)t≥0 is open-set irreducible and aperi-

odic. Further, let ϕ : [1,+∞〉 −→ 〈0,+∞〉 be a non-decreasing, differentiable and concave

function satisfying limt↗+∞ ϕ ′(t) = 0 and

Λ :=
∫ +∞

r0

ϕ

�∫ u

r0

e−Ix0(v)dv+1
�

eIx0(u)

γ
x0
(u)

du <+∞, (3.3.4)

for some x0 ∈Rd and r0 ≥ 0 such that γ
x0
(r)> 0 for all r≥ r0 (hence, the above functions

are well defined). Then, (Xt ,Λt)t≥0 admits a unique invariant π ∈P satisfying

lim
t↗+∞

ϕ(Φ−1
t )‖δx,kPt−π‖TV = 0, x ∈ Rd,k ∈ S

where

Φt :=
∫ t

1

ds
ϕ(s)

, t ≥ 1.

Proof. Let V : [0,+∞〉 −→ [0,+∞〉 be such that

V (r) =
∫ r

r0

e−Ix0(u)
∫ +∞

u
ϕΛ

�∫ v

r0

e−Ix0(w)dw+1
�

eIx0(v)

γ
x0
(v)

dvdu, r ≥ r0,

where ϕΛ(t) := ϕ(t)/Λ. So, the function V does not depend on the state i of Markov

chain r and the following inequality holds for all r ≥ r0:

V (r)≤
∫ r

r0

e−Ix0(u)du.

Now, fix r1 > r0 and define a function V :Rd×S→ [0,+∞〉 by V (x, i)=V (|x−x0|)+

1 for x ∈Rd such that |x−x0| ≥ r1, and for all other x ∈Rd so that x 7→ V (x, i) ∈C2(Rd),

for all i ∈ S. Note that the function V (x, i) does not depend on the value i if |x− x0| ≥ r1.

Secondly, note that the sum of elements in each row on the matrix Q is equal to 0 (since

it is the generator matrix). Then, for all x ∈ Rd such that |x− x0| ≥ r1 and all i ∈ S,

111



Diffusion Processes with Markovian Switching Total Variation Distance

LV (x, i) =
1
2

Cx0(x, i)V
′′
(|x− x0|)+

V
′
(|x− x0|)

2|x− x0|
(2A(x, i)−Cx0(x, i)+2Bx0(x, i))

+ ∑
j∈S

qi, jV (x, j)

=−1
2

Cx0(x, i)
ιx0(|x− x0|)
|x− x0|

e−Ix0(|x−x0|)
∫ +∞

|x−x0|
ϕΛ

�∫ u

r0

e−Ix0(v)dv+1
�

eIx0(u)

γ
x0
(u)

du

− 1
2

Cx0(x, i)
ϕΛ

�∫ |x−x0|
r0

e−Ix0(u)du+1
�

γ
x0
(|x− x0|)

+
e−Ix0(|x−x0|)

2|x− x0|

∫ +∞

|x−x0|
ϕΛ

�∫ u

r0

e−Ix0(v)dv+1
�

eIx0(u)

γ
x0
(u)

du ·

· 2A(x, i)−Cx0(x, i)+2Bx0(x, i)
Cx0(x, i)

Cx0(x, i)

+ ∑
j∈S

qi, jV (x, j),

so

LV (x, i)≤−1
2

Cx0(x, i)
ιx0(|x− x0|)
|x− x0|

e−Ix0(|x−x0|)
∫ +∞

|x−x0|
ϕΛ

�∫ u

r0

e−Ix0(v)dv+1
�

eIx0(u)

γ
x0
(u)

du

+
e−Ix0(|x−x0|)

2|x− x0|
·

·
∫ +∞

|x−x0|
ϕΛ

�∫ u

r0

e−Ix0(v)dv+1
�

eIx0(u)

γ
x0
(u)

du ιx0(|x− x0|)Cx0(x, i)

− 1
2

Cx0(x, i)
ϕΛ

�∫ |x−x0|
r0

e−Ix0(u)du+1
�

γ
x0
(|x− x0|)

+ ∑
j∈S

qi, jV (x, j)

≤ 0− 1
2

ϕΛ

�∫ |x−x0|

r0

e−Ix0(u)du+1
�
+V (x, i)∑

j∈S
qi, j

=−1
2

ϕΛ(V (x, i))+0

=−1
2

ϕΛ(V (x, i)),

that is, we have established sub-geometric drift condition and conclude that the diffu-

sion is sub-geometrically ergodic. �

# Remarks: the condition (3.3.4) for sub-geometric ergodicity considers the worst
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case for all diffusion processes {X (i)(x; t)}t≥0 for a fixed starting position x ∈ Rd .

Namely, all those diffusions are ergodic.

# The ergodicity condition (3.3.4) does not include any information about the matrix

Q. Hence, the ergodicity depends on Q only through the condition that the process

is irreducible and aperiodic.

Example 3.3.8. Take now a switching diffusion process with σ ≡ 1 and the drift coeffi-

cient b(x, i) as follows:

b(x,1) =−1
2

sgn(x)(cos(x)+1),

b(x,2) =−sgn(x).

Take x0 = 0 and r0 = 1. Then, for all x ∈ R and i ∈ S, it holds: C(x, i) = 1, A(x, i) = 1
2 ,

γ(r) = γ(r) = 1,

ι(r) = max
i∈S

max
|x|=r

2B(x, i)

= max
x=±r
{−xsgn(x)(cos(x)+1),−2xsgn(x)}

= max{−r(cos(r)+1),−2r}=−r(cos(r)+1), r > 1,

I(r) =
∫ r

r0

ι(s)
s

ds =−
∫ r

1
cos(s)+1 ds = sin(1)+1− sin(r)− r.

Consider a function ϕ(t) = tα , for α > 0. Then, we have

Λ =
∫ +∞

r0

eI(u)

γ(u)

�∫ u

r0

e−I(v)dv+1
�α

du

=
∫ +∞

1
e−sin(u)−u+sin(1)+1

�∫ u

1
esin(v)+v−sin(1)−1dv+1

�α

du <+∞,

which is true for any 0 < α < 1. So, by Theorem 3.3.7, the diffusion process is subgeo-

metrically ergodic and the rate of the convergence is polynomial - it equals tα(1−α).

A special case is ϕ(t) = t - corresponding to geometric ergodicity. In this situation we

can impose weaker conditions to obtain ergodicity.

Theorem 3.3.9. Assume (A1)-(A5) and assume that (Xt ,Λt)t≥0 is open-set irreducible

and aperiodic. Furthermore, assume
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(i) ∫ +∞

r0

eIx0(u)

γ
x0
(u)

du <+∞, (3.3.5)

(ii)

sup
r>r0

∫ r

r0

e−Ix0(u)du
∫ +∞

r

eIx0(u)

γ
x0
(u)

du <+∞, (3.3.6)

for some x0 ∈ Rd and r0 ≥ 0 such that γ
x0
(r)> 0 for all r ≥ r0. Then, (Xt ,Λt)t≥0 admits

a unique invariant π ∈P satisfying

lim
t↗+∞

et‖δx,kPt−π‖TV = 0, x ∈ Rd,k ∈ S

that is, (Xt ,Λt)t≥0 is geometrically ergodic.

Proof. Similarly as before, define V : [0,+∞〉 −→ [0,+∞〉 be such that

V (r) =
∫ r

r0

e−Ix0(u)
∫ +∞

u

�∫ v

r0

e−Ix0(w)dw+1
�p eIx0(v)

γ
x0
(v)

dvdu, r ≥ r0,

where p ∈ 〈0,1〉 is fixed. So, the function V does not depend on the state i of Markov

chain r.

Again, fix r1 > r0 and define a function V : Rd ×S→ [0,+∞〉 by V (x, i) = V (|x−

x0|)+1 for x ∈ Rd such that |x− x0| ≥ r1, and for all other x ∈ Rd so that x 7→ V (x, i) ∈

C2(Rd), for all i∈ S. So, the function V (x, i) does not depend on the value i if |x−x0| ≥ r1

and the sum of elements in each row on the matrix Q is equal to 0. Then, for all x ∈ Rd

such that |x− x0| ≥ r1 and all i ∈ S,

LV (x, i) =
1
2

Cx0(x, i)V
′′
(|x− x0|)+

V
′
(|x− x0|)

2|x− x0|
(2A(x, i)−Cx0(x, i)+2Bx0(x, i))

+ ∑
j∈S

qi, jV (x, j)

≤−1
2

Cx0(x, i)
γ

x0
(|x− x0|)

�∫ |x−x0|

r0

e−Ix0(u)du+1
�p

+0

≤−1
2

�∫ |x−x0|
r0

e−Ix0(u)du+1
�p

V (x, i)
V (x, i).

We will now show that

inf
r>r0

�∫ r
r0

e−Ix0(u)du+1
�p

V (r)
> 0. (3.3.7)
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It holds:

inf
r>r0

�∫ r
r0

e−Ix0(u)du+1
�p

V (r)
= inf

r>r0

�∫ r
r0

e−Ix0(u)du+1
�p

∫ r
r0

e−Ix0(u)
∫+∞

u

�∫ v
r0

e−Ix0(w)dw+1
�p eIx0 (v)

γ
x0
(v)dvdu

≥ inf
r>r0

p
�∫ r

r0
e−Ix0(u)du+1

�p−1
e−I(r)

e−I(r)
∫+∞

r

�∫ u
r0

e−Ix0(v)dv+1
�p eIx0 (u)

γx0
(u)du

= inf
r>r0

p
�∫ r

r0
e−Ix0(u)du+1

�p−1

∫+∞

r

�∫ u
r0

e−Ix0(v)dv+1
�p eIx0 (u)

γx0
(u)du

,

where we employed Cauchy’s mean value theorem. Now, we use [Che00, Lemma 1.2]

and obtain∫ +∞

r

�∫ u

r0

e−Ix0(v)dv+1
�p eIx0(u)

γ
x0
(u)

du≤C
�∫ r

r0

e−Ix0(u)du+1
�p−1

, for all r > r0,

for some constant C > 0, hence (3.3.7) holds.

�

As an upgrade of the above result for sub-geometric ergodicity, in the following theo-

rem we do not require nice behaviour from all separate diffusions X (i).

Theorem 3.3.10. Let {(X(x, i; t),Λ(x, i; t)}t≥0 be an open-set irreducible and aperiodic

regime-switching diffusion process satisfying (A1)− (A5). Assume

(i) there are {ci}i∈S ⊆ R, twice continuously differentiable V : Rd → 〈1,+∞〉 and

twice continuously differentiable nondecreasing concave ϕ : 〈1,+∞〉 → 〈0,+∞〉,

such that

lim
u→+∞

ϕ
′(u) = 0 , limsup

|x|→+∞

LiV (x)
ϕ ◦V (x)

< ci ,

lim
|x|→+∞

ϕ ◦V (x)
V (x)

= 0 , lim
|x|→+∞

sup
i∈S

Liϕ ◦V (x)
ϕ ◦V (x)

= 0

(ii) Q(x) = Q+ o(1) as |x| → +∞1, where Q = (qi j)i, j∈S is the infinitesimal genera-

tor of an irreducible right-continuous time-homogeneous Markov chain on S with

invariant probability measure λ= (λi)i∈S

1We use the standard o notation: for h : Rp → Rq we write h(x) = o(1) as |x| → +∞ if, and only if,

lim|x|→+∞ h(x) is the zero function.
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(iii) ∑
i∈S

ciλi < 0.

Then, {(X(x, i; t),Λ(x, i; t)}t≥0 admits a unique invariant probability measure π and

lim
t→+∞

r(t)‖δ(x,i)Pt−π‖TV = 0

for all (x, i) ∈ Rd×S, where r(t) = ϕ ◦Φ−1(t) with

Φ(t) =
∫ t

1

du
ϕ(u)

.

Proof. ∗Idea∗ In this case, the Foster - Lyapunov method consists of finding an appro-

priate recurrent (petite) set C ∈B(Rd)×P(S) and constructing an appropriate function

V :Rd×S→ [1,+∞〉 (the so-called Lyapunov (energy) function), such that the Lyapunov

equation

LV (x, i) ≤ −ϕ ◦V (x, i)+κ 1C(x, i)

holds for some κ ∈ R. Under the assumptions of the theorem (in particular, open-set

irreducibility and aperiodicity of the process), we show that C is of the form K×S for

some compact set K ⊂ Rd , and V (x, i) is given in terms of {ci}i∈S, ϕ(u) and V (x).

• Let β :=−∑i∈S ciλi > 0. Clearly,

∑
i∈S

(ci +β )λi = 0 .

From [YZ10, Lemma A.12] it then follows that the system

∑
j∈S

qi jγ j = −ci−β , i ∈ S ,

admits a solution (γi)i∈S. Let m > max{β ,2} and let V : Rd × S→ [1,+∞〉 be twice

continuously differentiable (in the first coordinate) and such that

V (x, i) =
m
β

(
V (x)+ γi ϕ ◦V (x)

)
for all i ∈ S and all |x| large enough. Observe that the assumptions in (i) ensure existence

of such a function. For all i ∈ S and all |x| large enough, we now have

LV (x, i) =
m
β

LiV (x)+
mγi

β
Liϕ ◦V (x)+

m
β

ϕ ◦V (x)Q(x)γi

≤ mci

β
ϕ ◦V (x)+

mγi

β
Liϕ ◦V (x)+

m
β

ϕ ◦V (x) ∑
j∈S

qi jγ j +o(1)
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=

�
ci + γi

Liϕ ◦V (x)
ϕ ◦V (x)

− ci−β

�
m
β

ϕ ◦V (x)+o(1)

=

�
γi

Liϕ ◦V (x)
ϕ ◦V (x)

−β

�
m
β

ϕ ◦V (x)+o(1) ,

where in the second line we use assumption (ii). By assumption, for all |x| large enough

it holds that

sup
i∈S

∣∣∣∣γi
Liϕ ◦V (x)

ϕ ◦V (x)

∣∣∣∣ < β

m
.

Thus, for all i ∈ S and all |x| large enough,

LV (x, i) ≤ −(m−1)ϕ ◦V (x) ≤ −(m−1)ϕ
(
V (x, i)/(m−1)

)
≤ −ϕ ◦V (x, i) ,

where in the last step we employed the subadditivity property of ϕ(u). The assertion of

the theorem now follows from [Twe94, Theorems 5.1 and 7.1] (which ensure that every

compact set is petite set for {(X(x, i; t),Λ(x, i; t)}t≥0) and [DFG09, Theorems 3.2 and

3.4]. �

In the next proposition we show that if ϕ(u) is linear, then {(X(x, i; t),Λ(x, i;u)}t≥0 is

geometrically ergodic.

Proposition 3.3.11. Let {(X(x, i; t),Λ(x, i; t)}t≥0 be an open-set irreducible and aperi-

odic regime-switching diffusion process satisfying (A1)-(A5). Assume

(i) there are {ci}i∈S⊂R and twice continuously differentiable V :Rd→〈1,+∞〉, such

that

limsup
|x|→+∞

LiV (x)
V (x)

< ci ,

(ii) Q(x) = Q+o(1) as |x| →+∞,

and either one of the following two conditions

(iii) Q = (qi j)i, j∈S is the infinitesimal generator of an irreducible right-continuous time-

homogeneous Markov chain on S with invariant probability measure by λ= (λi)i∈S

and ∑
i∈S

ciλi < 0.

(iii’) the matrix −(Q+diagc) is a nonsingular M -matrix, where c = (ci)i∈S.
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Then, {(X(x, i; t),Λ(x, i; t)}t≥0 is geometrically ergodic.

Proof. Assume first (i)-(iii). Analogously as in [Sha15, Theorem 2.1] we conclude that

there are ζ ∈ (0,1), η > 0 and γ = (γi)i∈S with strictly positive components, such that

(Q+ζ diagc)γ = −η γ .

Define V (x, i) := γiV ζ (x). Since ζ ∈ (0,1), it is straightforward to check that

LiV
ζ (x) ≤ ζ V ζ−1(x)LiV (x)

for all x ∈ Rd and i ∈ S. Thus, for all i ∈ S and |x| large enough, we have

LV (x, i) = γiLiV
ζ (x)+V ζ (x)Q(x)γi

≤ ζ ciγiV
ζ (x)+V ζ (x) ∑

j∈S
qi jγ j +o(1)

= −η γiV
ζ (x)+o(1)

≤ −η V (x, i)+o(1) ,

(3.3.8)

which is exactly the Lyapunov equation on [MT93b, page 529] with c = η , f (x, i) =

V (x, i), C = Br(0)×S for r > 0 large enough and b = sup(x,i)∈C |LV (x, i)|. According to

[Twe94, Theorems 5.1 and 7.1], together with open-set irreducibility and Cb-Feller prop-

erty of {(X(x, i; t),Λ(x, i; t)}t≥0, it follows that C is a petite set for {(X(x, i; t),Λ(x, i; t)}t≥0.

Consequently, from [MT93a, Proposition 6.1], [MT93b, Theorem 4.2] and aperiodicity it

follows now that there are a petite set C ∈B(Rd)×P(S), T > 0 and a non-trivial mea-

sure νC on B(Rd)×P(S), such that νC (C )> 0 and

p(t,(x, i),B) ≥ νC (B)

for all (x, i) ∈ C , t ≥ T and B ∈B(Rd)×P(S). In particular,

p(t,(x, i),C ) > 0

for all (x, i) ∈ C and t ≥ T , which is exactly the definition of aperiodicity used on

[DMT95, p. 1675]. Finally, observe that eq. (3.3.8) is also the Lyapunov equation used

on [DMT95, p. 1679] with c = η , Ṽ (x, i) = V (x, i), C = Br(0)×S for r > 0 large enough

and b = sup(x,i)∈C |LV (x, i)|. The assertion now follows from [DMT95, Theorem 5.2].
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Assume now (i), (ii) and (iii’). Since −(Q+diagc) is a nonsingular M -matrix, there

is a vector γ = (γi)i∈S with strictly positive components such that the vector

δ = (δi)i∈S =−(Q+diagc)γ

also hast strictly positive components. Define V (x, i) := γiV (x) and β := infi∈S δi > 0.

Analogously as above we see that for all i ∈ S and all |x| large enough,

LV (x, i) ≤ −β V (x, i)+o(1) ,

which concludes the proof. �

As a final step in this sequel, we discuss an example satisfying conditions from Theo-

rem 3.3.10.

Example 3.3.12. Let S = {0,1}, and let q01 = q10 = 1. Hence, λ = (1/2,1/2). Further,

let

b(x, i) =

 b , i = 0 ,

−sgn(x)β (x) , i = 1 ,

with b ∈ R and β : R→ [0,+∞〉 satisfying

lim
|x|→+∞

|x|1−2p
β (x) = +∞ (3.3.9)

for some p∈ [1/2,1), and let σ(x, i)≡ σ(i)> 0 (implying open-set irreducibility and ape-

riodicity of the process). Define V : R→ 〈1,+∞〉 by V (x) := 1+ x2, and ϕ : 〈1,+∞〉 →

〈0,+∞〉 by ϕ(u) := up. Clearly,

lim
u→+∞

ϕ
′(u) = 0 and lim

|x|→+∞

ϕ ◦V (x)
V (x)

= 0 .

Further,

LiV (x) =

 2bx+σ(0)2 , i = 0 ,

−2sgn(x)xβ (x)+σ(1)2 , i = 1 .

From this and eq. (3.3.9) it follows that

lim
|x|→+∞

LiV (x)
ϕ ◦V (x)

= lim
|x|→+∞

Liϕ ◦V (x)
ϕ ◦V (x)

=

 0 , i = 0 ,

−∞ , i = 1 .

Hence, the process satisfies the conditions from Theorem 3.3.10 with arbitrary c0 > 0 and

c1 =−2c0, which implies subgeometric ergodicity with rate r(t) = t p/(1−p).
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3.4. ERGODICITY WITH RESPECT TO THE

WASSERSTAIN DISTANCE

Again, for processes that exhibit some level of singularity, namely, are not open-set irre-

ducible and aperiodic, we consider ergodicity with respect to the Wasserstein distance. In

addition to (A1)-(A5), throughout the section we assume

• {Λ(x, i; t)}t≥0 and σ(x, i) are state independent, that is, Λ(x, i; t) = Λ(i; t) and

σ(x, i) = σ(i) for all (x, i) ∈ Rd×S and t ≥ 0;

• {Λ(i; t)}t≥0 is irreducible.

The definition of the Wasserstein distance needs to be adapted as well.

Let ρ be a distance on Rd×S. Denote by Bρ(Rd×S) the Borel σ -algebra on Rd×S

induced by ρ. For p≥ 0 let Pρ,p be the space of all probability measures µ on Bρ(Rd×

S) having finite p-th moment, that is,
∫
Rd×Sρ((x, i),(y, j))pµ(dy×{ j}) < ∞ for some

(and then any) (x, i) ∈ Rd×S. For p ≥ 1 and µ,ν ∈Pρ,p, the L p-Wasserstein distance

between µ and ν is defined as

Wρ,p(µ,ν) := inf
Π∈C (µ,ν)

�∫
(Rd×S)×(Rd×S)

ρ
(
(x, i),(y, j)

)p
Π
(
dx×{i},dy×{ j}

)�1/p
,

where C (µ,ν) is the family of couplings of µ and ν, that is, Π ∈ C (µ,ν) if, and only if,

Π is a probability measure on (Rd×S)× (Rd×S) having µ and ν as its marginals. The

restriction of Wρ,p to Pρ,p defines a finite distance.

Of our special interest will be the situation when ρ takes the form

ρ
(
(x, i),(y, j)

)
= 1{i 6= j}(i, j)+ f

(
|x− y|

)
(3.4.1)

for some non-decreasing concave f : [0,+∞〉 → [0,+∞〉 satisfying f (u) = 0 if, and only

if, u = 0.

Our methods used naturally generalise those used for a classical diffusion. Therefore,

we first adapt the key ingredient - Lemma which is a version of the well-known Grönwall

inequality.
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Lemma 3.4.1. Let i∈ S, τ ≥ 0, {Γ j} j∈S⊂ 〈−∞,0], F : [0,T 〉→ [0,+∞〉with 0< T ≤∞,

and ψ : [0,+∞〉 → (0,∞) be such that

(i) F(t) is absolutely continuous on [t0, t1] for any 0 < t0 < t1 < T ;

(ii) F ′(t)≤ ΓΛ(i;τ+t)ψ(F(t)) a.e. on [0,T 〉;

(iii) ΨF(0)(t) :=
∫ F(0)

t ds/ψ(s)< ∞ for all t ∈ 〈0,F(0)].

Then

F(t) ≤ Ψ
−1
F(0)

�
−
∫ t

0
ΓΛ(i;τ+s)ds

�
for all t ∈ [0,T 〉 such that −

∫ t
0 ΓΛ(i;τ+s)ds < ΨF(0)(0). In addition, if there is

γ ∈ [F(0),+∞] such that Ψγ(t) =
∫

γ

t ds/ψ(s)< ∞ for all t ∈ (0,γ], then

F(t) ≤ Ψ
−1
γ

�
−
∫ t

0
ΓΛ(i;τ+s)ds

�
for all t ∈ [0,T 〉 such that 0 ≤ −

∫ t
0 ΓΛ(i;τ+s)ds < Ψγ(0). Furthermore, if ψ(t) is convex

and vanishes at zero, then ΨF(0)(0) = +∞. In particular, the previous relations hold for

all t ∈ [0,T 〉.

Proof. We have,

−ΨF(0)(F(t)) =
∫ f (t)

F(0)

ds
ψ(s)

=
∫ t

0

F ′(s)ds
ψ(F(s))

≤
∫ t

0
ΓΛ(i;τ+s)ds

for all t ∈ [0,T 〉, which proves the first assertion. The second claim follows from the fact

that ΨF(0)(t) ≤Ψγ(t) for all t ∈ (0,F(0)], while the last part follows from the convexity

of ψ(t):

ψ(t) = ψ(t +(1− t)0) ≤ t ψ(1)+(1− t)ψ(0) = t ψ(1)

for all t ∈ [0,1]. �

Theorem 3.4.2. Assume (A1)-(A5), and suppose that {Λ(x, i; t)}t≥0 and σ(x, i) are x-

independent. Assume also that {Λ(i; t)}t≥0 is irreducible and let λ= (λi)i∈S be its invari-

ant probability measure. Further, let f ,ψ : [0,+∞〉 → [0,+∞〉 be such that

(i) f (u) is bounded, concave, non-decreasing, absolutely continuous on [u0,u1], for all

0 < u0 < u1 <+∞, and f (u) = 0 if, and only if, u = 0
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(ii) ψ(u) is convex and ψ(u) = 0 if, and only if, u = 0

(iii) there are {Γi}i∈S ⊂ 〈−∞,0] such that

f ′
(
|x− y|

)〈
x− y,b(x, i)−b(y, i)

〉
≤ Γi|x− y|ψ

(
f (|x− y|)

)
(3.4.2)

a.e. on Rd

(iv) ∑
i∈S

Γiλi < 0.

Then, for ρ given by eq. (3.4.1), and all p≥ 1 and (x, i),(y, j) ∈ Rd×S it holds that

lim
t→∞

W f ,p
(
δ(x,i)Pt ,δ(y, j)Pt

)
= 0 . (3.4.3)

Additionally, if ψ(u) = uq for some q > 1, then

lim
t→∞

t1/(q−1)W f ,p
(
δ(x,i)Pt ,δ(y, j)Pt

)
≤
�

1−q
2 ∑

i∈S
Γiλi

�1/(1−q)

.

If ψ(u) = κu for some κ > 0, then

lim
t→∞

eαt/2 W f ,p
(
δ(x,i)Pt ,δ(y, j)Pt

)
= 0

for all 0 < α < min{ϑ/p,−κ ∑i∈SΓiλi}, where ϑ is given in eq. (3.2.1).

Proof. Let {Λ̄(i; t)}t≥0 be an independent copy of {Λ(i; t)}t≥0 (which is also independent

of {B(t)}t≥0). Define

Λ̃( j; t) :=

 Λ̄( j; t) , t < τi j ,

Λ(i; t) , t ≥ τi j ,

for t ≥ 0. By employing Markov property, it is easy to see that {Λ̃( j; t)}t≥0 is a Markov

chain with the same law as {Λ( j; t)}t≥0.

Fix now (x, i),(y, j)∈Rd×S, and let {(X(x, i; t),Λ(i; t))}t≥0 and {(X(y, j; t), Λ̃( j; t))}t≥0

be the corresponding solutions to eq. (3.0.1). Define

τ := inf{t > 0: (X(x, i; t),Λ(i; t)) = (X(y, j; t), Λ̃( j; t))} .

Clearly, τ ≥ τi j. Put

Y (y, j; t) :=

 X(y, j; t) , t < τ ,

X(x, i; t) , t ≥ τ ,
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for t ≥ 0. The marginals of the process {(Y (y, j; t), Λ̃( j; t))}t≥0 have the same law as the

marginals of {(X(y, j; t), Λ̃( j; t))}t≥0. Namely, we have that

P
(
(Y (y, j; t), Λ̃( j; t)) ∈ B×{k}

)
= P

(
(Y (y, j; t), Λ̃( j; t)) ∈ B×{k}, t < τ

)
+P
(
(Y (y, j; t), Λ̃( j; t)) ∈ B×{k}, t ≥ τ

)
= P

(
(X(y, j; t), Λ̃( j; t)) ∈ B×{k}, t < τ

)
+P
(
(X(x, i; t),Λ(i; t)) ∈ B×{k}, t ≥ τ

)
.

Further, by the strong Markov property we have that

P
(
(X(x, i; t),Λ(i; t)) ∈ B×{k}, t ≥ τ

)
= E

[
E
[
1{t−τ+τ≥τ}1B×{k}((X(x, i; t− τ + τ),Λ(i; t− τ + τ)) |Fτ

]]
= E

[
1{t≥τ}P

(
(X(X(x, i;τ),Λ(i;τ); t− τ),Λ(Λ(i;τ); t− τ)) ∈ B×{k}, t− τ ≥ 0

)]
= E

[
1{t≥τ}P

(
(X(X(y, i;τ), Λ̃(i;τ); t− τ), Λ̃(Λ̃(i;τ); t− τ)) ∈ B×{k}, t− τ ≥ 0

)]
= P

(
(X(y, i; t), Λ̃(i; t)) ∈ B×{k}, t ≥ τ

)
,

which proves the assertion. Consequently,

W p
f ,p
(
δ(x,i)Pt ,δ(y, j)Pt

)
≤ E

[
ρ
(
(X(x, i; t),Λ(i; t)),(Y (y, j; t), Λ̃( j; t))

)p]
.

Now, we have

Wp
f ,p
(
δ(x,i)Pt ,δ(y, j)Pt

)
≤ E

�
ρ
(
(X(x, i; t),Λ(i; t)),(Y (y, j; t)Λ̃( j; t))

)p
1{τi j>t/2}

�
+E

�
ρ
(
(X(x, i; t),Λ(i; t)),(Y (y, j; t)Λ̃( j; t))

)p
1{τi j≤t/2}

�
≤ (1+ γ)pe−ϑbt/2c+E

�
f
(
|X(x, i; t)−Y (y, j; t)|

)p
1{τi j≤t/2}

�
,

where in the last step γ := supt>0 f (t) and we employed Lemma 3.2.2. After time τi j the

processes {Λ(i; t)}t≥0 and {Λ̃( j; t)}t≥0 move together. Hence, by eq. (3.4.2) it holds that

(here we also use the fact that σ(x, i) = σ(i))

d
dt

f
(
|X(x, i; t)−Y (y, j; t)|

)
≤ 0

a.e. on
[
τi j,+∞

〉
. Thus, t 7→ f (|X(x, i; t)−Y (y, j; t)|) is non-increasing on

[
τi j,+∞

〉
and

W p
f ,p
(
δ(x,i)Pt ,δ(y, j)Pt

)
≤ (1+ γ)pe−ϑbt/2c+E

�
f
(
|X(x, i;τi j + t/2)−Y (y, j;τi j + t/2)|

)p
1{τi j≤t/2}

�
.
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Define

F(t) := f
(
|X(x, i;τi j + t)−Y (y, j;τi j + t)|

)
for t ≥ 0. By employing eq. (3.4.2) again, it follows that

d
dt

F(t) ≤ ΓΛ(i;τi j+t)ψ
(
F(t)

)
a.e. on

[
0,τ− τi j

〉
. By Lemma 3.4.1 we have that

F(t) ≤ Ψ
−1
γ

�
−
∫ t

0
ΓΛ(i;τi j+s)ds

�
= Ψ

−1
γ

�
−
∫ t+τi j

τi j

ΓΛ(i;s)ds

�
on [0,+∞〉. For t ≥ τ the term on the left-hand side vanishes, and the term on the right-

hand side is well defined and strictly positive (ψ(u) is convex and ψ(u) = 0 if, and only

if, u = 0). Thus,

W p
f ,p
(
δ(x,i)Pt ,δ(y, j)Pt

)
≤ (1+ γ)pe−ϑbt/2c+E

��
Ψ
−1
γ

�
−
∫ t/2+τi j

τi j

ΓΛ(i;s)ds

��p�
.

Birkhoff ergodic theorem implies that

lim
t→∞

2
t

∫ t/2+τi j

τi j

ΓΛ(i;s)ds = ∑
i∈S

Γiλi < 0 , P-a.s.

Hence, since ψ(u) is convex and ψ(u) = 0 if, and only if, u = 0,

lim
t→+∞

Ψ
−1
γ

�
−
∫ t/2+τi j

τi j

ΓΛ(i;s)ds

�
= 0

P-a.s. This, together with dominated convergence theorem, shows the first assertion.

Assume now that ψ(u) = uq for q > 1. Then,

Ψγ(t) =
1

q−1
(
t1−q− γ

1−q) and Ψ
−1
γ (t) =

(
γ

1−q +(q−1)t
)1/(1−q)

.

By employing Birkhoff ergodic theorem and Fatou’s lemma, we have

liminf
t→+∞

E
[(

Ψ−1
γ

(
−
∫ t/2+τi j

τi j ΓΛ(i;s)ds
))p]

�
(1−q)t

2 ∑i∈SΓiλi

�p/(1−q)

= liminf
t→+∞

E


(

γ1−q +(1−q)
∫ t/2+τi j

τi j ΓΛ(i;s)ds
)p/(1−q)

�
(1−q)t

2 ∑i∈SΓiλi

�p/(1−q)


≥ 1 .
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On the other side, Birkhoff ergodic theorem, Fatou’s lemma and Jensen’s inequality imply

liminf
t→+∞

�
(1−q)t

2 ∑i∈SΓiλi

�p/(1−q)

E
[(

Ψ
−1
γ

(
−
∫ t/2+τi j

τi j ΓΛ(i;s)ds
))p]

= liminf
t→+∞

E


(

γ1−q +(1−q)
∫ t/2+τi j

τi j ΓΛ(i;s)ds
)p/(1−q)

�
(1−q)t

2 ∑i∈SΓiλi

�p/(1−q)


−1

≥ liminf
t→∞

E


(

γq−1 +(1−q)
∫ t/2+τi j

τi j ΓΛ(i;s)ds
)p/(1−q)

�
(1−q)t

2 ∑i∈SΓiλi

�p/(q−1)


= 1 .

Thus,

lim
t→+∞

E
[(

Ψ−1
γ

(
−
∫ t/2+τi j

τi j ΓΛ(i;s)ds
))p]

�
(1−q)t

2 ∑i∈SΓiλi

�p/(1−q)
= 1 ,

which proves the second relation.

If ψ(u) = κu for κ > 0, then

Ψγ(t) =
1
κ

ln
(

γ

t

)
and Ψ

−1
γ (t) = γ e−κt .

Arguing as above, it holds that for any 0 < β <−κ ∑i∈SΓiλi,

lim
t→+∞

E
[(

Ψ−1
γ

(
−
∫ t/2+τi j

τi j ΓΛ(i;s)ds
))p]

e−pβ t/2 = 0 .

Hence, by taking 0 < α < min{ϑ/p,−κ ∑i∈SΓiλi} the assertion follows. �

Crucial assumption in Theorem 3.4.2 is that the function f (u), that is, distance ρ, is

bounded. In the following theorem we discuss the situation when this is not necessarily

the case.

Theorem 3.4.3. Assume (A1)-(A5), and suppose {Λ(x, i; t)}t≥0 and σ(x, i) are x-independent.

Assume also that b(x, i) is locally Lipschitz continuous for every i∈S, and that {Λ(i; t)}t≥0

is irreducible and let λ= (λi)i∈S be its invariant probability measure. Further, assume that

there is 0 < K < ϑ (recall that ϑ is given in eq. (3.2.1)) such that

2
〈
x,b(x, i)

〉
+Tr

(
σ(i)σ(i)T) ≤ K(1+ |x|2) (3.4.4)

for all x ∈ Rd and i ∈ S. Let f ,ψ : [0,+∞〉 → [0,+∞〉 be such that
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(i) f (u) is concave, non-decreasing, absolutely continuous on [u0,u1], for all 0 < u0 <

u1 < ∞, and f (u) = 0 if, and only if, u = 0

(ii) ψ(u) is convex and ψ(u) = 0 if, and only if, u = 0

(iii) there are {Γi}i∈S ⊂ 〈−∞,0] and η > inf{ f (u) | u > 0}, such that

f ′(|x− y|)
〈
x− y,b(x, i)−b(y, i)

〉
≤

 Γi|x− y|ψ
(

f (|x− y|)
)
, f (|x− y|)≤ η ,

0 , otherwise
(3.4.5)

a.e. on Rd

(iv) ∑
i∈S

Γiλi < 0.

Then, for ρ given by eq. (3.4.1), and all (x, i),(y, j) ∈ Rd×S it holds that

lim
t→∞

W f ,1
(
δ(x,i)Pt ,δ(y, j)Pt

)
= 0 . (3.4.6)

Additionally, if ψ(u) = uq for some q > 1, then E
[
|X(x, i;τi j)−Y (y, j;τi j)|2

]
< ∞ and

lim
t→∞

t1/(q−1)W f ,1
(
δ(x,i)Pt ,δ(y, j)Pt

)
≤ E

�
dδ |X(x, i;τi j)−Y (y, j;τi j)|e2

�1/2
�

1−q
2 ∑

i∈S
Γiλi

�1/(1−q)

,

where δ := inf{t ≥ 0: f (1/t)≤ η}. If ψ(u) = κu for some κ > 0, then

lim
t→∞

eαt/2 W f ,1
(
δ(x,i)Pt ,δ(y, j)Pt

)
= 0

for all 0 < α < min{ϑ ,−κ ∑i∈SΓiλi}.

In order to prove this result, we discuss conditions under which the process {X(x, i; t)}t≥0

has second moment.

Lemma 3.4.4. Assume eq. (3.4.4). Then,

E
[
|X(x, i; t)|2

]
≤
(
1+ |x|2

)
eKt .

Furthermore, for any {Ft}t≥0-stopping time τ such that E
[
e2Kτ

]
< ∞ it follows that

E
�
|X(x, i;τ)|2

�
≤ |x|2+

(
1+ |x|2

)
E
[
eKτ
]
+4sup

j∈S
Tr
(
σ( j)σ( j)T) 1

2
(
1+ |x|2

) 1
2E
�
e2Kτ

� 1
2 .
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Proof. Recall that {X(x, i; t)}t≥0 satisfies

X(x, i; t) = x+
∫ t

0
b
(
X(x, i;s),Λ(i;s)

)
ds+

∫ t

0
σ
(
Λ(i;s)

)
dB(s) .

For n ∈ N, define

τn := inf{t ≥ 0 : |X(x, i; t)| ≥ n} .

By employing Itô’s formula we conclude that

|X(x, i; t ∧ τn)|2

= |x|2 +2
∫ t∧τn

0

〈
X(x, i;s),b

(
X(x, i;s),Λ(i;s)

)〉
ds+

∫ t∧τn

0
Tr
(
σ
(
Λ(i;s)

)
σ
(
Λ(i;s)

)T)ds

+2
∫ t∧τn

0
X(x, i;s)T

σ
(
Λ(x, i;s)

)
dB(s)

≤ |x|2 +K
∫ t

0

(
1+ |X(x, i;s)|2

)
1[0,τn](s)ds+2

∫ t∧τn

0
X(x, i;s)T

σ
(
Λ(x, i;s)

)
dB(s)

≤ |x|2 +K
∫ t

0

(
1+ |X(x, i;s∧ τn)|2

)
ds+2

∫ t∧τn

0
X(x, i;s)T

σ
(
Λ(x, i;s)

)
dB(s) .

Since the last term on the right side is a martingale, we conclude that

1+E
�
|X(x, i; t ∧ τn)|2

�
≤ 1+ |x|2 +K

∫ t

0

(
1+E

�
|X(x, i;s∧ τn)|2

�)
ds .

The first assertion now follows by employing Grönwall’s inequality and Fatou’s lemma

(observe that since {X(x, i; t)}t≥0 is nonexplosive, P(limn→∞ τn = ∞) = 1).

Assume now that τ is a stopping time such that E[e2Kτ ] < ∞. By employing Itô’s

lemma again we have that

|X(x, i; t)|2 ≤ |x|2 +Kt +K
∫ t

0
|X(x, i;s)|2ds+2

∫ t

0
X(x, i;s)T

σ
(
Λ(i;s)

)
dB(s) .

Grönwall’s inequality then gives

|X(x, i; t)|2 ≤ |x|2 +Kt +2
∫ t

0
X(x, i;s)T

σ
(
Λ(i;s)

)
dB(s)

+
∫ t

0
K
�
|x|2 +Ks+2

∫ s

0
X(x, i;u)T

σ
(
Λ(i;u)

)
dB(u)

�
eK(t−s)ds .

Consequently,

|X(x, i; t ∧ τ)|2

≤ |x|2 +K(t ∧ τ)+2
∫ t∧τ

0
X(x, i;s)T

σ
(
Λ(i;s)

)
dB(s)
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+
∫ t∧τ

0
K
�
|x|2 +Ks+2

∫ s

0
X(x, i;u)T

σ
(
Λ(i;u)

)
dB(u)

�
eK(t∧τ−s)ds

= |x|2 +K(t ∧ τ)+2
∫ t∧τ

0
X(x, i;s)T

σ
(
Λ(i;s)

)
dB(s)

+ |x|2
(
eKt∧τ −1

)
+ eKt∧τ −K(t ∧ τ)

+2K
∫ t

0

�
1[0,t∧τ](s)eK(t∧τ−s)

∫ s

0
X(x, i;u)T

σ
(
Λ(i;u)

)
dB(u)

�
ds

≤ |x|2 +2
∫ t∧τ

0
X(x, i;s)T

σ
(
Λ(i;s)

)
dB(s)+

(
1+ |x|2

)
eKτ

+2K
∫ t

0

�
1[0,t∧τ](s)eK(t∧τ−s)

∫ s

0
X(x, i;u)T

σ
(
Λ(i;u)

)
dB(u)

�
ds .

Taking expectation (and the previous result) we have that

E
[
|X(x, i; t ∧ τ)|2

]
≤ |x|2 +

(
1+ |x|2

)
E
[
eKτ
]

+2K
∫ t

0
E
�
1[0,t∧τ](s)eK(t∧τ−s)

∫ s

0
X(x, i;u)T

σ
(
Λ(i;u)

)
dB(u)

�
ds

≤ |x|2 +
(
1+ |x|2

)
E
[
eKτ
]

+2K
∫ t

0
E
�
1[0,t∧τ](s)e2K(t∧τ−s)

�1/2
E
��∫ s

0
1[0,t∧τ]X(x, i;u)T

σ(Λ(i;u))dB(u)
�2
�1/2

ds

≤ |x|2 +
(
1+ |x|2

)
E
[
eKτ
]
+2K sup

j∈S
Tr
(
σ( j)σ( j)T)1/2E

�
e2Kτ

�1/2

∫ t

0
e−KsE

�∫ s

0
1[0,t∧τ](s) |X(x, i;u)|2du

�1/2
ds

≤ |x|2 +
(
1+ |x|2

)
E
[
eKτ
]
+2K sup

j∈S
Tr
(
σ( j)σ( j)T)1/2E

�
e2Kτ

�1/2

∫
∞

0
e−KsE

�∫ s

0
|X(x, i;u)|2du

�1/2
ds

≤ |x|2 +
(
1+ |x|2

)
E
[
eKτ
]
+2K sup

j∈S
Tr
(
σ( j)σ( j)T)1/2(1+ |x|2)1/2E

�
e2Kτ

�1/2
∫

∞

0
e−Ks/2ds

= |x|2 +
(
1+ |x|2

)
E
[
eKτ
]
+4sup

j∈S
Tr
(
σ( j)σ( j)T)1/2(1+ |x|2)1/2E

�
e2Kτ

�1/2
,

where in the third step we used Itô’s isometry and in the fifth step we used the first asser-

tion of the lemma. �

We are now ready to prove Theorem 3.4.3.
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Proof of Theorem 3.4.3. By using the same reasoning (and notation) as in the proof of

Theorem 3.4.2, we have that

W f ,1
(
δ(x,i)Pt ,δ(y, j)Pt

)
≤ E

[
ρ
(
(X(x, i; t),Λ(i; t)),(Y (y, j; t), Λ̃( j; t))

)]
.

Further, for ε > 0 such that K +Kε < ϑ (such ε exists since by assumption K < ϑ ) it

follows that

E
[
ρ
(
(X(x, i; t),Λ(i; t)),(Y (y, j; t), Λ̃( j; t))

)]
= E

�(
1{Λ(i;t)6=Λ̃( j;t)}+ f (|X(x, i; t)−Y (y, j; t)|)

)
1{τi j>t/(1+ε)}

�
+E

�
f (|X(x, i; t)−Y (y, j; t)|)1{τi j≤t/(1+ε)}

�
≤ E

�(
1+ f (|X(x, i; t)−Y (y, j; t)|)

)2�1/2
P(τi j > t/(1+ ε))1/2

+E
�

f (|X(x, i; t)−Y (y, j; t)|)1{τi j≤t/(1+ε)}
�

≤ E
�(

1+ f (|X(x, i; t)|)+ f (|Y (y, j; t)|)
)2�1/2

e−(ϑ/2)bt/(1+ε)c

+E
�

f (|X(x, i; t)−Y (y, j; t)|)1{τi j≤t/(1+ε)}
�

≤ 31/2
�

1+E
�

f (|X(x, i; t)|)2
�
+E

�
f (|Y (y, j; t)|)2

��1/2
e−(ϑ/2)bt/(1+ε)c

+E
�

f (|X(x, i; t)−Y (y, j; t)|)1{τi j≤t/(1+ε)}
�

≤ C1

�
1+E

�
|X(x, i; t)|2

�
+E

�
|Y (y, j; t)|2

��1/2
e−(ϑ/2)bt/(1+ε)c

+E
�

f (|X(x, i; t)−Y (y, j; t)|)1{τi j≤t/(1+ε)}
�

≤ C2

�
1+ |x|2 + |y|2

�1/2
eKt/2−(ϑ/2)bt/(1+ε)c+E

�
f (|X(x, i; t)−Y (y, j; t)|)1{τi j≤t/(1+ε)}

�
,

for some C1,C2 > 0. Here, in the third step we used subadditivity property of concave

functions and Lemma 3.2.2, in the fifth step we used the fact that f (u)≤ Au+B for some

A,B > 0 ( f (u) is concave), and in the last step we used Lemma 3.4.4. Clearly, the first

term on the right-hand side will converge to zero (as t goes to infinity) due to the choice

of ε > 0.

We next discuss the second term. Analogously as in the proof of Theorem 3.4.2, by

employing eq. (3.4.5), it holds that

d
dt

f
(
|X(x, i; t)−Y (y, j; t)|

)
≤ 0

a.e. on
[
τi j,+∞

〉
. Thus, t 7→ f (|X(x, i; t)−Y (y, j; t)|) is non-increasing on [τi j,∞) and

W f ,1
(
δ(x,i)Pt ,δ(y, j)Pt

)
≤ C2

�
1+ |x|2 + |y|2

�1/2
eKt/2−(ϑ/2)bt/(1+ε)c
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+E
�
F(εt/(1+ ε))1{τi j≤t/(1+ε)}

�
,

where F(t) is given (as in the proof of Theorem 3.4.2) by

F(t) = f
(
|X(x, i;τi j + t)−Y (y, j;τi j + t)|

)
for t ≥ 0. We now have that

W f ,1
(
δ(x,i)Pt ,δ(y, j)Pt

)
≤ C2

�
1+ |x|2 + |y|2

�1/2
eKt/2−(ϑ/2)bt/(1+ε)c

+E
�
F(εt/(1+ ε))1{τi j≤t/(1+ε)}1{ f (|X(x,i;τi j)−Y (y, j;τi j)|)≤η}

�
+E

�
F(εt/(1+ ε))1{τi j≤t/(1+ε)}1{ f (|X(x,i;τi j)−Y (y, j;τi j)|)>η}

�
.

(3.4.7)

On the event { f (|X(x, i;τi j)−Y (y, j;τi j)|) ≤ η} we have the following. By employing

eq. (3.4.5) again, it follows that

d
dt

F(t) ≤ ΓΛ(i;τi j+t)ψ
(
F(t)

)
a.e. on

[
0,τ− τi j

〉
. Lemma 3.4.1 now implies that

F(t) ≤ Ψ
−1
f (|X(x,i;τi j)−Y (y, j;τi j)|)

�
−
∫ t

0
ΓΛ(i;τi j+s)ds

�
≤ Ψ

−1
η

�
−
∫ t+τi j

τi j

ΓΛ(i;s)ds

�
on [0,+∞〉. For t ≥ τ the term on the left-hand side vanishes, and the term on the right-

hand side is well defined and strictly positive (ψ(u) is convex and ψ(u) = 0 if, and only

if, u = 0). Thus,

E
�
F(εt/(1+ ε))1{τi j≤t/(1+ε)}1{ f (|X(x,i;τi j)−Y (y, j;τi j)|)≤η}

�
≤ E

�
Ψ
−1
η

�
−
∫

εt/(1+ε)+τi j

τi j

ΓΛ(i;s)ds

�
1{ f (|X(x,i;τi j)−Y (y, j;τi j)|)≤η}

�
.

Birkhoff ergodic theorem implies that

lim
t→∞

1+ ε

εt

∫
εt/(1+ε)+τi j

τi j

ΓΛ(i;s)ds = ∑
i∈S

Γiλi < 0

P-a.s. on { f (|X(x, i;τi j)−Y (y, j;τi j)|)≤ η}. Hence, since ψ(u) is convex and ψ(u) = 0

if, and only if, u = 0,

lim
t→∞

Ψ
−1
η

�
−
∫

εt/(1+ε)+τi j

τi j

ΓΛ(i;s)ds

�
= 0
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P-a.s. This, together with dominated convergence theorem, shows that

lim
t→∞

E
�
F(εt/(1+ ε))1{τi j≤t/(1+ε)}1{ f (|X(x,i;τi j)−Y (y, j;τi j)|)≤η}

�
= 0 . (3.4.8)

On the event { f (|X(x, i;τi j)−Y (y, j;τi j)|) > η} we proceed as follows. Recall that

δ = inf{t ≥ 0: f (1/t) ≤ η}. It clearly must hold that δ > 0. Thus, since for x,y ∈ Rd ,

dδ |x− y|e ≥ δ |x− y|, we have that

f
� |x− y|
dδ |x− y|e

�
≤ f (1/δ ) ≤ η .

Let z0, . . . ,zdδ |X(x,i;τi j)−Y (y, j;τi j)|e ∈ Rd be such that z0 := X(x, i;τi j) and

zk+1 := zk+
X(x, i;τi j)−Y (y, j;τi j)

dδ |X(x, i;τi j)−Y (y, j;τi j)|e
, k= 0, . . . ,dδ |X(x, i;τi j)−Y (y, j;τi j)|e−1 .

By definition, zdδ |X(x,i;τi j)−Y (y, j;τi j)|e = Y (y, j;τi j), z0, . . . ,zdδ |X(x,i;τi j)−Y (y, j;τi j)|e are Fτi j-

measurable and

|zk+1− zk| ≤
|X(x, i;τi j)−Y (y, j;τi j)|
dδ |X(x, i;τi j)−Y (y, j;τi j)|e

,

so f (|zk+1− zk|)≤ η for k = 0, . . . ,dδ |X(x, i;τi j)−Y (y, j;τi j)|e−1. For t ≥ 0, let B̃(t) :=

B(τi j+t)−B(t). Clearly, {B̃(t)}t≥0 is a Brownian motion. Further, let {X̃ (dδ |X(x,i;τi j)−Y (y, j;τi j)|e)(t)}t≥0 =

{Y (y, j;τi j + t)}t≥0, and for k = 0, . . . ,dδ |X(x, i;τi j)−Y (y, j;τi j)|e−1 let {X̃ (k)(t)}t≥0 be

solution to

dX̃ (k)(t) = b
(
X̃ (k)(t),Λ(i; t)

)
dt +σ

(
Λ(i; t)

)
dB̃(t)

X̃ (k)(0) = zk

Λ(i;0) = i ∈ S .

Observe that {X̃ (0)(t)}t≥0 = {X(x, i;τi j + t)}t≥0. We now have that

F(t) ≤ f
(
|X̃ (0)(t)−X̃ (1)(t)|

)
+· · ·+ f

(
|X̃ (dδ |X(x,i;τi j)−Y (y, j;τi j)|e−1)(t)−X̃ (dδ |X(x,i;τi j)−Y (y, j;τi j)|e)(t)|

)
,

and from the first part of the proof it follows that

F(t) ≤ dδ |X(x, i;τi j)−Y (y, j;τi j)|eΨ−1
η

�
−
∫ t+τi j

τi j

ΓΛ(i;s)ds

�
.

By taking expectation we get

E
�
F(εt/(1+ ε))1{τi j≤t/(1+ε)}1{ f (|X(x,i;τi j)−Y (y, j;τi j)|)>η}

�
131



Diffusion Processes with Markovian Switching Wasserstain Distance

≤ E

[
dδ |X(x, i;τi j)−Y (y, j;τi j)|eΨ−1

η

�
−
∫

εt/(1+ε)+τi j

τi j

ΓΛ(i;s)ds

�

1{τi j≤t/(1+ε)}1{ f (|X(x,i;τi j)−Y (y, j;τi j)|)>η}

]
≤ E

�
dδ |X(x, i;τi j)−Y (y, j;τi j)|e2

�1/2

E

[
Ψ
−1
η

�
−
∫

εt/(1+ε)+τi j

τi j

ΓΛ(i;s)ds

�2

1{τi j≤t/(1+ε)}1{ f (|X(x,i;τi j)−Y (y, j;τi j)|)>η}

]1/2

.

From Lemma 3.4.4 we now that E
[
dδ |X(x, i;τi j)−Y (y, j;τi j)|e2

]
< ∞. Thus, analo-

gously as in eq. (3.4.8) we have that

lim
t→∞

E
�
F(εt/(1+ ε))1{τi j≤t/(1+ε)}1{ f (|X(x,i;τi j)−Y (y, j;τi j)|)>η}

�
= 0 . (3.4.9)

Now, by combining eqs. (3.4.8) and (3.4.9) the first assertion follows.

The cases when ψ(u) = uq and ψ(u) = κu are treated in a completely the same way

as in Theorem 3.4.2. �

As a consequence of Theorems 3.4.2 and 3.4.3 we conclude the following ergodic

behavior of {(X(x, i; t),Λ(x, i; t)}t≥0.

Theorem 3.4.5. In addition to the assumptions of Theorem 3.4.2 or Theorem 3.4.3, sup-

pose that there are non-negative V ∈ C 2(Rd×S) and locally bounded g : Rd → R, such

that

lim
|x|→∞

g(x) = ∞ and LV (x, i) ≤ −g(x) (3.4.10)

for all (x, i)∈Rd×S. Then, {(X(x, i; t),Λ(x, i; t)}t≥0 admits a unique invariant probability

measure π and

lim
t→∞

W f ,p
(
δ(x,i)Pt ,π

)
= 0

for all (x, i) ∈ Rd×S. Additionally, if ψ(u) = uq for some q > 1, then

lim
t→∞

t1/(q−1)W f ,p
(
δ(x,i)Pt ,π

)
≤
�

1−q
2 ∑

i∈S
Γiλi

�1/(1−q)

,

and if ψ(u) = κu for some κ > 0, then

lim
t→∞

eαt/2 W f ,p
(
δ(x,i)Pt ,π

)
= 0

for all 0 < α < min{ϑ/p,−κ ∑i∈SΓiλi}. Recall that in the case of Theorem 3.4.3 p = 1.
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Proof. Observe first that eq. (3.4.3) holds for any two initial distributions µ and ν of

{(X(x, i; t),Λ(i; t))}t≥0, that is,

lim
t→∞

W f ,p
(
µPt ,νPt

)
= 0 .

From this we conclude that if {(X(x, i; t),Λ(i; t))}t≥0 admits an invariant probability mea-

sure, then it must be unique. Namely, if π and π were two invariant probability measures

of

{(X(x, i; t),Λ(i; t))}t≥0, then

W f ,p
(
π,π

)
= lim

t→∞
W f ,p

(
πPt ,πPt

)
= 0

which implies π=π. Thus, if {(X(x, i; t),Λ(i; t))}t≥0 admits an invariant probability mea-

sure π, then

lim
t→+∞

W f ,p
(
δ(x,i)Pt ,π

)
= lim

t→∞
W f ,p

(
δ(x,i)Pt ,πPt

)
= 0 .

In the sequel we show that eq. (3.4.3) guarantees existence of an invariant probability

measure of {(X(x, i; t),Λ(i; t))}t≥0. According to [MT93a, Theorem 3.1] this will follow

if we show that for each (x, i) ∈ Rd × S and 0 < ε < 1 there is a compact set C ⊂ Rd

(possibly depending on (x, i) and ε) such that

liminf
t→∞

1
t

∫ t

0
p(s,(x, i),C×S)ds ≥ 1− ε .

Let r > 0 be large enough so that

inf
x∈Bc

r(0)
g(x) ≥ − inf

x∈Br(0)
g(x) .

Such r exists since lim|x|→∞ g(x) = ∞. Observe that if the previous relation holds for some

r0, then it also holds for all r ≥ r0. We have that

LV (x, i) ≤ −g(x)1Br(0)(x)−g(x)1Bc
r(0)(x)

≤
�(

inf
x∈Bc

r(0)
g(x)

)1/2
+ inf

x∈Bc
r(0)

g(x)
�
1Br(0)(x)−

1
2

inf
x∈Bc

r(0)
g(x)1Bc

r(0)(x)

=

�(
inf

x∈Bc
r(0)

g(x)
)1/2

+
1
2

inf
x∈Bc

r(0)
g(x)

�
1Br(0)×S(x, i)−

1
2

inf
x∈Bc

r(0)
g(x) .
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Now, according to [MT93b, Theorem 1.1] we conclude that for each (x, i) and r large

enough,

liminf
t→∞

1
t

∫ t

0
p
(
s,(x, i),Br(0)×S

)
ds ≥

1
2 infx∈Bc

r(0) g(x)(
infx∈Bc

r(0) g(x)
)1/2

+ 1
2 infx∈Bc

r(0) g(x)
.

The assertion now follows by choosing r large enough. �

Finally, we discuss sufficient conditions ensuring eq. (3.4.10). First, recall that an

m×m matrix M is called an M -matrix if it can be expressed as M = γ Im−N for some

γ > 0 and some nonnegative m×m matrix N with the property that ρ(N) ≤ γ , where Im

and ρ(N) denote the m×m identity matrix and spectral radius of N. According to the

Perron-Frobenius theorem, M is nonsingular if, and only if, ρ(N)< γ .

Theorem 3.4.6. Assume (A1)-(A5) and Q(x) = Q+ o(1). Furthermore, assume that

there are {ci}i∈S ⊂ R such that either one of the following conditions holds:

(i) Q is the infinitesimal generator of an irreducible right-continuous temporally- ho-

mogeneous Markov chain on S with invariant probability measure λ = (λi)i∈S,

∑i∈S ciλi < 0 and there are twice continuously differentiable V : Rd → (0,∞) and

twice continuously differentiable concave θ : (0,∞)→ (0,∞), such that

lim
|x|→∞

θ ◦V (x) = ∞ , limsup
|x|→∞

LiV (x)
θ ◦V (x)

< ci ,

lim
|x|→∞

θ ◦V (x)
V (x)

= 0 , lim
|x|→∞

sup
i∈S

Liθ ◦V (x)
θ ◦V (x)

= 0 .

(ii) Q is the infinitesimal generator of an irreducible right-continuous temporally- ho-

mogeneous Markov chain on S with invariant probability measure λ = (λi)i∈S,

∑i∈S ciλi < 0 and there is a twice continuously differentiable V : Rd → (0,∞) such

that

lim
|x|→∞

V (x) = ∞ and limsup
|x|→∞

LiV (x)
V (x)

< ci . (3.4.11)

(iii) (−Q+diagc) is a non-singular M -matrix, where c = (ci)i∈S, and there is a twice

continuously differentiable V : Rd → (0,∞) satisfying eq. (3.4.11).

Then there are non-negative V ∈ C 2(Rd×S) and locally bounded g : Rd → R, such that

eq. (3.4.10) holds.
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Proof. In case (i), analogously as in the proof of Theorem 3.3.10 we conclude that there

is a non-negative V ∈ C 2(Rd×S) such that

lim
|x|→∞

inf
i∈S

θ ◦V (x, i) = ∞ and LV (x, i) ≤ −θ ◦V (x, i)

for all i ∈ S and |x| large enough. In cases (ii) and (iii), by the same reasoning as in the

proof of Proposition 3.3.11 we see that there are η > 0 and non-negative V ∈C 2(Rd×S),

such that

lim
|x|→∞

inf
i∈S

V (x, i) = ∞ and LV (x, i) ≤ −η V (x, i)

for all i ∈ S and |x| large enough. The desired result now follows by setting f (x) :=

infi∈Sθ ◦ V (x, i) in the first case, and f (x) := η infi∈SV (x, i) in the second and third

case. �

Typical examples satisfying conditions of Theorems 3.4.2, 3.4.3, 3.4.5 and 3.4.6 are

given as follows.

Example 3.4.7. (i) Let S= {0,1}, let

b(x, i) =

 b , i = 0 ,

−sgn(x)|x|q , i = 1 ,

with b ∈ R and q > 1, and let σ(x, i)≡ 0. The processes

dX (0)(x; t) = b
(
X (0)(x; t),0

)
dt +σ

(
X (0)(x; t),0

)
dB(t) = bdt

X (0)(x;0) = x ∈ R ,

and

dX (1)(x; t) = b
(
X (1)(x; t),1

)
dt +σ

(
X (1)(x; t),1

)
dB(t)

= −sgn
(
X (1)(x; t)

)
|X (1)(x; t)|q dt

X (1)(x;0) = x ∈ R ,

are given by X (0)(x; t) = x+bt and

X (1)(x; t) =

 sgn(x)
(
|x|1−q +(q−1)t

)1/(1−q)
, x 6= 0 ,

0 , x = 0 .
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Clearly, both {X (0)(x; t)}t≥0 and {X (1)(x; t)}t≥0 are not irreducible and aperiodic.

Hence, we cannot apply Theorem 3.3.10 to these processes. In the case when b 6= 0

the process {X (0)(x; t)}t≥0 does not admit an invariant probability measure, while

in the case when b = 0 it admits uncountably many invariant probability measures:

{δ{x}}x∈R. On the other hand, δ{0} is a unique invariant probability measure for

{X (1)(x; t)}t≥0. However, convergence of the corresponding semigroup to δ{0}

(with respect to some distance function) cannot have exponential rate and this con-

vergence cannot hold in the total variation norm.

Let now q01 = q10 = 1. Hence, λ= (1/2,1/2). The process {(X(x, i; t),Λ(i; t))}t≥0

is also not irreducible and aperiodic (hence, we cannot apply Theorem 3.3.10), and

since ‖δ(x,i)Pt−δ(y,i)Pt‖TV = 1 for all i∈ S, x 6= y and t ≥ 0, the semigroup cannot

converge to the corresponding invariant probability measure (if it exists) in the total

variation norm. The previous discussion suggest that this convergence (with respect

to some distance function) cannot have exponential rate. Observe that in the case

when b = 0 the unique invariant probability measure for {(X(x, i; t),Λ(i; t))}t≥0 is

δ{0}×λ.

Let f (u) = u for all u small enough and f (u) = 1−1/(1+u) for all u large enough,

and let ψ(u) = uq (with q > 1). Obviously, b(x,0) satisfies eq. (3.4.2) with Γ0 = 0,

and an elementary computation shows that b(x,1) satisfies eq. (3.4.2) with some

Γ1 < 0. Hence, we can apply Theorem 3.4.2 to {(X(x, i; t),Λ(i; t))}t≥0. Further,

take V (x) = x2 and observe that

L0V (x) = 2bx and L1V (x) = −2|x|q+1 .

Thus, for arbitrary small c0 > 0 and arbitrary large −c1 > 0 (recall that q > 1) it

holds that

L0V (x) ≤ c0V (x) and L1V (x) ≤ c1V (x)

for all |x| large enough. Hence, according to Theorems 3.4.5 and 3.4.6 the process

{(X(x, i; t),Λ(i; t))}t≥0 admits a unique invariant probability measure π and the cor-

responding semigroup converges to π with respect to W f ,p with subgeometric rate

t1/(q−1).
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(ii) Let b(x, i), {Λ(i; t)}t≥0 and ψ(u) be as in (i). Further, let σ(x, i)≡ σ(i), η ∈ (0,1)

and f (u) = u. Observe that

dX (0)(x; t) = bdt +σ(0)dB(t)

X (0)(x;0) = x ∈ R

is transient if b 6= 0 (as a deterministic drift process or Brownian motion with drift)

and nullrecurrent if b = 0 (as a trivial process or Brownian motion). In [LS21,

Example 3.3] it has been shown that

dX (1)(x; t) = −sgn
(
X (1)(x; t)

)
|X (1)(x; t)|q dt +σ(1)dB(t)

X (1)(x;0) = x ∈ R

is subgeometrically ergodic with respect to W f ,1 with rate t1/(q−1). Further, ob-

viously b(x,0) satisfies eq. (3.4.5) with Γ0 = 0, and an elementary computation

shows that b(x,1) satisfies eq. (3.4.5) with some Γ1 < 0 for all x,y ∈ R satisfying

f (|x− y|) = |x− y| ≤ η . Hence, {(X(x, i; t),Λ(i; t))}t≥0 satisfies assumptions of

Theorem 3.4.3. Finally, by completely the same reasoning as in (i) we again con-

clude that {(X(x, i; t),Λ(i; t))}t≥0 is subgeometrically ergodic with respect to W f ,1

with rate t1/(q−1).

3.4.1. Regime-switching Markov processes with jumps

In this section, we briefly discuss ergodicity properties of a class of regime-switching

Markov processes with jumps.

Firstly, we consider the case of jump-process obtained through the Bochner’s subor-

dination method.

Let now {S(t)}t≥0 be a subordinator with characteristic exponent φ(u), independent

of {(X(x, i; t),Λ(x, i; t))}t≥0. Recall, the process

(Xφ (x, i; t),Λφ (x, i; t)) := (X(x, i;S(t)),Λ(x, i;S(t))), t ≥ 0

is obtained from {(X(x, i; t),Λ(x, i; t))}t≥0 by a random time change through {S(t)}t≥0.

Also, as marked before, it is known that many fine properties of Markov processes (and
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the corresponding semigroups) are preserved under subordination. It is easy to see that

{(Xφ (x, i; t),Λφ (x, i; t))}t≥0 is again a Markov process with transition kernel

pφ
(
t,(x, i),dy×{ j}

)
=
∫
[0,∞)

p
(
s,(x, i),dy×{ j}

)
µt(ds) ,

where µt(·) = P(S(t)∈ ·) is the transition probability of S(t), t ≥ 0. Also, it is elementary

to check that if π is an invariant probability measure for {(X(x, i; t),Λ(x, i; t))}t≥0, then

it is also invariant for the subordinate process {(Xφ (x, i; t),Λφ (x, i; t))}t≥0. In [DSS17]

and [LS21, Proposition 3.7] it has been shown that if {(X(x, i; t),Λ(x, i; t))}t≥0 is sub-

geometrically ergodic with Borel measurable rate r(t) (with respect to the total varia-

tion distance or an L p-Wasserstein distance), then {(Xφ (x, i; t),Λφ (x, i; t))}t≥0 is subge-

ometrically ergodic with rate rφ (t) = E[r(S(t))] (in the total variation distance case) and

rφ (t) = (E[rp(S(t))])1/p (in the L p-Wasserstein distance case). Therefore, as an direct

application of Theorems 2.3.1 and 3.4.5 we obtain subgeometric ergodicity results for a

class of subordinate regime-switching diffusion processes.

Second approach, also discussed before for diffusion processes, is to replace the Brow-

nian motion {B(t)}t≥0 in eq. (3.0.1) by a general Lévy process and adapt Theorems 3.4.2,

3.4.3, 3.4.5 and 3.4.6.

Let {L(t)}t≥0 be an n-dimensional Lévy process (starting from the origin) with Lévy

triplet (β ,γ,ν). Consider the regime-switching jump-diffusion process

{(X(x, i; t),Λ(i; t))}t≥0 with the first component given by

dX(x, i; t) = b
(
X(x, i; t),Λ(i; t)

)
dt +σ

(
Λ(i; t−)

)
dL(t)

X(x, i;0) = x ∈ Rd

Λ(i;0) = i ∈ S ,

(3.4.12)

and the second component, as before, is a right-continuous temporally-homogeneous

Markov chain with finite state space S. The processes {L(t)}t≥0 and {Λ(i; t)}t≥0 are

independent and defined on a stochastic basis (Ω,F ,{Ft}t≥0,P) (satisfying the usual

conditions). Assume that the coefficients b : Rd × S→ Rd and σ : S→ Rd×n, and the

process {Λ(i; t)}t≥0 satisfy the following:

(Ã1) for any r > 0 and i ∈ S,

sup
x∈Br(0)

|b(x, i)| < ∞
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(Ã2) for each (x, i) ∈ Rd × S the RSSDE in eq. (3.4.12) admits a unique nonexplosive

strong solution {X(x, i; t)}t≥0 which has càdlàg sample paths

(Ã3) the process {(X(x, i; t),Λ(i; t))}t≥0 is a temporally-homogeneous strong Markov

process with transition kernel p(t,(x, i),dy× { j}) = P((X(x, i; t),Λ(i; t)) ∈ dy×

{ j})

(Ã4) the corresponding semigroup of linear operators {Pt}t≥0 satisfies the Cb-Feller

property

(Ã5) for any (x, i) ∈ Rd×S and f ∈ C 2(Rd×S) such that (x, i) 7→
∫
Rd f (x+ y, i)νi(dy)

is locally bounded, the process§
f
(
X(x, i; t),Λ(x, i; t)

)
− f (x, i)−

∫ t

0
L f

(
X(x, i;s),Λ(x, i;s)

)
ds
ª

t≥0

is a P-local martingale, where νi(B) = ν({x ∈Rn : σ(i)x ∈ B}) for B ∈B(Rd) and

L f (x, i) = Li f (x, i)+Q f (x, i)

with

Li f (x) =


b(x, i)+σ(i)β +
∫
Rn

σ(i)y
(
1B1(0)(σ(i)y)−1B1(0)(y)

)
ν(dy),∇ f (x)

·
+

1
2

Tr
�
σ(i)γσ(i)T

∇
2 f (x)

�
+
∫
Rd

(
f (x+ y)− f (x)−〈y,∇ f (x)〉1B1(0)(y)

)
νi(dy)

and Q = (qi j)i, j∈S being the infinitesimal generator of the process {Λ(i; t)}t≥0.

# Conditions ensuring (Ã1)-(Ã5) can be found in [FGC19] (see also [KZ20]).

It is straightforward to check that Theorem 3.4.2 (and Theorems 3.4.5 and 3.4.6) holds

also in this situation (under the additional assumption that the functions V (x, i), V (x) and

θ(u) appearing in Theorems 3.4.5 and 3.4.6 are such that (x, i) 7→
∫
Rd V (x+ y, i)νi(dy),

(x, i) 7→
∫
Rd V (x+y)νi(dy) and (x, i) 7→

∫
Rd θ ◦V (x+y)νi(dy) are locally bounded). On

the other hand, in order to conclude the results from Theorem 3.4.3 we need to extend the

results from Lemma 3.4.4 to the jump case.
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Lemma 3.4.8. Assume that
∫
Rn(|y|2∨|y|4)ν(dy)<∞ (or, equivalentely, E[|Lt |4]<∞ for

all t ≥ 0) and

2
〈
x,b(x, i)+σ(i)β +

∫
Rn

σ(i)y
(
1Rn
(
σ(i)y

)
−1B1(0)(y)

)
ν(dy)

〉
+Tr

(
σ(i)γσ(i)T)+∫

Rd
|y|2νi(dy)

≤ K(1+ |x|2) .

(3.4.13)

Then,

E
[
|X(x, i; t)|2

]
≤
(
1+ |x|2

)
eKt .

Furthermore, for any {Ft}t≥0-stopping time τ such that E
[
e2Kτ

]
< ∞ it follows that

E
�
|X(x, i;τ)|2

�
≤ |x|2 +

(
1+ |x|2

)
E
[
eKτ
]

+
(
1+ |x|2

)
E
�
e2Kτ

�1/2
(

4sup
j∈S

Tr
(
σ( j)σ( j)T)+ sup

j∈S
Tr
(
σ( j)σ( j)T)2

∫
Rn
|y|4ν(dy)/K

+4sup
j∈S

Tr
(
σ( j)σ( j)T)∫

Rn
|y|2ν(dy)+4sup

j∈S
Tr
(
σ( j)σ( j)T)3/2

∫
Rn
|y|3ν(dy)

)1/2

.

Proof. For n ∈ N, let fn : Rd → [0,+∞〉 be such that fn ∈ C 2
b (R

d) (the space of bounded

and twice continuously differentiable functions with bounded first and second order deriva-

tives), fn(x) = |x|2 on Bn+1(0) and fn(x)≤ fn+1(x) for all x ∈ Rd , and

τn := inf{t ≥ 0 : |X(x, i; t)| ≥ n} .

Further, for t > 0 and B ∈B(Rn) denote

N((0, t],B) := ∑
0<s≤t

1B(L(s)−L(s−)) and Ñ(dt,dy) := N(ds,dy)−ν(dy)ds ,

as we defined in the first chapter the poisson random measure and its compensated ver-

sion. By employing Itô’s formula and the assumption that
∫
Rn(|y|2∨ |y|4)ν(dy) < ∞ we

conclude that for n large enough,

fn
(
X(x, i; t ∧ τn)

)
= fn(x)+

∫ t∧τn

0

(〈
∇ fn
(
X(x, i;s)

)
,b
(
X(x, i;s),Λ(i;s)

)
+σ

(
Λ(i;s)

)
β
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+
∫
Rn

σ
(
Λ(i;s)

)
y
(
1Rn
(
σ
(
Λ(i;s)

)
y
)
−1B1(0)(y)

)
ν(dy)

〉
+

1
2

Tr
(
σ
(
Λ(i;s)

)
γσ
(
Λ(i;s)

)T
∇

2 fn
(
X(x, i;s)

))
+
∫
Rd

(
fn
(
X(x, i;s)+ y

)
− fn

(
X(x, i;s)

)
−
〈
y,∇ fn

(
X(x, i;s)

)〉)
νΛ(i;s)(dy)

)
ds

+
∫ t∧τn

0
∇ fn
(
X(x, i;s)

)T
σ
(
Λ(i;s)

)
dB(s)

+
∫ t∧τn

0

∫
Rn

(
fn
(
X(x, i;s−)+σ

(
Λ(i;s−)

)
y
)
− fn

(
X(x, i;s−)

))
Ñ(dy,ds)

= |x|2 +2
∫ t∧τn

0

(〈
X(x, i;s),b

(
X(x, i;s),Λ(i;s)

)
+σ

(
Λ(i;s)

)
β

+
∫
Rn

σ
(
Λ(i;s)

)
y
(
1Rn
(
σ
(
Λ(i;s)

)
y
)
−1B1(0)(y)

)
ν(dy)

〉
+Tr

(
σ
(
Λ(i;s)

)
γσ
(
Λ(i;s)

)T)
+
∫
Rd
|y|2νΛ(i;s)(dy)

)
ds

+
∫ t∧τn

0
∇ fn
(
X(x, i;s)

)T
σ
(
Λ(i;s)

)
dB(s)

+
∫ t∧τn

0

∫
Rn

(
fn
(
X(x, i;s−)+σ

(
Λ(i;s−)

)
y
)
− fn

(
X(x, i;s−)

))
Ñ(dy,ds)

≤ |x|2 +K
∫ t

0

(
1+ |X(x, i;s)|21[0,τn](s)

)
ds

+
∫ t∧τn

0
∇ fn
(
X(x, i;s)

)T
σ
(
Λ(i;s)

)
dB(s)

+
∫ t∧τn

0

∫
Rn

(
fn
(
X(x, i;s−)+σ

(
Λ(i;s−)

)
y
)
− fn

(
X(x, i;s−)

))
Ñ(dy,ds) ,

where in the last step we used eq. (3.4.13). By taking expectation, we have that

1+E
�
|X(x, i; t)|21[0,τn)(t)

�
≤ 1+E

[
fn
(
X(x, i; t ∧ τn)

)]
≤ 1+ |x|2 +K

∫ t

0

(
1+E

�
|X(x, i;s)|2

�
1[0,τn](s)

)
ds

= 1+ |x|2 +K
∫ t

0

(
1+E

�
|X(x, i;s)|21[0,τn)(s)

�)
ds .

The first assertion now follows by employing Grönwall’s inequality and Fatou’s lemma.

Let now τ be a stopping time such that E[e2Kτ ]< ∞. Itô’s lemma then gives

|X(x, i; t)|2 ≤|x|2 +Kt +K
∫ t

0
|X(x, i;s)|2ds+2

∫ t

0
X(x, i;s)T

σ
(
Λ(i;s)

)
dB(s)

+
∫ t

0

∫
Rn

(
|σ
(
Λ(i;s−)

)
y|2 +2X(x, i;s−)T

σ
(
Λ(i;s−)

)
y
)
Ñ(dy,ds) .
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Denote

α(t) :=2
∫ t

0
X(x, i;s)T

σ
(
Λ(i;s)

)
dB(s)

+
∫ t

0

∫
Rn

(
|σ
(
Λ(i;s−)

)
y|2 +2X(x, i;s−)T

σ
(
Λ(i;s−)

)
y
)
Ñ(dy,ds) .

Grönwall’s inequality then gives

|X(x, i; t)|2 ≤ |x|2 +Kt +α(t)+
∫ t

0
K
�
|x|2 +Ks+α(s)

�
eK(t−s)ds .

Consequently,

|X(x, i; t ∧ τ)|2

≤ |x|2 +K(t ∧ τ)+α(t ∧ τ)+ |x|2
(
eKt∧τ −1

)
+ eKt∧τ −K(t ∧ τ)

+K
∫ t

0

�
1[0,τ](s)eK(t∧τ−s)

α(s)
�

ds

≤ |x|2 +α(t ∧ τ)+
(
1+ |x|2

)
eKτ +K

∫ t

0

�
1[0,τ](s)eK(t∧τ−s)

α(s)
�

ds .

By taking expectation, we have that

E
[
|X(x, i; t ∧ τ)|2

]
≤ |x|2 +

(
1+ |x|2

)
E
[
eKτ
]
+K

∫ t

0
E
�
1[0,τ](s)eK(t∧τ−s)

α(s)
�

ds

≤ |x|2 +
(
1+ |x|2

)
E
[
eKτ
]
+K

∫ t

0
E
�
1[0,τ](s)e2K(t∧τ−s)

�1/2
E
�
α(s)2

�1/2
ds

≤ |x|2 +
(
1+ |x|2

)
E
[
eKτ
]

+KE
�
e2Kτ

�1/2
∫ t

0
e−Ks

(
4sup

j∈S
Tr
(
σ( j)σ( j)T)E�∫ s

0
|X(x, i;u)|2du

�
+ sup

j∈S
Tr
(
σ( j)σ( j)T)2s

∫
Rn
|y|4ν(dy)

+4sup
j∈S

Tr
(
σ( j)σ( j)T)∫

Rn
|y|2ν(dy)E

�∫ s

0
|X(x, i;u)|2du

�

+4sup
j∈S

Tr
(
σ( j)σ( j)T)3/2

∫
Rn
|y|3ν(dy)E

�∫ s

0
|X(x, i;u)|du

�)1/2

ds

≤ |x|2 +
(
1+ |x|2

)
E
[
eKτ
]

+KE
�
e2Kτ

�1/2
∫

∞

0
e−Ks

(
4sup

j∈S
Tr
(
σ( j)σ( j)T)(1+ |x|)2eKs

+ sup
j∈S

Tr
(
σ( j)σ( j)T)2s

∫
Rn
|y|4ν(dy)
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+4sup
j∈S

Tr
(
σ( j)σ( j)T)∫

Rn
|y|2ν(dy)

(
1+ |x|

)2eKs

+4sup
j∈S

Tr
(
σ( j)σ( j)T)3/2

∫
Rn
|y|3ν(dy)

(
1+ |x|

)
eKs/2

)1/2

ds

≤ |x|2 +
(
1+ |x|2

)
E
[
eKτ
]

+E
�
e2Kτ

�1/2
(

4sup
j∈S

Tr
(
σ( j)σ( j)T)(1+ |x|)2

+sup
j∈S

Tr
(
σ( j)σ( j)T)2

∫
Rn
|y|4ν(dy)/K

+4sup
j∈S

Tr
(
σ( j)σ( j)T)∫

Rn
|y|2ν(dy)

(
1+ |x|

)2

+4sup
j∈S

Tr
(
σ( j)σ( j)T)3/2

∫
Rn
|y|3ν(dy)

(
1+ |x|

))1/2

,

where in the third step we used Itô’s isometry and in the fourth step we used the first

assertion of the lemma. �

Theorem 3.4.3 now follows by replacing eq. (3.4.4) by eq. (3.4.13) and
∫
Rn(|y|2 ∨

|y|4)ν(dy)< ∞.
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CONCLUSION

The aim of my thesis was to explore the ergodicity of a wide range of diffusion pro-

cesses with respect to two distance functions: the total variation distance and the class of

Wasserstein distances. The focus was placed on identifying conditions on the drift and

diffusion coefficients which result in sub-geometric ergodicity of the corresponding semi-

group. In order to consider convergence with respect to the total variation distance, the

process needed to possesses certain regularity properties (open-set irreducibility and ape-

riodicty). In cases when that was not true, convergence was considered in some weaker

sense, namely, with respect to the Wasserstein distances.

The sub-geometric ergodicity was discussed for two types of processes: diffusion pro-

cesses and diffusion processes with switching. In each case, I obtained sharp conditions

on the coefficients of the process that implied sub-geometric ergodicity with respect to

both distance functions. All results were followed by examples that illustrated applica-

tion to some specific choice of coefficients. Since structural properties of the process

are crucial in obtaining the convergence, I also provided several sufficient conditions that

ensure those properties for each type of the process. Finally, the results were also ex-

tended to a situation when the trajectory of the process is not continuous, that is, when

the processes jumps at some random time. In each case, I considered two types of jump

processes.
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ferential equations driven by Lévy processes. Stochastic Process. Appl.,

127(12):4083–4125, 2017. ↑ 56.

[Man68] P. Mandl. Analytical treatment of one-dimensional Markov processes.

Academia Publishing House of the Czechoslovak Academy of Sciences,

Prague; Springer-Verlag New York Inc., New York, 1968. ↑ 66.

[Mas07] H. Masuda. Ergodicity and exponential β -mixing bounds for multidimen-

sional diffusions with jumps. Stochastic Process. Appl., 117(1):35–56, 2007.

↑ 73, 76, 90.

[Mas09] H. Masuda. Erratum to: “Ergodicity and exponential β -mixing bound

for multidimensional diffusions with jumps” [Stochastic Process. Appl. 117

(2007) 35–56]. Stochastic Process. Appl., 119(2):676–678, 2009. ↑ 73.

149



Bibliography Bibliography

[MT93a] S. P. Meyn and R. L. Tweedie. Stability of Markovian processes. II.

Continuous-time processes and sampled chains. Adv. in Appl. Probab.,

25(3):487–517, 1993. ↑ 5, 45, 48, 51, 53, 55, 70, 85, 118, 133.

[MT93b] S. P. Meyn and R. L. Tweedie. Stability of Markovian processes. III. Foster-

Lyapunov criteria for continuous-time processes. Adv. in Appl. Probab.,

25(3):518–548, 1993. ↑ 5, 39, 55, 65, 70, 86, 104, 108, 118, 134.

[MT09] S. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Cam-

bridge University Press, Cambridge, second edition, 2009. ↑ 51.

[MY06] X. Mao and C. Yuan. Stochastic differential equation with Markovian switch-

ing, aug 2006. ↑ 17, 95, 96.

[Pic96] J. Picard. On the existence of smooth densities for jump processes. Probab.

Theory Related Fields, 105(4):481–511, 1996. ↑ 73.

[Pic10] J. Picard. Erratum to: On the existence of smooth densities for jump pro-

cesses. Probab. Theory Related Fields, 147(3-4):711–713, 2010. ↑ 73.

[PS92] R. Pinsky and M. Scheutzow. Some remarks and examples concerning the

transience and recurrence of random diffusions. Annales de l’I.H.P. Proba-

bilités et statistiques, 28(4):519–536, 1992. ↑ 94.
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