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1. INTRODUCTION

1.1 Cancer and cell-of-origin

Cancer incidence and mortality are rapidly growing worldwide; therefore, cancer research and
treatment is emphasized more than ever. Sixth most commonly diagnosed cancer and the third
leading cause of cancer death worldwide in the year 2020 was primary liver cancer, with
approximately 906,000 new cases and 830,000 deaths (Sung et al., 2021). Primary liver cancer
includes hepatocellular carcinoma (HCC) (comprising 75%-85% of cases) and intrahepatic
cholangiocarcinoma (10%-15%), as well as other rare types. The main risk factors for HCC are
chronic infection with hepatitis B virus or hepatitis C virus, aflatoxin-contaminated foods, heavy
alcohol intake, excess body weight, type 2 diabetes, and smoking (London and Mcglynn, 2009).
Similarly, skin melanoma was responsible for approximately 325,000 new cases and 57,000 deaths
(Sung et al., 2021) with several risk factors, such as: ultraviolet radiation exposure, melanocytic
nevi, family history and sun sensitivity (Gruber and Armstrong, 2009). Consequently, there have
been numerous approaches in cancer research to better understand the disease and to ultimately
cure it, identifying origin cell type being one of them.

Need for distinguishing the normal cell from which the tumor has derived (i.e., cell-of-origin) rose
from the fact that despite the advancements in imaging and histology to segregate cancer, there has
been slow improvements in determining clinically and molecularly distinct cancers (Gilbertson,
2011). Advancements in this field of study would therefore provide better prediction for different
cancer treatment responses and prognoses. For example, basket trial study where inhibitor drug
was used on mutated proteins present in various types of cancer showed different response rates
between the cancer types (Hyman et al., 2018). This emphasizes the importance of accurate tumor
origin determination in cancer therapy. Majority of cancer COO research on record is based on
mouse models (Gilbertson, 2011; Kohler et al., 2017; Mu et al., 2015) with immunohistochemcal
staining and imaging as a primary method for COO determination. However, in recent works
notable success in cancer COO prediction was achieved with the use of bioinformatics tools and
analysis. Namely, in the papers Polak et al. (2015), Kiibler et al. (2019) and Ha et al. (2020) authors
have demonstrated that for certain cancers COO can be accurately predicted based on distribution
of mutations and epigenomic marks along the cancer genome. In Polak et al. (2015) paper the
authors made proof-of-concept study in order to understand association between different



epigenomic features and mutagenesis in a cell type-specific manner. They compared mutation
distribution of eight cancer genome types to 424 epigenetic features deriving from 106 different
cell types from 45 different tissue types and determined the best predictors of local somatic
mutation density, amongst other. Later in the paper Kubler et al. (2019) this method was further
elaborated by increasing the number of cancer types from 8 to 32 and increasing the number of
individual samples analysed from 173 to 2,550. Authors also studied cancers that arise in the same
organ but manifest as distinct subtypes, in particular breast cancer group. Cancer subtype study
was also performed in Ha et al. (2020), this time for primary liver cancer. This study confirmed
role of chromatin marks associated with possible COOs in shaping mutational landscape of primary
liver cancer and detected distinctive contribution of each COO in different subtypes of primary

liver cancer.

1.2 Mutations

Mutations can be divided in germline mutations and somatic mutations. While germline mutations
contribute to inherited genetic disease, somatic mutations do not contribute to future generations.
Instead, they are one of the main causes of human disease, cancer amongst other. Some of the most
common types of mutations are insertions and deletions, single nucleotide variants and
transposable elements. Frequency of these mutations is not uniform throughout the human genome
and genomic regions may differ in their mutation frequency between mutation types and cancers
types (Lawrence et al., 2013). More precisely, there is substantial variation in the density of somatic
mutations along the human genome at the scale of one megabase (Hodgkinson et al., 2012).
Dominant influence on regional mutation rate variation in human somatic cells is chromatin
organization in different cell types and in different time (Schuster-Bockler and Lehner, 2012).
Chromatin structure and DNA accessibility is regulated on epigenomic level by the processes of
DNA methylation and histone modification (Dunham et al., 2012). Histone remodelling can lead
to nucleosome repositioning and decrease in access to DNA sequence newly bound to the histone
(Cairns, 2007). On the other hand, open chromatin regions distinguished by DNA readily accessible
to enzymes in the nucleus are characterised by increase in local DNA accessibility using
nucleosome ejection, sliding or restructuring. Modifications responsible for increase in DNA

access include methylations: H3K4mel (associated with enhancers), H3K4me3 (associated with



promoters), H3K36me3 (associated with transcribed chromatin); and acetylations: H3K27ac and
H4ac (both associated with enhancers and promoters). By contrast, histone modifications
responsible for DNA repression include H3K27me3, H3K9me3 and significant decrease in histone
modifications (Beisel and Paro, 2011). As a result, histone modifications affect the accumulation
rate of different types of mutations (Don et al., 2013). For example, open chromatin regions are
associated with higher rates of insertion, deletion and substitution, while mildly elevated deletion
and substitution rates are located in closed chromatin regions, along with lower rates of insertion,
deletion and substitution. Apart from mutation rates, chromatin organization also influences the
density of viral integration sites (Mitchell et al., 2004). For instance, hepatitis B virus integration
sites in the liver cancer cells preferentially occur in the regions of closed chromatin, contrary to
normal hepatocyte genome where their frequency is higher in active chromatin areas (Hama et al.,
2018). This suggests that cells in which vital genes are disrupted by viral integration may be subject

to negative selection.

1.3 Cancer genomics

Cancer genomics is the study of the totality of DNA sequence and gene expression differences
between tumour cells and normal host cells. It aims to understand the genetic basis of tumour cell
proliferation and the evolution of the cancer genome under mutation and selection by the body
environment, the immune system and therapeutic interventions. In order to commercially afford
totality of DNA sequence and use it as a clinical tool, massive parallel sequencing technologies,
also named next generation sequencing, had to be developed (Goodwin et al., 2016). NGS refers
to any of several high-throughput approaches to DNA sequencing using the concept of massively
parallel sequencing of clonally amplified or single DNA molecules that are spatially separated in
a flow cell (Voelkerding et al., 2009). Depending on the platform, NGS vyields hundreds of
megabases to gigabases of nucleotide sequence output in a single instrument run and subsequent
data processing is performed to obtain consensus nucleotide sequence and to detect nucleotide
variants. One of the many uses of NGS is in the research of DNA and protein interaction, named
ChlP-sequencing or ChlIP-seq. This method consists of chromatin immunoprecipitation where
DNA and protein complexes are immunoprecipitated and disassembled, followed by sequencing

of resulting DNA fragments using NGS. ChIP-seq method is used in determining genome locations



that various histone modifications are associated with by utilising antibodies that specifically bind
to certain types of histone modifications during immunoprecipitation process (Collas, 2010).

Few of the biggest cancer genomic projects are the following: The Cancer Genome Atlas project,
The International Cancer Genome Consortium and The Pan-Cancer Analysis of Whole Genomes.
The Cancer Genome Atlas is a project to analyse human tumors with the goal to catalogue
molecular aberrations responsible for the carcinogenesis at the DNA, RNA, protein and epigenetic
levels (Weinstein et al., 2013). The International Cancer Genome Consortium is a global initiative
to build a comprehensive catalogue of mutational abnormalities in the major tumor types (Hudson
et al., 2010). It incorporates data from The Cancer Genome Atlas and the Sanger Cancer Genome
Project. The Pan-Cancer Analysis of Whole Genomes study is an international collaboration to
identify common patterns of mutation in cancer whole genomes from the International Cancer

Genome Consortium (Campbell et al., 2020).

1.4 Random Forest

Random Forest is non-parametric supervised machine learning method. It can be used for
regression analysis when response variable is numeric or classification analysis when response
variable is categorical. Basic steps in the regression method include generating multiple datasets
by randomly selecting n observations with replacement and building regression tree for each of the
dataset. Prediction value of a numeric response variable is obtained by passing the explanatory
variables through each tree model and combining model results (Breiman, 2001). The use of
multiple regression trees reduces the risk of over-fitting and makes the method robust to outliers
and noise in the input data.

Researched correlation between epigenetic marks and different types of mutation and VIS presents
potential for COO determination. Therefore, in this work | explored indel and SNV mutations in
melanoma and liver cancer sets, alongside HBV integration sites and determined their connection

with epigenomic marks of normal cells which resulted in COO prediction for different cancer types.



2. RESEARCH GOALS

Using Random Forest regression, | performed various analysis on SNV, indel and VIS datasets
founded on the hypothesis that mutations and VIS can be used for COO prediction based on
correlation with epigenomic markers with the goal of accurate COO prediction for each tumor type.
My next goal was to compare the prediction results with each other in order to conclude which
mutation type provides the highest quality of the mutation density prediction. I also hypothesised
that SNV mutations positively correlate with chromatin markers characteristic for closed chromatin
and negatively correlate with chromatin marks typical for open chromatin. I presumed opposite for
indel and VIS. Therefore, I used Spearman’s correlation coefficient measure to determine the
correlation between mutations, that is VIS, and the epigenomic marks. Another premise was that
of the influence of outlier exclusion on regression model prediction power. The goal was to increase
the prediction power of datasets that did not provide accurate COO by excluding certain and all
outliers from the datasets. Finally, I hypothesised that the low prediction power might be the result
of low mutation number of the researched dataset, hence | performed probability proportional to
size sampling on the datasets that made accurate COO predictions in order to observe how low

number of the mutations affects the COO prediction.



3. MATERIALS AND METHODS

3.1 Reference genome

I downloaded human genome (hg19) provided by Karimzadeh et al. (2018) and excluded regions
with fraction of uniquely mappable 36-mers lower than 0.92. I also excluded centromeric and
telomeric regions downloaded using UCSC Table Browser (Karolchik et al., 2004) and divided

resulting regions into 1 Mb widows. Produced reference genome had 2,120 Mb windows.

3.2 Tumor data

| obtained whole genome mutation data from ICGC DCC Data Portal Release 28 (Zhang et al.,
2019) for 722 cancer genome samples belonging to two cancer types: melanoma and
hepatocarcinoma. Melanoma data contained three separate datasets: SKCM-US, MELA-AU and
SKCA-BR, while hepatocarcinoma contained several different datasets of which I selected TCGA
dataset LIHC-US and two additional datasets with the most amount of mutation, namely Liver
LICA-CN and LIRI-JP. From collected data I filtered out single based substitution mutation type
(SNV) and small indel (<= 200 bp) mutation type separately. | additionally filtered data belonging
to whole genome sequencing strategy. | counted the number of mutations in each reference genome

window for each dataset and mutation type using “any” condition in overlap count.

3.3 HBV integration sites data

I downloaded HBV integration sites from VISDB database (Tang et al., 2020) and ViMIC database
(Wang et al., 2020). I filtered sites obtained from VISDB database by “Tumor” Sample type and
“GRCh37,” “GRCh37.55” and “GRCh37/hgl19” Reference Human Genome type. I used liftover
from hg38 to hgl9 on “Tumor” Sample integration sites that belonged to “GRCh38” Reference
Human Genome type. Next, | assigned Begin Location as End Location to all the integration sites
that did not contain End Location and vice versa. This resulted in 9,799 integration sites. In
addition, [ filtered data from ViMIC database by “Tumor”, “Tumor ” and “tumor” Sample type. |
applied liftover from hg38 to hgl9 to the filtered data. This resulted in 14,588 integration sites. |

combined generated integration sites from VISDB and ViMIC databases and counted the number



of integration sites in reach reference genome window using “any” condition in overlap count

which resulted in the sum of 16,905 integration sites when aligned to reference genome.

3.4 Chromatin data

| gathered chromatin data from DeepBlue epigenomic data server (Albrecht et al., 2016) in a form
of peaks using DeepBlueR package (Albrecht et al., 2017). | downloaded data for six active histone
modifications (H3K27ac, histone H3 lysine 27 acetylation; H3K27me3, histone H3 lysine 27
trimethylation; H3K36me3, histone H3 lysine 36 trimethylation; H3K4mel, histone H3 lysine 4
monomethylation; H3K4me3, histone H3 lysine 4 trimethylation; H3K9ac, histone H3 lysine 9
acetylation) and one repressive histone modification (H3K9me3, histone H3 lysine 9
trimethylation). Projects with provided peak data were ENCODE and Roadmap Epigenomics.
There were no available DEEP (IHEC) project peak data on DeepBlue epigenomic data server.
After filtering only primary cell, primary tissue, primary cell tissue cell types and removing all the
cell types containing data for only one histone modification, | was left with 15 ENCODE cell types
and 89 Roadmap Epigenomics cell types. For each histone modification | counted the number of
peaks in each reference genome window, considering any type of overlap between two ranges.
Certain cell types had biological replicates available and | considered them as one: fibroblast
primary cells, keratinocytes, T helper memory cells, keratinocytes primary cells, melanocyte
primary cells, T helper naive cells and rectal mucosa. Furthermore, | formed 11 groups based on
histological relationship between certain cell types: ‘Blood — other’, consisting of peripheral blood
mononuclear cells excluding T cells; ‘Bone/Soft tissue’, consisting of adipose, bone, mesenchymal
and muscle cells; ‘Brain’, consisting of cells originated from different parts of the brain and
neurospheres; ‘Breast’, consisting of myoepithelial and mammary epithelial cells; ‘CD19’,
consisting of B cells; ‘CD34’°, consisting of hematopoietic stem cells; ‘Colorectal Mucosa’,
consisting of colon and rectal mucosa cells; ‘Gastrointestinal’, consisting of stomach, large
intestine and small intestine cells; ‘Heart’, consisting of cells originated from different parts of the
heart, ‘Squamous’, consisting of keratinocytes and epithelial cells; ‘T cells’, consisting of all the T
cells. I also grouped cell types with their fetal counterparts if there were any. This includes: Muscle

cells, Brain cells, Intestine cells, Heart cells, Lung cells and Thymus cells. Finally, 1 grouped



Stomach Mucosa and Gastric cell types into Stomach Mucosa group. This resulted in 29 distinct
cell groups (Table 1).

Table 1. List of chromatin marks originated from normal cell types. Chromatin mark peak data was
obtained for each cell type using DeepBlue database id. Cell types were grouped by their histological

relationship. Abbreviated cell type names are used in the work.

DeepBlue id Project Cell type name Cell type abbreviated name Cell type group
52802 Roadmap Fetal Adrenal Gland Fetal Adrenal Gland Adrenal

s7317 ENCODE astrocyte Astrocyte Astrocyte

52694 Roadmap Primary monocytes from peripheral blood Primary monocytes (PB) Blood - other
52695 Roadmap Primary neutrophils from peripheral blood Primary neutrophils (PB) Blood - other
s2711 Roadmap Primary Natural Killer cells from peripheral blood Primary Natural Killer cells (PB) Blood - other
s2726 Roadmap Primary mononuclear cells from peripheral blood Primary mononuclear cells (PB) Blood - other
$2785 Roadmap Monocytes CD14+ Primary Cells Monocytes CD14+ Primary Cells Blood - other
s6987 ENCODE mononuclear cell Mononuclear Cell Blood - other
s7029 ENCODE CD14+ monocyte CD14+ Monocyte Blood - other
$2691 Roadmap Bone Marrow Derived Cultured Mesenchymal Stem Cells Bone Marrow Derived Cultured MSCs Bone/Soft tissue
s2714 Roadmap Mesenchymal Stem Cell Derived Chondrocyte Cultured Cells Stem Cell Derived Chondrocytes Bone/Soft tissue
s2717 Roadmap Muscle Satellite Cultured Cells Muscle Satellite Cultured Cells Bone/Soft tissue
$2790 Roadmap Osteoblast Primary Cells Osteoblast Primary Cells Bone/Soft tissue
52800 Roadmap Adipose Derived Mesenchymal Stem Cell Cultured Cells Adipose Derived MSC Cultured Cells Bone/Soft tissue
s2738 Roadmap Colon Smooth Muscle Colon Smooth Muscle Bone/Soft tissue
s2740 Roadmap Duodenum Smooth Muscle Duodenum Smooth Muscle Bone/Soft tissue
$2750 Roadmap Fetal Muscle Trunk Fetal Muscle Trunk Bone/Soft tissue
s2751 Roadmap Fetal Muscle Leg Fetal Muscle Leg Bone/Soft tissue
s2761 Roadmap Psoas Muscle Psoas Muscle Bone/Soft tissue
s2764 Roadmap Rectal Smooth Muscle Rectal Smooth Muscle Bone/Soft tissue
52768 Roadmap Skeletal Muscle Male Skeletal Muscle Male Bone/Soft tissue
s2769 Roadmap Skeletal Muscle Female Skeletal Muscle Female Bone/Soft tissue
s2772 Roadmap Stomach Smooth Muscle Stomach Smooth Muscle Bone/Soft tissue
52801 Roadmap Adipose Nuclei Adipose Nuclei Bone/Soft tissue
s7314 ENCODE osteoblast Osteoblast Bone/Soft tissue
s7322 ENCODE skeletal muscle myoblast Skeletal Muscle Myoblast Bone/Soft tissue
s2718 Roadmap Cortex derived primary cultured neurospheres Cortex derived neurospheres Brain

s2719 Roadmap Ganglion Eminence derived primary cultured neurospheres Ganglion Eminence derived neurospheres Brain

s2729 Roadmap Brain Angular Gyrus Brain Angular Gyrus Brain

$2730 Roadmap Brain Anterior Caudate Brain Anterior Caudate Brain

s2731 Roadmap Brain Cingulate Gyrus Brain Cingulate Gyrus Brain

$2732 Roadmap Brain Germinal Matrix Brain Germinal Matrix Brain

s2733 Roadmap Brain Hippocampus Middle Brain Hippocampus Middle Brain

s2734 Roadmap Brain Inferior Temporal Lobe Brain Inferior Temporal Lobe Brain

s2735 Roadmap Brain_Dorsolateral_Prefrontal_Cortex Brain Dorsolateral Prefrontal Cortex Brain

52736 Roadmap Brain Substantia Nigra Brain Substantia Nigra Brain

s2742 Roadmap Fetal Brain Male Fetal Brain Male Brain

$2743 Roadmap Fetal Brain Female Fetal Brain Female Brain

52692 Roadmap Breast Myoepithelial Primary Cells Breast Myoepithelial Primary Cells Breast

$2693 Roadmap Breast variant Human Mammary Epithelial Cells (vHMEC) Breast VHMEC Mammary Epithelial Breast

s7310 ENCODE mammary epithelial cell 01 Mammary Epithelial Cell 1 Breast

s6788 ENCODE mammary epithelial cell 02 Mammary Epithelial Cell 2 Breast

52696 Roadmap Primary B cells from cord blood CD19 - Primary B cells (CB) CD19

52697 Roadmap Primary B cells from peripheral blood CD19 - Primary B cells (PB) CD19

56684 ENCODE B cell 01 Bcell 1 CD19

s2700 Roadmap Primary hematopoietic stem cells CD34 - Primary HSC CD34

s2701 Roadmap Primary hematopoietic stem cells short term culture CD34 - Primary HSC short term culture CD34

s2715 Roadmap Primary hematopoietic stem cells G-CSF-mobilized Female CD34 - Primary HSC G-CSF-mobilized Female CD34

s2716 Roadmap Primary hematopoietic stem cells G-CSF-mobilized Male CD34 - Primary HSC G-CSF-mobilized Male CD34

s2737 Roadmap Colonic Mucosa Colonic Mucosa Colorectal Mucosa
s2762 Roadmap Rectal Mucosa Donor 29 Rectal Mucosa 29 Colorectal Mucosa



s2763
$2739
s2745
s2746
s2753
S2767
s2770
S2744
s2756
52765
52766
S2747
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$2749
s2757
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$6726
s2724
$2725
s2758
52759
s2748
s2752
s2760
$2720
s2721
s7316
s2774
s2722
s2723
S2741
s7323
$6963
s6779
$6805
s2755
s2771
52698
52699
52702
52703
s2704
52705
s2706
s2707
52708
s2709
s2710
s2712
s2713
s2754
s2773
s2727

Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
ENCODE
ENCODE
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
ENCODE
Roadmap
Roadmap
Roadmap
Roadmap
ENCODE
ENCODE
ENCODE
ENCODE
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap
Roadmap

Rectal Mucosa Donor 31

Duodenum Mucosa

Fetal Intestine Large

Fetal Intestine Small

Fetal Stomach

Sigmoid Colon

Small Intestine

Fetal Heart

Left Ventricle

Right Atrium

Right Ventricle

Fetal Kidney

Liver

Fetal Lung

Lung

fibroblast of lung 01

fibroblast of lung 04

Foreskin Melanocyte Primary Cells skin 01
Foreskin Melanocyte Primary Cells skin 03

Ovary

Pancreas

Pancreatic Islets

Placenta

Placenta Amnion

Foreskin Fibroblast Primary Cells skin 01
Foreskin Fibroblast Primary Cells skin 02
fibroblast of dermis

Spleen

Foreskin Keratinocyte Primary Cells skin 02
Foreskin Keratinocyte Primary Cells skin 03
Esophagus

keratinocyte 01

bronchial epithelial cell

kidney epithelial cell

keratinocyte 02

Gastric

Stomach Mucosa

Primary T cells from cord blood

Primary T cells fromperipheralblood

Primary T helper memory cells from peripheral blood 2
Primary T helper naive cells from peripheral blood
Primary T helper naive cells from peripheral blood
Primary T helper memory cells from peripheral blood 1
Primary T helper cells PMA-I stimulated

Primary T helper 17 cells PMA-I stimulated
Primary T helper cells from peripheral blood
Primary T regulatory cells from peripheral blood
Primary T cells effector/memory enriched from peripheral blood
Primary T CD8+ naive cells from peripheral blood
Primary T CD8+ memory cells from peripheral blood
Fetal Thymus

Thymus

Aorta

Rectal Mucosa 31
Duodenum Mucosa
Fetal Intestine Large
Fetal Intestine Small
Fetal Stomach
Sigmoid Colon
Small Intestine
Fetal Heart

Left Ventricle

Right Atrium

Right Ventricle
Fetal Kidney

Liver

Fetal Lung

Lung

Lung Fibroblast 1
Lung Fibroblast 4
Melanocyte 01
Melanocyte 03
Ovary

Pancreas

Pancreatic Islets
Placenta

Placenta Amnion
Skin Fibroblast 01
Skin Fibroblast 02
Dermis Fibroblast
Spleen

Skin Keratinocyte 02
Skin Keratinocyte 03
Esophagus
Keratinocyte 1

Bronchial Epithelial Cell

Kidney Epithelial Cell
Keratinocyte 2
Gastric

Stomach Mucosa
Primary T cells (CB)
Primary T cells (PB)

Primary Th memory cells (PB) 2
Primary Th naive cells (PB) 1
Primary Th naive cells (PB) 2
Primary Th memory cells (PB) 1
Primary Th cells PMA-I stimulated
Primary Th 17 cells PMA-I stimulated

Primary Th cells (PB)
Primary Treg cells (PB)

Primary T cells effector/memory enriched (PB)
Primary T killer naive cells (PB)
Primary T killer memory cells (PB)

Fetal Thymus
Thymus
Aorta

Colorectal Mucosa
Duodenum Mucosa
Gastrointestinal
Gastrointestinal
Gastrointestinal
Gastrointestinal
Gastrointestinal
Heart

Heart

Heart

Heart

Kidney

Liver

Lung

Lung

Lung Fibroblast
Lung Fibroblast
Melanocyte
Melanocyte
Ovary

Pancreas
Pancreatic Islets
Placenta
Placenta Amnion
Skin Fibroblast
Skin Fibroblast
Skin Fibroblast
Spleen
Squamous
Squamous
Squamous
Squamous
Squamous
Squamous
Squamous
Stomach Mucosa
Stomach Mucosa
T cells

T cells

T cells

T cells

T cells

T cells

T cells

T cells

T cells

T cells

T cells

T cells

T cells

Thymus
Thymus
Vascular



3.5 Random Forest regression analysis

I used Random Forest regression to predict mutational density and VIS density based on chromatin
profiles for every data set and subset. | created prediction using every chromatin profile of every
type of cell separately, resulting in 104 models for each run. Every Random Forest regression was
computed with 1,000 trees. | reported performance using 10-fold cross-validation. That is, | divided
all windows into ten sets, trained the model on nine and made the prediction of the remaining set.
| test the accuracy of the prediction by comparing it with the remaining set and calculating R2.
Finally, | determined average R? of all the predicted and compared sets and used it as a model
performance measure. | compared model results between cell types by using paired Wilcoxon-
Mann-Whitney test between the R? values from ten-fold cross-validation tests. Additionally, to
compare models trained on histone marks from different cell types, | calculated the robust z-score.
| presented cell type with the highest average R? and significant difference in R? set values
compared to the other cell types belonging to different cell type groups as supposed COO. I
performed Random Forest regression analysis using caret (Kuhn, 2008) and ranger (Wright and

Ziegler, 2017) packages.

| obtained control data from Kiibler et al. (2019) by performing Random Forest regression on
provided “Liver-HCC” and “Skin-Melanoma” SNV datasets. To prove the validity of chromatin
mark peak use instead of the number of reads utilised in the work and to enable comparison between
the results presented in this work and control results, | performed Random Forest regression based
on control mutation window count data for each dataset, control reference genome and chromatin

mark peak data.

For certain cancer types I visualised mutation density by plotting the predicted number of mutations
in each 1Mb window against observed number of mutations in each 1Mb window. | additionally
analysed correlations between chromatin mark density and mutational density and between
chromatin mark density and VIS density using Spearman’s rank correlation coefficient and
visualised it as correlation coefficient versus cell type and as a mutation density versus each

chromatin mark density.
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3.6 Subset generation

In order to observe the effect how outlier influences the results, | filtered out the biggest outlier in
SKCM-US SNV, SKCA-BR SNV, MELA-AU SNV, LIHC-US SNV, LICA-CN SNV, LIRI-JP
SNV, LICA-CN indel and LIRI-JP indel data, top two outliers in SKCA-BR indel data and top 5
outliers in MELA-AU indel data. In addition, | made data subsets with all of the outliers excluded

for each dataset and performed Random Forest regression analysis on all of the listed subsets.

| created subsets by randomly sampling tumor genome types of the datasets that accurately
predicted COO and performed Random Forest regression in order to observe if the mutation
number is responsible for inaccurate predictions of the other datasets. |1 sampled 10, 30 and 50
samples from SKCA-BR SNV dataset resulting in 2,048,075, 3,919,536 and 8,076,703 mutation
sums and 5, 10 and 30 samples from MELA-AU SNV dataset resulting in 2,536,104, 4,324,187
and 12,369,354 mutation sums respectively. For the same reason | performed sampling and analysis
with probability proportional to size of each window on the mentioned datasets where maximum

number of samples was equal to the dataset that did not accurately predict COO.

All of the data processing, model building and graph displaying | performed using R program (R
Core Team, 2021).
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4. RESULTS

4.1 Using chromatin mark peak data results in accurate predictions of COO in
control datasets

Random Forest regression based on control data (prediction based on number of reads in 1Mb
windows) resulted in Melanocyte 03 COO prediction for Skin-Melanoma dataset with 81%
variance explained and Liver COO prediction for Liver-HCC dataset with 87% variance explained
(Figure 1). The cell type that fitted the model with the highest accuracy and significantly differed
from the next-best histologically unrelated cell type was determined to be the COO. In both Skin-
Melanoma and Liver-HCC data analysis Spearman’s rank correlation coefficient was negative for
H3K36me3, H3K4mel, H3K4me3 and Input chromatin marks and positive for H3K27me3 and
H3K9me3 marks. Random Forest regression on a dataset consisting of control mutational density
and chromatin mark peaks window count based on control reference genome, resulted in accurate
predictions of COO (Figure 2a, Figure 2c), similar to those of control. The COO predictions were
the same and there was no significant difference in COO variance explained when compared to the
control results (p-value (Melanocyte 03) = 0.695, p-value (Liver) = 0.492, p-value < 0.03, WMW
test). Spearman’s rank correlation coefficient was positive for H3K27me3 and H3K9me3 marks
and negative for H3K27ac, H3K36me3, H3K4mel and H3K4me3 chromatin marks (Figure 2b).
This proved the validity of chromatin mark peak use in COO determination and enabled me to

compare the results presented in this work to the control results.
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Figure 1. Prediction accuracy comparison between control models and models based upon control
data mutations and peak data for melanoma and liver cancer. Models in “Control” group were built on
control SNV mutation dataset and chromatin read data. Models in “Control and mark peaks” group were
built on control SNV mutation dataset and chromatin peak data. Error bars represent standard errors of the
mean prediction accuracy estimated using 10-fold cross-validation.
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Figure 2. Analysis based on melanoma single nucleotide variation and chromatin peak data results in
accurate cell-of-origin prediction. (a, d, g) Observed number of melanoma single nucleotide variations
(SNV) in one megabase (Mb) windows versus the number of variations in one Mb windows predicted by
10-fold cross-validation Random Forest regression analysis based on chromatin peak data. Prediction
accuracy is reported as R? value between the predicted and observed mutation numbers in reference
windows across the 10-fold cross-validation. (b, e, h) Melanoma SNV per 1 Mb versus the number of peaks
for each type of chromatin mark and their correlation described by the Spearman’s rank correlation
coefficient. (c, f, i) Model accuracy based on chromatin marks of each normal cell type. The cell type that
fits the model with the highest prediction accuracy and significantly differs from the next-best
histologically unrelated cell type is determined to be the cell-of-origin. Solid horizontal line describes
variance explained reported by the next-best cell type model that belong to the different cell type group.
Dotted horizontal line indicates median variance explained value of all the cell type models. SKCA —outliers
excluded section additionally displays Spearman’s rank correlation coefficient between mutation and
chromatin marks for every cell type individually. Right-hand (secondary) y-axis shows robust z-score. Bars
are coloured by histological group.
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MELA-AU - outliers excluded
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4.2 Analysis based on melanoma SNV mutations results in accurate COO prediction

for certain datasets

Predicted COO based on SNV mutation type obtained from SKCA-BR and MELA-AU datasets
was expected normal cellular counterpart. That is, Melanocyte 01 cell type explained significantly
more variance than the next best histologically unrelated cell type (p-value = 0.0136, WMW test).
By removing top outliers from datasets, there was no significant increase in model accuracy (p-
value > 0.03 for all the cell types, WMW test) and by removing all of the outliers there was a
significant increase in variance explained in 13 cell types for SKCA-BR dataset and in five cell
types for MELA-AU dataset, especially in Melanocyte 03 (p-value = 0.00195, WMW test) cell
type that became newly predicted COO in SKCA-BR dataset (Figure 2d, Figure 2f). Predicted
COO for MELA-AU dataset did not change. Furthermore, predictive power in SKCA-BR and
MELA-AU sets and outlier subsets ranges from 15.6% to 21.7% for top predictions, which differs
from control case predictive power where the best model had 81% variance explained (Figure 1).

Analysis based on SKCM-US dataset did not result in accurate nor significant COO prediction,
regardless of the outlier removal (Figure 3a, Figure 3c). Removing the top outlier resulted in
significant increase of the variance explained in two cell types (p-value < 0.03 WMW test) and
removing all outliers resulted in significant decrease in in nine cell types (p-value < 0.03 WMW
test). Since SKCM-US dataset had significantly less mutations than the other two (Figure 4), |
performed the analysis on SKCA-BR and MELA-AU sample subsets to determine whether the

lower number of mutations was the reason for inaccurate COQO prediction.
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Figure 3. Analysis based on melanoma single nucleotide variation and chromatin peak data results in
inaccurate cell-of-origin prediction. (a) Observed number of melanoma single nucleotide variations
(SNV) in one megabase (Mb) windows versus the number of variations in one Mb windows predicted by
10-fold cross-validation Random Forest regression analysis based on chromatin peak data. Prediction
accuracy is reported as R? value between the predicted and observed mutation numbers in reference
windows across the 10-fold cross-validation. (b) Melanoma SNV per 1 Mb versus the number of peaks for
each type of chromatin mark and their correlation described by the Spearman’s rank correlation coefficient.
(c) Model accuracy based on chromatin marks of each normal cell type. The cell type that fits the model
with the highest prediction accuracy and significantly differs from the next-best histologically unrelated cell
type is determined to be the cell-of-origin. Solid horizontal line describes variance explained reported by
the next-best cell type model that belong to the different cell type group. Dotted horizontal line indicates
median variance explained value of all the cell type models. Right-hand (secondary) y-axis shows robust 2-
score. Bars are coloured by histological group.
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Figure 4. Melanoma single nucleotide variation datasets vary in sample and mutation numbers.
“SKCM-US” stands for Skin Cutaneous melanoma - TCGA, US dataset, “SKCA-BR” stands for Skin
Adenocarcinoma — BR dataset and MELA-AU stands for Skin Cancer — AU dataset.

All of the subset analysis resulted in accurate prediction, with no significant change in the variance
explained for the top cell type group (p-value > 0.03, WMW test). Likewise, SKCA-BR and
MELA-AU subsets scaled to mutational sum equal to the SKCM-US dataset also resulted in
accurate prediction of COO when analysed, with no significant change in the variance explained

for the top cell type group (p-value > 0.03, WMW test) (Figure 5).
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Figure 5. Prediction accuracy comparison between melanoma models that accurately predicted cell-
of-origin. “Complete” dataset type refers to mutation datasets that did not had had any window count
observation removed. “Biggest subsample”, “Medium subsample” and “Smallest subsample” dataset types
refer to Skin Adenocarcinoma — BR dataset build upon 50, 30 and 10 samples respectively and Skin Cancer
— AU dataset build upon 30, 10 and 5 samples respectively. “Mutation sum adjusted” dataset type consists
of datasets build by sampling mutations with probability proportional to size where mutation sum was equal
to the dataset which model did not accurately predict COO. Error bars represent standard errors of the mean
prediction accuracy estimated using 10-fold cross-validation.

By comparing Spearman's rank correlation coefficients between the control COO and the SKCM-
US dataset, there was a discrepancy in correlation coefficients. SKCM-US had the same direction
in relationship only between mutations and H3K27me3 epigenomic marker for the majority of the
cell types (97/103). All the other mutual epigenomic markers had different correlation sign,
including all of the H3K36me3 and H3K4mel chromatin mark cell types and the majority of
H3K4me3 (101/104) and H3K9me3 (85/99) chromatin mark cell types (Figure 3b). On the other
hand, both SKCA-BR and MELA-AU datasets shared the same direction in relationship for
majority (more than 50%) of cell types in all of the mutual chromatin marks, especially in the top

two cell types: Melanocyte 01 and Melanocyte 03 (Figure 2f).

20



4.3 Analysis based on liver carcinoma SNV mutations results in inaccurate COO
prediction for all datasets

LIHC-US, LICA-CN and LIRI-JP datasets and subsets all provided inaccurate and unsignificant
(p-value > 0.03, WMW test) results when predicting COO (Figure 6a, Figure 6b, Figure 6c)
regardless of the outlier removal, except for LICA-CN dataset with all of the outliers removed that
had accurate but insignificant COO prediction (p-value = 0.846, WMW test). Removing the top
outliers resulted in no significant change of variance explained for all the cell types in all of the
datasets, while removing all of the outliers resulted in significant change of variance for 54 cell
types of LIHC-US dataset, 77 cell types for LICA-CN dataset and 51 cell types for LIRI-JP dataset.
Median variance explained decreased from 31.8% to 21.8% for LIHC-US dataset and increased
from 2.8% to 7.5% for LICA-CN dataset and from 2.9% to 6.7% for LIRI-JP dataset (Figure 7).
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Figure 6. Analysis based on liver cancer single nucleotide variation and chromatin peak data results
in inaccurate cell-of-origin prediction. (a, b, ¢) Model accuracy based on chromatin marks of each normal
cell type. The cell type that fits the model with the highest prediction accuracy and significantly differs from
the next-best histologically unrelated cell type is determined to be the cell-of-origin. Solid horizontal line
describes variance explained reported by the next-best cell type model that belong to the different cell type
group. Dotted horizontal line indicates median variance. Spearman’s rank correlation coefficient between
mutation and chromatin marks is reported for every cell type individually. Right-hand (secondary) y-axis
shows robust Z-score. Bars are coloured by histological group.
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Figure 7. Distribution of variance explained of cell type models for every researched dataset
Distribution of accuracy of 104 cell type models trained on various melanoma or liver carcinoma single
nucleotide variation and insertion and deletion datasets. Models labelled “Control and mark peaks” were
built on control SNV mutation dataset and chromatin peak data and “Complete” dataset type refers to
datasets that did not had had any window count observation removed. (a) Distribution of variance explained
based on models built on different melanoma datasets. (b) Distribution of variance explained based on
models built on different liver cancer datasets. Box plots, band inside the box, median; box, first and third
quartiles; whiskers, most extreme values within 1.5 x inter-quartile range from the box; points, outliers.

Spearman's rank correlation coefficient direction of LIHC-US dataset was positive for all of the
H3K27ac, H3K36me3, H3K4mel and H3K9ac marks (Figure 6a) regardless of the outlier
removal. LICA-CN and LIRI-JP datasets and subsets provided the same results with the exception
of H3K4me3 chromatin mark where Liver cell type had different correlation coefficient when
compared to the rest of the cell types (Figure 6b, Figure 6¢). Majority (more than 85%) of the
H3K9me3 cell types in all datasets and subsets had negative correlation coefficient direction with
Liver cell type being one of the exceptions in LICH-US dataset, while H3K27me3 had positive
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correlation coefficient in majority (more than 84%) of the cell types when considering LIHC-US
and LICA-CN datasets and subsets. LIRI-JP dataset had correlation coefficient close to zero
regarding the H3K27me3 chromatin mark (median = -0.01, 95% CI = -0.02, 0.00), which also
applied to its top outlier removed subset (median = -0.01, 95% CI = -0.02, 0.00) and all outliers
removed subset (median = 0.02, Cl = 0.00, 0.04). These results show contrast when compared to
the control Liver-HCC results where positive Spearman'’s rank correlation coefficient was observed
in H3K9me3 mark and negative in H3K36me3, H3K4mel and H3K4me3 marks. The only match

between tested and control result was positive correlation coefficient of the H3K27me3 mark.

4.4 Analysis based on melanoma and liver carcinoma indel mutations results in
inaccurate COO prediction for all datasets

All of the melanoma and liver carcinoma datasets and outlier subsets had inaccurate and
unsignificant prediction ((p-value > 0.03, WHW test) of either melanoma or liver carcinoma COO
(Figure 8a, Figure 8b, Figure 8c, Figure 9a, Figure 9b, Figure 9c).
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Figure 8. Analysis based on melanoma insertion and deletion and chromatin peak data results in
inaccurate cell-of-origin prediction. (a, b, ¢) Model accuracy based on chromatin marks of each normal
cell type. The cell type that fits the model with the highest prediction accuracy and significantly differs from
the next-best histologically unrelated cell type is determined to be the cell-of-origin. Solid horizontal line
describes variance explained reported by the next-best cell type model that belong to the different cell type
group. Dotted horizontal line indicates median variance. Spearman’s rank correlation coefficient between
mutation and chromatin marks is reported for every cell type individually. Right-hand (secondary) y-axis
shows robust z-score. Bars are coloured by histological group.
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Figure 9.
inaccurate cell-of-origin prediction. (a, b, ¢) Model accuracy based on chromatin marks of each normal

cell type.

the next-best histologically unrelated cell type is determined to be the cell-of-origin. Solid horizontal line

describes

group. Dotted horizontal line indicates median variance. Spearman’s rank correlation coefficient between

mutation

The cell type that fits the model with the highest prediction accuracy and significantly differs from

variance explained reported by the next-best cell type model that belong to the different cell type

and chromatin marks is reported for every cell type individually. Right-hand (secondary) y-axis

shows robust Z-score. Bars are coloured by histological group.
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By removing outliers in SKCM-US and LIHC-US data there was not enough information to
perform Random Forest regression analysis since SCKCM-US and LICH-US datasets contained
significantly less data compared to SKCA-BR and MELA-AU datasets (Figure 10, Figure 11).
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Figure 10. Melanoma insertion and deletion datasets vary in sample and mutation numbers. “SKCM-
US” stands for Skin Cutaneous melanoma - TCGA, US dataset, “SKCA-BR” stands for Skin

Adenocarcinoma — BR dataset and MELA-AU stands for Skin Cancer — AU dataset.
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Figure 11. Liver cancer insertion and deletion datasets vary in sample and mutation numbers. “LTHC-
US” stands for Liver Hepatocellular carcinoma - TCGA, US dataset, “LICA-CN” stands for Liver Cancer

— CN dataset and “LIRI-JP” stands for Liver Cancer - RIKEN, JP dataset.
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On the other hand, removing top outliers in SKCA-BR, MELA-AU, LICA-CN and LIRI-JP
resulted in significant increase in variance explained for five cell types in MELA-AU dataset and
no significant change in variance explained for SKCA-BR, LICA-CN and LIRI-JP datasets.
Removing all outliers resulted in significant increase in variance explained for one cell type in
SKCA-BR dataset, 52 cell types in MELA-AU dataset, five cell types in LICA-CN dataset and 79
cell types in LIRI-JP dataset. Median variance explained increased from 8.2% to 10.8% for MELA-
AU dataset and from 15.5% to 23.6% for LIRI-JP dataset (Figure 7).

Both melanoma and liver carcinoma indel datasets and outlier subsets had positive Spearman's rank
correlation coefficient for all of the cell types when comparing indels to H3K27ac, H3K36me3 and
H3K9ac marks. Majority (more than 75%) of all cell types had positive H3K27me3 correlation
coefficient and negative H3K9me3 correlation coefficient, with notable exceptions being Liver that
had negative H3K27me3 correlation coefficient in all the liver carcinoma datasets and outlier
subsets (Figure 9a, Figure 9b, Figure 9c), Melanoma 01 with positive H3K9me3 correlation
coefficient in SKCM-US dataset (Figure 8a) and MELA-AU (Figure 8c) datasets and Melanoma
03 with negative H3K27me3 correlation coefficient for all the SKCA-BR (Figure 8b) and MELA-
AU (Figure 8c) datasets and subsets.

4.5 Analysis based on HBYV integration sites results in inaccurate COO prediction
for all datasets

Analysis based on HBV integration sites did not accurately nor significantly predict the COO
(Figure 12a) which was supposed to be Liver cell type (p-value = 0.695, WMW test). Median
variance explained was 5.4% with 95% confidence interval ranging from 4.9% 5.8% (Figure 3).
Since dataset only had 16,905 VIS, the number of mutations was too low to perform analysis based

on the outlier removal.

Regarding the VIS and chromatin marks correlation, Spearman’s rank correlation coefficient was
positive for all of the cell types when referring to H3K27ac and H3K9ac marks and majority of the
cell types when referring to H3K27me3 (95/103), H3K4mel (94/97), H3K4me3 (102/104) and
H3K9me3 (74/99) chromatin marks (Figure 12b). It is also worth noting that absolute maximal
coefficient value between all the cell types and chromatin marks was 0.17 which means that overall

correlation between chromatin marks and VIS was not large.
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Figure 12. Analysis based hepatitis B virus integration sites and chromatin peak data results in
inaccurate cell-of-origin prediction. (a) Model accuracy based on chromatin marks of each normal cell
type. The cell type that fits the model with the highest prediction accuracy and significantly differs from the
next-best histologically unrelated cell type is determined to be the cell-of-origin. Solid horizontal line
describes variance explained reported by the next-best cell type model that belong to the different cell type
group. Dotted horizontal line indicates median variance. (b) Spearman’s rank correlation coefficient
between mutation and chromatin marks is reported for every cell type individually. Right-hand (secondary)
y-axis shows robust z-score. Bars are coloured by histological group.
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5. DISCUSSION

Connection between mutations and chromatin organization can be established through correlation
between mutations and chromatin marks. In this work | presented on two independent melanoma
datasets that SNV mutations negatively corelate with chromatin marks responsible for increased in
DNA access and positively corelate with chromatin marks responsible for decreased DNA access.
This supports the results presented in Polak et al. (2015) and Kiibler et al. (2019) works where the
same conclusion was made based on SNV melanoma and liver carcinoma data, amongst other. This
also infers that closed chromatin regions accumulate more SNV mutations in melanoma which
corresponds to the results of Polak et al. (2013) paper where lower rates of mutations are observed
in accessible, regulatory DNA and explained by the higher DNA repair frequency in the open
chromatin. With the mentioned datasets | confirmed previous finding that mutational landscape is

significantly influenced by the normal cellular context of the COO.

Models build on liver SNV data, melanoma TCGA SNV data, indel mutations and VIS did not
accurately or significantly predict COO. As it was stated before (Kiibler et al., 2019), one possible
reason for inaccurate prediction might be an insufficient number of mutations that makes individual
cancers indistinguishable. However, the number of mutations required for the accurate prediction
to occur might vary between different datasets and should be taken into consideration. Another
possible explanation for the difference of prediction accuracy when comparing mentioned datasets
to the datasets that accurately predicted COO could be the fact that the datasets were produced by
different research groups, and the observed differences might be a consequence of differences in
laboratory protocols. The same explanation can potentially elucidate the opposite correlation
between certain SNV datasets and their control counterparts. On the other hand, correlation results
based on the indel models with the highest percentage of variance explained indicate higher rate of
indel mutation accumulation within open chromatin regions since indel mutations had positive
correlation with chromatin marks associated with closed chromatin and negative correlation with
chromatin marks associated with open chromatin, the only exception being H3K27me3 mark. This
concurs with previous work (Don et al., 2013) where the same phenomenon was observed.
Furthermore, it is possible that indel mutations occur in regions with chromatin marks shared
between all cell types and therefore do not correlate with tissue specific chromatin marks. This
would explain why indel models predict COO from “Brain” cell group and why there is no
significant variation in variance explained between the COO and the next-best histologically
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unrelated cell type. Finally, VIS data positively correlated with chromatin marks associated with
both open and closed chromatin regions which varies from results presented in paper Hama et al.
(2018) where VIS in liver cancer cells preferentially occur in the regions of closed chromatin, the

probable reason for this difference being low number of mutations.

One of the novelties presented was the use of chromatin peak data, since works on record used read
alignment information from ChIP-Seq experiments (Kiibler et al., 2019; Polak et al., 2015).
Although predictions based on peak data proved to be successful, one of the potential problems is
missing information in peak databases, such as DeepBlue epigenome database missing DEEP
(IHEC) peak data. On the other hand, in comparison with a read data counterpart, peak data does
take considerably less memory space and computational power when aligning to the reference

genome which can facilitate chromatin data download and processing.

In this work 1 also showed that outlier exclusion might lead to both significant increase and
decrease in variance explained by the Random Forest regression model. Random Forest algorithm
is supposed to be tolerable of the outliers since it does not matter how much a case varies from the
threshold value on a selected feature variable when tree building is performed. Furthermore, output
outliers will affect the estimate of the leaf node they are in, but not the values of any other leaf
node. This can be demonstrated by inducing noise where Random Forest proved to be less affected
by it when compare to other algorithms (Breiman, 2001). However, Random Forest robustness can
be improved through various means, for example, using median instead of mean when combining
the predictions from the individual trees, using least-absolute deviations from the median, instead
of least-squares, as splitting criterion or building the trees using the ranks of the response instead

of the original values (Roy and Larocque, 2012), to name a few.

Although analysis based on indel mutations and VIS did not provide accurate COO predictions,
several approaches can be used with the goal to improve analysis results. First, with the new cancer
genomic projects in development it will be possible to increase in the number of mutations through
increase in sample number. For example, ICGC-ARGO is a 10-year project started in 2018 with
the goal of analysing the genomes of more than 200,000 patients by detecting mutations through
extensive sequencing (ICGC ARGO - About ICGC ARGO, n.d.). Second, change in reference
window size could be a viable approach since window size of 1 Mb roughly matches the size of

topologically associated domains, but they represent only a single level in hierarchical chromatin
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organization (Bonev and Cavalli, 2016) and it is possible that indel mutations associate with
different chromatin organizational levels. Third, various NGS platforms report different rates of
success in SNV and indel detection with indels being harder to detect (Mullaney et al., 2010) and
the usage of different pipelines in mutation detection may also significantly affect the SNV and
indel number (Zook et al., 2014). Therefore, obtaining data generated by different pipelines might
lead to improvement in indel detection. Finally, combination of different mutations and complex
model building could also provide better COO prediction. All of this research approaches are worth

exploring in the future since they may lead to utilization of indel and VIS in COO determination.
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6. CONCLUSIONS

In this work I confirmed that COO prediction based on SNV mutations is possible using Random
Forest regression analysis. The same cannot be said for indel mutations and VIS, that did not
provide accurate COQO prediction. SNV mutation type provided the highest quality of the mutation
density prediction. Furthermore, SNV correlation with the chromatin marks resulted in confirmed
hypothesis that SNV mutations positively correlate with chromatin markers characteristic for
closed chromatin and negatively correlate with chromatin marks typical for open chromatin only
in cases when accurate COO was predicted. Opposite was concluded for indel mutations which
positively correlated with chromatin marks associated with open chromatin and negatively
correlated with chromatin marks associated with closed chromatin, with one mark exception.
However, | did not confirm the hypothesis that VIS preferably occur in closed chromatin regions
since it correlated with marks typical for both open and closed chromatin. The cause of this was
probably low number of VIS. Regarding the lower number of mutations, COO prediction power
did not change when mutation count was lowered which indicates that number of mutations
required for the accurate prediction to occur might vary between different datasets. In the end,
outlier exclusion leads to both increase and decrease in COO prediction power and can be a viable
method used in COO prediction. In the future this type of analysis can be improved by using
chromatin peak data instead of read data, modifying Random Forest algorithm to increase

robustness or by using additional cancer samples in the analysis.
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