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1. INTRODUCTION 

1.1 Cancer and cell-of-origin 

Cancer incidence and mortality are rapidly growing worldwide; therefore, cancer research and 

treatment is emphasized more than ever. Sixth most commonly diagnosed cancer and the third 

leading cause of cancer death worldwide in the year 2020 was primary liver cancer, with 

approximately 906,000 new cases and 830,000 deaths (Sung et al., 2021). Primary liver cancer 

includes hepatocellular carcinoma (HCC) (comprising 75%-85% of cases) and intrahepatic 

cholangiocarcinoma (10%-15%), as well as other rare types. The main risk factors for HCC are 

chronic infection with hepatitis B virus or hepatitis C virus, aflatoxin-contaminated foods, heavy 

alcohol intake, excess body weight, type 2 diabetes, and smoking (London and Mcglynn, 2009). 

Similarly, skin melanoma was responsible for approximately 325,000 new cases and 57,000 deaths 

(Sung et al., 2021) with several risk factors, such as: ultraviolet radiation exposure, melanocytic 

nevi, family history and sun sensitivity (Gruber and Armstrong, 2009). Consequently, there have 

been numerous approaches in cancer research to better understand the disease and to ultimately 

cure it, identifying origin cell type being one of them. 

Need for distinguishing the normal cell from which the tumor has derived (i.e., cell-of-origin) rose 

from the fact that despite the advancements in imaging and histology to segregate cancer, there has 

been slow improvements in determining clinically and molecularly distinct cancers (Gilbertson, 

2011). Advancements in this field of study would therefore provide better prediction for different 

cancer treatment responses and prognoses. For example, basket trial study where inhibitor drug 

was used on mutated proteins present in various types of cancer showed different response rates 

between the cancer types (Hyman et al., 2018). This emphasizes the importance of accurate tumor 

origin determination in cancer therapy. Majority of cancer COO research on record is based on 

mouse models (Gilbertson, 2011; Köhler et al., 2017; Mu et al., 2015) with immunohistochemcal 

staining and imaging as a primary method for COO determination. However, in recent works 

notable success in cancer COO prediction was achieved with the use of bioinformatics tools and 

analysis. Namely, in the papers Polak et al. (2015), Kübler et al. (2019) and Ha et al. (2020) authors 

have demonstrated that for certain cancers COO can be accurately predicted based on distribution 

of mutations and epigenomic marks along the cancer genome. In Polak et al. (2015) paper the 

authors made proof-of-concept study in order to understand association between different 
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epigenomic features and mutagenesis in a cell type-specific manner. They compared mutation 

distribution of eight cancer genome types to 424 epigenetic features deriving from 106 different 

cell types from 45 different tissue types and determined the best predictors of local somatic 

mutation density, amongst other. Later in the paper Kubler et al. (2019) this method was further 

elaborated by increasing the number of cancer types from 8 to 32 and increasing the number of 

individual samples analysed from 173 to 2,550. Authors also studied cancers that arise in the same 

organ but manifest as distinct subtypes, in particular breast cancer group. Cancer subtype study 

was also performed in Ha et al. (2020), this time for primary liver cancer. This study confirmed 

role of chromatin marks associated with possible COOs in shaping mutational landscape of primary 

liver cancer and detected distinctive contribution of each COO in different subtypes of primary 

liver cancer. 

 

1.2 Mutations 

Mutations can be divided in germline mutations and somatic mutations. While germline mutations 

contribute to inherited genetic disease, somatic mutations do not contribute to future generations. 

Instead, they are one of the main causes of human disease, cancer amongst other. Some of the most 

common types of mutations are insertions and deletions, single nucleotide variants and 

transposable elements. Frequency of these mutations is not uniform throughout the human genome 

and genomic regions may differ in their mutation frequency between mutation types and cancers 

types (Lawrence et al., 2013). More precisely, there is substantial variation in the density of somatic 

mutations along the human genome at the scale of one megabase (Hodgkinson et al., 2012). 

Dominant influence on regional mutation rate variation in human somatic cells is chromatin 

organization in different cell types and in different time (Schuster-Böckler and Lehner, 2012). 

Chromatin structure and DNA accessibility is regulated on epigenomic level by the processes of 

DNA methylation and histone modification (Dunham et al., 2012). Histone remodelling can lead 

to nucleosome repositioning and decrease in access to DNA sequence newly bound to the histone 

(Cairns, 2007). On the other hand, open chromatin regions distinguished by DNA readily accessible 

to enzymes in the nucleus are characterised by increase in local DNA accessibility using 

nucleosome ejection, sliding or restructuring. Modifications responsible for increase in DNA 

access include methylations: H3K4me1 (associated with enhancers), H3K4me3 (associated with 
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promoters), H3K36me3 (associated with transcribed chromatin); and acetylations: H3K27ac and 

H4ac (both associated with enhancers and promoters). By contrast, histone modifications 

responsible for DNA repression include H3K27me3, H3K9me3 and significant decrease in histone 

modifications (Beisel and Paro, 2011). As a result, histone modifications affect the accumulation 

rate of different types of mutations (Don et al., 2013). For example, open chromatin regions are 

associated with higher rates of insertion, deletion and substitution, while mildly elevated deletion 

and substitution rates are located in closed chromatin regions, along with lower rates of insertion, 

deletion and substitution. Apart from mutation rates, chromatin organization also influences the 

density of viral integration sites (Mitchell et al., 2004). For instance, hepatitis B virus integration 

sites in the liver cancer cells preferentially occur in the regions of closed chromatin, contrary to 

normal hepatocyte genome where their frequency is higher in active chromatin areas (Hama et al., 

2018). This suggests that cells in which vital genes are disrupted by viral integration may be subject 

to negative selection. 

 

1.3 Cancer genomics 

Cancer genomics is the study of the totality of DNA sequence and gene expression differences 

between tumour cells and normal host cells. It aims to understand the genetic basis of tumour cell 

proliferation and the evolution of the cancer genome under mutation and selection by the body 

environment, the immune system and therapeutic interventions. In order to commercially afford 

totality of DNA sequence and use it as a clinical tool, massive parallel sequencing technologies, 

also named next generation sequencing, had to be developed (Goodwin et al., 2016). NGS refers 

to any of several high-throughput approaches to DNA sequencing using the concept of massively 

parallel sequencing of clonally amplified or single DNA molecules that are spatially separated in 

a flow cell (Voelkerding et al., 2009). Depending on the platform, NGS yields hundreds of 

megabases to gigabases of nucleotide sequence output in a single instrument run and subsequent 

data processing is performed to obtain consensus nucleotide sequence and to detect nucleotide 

variants. One of the many uses of NGS is in the research of DNA and protein interaction, named 

ChIP-sequencing or ChIP-seq. This method consists of chromatin immunoprecipitation where 

DNA and protein complexes are immunoprecipitated and disassembled, followed by sequencing 

of resulting DNA fragments using NGS. ChIP-seq method is used in determining genome locations 
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that various histone modifications are associated with by utilising antibodies that specifically bind 

to certain types of histone modifications during immunoprecipitation process (Collas, 2010). 

Few of the biggest cancer genomic projects are the following: The Cancer Genome Atlas project, 

The International Cancer Genome Consortium and The Pan-Cancer Analysis of Whole Genomes. 

The Cancer Genome Atlas is a project to analyse human tumors with the goal to catalogue 

molecular aberrations responsible for the carcinogenesis at the DNA, RNA, protein and epigenetic 

levels (Weinstein et al., 2013). The International Cancer Genome Consortium is a global initiative 

to build a comprehensive catalogue of mutational abnormalities in the major tumor types (Hudson 

et al., 2010). It incorporates data from The Cancer Genome Atlas and the Sanger Cancer Genome 

Project. The Pan-Cancer Analysis of Whole Genomes study is an international collaboration to 

identify common patterns of mutation in cancer whole genomes from the International Cancer 

Genome Consortium (Campbell et al., 2020). 

 

1.4 Random Forest 

Random Forest is non-parametric supervised machine learning method. It can be used for 

regression analysis when response variable is numeric or classification analysis when response 

variable is categorical. Basic steps in the regression method include generating multiple datasets 

by randomly selecting n observations with replacement and building regression tree for each of the 

dataset. Prediction value of a numeric response variable is obtained by passing the explanatory 

variables through each tree model and combining model results (Breiman, 2001). The use of 

multiple regression trees reduces the risk of over-fitting and makes the method robust to outliers 

and noise in the input data. 

Researched correlation between epigenetic marks and different types of mutation and VIS presents 

potential for COO determination. Therefore, in this work I explored indel and SNV mutations in 

melanoma and liver cancer sets, alongside HBV integration sites and determined their connection 

with epigenomic marks of normal cells which resulted in COO prediction for different cancer types.  
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2. RESEARCH GOALS 

Using Random Forest regression, I performed various analysis on SNV, indel and VIS datasets 

founded on the hypothesis that mutations and VIS can be used for COO prediction based on 

correlation with epigenomic markers with the goal of accurate COO prediction for each tumor type. 

My next goal was to compare the prediction results with each other in order to conclude which 

mutation type provides the highest quality of the mutation density prediction. I also hypothesised 

that SNV mutations positively correlate with chromatin markers characteristic for closed chromatin 

and negatively correlate with chromatin marks typical for open chromatin. I presumed opposite for 

indel and VIS. Therefore, I used Spearman’s correlation coefficient measure to determine the 

correlation between mutations, that is VIS, and the epigenomic marks. Another premise was that 

of the influence of outlier exclusion on regression model prediction power. The goal was to increase 

the prediction power of datasets that did not provide accurate COO by excluding certain and all 

outliers from the datasets. Finally, I hypothesised that the low prediction power might be the result 

of low mutation number of the researched dataset, hence I performed probability proportional to 

size sampling on the datasets that made accurate COO predictions in order to observe how low 

number of the mutations affects the COO prediction.  
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3. MATERIALS AND METHODS 
 

3.1 Reference genome 

I downloaded human genome (hg19) provided by Karimzadeh et al. (2018) and excluded regions 

with fraction of uniquely mappable 36-mers lower than 0.92. I also excluded centromeric and 

telomeric regions downloaded using UCSC Table Browser (Karolchik et al., 2004) and divided 

resulting regions into 1 Mb widows. Produced reference genome had 2,120 Mb windows. 

 

3.2 Tumor data 

I obtained whole genome mutation data from ICGC DCC Data Portal Release 28 (Zhang et al., 

2019) for 722 cancer genome samples belonging to two cancer types: melanoma and 

hepatocarcinoma. Melanoma data contained three separate datasets: SKCM-US, MELA-AU and 

SKCA-BR, while hepatocarcinoma contained several different datasets of which I selected TCGA 

dataset LIHC-US and two additional datasets with the most amount of mutation, namely Liver 

LICA-CN and LIRI-JP. From collected data I filtered out single based substitution mutation type 

(SNV) and small indel (<= 200 bp) mutation type separately. I additionally filtered data belonging 

to whole genome sequencing strategy. I counted the number of mutations in each reference genome 

window for each dataset and mutation type using “any” condition in overlap count. 

 

3.3 HBV integration sites data 

I downloaded HBV integration sites from VISDB database (Tang et al., 2020) and ViMIC database 

(Wang et al., 2020). I filtered sites obtained from VISDB database by “Tumor” Sample type and 

“GRCh37,” “GRCh37.55” and “GRCh37/hg19” Reference Human Genome type. I used liftover 

from hg38 to hg19 on “Tumor” Sample integration sites that belonged to “GRCh38” Reference 

Human Genome type. Next, I assigned Begin Location as End Location to all the integration sites 

that did not contain End Location and vice versa. This resulted in 9,799 integration sites. In 

addition, I filtered data from ViMIC database by “Tumor”, “Tumor ” and “tumor” Sample type. I 

applied liftover from hg38 to hg19 to the filtered data. This resulted in 14,588 integration sites. I 

combined generated integration sites from VISDB and ViMIC databases and counted the number 
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of integration sites in reach reference genome window using “any” condition in overlap count 

which resulted in the sum of 16,905 integration sites when aligned to reference genome. 

 

3.4 Chromatin data 

I gathered chromatin data from DeepBlue epigenomic data server (Albrecht et al., 2016) in a form 

of peaks using DeepBlueR package (Albrecht et al., 2017). I downloaded data for six active histone 

modifications (H3K27ac, histone   H3   lysine   27 acetylation; H3K27me3, histone H3 lysine 27 

trimethylation; H3K36me3, histone H3 lysine 36 trimethylation; H3K4me1, histone H3 lysine 4 

monomethylation; H3K4me3, histone H3 lysine 4 trimethylation; H3K9ac, histone H3 lysine 9 

acetylation) and one repressive histone modification (H3K9me3, histone H3 lysine 9 

trimethylation). Projects with provided peak data were ENCODE and Roadmap Epigenomics. 

There were no available DEEP (IHEC) project peak data on DeepBlue epigenomic data server. 

After filtering only primary cell, primary tissue, primary cell tissue cell types and removing all the 

cell types containing data for only one histone modification, I was left with 15 ENCODE cell types 

and 89 Roadmap Epigenomics cell types. For each histone modification I counted the number of 

peaks in each reference genome window, considering any type of overlap between two ranges. 

Certain cell types had biological replicates available and I considered them as one: fibroblast 

primary cells, keratinocytes, T helper memory cells, keratinocytes primary cells, melanocyte 

primary cells, T helper naive cells and rectal mucosa. Furthermore, I formed 11 groups based on 

histological relationship between certain cell types: ‘Blood – other’, consisting of peripheral blood 

mononuclear cells excluding T cells; ‘Bone/Soft tissue’, consisting of  adipose, bone, mesenchymal 

and muscle cells; ‘Brain’, consisting of cells originated from different parts of the brain and 

neurospheres; ‘Breast’, consisting of myoepithelial and mammary epithelial cells; ‘CD19’, 

consisting of B cells; ‘CD34’, consisting of hematopoietic stem cells; ‘Colorectal Mucosa’, 

consisting of colon and rectal mucosa cells; ‘Gastrointestinal’, consisting of stomach, large 

intestine and small intestine cells; ‘Heart’, consisting of cells originated from different parts of the 

heart, ‘Squamous’, consisting of keratinocytes and epithelial cells; ‘T cells’, consisting of all the T 

cells. I also grouped cell types with their fetal counterparts if there were any. This includes: Muscle 

cells, Brain cells, Intestine cells, Heart cells, Lung cells and Thymus cells. Finally, I grouped 
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Stomach Mucosa and Gastric cell types into Stomach Mucosa group. This resulted in 29 distinct 

cell groups (Table 1). 

Table 1. List of chromatin marks originated from normal cell types. Chromatin mark peak data was 

obtained for each cell type using DeepBlue database id. Cell types were grouped by their histological 

relationship. Abbreviated cell type names are used in the work. 

DeepBlue id Project Cell type name Cell type abbreviated name Cell type group 

s2802 Roadmap Fetal Adrenal Gland Fetal Adrenal Gland Adrenal 

s7317 ENCODE astrocyte Astrocyte Astrocyte 

s2694 Roadmap Primary monocytes from peripheral blood Primary monocytes (PB) Blood - other 

s2695 Roadmap Primary neutrophils from peripheral blood Primary neutrophils (PB) Blood - other 

s2711 Roadmap Primary Natural Killer cells from peripheral blood Primary Natural Killer cells (PB) Blood - other 

s2726 Roadmap Primary mononuclear cells from peripheral blood Primary mononuclear cells (PB) Blood - other 

s2785 Roadmap Monocytes CD14+ Primary Cells Monocytes CD14+ Primary Cells Blood - other 

s6987 ENCODE mononuclear cell Mononuclear Cell Blood - other 

s7029 ENCODE CD14+ monocyte CD14+ Monocyte Blood - other 

s2691 Roadmap Bone Marrow Derived Cultured Mesenchymal Stem Cells Bone Marrow Derived Cultured MSCs Bone/Soft tissue 

s2714 Roadmap Mesenchymal Stem Cell Derived Chondrocyte Cultured Cells Stem Cell Derived Chondrocytes Bone/Soft tissue 

s2717 Roadmap Muscle Satellite Cultured Cells Muscle Satellite Cultured Cells Bone/Soft tissue 

s2790 Roadmap Osteoblast Primary Cells Osteoblast Primary Cells Bone/Soft tissue 

s2800 Roadmap Adipose Derived Mesenchymal Stem Cell Cultured Cells Adipose Derived MSC Cultured Cells Bone/Soft tissue 

s2738 Roadmap Colon Smooth Muscle Colon Smooth Muscle Bone/Soft tissue 

s2740 Roadmap Duodenum Smooth Muscle Duodenum Smooth Muscle Bone/Soft tissue 

s2750 Roadmap Fetal Muscle Trunk Fetal Muscle Trunk Bone/Soft tissue 

s2751 Roadmap Fetal Muscle Leg Fetal Muscle Leg Bone/Soft tissue 

s2761 Roadmap Psoas Muscle Psoas Muscle Bone/Soft tissue 

s2764 Roadmap Rectal Smooth Muscle Rectal Smooth Muscle Bone/Soft tissue 

s2768 Roadmap Skeletal Muscle Male Skeletal Muscle Male Bone/Soft tissue 

s2769 Roadmap Skeletal Muscle Female Skeletal Muscle Female Bone/Soft tissue 

s2772 Roadmap Stomach Smooth Muscle Stomach Smooth Muscle Bone/Soft tissue 

s2801 Roadmap Adipose Nuclei Adipose Nuclei Bone/Soft tissue 

s7314 ENCODE osteoblast Osteoblast Bone/Soft tissue 

s7322 ENCODE skeletal muscle myoblast Skeletal Muscle Myoblast Bone/Soft tissue 

s2718 Roadmap Cortex derived primary cultured neurospheres Cortex derived neurospheres Brain 

s2719 Roadmap Ganglion Eminence derived primary cultured neurospheres Ganglion Eminence derived neurospheres Brain 

s2729 Roadmap Brain Angular Gyrus Brain Angular Gyrus Brain 

s2730 Roadmap Brain Anterior Caudate Brain Anterior Caudate Brain 

s2731 Roadmap Brain Cingulate Gyrus Brain Cingulate Gyrus Brain 

s2732 Roadmap Brain Germinal Matrix Brain Germinal Matrix Brain 

s2733 Roadmap Brain Hippocampus Middle Brain Hippocampus Middle Brain 

s2734 Roadmap Brain Inferior Temporal Lobe Brain Inferior Temporal Lobe Brain 

s2735 Roadmap Brain_Dorsolateral_Prefrontal_Cortex Brain Dorsolateral Prefrontal Cortex Brain 

s2736 Roadmap Brain Substantia Nigra Brain Substantia Nigra Brain 

s2742 Roadmap Fetal Brain Male Fetal Brain Male Brain 

s2743 Roadmap Fetal Brain Female Fetal Brain Female Brain 

s2692 Roadmap Breast Myoepithelial Primary Cells Breast Myoepithelial Primary Cells Breast 

s2693 Roadmap Breast variant Human Mammary Epithelial Cells (vHMEC) Breast vHMEC Mammary Epithelial Breast 

s7310 ENCODE mammary epithelial cell 01 Mammary Epithelial Cell 1 Breast 

s6788 ENCODE mammary epithelial cell 02 Mammary Epithelial Cell 2 Breast 

s2696 Roadmap Primary B cells from cord blood CD19 - Primary B cells (CB) CD19 

s2697 Roadmap Primary B cells from peripheral blood CD19 - Primary B cells (PB) CD19 

s6684 ENCODE B cell 01 B cell 1 CD19 

s2700 Roadmap Primary hematopoietic stem cells CD34 - Primary HSC CD34 

s2701 Roadmap Primary hematopoietic stem cells short term culture CD34 - Primary HSC short term culture CD34 

s2715 Roadmap Primary hematopoietic stem cells G-CSF-mobilized Female CD34 - Primary HSC G-CSF-mobilized Female CD34 

s2716 Roadmap Primary hematopoietic stem cells G-CSF-mobilized Male CD34 - Primary HSC G-CSF-mobilized Male CD34 

s2737 Roadmap Colonic Mucosa Colonic Mucosa Colorectal Mucosa 

s2762 Roadmap Rectal Mucosa Donor 29 Rectal Mucosa 29 Colorectal Mucosa 
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s2763 Roadmap Rectal Mucosa Donor 31 Rectal Mucosa 31 Colorectal Mucosa 

s2739 Roadmap Duodenum Mucosa Duodenum Mucosa Duodenum Mucosa 

s2745 Roadmap Fetal Intestine Large Fetal Intestine Large Gastrointestinal 

s2746 Roadmap Fetal Intestine Small Fetal Intestine Small Gastrointestinal 

s2753 Roadmap Fetal Stomach Fetal Stomach Gastrointestinal 

s2767 Roadmap Sigmoid Colon Sigmoid Colon Gastrointestinal 

s2770 Roadmap Small Intestine Small Intestine Gastrointestinal 

s2744 Roadmap Fetal Heart Fetal Heart Heart 

s2756 Roadmap Left Ventricle Left Ventricle Heart 

s2765 Roadmap Right Atrium Right Atrium Heart 

s2766 Roadmap Right Ventricle Right Ventricle Heart 

s2747 Roadmap Fetal Kidney Fetal Kidney Kidney 

s2728 Roadmap Liver Liver Liver 

s2749 Roadmap Fetal Lung Fetal Lung Lung 

s2757 Roadmap Lung Lung Lung 

s7319 ENCODE fibroblast of lung 01 Lung Fibroblast 1 Lung Fibroblast 

s6726 ENCODE fibroblast of lung 04  Lung Fibroblast 4 Lung Fibroblast 

s2724 Roadmap Foreskin Melanocyte Primary Cells skin 01 Melanocyte 01 Melanocyte 

s2725 Roadmap Foreskin Melanocyte Primary Cells skin 03 Melanocyte 03 Melanocyte 

s2758 Roadmap Ovary Ovary Ovary 

s2759 Roadmap Pancreas Pancreas Pancreas 

s2748 Roadmap Pancreatic Islets Pancreatic Islets Pancreatic Islets 

s2752 Roadmap Placenta Placenta Placenta 

s2760 Roadmap Placenta Amnion Placenta Amnion Placenta Amnion 

s2720 Roadmap Foreskin Fibroblast Primary Cells skin 01 Skin Fibroblast 01 Skin Fibroblast 

s2721 Roadmap Foreskin Fibroblast Primary Cells skin 02 Skin Fibroblast 02 Skin Fibroblast 

s7316 ENCODE fibroblast of dermis Dermis Fibroblast Skin Fibroblast 

s2774 Roadmap Spleen Spleen Spleen 

s2722 Roadmap Foreskin Keratinocyte Primary Cells skin 02 Skin Keratinocyte 02 Squamous 

s2723 Roadmap Foreskin Keratinocyte Primary Cells skin 03 Skin Keratinocyte 03 Squamous 

s2741 Roadmap Esophagus Esophagus Squamous 

s7323 ENCODE keratinocyte 01 Keratinocyte 1 Squamous 

s6963 ENCODE bronchial epithelial cell Bronchial Epithelial Cell Squamous 

s6779 ENCODE kidney epithelial cell Kidney Epithelial Cell Squamous 

s6805 ENCODE keratinocyte 02 Keratinocyte 2 Squamous 

s2755 Roadmap Gastric Gastric Stomach Mucosa 

s2771 Roadmap Stomach Mucosa Stomach Mucosa Stomach Mucosa 

s2698 Roadmap Primary T cells from cord blood Primary T cells (CB) T cells 

s2699 Roadmap Primary T cells fromperipheralblood Primary T cells (PB) T cells 

s2702 Roadmap Primary T helper memory cells from peripheral blood 2 Primary Th memory cells (PB) 2 T cells 

s2703 Roadmap Primary T helper naive cells from peripheral blood Primary Th naive cells (PB) 1 T cells 

s2704 Roadmap Primary T helper naive cells from peripheral blood Primary Th naive cells (PB) 2 T cells 

s2705 Roadmap Primary T helper memory cells from peripheral blood 1 Primary Th memory cells (PB) 1 T cells 

s2706 Roadmap Primary T helper cells PMA-I stimulated Primary Th cells PMA-I stimulated T cells 

s2707 Roadmap Primary T helper 17 cells PMA-I stimulated Primary Th 17 cells PMA-I stimulated T cells 

s2708 Roadmap Primary T helper cells from peripheral blood Primary Th cells (PB) T cells 

s2709 Roadmap Primary T regulatory cells from peripheral blood Primary Treg cells (PB) T cells 

s2710 Roadmap Primary T cells effector/memory enriched from peripheral blood Primary T cells effector/memory enriched (PB) T cells 

s2712 Roadmap Primary T CD8+ naive cells from peripheral blood Primary T killer naive cells (PB) T cells 

s2713 Roadmap Primary T CD8+ memory cells from peripheral blood Primary T killer memory cells (PB) T cells 

s2754 Roadmap Fetal Thymus Fetal Thymus Thymus 

s2773 Roadmap Thymus Thymus Thymus 

s2727 Roadmap Aorta Aorta Vascular 
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3.5 Random Forest regression analysis 

I used Random Forest regression to predict mutational density and VIS density based on chromatin 

profiles for every data set and subset. I created prediction using every chromatin profile of every 

type of cell separately, resulting in 104 models for each run. Every Random Forest regression was 

computed with 1,000 trees. I reported performance using 10-fold cross-validation. That is, I divided 

all windows into ten sets, trained the model on nine and made the prediction of the remaining set. 

I test the accuracy of the prediction by comparing it with the remaining set and calculating R2. 

Finally, I determined average R2 of all the predicted and compared sets and used it as a model 

performance measure. I compared model results between cell types by using paired Wilcoxon-

Mann-Whitney test between the R2 values from ten-fold cross-validation tests. Additionally, to 

compare models trained on histone marks from different cell types, I calculated the robust ẑ-score. 

I presented cell type with the highest average R2 and significant difference in R2 set values 

compared to the other cell types belonging to different cell type groups as supposed COO. I 

performed Random Forest regression analysis using caret (Kuhn, 2008) and ranger (Wright and 

Ziegler, 2017) packages. 

I obtained control data from Kübler et al. (2019) by performing Random Forest regression on 

provided “Liver-HCC” and “Skin-Melanoma” SNV datasets. To prove the validity of chromatin 

mark peak use instead of the number of reads utilised in the work and to enable comparison between 

the results presented in this work and control results, I performed Random Forest regression based 

on control mutation window count data for each dataset, control reference genome and chromatin 

mark peak data. 

For certain cancer types I visualised mutation density by plotting the predicted number of mutations 

in each 1Mb window against observed number of mutations in each 1Mb window. I additionally 

analysed correlations between chromatin mark density and mutational density and between 

chromatin mark density and VIS density using Spearman’s rank correlation coefficient and 

visualised it as correlation coefficient versus cell type and as a mutation density versus each 

chromatin mark density. 
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3.6 Subset generation 

In order to observe the effect how outlier influences the results, I filtered out the biggest outlier in 

SKCM-US SNV, SKCA-BR SNV, MELA-AU SNV, LIHC-US SNV, LICA-CN SNV, LIRI-JP 

SNV, LICA-CN indel and LIRI-JP indel data, top two outliers in SKCA-BR indel data and top 5 

outliers in MELA-AU indel data. In addition, I made data subsets with all of the outliers excluded 

for each dataset and performed Random Forest regression analysis on all of the listed subsets. 

I created subsets by randomly sampling tumor genome types of the datasets that accurately 

predicted COO and performed Random Forest regression in order to observe if the mutation 

number is responsible for inaccurate predictions of the other datasets. I sampled 10, 30 and 50 

samples from SKCA-BR SNV dataset resulting in 2,048,075, 3,919,536 and 8,076,703 mutation 

sums and 5, 10 and 30 samples from MELA-AU SNV dataset resulting in 2,536,104, 4,324,187 

and 12,369,354 mutation sums respectively. For the same reason I performed sampling and analysis 

with probability proportional to size of each window on the mentioned datasets where maximum 

number of samples was equal to the dataset that did not accurately predict COO. 

All of the data processing, model building and graph displaying I performed using R program (R 

Core Team, 2021). 
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4. RESULTS 

 

4.1 Using chromatin mark peak data results in accurate predictions of COO in 

control datasets 

Random Forest regression based on control data (prediction based on number of reads in 1Mb 

windows) resulted in Melanocyte 03 COO prediction for Skin-Melanoma dataset with 81% 

variance explained and Liver COO prediction for Liver-HCC dataset with 87% variance explained 

(Figure 1). The cell type that fitted the model with the highest accuracy and significantly differed 

from the next-best histologically unrelated cell type was determined to be the COO. In both Skin-

Melanoma and Liver-HCC data analysis Spearman’s rank correlation coefficient was negative for 

H3K36me3, H3K4me1, H3K4me3 and Input chromatin marks and positive for H3K27me3 and 

H3K9me3 marks. Random Forest regression on a dataset consisting of control mutational density 

and chromatin mark peaks window count based on control reference genome, resulted in accurate 

predictions of COO (Figure 2a, Figure 2c), similar to those of control. The COO predictions were 

the same and there was no significant difference in COO variance explained when compared to the 

control results (p-value (Melanocyte 03) = 0.695, p-value (Liver) = 0.492, p-value < 0.03, WMW 

test). Spearman’s rank correlation coefficient was positive for H3K27me3 and H3K9me3 marks 

and negative for H3K27ac, H3K36me3, H3K4me1 and H3K4me3 chromatin marks (Figure 2b). 

This proved the validity of chromatin mark peak use in COO determination and enabled me to 

compare the results presented in this work to the control results. 
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Figure 1. Prediction accuracy comparison between control models and models based upon control 

data mutations and peak data for melanoma and liver cancer. Models in “Control” group were built on 

control SNV mutation dataset and chromatin read data.  Models in “Control and mark peaks” group were 

built on control SNV mutation dataset and chromatin peak data. Error bars represent standard errors of the 

mean prediction accuracy estimated using 10-fold cross-validation. 
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Figure 2. Analysis based on melanoma single nucleotide variation and chromatin peak data results in 

accurate cell-of-origin prediction. (a, d, g) Observed number of melanoma single nucleotide variations 

(SNV) in one megabase (Mb) windows versus the number of variations in one Mb windows predicted by 

10-fold cross-validation Random Forest regression analysis based on chromatin peak data. Prediction 

accuracy is reported as R2 value between the predicted and observed mutation numbers in reference 

windows across the 10-fold cross-validation. (b, e, h) Melanoma SNV per 1 Mb versus the number of peaks 

for each type of chromatin mark and their correlation described by the Spearman’s rank correlation 

coefficient. (c, f, i) Model accuracy based on chromatin marks of each normal cell type. The cell type that 

fits the model with the highest prediction accuracy and significantly differs from the next-best 

histologically unrelated cell type is determined to be the cell-of-origin. Solid horizontal line describes 

variance explained reported by the next-best cell type model that belong to the different cell type group.  

Dotted horizontal line indicates median variance explained value of all the cell type models. SKCA – outliers 

excluded section additionally displays Spearman’s rank correlation coefficient between mutation and 

chromatin marks for every cell type individually. Right-hand (secondary) y-axis shows robust ẑ-score. Bars 

are coloured by histological group.  
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Figure 2. Continued  
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Figure 2. Continued 
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4.2 Analysis based on melanoma SNV mutations results in accurate COO prediction 

for certain datasets 

Predicted COO based on SNV mutation type obtained from SKCA-BR and MELA-AU datasets 

was expected normal cellular counterpart. That is, Melanocyte 01 cell type explained significantly 

more variance than the next best histologically unrelated cell type (p-value = 0.0136, WMW test). 

By removing top outliers from datasets, there was no significant increase in model accuracy (p-

value > 0.03 for all the cell types, WMW test) and by removing all of the outliers there was a 

significant increase in variance explained in 13 cell types for SKCA-BR dataset and in five cell 

types for MELA-AU dataset, especially in Melanocyte 03 (p-value = 0.00195, WMW test) cell 

type that became newly predicted COO in SKCA-BR dataset (Figure 2d, Figure 2f). Predicted 

COO for MELA-AU dataset did not change. Furthermore, predictive power in SKCA-BR and 

MELA-AU sets and outlier subsets ranges from 15.6% to 21.7% for top predictions, which differs 

from control case predictive power where the best model had 81% variance explained (Figure 1). 

Analysis based on SKCM-US dataset did not result in accurate nor significant COO prediction, 

regardless of the outlier removal (Figure 3a, Figure 3c). Removing the top outlier resulted in 

significant increase of the variance explained in two cell types (p-value < 0.03 WMW test) and 

removing all outliers resulted in significant decrease in in nine cell types (p-value < 0.03 WMW 

test). Since SKCM-US dataset had significantly less mutations than the other two (Figure 4), I 

performed the analysis on SKCA-BR and MELA-AU sample subsets to determine whether the 

lower number of mutations was the reason for inaccurate COO prediction.  
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Figure 3. Analysis based on melanoma single nucleotide variation and chromatin peak data results in 

inaccurate cell-of-origin prediction. (a) Observed number of melanoma single nucleotide variations 

(SNV) in one megabase (Mb) windows versus the number of variations in one Mb windows predicted by 

10-fold cross-validation Random Forest regression analysis based on chromatin peak data. Prediction 

accuracy is reported as R2 value between the predicted and observed mutation numbers in reference 

windows across the 10-fold cross-validation. (b) Melanoma SNV per 1 Mb versus the number of peaks for 

each type of chromatin mark and their correlation described by the Spearman’s rank correlation coefficient. 

(c) Model accuracy based on chromatin marks of each normal cell type. The cell type that fits the model 

with the highest prediction accuracy and significantly differs from the next-best histologically unrelated cell 

type is determined to be the cell-of-origin. Solid horizontal line describes variance explained reported by 

the next-best cell type model that belong to the different cell type group.  Dotted horizontal line indicates 

median variance explained value of all the cell type models. Right-hand (secondary) y-axis shows robust ẑ-

score. Bars are coloured by histological group. 
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Figure 4. Melanoma single nucleotide variation datasets vary in sample and mutation numbers. 

“SKCM-US” stands for Skin Cutaneous melanoma - TCGA, US dataset, “SKCA-BR” stands for Skin 

Adenocarcinoma – BR dataset and MELA-AU stands for Skin Cancer – AU dataset. 

 

All of the subset analysis resulted in accurate prediction, with no significant change in the variance 

explained for the top cell type group (p-value > 0.03, WMW test). Likewise, SKCA-BR and 

MELA-AU subsets scaled to mutational sum equal to the SKCM-US dataset also resulted in 

accurate prediction of COO when analysed, with no significant change in the variance explained 

for the top cell type group (p-value > 0.03, WMW test) (Figure 5). 
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Figure 5. Prediction accuracy comparison between melanoma models that accurately predicted cell-

of-origin. “Complete” dataset type refers to mutation datasets that did not had had any window count 

observation removed. “Biggest subsample”, “Medium subsample” and “Smallest subsample” dataset types 

refer to Skin Adenocarcinoma – BR dataset build upon 50, 30 and 10 samples respectively and Skin Cancer 

– AU dataset build upon 30, 10 and 5 samples respectively. “Mutation sum adjusted” dataset type consists 

of datasets build by sampling mutations with probability proportional to size where mutation sum was equal 

to the dataset which model did not accurately predict COO. Error bars represent standard errors of the mean 

prediction accuracy estimated using 10-fold cross-validation. 

 

By comparing Spearman's rank correlation coefficients between the control COO and the SKCM-

US dataset, there was a discrepancy in correlation coefficients. SKCM-US had the same direction 

in relationship only between mutations and H3K27me3 epigenomic marker for the majority of the 

cell types (97/103). All the other mutual epigenomic markers had different correlation sign, 

including all of the H3K36me3 and H3K4me1 chromatin mark cell types and the majority of 

H3K4me3 (101/104) and H3K9me3 (85/99) chromatin mark cell types (Figure 3b). On the other 

hand, both SKCA-BR and MELA-AU datasets shared the same direction in relationship for 

majority (more than 50%) of cell types in all of the mutual chromatin marks, especially in the top 

two cell types: Melanocyte 01 and Melanocyte 03 (Figure 2f). 
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4.3 Analysis based on liver carcinoma SNV mutations results in inaccurate COO 

prediction for all datasets 

LIHC-US, LICA-CN and LIRI-JP datasets and subsets all provided inaccurate and unsignificant 

(p-value > 0.03, WMW test) results when predicting COO (Figure 6a, Figure 6b, Figure 6c) 

regardless of the outlier removal, except for LICA-CN dataset with all of the outliers removed that 

had accurate but insignificant COO prediction (p-value = 0.846, WMW test). Removing the top 

outliers resulted in no significant change of variance explained for all the cell types in all of the 

datasets, while removing all of the outliers resulted in significant change of variance for 54 cell 

types of LIHC-US dataset, 77 cell types for LICA-CN dataset and 51 cell types for LIRI-JP dataset. 

Median variance explained decreased from 31.8% to 21.8% for LIHC-US dataset and increased 

from 2.8% to 7.5% for LICA-CN dataset and from 2.9% to 6.7% for LIRI-JP dataset (Figure 7). 
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Figure 6. Analysis based on liver cancer single nucleotide variation and chromatin peak data results 

in inaccurate cell-of-origin prediction. (a, b, c) Model accuracy based on chromatin marks of each normal 

cell type. The cell type that fits the model with the highest prediction accuracy and significantly differs from 

the next-best histologically unrelated cell type is determined to be the cell-of-origin. Solid horizontal line 

describes variance explained reported by the next-best cell type model that belong to the different cell type 

group.  Dotted horizontal line indicates median variance. Spearman’s rank correlation coefficient between 

mutation and chromatin marks is reported for every cell type individually. Right-hand (secondary) y-axis 

shows robust ẑ-score. Bars are coloured by histological group. 
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Figure 6. Continued 
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Figure 6. Continued 
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Figure 7. Distribution of variance explained of cell type models for every researched dataset 

Distribution of accuracy of 104 cell type models trained on various melanoma or liver carcinoma single 

nucleotide variation and insertion and deletion datasets. Models labelled “Control and mark peaks” were 

built on control SNV mutation dataset and chromatin peak data and “Complete” dataset type refers to 

datasets that did not had had any window count observation removed. (a) Distribution of variance explained 

based on models built on different melanoma datasets. (b) Distribution of variance explained based on 

models built on different liver cancer datasets. Box plots, band inside the box, median; box, first and third 

quartiles; whiskers, most extreme values within 1.5 × inter-quartile range from the box; points, outliers. 

 

Spearman's rank correlation coefficient direction of LIHC-US dataset was positive for all of the 

H3K27ac, H3K36me3, H3K4me1 and H3K9ac marks (Figure 6a) regardless of the outlier 

removal. LICA-CN and LIRI-JP datasets and subsets provided the same results with the exception 

of H3K4me3 chromatin mark where Liver cell type had different correlation coefficient when 

compared to the rest of the cell types (Figure 6b, Figure 6c). Majority (more than 85%) of the 

H3K9me3 cell types in all datasets and subsets had negative correlation coefficient direction with 

Liver cell type being one of the exceptions in LICH-US dataset, while H3K27me3 had positive 
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correlation coefficient in majority (more than 84%) of the cell types when considering LIHC-US 

and LICA-CN datasets and subsets. LIRI-JP dataset had correlation coefficient close to zero 

regarding the H3K27me3 chromatin mark (median = -0.01, 95% CI = -0.02, 0.00), which also 

applied to its top outlier removed subset (median = -0.01, 95% CI = -0.02, 0.00) and all outliers 

removed subset (median = 0.02, CI = 0.00, 0.04). These results show contrast when compared to 

the control Liver-HCC results where positive Spearman's rank correlation coefficient was observed 

in H3K9me3 mark and negative in H3K36me3, H3K4me1 and H3K4me3 marks. The only match 

between tested and control result was positive correlation coefficient of the H3K27me3 mark. 

 

4.4 Analysis based on melanoma and liver carcinoma indel mutations results in 

inaccurate COO prediction for all datasets 

All of the melanoma and liver carcinoma datasets and outlier subsets had inaccurate and 

unsignificant prediction ((p-value > 0.03, WHW test) of either melanoma or liver carcinoma COO 

(Figure 8a, Figure 8b, Figure 8c, Figure 9a, Figure 9b, Figure 9c).  
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Figure 8. Analysis based on melanoma insertion and deletion and chromatin peak data results in 

inaccurate cell-of-origin prediction. (a, b, c) Model accuracy based on chromatin marks of each normal 

cell type. The cell type that fits the model with the highest prediction accuracy and significantly differs from 

the next-best histologically unrelated cell type is determined to be the cell-of-origin. Solid horizontal line 

describes variance explained reported by the next-best cell type model that belong to the different cell type 

group.  Dotted horizontal line indicates median variance. Spearman’s rank correlation coefficient between 

mutation and chromatin marks is reported for every cell type individually. Right-hand (secondary) y-axis 

shows robust ẑ-score. Bars are coloured by histological group. 
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Figure 8. Continued 
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Figure 8. Continued 
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Figure 9. Analysis based on liver cancer insertion and deletion and chromatin peak data results in 

inaccurate cell-of-origin prediction. (a, b, c) Model accuracy based on chromatin marks of each normal 

cell type. The cell type that fits the model with the highest prediction accuracy and significantly differs from 

the next-best histologically unrelated cell type is determined to be the cell-of-origin. Solid horizontal line 

describes variance explained reported by the next-best cell type model that belong to the different cell type 

group.  Dotted horizontal line indicates median variance. Spearman’s rank correlation coefficient between 

mutation and chromatin marks is reported for every cell type individually. Right-hand (secondary) y-axis 

shows robust ẑ-score. Bars are coloured by histological group. 
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Figure 9. Continued 
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Figure 9. Continued 
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By removing outliers in SKCM-US and LIHC-US data there was not enough information to 

perform Random Forest regression analysis since SCKCM-US and LICH-US datasets contained 

significantly less data compared to SKCA-BR and MELA-AU datasets (Figure 10, Figure 11). 

 

Figure 10. Melanoma insertion and deletion datasets vary in sample and mutation numbers. “SKCM-

US” stands for Skin Cutaneous melanoma - TCGA, US dataset, “SKCA-BR” stands for Skin 

Adenocarcinoma – BR dataset and MELA-AU stands for Skin Cancer – AU dataset. 

 

 

Figure 11. Liver cancer insertion and deletion datasets vary in sample and mutation numbers. “LIHC-

US” stands for Liver Hepatocellular carcinoma - TCGA, US dataset, “LICA-CN” stands for Liver Cancer 

– CN dataset and “LIRI-JP” stands for Liver Cancer - RIKEN, JP dataset. 
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On the other hand, removing top outliers in SKCA-BR, MELA-AU, LICA-CN and LIRI-JP 

resulted in significant increase in variance explained for five cell types in MELA-AU dataset and 

no significant change in variance explained for SKCA-BR, LICA-CN and LIRI-JP datasets. 

Removing all outliers resulted in significant increase in variance explained for one cell type in 

SKCA-BR dataset, 52 cell types in MELA-AU dataset, five cell types in LICA-CN dataset and 79 

cell types in LIRI-JP dataset. Median variance explained increased from 8.2% to 10.8% for MELA-

AU dataset and from 15.5% to 23.6% for LIRI-JP dataset (Figure 7). 

Both melanoma and liver carcinoma indel datasets and outlier subsets had positive Spearman's rank 

correlation coefficient for all of the cell types when comparing indels to H3K27ac, H3K36me3 and 

H3K9ac marks. Majority (more than 75%) of all cell types had positive H3K27me3 correlation 

coefficient and negative H3K9me3 correlation coefficient, with notable exceptions being Liver that 

had negative H3K27me3 correlation coefficient in all the liver carcinoma datasets and outlier 

subsets (Figure 9a, Figure 9b, Figure 9c), Melanoma 01 with positive H3K9me3 correlation 

coefficient in SKCM-US dataset (Figure 8a) and MELA-AU (Figure 8c) datasets and Melanoma 

03 with negative H3K27me3 correlation coefficient for all the SKCA-BR (Figure 8b) and MELA-

AU (Figure 8c) datasets and subsets. 

 

4.5 Analysis based on HBV integration sites results in inaccurate COO prediction 

for all datasets 

Analysis based on HBV integration sites did not accurately nor significantly predict the COO 

(Figure 12a) which was supposed to be Liver cell type (p-value = 0.695, WMW test). Median 

variance explained was 5.4% with 95% confidence interval ranging from 4.9% 5.8% (Figure 3). 

Since dataset only had 16,905 VIS, the number of mutations was too low to perform analysis based 

on the outlier removal. 

Regarding the VIS and chromatin marks correlation, Spearman’s rank correlation coefficient was 

positive for all of the cell types when referring to H3K27ac and H3K9ac marks and majority of the 

cell types when referring to H3K27me3 (95/103), H3K4me1 (94/97), H3K4me3 (102/104) and 

H3K9me3 (74/99) chromatin marks (Figure 12b). It is also worth noting that absolute maximal 

coefficient value between all the cell types and chromatin marks was 0.17 which means that overall 

correlation between chromatin marks and VIS was not large. 
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Figure 12. Analysis based hepatitis B virus integration sites and chromatin peak data results in 

inaccurate cell-of-origin prediction. (a) Model accuracy based on chromatin marks of each normal cell 

type. The cell type that fits the model with the highest prediction accuracy and significantly differs from the 

next-best histologically unrelated cell type is determined to be the cell-of-origin. Solid horizontal line 

describes variance explained reported by the next-best cell type model that belong to the different cell type 

group.  Dotted horizontal line indicates median variance. (b) Spearman’s rank correlation coefficient 

between mutation and chromatin marks is reported for every cell type individually. Right-hand (secondary) 

y-axis shows robust ẑ-score. Bars are coloured by histological group. 
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Figure 12. Continued 
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5. DISCUSSION 

Connection between mutations and chromatin organization can be established through correlation 

between mutations and chromatin marks. In this work I presented on two independent melanoma 

datasets that SNV mutations negatively corelate with chromatin marks responsible for increased in 

DNA access and positively corelate with chromatin marks responsible for decreased DNA access. 

This supports the results presented in Polak et al. (2015) and Kübler et al. (2019) works where the 

same conclusion was made based on SNV melanoma and liver carcinoma data, amongst other. This 

also infers that closed chromatin regions accumulate more SNV mutations in melanoma which 

corresponds to the results of Polak et al. (2013) paper where lower rates of mutations are observed 

in accessible, regulatory DNA and explained by the higher DNA repair frequency in the open 

chromatin. With the mentioned datasets I confirmed previous finding that mutational landscape is 

significantly influenced by the normal cellular context of the COO.  

Models build on liver SNV data, melanoma TCGA SNV data, indel mutations and VIS did not 

accurately or significantly predict COO. As it was stated before (Kübler et al., 2019), one possible 

reason for inaccurate prediction might be an insufficient number of mutations that makes individual 

cancers indistinguishable. However, the number of mutations required for the accurate prediction 

to occur might vary between different datasets and should be taken into consideration. Another 

possible explanation for the difference of prediction accuracy when comparing mentioned datasets 

to the datasets that accurately predicted COO could be the fact that the datasets were produced by 

different research groups, and the observed differences might be a consequence of differences in 

laboratory protocols. The same explanation can potentially elucidate the opposite correlation 

between certain SNV datasets and their control counterparts. On the other hand, correlation results 

based on the indel models with the highest percentage of variance explained indicate higher rate of 

indel mutation accumulation within open chromatin regions since indel mutations had positive 

correlation with chromatin marks associated with closed chromatin and negative correlation with 

chromatin marks associated with open chromatin, the only exception being H3K27me3 mark. This 

concurs with previous work (Don et al., 2013) where the same phenomenon was observed. 

Furthermore, it is possible that indel mutations occur in regions with chromatin marks shared 

between all cell types and therefore do not correlate with tissue specific chromatin marks. This 

would explain why indel models predict COO from “Brain” cell group and why there is no 

significant variation in variance explained between the COO and the next-best histologically 
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unrelated cell type. Finally, VIS data positively correlated with chromatin marks associated with 

both open and closed chromatin regions which varies from results presented in paper Hama et al. 

(2018) where VIS in liver cancer cells preferentially occur in the regions of closed chromatin, the 

probable reason for this difference being low number of mutations. 

One of the novelties presented was the use of chromatin peak data, since works on record used read 

alignment information from ChIP-Seq experiments (Kübler et al., 2019; Polak et al., 2015). 

Although predictions based on peak data proved to be successful, one of the potential problems is 

missing information in peak databases, such as DeepBlue epigenome database missing DEEP 

(IHEC) peak data. On the other hand, in comparison with a read data counterpart, peak data does 

take considerably less memory space and computational power when aligning to the reference 

genome which can facilitate chromatin data download and processing. 

In this work I also showed that outlier exclusion might lead to both significant increase and 

decrease in variance explained by the Random Forest regression model. Random Forest algorithm 

is supposed to be tolerable of the outliers since it does not matter how much a case varies from the 

threshold value on a selected feature variable when tree building is performed. Furthermore, output 

outliers will affect the estimate of the leaf node they are in, but not the values of any other leaf 

node. This can be demonstrated by inducing noise where Random Forest proved to be less affected 

by it when compare to other algorithms (Breiman, 2001). However, Random Forest robustness can 

be improved through various means, for example, using median instead of mean when combining 

the predictions from the individual trees, using least-absolute deviations from the median, instead 

of least-squares, as splitting criterion or building the trees using the ranks of the response instead 

of the original values (Roy and Larocque, 2012), to name a few. 

Although analysis based on indel mutations and VIS did not provide accurate COO predictions, 

several approaches can be used with the goal to improve analysis results. First, with the new cancer 

genomic projects in development it will be possible to increase in the number of mutations through 

increase in sample number. For example, ICGC-ARGO is a 10-year project started in 2018 with 

the goal of analysing the genomes of more than 200,000 patients by detecting mutations through 

extensive sequencing (ICGC ARGO - About ICGC ARGO, n.d.). Second, change in reference 

window size could be a viable approach since window size of 1 Mb roughly matches the size of 

topologically associated domains, but they represent only a single level in hierarchical chromatin 
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organization (Bonev and Cavalli, 2016) and it is possible that indel mutations associate with 

different chromatin organizational levels. Third, various NGS platforms report different rates of 

success in SNV and indel detection with indels being harder to detect (Mullaney et al., 2010) and 

the usage of different pipelines in mutation detection may also significantly affect the SNV and 

indel number (Zook et al., 2014). Therefore, obtaining data generated by different pipelines might 

lead to improvement in indel detection. Finally, combination of different mutations and complex 

model building could also provide better COO prediction. All of this research approaches are worth 

exploring in the future since they may lead to utilization of indel and VIS in COO determination. 

  



40 
 

6. CONCLUSIONS 

In this work I confirmed that COO prediction based on SNV mutations is possible using Random 

Forest regression analysis. The same cannot be said for indel mutations and VIS, that did not 

provide accurate COO prediction. SNV mutation type provided the highest quality of the mutation 

density prediction. Furthermore, SNV correlation with the chromatin marks resulted in confirmed 

hypothesis that SNV mutations positively correlate with chromatin markers characteristic for 

closed chromatin and negatively correlate with chromatin marks typical for open chromatin only 

in cases when accurate COO was predicted. Opposite was concluded for indel mutations which 

positively correlated with chromatin marks associated with open chromatin and negatively 

correlated with chromatin marks associated with closed chromatin, with one mark exception. 

However, I did not confirm the hypothesis that VIS preferably occur in closed chromatin regions 

since it correlated with marks typical for both open and closed chromatin. The cause of this was 

probably low number of VIS. Regarding the lower number of mutations, COO prediction power 

did not change when mutation count was lowered which indicates that number of mutations 

required for the accurate prediction to occur might vary between different datasets. In the end, 

outlier exclusion leads to both increase and decrease in COO prediction power and can be a viable 

method used in COO prediction. In the future this type of analysis can be improved by using 

chromatin peak data instead of read data, modifying Random Forest algorithm to increase 

robustness or by using additional cancer samples in the analysis. 
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