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ABSTRACT

We study the application of the Breitenlohner–Maison–’t Hooft–Veltman (BMHV)
scheme of Dimensional Regularization to the renormalization of massless chiral gauge
theories; chiral Yang-Mills theory, and chiral Quantum Electrodynamics, being the
main ingredients of the Standard Model, up to one and two-loop level, respectively.
We focus on the counterterm structure specific to the BHMV scheme induced by the
non-anticommuting Dirac γ5 matrix and the breaking of the Becchi-Rouet-Stora-Tyutin
(BRST) invariance. We find the singular counterterms and BRST symmetry restoring
counterterms needed for the complete renormalization of the models. This study is
based on the symmetry requirements coming from the Algebraic Renormalization and
regularized Quantum Action Principle. We find the Renormalization Group Equations
for the Yang-Mills model at the first order within this framework and compare the
procedure with standard symmetry-invariant regularizations. For chiral Quantum
Electrodynamics, we determine the full structure of symmetry-restoring counterterms
up to the 2-loop level and find no discrepancy from the 1-loop level structures. The
counterterms have interpretation in terms of restoration of Ward identities that play
the role of the benchmark for this 2-loop study. Hence we prove the correctness of
results within this framework, what is the property of a self-consistent scheme. We im-
pose future proposals for the application of the BMHV scheme to phenomenological studies.

Keywords: Anomalies in Field Theories, BRST Symmetry, Gauge Symmetry, Renormal-
ization, Perturbation Theory, Algebraic Renormalization, BMHV scheme, Chiral Theory,
Yang-Mills Model, Quantum Electrodynamics, Slavnov-Taylor identities, Ward identities,
Standard Model
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PROŠIRENI SAŽETAK

Standardni model fizike elementarnih čestica toliko uspješno1 objašnjava strukturu
materije da je već gotovo desetljećima duboko u tzv. eri preciznosti. Mjerljive opservable
precizno se procjenjuju na temelju obrade sada već otprilike dvjesto petabajta dostup-
nih podataka iz velikih svjetskih sudarivača čestica. Preciznost koja se stalno povećava
zahtijeva teorijski dobro postavljene proračune mjerljivih opservabli u visokim redovima
računa smetnje. Teorijski izračuni ovih preciznih opservabli u velikoj su mjeri provedeni u
dimenzionalnoj regularizaciji (DReg), regularizacijskoj shemi koja je dovela do revolucije
u proračunima na visokim redovima. DReg čuva simetrije vektorskih teorija, uključujući
Lorentzovu kovarijantnost, baždarnu i BRST invarijantnost i translacijske simetrije. Kada
se primjeni na vektorski model, ova shema divergencije proizašle iz računa dijagrama s
petljama izolira kao polove koje je moguće otkloniti uvođenjem lokalnih kontračlanova.
Zbog svoje teorijske konzistentnosti, praktičnosti i korisnih svojstava dosegla je široku
upotrebu u računima i implementirana u računalne kodove koji djelomično automatiziraju
račune u višim redovima.
Nažalost, kada dimenzionalnu regularizaciju primjenimo na klasu tzv. kiralnih teorija,
koje posjeduju asimetriju interakcije lijevih-kiralnih i desnih-kiralnih fermiona s bozonima,
javljaju se problemi. Naime, kiralne teorije sadrže matematičke objekte koji postoje strogo
u 4 dimenzije i njihova definicija ne može se proširiti u d-dimenzija što je jedan od zahti-
jeva dimenzionalne regularizacije. Primjeri takvih objekata su matrica γ5 i Levi-Civita
tenzor εµνρσ. Klasu kiralnih teorija na žalost ne možemo gurnuti pod tepih, budući da je
sam standardni model kiralna teorija u elektroslabom sektoru, budući da nabijeni bozoni
međudjeluju samo s lijevim fermionima. Drugim riječima, lijevi lepton je SU(2) dublet,
a desni lepton je singlet. Ovaj problem može se riješiti na nekoliko načina. Sljedeća tri
četverodimenzionalna svojstva

{γ5, γµ} = 0, Tr(γ5γµγνγργσ) = 4iεµνρσ, Tr(ab) = Tr(ba),
1Ipak, ne i savršeno. Nedostaje npr. tamna materija, bariogeneza i neutrinske mase s fenomenološkog

aspekta, i gravitacija s teorijskog.
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ne mogu biti istovremeno ispunjena u d dimenzija bez da se ne uvedu algebarske nekonzis-
tentnosti ili uvede nova algebra. Napuštanje bilo kojeg od ovih svojstava vodi na ra-
zličite renormalizacijske sheme. Jedina potpuno matematički konzistentna među njima
je Breitenlohner-Maison-’t Hooft-Veltmanova shema koja je dobro uspostavljena za sve
redove računa smetnje. Računi u ovoj shemi dovode do rezultata koji su samokonzistentni,
tj. njihova je provjera moguća unutar same sheme, što kod drugih izbora za dimenzijske
regularizacijske sheme nije slučaj. Zašto onda svi ne računaju u BMHV shemi? Razlog
leži u percipiranoj nepraktičnosti ove sheme, koja na žalost u međukoracima ruši baždarnu
i BRST simetriju koja se mora vratiti u sustav izračunom i uvođenjem tzv. konačnih kon-
tračlanova. Ova shema nema ni privilegiju multiplikativne renormalizabilnosti, što znači
da skup operatora polja koji postoji na drvastom nivou nije naslijeđen u višim redovima
računa smetnje, nego se u sustavu javljaju novi operatori. Oni uzrokuju različite vrste
anomalija koje je potrebno otkloniti u fizikalnom limesu razmatranih modela. Ipak, pot-
puno konzistentni proračuni u standardnom modelu trebali bi se temeljiti na konzistentnim
shemama koje daju rezultate provjerljive unutar same sheme i koji leže na fundamentalnim
simetrijama koje teorija posjeduje, što u konačnici povećava preciznost opservabli. Ova
doktorska teza opisuje BMHV renormalizaciju dva opća baždarna fundamentalna modela,
do drugog reda računa smetnje, što je prva takva sveobuhvatna studija kiralnog modela
u području. Zbog inicijalne ideje da se renormalizacija provodi nad cijelim modelom, u
ovoj tezi nastoje se iznijeti svi važni detalji potrebni za izračune. Pokazali smo da se
modeli daju renormalizirati konačnim lokalnim kontračlanovima i da su teorije sigurne od
anomalija.
U BMHV shemi ekstenzija u d dimenzija oblika d = 4 − 2ε provodi se tako da se d-
dimenzionalni prostor razdvaja na direktan zbroj 4-dimenzionalnog i ε-dimenzionalnog
prostora sa pripadajućim metrikama

d-dim. : gµν , 4-dim. : ḡµν , (−2ε)-dim. : ĝµν = gµν − ḡµν ,

i pri čemu γ5 više ne antikomutira sa γµ matricama nego slijedi pravilo

{γ5, γ
µ} = {γ5, γ̂

µ} = 2γ5γ̂
µ.

Za naše izračune neophodan je regularizirani princip kvantne akcije. Narušenje BRST
simetrije odgovara narušenju Slavnov-Taylorove jednadžbe, a regularizirani princip kvantne
akcije garantira nam da se ta narušenja mogu prikazati kao lokalno umetanje operatora
u tzv. efektivnu akciju. Efektivna akcija u sebi sadrži sve relevantne jednočestične ire-
ducibilne dijagrame potrebne za renormalizaciju. To znači da konačne kontračlanove koji
vraćaju BRST simetriju u sustav ne moramo tražiti tako da prvo izračunamo sve kon-
ačne dijelove amplituda i onda tražimo njihove BRST transformacije (što je, subjektivno
gledano, noćna mora za onu osobu koja te račune mora provesti), nego je dovoljno naći
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dijagrame sa spomenutim umetanjima i iz njih rekonstruirati kontračlanove koji će vratiti
simetriju u sustav. Napomenimo još da uporaba BMHV sheme proizvodi lažne ili irele-
vantne anomalije, koji se tako zovu jer ih je moguće otkloniti kontračlanovima. Ako se
jave anomalije kod kojih to nije moguće, što ćemo kasnije vidjeti, riječ je o esencijalnim ili
stvarnim anomalijama, koje se mogu otkloniti samo posebnim uvjetima koji obično daju
restrikcije nad grupnim strukturama ili nameću fermionski sadržaj modelu.
BMHV schemu prvo primjenjujemo na opći kiralni Yang-Millsov model sa bezmasenim
skalarima. Naravno, u 4 dimenzije model ima svojstvo BRST invarijantnosti. Kada ga
poopćavamo na d dimenzija, prvo primjećujemo da se 4-dimenzionalni identični objekti

ψiγ
µ
PRψj , ψiPLγ

µψj , ψiPLγ
µ
PRψj .

u poopćenju međusobno razlikuju (pri čemu biramo onaj koji daje najjednostavnije
kontračlanove). Drugo, mnogo važnije je da uvođenje lijevo-kiralnih fermiona u kinetički
član lagranžijana potreban da bi imali regularizirane propagatore proizvodi narušenje
BRST simetrije na drvastom nivou sa Feynmanovim pravilom

̂∆ ca

p2
ψjβ

p1

ψ
i
α

= g

2TR
a
ij

(
( /̂p1 + /̂p2) + ( /̂p1 − /̂p2)γ5

)
αβ

= gTR
a
ij

(
/̂p1PR + /̂p2PL

)
αβ
.

Standardna multiplikativna renormalizacija npr. vektorskih teorija rezultira u singularnim
(divergentnim) i konačnim kontračlanovima, koji se u višim redovima računa smetnje javl-
jaju kao redom divergentni i konačni predfaktori operatora akcije koji formiraju bazu već
na drvastom nivou. U BMHV shemi, osim ovih simetrijski invarijantnih kontračlanova,
javljaju se neinvarijantni kontračlanovi, koji isto mogu biti i divergentni i konačni, ali i
evanescentni, što znači da su njihovi pripadni renormalizacijski faktori pomnoženi novim
operatorima akcije koji iščezavaju u četverodimenzionalnom limesu. Svi divergentni kon-
tračlanovi pronađeni su za Yang-Millsov model na nivou jedne petlje. Osim standardnih,
pojavili su se i evanescentni kontračlanovi. U idućem koraku potrebno je pronaći konačne
kontračlanove koji slomljenu BRST simetriju vraćaju u model. Zahvaljujući regularizira-
nom principu kvantne akcije, to smo napravili preko izračuna svih dijagrama na jednoj
petlji koji imaju umetnut vrh koji se na drvastom nivou javlja za BRST narušenje. Ti
dijagrami svojim singularnim dijelom poništavaju singularne evanescentne dijelove akcije
koji ruše BRST simetriju, a njihov konačni dio služi za rekonstrukciju simetrijskih kon-
tračlanova. Jednom kada su svi kontračlanovi definirani, teorija je renormalizirana. Skup
kontračlanova koji vraćaju BRST simetriju u Yang-Millsov model na nivou jedne petlje u
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četiri dimenzije dan je sa

S
(1)
fct,restore = ~

16π2

{
g2S2(R)

6

(
5SGG + SGGG −

∫
d4 x Gaµ∂2Ga

µ

)
+ Y2(S)

3 SΦΦ

+g2 (TR)abcd
3

∫
d4 x

g2

4 G
a
µG

b µGc
νG

d ν − (CR)abmn
3

∫
d4 x

g2

2 G
a
µG

b µΦmΦn

+g2
(

1 + ξ − 1
6

)
C2(R)Sψψ −

((Y m
R )∗TRaY m

R )ij
2

∫
d4 x gψi /G

a
PRψj

−g2 ξC2(G)
4 (SR̄cψR + SRcψR)

}
,

gdje je (CR)abmn ≡ Tr
[
2{TRa, TRb}(Y m

R )∗Y n
R − TRa(Y m

R )∗TRbY n
R

]
. Izbor ovih kontračlanova

nije jedinstven, budući da dodavanje BRST invarijantnih konačnih kontračlanova ne
narušava ovu ponovno uspostavljenu simetriju. Esencijalne anomalije koje su također
pronađene u dijagramima s umetanjem otklonjene su odgovarajućim uvjetima. Za isti
model smo dodatno izračunali renormalizacijske grupne jednadžbe na nivou jedne petlje
preko BMHV procedure i pokazali da se rezultati poklapaju s onima koji bi proizišli iz
naivne sheme. Ipak, postoje naznake da je ovo svojstvo posljedica drastičnih pojednostavl-
jenja na nivou jedne petlje. Konačno, razmotrili smo ekvivalentan model s lijevo-kiralnim
fermionima, što je dio koji nam je potreban za daljnja fenomenološka istraživanja, i to
prvenstveno u standardnom modelu.
U fazi istraživanja kada je Yang-Millsov model potpuno renormaliziran na nivou jedne
petlje, vlastito teoretsko i praktično iskustvo s BMHV shemom dovelo nas je u fazu da
smo bili spremni prijeći na drugi red računa smetnje. Tu je u velikoj mjeri ulogu odi-
grala automatizacija - računalne kodove i algoritme uspjeli smo u velikoj mjeri prilagoditi
BMHV shemi. Idući model, koji se nameće kao neophodan za renormalizaciju standardnog
modela, jest kiralna elektrodinamika χQED, čiji je lagranžijan zadan sa

L = ıψRi /DijψRj −
1
4F

µνFµν −
1
2ξ (∂µAµ)2 − c̄∂2c+ ρµsAµ + R̄isψRi +RisψRi,

a nužan i dovoljan uvjet za poništenje esencijalnih anomalija dan je sa

Tr(Y3
R) = 0 .

Uporabom BMHV sheme BRST simetrija slomljena je već na drvastom nivou, analogno
slučaju u Yang-Millsovom modelu. Pronalazimo da uvjet renormalizabilnosti proizašao iz
Slavnov-Taylorovog identiteta za posljedicu daje Wardove identitete koji diktiraju odnose
među Greenovim funkcijama i da sljedeće mora biti zadovoljeno:
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1. Transverzalnost vlastite energije fotona,

ipν
δ2Γ̃ren

δAµ(p)δAν(−p)
= 0 ;

2. Transverzalnost višefotonskih vrhova, u ovom slučaju vrha sa četiri fotona,

i(p1 + p2 + p3)σ
δ4Γ̃ren

δAρ(p3)δAν(p2)δAµ(p1)δAσ(−p1 − p2 − p3) = 0 ;

3. Veza fermionske vlastite energije i fermion-foton interakcije za iščezavajući fotonski
impuls q = 0,

− ieYR
∂

∂pµ

δ2Γ̃ren

δψ(−p)δψ(p)
+ i

δ3Γ̃ren

δAµ(0)δψ(−p)δψ(p)
= 0 .

Za kvantnu elektrodinamiku, Wardovi identitieti u praktičnom su smislu zlatni standard
provjere točnosti kontračlanova koje ćemo izračunati na nivou dvije petlje. Analizira-
jući renormalizaciju u višim redovima smetnje preko algebarskih metoda, dolazimo do
renormalizacijskog zahtjeva koji mora vrijediti za sve redove računa smetnje,

LIMd→4

(
∆̂ · ΓiDReg +

i−1∑
k=1

∆k
ct · Γi−kDReg + ∆i

ct

)
= 0 .

Izračunata je singularna kontračlanska akcija na nivou jedne petlje,

S1
sct = −~ e

2

16π2ε

2Tr(Y2
R)

3 SAA + ξ
∑
j

(YjR)2
(
Sj
ψψR

+ Sj
ψRAψR

)

+Tr(Y2
R)

3

∫
dd x 1

2Āµ∂̂
2Āµ

)
,

i konačna akcija koja na istom nivou vraća BRST simetriju u sustav,

S1
fct = ~

16π2

∫
d4 x

−e2Tr(Y2
R)

6 Āµ∂
2
Āµ + e4Tr(Y4

R)
12 ĀµĀ

µĀνĀ
ν

+ 5 + ξ

6 e2∑
j

(YjR)2ıψjγ
µ∂µPRψj

 ,
koja je konstruirana iz dijagrama sa umetanjima, koji proizlaze iz regulariziranog principa
kvantne akcije. Analogno, ovaj put uz mnogo bogatiju strukturu i veći broj dijagrama,
kao i implementaciju novih tehnika u račun, izračunata je singularna akcija na nivou dvije
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petlje,

S2
sct = −

 ~ e2

16π2

2
Tr(Y4

R)
3

[2
ε
SAA +

( 1
4ε2 −

17
48ε

) ∫
dd x Aµ∂̂2A

µ
]

+
 ~ e2

16π2

2∑
j

(YjR)2
[( 1

2ε2 + 17
12ε

)
(YjR)2 − 1

9εTr(Y
2
R)
] (
Sj
ψψR

+ Sj
ψRAψR

)

−

 ~ e2

16π2

2∑
j

(YjR)2

3ε

(5
2(YjR)2 − 2

3Tr(Y
2
R)
)
Sj
ψψR

.

Njezin evaescentni dio prirodno će se poništiti kada iz dijagrama s umetanjima rekon-
struiramo divergentni evanescentni dio, što daje dodatnu provjeru na naše račune. Kon-
ačno pronalazimo i konačnu kontračlansku akciju na nivou dvije petlje koja vraća BRST
simetriju i time zatvara renormalizaciju teorije u drugom redu. Unatoč velikom broju
dijagrama koji su komplicirani na individualnom nivou, konačne sume i rekonstrukcija
daju relativno jednostavan izraz,

S2
fct =

(
~

16π2

)2 ∫
d4 x e4

{
Tr(Y4

R)11
48Āµ∂

2
Āµ + 3 e2Tr(Y6

R)
8 ĀµĀ

µĀνĀ
ν

−
∑
j

(YjR)2
(127

36 (YjR)2 − 1
27Tr(Y

2
R)
)(

ψji /̄∂ PR ψj

)
+ BRST-simetrični članovi ,

čime vidimo da se struktura kontračlanova na razini dvije petlje nije promijenila u odnosu
na prvi red računa smetnje. Rezultati su potvrđeni provjerom Wardovih identiteta.
U idućim fazama istraživanja planirano je BMHV shemu primijeniti na Yang-Millsov
model na razini dvije petlje, na opći U(1) model i SU(2) model s primjenom na
standardni model do drugog reda računa smetnje, uključujući i renormalizacijske grupne
jednadžbe. To nas dovodi do rezultata koji su konzistentni i nema prostora za narušenja
simetrije, anomalije ili nekonzistentnosti proizišle iz odabira renormalizacijske sheme,
s konačnim ciljem primjene i upotrebe sheme na široki spektar fenomenoloških istraživanja.

Ključne riječi: anomalije u teoriji polja, BRST simetrija, baždarna simetrija, renormal-
izacija, perturbacijska teorija, algebarska renormalizacija, BMHV shema, kiralna teorija,
Yang-Millsov model, kvantna elektrodinamika, Slavnov-Taylorovi identiteti, Wardovi iden-
titieti, standardni model
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CHAPTER 1

INTRODUCTION

Modern particle physics, as we know it today, was established in the 20th century,
where the first half was devoted to the foundation of quantum mechanics that led, after
unification with special relativity, to modern quantum field theories. The second half of
the last century singled out one particular quantum field theory, known as the electroweak
Standard Model (SM), as the best available theoretical description of particles and forces
found in nature. The Standard Model has been extremely successful in the prediction
and interpretation of experimental data but lacks to encompass some possible beyond SM
indications and gravity. From this starting point, modern particle physics theoreticians
can proceed in two directions: follow increasing precision of the experiment to achieve
high-precision higher order results for SM observables, or impose and investigate beyond
SM theories to provide their own predictions for those observables. At the end of the day,
experiments will decide, and so far, they are almost always on the SM side.

Precise predictions in the SM wouldn’t be possible without perturbation theory and
renormalizability. Fortunately, relevant coupling constants in nature are small enough
in their value that perturbative expansion is possible. Perturbative expansion implies
that observables are calculated as expectation values of time-ordered products of fields
expanded in terms of numbers of loops or in powers of ~. The physical information of
scattering process is extracted via S-matrix, the operator valued formal power series in
the coupling constants g, that is required to satisfy the following properties [1]:

1. Poincaré invariance:
U(a,Λ)S(g)U−1(a,Λ) = S(a,Λg),

where U(a,Λ) is the representation of the Poincaré group acting in Fock space and
transformation a,Λg(x) of the coupling constant is g(Λ−1(x− a)).

2. S-matrix is invertible i.e. S−1(g) exists, and is continuous with the respect of the
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coupling constant g.

3. S-matrix in the absence of interaction is

S(0) = 1.

4. S-matrix is unitary operator,
S−1(g) = S∗(g).

5. For the closure of the future light cone V̄ + and the support of the causal shadow of
G, causality holds:

S(G+ g) = S(G)S(g) if supp g ∩ supp (G+ V̄ +) = /0.

Higher loop order calculations result in increasing precision of the observables, unfortu-
nately with increasing complexity. Thanks to the Dimensional Regularization scheme
(DReg), precise calculation of observables is accessible in, relatively speaking, a simple
manner. DReg preserves the BRST symmetry of vector-like theories and leads to
multiplicative renormalization of the tree-level action.

The formal proofs of SM renormalizability rely on the assumption that symmetry
preserving and gauge-invariant regularization exists, but as stated, DReg preserves
symmetries and gauge invariance of vector-like theories. SM is not a vector-like theory
due to the chiral structure of the fermions involved, so its treatment in dimensional
regularization is not simple nor straightforward. Nevertheless, we still want to keep
our calculation procedure in the DReg scheme due to its simplicity, accessibility, and
theoretical rigor. The price we pay, as we will explain in detail in this thesis, is the
breaking of symmetries that have to be restored order by order in perturbation expansion.

As we have already stated and emphasize again, the existence of chiral fermions is a
empirical fact of nature and hence implemented in SM fermion content. This leads to the
phenomenon of chiral anomalies [2, 3] manifested e.g. in pion decays or baryon number
non-conservation in the Standard model (SM). Gauge theories involving chiral fermions
are only well-defined in absence of chiral gauge anomalies, which is assured thanks to
the Adler-Bardeen theorem [4]. In a practical sense, chiral anomalies are related to the
impossibility to find a chiral symmetry preserving regularization scheme.

In practical calculations, Dimensional Regularization (DReg) [5–9] is by far the most
used scheme. In chiral theories, like the SM, the algebraic properties that the matrix γ5

has in 4 dimensions cannot be maintained without introducing algebraic inconsistencies,
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or alternatively, without breaking of chiral gauge symmetries [10]. If one uses so called
"Naive Dimensional Regularization" i.e. extends anticommuting property

{γµ, γ5} = 0, (1.0.1)

to d-dimensions, soon finds that property is in the inconsistence with

lim
d→4

Tr(γµγνγργσγ5) = 4iεµνρσ. (1.0.2)

Despite algebraic inconsistencies, a large set of treatments of γ5 in DReg has been
proposed which retain the anticommutativity of γ5 in d 6= 4 dimensions; these treatments
are typically either defined only for subclasses of diagrams [10,11] or for specific objects
like fermion traces [12] or give up other properties such as cyclicity of the trace [13–15].
The anticommutative definition of γ5 is advantageous in practical calculations; however,
these anticommuting schemes have not reached the same level of mathematical rigor as the
original scheme by ‘t Hooft and Veltman [8] (see also Refs. [16–18]), for which perturbative
all-order consistency with fundamental field theoretical properties has been prooved by
Breitenlohner and Maison [19–22].

In the work this thesis is based on, we decided to keep uncompromised mathematical
rigor using the “Breitenlohner–Maison–’t Hooft–Veltman” (BMHV) scheme. In this
scheme, γ5 loses non-anticommuting property in d dimensions, but the scheme is
rigorously established to all orders of perturbation theory, ensuring renormalizability.
Gauge invariance is broken in intermediate steps but can be restored order by order
by adding suitable counterterms, i.e. gain in mathematical rigor is charged by an
increase in complexity of already involved calculations. For this reason, the usual
procedure of generating counterterms by a renormalization transformation is not sufficient
and multiplicative renormalization no longer holds. Use of BMHV scheme results in
three additional types of counterterms along with the ones in standard multiplicative
renormalization: (i) UV divergent counterterms cancelling “evanescent” divergences that
emerge from this scheme, (ii) the finite symmetry-restoring counterterms which restore
BRST (and underlying gauge) invariance, and (iii) finite BRST invariant evanescent
counterterms, which can optionally be added without spoiling the restored symmetry.
The existence of local symmetry-restoring counterterms follows in complete generality
from the renormalizability of the theory, which can be established in scheme independent
way e.g. using purely algebraic methods [1, 23–26]. To highlight the previous work in
the field, symmetry-restoring counterterms for the BMHV scheme have been considered
already for gauge theories without scalar fields [27] and for abelian gauge theories [28] up
to 1-loop level, in the evaluation of flavor-changing neutral processes at 1-loop [29], for
supersymmetric QED [30], and different practical strategies for their determination have
been developed e.g. in Refs. [27, 31–33].
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Due to the facts stated above, it is worthwhile or even inevitable for the calculations
of observables in SM and beyond, to apply BMHV scheme to general chiral gauge theories
without compromises and work out its properties in detail. In the first part of this thesis,
we focus on the 1-loop level of a general gauge theory with purely right-handed chiral
fermions and evaluate the full counterterm structure that will be used as the foundation for
the generalization to the full electroweak Standard Model. We expose the technical details
of the BMHV scheme and the determination of the counterterms in a way that is familiar
to phenomenology practitioners, with the hope to help bridge the gap between purely
algebraic approaches and phenomenological applications. Our study is, among many other
reasons, motivated by the increasing need for high-precision (multi-loop) electroweak
calculations, discussed e.g. in Ref. [34]. In the first part of this thesis main goal is,
therefore, to present detailed discussions and 1-loop results which will be vital ingredients
in analyses of the BMHV scheme for 2-loop calculations in chiral gauge theories, pre-
sented in the second part of this thesis. We will present also this 2-loop calculation in detail.

One can argue that the origin of our problems lies in the forcing of treatment of
strictly 4-dimensional objects like γ5 in d dimensions, i.e. one could think that if we
abandon DReg with all its practicality and multi-loop convenience, and choose some
strictly 4-dimensional scheme, we would not get the symmetry breaking that must be
restored. Unfortunately, this is not the case. Let’s explore several alternative options. If
one discards continuous space-time dimensions, and instead uses quantum field theories
on the lattice, it is shown that chiral invariance is preserved for both abelian and
nonabelian theories on lattice [35]. Back to continuum limit, the other option is the use of
practically tedious BPHZ framework that is mathematically well established but breaks
the symmetry in intermediate steps where [36] is the example of all-orders SM study.
The work of [37] has considered a few strictly 4-dimensional schemes as alternatives to
dimensional regularization, in the hope that these schemes might give practical advantages
with respect to the treatment of γ5. However, this study find that these fixed-dimension
methods face the same difficulties as the different versions of dimensional regularization.
Ref. [38] considers γ5 in various versions of dimensional schemes, including the so-called
four-dimensional formulation (FDF) of DReg [39]; this reference showed that FDF may
be understood as a particularly efficient implementation of the BMHV scheme at the
1-loop level, at least for the four-dimensional helicity version of DReg [38].

Despite the special status the BMHV scheme enjoys among regularization schemes,
at the beginning of research presented in this thesis, the scheme was thoroughly used
only in a general chiral gauge theory without scalars [27], and in an Abelian gauge
theory [28], both at the 1-loop level. Particular uses include an application in a range
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of calculations and practical procedures, see e.g. [40–42]; still it was often considered as
rather impractical and less preferable than its alternatives, see e.g. Refs. [43, 44]. But
given the result of Ref. [38], the general computer-algebraic progress, and the ambiguities
present in other schemes, we decided a new thorough and general study of the BMHV
scheme was timely and crucial, among other things, for breakthrough beyond 1-loop level.

The structure of this thesis is as follows. In Chapter 2 we introduce the reader to the
generalities in dimensional regularization and we set up BMHV algebra, and in Chapter 3
we give brief introduction to algebraic renormalization needed for renormalizability study
of chiral theories. In Chapter 4 we define in detail the chiral gauge theory we consider;
we provide formulations using Weyl spinors and using Dirac spinors; the latter is the one
we promote to d dimensions. We exhibit in detail the symmetry properties with respect
to gauge invariance, BRST invariance, and the functional form of the Slavnov-Taylor
identity and its breaking in d dimensions. Chapter 5 begins the study of renormalization
in the BMHV scheme. It first collects known results from the standard case where gauge
invariance is preserved by the regularization; then it describes the differences appearing
in the BMHV scheme.

The central results for renormalization of chiral Yang-Mills model are presented in
Chapter 6 and Chapter 7. The UV divergent, singular counterterms (regular and evanes-
cent) are computed and discussed in Chapter 6. The symmetry-restoring counterterms
are determined in Chapter 7 using the procedure based on the Bonneau identities [45,46].

In Chapter 8 and Chapter 9 we evaluate the 1-loop RGEs for chiral Yang-Mills model
and show that the obtained results are the standard, known ones. We focus on explaining
how these results are obtained in spite of the necessity of non-standard divergent and
finite counterterms. These two sections thus provide a check of the procedure and prepare
multi-loop applications. Both sections use different methods to derive the β functions,
and each case leads to valuable insights on expected issues in 2-loop BMHV calculations.

In Chapter 10 we expose the changes in our main results that would appear if one
uses a left-handed model instead of a right-handed one. This gives another missing part
for phenomenological Standard Model study. The study of chiral Yang-Mills model was
published in [47].

The second part of this thesis goes beyond the 1-loop level. Starting from the the case
of an abelian gauge theory with chiral fermions, a chiral QED (“χQED”) model, we apply
BMHV scheme once again to obtain proper renormalization up to 2-loop level.

We determined the full 2-loop structure of the special counterterms in the BMHV
scheme, i.e. the determine evanescent UV divergences, the deviations from parameter and
field renormalization, and ultimately the symmetry-restoring counterterms.

In Chapter 11 we define in detail abelian gauge theory with chiral fermions and its
extension to d dimensions, and we also set up the Slavnov-Taylor identity corresponding to
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BRST invariance and show that it is already broken at tree-level in the BMHV scheme as it
was for the Yang-Mills case. Chapter 12 summarizes the general strategy of renormalization
beyond the 1-loop level and lays out the general procedure for finding UV divergent
and finite symmetry-restoring counterterms. All-order symmetry requirements are then
easily applied to the specific loop order we need. Chapters 13 and 14 contain the 1-loop
counterterm results for this model. Both the singular, including the evanescent ones, as
well as the BRST-restoring finite counterterms can also be derived by particularizing to
this model our previously obtained generic results we presented in Chapters 6 and 7.

Chapter 15 presents detailed results for the UV divergences of subrenormalized 2-
loop Green functions, and determines the required singular 2-loop counterterms and their
relationship to field and parameter renormalization, for the first time at the 2-loop level.
Chapter 16 presents first the evaluation of the 2-loop breaking of the Slavnov-Taylor
identity by the regularization, using the method described in Chapter 12 and Ref. [47].
Also, 2-loop symmetry-restoring counterterms are presented. We also provide a consistency
check by explicitly evaluating the analog of the usual QED Ward identities for two-,
three- and four-point functions and checking that they are correctly restored as well,
demonstrating the correctness of our results, which is of great importance since the 2-loop
chiral-model result in BMHV scheme is unknown besides our work. The results for this
chiral QED study were published in [48]. In Chapter 17 we discuss the chirality problem
in the context of physical observables and make a future proposal for this research. We
summarize and conclude in the last section.
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CHAPTER 2

DIMENSIONAL REGULARIZATION IN BMHV SCHEME

No one can deny that dimensional regularization (DReg) played one of the most
important roles in leading particle physics to the precision era we witness today. When it
was first realized that perturbation theory above the lowest order introduces the divergences
and calculations blow up, numerous ways to isolate and cancel those divergences came
to existence. As we have already said, the discovery of equivalence among those schemes
helped to establish algebraic renormalization.

2.1 | General properties of dimensional regularization

For dimensional regularization, the scheme that treats divergent integrals as integrals
over d-dimensional momenta, it turns out that those singularities of graphs are simple
poles in d − 4 that can be isolated by performing Laurent expansion. The scheme is
both mathematically rigorous, practical, and widely used today, especially in computer
packages applied for the automatization of calculations. The dimensional continuation of
integrals is defined by this conditions [49]

∫
ddpF (p+ q) =

∫
ddpF (p) , (2.1.1a)∫

ddpF (λp) = |λ|−d
∫
ddpF (p) , (2.1.1b)∫

ddp dd
′
q f(p)g(q) =

∫
ddp f(p)

∫
dd

′
q g(q) , (2.1.1c)

i.e. properties of translation, dilatation, and factorization, which is already enough to
formalize scalar theory. Today the basis of these scalar integrals is incorporated in compu-
tational packages e.g. Tarcer [50] to the 2-loop level. However, we must also implement
tensor structures, but fortunately any diagram that is not scalar can be expanded on a
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set of fixed tensors with scalar coefficients, like
∫
ddp pµpν f(p2, q2, p · q) = A(q2)qµqν +B(q2)δµν , (2.1.2)

where A and B are part of the basis of scalar integrals, that is implemented in the
calculation packages. The practicality of the scheme comes from the fact that it explicitly
preserves symmetries e.g. Lorentz covariance or gauge and BRST invariance, but this
preservation holds for vector-like theories only. The Lorentz-covariant objects like scalar,
vector and spinor fields, momenta, derivatives, and spinor matrices are extended in a
formal “d”-dimensional space. Unfortunately, in chiral theories intrinsically 4-dimensional
objects exist, like the γ5 Dirac matrix and the Levi-Civita εµνρσ, that can not be extended
to d-dimensions. Chiral theories usually exhibit gauge anomalies (the Adler-Bell-Jackiw
anomaly) that are generated by the presence of these objects, as well as by their fermion
content. The existence of strictly 4-dimensional objects can be solved in many ways with
some examples mentioned in the introduction. However, we proceed with the BMHV
scheme willing to pay the price for mathematical rigor we preserve by this choice.

2.2 | BMHV d-dimensional covariants

To prepare the playground for 4-dimensional objects in d-dimensional scheme, the
formal d-dimensional space is separated into 4-dimensional and d− 4 ≡ −2ε-dimensional
subspaces as direct sum. Lorentz covariants extended into this d-dimensional space pos-
sess 4-dimensional (denoted by bars: · ) and (−2ε)-dimensional (also called “evanescent”,
denoted by hats: ·̂ ) components. Metric tensors on these subspaces are defined as

d-dim. : gµν , 4-dim. : ḡµν , (−2ε)-dim. : ĝµν = gµν − ḡµν . (2.2.1)

The existence of these objects and their inverse (with upper indices) has been shown by
explicit construction in Ref. [51]; they are defined such that

gµνg
νµ = d , ḡµν ḡ

νµ = 4 , ĝµν ĝ
νµ = d− 4 ≡ −2ε , (2.2.2)

and also

gµνg
νρ = g ρµ ≡ δ ρµ , ḡµν ḡ

νρ = ḡ ρµ = ḡµνg
νρ = gµν ḡ

νρ , (2.2.3)
ĝµν ĝ

νρ = ĝ ρµ = ĝµνg
νρ = gµν ĝ

νρ , ḡµν ĝ
νρ = 0 = ĝµν ḡ

νρ , (2.2.4)

since the quasi-d-dimensional space is a direct sum of the actual 4-dimensional space and
a quasi-(−2ε)-dimensional space. Our convention for the 4-dimensional metric signature is
mostly minus, i.e. (+1,−1,−1,−1). When being extended to the d-dimensional formalism,
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Lorentz indices become formal symbols that cannot take any particular value, still they
obey Einstein summation convention for repeated indices, while lowering and raising
indices is done using the metric tensors. Notice that the metric tensors act similarly as
projectors onto these different subspaces. As an illustration for 4-vectors, the following
behaviour is exhibited:

kµ = gµνkν , kµ = gµνk
ν , k̄µ = ḡµνk

ν , k̂µ = ĝµνk
ν , k2 = k̄2 + k̂2 , (2.2.5)

k2 = kµkµ = gµνkνkµ = gµνk
νkµ , k̄2 = k̄µk̄µ = ḡµνkνkµ = ḡµνk

νkµ , (2.2.6)
k̂2 = k̂µk̂µ = ĝµνkνkµ = ĝµνk

νkµ , ḡµν k̂
µ = 0 , ĝµν k̄

µ = 0 , (2.2.7)

with similar extensions due to the fact that the different metrics, and as extension, the
different contracted indices, project onto their associated subspaces.

For the usual γµ matrices extended to d-dimensional space, one can similarly define
their 4-dimensional and (−2ε)-dimensional versions γ̄µ and γ̂µ respectively, including
the anticommutation relations between matrices of same space-time dimensionality, the
anticommutation relations between matrices of different space-time dimensionalities, their
contractions and their traces:

{γµ, γν} = 2gµν1 , {γµ, γ̄ν} = {γ̄µ, γ̄ν} = 2ḡµν1 , γµγ
µ = d 1 , (2.2.8a)

{γ̄µ, γ̂ν} = 0 , {γµ, γ̂ν} = {γ̂µ, γ̂ν} = 2ĝµν1 , γµγ̄
µ = γ̄µγ̄

µ = 4 1 , (2.2.8b)
γµγ̂

µ = γ̂µγ̂
µ = (d− 4)1 , γ̄µγ̂

µ = 0 , (2.2.8c)
Trγµ = 0 , Trγ̄µ = 0 , Trγ̂µ = 0 . (2.2.8d)

The real question is now how to define in DReg the Levi-Civita symbol ε and the
γ5 matrix, which are intrinsically 4-dimensional quantities. In this work we adopt the
“Breitenlohner–Maison–’t Hooft–Veltman” (BMHV) scheme for treating γ5 and εµνρσ, whose
consistency in perturbative renormalization has been proved by Breitenlohner and Maison
[19–22], and that is able to reproduce the ABJ anomaly [16–18, 52, 53]. The ε symbol is
defined by its product with the metric tensor, and the product of two ε symbols together,

g µ1
µ εµ1µ2µ3µ4 = εµµ2µ3µ4 , (2.2.9)

εµ1µ2µ3µ4εν1ν2ν3ν4 = −
∑
π∈S4

sgn (π)
4∏
i=1

ḡµiνπ(i) , (2.2.10)

from which its other properties can be obtained,

εµ1µ2µ3µ4 = sgn (π) εµπ(1)µπ(2)µπ(3)µπ(4) ,∑
π∈S5

sgn (π) εµπ(1)µπ(2)µπ(3)µπ(4) ḡ
µπ(5)ν = 0 . (2.2.11)
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Here, π is a permutation belonging to the permutation group of n elements Sn indicated
in the corresponding expression. Here we use the ε0123 = +1 convention. The γ5 matrix
is defined to be anticommuting with Dirac matrices in the 4-dimensional subspace, and
commuting in the (−2ε)-dimensional subspace:

{γ5, γ̄
µ} = 0 , [γ5, γ̂

µ] = 0 , {γ5, γ
µ} = {γ5, γ̂

µ} = 2γ5γ̂
µ , [γ5, γ

µ] = [γ5, γ̄
µ] = 2γ5γ̄

µ

(2.2.12)

and γ5 otherwise keeps its usual 4-dimensional behaviour. The boxed equation shows the
direct difference from the naive scheme where this anticommutator vanishes. The last of
the equations (2.2.12) follows from the explicit definition of γ5, and its square,

γ5 = −i4! εµνρσγ
µγνγργσ , γ2

5 = 1 , (2.2.13)

leading to the trace important to realize the Adler-Bell-Jackiw (ABJ) anomaly

Tr({γα, γ5}γαγµγνγργσ) = 8i(d− 4)εµνρσ . (2.2.14)

2.2.1 | Amplitudes in d dimensions and the 4-dimensional limit

Once an amplitude has been defined, its evaluation in d dimensions is performed using
standard techniques for loop calculations. Its actual Laurent expansion in 4 − d = 2ε
is determined only after having completely reduced and simplified its Lorentz structures:
fully evaluating Dirac γ traces (cyclicity of the trace is of course valid in this scheme),
fully contracting any vector, tensor and Levi-Civita symbol using the properties defined
above. Any γ5 matrix and pair of ε symbols can be further removed by using Eqs. (2.2.9)
and (2.2.13). This defines a unique “normal form” [19] for the amplitude.

This allows one to define the regularized version of the amplitude via its Laurent
expansion in 4− d = 2ε. From there one can define its divergent part and the associated
counterterms, as well as its finite part and its evanescent part that may be neglected in
the d→ 4 limit. The renormalized value of an amplitude is obtained after performing all
the necessary subtractions of the divergences of its sub-diagrams, and the resulting finite
expression is interpreted in the physical 4-dimensional space by setting all quantities to
their 4-dimensional values, i.e. first taking the d→ 4 limit and then, setting all remaining
evanescent objects to zero. This operation will be denoted by LIMd→4 or as the big limit
in the rest of this thesis.

2.2.2 | Charge conjugation in d dimensions

Phenomenological models may contain, for example in their Yukawa sector, fermions
as well as their corresponding charge-conjugated partners. This is precisely the case in
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the chiral models we study. Thus the question concerning the definition of the charge-
conjugation operation in the framework of dimensional regularization arises.

In usual integer dimensions the charge-conjugation operation Ĉ can always be defined,
and a corresponding matrix representation C explicitly constructed. For example, in
4 dimensions such a matrix, with antihermitean property, can be constructed as to be
numerically equal to C = ıγ0γ2, and satisfies the usual relations:

C−1γµC = −γµT , C−1 = C† = CT , CT = −C , and: C−1γ5C = γT5 . (2.2.15)

In even dimensions one can construct another matrix representation that provides
C−1γµC = +γµT instead, while in odd dimensions either one or the other representa-
tion can exist at the same time: for example in d = 5 we can only construct instead
C−1γµC = +γµT since now γ5 is part of the corresponding Clifford algebra. Note also
that the sign in CT = −C does change depending on the dimensionality of the space-time
considered.

One can wonder whether in the continuous dimensionality of the dimensional regular-
ization such a construction is still possible. As it turns out, an explicit construction via
a matrix representation has been provided in Appendix A of [54], based on the construc-
tion of Dirac γ matrices in d dimensions given by Collins in [51]. Alternatively, one can
define the charge-conjugation operation based only on its properties on the set of Dirac
matrices and on its action on the d-dimensional spinors. For this purpose, since we work
in dimension d = 4 − 2ε around 4, we postulate that the relations given in Eq. (2.2.15)
also hold in d ≈ 4 (see Appendix A of [55] for a motivation1). Obviously, this would not
be true anymore if d was to be pushed to a different integer dimension.

Our final choice for the charge-conjugation matrix in d ≈ 4 dimension employs the
same definitions as in 4 dimensions Eq. (2.2.15), together with the following properties:

C−1ΓC = ηΓΓT ⇒ CΓTC−1 = ηΓΓ , with ηΓ =

+1 for Γ = 1 , γ5 ,

−1 for Γ = γµ , σµν ,
(2.2.16)

and in the presence of anticommuting fermions (see also Appendix G.1 of [57]):

ĈΨĈ−1 ≡ ΨC = CΨT
, (ΨC)C = Ψ , ĈΨĈ−1 ≡ ΨC = −ΨTC−1 = ΨC , (2.2.17)

ΨC

i ΓΨC
j = −ΨT

i C
−1ΓCΨT

j = ΨjCΓTC−1Ψi = ηΓΨjΓΨi . (2.2.18)

Note that employing Eq. (2.2.16) in d dimensions has an extra subtlety: while it is true
1As an alternative definition, Appendix A of [56] instead postulates a different action of the charge-

conjugation operation, on a product of Dirac matrices, as being equal to minus the product of the same
Dirac matrices taken in the opposite order, and not transposed. This latter definition is still satisfactory
since ultimately, in most of the resulting amplitudes, the internal gamma matrices attached to loops
appear inside traces.
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that when using these definitions in 4 dimensions, we have: C−1(γµγ5)C = +(γµγ5)T , it
is not so in d dimensions in the BMHV scheme due to the γ5 matrix:

C−1(γµγ5)C = (C−1γµC)(C−1γ5C) = −(γµ)TγT5 = −(γ5γ
µ)T = (γµγ5)T − (γ̂µγ5)T ,

(2.2.19)
while, of course, we have:

C−1(−γ5γ
µ)C = γT5 (γµ)T = (γµγ5)T . (2.2.20)

With the covariants, γ algebra, and charge conjugation operation defined, we can now
proceed to the renormalization in the BMHV scheme. Due to the aim of doing the
complete study completely applicable to models in phenomenology, the natural choice is
the general gauge model with the scalar fields, since it is the key ingredient of the Standard
Model. Following this logic, the reader will later see that the next model of our interest
self-imposes.
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CHAPTER 3

ALGEBRAIC RENORMALIZATION

Today the quantum field theory is the main framework for describing the structure
of matter. Most successful examples like quantum electrodynamics, quantum chromo-
dynamics, and standard model that incorporates both of them, brought particle physics
to today’s precision era. However, since the beginnings of quantum field theory, it was
clear that it suffers from a dangerous disease, the problem of ultraviolet (UV) divergences.
As soon as computation goes beyond the lowest order of perturbation theory, the result
becomes divergent, since the momenta that appear in the loops of diagrams must be
integrated over all possible options, including the ones at high energies that blow up the
calculation. The subtraction of these divergences led to 30 years long research starting
from the 1940s that set up a rigorous mathematical and theoretical framework known
today as renormalization theory. While this solved problem of divergences, it also resulted
in spectacular agreements of theory and experiment, and general proof of renormalizability
of non-abelian gauge theories [8]. All present theories used for the description of nature
must pass the renormalizability criteria. UV subtraction was performed in many different
regularization schemes, that are in principle equivalent. It was realized that their com-
mon properties come from the so-called quantum action principle. Becchi, Rouet, and
Stora [23] then figured out that the quantum action principle gives purely algebraic proof
for renormalizability of theory with the set of local or rigid invariances. This means that
symmetry properties of classical action can be implemented to all orders of perturbation
expansion if the theory itself is renormalizable. This we recognize as a revolutionary result
since now we no longer need a regularization scheme preserving the symmetries, they can
be broken (in a setting controlled by quantum action principle) and restored by proper
counterterms. Algebraic renormalization includes all the frameworks for establishing the
renormalizability of theory and restoring the symmetries, that depend only on the theory
itself and are independent of schemes used for subtraction. Now, when we recall that
theories where no invariant regularization is known not only exist but the standard model
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itself is chiral, the algebraic renormalization becomes crucial. We briefly introduce the
reader to the key aspects needed for our study.

3.1 | The generating functionals and effective action

All relevant physical quantities, like the field operators or S-matrix elements can be
computed from Green functions, i.e. vacuum expectation values of time-ordered products
of field operators, given by the Gell-Mann Low formula [1],

〈ΩTφ(x1)...φ(xn) Ω〉 =∑∞
m=0 i

m/m!
∫
d4x1...d

4xm〈0|TM1(x1)...Mn(xn)Lbare(x1, g)...Lbare(xm, g)|0〉∑∞
m=0 i

m/m!
∫
d4x1...d4xm〈0|TLbare(x1, g)...Lbare(xm, g)|0〉 ,

(3.1.1)

where Lbare(xm, g) is bare Lagrangian of the theory, andMi(xi) are some local polynomials
in the fields and derivatives. Green functions can be collected in the generating functional
Z(J), a formal series in so-called classical sources J(xi) as

Z(J) =
∞∑
n=1

(i/~)n
n!

∫
d4x1...d

4xnJ(x1)...J(xn)〈ΩTφ(x1)...φ(xn) Ω〉, (3.1.2)

where we consider perturbation expansion in the powers of ~, and emphasize that Green
function contains all Feynman graphs1. If we instead want the functional that contains
only the connected Feynman graphs, it is given by connected functional W(J) defined via
generating functional as2

Z(J) = e
i
~W(J), (3.1.3)

and given by the relation [25]

W(J) =
∞∑
n=1

(i/~)(n−1)

n!

∫
d4x1...d

4xnJ(x1)...J(xn)〈ΩTφ(x1)...φ(xn) Ω〉c, (3.1.4)

where Green functions are now connected and defined order by order by the sum of all
possible connected Feynman graphs. Central functional needed for our study is now
Legendre transform of connected generating functional,

Γ(φ) =W(J)−
∫
d4xJ(x)φ(x)

∣∣∣
J(x)=− δΓ

δφ(x)
with δΓ

δφ(x)

∣∣∣∣∣
φ=0

= 0, (3.1.5)

or in the inverted version

W(J) = Γ(φ) +
∫
d4xJ(x)φ(x)

∣∣∣
φ(x)= δW

δJ(x)
with δW

δJ(x)

∣∣∣∣∣
J=0

= 0. (3.1.6)

1All means disconnected, too.
2Notice the analogy with the free energy in statistical physics.
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The generating functional of the vertex functions Γ(φ) [25] better known as the effective
action is now given by

Γ(φ) =
∞∑
n=2

i

n!

∫
d4x1...d

4xnφ(x1)...φ(xn)〈ΩTφ(x1)...φ(xn) Ω〉1PI , (3.1.7)

where 1PI in the Green function index denotes 1-particle irreducible Feynman graphs,
elementary objects that must be calculated for each order of perturbation theory and that
incorporate all the quantum corrections. It is a functional of “classical fields” defined as
the vacuum expectation values of their corresponding field operators in presence of suitable
external currents. Notice that the sum starts from 2 since tadpoles can be eliminated [58].
Another important property proved in [25] is that effective action can be written as a
power series in ~ as

Γ(φ) =
∞∑
n=0

~nΓn = S0(φ) + Γ1(φ) + ... (3.1.8)

where S0 is the classical action of the theory.
All the above relations are general and may be used both for the theory with or without
counterterms. Now we introduce specific notation for regularized and (partially or fully)
renormalized quantities, since we will need this in our study. In the context of DReg, the
effective action is first defined for d 6= 4 and obtained from genuine loop diagrams and
diagrams involving counterterm insertions. At the e.g. 1-loop level we use the notation
Γ(1) for the effective action including tree-level and genuine 1-loop contributions Γ1, but
no counterterms; the object Γ(1)

DReg contains also 1-loop counterterms. Hence, we can write

Γ(1) = S0 + Γ1 , (3.1.9a)
Γ(1)
DReg = Γ(1) + Sct , (3.1.9b)

where S0 and Sct denote the tree-level and the 1-loop counterterm action, respectively,
and where the argument (φ) is dropped. All these quantities are ε-dependent and contain
evanescent objects. The quantity Γ(1)

DReg contains counterterms, which by construction
must cancel the UV 1/ε divergences; hence this quantity allows the limit ε→ 0.

The final, fully renormalized effective action at the 1-loop level is then defined by
taking the operation LIMd→4 described in Chapter 2, i.e. by setting ε = 0 and neglecting
all the evanescent objects:

Γ(1)
Ren[φ, gi, ξ, µ] = LIM

d→4
Γ(1)
DReg[φ, gi, ξ, µ] , (3.1.10)

where in this equation we emphasised the fact that the effective action, both in the
dimensionally-regularized and the renormalized cases, depends on the fields, the coupling
constants of the theory, the gauge fixing parameter ξ and the renormalization scale µ. At
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the 2-loop level analogous notation holds. Now we introduce the coefficient of correlation
function as

Γφn···φ1(x1, . . . , xn) = δnΓ(φ)
δφn(xn) · · · δφ1(x1)

∣∣∣∣∣
φi=0

= −i〈ΩT φn(xn) · · ·φ1(x1)Ω〉 1PI .

(3.1.11)

Note that the order of the fields in the functional derivative matters in the case of anti-
commuting fields, so that

Γφn···φi+1φi···φ1(x1, . . . , xn) = −Γφn···φiφi+1···φ1(x1, . . . , xn)

if φi anticommutes with φi+1.

Since the calculations of 1PI Feynman diagrams are performed in momentum space,
we have to define the Fourier transform of this coefficient,

Γ(φ) =
∞∑
n=2

1
n!

∫ (
n∏
i=1

dd pi
(2π)d φ̃i(pi)

)
Γ̃φn···φ1(p1, . . . , pn)(2π)dδd(∑n

j=1 pj) , (3.1.12)

where the tilde over the fields indicate that they have been Fourier-transformed and we
made the formal transition to d dimensions. The coefficients Γ̃φn···φ1(p1, . . . , pn) are the
Green’s functions in momentum space, with all the momenta taken to be incoming:

Γ̃φn···φ1(p1, . . . , pn)(2π)dδd(∑n
j=1 pj) = (2π)d×n δnΓ(φ)

δφ̃n(pn) · · · δφ̃1(p1)

∣∣∣∣∣
φ̃i=0

,

Γ̃φn···φ1(p1, . . . , pn) ≡ −i〈φ̃n(pn) · · · φ̃1(p1)〉 1PI ,
(3.1.13)

and the delta-distribution ensures momentum conservation for these Green’s functions
(originating from their invariance under spatial translations, in coordinate space). When
there is no ambiguity, we adopt the shortened notation Γ̃φn···φ1 in place of Γ̃φn···φ1(p1, . . . , pn).
Under these definitions, the evaluation of 〈φn · · ·φ1〉 1PI is done using the standard dia-
grammatic method, and the Feynman rules for the vertex with ordered fields φ1 · · ·φn are
given by the value of iΓ̃φn···φ1 = 〈φn · · ·φ1〉 1PI.

An insertion of a local field-operator O(x) in Γ, denoted by O(x) · Γ, is defined by
the set of all Feynman diagrams where O(x) is inserted as an “interaction vertex”, or
equivalently by the generating functional (see Ref. [1])

O(x) · Γ(φ) =
∞∑
n=2

−i
n!

∫ (
n∏
i=1

dd xi φi(xi)
)
〈ΩT O(x)φn(xn) · · ·φ1(x1)Ω 〉 1PI . (3.1.14)
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The integrated insertion O · Γ is defined by

O · Γ(φ) =
∫

dd x O(x) · Γ(φ) , (3.1.15)

and thus invariance under spatial translations will ensure momentum conservation at the
“vertex” O in momentum space.

3.2 | Slavnov-Taylor identity

In the previous chapter, we introduced the effective action that incorporates quantum
corrections. However, the classical action possess symmetries that via Noether theorems
lead to conserved currents. The question is, does the effective action inherit those classical
symmetries?
In Eq. (3.1.2) we defined the generating functional as power expansion of classical sources
J(xi). Instead, we can define Z(J) for interacting theory in the functional integral
representation,

Z(J) =
∫
Dφ ei

(
S(φ)+

∫
d4x J(x)φ(x)

)
. (3.2.1)

Now suppose there exists the infinitesimal field transformation

φ(x)→ φ′ = φ(x) + εX(x, φ), (3.2.2)

that leaves both the action and integral measure invariant:

S(φ′) = S(φ), and Dφ′ = Dφ. (3.2.3)

Then the generating functional is transformed as:

∫
Dφ′ ei

(
S(φ′)+

∫
d4x J(x)φ′(x)

)
=
∫
Dφ ei

(
S(φ)+

∫
d4x J(x)φ(x)

)(
1 + iε

∫
d4xX(x, φ)J(x)

)
,

(3.2.4)
where we used the expansion in infinitesimal parametar ε and kept first two terms. Re-
quirement of generating functional invariance hence reduces to:

∫
Dφ

∫
d4xX(x, φ)J(x)ei

(
S(φ)+

∫
d4x J(x)φ(x)

)
= Z(J)

∫
d4x〈X(x)〉JJ(x) (3.2.5)

for every source J , where 〈...〉J denotes the quantum expectation value of field operator
in presence of source J . If we recall Eq. (3.1.5) we have

∫
d4x〈X(x)〉Jφ

δΓ
δφ(x) = 0 (3.2.6)
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the so-called Slavnov-Taylor identity [59], ensuring the quantum effective action invariance
under

φ(x)→ φ′ = φ(x) + ε〈X(x)〉Jφ . (3.2.7)

3.3 | Quantum action principle

Quantum action principle (QAP) was first stated by Schwinger for quantum mechanics
[60]. Suppose we have two states defined by the values of a complete set of commuting
operators at two different times. Let |a〉 and |b〉 be early and late state, respectively. If
there is the parameter in Lagrangian that can be varied, then

δ〈b|a〉 = i〈b|δS|a〉, (3.3.1)

with the derivative with respect to changes in the Lagrangian parameter. It means that
QAP describes the behavior of Green functions under infinitesimal variations of fields and
Lagrangian parameters. The renormalized versions of QAP are given in [61] and in our
notation from previous section are given by

δΓ(φ)
δλ

= ∆λ · Γ(φ) (3.3.2)

for the variations of some parameter λ where ∆λ is the normal product operator with the
UV degree 4, and by

δΓ(φ)
δE(x) = ∆E(x) · Γ(φ) (3.3.3)

for the variations of external field E(x) where ∆E(x) is the normal product operator with
the UV degree 4− dim(E(x)). Furthermore, if the δφ is an infinitesimal variation of the
field coupled to external source η(x) then

∫
d4x

δΓ(φ)
δφ(x)

δΓ(φ)
δη(x) = ∆ · Γ(φ) (3.3.4)

holds, where ∆ is a normal product of degree 4-dim(φ)+dim(δφ). Those quantum action
principles in the dimensionally renormalized theory lead to these functional equations
[20,27,45, 53]

δΓRen

δλ
= N

[∂(S0 + Sfct)
∂λ

]
· ΓRen, (3.3.5)

for the parameter λ and

δΓRen

δE(x) = N
[∂(S0 + Sfct)

∂E(x)
]
· ΓRen, (3.3.6)
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for the external field variation, and finally to

δΓRen

δφ(x)
δΓRen

δη(x) = N
[
O(x)

]
· ΓRen, (3.3.7)

for non-linear field transformation, where N [O] denotes the Zimmermann-like definition
[1, 62–64] of a renormalized local operator (also called “normal product”3), defined as an
insertion of a local operator O and followed, in the context4 of dimensional regularization
and renormalization, by a minimal subtraction prescription [65]. Since chiral theories
suffer from the non-existence of the regularization scheme that preserves chiral gauge
symmetries, we will need the QAP to remedy the breaking of symmetries that we will
introduce in the next section.

3.4 | BRST invariance and the interpretation of breaking

The BRST symmetry was first introduced in [23] to deal with the quantization of
gauge theories. Concerning algebraic renormalization, BRST symmetry preservation at
all orders of perturbation theory is the crucial ingredient in the proof of the unitarity of
the S-matrix and construction of gauge-invariant operators.
Consider the simplest gauge theory as in [25] in 4-dimensional space-time based on a
simple compact Lie group, with gauge fields and left-handed fermion content ψ ≡ PLψ.
The gauge fields of this group of course belong to adjoint representation so that

Gµ = Ga
µτa, (3.4.1)

i.e. they are Lie-algebra valued objects whose generators obey

[τa, τb] = ifabcτ
c, Tr τaτb = δab. (3.4.2)

Now consider finite gauge transformations in fundamental and adjoint representation
U = eiω(x),

Gµ(x) → U Gµ(x)U−1 + i

g
U ∂µ U−1 (3.4.3)

ψ(x) → U ψ(x), (3.4.4)
3Do not confuse with the Wick normal product with the leftmost creation operators.
4The actual definition for a “normal product” depends on the chosen renormalization procedure: for

example in BPHZ renormalization, where the renormalization is performed by subtracting the first terms
of a Taylor expansion of loop integrands up to a given order (called “degree” of subtraction), different
normal products are associated to the choice of the “degree” of subtraction [1].
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in the infinitesimal limit

δGµ(x) = ∂µω(x) + ig[ω(x), Aµ(x)] = Dµω(x), (3.4.5)
δψ(x) = iωa(x)T aψ(x). (3.4.6)

Gauge invariant Lagrangian for this field content is then given by

L = −1
4F

a
µνF

µν
a + iψ /Dψ. (3.4.7)

Now let’s introduce the gauge fixing in the BRST fashion, where we now define three
new Lie-algebra valued fields in the adjoint representation, ghost c(x), antighost c̄(x) and
Nakanishi-Lautrup field [66] B, so that

ωa(x)→ ca(x)

so the gauge parameter generalizes to anticommuting number called the ghost field, with
the ghost number one (and of course Lagrangian being ghostless). Gauge transformations
are then replaced by the BRST transformations,

sGa
µ = Dab

µ c
b = ∂µc

a + gfabcGb
µc
c , (3.4.8a)

sψ = icagTaψ , (3.4.8b)
sψ = iψcagTa , (3.4.8c)

sca = −1
2f

abcgcbcc ≡ igc2 , (3.4.8d)

sc̄a = Ba , (3.4.8e)
sBa = 0 , (3.4.8f)

with the important property of nilpotence,

s2 = 0 (3.4.9)

Starting from the fact that action defined by this Lagrangian is BRST invariant, and from
the property of nilpotence, it is easy to see that adding to Lagrangian terms of Kφsφ

will not spoil the invariance if those external fields Kφ are itself BRST invariant. BRST
invariance of this action can thus be expressed in the form of functional identity called
the Slavnov-Taylor identity,

sS = S(S) = 0, (3.4.10)
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where Slavnov-Taylor operator for functional F is given by

S(F) =
∫

d4 x

∑
φ

δF
δKφ

δF
δφ

+Ba δF
δc̄a

 . (3.4.11)

Finally, going back to the renormalized effective action, its Slavnov-Taylor operator is
given by

S(ΓRen) =
∫

d4 x

∑
φ

δΓRen

δKφ

δΓRen

δφ
+Ba δΓRen

δc̄a

 . (3.4.12)

If the breaking of BRST symmetry ∆ then happened in the theory e.g. because of the
non-invariant renormalization scheme, the quantum action principle implies

S(ΓRen) = ∆ = O · ΓRen, (3.4.13)

so quantum action principle guarantee that the breaking of such symmetry is given by
the insertion into the renormalized effective action of the local operator of dimension
4− dim(φ) + dim(sφ) and ghost number 1.
Now recall that the renormalized effective action is indefinite pool of extremely compli-
cated mathematical objects hidden in the finite counterterms of the theory, while you are
interested only in ones among them that break BRST symmetry, since you need to restore
it to calculate physical quantities. To translate it into analogy, quantum action principle
applied in this context is like you need to find the needle in the haystack, where QAP
is like the giant ferromagnet in your hands. Later we will use the regularized quantum
action principle, the version applied to dimensional regularization, first proved in [20] and
then applied in the dimensional reduction in [54]. Those particular versions of quantum
action principle need this kind of tailor-made proofs since the general derivation starting
from the functional integral Z(J) assumes that integral measure from the functional is
invariant under the field or variable transformation, what needs to be proved for particular
regularization scheme.

It is important to emphasize that the renormalization of theories where no invariant
regularization is known would not be possible without algebraic tools like action principles
and BRST transformations.
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CHAPTER 4

THE RIGHT-HANDED YANG-MILLS MODEL AND ITS
EXTENSION TO D DIMENSIONS

Due its rigorously consistent framework Breitenlohner-Maison-t’Hooft-Veltman
(BMHV) scheme has a distinct status among dimensional regularization schemes.
Despite this fact, it is still not widely used, since its renormalization procedure is more
complicated than in many other schemes. Since it is not widely used in the community
of renormalization practitioners, we will apply the BMHV scheme in a complete and
systematic way to the general gauge theory with wide practical use.

We will start the investigation of the Dirac γ5 matrix in the BMHV scheme in a general
massless chiral gauge theory with scalar fields. In the present chapter we define the model
of our interest in 4 dimensions, then extend it to d dimensions, show that this extension
is not unique, and for the most symmetric of these extensions, we provide the respective
Lagrangian, BRST transformations, and Slavnov-Taylor identities of the model. The
d-dimensional extension requires the usage of Dirac fermions instead of Weyl fermions,
requires purely d-dimensional kinetic terms, while in a choice of interaction terms there is
some freedom regarding their evanescent terms. We then examine the breaking of BRST
invariance of the tree-level action, which is caused only by the evanescent part of the
fermionic kinetic term. The tree-level gauge and BRST invariance are broken only by the
evanescent part of the fermionic kinetic term. The BRST breaking of the tree-level action
is converted into the Feynman rule used later for the proper renormalization of the theory.

4.1 | The right-handed Yang-Mills model in 4 dimensions

When we consider the non-abelian gauge theories, the best balance between the gen-
erality and practical use we can think of is given in the chiral modification of models
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presented in the famous papers of Machacek and Vaughn, Refs. [67–69]. The model of our
choice is a Yang-Mills gauge theory with matter fields, based on a simple gauge Lie group
G, with gauge fields Ga

µ in the adjoint representation of G with the structure constants
fabc, that also define the generators TGabc ≡ ifacb of the adjoint representation. This model
was presented and renormalized in [47].

The model incorporates real massless scalars Φm and massless right-handed fermion
fields described, in the 4-dimensional formulation, using Weyl spinors1 ξiα ≡ ψCR . Scalar and
fermion fields are charged under the gauge group G and we take their group representations
to be irreducible. We denote their representations by ‘S’ for the scalars and ‘R’ for the
fermions, and their associated generator matrices by θamn and (T aR)ij, respectively. The
scalar representation is imaginary and antisymmetric, θamn = −θanm.2

The 4-dimensional classical Lagrangian of the model can be separated into four terms:

L = Lgauge + Lfermions + Lscalars + LYukawa , (4.1.1)

where the pieces of the Lagrangian are given by

Lgauge = −1
4F

a
µνF

aµν , (4.1.2a)

Lfermions = iξσµDµξ̄ , (4.1.2b)

Lscalars = 1
2(DµΦm)2 − λmnop

4! ΦmΦnΦoΦp , (4.1.2c)

LYukawa = −
(YR)mij

2 Φmξ̄iξ̄j + h.c. , (4.1.2d)

where the last equation3 uses an index-free notation for the Lorentz invariant contraction
of two Weyl spinors.

The covariant derivatives acting on the fermion fields and scalar fields are defined as:

Dij µ = ∂µδij − igGa
µTR

a
ij , (4.1.3a)

Dmn µ = ∂µδmn − igGa
µθ

a
mn . (4.1.3b)

We choose to introduce the coupling constant g in the minimal coupling term of the
covariant derivative. The minus sign in front of the coupling term is part of our conventions,
and the reason for this choice (as in e.g. [58] for covariant derivative in non-Abelian models)
is mainly practical since it is part of the FeynRules [73] conventions, one of the programs

1Transition of Weyl spinors to Dirac 4-component notation is given by ψi = (0, ξ̄i α̇)T
2The model may be generalized to products of (semi-)simple gauge groups and to reducible representa-

tions. In this case one needs to consider all the possible mixings for each set of irreducible representations
that have equal quantum numbers (see e.g. [70, 71]).

3Note that contrary to Refs. [67–69] the Yukawa term has a normalisation factor 1/2 since the two
2-component fields are identical – the corresponding Feynman rule would generate the compensating
factor 2. This is the notation also used in e.g. [57,72].
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we will later use in our calculations. From the commutator of the covariant derivatives
acting on a given type of field, the field strength tensor for G is defined as:

F a
µν = ∂µG

a
ν − ∂νGa

µ + gfabcGb
µG

c
ν . (4.1.4)

In Lscalars the scalar potential does not contain any quadratic term µ2|Φ|2, since we are
working in the framework of a massless theory; the scalar fields do not acquire a vacuum
expectation value and the fields remain perturbatively massless. Also, in a purely right or
left-handed model, Dirac-type Yukawa terms ψ̄ψ are forbidden by chiral symmetry; only
Majorana-type Yukawa terms ψ̄Cψ do survive. The form of the Yukawa interaction implies
that the Yukawa matrix (YR)mij is symmetric in fermion-group indices i, j. Since the Weyl
spinor formalism is intrinsically tied to 4-dimensional space, as a natural preparation for the
d-dimensional regularization we replace the Weyl spinors by projections of Dirac spinors,
which can be generalized to d dimensions. Specifically we promote the right-handed Weyl
fermion ξ̄ to

ξ̄ → PRψ ≡ ψR , (4.1.5)

where ψ is a Dirac spinor whose left-handed part is understood to be sterile, decoupled
from the theory. Right and left chirality operators (projectors) are defined as

PR = 1 + γ5

2 , PL = 1− γ5

2 . (4.1.6)

At this point we rewrite matter content of this model, Lfermions and LYukawa (we recall that
ψR = ψL ≡ ψPL) as:

Lfermions = iψRi /D
ij
ψRj = iψRi/∂ψRi + gTR

a
ijψRi /G

a
ψRj , (4.1.7a)

LYukawa = −
(YR)mij

2 ΦmψR
C

i ψRj −
(YR)m ∗ij

2 ΦmψRiψR
C
j . (4.1.7b)

Notice that in this setting the left-handed part PLψ = ψL entirely decouples and does
not appear at all in this Lagrangian. It is important to emphasize that the Lagrangian
defined so far is gauge invariant.

Gauge-fixing

For quantization and later renormalization of right-handed Yang-Mills model, we pro-
mote gauge invariance to BRST invariance in the usual way and write the Slavnov-Taylor
identity [23, 24]. The BRST transformations of ordinary fields4 are defined as standard
infinitesimal gauge transformations, where the transformation parameter is replaced by a

4Ordinary fields are quantum fields in the sense that they, unlike external fields, have propagators.
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Faddeev-Popov anticommuting ghost field ca (in the adjoint representation):

sGa
µ = Dab

µ c
b = ∂µc

a + gfabcGb
µc
c , (4.1.8a)

sψi = sψRi = icagTR
a
ijψRj , (4.1.8b)

sψi = sψRi = iψRjc
agTR

a
ji , (4.1.8c)

sψLi = 0 , (4.1.8d)
sψLi = 0 , (4.1.8e)
sΦm = icagθamnΦn . (4.1.8f)

Fermionic differential operator s represents the generator of the BRST transformation.
The BRST transformations of ghost and antighost fields ca and c̄a and the auxiliary
Nakanishi-Lautrup [66,74] field Ba are given by:

sca = −1
2gf

abccbcc ≡ igc2 , (4.1.9a)

sc̄a = Ba , (4.1.9b)
sBa = 0 . (4.1.9c)

The BRST operator s is nilpotent: s2φ = 0 for any field or linear combination of fields.
The Lagrangian of the theory is then extended with the ghost and the gauge-fixing

terms, obtained as the BRST transformation of the expression c̄a(ξBa/2+∂µGa
µ), resulting

in (up to total derivatives)

Lghost = ∂µc̄a ·Dab
µ cb ≡ −c̄a∂µDab

µ cb , (4.1.10a)

Lg-fix = ξ

2B
aBa +Ba∂µGa

µ . (4.1.10b)

The gauge-fixing Lagrangian Lg-fix written here is equivalent to the common form:

Lg-fix = − 1
2ξ (∂µGa

µ)2, (4.1.11)

obtained after integrating out the Nakanishi-Lautrup Ba field. Finally, it is useful to
couple the non-linear BRST transformations to external sources (or Batalin-Vilkovsky
“anti-fields”, [75–77]) and add corresponding terms to the Lagrangian (see e.g. [25] and
references therein),

Lext = ρµasG
a
µ + ζasc

a + R̄isψRi +RisψRi + YmsΦm , (4.1.12)

where the external sources do not transform under BRST transformations: sJ = 0 for
J = ρµa , ζa, R, R̄,Ym, ensuring BRST invariance of the corresponding Lagrangian terms.
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The tree-level action in 4 dimensions, a starting point for the extension to d dimensions,
quantization and renormalization procedure is then finally given by

S
(4d)
0 =

∫
d4 x (Lgauge + Lfermions + Lscalars + LYukawa + Lghost + Lg-fix + Lext) . (4.1.13)

This tree-level action satisfies the Slavnov-Taylor identity

S(S(4d)
0 ) = 0 , (4.1.14)

where the Slavnov-Taylor operation is defined for a general functional (with this field
content) F as

S(F) =
∫

d4 x

(
δF
δρµa

δF
δGa

µ

+ δF
δζa

δF
δca

+ δF
δYm

δF
δΦm

+ δF
δR̄i

δF
δψi

+ δF
δRi

δF
δψi

+Ba δF
δc̄a

)
.

(4.1.15)

The Slavnov-Taylor identity is the defining symmetry property of the theory. At the very
end, we must require that the Slavnov-Taylor identity S(ΓRen) = 0 is satisfied for the fully
renormalized, finite effective action ΓRen (which incorporates the tree-level action, loop
corrections and counterterm contributions). On the level of the 4-dimensional tree-level
action, the Slavnov-Taylor identity summarizes the gauge invariance of the physical part
of the Lagrangian, the BRST invariance of the gauge-fixing and ghost Lagrangian, and
the nilpotency of the BRST transformations.

Quantum numbers and constraints from gauge-invariance

In Table 4.1 we list the quantum numbers (mass dimension, ghost number and
(anti)commutativity) of the fields and the external sources (BV “anti-fields”) of the Yang-
Mills model, that are necessary for building the whole set of all possible renormalizable
mass-dimension ≤ 4 field-monomial operators with a given ghost number.

Table 4.1
List of fields, external sources and operators, and their quantum numbers.

Ga
µ ψ̄i, ψi Φm ca c̄a Ba ρµa ζa Ri, R̄i Ym ∂µ s

mass dim. 1 3/2 1 0 2 2 3 4 5/2 3 1 0
ghost # 0 0 0 1 -1 0 -1 -2 -1 -1 0 1
comm. +1 -1 +1 -1 -1 +1 -1 +1 +1 -1 +1 -1

Concerning the gauge transformations under the group G, the mentioned gauge invari-
ance of the terms in Eq. (4.1.1) implies two consequences (that can be proved alternatively
by imposing their BRST invariance) for the fermionic and scalar sectors, that generate
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two particular restrictions among the generators and matrices.

• Gauge-invariance of the Yukawa interaction implies that the Yukawa matrices satisfy
this constraint:

(YR)nijθanm + (YR)mikTRakj − TRaik(YR)mkj = 0 . (4.1.16a)

The generators TRa verify TRa † = TR
a, and from them the conjugate representation R

is defined with generators TRa ≡ −TRa T = −TRa ∗. The complex-conjugate counterpart
of this equation is

(YR)n ∗ij θanm + (YR)m ∗ik TR
a
kj − TR

a
ik(YR)m ∗kj = 0 . (4.1.16b)

• Gauge-invariance of the scalar self-coupling interaction implies that the scalar quartic
coupling matrix λ satisfies the constraint:

θamqλ
qnop + θanqλ

mqop + θaoqλ
mnqp + θapqλ

mnoq = 0 . (4.1.17)

If the gauge group representations of the quantum fields are reducible and contain two
different, but group theoretically identical irreducible representations, the mixings between
group theoretically identical irreducible representations might appear through Yukawa
couplings, see [70,71]. For that reason, in the following, we consider only irreducible gauge
boson, fermion and scalar group representations, if not stated otherwise.

Group invariants

Here we summarize the group invariants that are used in all of calculations for right-
handed Yang-Mills model. We remind the reader that the right-handed fermions are in
an irreducible representation R of the gauge group G with corresponding hermitian group
generators TRa, and the real scalar fields are in an irreducible representation S of G with
imaginary and antisymmetric generators θa. The adjoint representation of the gauge group
G is denoted by G, with corresponding Casimir index C2(G).

We list the Casimir and Dynkin indices for these representations, as well as invariants
built out of the Yukawa matrices, that will be used in loop calculations:

C2(R)1 = T aRT
a
R , (4.1.18)

S2(R)δab = Tr(T aRT bR) , (4.1.19)
Y2(R)ij = (Y m

R Y
m †
R )ij ≡ Y2(R)δij , (4.1.20)

C2(S)1 = θaθa , (4.1.21)
S2(S)δab = Tr(θaθb) , (4.1.22)

Y2(S)mn = 1
2Tr(Y

m
R Y

n †
R + Y m †

R Y n
R ) ≡ Y2(S)δmn . (4.1.23)
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Due to the presence of charge-conjugated fermions5, we also introduce the corre-
sponding complex-conjugate fermion representation R associated with group generators
TR

a ≡ −TRa ∗ = −TRa T , since the generators themselves are hermitian: TRa † = TR
a. We

define the Yukawa matrices for the conjugate representation as: Y m
R
≡ (Y m

R )† = (Y m
R )∗

since the Yukawa matrix (YR)mij is symmetric in its fermion-group indices i, j. We then
obtain the group invariants for complex-conjugate R representation:

C2(R)1 = TR
aTR

a = (−TRaT )(−TRaT ) = TR
aTR

a = C2(R)1 , (4.1.24)
S2(R)δab = Tr(TRbTRa) = Tr((−TRbT )(−TRaT )) = Tr(TRaTRb) = S2(R)δab , (4.1.25)
Y2(R)ij = ((YR)m(YR)m †)ij = (Y m †

R Y m
R )ij = (Y m

R Y
m †
R )ji = Y2(R)ji ≡ Y2(R)ij . (4.1.26)

It can be shown, using restriction in Eq. (4.1.16a), that:

Tr(Y m
R TR

aY n †
R ) = Tr(Y m †

R TR
aY n

R ) = Y2(S)
2 θamn , (4.1.27)

what closes the list of group invariants that appear in the right-handed Yang-Mills model
up to the 1-loop level.

4.2 | Promoting the right-handed model to d dimensions

Since we will work within the framework of dimensional regularization, the next step
is the extension of the right-handed Yang-Mills model from 4 to d dimensions. While
it is straightforward to do so for the bosonic fields, the extension for fermionic fields is
not trivial and requires elaboration, even if we start from the version Eq. (4.1.7) of the
Lagrangian in terms of Dirac spinors.

Fermion-gauge interaction term given in Eq. (4.1.7a) involves the right-handed chiral
current ψRiγµψRj in 4 dimensions. The extension to d dimensions of this term has three
inequivalent choices, each of them equally correct:

ψiγ
µ
PRψj , ψiPLγ

µψj , ψiPLγ
µ
PRψj . (4.2.1)

They are different because PLγ
µ 6= γµPR in d dimensions, what can be proven starting

from Eq. (2.2.12). Each of these choices does lead to a valid d-dimensional extension of
the model that is renormalizable using dimensional regularization and the BMHV scheme
and produces the same final results in physical 4 dimensions after the renormalization
procedure is performed. However, the intermediate calculations and the d-dimensional
results will differ, depending on the choice for this interaction term.

5Or equivalently, when mapping a left-handed model to its corresponding right-handed model by
interpreting left-handed fermions as charge-conjugated right-handed fermions.
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Our choice for the extension is to use the third option, which is equal to

ψPLγ
µ
PRψ = ψPLγ

µ
PRψ = ψRγ

µψR , (4.2.2)

since from our calculation experience, this is the most symmetric one and leads to the
simplest intermediate expressions (see also the discussions in Refs. [10,27]). Notice that
this choice is actually the most straightforward one since it preserves the information that
right-handed fermions were present on the left and on the right sides of the interaction
term before the extension.

The second, more serious problem, is that as it stands the pure fermionic kinetic term
iψRi/∂ψRi = iψiPL/∂PRψi projects only the purely 4-dimensional derivative, leading to a
purely 4-dimensional propagator 6

∆F (p) =
iPR /pPL

p̄2 , (4.2.3)

and to unregularized loop diagrams. The only valid choice for propagator in d dimensional
theory in the contex of dimensional regularization is

∆F (p) =
i /p

p2 , (4.2.4)

so we are thus led to consider the full Dirac fermion ψ with both left and right-handed
component, and use instead the fully d dimensional covariant kinetic term iψi/∂ψi. It can
be re-expressed in terms of projectors as follows:

iψi/∂ψi = iψi/∂ψi + iψi /̂∂ψi

= i(ψiPL/∂PRψi + ψiPR/∂PLψi) + i(ψiPL/∂PLψi + ψiPR/∂PRψi) .
(4.2.5)

Notice that the fictitious, sterile left-chiral field ψL is introduced, which appears only
within the kinetic term and nowhere else, it does not interact so it does not couple in
particular to the gauge bosons of the theory, and we enforce it to be invariant under gauge
transformations.

For all the reasons just explained, our final choice for the d-dimensionally regularized
fermionic kinetic and gauge interaction terms is given by:

Lfermions = iψi/∂ψi + gTR
a
ijψRi /G

a
ψRj . (4.2.6)

Unfortunately, the choice of d dimensional propagator, crucial for loop regularization, that

6Expressing the Fourier-transformed kinetic term as ψ̃iK(p)ψ̃i = ψ̃iPL/pPRψ̃i, the expression for the
propagator ∆(p) is the only possibility such that: ∆(p)K(p) = PR and K(p)∆(p) = PL. The problematic
term is then the p̄2, i.e. the 4-dimensional scalar product in the denominator, which cancels a similar
term coming from the Dirac matrices contractions between the projectors, according to Eq. (2.2.12).
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led to the introduction to the left-handed component in the kinetic term, broke the gauge
invariance of the fermionic part, which is evident if we separate it in this way:

Lfermions = Lfermions,inv + Lfermions,evan , (4.2.7)
Lfermions,inv = iψi/∂ψi + gTR

a
ijψRi /G

a
ψRj , (4.2.8)

Lfermions,evan = iψi /̂∂ψi , (4.2.9)

where the first term contains purely 4-dimensional derivatives and gauge fields and pre-
serves the gauge and BRST invariance, since the fictitious left-chiral field ψL is a gauge
singlet. The invariant term can also be written as a sum of purely left-chiral and purely
right-chiral terms involving the 4-dimensional covariant derivative as

Lfermions,inv = iψLi/∂ψLi + iψRi/∂ψRi + gTR
a
ijψRi /G

a
ψRj (4.2.10)

= iψLi/∂ψLi + iψRi /DψRi , (4.2.11)

where the gauge invariance is obvious. The second term in Eq. (4.2.7) is purely evanescent,
i.e. it vanishes in 4-dimensional limit. If we rewrite the evanescent term as

Lfermions,evan = iψLi /̂∂ψRi + iψRi /̂∂ψLi , (4.2.12)

it can be easily seen that it mixes left- and right-chiral fields with different gauge transfor-
mation properties. This causes the breaking of gauge and BRST invariance – the central
difficulty and the negative consequence of the BMHV scheme usage.

Now when the fermionic part is established, the rest of the model is straightforwardly
extended to d dimensions. We define the d-dimensional BRST transformations on the
fields formally in the same way as in 4 dimensions:

sdG
a
µ = Dab

µ c
b = ∂µc

a + gfabcGb
µc
c , (4.2.13a)

sdψi = sdψRi = icagTR
a
ijψRj , (4.2.13b)

sdψi = sdψRi = +iψRjcagTRaji , (4.2.13c)
sdψLi = 0 , (4.2.13d)
sdψLi = 0 , (4.2.13e)
sdΦm = icagθamnΦn , (4.2.13f)

sdc
a = −1

2gf
abccbcc ≡ igc2 , (4.2.13g)

sdc̄
a = Ba , (4.2.13h)

sdB
a = 0 , (4.2.13i)

and again the external sources are invariant under BRST transformations. This version
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of the BRST operator sd preserves nilpotence. Notice that the right-hand sides of these
equations contain no d-dependent prefactors or evanescent objects.

The full d-dimensional tree-level action S0 of the model thus reads:

S0 =
∫

dd x (Lgauge + Lfermions + Lscalars + LYukawa + Lghost + Lg-fix + Lext) , (4.2.14)

where all terms except Lfermions remain formally exactly as before, with all Lorentz indices
interpreted in d dimensions.

Properties and classification of the d-dimensional tree-level action

We now provide two ways to rewrite the d-dimensional classical action, which will
be needed in the discussion of the calculation at the higher orders and renormalization.
First, we note that we can naturally decompose S0 according to the split of the fermion
Lagrangian (4.2.7) into

S0 = S0,inv + S0,evan, (4.2.15a)

i.e. into a BRST-invariant and a purely evanescent part, with

S0,inv =
∫

dd x
(
Lgauge + Lfermions,inv + Lscalars + LYukawa

+ Lghost + Lg-fix + Lext
)
,

(4.2.15b)

S0,evan =
∫

dd x Lfermions,evan , (4.2.15c)

where the first part of the action contains everything except the evanescent part of the
d-dimensional fermion kinetic term. The first part is by construction BRST-invariant
since the 4-dimensional part of the fermion covariant derivative term is gauge and BRST-
invariant and all other sectors of the theory are unaffected to the transition from 4 to d
dimensions.

Since this will be needed later, we will also write the d-dimensional action of the model
as a sum of integrated field monomials and we will define each of them:

S0 = (SGG + SGGG + SGGGG) + (Sψψ + SψGψR) + (SΦΦ + SΦGΦ + SΦGGΦ)
+ ((YR)mijSψRCi ΦmψRj

+ h.c.) + λmnopSΦ4
mnop

+ Sg-fix + (Sc̄c + Sc̄Gc) + (Sρc + SρGc) + Sζcc + SR̄cψR + SRcψR + SYcΦ ,

(4.2.16a)
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with the gauge kinetic and self-interaction terms
∫

dd x −1
4 F a

µνF
aµν = SGG + SGGG + SGGGG , with:

SGG =
∫

dd x 1
2G

a
µ(gµν∂2 − ∂µ∂ν)Ga

ν ,

SGGG =
∫

dd x (−g)fabc(∂µGa
ν)Gb µGc ν ,

SGGGG =
∫

dd x −g
2

4 f eacf ebdGa
µG

b µGc
νG

d ν ,

(4.2.16b)

the fermion kinetic and interaction terms (using property A
↔
∂B ≡ A(∂B)− (∂A)B)

Sψψ =
∫

dd x iψi/∂ψi ≡
∫

dd x i

2ψi
↔
/∂ψi ,

SψGψR =
∫

dd x gTRaijψiPL /G
a
PRψj =

∫
dd x gTRaijψi /G

a
PRψj ,

(4.2.16c)

the scalar kinetic and interaction terms∫
dd x 1

2(DµΦm)2 = SΦΦ + SΦGΦ + SΦGGΦ , with:

SΦΦ =
∫

dd x 1
2(∂µΦm)2 ≡

∫
dd x −1

2 Φm∂2Φm ,

SΦGΦ =
∫

dd x − igθamn(∂µΦm)Ga
µΦn ,

SΦGGΦ =
∫

dd x g
2

2 (θaθb)mnΦmGa
µG

b µΦn ,

(4.2.16d)

the Yukawa and the scalar quartic self-coupling terms

(YR)mijSψRCi ΦmψRj
+ h.c. =

∫
dd x

(
−

(YR)mij
2 ΦmψR

C

i ψRj −
(YR)m ∗ij

2 ΦmψRiψR
C
j

)
,

λmnopSΦ4
mnop

=
∫

dd x −λmnop4! ΦmΦnΦoΦp ,

(4.2.16e)

the gauge-fixing terms
Sg-fix =

∫
dd x ξ2B

aBa +Ba∂
µGa

µ , (4.2.16f)

the ghost kinetic and interaction terms∫
dd x (∂µc̄a)(Dµca) = Sc̄c + Sc̄Gc , with:

Sc̄c =
∫

dd x (∂µc̄a)(∂µca) ≡
∫

dd x (−c̄a∂2ca) ,

Sc̄Gc =
∫

dd x gfabc(∂µc̄a)Gµ
b cc ,

(4.2.16g)
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and finally the external BRST source terms∫
dd x ρµasdGa

µ =
∫

dd x ρµaDab
µ cb = Sρc + SρGc , with:

Sρc =
∫

dd x ρµa(∂µca) ,

SρGc =
∫

dd x gfabcρµaGb
µcc ,

(4.2.16h)

and

Sζcc =
∫

dd x ζasdca =
∫

dd x −1
2 gfabcζac

bcc ,

SR̄cψR =
∫

dd x R̄isdψi =
∫

dd x igR̄icaTR
a
ijψRj ≡

∫
dd x igR̄icaTR

a
ijPRψj ,

SRcψR =
∫

dd x Risdψi ≡
∫

dd x sdψiRi =
∫

dd x igψRjcaTRajiRi ≡
∫

dd x igψjPLc
aTR

a
jiR

i ,

SYcΦ =
∫

dd x YmsdΦm =
∫

dd x igYmcaθamnΦn .

(4.2.16i)

Notice that these field monomials are convenient for the BRST symmetry study. For
illustration, notice that gauge-fixing monomial together with ghost kinetic and interaction
terms form a BRST invariant structure,

Sg-fix + Sc̄c + Sc̄Gc = sd

(
c̄a

(
1
2ξB

a + ∂µGa
µ

))
,

while other invariant monomials satisfy BRST invariance individually. The breaking is
coming from one term, evanescent fermion kinetic term, and we examine this breaking
presently.

4.3 | BRST breaking of the right-handed model in d dimensions

In this section we will determine to what extent our choice of the d-dimensional action
S0 given in Eqs. (4.2.14), (4.2.15a) and (4.2.16a) breaks the defining BRST invariance and
the Slavnov-Taylor identity. Using the Eq. (4.2.13), the BRST transformation operator
in d dimensions acting on the classical action S0 can be written as

sd =
∫

dd x
(
δS0

δρµa

δ

δGa
µ

+ δS0

δζa

δ

δca
+ δS0

δYm
δ

δΦm

+ δS0

δR̄i

δ

δψi
+ δS0

δRi

δ

δψi
+Ba δ

δc̄a

)
. (4.3.1)

At this point we will introduce the so-called linearized Slavnov-Taylor operator bd, since it
will be useful later for higher-order calculations. In our later applications we will require
the Slavnov-Taylor identity at higher orders in the form S(S0 +F), where the functional F
might be the 1-loop regularized or renormalized effective action or the 1-loop counterterm
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action. We can then write to first order in F ,

Sd(S0 + F) = Sd(S0) + bdF +O(F2) (4.3.2)

where bd can be written in functional form as

bd =
∫

dd x
(
δS0

δρµa

δ

δGa
µ

+ δS0

δGa
µ

δ

δρµa
+ δS0

δζa

δ

δca
+ δS0

δca
δ

δζa
+ δS0

δYm
δ

δΦm

+ δS0

δΦm

δ

δYm

+δS0

δR̄i

δ

δψi
+ δS0

δψi

δ

δR̄i
+ δS0

δRi

δ

δψi
+ δS0

δψi

δ

δRi
+Ba δ

δc̄a

)
.

(4.3.3)

The linearized Slavnov-Taylor operator is an extension of the BRST transformations in
the sense that

bd = sd +
∫

dd x
(
δS0

δGa
µ

δ

δρµa
+ δS0

δca
δ

δζa
+ δS0

δΦm

δ

δYm
+ δS0

δψi

δ

δR̄i
+ δS0

δψi

δ

δRi

)
, (4.3.4)

so bd and sd act in the same way on fields but only bd acts in a non-trivial way on
the sources. A subtlety, compared to the standard situation with symmetry-preserving
regularization, is that bd is not nilpotent, bd2 6= 0. The reason is that the d-dimensional
action S0 is not BRST-invariant, but both sdS0 6= 0 and s2

dS0 6= 0. For later usage it is
advantageous to also define the 4-dimensional linearized Slavnov-Taylor operator, b, as
the restriction to 4 dimensions of d-dimensional operator bd, based on the Slavnov-Taylor
operation Eq. (11.2.8) and on the 4-dimensional action S(4d)

0 . Its functional form is then:

b = s+
∫

d4 x

δS(4d)
0

δGa
µ

δ

δρµa
+ δS

(4d)
0
δca

δ

δζa
+ δS

(4d)
0

δΦm

δ

δYm
+ δS

(4d)
0
δψi

δ

δR̄i
+ δS

(4d)
0

δψi

δ

δRi

 .

(4.3.5)
Contrary to its d-dimensional counterpart bd, the operator b is nilpotent because the 4-
dimensional action S(4d)

0 is BRST-invariant [1].
Now we will examine the BRST invariance of d-dimensional tree-level action. Starting
from the split of the d- dimensional action in (4.2.15a) it is easy to see that the part S0,inv

on its own was constructed in the way it satisfies

sdS0,inv = Sd(S0,inv) = 0, (4.3.6)

what follows from the definition of Slavnov-Taylor operator, where the Slavnov-Taylor
operator Sd is of the same form as its 4-dimensional version in Eq. (4.1.15) with all 4-
dimensional objects replaced by d-dimensional ones. The relation Eq. (4.3.6) may easily
be checked applying explicitly the operator Eq. (4.3.2) and the operator Sd defined in the
previous sentence to S0,inv.
The evanescent part of the action S0,evan is not BRST-invariant since it mixes left- and
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right-chiral fermions with different gauge transformation properties. This breaking of
BRST invariance

sdS0 = sdS0,evan ≡ ∆̂ , (4.3.7)

due to the Quantum Action Principle leads to a breaking of the Slavnov-Taylor identity
in the form

Sd(S0) = ∆̂ . (4.3.8)

The breaking for fermions and charge-conjugated fermions is given by

∆̂ =
∫

dd x (gTRaij)ca
{
ψi

(←
/̂∂PR +

→

/̂∂PL

)
ψj

}
≡
∫

dd x ∆̂(x)

=
∫

dd x
(
g

2TR
a
ij

)
ca
{
∂µ(ψiγ̂µψj)− ψi

↔

/̂∂γ5ψj

}
,

(4.3.9a)

∆̂ =
∫

dd x (gTRaij)c
a

{
ψCi

(←
/̂∂PL +

→

/̂∂PR

)
ψCj

}
≡
∫

dd x ∆̂(x)

=
∫

dd x
(
g

2TR
a
ij

)
ca
{
∂µ(ψCiγ̂µψCj ) + ψCi

↔

/̂∂γ5ψ
C
j

}
.

(4.3.9b)

For the renormalization procedure that must result in restoring of the BRST symmetry,
as we will see in Chapter 7. The evaluation of Feynman diagrams with insertion of this
breaking will be required, so we derive its Feynman rule as:

̂∆ ca

p2
ψjβ

p1

ψ
i
α

= g

2TR
a
ij

(
( /̂p1 + /̂p2) + ( /̂p1 − /̂p2)γ5

)
αβ

= gTR
a
ij

(
/̂p1PR + /̂p2PL

)
αβ
,

(4.3.10)

and as well the Feynman rule corresponding to the charge-conjugated fermions, since
they appear in the Yukawa couplings (applying flipping rules as in [78, 79]),

̂∆ ca

p2
ψC,jβ

p1

ψ
C,i
α

= g

2TR
a
ij

(
( /̂p1 + /̂p2)− ( /̂p1 − /̂p2)γ5

)
αβ

= gTR
a
ij

(
/̂p1PL + /̂p2PR

)
αβ
.

(4.3.11)

We emphasize to the reader a very important fact: BRST invariance is broken already
at the tree-level action in d-dimensions and this is inevitable consequence of the BHMV
scheme. The only option for the regularized loop integrals is d-dimensional propagator
and this results in the tree-level breaking of gauge and BRST invariance.
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CHAPTER 5

STANDARD RENORMALIZATION TRANSFORMATIONS
VERSUS GENERAL COUNTERTERM STRUCTURE

Elaborated multiloop calculations of the parameters in gauge theories, e.g. Standard
Model, are usually performed in regularization schemes that preserve gauge and BRST
invariance of the theory. In those cases, and primarily for vector-like theories, the basis of
the operators of the tree-level action remains constant: loop results are equal to exactly
the same operators multiplied by (divergent or finite) factor - what leads us to so-called
multiplicative renormalization. Counterterm structure then can simply be obtained from
the classical action by applying a renormalization transformation. Despite we do not
have the privilege of multiplicative renormalization in the BMHV scheme, we recall the
structure of the required renormalization transformation for the right-handed Yang-Mills
model; this will provide a useful benchmark against which the counterterm structure in
the BMHV scheme can be compared, which will, as we hope, make the BMHV scheme
more user-friendly to renormalization practitioners.

5.1 | Renormalization transformation of fields and parameters

The renormalization transformation consists of the renormalization of physical pa-
rameters of right-handed Yang-Mills model, where we introduce additive renormalization
since we will later show that multiplicative renormalization is not sufficient (because of
non-trivial group structures, see e.g. in 1-loop Yukawa vertex),

g → g + δg , (5.1.1a)
(YR)mij → (YR)mij + δ(YR)mij , (5.1.1b)
λmnop → λmnop + δλmnop . (5.1.1c)
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On the contrary, for ordinary fields, multiplicative renormalization is sufficient,

Ga
µ →

√
ZGG

a
µ , (5.1.1d)

(ψRi, ψRi)→
√
ZψR(ψRi, ψRi) , (5.1.1e)

(ψLi, ψLi)→ (ψLi, ψLi) , (5.1.1f)

Φm →
√
ZΦΦm , (5.1.1g)

ca →
√
Zcc

a . (5.1.1h)

Notice that the sterile left-handed fermion field does not renormalize, right-handed fermion
and anti-fermion fields renormalize in the same way and we have used a ghost field renor-
malization that is different from the antighost field one. The remaining fields, the gauge
parameter and the external sources renormalize in a way dependent of the renormalization
of ordinary fields, as

{Ba, c̄a, ξ} →
{√

ZG
−1
Ba,

√
ZG
−1
c̄a, ZGξ

}
, (5.1.1i)

ρµa →
√
ZG
−1
ρµa , (5.1.1j)

ζa →
√
Zc
−1
ζa , (5.1.1k)

(Ri, R̄i)→
√
ZψR

−1
(Ri, R̄i) , (5.1.1l)

Ym →
√
ZΦ
−1
Ym , (5.1.1m)

where is evident that terms involving external fields and gauge-fixing terms in the La-
grangian do not renormalize, as they shouldn’t by construction.

5.2 | Counterterm structure in the BMHV scheme

If the renormalization transformation from previous section is applied on the BRST
invariant part of the tree-level action we obtain an invariant counterterm action Sct,inv,

S0,inv −→ S0,inv + Sct,inv , (5.2.1)

so the Slavnov-Taylor identity

Sd(S0,inv + Sct,inv) = 0 (5.2.2)

holds.
This structure will later be compared to the actual counterterm structure obtained in

the BMHV scheme. Unlike in this naive approach, the BMHV scheme usage results in
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five different types of counterterms. The further analysis is model independent and these
types of the counterterms are the BHMV scheme feature. We will briefly introduce the
reader to their structure. In general, in the BMHV scheme we have:

Ssct,inv + Ssct,evan + Sfct,inv + Sfct,restore + Sfct,evan , (5.2.3)

where

Ssct,inv and Sfct,inv

correspond to the invariant counterterms generated by a renormalization transformation as
in Eq. (5.2.1). The subscripts “sct” and “fct” denote singular counterterms (i.e. involving
1/ε poles) and finite counterterms, respectively. Those counterterms are of the form found
in usual counterterms of multiplicative renormalization for vector-like theories or for chiral
theories with the naive prescription for γ5. Singular invariant counterterms contain tree-
level action operators, while finite counterterms in principle don’t have to, due to the
loop-induced processes. The next type of counterterms,

Ssct,evan

corresponds to additional singular counterterms needed to cancel additional 1/ε poles
of loop diagrams that have additional BHMV-induced contributions, and they contain
so-called hat objects, that are part of the (−2ε)-dimensional space. We will see that these
counterterms are purely evanescent. Similarly, evanescent divergent counterterms are also
familiar from computations using regularization by dimensional reduction (see [9] for a
recent review). We will later see that these types of counterterms are canceled by specific
objects coming from the renormalization conditions.

Sfct,restore

corresponds to finite counterterms needed to restore the BRST symmetry and underlying
gauge invariance. Determining these counterterms is one of the central goals of this
research, and is presented in Chapter 7 for right-handed Yang-Mills model at 1-loop level,
and in Chapter 14 and Chapter 16 for chiral quantum electrodynamics at 1- and 2-loop
level, respectively. Once those counterterms are found, the theory is considered to be
renormalized. In other words, symmetries broken by the regularization scheme must be
restored. These counterterms are by themselves BRST and gauge non-invariant since their
role is to retrieve missing symmetry to the action. Finally,

Sfct,evan
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corresponds to additional counterterms which are both finite and evanescent. Adding or
changing such counterterms can swap e.g. between different options as in Eq. (4.2.1);
these counterterms vanish in the 4-dimensional limit, but they can affect calculations
at higher orders. In our research we discard these type of counterterms, i.e. our finite
symmetry-restoring counterterms are 4-dimensional. From the practical point of view, this
reduces the number of objects introduced in renormalization, which makes things more
manageable at higher orders.

Now we will further examine the structure of invariant counterterms by re-expressing
operators of the action that form a basis as functionals Lϕ, that can be constructed with
field-numbering operators acting on the tree-level action or derivatives with the respect
of the coupling constants acting on the tree-level action. Counterterms arising in the first
order of the renormalization constants δg, δY , δλ and δZϕ1 are in fact numerical factors
(divergent or not) multiplying basis functionals Lϕ,

Sct,inv = δZG
2 LG + δZψR

2 LψR + δZΦ

2 LΦ + δZc
2 Lc

+ δg

g
Lg +

(
δ(YR)mijLYRmij + h.c.

)
+ δλmnopLλmnop ,

(5.2.4)

where functionals are defined via the field-numbering operators

Nϕ =
∫

dd x ϕi(x) δ

δϕi(x) , for ϕi ∈ {G
a
µ,Φm, ca, c̄a, B

a, ρµa , ζa, R
i, R̄i,Ym} , (5.2.5a)

N
R/L
ψ =

∫
dd x (PR/Lψi(x))s

δ

δψi(x)s
, (5.2.5b)

N
L/R

ψ
=
∫

dd x (ψi(x)PL/R)s δ

δψi(x)s
, (5.2.5c)

(and sum over repeated generic group index i and spinor index s is taken into account) as
derivatives of the tree-level action:

LG = (NG −Nc̄ −NB −Nρ + 2ξ ∂
∂ξ

)S0 ≡ NGS0 ,

Lc = (Nc −Nζ)S0 ≡ NcS0 ,

LΦ = (NΦ −NY)S0 ≡ NΦS0 ,

LψR = −(NR
ψ +NL

ψ
−NR̄ −NR)S0,inv ≡ NR

ψ S0,inv ,

LψR = −(NR
ψ +NL

ψ
−NR̄ −NR)S0 ≡ NR

ψ S0

= LψR + S0,evan ,

(5.2.6)

1Renormalization constant δZϕ is Zϕ − 1.
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and we introduce funcionals connected with the coupling constant

Lg ≡ g
∂S0

∂g
, LYR

m
ij ≡

∂S0

∂(YR)mij
, Lλmnop ≡

∂S0

∂λmnop
. (5.2.7)

Notice that the Lϕ functionals corresponding to field renormalization can be written
as a total bd-variation and in terms of the monomials of Section 4.2 as

LG = bd

∫
dd x ρ̃µaGa

µ

= 2SGG + 3SGGG + 4SGGGG + SψGψR + SΦGΦ + 2SΦGGΦ − Sc̄c − Sρc ,
(5.2.8)

where ρ̃µa = ρµa + ∂µc̄a is the natural combination arising from the ghost equation

Lc = −bd
∫

dd x ζaca

= Sc̄c + Sc̄Gc + Sρc + SρGc + Sζcc + SR̄cψR + SRcψR + SYcΦ ,
(5.2.9)

LΦ = bd

∫
dd x YmΦm

= 2 (SΦΦ + SΦGΦ + SΦGGΦ) + 4λmnopSΦ4
mnop

+ ((YR)mijSψRCi ΦmψRj
+ h.c.) ,

(5.2.10)

LψR = −bd
∫

dd x (R̄i
PRψi + ψiPLR

i)

2 =
(

2
∫

dd x i

2ψi(
/∂PR + PL/∂)ψi

)
+ 2SψGψR + 2((YR)mijSψRCi ΦmψRj

+ h.c.) ,
(5.2.11)

while the Lϕ functionals corresponding to renormalization of physical couplings can be
expressed in terms of the monomials of Section 4.2 as

Lg = SGGG + 2SGGGG + SΦGΦ + 2SΦGGΦ + SψGψR

+ Sc̄Gc + SρGc + Sζcc + SR̄cψR + SRcψR + SYcΦ ,
(5.2.12)

LYR
m
ij = S

ψR
C
i ΦmψRj

, (5.2.13)

Lλmnop = SΦ4
mnop

. (5.2.14)

Despite the non-nilpotency of bd, several of the Lϕ are actually bd-invariant in the
following sense:

bdLϕ = 0 for ϕ = G,Φ , (5.2.15)
bdLψR = 0 , (5.2.16)

bd
[
δ(YR)mijLYRmij

]
= 0 , (5.2.17)

bd [δλmnopLλmnop ] = 0 , (5.2.18)

2Observing that iψi(/∂PR + PL /∂)ψi = 2iψi /∂PRψi + iψi /̂∂ψi, we note that there exists a difference
between this calculation and the result given in [27], amounting to: LCPM

ψR
− Lours

ψR
= i
∫

dd x ψi /̂∂γ5ψi.
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where the last two equations nontrivially hold with requirement that the renormalization
constants δ(YR) and δλ satisfy the analogous gauge invariance constraints as Eqs. (4.1.17)
and (4.1.16a). In contrast, the functional Lc is not bd-invariant3 in this sense. Instead, it
is easy to see that

bdLc = ∆̂ (5.2.19)

with the same breaking as in Eq. (4.3.9). As a result, also Lg, corresponding to gauge
coupling renormalization, is not bd-invariant. However, one may define the quantity LF 2

corresponding to the field strength tensor, that will be bd-invariant. This quantity has the
useful properties

LF 2 = −1
4

∫
dd x F a

µνF
aµν = SGG + SGGG + SGGGG , (5.2.20)

bdLF 2 = 0 , (5.2.21)
Lg = Lc + LG − 2LF 2 . (5.2.22)

Note, however, that in the limit d → 4 and evanescent (hat) terms vanishing, all the
Lϕ functionals presented here become invariant under the linear b transformation in 4
dimensions. When our task comes to the point where we must restore BRST symmetry
in the theory, the reader will understand the convenience of introducing these Lϕ and
Lg invariants. For now, keep in mind that they are bd variations of some action monomials.

As a takeaway for the reader, the BMHV scheme usage results in new types of coun-
terterms due to the emergence of evanescent objects starting from the tree-level action.
While in multiplicative renormalization of vector-like theories we are concerned with the
counterterms

Ssct,inv + Sfct,inv,

meanwhile in the BHMV scheme treatment we would have

Ssct,inv + Ssct,evan + Sfct,inv + Sfct,restore + Sfct,evan .

3This fact appears to be in contradiction with a claim made in [27].
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CHAPTER 6

THE ONE-LOOP SINGULAR COUNTERTERM ACTION IN
THE YANG-MILLS RIGHT-HANDED MODEL

In this chapter, we will present the complete list of the 1-loop (order ~1) contributions
that define the singular counterterm action S(1)

sct for right-handed Yang-Mills model, results
first presented in [47]. The calculations are performed in d = 4 − 2ε dimensions. Since
the tree-level action S0 also contains vertex terms Kφsdφ with BRST sources Kφ, their
loop corrections are computed as well. Together with the tree-level action S0, the singular
counterterm action is a part of the dimensionally-regularized effective action ΓDReg. This
action, once counterterms are fixed, is no longer divergent, but is not yet BRST-invariant,
and thus additional finite counterterms will be necessary to restore the BRST symmetry
thus completing the definition of ΓDReg. This finite counterterms will remedy spurious
anomalies that break BRST symmetry and the next chapter is devoted to this task. It
is important to emphasize that so-called non-spurious or essential anomalies can appear,
and it is not possible to cancel them by choice of proper counterterms, but they are
canceled by anomaly cancelation conditions emerging from the matter content of the
theory. Supposing anomalous terms have been properly cancelled so as BRST symmetry
is restored, the renormalized effective action ΓRen is then defined from ΓDReg at the loop-
order of interest by taking the renormalized limit, i.e. the limit d→ 4 and all remaining
evanescent terms vanishing.

6.1 | Technical notes and remarks about the calculation

The amplitudes of the necessary Feynman diagrams have been computed using
Mathematica packages FeynRules [73], FeynArts [80] and FeynCalc [81–83]; the ε-
expansion of the amplitudes has been cross-checked using the FeynCalc’s interface
FeynHelpers [84] to Package-X [85]. Now let’s briefly explain how all those results
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are obtained. Our computation algorithm has several stages. Model of interest is defined
via FeynRules where gauge groups, parameters, and particle content are defined. Feyn-
man rules are then generated after the Lagrangian properties check, and counterterm
expansion is performed in the fashion of multiplicative renormalization (where additive
parts are added later manually). FeynRules then generates model files that we adjust
for BMHV scheme calculation and d-dimensional extension is defined. Starting with the
defined model, FeynArts is used to construct the topologies, generate Feynman diagrams
and write down the amplitudes for them. The amplitudes are then exported as lists and
used as calculation input. Finally, FeynCalc is used to calculate loop integrals and to
simplify tensor structures, and finaly sums of diagrams contributing to self-energies and
vertices are summed and their group structures are simplified. The process is automated
as much as possible, but e.g. insertion of evanescent operators and simplification of group
structures requires manual interventions and/or calculation by hand. The BHMV scheme
is (yet) not widely used, so the calculation procedure requires adjustments in codes that
are implemented in the most elegant way we could think of. Yet we believe there is a lot
of room for improvement and this is also part of our ongoing research.

6.2 | Calculation of the one-loop divergent terms

We present now the full list of the results of the divergent parts of the self-energies
and vertices of the theory, evaluated at 1-loop order. In the following calculations, all
momenta in vertices are taken incoming. The blobs shown in the diagrams represent
the collection of the 1-loop corrections not explicitly shown, that can be easily obtained
diagrammatically via the standard methods using the possible interactions in the theory.

6.2.1 | Self-energies

Scalar field:
Φm Φn

p

iΓ̃nmΦΦ(p,−p)|1div = i~
16π2ε

((
g2(ξ − 3)C2(S)

)
δmnp2 + Y2(S)δmnp2 + 2Y2(S)

3 δmnp̂2
)
.

(6.2.1)
Here we introduce the reader with the first evanescent object emerging from 1-loop diagram,
the last term in scalar-field self energy, coming from the chiral-fermion loop.
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Fermion field:
ψj ψi

p

iΓ̃ji
ψψ̄

(−p, p)|1div = i~
16π2ε

(
g2ξC2(R) + Y2(R)

2

)
δij 6p PR , (6.2.2)

and for the charge-conjugated fermion field:

iΓ̃ji
ψC ψ̄C

(−p, p)|1div = i~
16π2ε

(
g2ξC2(R) + Y2(R)

2

)
δij 6p PL . (6.2.3)

Since fermion interaction vertices have projectors, self-energy result is 4-dimensional.
Gauge boson:

Ga
µ Gb

νp

iΓ̃ba,νµGG (p,−p)|1div = − i~g2

16π2ε

(13− 3ξ)C2(G)− S2(S)
6 δab(pµpν − p2gµν)

+ i~g2

16π2ε

2S2(R)
3 δab(pµpν − p2gµν)− i~g2

16π2ε

S2(R)
3 δabp̂2gµν .

(6.2.4)

For the gauge boson self-energy, notice that the transversality of the photon is lost.
Ghost field:

cb ca

p

iΓ̃bacc̄(−p, p)|1div = i~g2

16π2ε

ξ − 3
4 C2(G)δabp2 . (6.2.5)

6.2.2 | Standard vertices

Yukawa vertex:

ψ
C
i

ψj

p1 p2

qΦm

ψi ψCj

p1 p2

qΦm

iΓ̃ji,m
ψψCΦ

|1div = i~
16π2ε

(
Y n
R (Y m

R )∗Y n
R − g2ξC2(S)Y m

R − g2(3 + ξ)TRaY m
R TR

a
)
ij
PR

= i~
16π2ε

(
Y n
R (Y m

R )∗Y n
R − g2 2C2(R)(3 + ξ)− C2(S)(3− ξ)

2 Y m
R

)
ij

PR ,
(6.2.6)

where the last line is obtained by evaluating (TRaY m
R TR

a)ij, using Eq. (4.1.16a):

(TRaY m
R TR

a)ij = (C2(R)− C2(S)/2)(YR)mij ,
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and the divergent result for charge-conjugated Yukawa vertex is given by:

iΓ̃ji,m
ψC ψ̄Φ|

1
div = i~

16π2ε

(
(Y n

R )∗Y m
R (Y n

R )∗ − g2 2C2(R)(3 + ξ)− C2(S)(3− ξ)
2 (Y m

R )∗
)
ij

PL .

(6.2.7)
Notice that the 1-loop coupling coefficient is not proportional to tree-level one i.e. Yukawa
matrix.
Fermion-gauge boson interaction:

ψj ψi

p1 p2

qGa
µ

iΓ̃ji,a,µ
ψψ̄G
|1div = i~g

16π2ε

(
g2 (3 + ξ)C2(G) + 4ξC2(R)

4 + Y2(R)
2

)
TR

a
ijγ

µ
PR . (6.2.8)

Scalar-gauge boson interaction:

Φm Φn

p1 p2

qGa
µ

+ (p1,m)↔ (p2, n) permutation.

iΓ̃nm,a,µΦΦG (q = −p1 − p2, p1, p2)|1div =
i~g3

16π2ε

(
3 + ξ

4 C2(G)− (3− ξ)C2(S)
)
θanm(p1 − p2)µ + i~g

16π2ε
Y2(S)θanm(p1 − p2)µ . (6.2.9)

Ghost-gauge boson interaction:

cc c̄a

p1 p2

qGb
µ

iΓ̃cbacGc̄(p2, q = −p1 − p2, p1)|1div = ~g3

16π2ε

ξC2(G)
2 fabcpµ2 . (6.2.10)

Triple gauge boson vertex:

Ga
µ Gb

ν

p1 p2

p3Gc
ρ

+{(p1, µ, a) , (p2, ν, b) , (p3, ρ, c)} permutations.
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iΓ̃cba,ρνµGGG (p1, p2, p3 = −p1 − p2)|1div =
−~g3

16π2ε
fabc

(17− 9ξ)C2(G)− 2S2(S)
12 ((p2 − p3)µgνρ + (p3 − p1)νgµρ + (p1 − p2)ρgµν)

+ ~g3

16π2ε
fabc

2S2(R)
3 ((p2 − p3)µgνρ + (p3 − p1)νgµρ + (p1 − p2)ρgµν) . (6.2.11)

Quartic gauge boson vertex:

Ga
µ

p1

Gd
σ

p2

p4 p3

Gc
ρ

Gb
ν

+{(p1, µ, a) , (p2, ν, b) , (p3, ρ, c) , (p4, σ, d)} permutations.

iΓ̃abcd,µνρσGGGG |1div =

i~g4

16π2ε

2(2− 3ξ)C2(G)− S2(S)
6

(
gµνgρσ, gµρ, gνσ, gµσgνρ

)
·


f eacf ebd + f eadf ebc

f eabf ecd + f eadf ecb

f eabf edc + f eacf edb



− i~g4

16π2ε

2S2(R)
3

(
gµνgρσ, gµρgνσ, gµσgνρ

)
·


f eacf ebd + f eadf ebc

f eabf ecd + f eadf ecb

f eabf edc + f eacf edb

 . (6.2.12)

We employed here a matrix-like “scalar product” to express in a compact form the result
and to indicate how the Lorentz tensors are associated with the corresponding group
structures.
Tadpoles, and interactions with an odd number of scalar fields: For triple scalar
vertex, scalar-gauge boson vertices with one or three scalar fields, at 1-loop the only
possibility is that all the scalar fields are connected to a single internal fermion loop; since
we are studying a massless theory these contributions vanish. The same reason also apply
for tadpoles in DReg.

Scalar-gauge boson interaction:

Ga
µ

p1

Φn

p2

p4 p3

Φm

Gb
ν

+{(p1, µ, a) , (p2, ν, b)} and {(p3,m) , (p4, n)} permutations.

iΓ̃mnab,µνΦΦGG |1div = i~g4

16π2ε

(
3 + ξ

2 C2(G)− (3− ξ)C2(S)
)
{θa, θb}mngµν

+ i~
16π2ε

Y2(S)g2{θa, θb}mngµν .
(6.2.13)
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Quartic scalar vertex:

Φm

p1

Φp

p2

p4 p3

Φo

Φn

+{(p1,m) , (p2, n) , (p3, o) , (p4, p)} permutations.

iΓ̃mnopΦΦΦΦ|1div = i~
16π2ε

1
2(3g4A− g2ξΛS − 4H + Λ2)mnop , (6.2.14)

using the following group invariants, as defined by Eqs. (2.16), (2.17), (2.18) and (2.19)
in [69] and employing the same conventions:

Amnop = 1
8
∑
perms
{θa, θb}mn{θa, θb}op , Hmnop = 1

4
∑
perms

TrY m
R Y

† n
R Y o

RY
† p
R ,

Λ2
mnop = 1

8
∑
perms

λmnqrλqrop , ΛS
mnop = λmnop

∑
k=m,n,o,p

C2(k) ,
(6.2.15)

where in the definition of ΛS
mnop the sum is performed on each scalar line represented by

the index k, and C2(k) is the eigenvalue of the Casimir operator (θaθa)mn for the scalar
representation of line k. In our case the scalar fields are in the same scalar (and irreducible)
representation, therefore we have ΛS

mnop = 4C2(S)λmnop. Also, note that multiplicative
renormalization transformation for λmnop is not sufficient.

6.2.3 | Vertices with external BRST sources

Since the diagrams with the BRST-source vertex insertions necessary for this formalism
are not conventional ones, instead of representing them as blobs we explicitly list all the
contributions. To further illustrate the technical problems that can appear when using
this formalism let’s discuss the implementation of these BRST-source vertex insertions
in calculation codes. Starting from the fact that those types of fields are not part of
standard particle content in e.g. FeynArts [80], we have to translate them to language
codes will understand. Starting from the Table 4.1 and keeping in mind that we can
impose objects like auxiliary U(1) gauge bosons and ghosts, we overcame this difficulty
by the construction:

ζa → c̄c̄a,

Ym → Φmc̄,

ρaµ → Aµc̄
a,

Ri → ψic̄,

R̄i → ψ̄ic̄,
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where one can see that it is not possible to reproduce mass-dimension of the fermionic
BRST sources so we have to keep that in mind while doing calculations.
From ρaµsdG

a
µ:

there exist two different Green’s functions involving this insertion, whose divergent parts
are:

p

cb ρµa
iΓ̃ba,µcρ (−p, p)|1div = − ~g2

16π2ε

3− ξ
4 C2(G)δabpµ , (6.2.16)

ρµa

p1 p2
Gb

ν
cc

ρµa

p1 p2
Gb

ν
cc

iΓ̃cba,νµcGρ |1div = i~g3

16π2ε

ξC2(G)
2 fabcgµν . (6.2.17)

From ζasdc
a:
ζa

p1 p2
cb cc

iΓ̃cbaccζ |
(1)
div = − i~g3

16π2ε

ξC2(G)
2 fabc , (6.2.18)

where we accounted for the diagram’s symmetry factor = 2 due to the fact there are two
interchangeable vertices – the (c̄Gc) vertices – leaving the diagram invariant.

From R̄isdψi:

R̄i
α

p1 p2
ψjβ ca

iΓ̃jai,βα
ψcR̄

|(1)
div = − ~g3

16π2ε

ξC2(G)
2 TR

a
ijPRαβ . (6.2.19)

From sdψ̄iRi ≡ Risdψ̄i:
Rj
β

p1 p2
ψ
i
α

ca

iΓ̃jai,βα
Rcψ̄

|(1)
div = − ~g3

16π2ε

ξC2(G)
2 TR

a
ijPLαβ . (6.2.20)

From YmsdΦm:
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Ym

p1 p2
Φn ca

iΓ̃namΦcY |
(1)
div = − ~g3

16π2ε

ξC2(G)
2 θamn . (6.2.21)

6.3 | The one-loop singular counterterm action

After computing all UV divergent 1-loop Feynman diagrams, we can determine the
singular 1-loop counterterm action needed for regularization. It is defined such that the
divergent parts of the 1-loop vertices cancel:

S
(1)
sct = −Γ|(1)

div . (6.3.1)

Since here we present the first result with the chiral Yang-Mills model with scalar fields,
we will separate it into the non-scalar and scalar sector for clarity. First, we provide the
contributions with and without scalar fields separately1,

S
(1)
sct = S

(1)NS
sct + S

(1)S
sct , (6.3.2)

where S(1)NS
sct represents the terms without any contribution from the scalar fields, and

agrees with Eq. (37) of [27], and reads:

S
(1)NS
sct = ~g2

16π2ε

{
13− 3ξ

6 C2(G)SGG + 17− 9ξ
12 C2(G)SGGG + 2− 3ξ

3 C2(G)SGGGG

−2S2(R)
3 (SGG + SGGG + SGGGG)− ξC2(R)(Sψ̄ψR + SψGψR)− 3 + ξ

4 C2(G)SψGψR

+3− ξ
4 C2(G) (Sc̄c + Sρc)−

ξC2(G)
2

(
Sc̄Gc + SρGc + Sζcc + SR̄cψR + SRcψR

)}

− ~g2

16π2ε

S2(R)
3

∫
dd x 1

2Ḡ
aµ∂̂2Ḡa

µ .

(6.3.3)
1Since tree-level action is finite, notice that superscripts 1 meaning the explicit 1-loop, and (1) meaning

up to 1-loop do not differ in this case.
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The counterterm action S(1)S
sct represents the terms generated from the scalar contributions,

and reads:

S
(1)S
sct = ~

16π2ε

{
−g2S2(S)

6 (SGG + SGGG + SGGGG)− Y2(R)
2

(
Sψ̄ψR + SψGψR

)
+g2(3− ξ)C2(S) (SΦΦ + SΦGΦ + SΦGGΦ)− g2 3 + ξ

4 C2(G) (SΦGΦ + 2SΦGGΦ)

−Y2(S)
(
SΦΦ + SΦGΦ + SΦGGΦ

)
+ 1

2(3g4A− g2ξΛS − 4H + Λ2)mnopSΦ4
mnop

+
(
Y n
R (Y m

R )∗Y n
R − g2 2C2(R)(3 + ξ)− C2(S)(3− ξ)

2 Y m
R

)
ij

S
ψR

C
i ΦmψRj

+ h.c.

−g2 ξC2(G)
2 SYcΦ

}
− ~

16π2ε

2Y2(S)
3 ŜΦΦ .

(6.3.4)

Notice it contains both additional contributions to the operators without scalar fields
and contributions to additional operators involving scalar fields. In both equations the
monomials introduced in Eq. (4.2.16a) have been used; a bar such as in SGG corresponds
to taking all Lorentz indices in the respective monomial only in purely 4 dimensions; a
hat such as in ŜΦΦ corresponds to taking all Lorentz indices purely in d− 4 dimensions.
The new object

Sψ̄ψR =
∫
ddx iψi/∂PRψi ≡

∫
ddx

i

2ψi
↔
/∂PRψi

corresponds to the 4-dimensional kinetic term of the purely right-handed fermion. It
differs from its d-dimensional equivalent Sψψ. Its appearance reflects the fact that only the
right-handed fermion component renormalizes, while the fictitious left-handed component
required to properly extend the 4-dimensional chiral fermion kinetic term to d dimensions,
see Section 4.2, does not renormalize. This is expected since all fermion interaction vertices
in the model are explicitly chiral (contain the right-handed projector PR), thus any fermion
propagator connecting such vertices get their extra left-handed component projected out.
Any loop correction to a fermion propagator contains at least one such vertex connected
to the fermion line, therefore such correction will only contribute to the renormalization
of the right-handed part of the fermion kinetic term. The 1-loop result produced two
evanescent operators with their corresponding Feynman rules,

∫
dd x 1

2Ḡ
aµ∂̂2Ḡb

µ ⇒ −ip̂2gµνδ
ab,

ŜΦΦ = −
∫

dd x 1
2Φm∂̂2Φm ⇒ ip̂2δmn .

We observe that, should we have used instead another d-dimensional choice for the
fermion-gauge interaction term with a γµPR, we would have obtained many more evanes-
cent operators, so even those choices are equally correct, we prefer the most elegant one
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in terms of simplicity. However, it would be interesting to see how the results behave for
the general choice of this interaction. That question is part of the current research for the
abelian case.

We will now re-express the result for the singular counterterms in the structure an-
nounced in Chapter 5 and make contact to the usual renormalization transformation. The
sum of the singular counterterms can be written as

S
(1)
sct = S

(1)
sct,inv + S

(1)
sct,evan , (6.3.5)

where the first term arises from renormalization transformation as in Eq. (5.2.1) and is
given by Eq. (5.2.4):

Sct,inv = δZG
2 LG + δZψR

2 LψR + δZΦ

2 LΦ + δZc
2 Lc

+ δg

g
Lg +

(
δ(YR)mijLYRmij + h.c.

)
+ δλmnopLλmnop ,

while the second term contains purely evanescent quantities. The renormalization constants
needed in Eq. (5.1.1) agree with the usual ones obtained for non-chiral theory (where we
keep in mind we have just right-handed fermions in loops) (see e.g. [67–69]) and read

δZ
(1)
G = ~

16π2ε
g2 (13− 3ξ)C2(G)− 4S2(R)− S2(S)

6 , (6.3.6)

δZ
(1)
ψR

= −~
16π2ε

(
g2ξC2(R) + Y2(R)

2

)
, (6.3.7)

δZ
(1)
Φ = ~

16π2ε

(
g2(3− ξ)C2(S)− Y2(S)

)
, (6.3.8)

δZ(1)
c = 2δZ(1)

ρc + δZ
(1)
G = ~

16π2ε
g2 (22− 6ξ)C2(G)− 4S2(R)− S2(S)

6 , (6.3.9)

where δZ(1)
ρc is the coefficient of Sρc in S(1)

sct :

δZ(1)
ρc ≡

~
16π2ε

g2 3− ξ
4 C2(G) ;

δg(1)/g = −~
16π2ε

g2 22C2(G)− 4S2(R)− S2(S)
12 , (6.3.10)

δ(YR)m,(1)
ij = δZ

m,(1)
Y,ij − (δZ(1)

ψR
+ δZ

(1)
Φ /2)(YR)mij , (6.3.11)

where δZm,(1)
Y,ij is the coefficient of S

ψR
C
i ΦmψRj

in S(1)
sct :

δZ
m,(1)
Y,ij ≡

~
16π2ε

(
(Y n

R (Y m
R )∗Y n

R )− g2 2C2(R)(3 + ξ)− C2(S)(3− ξ)
2 Y m

R

)
ij

;

δλ(1)
mnop = δZ

(1)
4Φ,mnop − 2δZ(1)

Φ λmnop , (6.3.12)
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where δZ(1)
4Φ,mnop is the coefficient of SΦ4

mnop
in S(1)

sct :

δZ
(1)
4Φ,mnop ≡

~
16π2ε

1
2(3g4A− g2ξΛS − 4H + Λ2)mnop .

The evanescent counterterms appearing in Eq. (6.3.5) can be written as

S
(1)
sct,evan = −~

16π2ε

{
g2S2(R)

3

(
2(S̃GG + S̃GGG + S̃GGGG) +

∫
dd x 1

2Ḡ
aµ∂̂2Ḡa

µ

)
+Y2(S)

(
(S̃ΦΦ + S̃ΦGΦ + S̃ΦGGΦ) + 2

3 ŜΦΦ

)}
,

(6.3.13)

where we introduce new notation for evanescent operators as

S̃O = SO − SO for O = GG,GGG,GGGG,ΦΦ,ΦGΦ,ΦGGΦ . (6.3.14)

We close this chapter with the following imporant remarks:

1. The renormalization transformation even in the BMHV treatment provides most of
the counterterms at the 1-loop level. It must be applied to the invariant part of the
tree-level action, not to the evanescent part which contains the d-dimensional extension
of the fermion kinetic term. As a result the counterterms S(1)

sct,inv contain only purely
4-dimensional fermion terms.

2. The remaining evanescent counterterms are specific to the BMHV scheme and do not
have an equivalent in naive schemes. They involve all vertices of scalars and vectors with
up to 4 legs. The evanescent terms of the form S̃

(1)
O are gauge invariant and evanescent;

however, the two additional evanescent terms present in Eq. (6.3.13), contributions to
the gauge boson and scalar two-point function counterterms, are not gauge invariant.

3. The corresponding result for a gauge theory without scalars has already been obtained
in Ref. [27]; since our non-scalar contributions agree with what is already known, it is
an additional check to the consistency of our calculations. The scalars contribute in two
ways: they provide additional contributions to the invariant counterterms S(1)

sct,inv and
thus to the renormalization constants in Eqs. (6.3.6) to (6.3.12). These contributions
are equal to the case without the BMHV scheme e.g in vector-like theory or naive
treatment. Second, there is an explicit evanescent scalar operator present in Eq. (6.3.13)
that originates from fermion loop contributions to the scalar self-energy.

4. The result presented here is specific to our choice of the regularized, d-dimensional
theory Eq. (4.2.14), based on Eq. (4.2.6). This choice does not generate an extra
evanescent counterterm to the fermion two-point function. Had we used another choice
out of the options indicated in Eq. (4.2.1), the result would have been different. As an
illustration that shows why this choice was made we provide here the results for the
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self-energies corresponding to replacing the object PLγµPR by γµPR (choice designated
by “Alt”) in the fermion-gauge boson interaction. The scalar self-energy does not
change, but the fermion and gauge boson self-energies change as

iΓ̃ji
ψψ̄

(p)|Alt,(1)
div = iΓ̃ji

ψψ̄
(p)|(1)

div −
i~g2

16π2ε
C2(R)δij ̂6p PR , (6.3.15)

iΓ̃ba,νµGG (p)|Alt,(1)
div = iΓ̃ba,νµGG (p)|(1)

div + i~g2

16π2ε

S2(R)
3 δab(pµp̂ν + 2p̂µp̂ν + p̂µpν + p2ĝµν) .

(6.3.16)

We see that both self-energies receive additional evanescent contributions and the
structure of the resulting S

(1)
sct,evan will become considerably more complicated. In

particular, a new evanescent counterterm to the fermion two-point function would have
appeared,

S
Alt,(1)
sct,evan ⊃

~
16π2ε

g2C2(R)
∫
d4x iψi /̂∂PRψi. (6.3.17)

At the very end, when theory is renormalized, final results in physical limit must all agree,
so the choice is the question of the simplicity of the middle steps of the procedure. Let’s
also mention that this choice is not always obvious, but is evident after the practitioner
tries several options and checks the outcome. For the reader interested in technical
details, this alternative choice corresponds to vertex generated by default by FeynRules.
No matter how one defines fermion-gauge boson interaction vertex, the program will
interpret it in 4-dimensions and automatically use anticommuting γ5. We outsmarted
this by altering interactions manually in the output model files.
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CHAPTER 7

BRST SYMMETRY BREAKING AND ITS RESTORATION

In the previous chapter, we evaluated and listed all singular counterterms needed to
regularize the right-handed Yang-Mills model. However, at the end of the day, the theory
is considered renormalized when all symmetries of the tree-level action are again valid
after, in this particular case, 1-loop evaluation. Since the BMHV scheme broke both gauge
and BRST invariance, symmetries must be restored by proper counterterms. This chapter
is devoted to that task.

7.1 | Renormalization condition

The ultimate requirement is that after renormalization at the some particular loop-
order, the finite effective action ΓRen satisfies the Slavnov-Taylor identity,

S(ΓRen) = 0 . (7.1.1)

Here we come to the central problem of the BMHV scheme – restoration of the BRST
symmetry and underlying gauge invariance. To restore original symmetries, we have to
determine finite counterterms, where the information we need is contained in the effective
action at the 1-loop level. Following the expansion in Eq. (3.1.9), we see that effective
action up to 1-loop level in total contains

Γ(1)
DReg = Γ(1) + S

(1)
sct + S

(1)
fct , (7.1.2)

where Γ(1) denotes the effective action from tree-level and genuine 1-loop diagrams, without
counterterms. Regularized action in principle still contains evanescent objects, so when
the limit d→ 4 is performed, the renormalized 1-loop effective action is obtained by

Γ(1)
Ren = LIM

d→4
Γ(1)
DReg, (7.1.3)
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as defined in Section 2.2.1 and Eq. (3.1.10). If we perform Slavnov-Taylor operator to the
regularized action, we get the Slavnov-Taylor identity in d dimensions at the 1-loop level
as

Sd(Γ(1)
DReg) = Sd(Γ(1)) + bdS

(1)
sct + bdS

(1)
fct ; (7.1.4)

here the linearized operator bd of Eq. (4.3.3) has been used and terms of higher loop order
have been dismissed.

The first term on the right-hand side of equation (7.1.4) is expected to be nonzero
in the BMHV scheme and corresponds to the breaking of the Slavnov-Taylor identity by
1-loop regularized Green’s functions. The second term by construction cancels any UV
divergences present in the first term, as we will explicitely show. The last term contains
the finite counterterms that will be evaluated and discussed in the present section. These
finite counterterms must be chosen in a way that the finite parts of the first term are
cancelled in the LIMd→4.

The determination of the symmetry-restoring finite counterterms thus requires three
technical steps:

1. Evaluate the symmetry breaking caused by the genuine 1-loop diagrams and the
required singular counterterms coming from the insertion diagrams, i.e. evaluate
Sd(Γ(1)) and bdS(1)

sct . Check the consistency by the cancellation of these two terms.

2. Find the symmetry-restoring counterterms S(1)
fct , so that their bd-variation cancels

the symmetry breaking.

3. Check the Slavnov-Taylor identity in the renormalized limit after BRST restoring
counterterms are taken into account. If an anomaly is still present, it is a non-
spurious or essential anomaly, which means it can not be canceled by choice of
proper counterterm, but by meeting the anomaly cancellation condition (usually in
the form of restrictions on group structures).

Before presenting the procedure for obtaining the finite counterterms in detail we provide
several remarks we find important to the reader. First, we emphasize that the set of
symmetry-restoring finite counterterms is not unique. In general, the finite counterterms
can always be written as (see also Chapter 5)

S
(1)
fct = S

(1)
fct,inv + S

(1)
fct,restore + S

(1)
fct,evan . (7.1.5)

Here S(1)
fct,inv originates from the renormalization transformation (5.2.1) and is symmetry

invariant in the sense of (5.2.2); the evanescent counterterms S(1)
fct,evan vanish in the LIMd→4

by definition and are therefore can not spoil the symmetry restoration at the 1-loop
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level1. Therefore, the symmetry-restoring 1-loop counterterms are given by S
(1)
fct,restore.

So total set of finite counterterms is only unambiguous up to shifting around terms
obtained by different renormalization transformations and/or evanescent terms. What
we will provide in the present section is one particular representative the choice for these
symmetry-restoring counterterms, most suitable, up to our knowledge, to higher-order
calculations.

Regarding the evaluation of the symmetry breaking caused by the first and second2

terms on the r.h.s. of (7.1.4), there are several methods to determine the breaking of the
symmetry. The most straightforward way is to directly compute all the required Green’s
functions in divergent and finite part and insert them into the Slavnov-Taylor identity.
Such a direct approach was used e.g. in Ref. [29] for comparing the BMHV vs. the naive
γ5 schemes in flavor-changing neutral processes, in Refs. [31, 32] in the study of chiral
gauge theories and e.g. in Refs. [30, 33, 86] in similar applications on supersymmetric
gauge theories. An advantage of this method is the direct connection to Green’s functions
appearing in physical processes and the explicit control over the symmetry breaking.
From the practical point of view, these calculations can easily become cumbersome and
of an unnecessary extent, especially in finite parts, and especially in the extensive studies
where renormalization of all theory is of interest. In that way practitioner unnecessarily
complicates his or her task since only symmetry-breaking parts of Green functions are of
interest, not all of them.

Fortunately, this can be avoided thanks to second, more indirect method based on the
regularized quantum action principle, established for dimensional regularization in Ref. [20]
and stated in Chapter 3. This regularized quantum action principle implies d-dimensional
breaking of the form

Sd(Γ(1)) = ∆̂ · Γ(1) = [∆̂ · ΓDReg](1) = [∆̂ · ΓDReg](1)
div + [∆̂ · ΓDReg](1)

fin , (7.1.6)

where ∆̂ = sdS0 is the original tree-level BRST symmetry breaking Eq. (4.3.8), while the
full r.h.s. denotes the generating functional of 1-loop regularized Green’s functions with
one insertion corresponding to ∆̂. The r.h.s. of Eq. (7.1.6) also contains the tree-level
result Eq. (4.3.8), but this tree-level result will be irrelevant in the following when we
take only the UV divergent part and/or the LIMd→4 of Eq. (7.1.6). Using this relation,
the computation is dramatically simplified since the r.h.s. involves far fewer, and simpler
Feynman diagrams than the left-hand side. The reason is because l.h.s. formally holds
all the information contained in effective action, and then the Slavnov-Taylor operator is
performed on it. Furthermore, it does not involve the evaluation of products of 1PI Green’s

1The choice of 1-loop evanescent counterterms will have an impact on two- and higher-loop calculations.
2Symmetry-restoring counterterms are by themselves, obviously, BRST non-invariant, since when

added to BRST non-invariant structures they form BRST invariance.
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functions, as would be the case in the direct approach, when the Slavnov-Taylor operator
is applied. This indirect method has been applied in the literature, e.g. in Ref. [20] to
scale invariance, in [27,28] to chiral non-abelian and abelian gauge theories at the 1-loop
level, and in Refs. [54, 87, 88] in a similar way to supersymmetric theories at the 2- and
3-loop level.

In this work, we will apply the second method, which we find more suitable for our
overall type of studies. In Section 7.3 we will also present additional reasons why this
holds.

The condition that the Slavnov-Taylor identity is satisfied at the 1-loop level in the
4-dimensional limit is now

0 = LIM
d→4

(
[∆̂ · Γ(1)]div + bdS

(1)
sct + [∆̂ · Γ(1)]fin + bdS

(1)
fct,restore

)
(7.1.7)

where the subscripts “div”/“fin” denote the divergent and finite parts, respectively. Notice
that we regrouped singular and finite parts since they can only cancel first divergent parts
(with possible finite residue) and than all finite parts. This is the defining condition
for the 1-loop symmetry-restoring counterterms and once it is satisfied (and all anomaly
cancellation conditions are met) the model is renormalized at 1-loop order. The following
Section 7.2 will present the evaluation of the first two, divergent quantities, and Section 7.3
will present the evaluation of the finite parts of [∆̂ ·Γ(1)]fin. In Section 7.4 we will determine
and present the required finite, symmetry-restoring counterterms.

7.2 | Evaluation of divergent insertion and comparison with
singular breaking

In this section we present the evaluation of the divergent quantities appearing in
Eq. (7.1.7), i.e. first and the second term on the l.h.s. By construction, it is clear that
these two quantities must add up at least to something finite since their divergent parts
must cancel; however, we will see in the following that they actually add up to zero. The
basic reason is that both quantities are pure divergences, and no terms of the form ε/ε

can not be generated from combining evanescent terms with UV singularities, up to the
1-loop level.

First we will calculate the BRST breaking of the singular counterterm action, bdS(1)
sct .

The form of the action constructed just for this purpose, evaluation of the BRST breaking,
is the one introduced in Chapter 5 in the fashion of Lφ invariants. As we evaluated, the Lφ
terms present in the invariant part of the singular counterterms in Eqs. (5.2.4) and (6.3.5)
are bd-invariant, except for Lc and Lg where bdLc,g = ∆̂. Several of the evanescent terms
specified in Eq. (6.3.13) are bd-invariant as well.
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For the final aim of this section, evaluation of the BRST breaking of the singular action,
the missing ingredients are bd transformations of the fermion–gauge-boson interaction and
scalar quartic interaction at the 1-loop level. For the first transformation we get

bd((Y n
R (Y m

R )∗Y n
R )ijSψRCi ΦmψRj

+ h.c.) ∝ θano(Y n
R (Y m

R )∗Y o
R + Y o

R(Y m
R )∗Y n

R )ij = 0 , (7.2.1)

where vanishing is due to a group structure that, when simplified using the gauge-invariance
property Eq. (4.1.16a) reduces to the structure that cancels due to the antisymmetry of θa.
Notice that the invariance is now satisfied via group structure, not by operators themselves.
Similar will happen in the next term. For the BRST transformation of the part including
four-scalar interaction, we get

bd((3g4A− 4H + Λ2)mnopSΦ4
mnop

) = 4(3g4A− 4H + Λ2)qnopθaqm
ig

2

∫
dd x caSΦ4

mnop
= 0 .

(7.2.2)

The group factor (3g4A − 4H + Λ2)mnop is completely symmetric in its indices, same as
the tree-level scalar self-coupling λmnop, and its contraction with θaqm can be rewritten
similarly to Eq. (4.1.17). Notice in this example the fact that multiplicative renormalization
transformation for scalar self-coupling λmnop would not be sufficient, as we assumed. So,
we do not explicitly obtain λmnop proportionality at the 1-loop level, but the object is
still symmetric in its indices. For the reader interested in details, for each term involved:
Aqnopθ

a
qmSΦ4

mnop
, Λ2

qnopθ
a
qmSΦ4

mnop
and Hqnopθ

a
qmSΦ4

mnop
, we throughly exploit the allowed

symmetrizations in group indices so as to exhibit contractions between symmetric and
antisymmetric symbols or internal cancellations, leading to the complete cancellation
of these three terms. Finally, the last term in Hqnop furthermore requires the usage of
Eq. (4.1.16a).

Non-vanishing transformations form the symmetry breaking in the singular part,

bdS
(1)
sct = −~

16π2ε

{
g2 ξC2(G)

2 ∆̂ + g2S2(R)
3 bd

∫
dd x 1

2Ḡ
aµ∂̂2Ḡa

µ + 2Y2(S)
3 bdŜΦΦ

}
, (7.2.3)

where, in the last two terms, bd actually acts like the BRST transformation, leading to:

bd

∫
dd x 1

2Ḡ
aµ∂̂2Ḡa

µ =
∫

dd x (sdḠaµ)∂̂2Ḡa
µ =

∫
dd x (∂µca + gfabcḠb µcc)∂̂2Ḡa

µ ,

(7.2.4a)

bdŜΦΦ = bd

∫
dd x −1

2 Φm∂̂
2Φm = −

∫
dd x (sdΦm)∂̂2Φm =

∫
dd x igθamncaΦm∂̂

2Φn .

(7.2.4b)

In total we have three breaking terms: one for the fermions (proportional to the tree-level
breaking ∆̂), one for the gauge bosons and one for the scalars. Notice that, as announced,
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Eq. (7.2.3) is a pure 1/ε singular term; no finite terms are generated by applying the
d-dimensional operator bd onto the singular counterterm action, at the 1-loop level, i.e. it
is impossible to generate finite breakings from the bd transformation of the singular part
of the action.

Now we proceed with the evaluation of first term of Eq. (7.1.7). For evaluating [∆̂ ·
Γ(1)]div we calculate all possible 1-loop vertex corrections with insertion of the ∆̂ evanescent
operator. We usually refer to these types of diagrams as insertion diagrams. In our
prescription all momenta are incoming and all the results use d = 4− 2ε. Below is the list
of all diagrams with a ∆̂ insertion that have a non-vanishing divergent part:

∆̂caGb
µ: ∆̂caGb

µG
c
ν : ∆̂caΦmΦn:

̂

∆ c

p1Aµ

∆̂

Gc
νGb

µ
p2p1

ca

+(p1, µ, b)↔ (p2, ν, c)
permutation.

∆̂

ΦnΦm p2p1

ca

ψ ψ

ψC

+(p1,m)↔ (p2, n)
permutation.

∆̂caψ̄i,αψj,β:
̂∆

p2 p1
ψjβ ψ

i
α

ca
̂∆

p1p2

ψ
i
αψjβ

ca

(a) Vanishing diagrams.

̂∆

p2 p1
ψjβ ψ

i
α

ca
̂∆ ca

p2 p1
ψjβ ψ

i
α

(b) Diagrams giving the PR and PL contributions
respectively.

and their result is the following,

i[∆̂ · Γ̃ba,µ
Gc ](1)

div = ~g2

16π2ε

S2(R)
3 δabp̂1

2p1
µ , (7.2.5a)

i[∆̂ · Γ̃cba,νµ
GGc ](1)

div = −i~g
3

16π2ε

S2(R)
3 fabc(p̂1

2 − p̂2
2)gµν , (7.2.5b)

i[∆̂ · Γ̃nm,a
ΦΦc ](1)

div = −~g
16π2ε

2Y2(S)
3 θamn(p̂1

2 − p̂2
2) , (7.2.5c)

i[∆̂ · Γ̃ji,a

ψψ̄c
](1)
div = ~g3

16π2ε

ξC2(G)
2 TR

a
ij( /̂p1PR + /̂p2PL) . (7.2.5d)

The sum of these 1PI contributions evaluated in this section, when Fourirer transformed
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to coordinate space, constitutes the non-vanishing contribution to [∆̂ · Γ](1)
div:

[∆̂ · Γ](1)
div = ~

16π2ε

{
g2 ξC2(G)

2 ∆̂ + g2S2(R)
3

∫
dd x (∂µca + gfabcḠb µcc)∂̂2Ḡa

µ

+2Y2(S)
3

∫
dd x igθamncaΦm∂̂

2Φn

}
, (7.2.6)

and by comparing with Eq. (7.2.3) that provides the expression of bdS(1)
sct , we conclude

that there exists a complete cancellation,

bdS
(1)
sct + [∆̂ · Γ](1)

div = 0 , (7.2.7)

even before performing a 4-dimensional limit.
While this result is expected, in the practical sense it is welcome, since it confirms that
practitioners procedure of calculating insertion diagrams (what usually includes manual
implementation of ∆̂) is correct, and we can safely proceed to the calculation we present
in the next section.

7.3 | Evaluation of finite insertion

This section presents the evaluation of the finite quantity appearing in Eq. (7.1.7), i.e.
LIMd→4[∆̂·Γ(1)]fin, and is closely following procedure from [47]. This is the central quantity
which describes the 1-loop symmetry breaking caused by the BMHV scheme for γ5, but
also detects the essential anomalies present in the theory that are not a consequence of
the scheme usage. This calculation will provide a particularly efficient way to evaluate the
symmetry breaking and will provide the information how to fix the last term in Eq. (7.1.7).
Indeed, this finite quantity accounts for the finite part of the Slavnov-Taylor identity
breaking which, if we were using the direct method instead, would be evaluated using
products of 1PI Green’s functions, including their finite parts, which is in general a difficult
matter, as we stated before. Here instead, only UV-divergent parts of specific Green’s
functions will be required, as we will see, thanks to so-called Bonneau identities.

At first order in ~, our quantity of interest may be expressed as

LIM
d→4

[∆̂ · Γ(1)]fin = [N [∆̂] · ΓRen](1) , (7.3.1)

where the subscript “Ren” implies minimal subtraction and taking the LIMd→4. Here
N [O] denotes the Zimmermann-like definition introduced in Chapter 3. Let us begin with
further comments on how to evaluate [N [∆̂] · ΓRen](1). At the 1-loop level, it is reasonably
straightforward to carry out a direct computation, extending the computation of the
divergent parts in the previous section. However, it is useful to first discuss the structure
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of the computation in more detail.
The BRST breaking vertex operator ∆̂ in its local form is proportional to the evanescent

metric:
∆̂ = ĝµν∆µν = (gµν − ḡµν)∆µν , (7.3.2)

where we used the fact that ∆µν contains ∂µγν covariants, what is evident from Eq. (4.3.9).
Finite contributions are generated once ∆̂ is inserted into loop diagrams. This insertion
will provide the evanescent numerator, and then the evanescent numerator combines with
a 1/ε singularity to form a finite term that behaves schematically as ε/ε. Using this simple
fact, we can expect that the finite symmetry breaking can also be obtained, with the
proper normalization, from extracting only the singular parts of suitable diagrams. Such
a relationship is provided by an identity due to Bonneau [45,46]. The general form of this
identity for the insertion of our interest has the form

N [∆̂µνOµν ](x) · ΓRen =
nmax∑
n=2

4−n∑
r

∑
{i1,...,ir}
1≤ij≤n

{
ir

r!
∂r

∂pµ1
i1 . . . ∂p

µr
ir

× r.s.p.〈N [q∆µνOµν ]φ̃j1(p1) . . . φ̃jn(pn)〉
1PI ∣∣∣∣

pi=ǧ=0

}
N
[−i
n!

1∏
k=n

∏
α/iα=k

∂µαφjk(x)
]
· ΓRen ,

where the bar implies that minimal subtraction of the subdivergences has been done. On
the right-hand side “r.s.p.” means the residue of the simple pole in ν = 4−d = 2ε. Bonneau
identity derivation can be also found in [27] and in [89]. What is of importance for us in
this identity is that the n is the number of fields in the monomial and it is bounded by 2
and nmax. Here we discuss the essence of this identity and its form applied to our 1-loop
case. This will provide valuable additional understanding of the symmetry breaking.

The essential property contained in the Bonneau identity can be explained with the
help of the equation

N [∆̂(x)] = N [gµν∆µν(x)]−N [ḡµν∆µν(x)] = N [gµν∆µν(x)]− ḡµνN [∆µν(x)] . (7.3.3)

The first equation in (7.3.3) makes explicit the appearance of the evanescent metric, which
is decomposed as gµν − ḡµν . The second equation highlights that pulling the metric out
of the minimal subtraction procedure is possible only for the purely 4-dimensional metric,
but not for the d-dimensional metric where doing this operation would not commute with
the minimal subtraction procedure, and therefore Eq. (7.3.3) does not vanish. Note that
N [∆µν(x)] is a 4-dimensional object since it has been submitted to the renormalization
procedure, therefore its contraction with ḡµν is the same as its contraction with gµν from
outside, i.e. in total we have

N [∆̂(x)] = N [gµν∆µν(x)]− gµνN [∆µν(x)] . (7.3.4)
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The 1-loop version of the Bonneau identity is given by

[N [Ô] · ΓRen](1) = LIM
d→4

(
−r.s.p.

[
qO · Γ

](1)

ǧ=0

)
. (7.3.5)

Let’s explain this equation in detail. Here again on the right-hand side “r.s.p.” means the
residue of the simple pole in ν = 4−d = 2ε of the 1PI Green’s function under consideration3.
The Feynman rules corresponding to the operator qO are obtained from the ones for Ô
by formally replacing all the evanescent Lorentz structures by their corresponding d-
dimensional versions contracted, e.g.

p̂2 = pµpν ĝ
µν → pµpν ǧ

µν ≡ qp2,

with the symmetric “metric”-tensor ǧµν , possessing the following properties:

ǧµνg
νρ = ǧµν ĝ

νρ = ǧ ρµ , ǧµν ḡ
νρ = 0 , ǧ µµ = 1 . (7.3.6)

This symbol can be understood as corresponding to the evanescent metric ĝµν such that its
trace has been normalized to one. This explains also the appearance of the minus sign on
the right-hand-side of Eq. (7.3.5): its left-hand-side is proportional to ĝµν which satisfies
ĝµν ĝ

νµ = −2ε. The equality Eq. (7.3.5) implements the intuition developed above: the
finite part of the breaking can be obtained by evaluating the UV singularity of suitable
diagrams, involving the object ǧµν , i.e. fishing out UV divergences proportional to 2ε in
numerator. The significant advantage of using the Bonneau identity is that it further
simplifies the evaluation of the required finite part of the insertion to an evaluation of
residue of simple pole,

LIM
d→4

[∆̂ · Γ(1)]fin = [N [∆̂] · ΓRen](1) = LIM
d→4

(
−r.s.p.[q∆ · Γ](1)

ǧ=0

)
, (7.3.7)

i.e. we need to determine all UV-divergent 1PI 1-loop diagrams with an insertion of q∆.
From now on we will refer to this object as inverse breaking. Clearly, at fixed loop order
by power counting there is only a limited finite number of UV-singular diagrams to be
evaluated. This constitutes the main advantage of this method. The number of external
legs starts from n = 2 for the graphs to be 1PI, and ends at nmax the maximal number
of external lines for a 1PI graph with insertion of Ô to be superficially divergent. More
precisely,

nmax = 4−
∑
i

δφi + (δO − 4) = δO −
∑
i

δφi , (7.3.8)

where δφi is the canonical dimension of the field φi and δO the canonical dimension of the
inserted operator O. This equation defines important restriction on the mass-dimension

3I.e. since we evaluate the divergent parts of the 1PI Green’s functions in d = 4− 2ε, we will have to
take a factor 2 into account.
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of the objects involved in the calculation.
In the following, we will present an exhaustive list of all diagrams contributing to the
breaking and determine their values.

7.3.1 | One-loop vertices with insertion of inverse breaking

As presented above, we need to evaluate all the non-vanishing contributions to the
finite breaking of the Slavnov-Taylor identity at the 1-loop level, i.e. all the non-vanishing
contributions to Eq. (7.3.7). This requires evaluating the contributions to the breaking
functional [N [∆̂] · ΓRen](1), see Eqs. (7.3.5) and (7.3.7).

We now discuss in details how this quantity is evaluated in practice, at 1-loop level.
Starting with the Eq. (7.3.7) we first evaluate [q∆ · Γ](1)

ǧ=0, i.e. all the 1PI 1-loop diagrams
with an insertion of q∆, that are UV-divergent since we will extract the r.s.p. This procedure
includes severals steps:

1. The complete set of non-vanishing diagrams is restricted in this case by ghost number
1 (since those objects are breaking insertions or if you like the breaking of Slavnov-
Taylor identity) and bounded by Eq. (7.3.8) i.e. mass-dimension 4. The reader can
easily construct this list with the help of Table 4.1.

2. At the level of Feynman rules q∆ is obtained from ∆̂ by converting all occurrences
of evanescent Lorentz symbols inside it into contractions of their corresponding
d-dimensional versions with the ǧµν symbol.

3. Evaluation of the obtained diagrams is then performed using standard loop tech-
niques as in Chapter 6, and is followed by a complete tensor contraction and sim-
plification (including Dirac structures) so as to eliminate as many ǧµν symbols as
possible, using the properties Eq. (7.3.6). The property ǧ µµ = 1 of the ǧµν symbol
has the effect of selecting the contributions of interest originally coming from the
evanescent operator ∆̂, that would have otherwise been absorbed into the finite
part, if the ǧµν symbol was not used and the original evanescent metric ĝµν was used
instead.

4. When the result is simplified as much as possible, an ε-expansion is performed to
keep only the simple-pole terms.

5. The remaining ǧµν symbols that have not been already eliminated (signalling the
contribution of higher-order evanescent quantities) have to be discarded: indeed,
according to the Bonneau identity, these remaining contributions would be one
~-order higher.

63



6. The different Lorentz structures arising from the calculation of the Green’s function
can be obtained and their corresponding coefficients can be extracted out. Here we
have to keep in mind that the r.s.p. extracts −2ε factor4.

In the following, we provide the list of all these non-vanishing contributions. For each
contribution, we provide the associated Feynman diagram, its result, and the corresponding
contribution to the breaking functional [N [∆̂] · ΓRen](1). Since the operators contained in
this functional are fully expressed in 4 space-time dimensions, for the sake of simplicity we
will omit all the “overlines” that would otherwise be present over all the Lorentz covariants
(vectors, tensors, fields, to symbolize their 4-dimensionality). We are as well employing
the same notations for the integrated field monomials as in Eq. (4.2.16a), but now all
defined purely in 4 dimensions.
List is the following:

∆̌ ca

p1Gb
µ

i[q∆ · Γ̃ba,µ
Gc ](1)

div = −~g
2

16π2ε

S2(R)
6 δabp1

2p1
µ , (7.3.9a)

results in the the contribution

[N [∆̂] · ΓRen](1) ⊃ ~g2

16π2
S2(R)

3

∫
d4 x (∂µca)(∂2Ga

µ) . (7.3.9b)

∆̌

Gc
νGb

µ
p2p1

ca +(p1, µ, b)↔ (p2, ν, c) permutation.

i[q∆ · Γ̃cba,νµ
GGc ](1)

div = −i~
16π2ε

g3

6
[
S2(R)fabc((p1

2 − p2
2)gµν

−2p1
µp1

ν + 2p2
µp2

ν) + 2dabcR εµνρσp1ρp2σ

]
, (7.3.10a)

where dabcR = Tr[TRa{TRb, TRc}] is the fully symmetric symbol for the R-representation.
The Green function corresponds to the following contribution in the Bonneau identity
and exhibits an anomalous contribution (second line):

[N [∆̂] · ΓRen](1) ⊃ ~g2

16π2
S2(R)

3

∫
d4 x gfabccaG

b
µ(∂2gµν − 2∂µ∂ν)Gc

ν

− ~g2

16π2
dabcR
3

∫
d4 x gεµνρσca(∂ρGb

µ)(∂σGc
ν) . (7.3.10b)

4Finally, when transitioning from Γ̃ momentum representation to coordinate representation Γ, keep in
mind that p→ −i∂ and the possible sign flips from partial integration.
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This anomalous contribution, as we will see later, is not the consequence of the BMHV
scheme usage so it can not be canceled by finite counterterm. For the next contribution
we have:

∆̌

Gc
ν

Gd
ρGb

µ

ca

p1
p2

p3

+ {(p1, µ, b) , (p2, ν, c) , (p3, ρ, d)} permutations5.

i[q∆ · Γ̃dcba,ρνµ
GGGc ](1)

div = −~
16π2ε

g4

6 (p1 + p2 + p3)σ [

gµνgρσ(AabcdR +AacbdR )/2 + gµρgνσ(AabdcR +AadbcR )/2
+gµσgνρ(AacdbR +AadcbR )/2−DabcdR εµνρσ

]
. (7.3.11)

Introducing the notation (TR)a1···an = Tr[TRa1 · · ·TRan ] for the trace of a product of same
group generators TRa, we have employed in the previous equation the group factor

AabcdR = (TR)abcd − (TR)abdc + (TR)acbd − (TR)acdb + (TR)adbc + (TR)adcb

= (TR)abcd + (TR)adcb − S2(R)facef bde = (TR)acbd + (TR)adbc − S2(R)fabef cde

= (TR)abdc + (TR)acdb − S2(R)(fabef cde + facef bde)

= 1
2((TR)abcd + (TR)adcb + (TR)acbd + (TR)adbc)− S2(R)

2 (fabef cde + facef bde) ,

(7.3.12)

and we have defined the fully antisymmetric symbol6

DabcdR = (−i)3!Tr[TRaTR[bTR
cTR

d]] = 1
2(dabeR f ecd + daceR f edb + dadeR f ebc),

for the R-representation, in the fashion of Ref. [27]. The 1PI Green’s function Eq. (7.3.11)
corresponds to the contribution

[N [∆̂] · ΓRen](1) ⊃ ~g4

16π2
AabcdR

6

∫
d4 x ca∂

ν
(
Gb
µG

c µGd
ν

)
− ~g4

16π2
DabcdR

3× 3!

∫
d4 x caε

µνρσ∂σ
(
Gb
µG

c
νG

d
ρ

)
, (7.3.13)

and also exhibits an non-spurious anomaly given by the last term.

5The third term of our calculation (∝ gµσgνρ) agrees with equation (53) of [27]; however, an apparent
discrepancy arises when comparing the first two terms (∝ gµνgρσ and ∝ gµρgνσ with different group
factors) with equation (54) that tells that both p1νg

µρ and p1ρg
µν acquire the very same coefficient.

6Here and in what follows, we employ the standard indicial notation for the (anti-)symmetrization
of tensor indices (or subset thereof): T [a1···an] = 1

n!
∑
π σ(π)T aπ(1) · · ·T aπ(n) , and T {a1···an} =

1
n!
∑
π T

aπ(1) · · ·T aπ(n) .
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∆̌

ΦnΦm p2p1

ca

ψ ψ

ψC

+(p1,m)↔ (p2, n) permutation.

i[q∆ · Γ̃nm,a
ΦΦc ](1)

div = −~g
16π2ε

Y2(S)
6 θamn(p1

2 − p2
2) , (7.3.14a)

correspons to the contribution

[N [∆̂] · ΓRen](1) ⊃ − ~
16π2

Y2(S)
3

∫
d4 x igθamnc

aΦm∂
2Φn . (7.3.14b)

∆̌

Φm

ΦnGb
µ

p1
p2

p3

ca ∆̌

Gb
µ

ΦnΦm p2
p1

p3

ca ∆̌

Φn

Gb
µΦm p2

p3
p1

ca

+(p2,m)↔ (p3, n) permutation.

i[q∆ · Γ̃nm,ba,µ
ΦΦGc ](1)

div = ~g2

16π2ε

1
6(p1 + p2 + p3)µTr

[
2{TRa, TRb}((Y m

R )∗Y n
R + (Y n

R )∗Y m
R )

−TRa(Y m
R )∗TRbY n

R − TRa(Y n
R )∗TRbY m

R

]
,

(7.3.15a)

where the different ways of inserting the fields in the fermion loop, as well as the permu-
tations of field legs of the same type, are considered.

The trace is equal to (SR)abmn ≡ ((CR)abmn+(CR)bamn+m↔ n)/2, completely symmetric by
exchanges a↔ b and m↔ n, and (CR)abmn ≡ Tr

[
2{TRa, TRb}(Y m

R )∗Y n
R − TRa(Y m

R )∗TRbY n
R

]
.

Thus, the 1PI Green’s function Eq. (7.3.15a) corresponds to the contribution

[N [∆̂] · ΓRen](1) ⊃ − ~
16π2

(SR)abmn
3

∫
d4 x

g2

2 ca∂
µ
(
Gb
µΦmΦn

)
. (7.3.15b)

Besides, it is interesting to note that Tr
[
TR

a(Y m
R )∗TRbY n

R

]
= Tr

[
TR

aY n
RTR

b(Y m
R )∗

]
, due

to the symmetry properties of the Yukawa matrices and the definition of the generators
in the conjugate representation. For the next contribution we have:
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∆̌

p2 p1
ψjβ ψ

i
α

ca ∆̌

p1p2

ψ
i
αψjβ

ca ∆̌

p2 p1
ψjβ ψ

i
α

ca ∆̌ ca

p2 p1
ψjβ ψ

i
α

i[q∆·Γ̃ji,a

ψψ̄c
](1)
div = ~g3

16π2ε

[
C2(R)− C2(G)/4

2 + (ξ − 1)C2(R)/6− C2(G)/4
2

]
TR

a
ij( /p1 + /p2)PR

+ ~g
16π2ε

1
4((Y m

R )∗TRaY m
R )ij( /p1 + /p2)PR . (7.3.16a)

Note that here, contrary to the previous case when we inserted the evanescent ∆̂ operator
Eq. (7.2.5d), the first two diagrams do not vanish, and the one with the scalar propagator
provides the last scalar contribution in Eq. (7.3.16a). Using charge-conjugated fermionic
legs, the scalar part becomes:

~g
16π2ε

(Y m
R TR

a(Y m
R )∗)ji( /p1 + /p2)PL = − ~g

16π2ε
((Y m

R )∗TRaY m
R )ij( /p1 + /p2)PL.

This 1PI Green’s function corresponds to the contribution

[N [∆̂] · ΓRen](1) ⊃ − ~g
16π2

{
g2
[
C2(R)− C2(G)

4 + (ξ − 1)
(
C2(R)

6 − C2(G)
4

)]
TR

a
ij

+1
2((Y m

R )∗TRaY m
R )ij

} ∫
d4 x ca∂µ(ψiγµPRψj) . (7.3.16b)

For the insertion in the fermion-gauge interactions we have:

∆̌

p1 p2

ψ
i
α ψjβ

p3
Gb
µ

ca ∆̌

p1 p2

ψ
i
α ψjβ

p3
Gb
µ

ca
∆̌

p1 p2

ψ
i
α ψjβ

p3
Gb
µ

ca

(a) Vanishing diagrams with fermion-scalar interactions.

i[q∆ · Γ̃ji,ba,µ

ψψ̄Gc
](1)
div = −~g

4

16π2ε

ξC2(G)
8 ifabcTR

c
ijγ

µ
PR = −~g

4

16π2ε

ξC2(G)
8 [TRa, TRb]ijγµPR .

(7.3.17a)
Note that both the diagrams with the scalar propagators, and the diagrams with a gluon
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∆̌

p1 p2

ψ
i
α ψjβ

p3
Gb
µ

ca ∆̌

p1 p2

ψ
i
α ψjβ

p3
Gb
µ

ca
∆̌

p1 p2

ψ
i
α ψjβ

p3
Gb
µ

ca

(b) Vanishing diagrams with fermion-gauge boson interactions.

∆̌

p2 p1
ψjβ ψ

i
α

ca

p3
Gb
µ

∆̌ ca

p2 p1
ψjβ ψ

i
α

p3
Gb
µ

(c) Diagrams cancelling with each other.

∆̌

p2 p1
ψjβ ψ

i
α

ca

p3

Gb
µ

∆̌ ca

p2 p1
ψjβ ψ

i
α

Gb
µ

p3

∆̌

p2 p1
ψjβ ψ

i
α

ca

Gb
µ

p3
∆̌ ca

p2 p1
ψjβ ψ

i
α

Gb
µ
p3

(d) The four contributing diagrams; their group structures simplify considerably when summing the first
two (and last two) diagrams together.

propagator connecting the fermions, are finite and thus do not contribute. Also, in our
model there is no GGΦ vertex. The two diagrams with a gluon propagator connecting a
fermion and the ghost leg cancel each other. The four remaining diagrams sum in pairs
and their group structure simplify to get the simple result quoted above.
This 1PI Green’s function corresponds to the contribution

[N [∆̂] · ΓRen](1) ⊃ −i~g
2

16π2
ξC2(G)

4

∫
d4 x ig2fabcTR

c
ijcaψi /G

b
PRψj . (7.3.17b)

For the insertion in fermion-scalar interaction we have

i[q∆ · Γ̃ji,m,a

ψψCΦc
](1)
div = ~g3

16π2ε

ξC2(G)
8 (YR)nijθanmPR = ~g3

16π2ε

ξC2(G)
8 (TRaY m

R − Y m
R TR

a)ijPR .

(7.3.18a)
Similarly to the previous case q∆caGb

µψ̄i,αψj,β, the diagrams with scalar or gluonic prop-
agators between the fermions, and also those with the vertex GΦΦ and scalar/gluon
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∆̌

p1 p2

ψ
C,i
α ψjβ

p3
Φm

ca ∆̌

p1 p2

ψ
C,i
α ψjβ

p3
Φm

ca

(a) Vanishing diagrams with fermion-scalar
interactions.

∆̌

p1 p2

ψ
C,i
α ψjβ

p3
Φm

ca ∆̌

p1 p2

ψ
C,i
α ψjβ

p3
Φm

ca

(b) Vanishing diagrams with fermion-gauge boson
interactions.

∆̌

p1 p2

ψ
C,i
α ψjβ

p3
Φm

ca ∆̌

p1 p2

ψ
C,i
α ψjβ

p3
Φm

ca

(c) Vanishing diagrams with fermion-gauge
boson + fermion-scalar interactions.

∆̌

p2 p1
ψjβ ψ

C,i
α

ca

p3
Φm

∆̌ ca

p2 p1
ψjβ ψ

C,i
α

p3
Φm

(d) Diagrams cancelling with each other.

∆̌

p2 p1
ψjβ ψ

C,i
α

ca

Φm p3

∆̌ ca

p2 p1
ψjβ ψ

C,i
α

Φmp3

(e) The two contributing diagrams.

propagator between the fermions, are finite and thus do not contribute. Also, the two
diagrams with a gluon propagator between a fermion and the ghost leg cancel each other.
The two remaining diagrams form a pair whose total amplitude acquires a simpler group
structure, after using the relation coming from the gauge-invariance of the Yukawa La-
grangian Eq. (4.1.16a). Thus, the 1PI Green’s function Eq. (7.3.18a) corresponds to the
contribution

[N [∆̂] · ΓRen](1) ⊃ i~g2

16π2
ξC2(G)

4

∫
d4 x

g

2(YR)nijθanmcaΦmψCiPRψj . (7.3.18b)

Associated with this term is the complex conjugate process that generates a similar
contribution to the Bonneau identity:

[N [∆̂] · ΓRen](1) ⊃ i~g2

16π2
ξC2(G)

4

∫
d4 x

g

2(YR)n ∗ij θanmcaΦmψiPLψ
C
j . (7.3.18c)

We have exhausted all the possibilities for insertion diagrams up to mass-dimension 4
coming from the generic Lagrangian terms. In the next subsection, we evaluate the terms
with external-field insertions.
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7.3.2 | One-loop vertices with insertion of one BRST-source-vertex
and inverse breaking

At 1-loop, and up to mass-dimension 4, the only 1PI diagrams containing a single
insertion of q∆ and one BRST-source-vertex are those that only have one insertion of R̄sdψ
or Rsdψ BRST-source-vertex; these diagrams have mass-dimension four. The reasons are
as follows.

These diagrams have ghost number one since they have a breaking insertion and are
constituents of the Slavnov-Taylor identity. Also, Eq. (7.3.8) imposes that the sum of
the mass-dimensions of their incoming and outgoing fields and derivatives, has to be
smaller than or equal to four. The BRST sources are external fields without (propagators
and) loop contributions, and their mass-dimensions are relatively large (see Table 4.1).
Furthermore, both the operator q∆ and any of the BRST-source-vertices contain only ghost
fields, therefore all ghost lines from q∆ and any of the BRST-source-vertices give rise to
an external ghost line. Thus the mass-dimension and the ghost number constraints allow
only the following operators: ρGcc, ρ∂cc, ζccc, R̄ψcc, Rψcc and YΦcc. The operators
ρGcc, ρ∂cc, ζccc and YΦcc imply that the fermions from q∆ are enclosed into a loop, in
which case one cannot form at 1-loop level a 1PI diagram with the BRST-source-vertex.
The remaining operators R̄ψcc and Rψcc may arise from 1-loop contributions if one of
the fermions of q∆ is contracted with a fermion from one of the operators R̄sdψ or Rsdψ.
Only the following diagrams are therefore generated:

∆̌ R̄i
α

p3p2
ca cb

p1

ψjβ

∆̌ R̄i
α

p3p1
ψjβ cb

p2

ca

+(p2, a)↔ (p3, b) permutation.

i[q∆ · Γ̃ji,ba

ψR̄cc
](1)
div = −i~g

4

16π2ε

ξC2(G)
8 ifabcTR

c
ijPR = −i~g

4

16π2ε

ξC2(G)
8 [TRa, TRb]ijPR , (7.3.19a)

corresponding to the contribution

[N [∆̂] · ΓRen](1) ⊃ ~g2

16π2
ξC2(G)

4

∫
d4 x i

g2

2 f
abcTR

c
ijc

acbR̄iPRψj . (7.3.19b)

And finally, the charge-conjugated interaction is given by
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∆̌ Rj
β

p3p2
ca cb

p1

ψ
i
α

∆̌ Rj
β

p3p1
ψ
i
α

cb

p2

ca

+(p2, a)↔ (p3, b) permutation.

i[q∆ · Γ̃ji,ba

Rψ̄cc
](1)
div = i~g4

16π2ε

ξC2(G)
8 ifabcTR

c
ijPL = i~g4

16π2ε

ξC2(G)
8 [TRa, TRb]ijPL , (7.3.20a)

corresponding to the contribution

[N [∆̂] · ΓRen](1) ⊃ − ~g2

16π2
ξC2(G)

4

∫
d4 x i

g2

2 f
abcTR

c
ijc

acbψ̄iPLRj . (7.3.20b)

Note that only the diagrams with a gluon propagator connecting the two ghost lines do
contribute, while those where the gluon propagator connects one ghost line with a fermion
line do not.

7.4 | Construction of BRST-restoring finite one-loop countert-
erms

In the present section we evaluate the BRST-restoring finite 1-loop counterterms
S

(1)
fct,restore. At this point, we have collected all the insertion diagrams possible (by mass-

dimension restriction) at the 1-loop level.
First, recall that divergent terms in Eq. (7.1.7) cancelled completely. Since they did not
produce any finite contribution to the breaking of Slavnov-Taylor identity, we see from
Eq. (7.1.7) that finite counterterms are defined such that their 4-dimensional linear BRST
transformation completely cancels insertion diagrams, which have been evaluated in the
previous Section 7.3, i.e.

LIM
d→4

(
[∆̂ · Γ(1)]fin + bdS

(1)
fct,restore

)
= 0 (7.4.1)

must hold. We calculate these counterterms without imposing constraints on the fermion
group representations and we also obtain the expression for the gauge anomalies as a
by-product. These finite counterterms will be sufficient to restore the BRST invariance
broken by the BMHV scheme if the anomaly cancellation condition is met [25].
So now, our final task is to construct symmetry-restoring counterterms in a way that their
bd transformation cancels insertion diagrams from the previous chapter. In order to prepare
our calculations, we make an assumption that S(1)

fct,restore will be a linear combination of all
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possible mass-dimension ≤ 4 field monomials that emerged from the 1-loop calculations.
We therefore first evaluate all the linear BRST transformations of these monomials in
Section 7.4.1, then we combine these results and directly compare them in Section 7.4.2
with the terms from [N [∆̂] · ΓRen](1) so as to find the finite counterterms S(1)

fct,restore.

7.4.1 | Evaluation of linear BRST transformation for some field mono-
mials

The following calculations are also performed in 4 dimensions, so we will again omit
all the “overlines” over all the Lorentz covariants so as to simplify the notation. The
notations for the integrated field monomials are the same as in Eq. (4.2.16a) (Section 4.2),
but now all defined purely in 4 dimensions. We obtain:

b
∫

d4 x
1
2G

aµ∂2Ga
µ =

∫
d4 x (∂µca + gfabcGb µcc)∂2Ga

µ , (7.4.2)

bSGG = b
∫

d4 x
1
2G

a
µ(gµν∂2 − ∂µ∂ν)Ga

ν = −gfabc
∫

d4 x caGb
µ(gµν∂2 − ∂µ∂ν)Gc

ν , (7.4.3)

where we used the fact that (∂µca)(gµν∂2− ∂µ∂ν)Ga
ν = 0 when using integrations by parts.

bSGGGG = −g
2

2 (fabef cde + facef bde)
∫

d4 x ca∂ν
(
Gb
µG

c µGd ν
)
. (7.4.4)

In this calculation, a term proportional to
∫

d4 x cfGe
µG

b µGc
νG

d ν actually cancels. Indeed,
its prefactor is given by: (facgf bdg + fadgf bcg)faef , which vanishes after symmetrizing with
respect to the group indices e ↔ b, c ↔ d, and the set (e, b) ↔ (c, d). Also, because
−1
4
∫

d4 x F a
µνF

aµν = SGG + SGGG + SGGGG is gauge-invariant, b
∫

d4 x F a
µνF

aµν = 0 and
we have:

bSGGG = −bSGG − bSGGGG . (7.4.5)

b(TR)abcd
∫

d4 x Ga
µG

b µGc
νG

d ν =

− ((TR)abcd + (TR)acbd + (TR)adbc + (TR)adcb)
∫

d4 x ca∂ν
(
Gb
µG

c µGd ν
)
. (7.4.6)

As before, a term proportional to
∫

d4 x cfGe
µG

b µGc
νG

d ν cancels. Its prefactor is given by:
((TR)abcd + (TR)acbd + (TR)adbc + (TR)adcb)faef (using the shorthand notation (TR)abcd ≡
Tr[TRa · · ·TRd]), and vanishes after symmetrization with respect to the group indices e↔ b,
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c↔ d, and the set (e, b)↔ (c, d).

bSΦΦ = b
∫

d4 x
−1
2 Φm∂

2Φm =
∫

d4 x igθamnc
aΦm∂

2Φn , (7.4.7)

bSΦGGΦ = −g
2

2 {θ
a, θb}mn

∫
d4 x (∂µca)Gb

µΦmΦn , (7.4.8)

and because 1
2(DµΦm)2 = SΦΦ + SΦGΦ + SΦGGΦ is gauge-invariant, b(DµΦm)2 = 0 and we

have:

bSΦGΦ = −bSΦΦ − bSΦGGΦ . (7.4.9)

For an arbitrary group symbol Camn,

bCamn
∫

d4 x (∂µΦm)Ga
µΦn = − Camn

∫
d4 x ca(∂2Φm)Φn

− 1
2(Camn + Canm)

∫
d4 x ca(∂µΦm)(∂µΦn)

+ ig
[
ifabcCcnm + θamo(Cbon − Cbno)

] ∫
d4 x caGb

µΦm(∂µΦn)

+ ig

2 (θamoCbon + θanoCbom)
∫

d4 x ca(∂µGb
µ)ΦmΦn ,

(7.4.10)
and, for an arbitrary group symbol Cabmn,

bCabmn
∫

d4 x Ga
µG

b µΦmΦn = −Sabmn
∫

d4 x ca∂µ
(
Gb µΦmΦn

)
, (7.4.11)

where Sabmn = (Cabmn+Cbamn+m↔ n)/2, completely symmetric by exchanges a↔ b andm↔
n. In this calculation, a term proportional to the field monomial

∫
d4 x caGb

µG
dµΦmΦn

actually cancels. Indeed, its prefactor is given by: facdSbcmn − iθamoSbdon, and one can show
that its contraction with the field monomial vanishes after symmetrizing with respect to
the group indices (b, d) and (m,n).

We explicitly evaluate in addition the following 4-dimensional linear BRST transfor-
mations of the following fermionic operators, as these are the ones being involved in the
definition of the finite counterterm action, which is naturally defined in 4 dimensions.
(Note that if we were interested in their d-dimensional version, these would contain extra
evanescent contributions.)

bSψψ = b
∫

d4 x iψi/∂ψi = gTR
a
ij

∫
d4 x ca∂µ

(
ψiγ

µ
PRψj

)
, (7.4.12)
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b(SR̄cψR + SRcψR) = + i
g

2θ
a
nm

∫
d4 x caΦm

(
(YR)nijψ

C

i PRψj + (YR)n ∗ij ψiPLψ
C
j

)
+ i

g2

2 f
abcTR

c
ij

∫
d4 x cacb

(
R̄i
PRψj − ψiPLR

j
)

+ g2fabcTR
c
ij

∫
d4 x caψi /G

a
PRψj

+ gTR
a
ij

∫
d4 x ca∂µ

(
ψiγ

µ
PRψj

)
.

(7.4.13)

7.4.2 | The finite one-loop counterterm action

Now when we explicitly know the b transformation of the action operators, we can
group the results coming from different insertion diagrams and write them as a b-variation
of the action operators. The total contribution from Eqs. (7.3.13), (7.3.9b) and (7.3.10b)
is equal to:

− ~g2

16π2

(
S2(R)

6 b
(

5SGG + SGGG −
∫

d4 x Gaµ∂2Ga
µ

)
+ g2

12(TR)abcdb
∫

d4 x Ga
µG

b µGc
νG

d ν

)
,

(7.4.14)
together with essential (non-spurious) anomalies

− ~g2

16π2

(
S2(R)

3 dabcR

∫
d4 x gεµνρσca(∂ρGb

µ)(∂σGc
ν) + D

abcd
R

3× 3!

∫
d4 x g2caε

µνρσ∂σ
(
Gb
µG

c
νG

d
ρ

))
.

(7.4.15)
The contribution of Eq. (7.3.14b) is equal to:

− ~
16π2

Y2(S)
3 bSΦΦ . (7.4.16)

The contribution of Eq. (7.3.15b) is equal to:

~
16π2

(CR)abmn
3 b

∫
d4 x

g2

2 G
a
µG

b µΦmΦn , (7.4.17)

with (CR)abmn ≡ Tr
[
2{TRa, TRb}(Y m

R )∗Y n
R − TRa(Y m

R )∗TRbY n
R

]
.

The total contribution of coming from Eqs. (7.3.16b), (7.3.17b), (7.3.18b), (7.3.18c),
(7.3.19b) and (7.3.20b) is equal to:

−~g2

16π2

(
1 + ξ − 1

6

)
C2(R)bSψψ + ~

16π2

((Y m
R )∗TRaY m

R )ij
2 b

∫
d4 x gψi /G

a
PRψj

+ ~g2

16π2
ξC2(G)

4 b(SR̄cψR + SRcψR) .
(7.4.18)

Finally, the BRST-restoring finite counterterms defined in 4 dimensions such as
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bS
(1)
fct,restore cancels the contributions from [N [∆̂] · ΓRen](1) are:

S
(1)
fct,restore = ~

16π2

{
g2S2(R)

6

(
5SGG + SGGG −

∫
d4 x Gaµ∂2Ga

µ

)
+ Y2(S)

3 SΦΦ

+g2 (TR)abcd
3

∫
d4 x

g2

4 G
a
µG

b µGc
νG

d ν − (CR)abmn
3

∫
d4 x

g2

2 G
a
µG

b µΦmΦn

+g2
(

1 + ξ − 1
6

)
C2(R)Sψψ −

((Y m
R )∗TRaY m

R )ij
2

∫
d4 x gψi /G

a
PRψj

−g2 ξC2(G)
4 (SR̄cψR + SRcψR)

}
,

(7.4.19)

with (CR)abmn ≡ Tr
[
2{TRa, TRb}(Y m

R )∗Y n
R − TRa(Y m

R )∗TRbY n
R

]
, and the essential (non-

spurious) anomalies that can not be written as the b-variation of the action operators,
are:

− ~g2

16π2

(
S2(R)

3 dabcR

∫
d4 x gεµνρσca(∂ρGb

µ)(∂σGc
ν) + D

abcd
R

3× 3!

∫
d4 x g2caε

µνρσ∂σ
(
Gb
µG

c
νG

d
ρ

))
,

(7.4.20)
with the fully symmetric symbol dabcR = Tr[TRa{TRb, TRc}], and the fully antisymmetric
symbol DabcdR = (−i)3!Tr[TRaTR[bTR

cTR
d]] for the R-representation. In realistic renormal-

izable models, the fermionic content and the associated group representations are chosen
so as to cancel these anomalies, i.e. by cancelling separately both

∑
R

S2(R)dabcR = 0 (7.4.21a)

∑
R

DabcdR = 0 (7.4.21b)

the theory is finally free of anomalies. Eq. (7.4.21) are called anomaly cancellation condi-
tions. Notice that the first structure is proportional to the usual triangle anomaly.

The equation Eq. (7.4.19) thus represents the crucial result for the renormalization
in BMHV scheme. If the anomalies Eq. (7.4.20) are canceled, these finite counterterms
are necessary and sufficient to restore the BRST symmetry at 1-loop level in the BMHV
scheme. They are necessary building blocks for a consistent 1-loop applications of the
scheme, and they are vital ingredients in 2-loop and higher-loop order calculations. It
should be noted that these finite counterterms, purely 4-dimensional and non-evanescent,
are not gauge- and BRST invariant, which is expected since they complete gauge and
BRST invariance when they are added to the action. They modify all the self-energies, as
well as some specific interactions: the gauge-boson self-interactions, and the interactions
between gauge-boson and scalars or fermions.

As previously mentioned in the remarks around Eq. (7.1.5), one can also add,
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to these BRST-restoring finite counterterms, any other finite counterterms that are
BRST-invariant, or even that are evanescent (because they will nonetheless vanish
after taking the LIMd→4), when being defined in d dimensions. However, both of
these will not contribute to BRST restoration; they will instead only correspond to a
change of renormalization prescription for higher-order calculations, see discussion below
Eq. (5.2.3) in Chapter 5. For example, the BRST-invariant finite counterterms could
contain a linear combination of the Lϕ functionals defined in Eqs. (5.2.6) and (5.2.7).
Once again, the question of this choice is answered in a way most suitable for a practitioner.

To summarize for the reader, we found that anomalies must be canceled by appropriate
BRST restoring counterterms constructed from breaking insertions. Those anomalies are
a product of the BMHV scheme and are called spurious (or non-essential or unphysical).
Anomalies that can not be canceled by this procedure are not the result of BMHV scheme
use, but the fermion content of the theory. They are called non-spurious (or essential or
physical) and must be canceled with proper anomaly cancellation conditions or specific
fermion content.
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CHAPTER 8

THE RENORMALIZATION GROUP EQUATION IN THE
RENORMALIZED MODEL

In this chapter, we derive the renormalization group equation in the BMHV scheme.
Since in this scheme the multiplicative renormalization no longer holds, we again use the
quantum action principle and formalism of algebraic renormalization. In this formulation,
we avoid the introduction of bare fields and bare couplings. We will focus on the new
type of counterterms emerging from the BMHV scheme and later compare them with the
treatment in the fashion of standard renormalization group equations derivation we study
in the next chapter. In both cases, we will see that evanescent contributions play no role
at the 1-loop level but will have an influence on higher orders. We hence list them for
future 2-loop renormalization group equations studies.

8.1 | Components of the renormalization group system

As we have shown in the previous sections, the set of operators in the tree-level action
is not the same set that exists at the 1-loop level when using the BMHV dimensional renor-
malization scheme. Due to the presence of evanescent operators and finite non-evanescent
counterterms needed to restore the BRST symmetry, the formalism of multiplicative
renormalization (with bare fields, bare coupling constants and Z-factors) will not straight-
forwardly lead to the true renormalization group equation, that involves only fields and
parameters of the original 4-dimensional tree-level action (see also discussion in Ref. [27]).
This will be briefly overviewed in Chapter 9.

Instead if we start with the dimensionally renormalized 1PI functional ΓRen, see
Eq. (3.1.10), and we use the Quantum Action Principle and the Bonneau identities, the
formalism of bare objects and Z-factors can be avoided. From now on we take this effective
action to be anomaly free, i.e. the anomalies described by Eq. (7.4.20) are cancelled.
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The Bonneau identities [45, 46] form a linear system whose unique solution provides
an expansion of any anomalous (e.g. evanescent) operator in terms of a quantum basis of
standard (hence 4-dimensional) operators. More precisely, any anomalous normal product
can be re-expressed as a linear combination of standard and evanescent monomial normal
products [27]:

N [ĝµνOµν ](x) · ΓRen =
∑
i

αiN [M̄i](x) · ΓRen +
∑
j

α̂jN [M̂j](x) · ΓRen , (8.1.1)

where the latter term can be further reduced to pure standard operators thanks to the
Bonneau identities, so as the anomalous normal product ultimately reduces to

N [ĝµνOµν ](x) · ΓRen =
∑
i

qiN [M̄i](x) · ΓRen , (8.1.2)

where the coefficient functions qi are formal series in ~. Fortunately, at lowest order in
~ the linear system is trivial and decoupled, i.e. loops with anomalous insertions can be
transformed in sum of tree-level diagrams with insertions of standard operators.
In general, for the calculation of the coefficient qi at order ~n, we need the coefficients αi
up to order ~n and α̂j up to order ~n−1, since the evanescent operators count for an order
~ higher, according to the Bonneau identities, what is of crucial importance in particular
for the calculation at 1-loop level.
It can be shown [25] that the Renormalization Group Equation corresponds to the expan-
sion of the insertion

µ
∂

∂µ
ΓRen = ∆ · ΓRen (8.1.3)

in a suitable basis of operators of ultraviolet dimension 4, ghost number 0, with contracted
Lorentz indices but free gauge indices (later contracted with group factors from the associ-
ated coefficients). On the other side, (8.1.3) is expanded in a basis of operators that respect
the same symmetries as the functional µ∂/∂µΓRen, that are, generally speaking, operators
comprising derivatives with respect to the parameters of the theory, and field-counting
operators,

µ
∂

∂µ
ΓRen =

(
−
∑
g

βg
∂

∂g
+
∑
φ

Nφγφ

)
· ΓRen . (8.1.4)

Calculating independently RHS of (8.1.4), and LHS of same equation that corresponds to
the (8.2.4) as we will see soon, will result in a system of equations, overdetermined and
solvable by direct comparison of their coefficients.
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8.2 | Calculation of the one-loop coefficients

The first non-trivial contribution to the functional µ∂/∂µΓRen is always of order ~,
since the tree-level action does not depend on the renormalization scale µ. The problem of
expressing µ∂/∂µΓRen as an insertion of normal product operators into ΓRen (keep in mind
that µ is not a parameter of the action) was solved by Bonneau [45] and generalized by
Martin [27] due to the presence of different types of fields and external sources, evanescent
contributions and finite counterterms, what resulted in rather involved expression

µ
∂

∂µ
ΓRen =

4∑
n=0

∑
{j1...jn}

N`


ω(J)∑
r=0

∑
i1...ir

1≤ij≤n−1

{
r.s.p. ı

r

r!
∂r

∂pµ1
i1 . . . ∂p

µr
ir

(−i~)〈φ̃j1(p1) . . . φ̃jn(pn)(pn = −
∑

pi)〉1PI,(N`)K=0

∣∣∣∣∣
pi=0

}

× 1
n! N

[
φjn

1∏
k=n−1

{( ∏
{α/iα=k}

∂µα

)
φjk

}]
· ΓRen +

∑
Φ

ω(J ;Φ)∑
r=0∑

i1...ir
1≤ij≤n

{
r.s.p. ı

r

r!
∂r

∂pµ1
i1 . . . ∂p

µr
ir

(−i~)〈φ̃j1(p1) . . . φ̃jn(pn)N [sΦ](pn+1 = −
∑

pi)〉1PI,(N`)K=0

∣∣∣∣∣
pi=0

}

× 1
n! N

[
KΦ(x)

1∏
k=n

{( ∏
{α/iα=k}

∂µα

)
φjk

}]
· ΓRen

 ,
(8.2.1)

where J = {j1 . . . jn}, ω(J) and ω(J ; Φ) are overall ultraviolet degrees of divergence of
1PI Green’s functions. The bar over 1PI Green’s functions stands for subtractions of sub-
divergences from the contributing Feynman diagrams. Fortunately, restriction to 1-loop
(~) order, particularly for the Yang-Mills model we use, contains only the first of these
sums and reads:

µ
∂

∂µ
ΓRen = N

[
r.s.p.Γ(1)

]
· ΓRen. (8.2.2)

Notice that, since the singular parts of Feynman diagrams contributing to 1PI Green’s
functions are local polynomials in external momenta expressed in d, 4 and/or ε (i.e.
evanescent) dimensions, the results generally contain evanescent contributions. Hence, the
expansion

µ
∂

∂µ
ΓRen =

∑
i

r̄iN [W̄i ] · ΓRen +
∑
j

r̂jN [Ŵj ] · ΓRen (8.2.3)

holds, and can be re-expressed, thanks to Bonneau identities, in the form

µ
∂

∂µ
ΓRen =

∑
i

riN [W̄i ] · ΓRen , (8.2.4)
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where plain, barred and hatted objects correspond to d, 4 and ε-dimensional objects,
respectively, and every evanescent insertion is re-expressed as [27]

N [Ŵj ] · ΓRen =
∑
i

cjiN [W̄i ] · ΓRen , (8.2.5)

where cji are formal expansions in ~, having no order ~0 contribution due to the r.s.p.
extractions. So, at ~ order we have:

µ
∂

∂µ
ΓRen =

∑
i

riN [W̄i ] · ΓRen =
∑
i

(r̄i +∑
j r̂jcji)N [W̄i ] · ΓRen

O(~)=
∑
i

r̄iW̄i , (8.2.6)

where in the last step, the non-zero contributions at lowest ~ order come from the coeffi-
cients r̄i; therefore the corresponding field product insertions N [W̄i ] · ΓRen are tree-level
~0 insertions simply equal to W̄i . The general algorithm for calculating of the r̄i and r̂j
coefficients at any order is explained in [27].

Starting from the previous equation, keep in mind that group structures are contained
in the coefficients r̄i. Our coefficients are, in a practical sense, extracted from the divergent
part of the 1-loop 1PI Green’s functions as r.s.p.-s. The set of monomials differs from
the set of operators contained in S0 in a fact that SGG contains combination of two field
monomials. If we define in the same manner as [27] the field monomials that contain two
gauge fields

W̄ab
1 ≡

∫
d4 x (∂µ̄∂ν̄Gaµ̄)Gbν̄ , W̄ab

2 ≡
∫

d4 x (�̄Ga
µ̄)Gbµ̄ ,

then according to (8.2.1) the first two coefficients are (with incoming momenta)

r̄ab1 = i2

2 coef. of r.s.p(−i~)〈Ga
µ(p1)Gb

ν(p2 = −p1)〉1PI,(1) of p̄µ1 p̄ν1 ,

r̄ab2 = i2

2 coef. of r.s.p(−i~)〈Ga
µ(p1)Gb

ν(p2 = −p1)〉1PI,(1) of p̄2
1ḡ
µν ,

where r.s.p. is residue of simple pole in ν = 4 − d = 2ε. According to 1-loop results we
obtained in Chapter 6 the results for coefficients are

r̄ab1 = ~
16π2 g

2 (13− 3ξ)C2(G)− S2(S)− 4S2(R)
3 ,

r̄ab2 = −~
16π2 g

2 (13− 3ξ)C2(G)− S2(S)− 4S2(R)
3 .

Therefore, at lowest order the gauge-boson propagator is transverse, SGG ∝ p̄µ1 p̄
ν
1 − p̄2

1ḡ
µν ,

and therefore,

µ
∂

∂µ
ΓRen =

∑
i∈f.b.

∑
ai

r̄
(1),ai
i W̄ai

i = r̄ab1 W̄ab
1 + r̄ab2 W̄ab

2 + · · · ⊃ cGGSGG + . . . , (8.2.7)
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where f.b. denotes a full basis of monomials. In other words, the basis of monomials is
equivalent to the corresponding classical basis, which agrees with the statement that any
such basis of renormalized insertions is completely characterized by the corresponding
classical basis [25]. If

{
∆p · Γ = ∆p

class +O(~) | p = 1, 2, . . . ; dim(∆p) ≤ d
}

(8.2.8)

is the set of insertions whose classical approximations form a basis for classical insertions
up to dimension d, then the same set is a basis for the quantum insertions bounded by
d. This means that a convenient choice for our set of monomials are the field operators
that are contained in the tree-level action S0. Our insertion than can be chosen as a linear
combination of operators of 4-dimensional action

µ
∂

∂µ
ΓRen =

∑
i∈f.b.

∑
ai

c
(1),ai
φ1φ2... S

0,ai
φ1φ2..., (8.2.9)

where f.b. denotes the full basis of operators φ1, φ2, . . . in the tree-level action S0. In our
notation for Green’s functions the Bonneau insertions have the form

r.s.p.(−i~)
〈
φ̃n(pn) · · · φ̃1(p1)

〉 1PI
×N [

∏
∂φi] · Γ

= r.s.p.Γφn···φ1(p̄1, . . . , p̄n)×N [
∏
∂φi] · Γ

O(~)= r.s.p.(−S(1),4d
sct ) O(~)= −2εS(1),4d

sct . (8.2.10)

where (1), 4d denotes ~ order and 4-dimensional space, respectively. Therefore, at ~ order
the Renormalization Group equation acquires the simple form

µ
∂ΓRen

∂µ
≡ −2εS(1),4d

sct , (8.2.11)

where S(1),4d
sct is just equal to Eqs. (6.3.2) to (6.3.4) but projected onto 4 dimensions only

(thus there are no appearance of evanescent operators).
We again emphasize that no evanescent contribution is a 1-loop effect.

8.3 | Basis of insertions

The anomaly-free renormalization group equation (8.1.4) is, as we have noted, an
expansion of the renormalization group functional in terms of a basis of quantum insertions
with the operators being of ultraviolet dimension 4, ghost number 0, contracted Lorentz
indices and free gauge indices. Such basis satisfies the same equations as ΓRen,

SΓRen µ
∂ΓRen

∂µ
= 0 , δ

δB
µ
∂ΓRen

∂µ
= 0 , G µ∂ΓRen

∂µ
= 0 ,
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i.e. the BRST equation, the gauge-fixing condition and the ghost equation [27], where

SΓRen =
∫

d4 x

(
δΓRen

δρµa

δ

δGa
µ

+ δΓRen

δGa
µ

δ

δρµa
+ δΓRen

δζa

δ

δca
+ δΓRen

δca
δ

δζa
+Ba δΓRen

δc̄a

+δΓRen

δYm
δ

δΦm

+ δΓRen

δΦm

δ

δYm
+
(
δΓRen

δR̄i

δ

δψi
+ δΓRen

δψi

δ

δR̄i

)
+
(
δΓRen

δRi

δ

δψi
+ δΓRen

δψi

δ

δRi

))
,

is the linearized BRST operator of our model. The basis that respects those equations
is constructed from its classical approximation in the sense of (8.2.8), by employing the
operators LG, Lc, LΦ, LψR that are b-invariant in 4 dimensions, whose definitions have
been introduced in Chapter 5 Eq. (5.2.6) and can be expressed as linear combinations
of field-counting operators for d = 4 acting on the tree-level action: Lϕ ≡ NϕS0 for
ϕ = G, c,Φ, ψR, as well as the operators Lg, LY mij and Lλmnop defined by differentiating
the action with respect to the coupling parameters of the theory, Eq. (5.2.7).

A quantum extension of this classical basis is constructed [25] by the action on ΓRen of
the symmetric differential operators we have just introduced (see ref. [27] for the details),
and up to order ~n the following equation holds:
[
µ
∂

∂µ
+ β g

∂

∂g
+ (βY )mij

∂

∂Y m
ij

+ βλ
∂

∂λ
− γGNG− γcNc− γΦNΦ− γψNR

ψ

]
ΓRen = 0. (8.3.1)

This is the renormalization group equation of our theory. Now, thanks to the consequence
of the Quantum Action Principle that any differential operator contained in our quantum
basis can be expressed as insertions of normal products in ΓRen, and the fact that the first
non-vanishing contribution to these expansions is of order ~ [69], at 1-loop level we have:

µ
∂ΓRen

∂µ

O(~)= −β(1)g
∂S

(4d)
0
∂g

− (β(1)
Y )mij

∂S
(4d)
0

∂Y m
ij

− βλ(1)
mnop

∂S
(4d)
0

∂λmnop
+
∑
φ

γ
(1)
φ NφS

(4d)
0 , (8.3.2)

where S(4d)
0 symbolizes the 4-dimensional restriction of the tree-level action of our model,

Eq. (4.1.13). The RHS of equation (8.3.2) is the constituent needed in the construction
of our system of the renormalization group equations.

8.4 | Solution of the system

By direct comparison of (8.3.2) with (8.2.11) we obtain the following system of equa-
tions:

SGG → 2γ(1)
G = −2~

16π2 g
2 (13− 3ξ)C2(G)− 4S2(R)− S2(S)

6 , (8.4.1)

SGGG → −β(1) + 3γ(1)
G = −2~

16π2 g
2 (17− 9ξ)C2(G)− 8S2(R)− 2S2(S)

12 , (8.4.2)
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SGGGG → −2β(1) + 4γ(1)
G = −2~

16π2 g
2 2(2− 3ξ)C2(G)− 4S2(R)− S2(S)

6 , (8.4.3)

Sψ̄ψR → 2γ(1)
ψ = 2~

16π2

(
g2ξC2(R) + Y2(R)

2

)
, (8.4.4)

SψGψR → −β
(1) + γ

(1)
G + 2γ(1)

ψ = 2~
16π2

(
g2 (3 + ξ)C2(G) + 4ξC2(R)

4 + Y2(R)
2

)
,

(8.4.5)

SΦΦ → 2γ(1)
Φ = −2~

16π2

(
g2(3− ξ)C2(S)− Y2(S)

)
, (8.4.6)

SΦGΦ → −β(1) + γ
(1)
G + 2γ(1)

Φ = −2~
16π2

(
g2
(

(3− ξ)C2(S)− 3 + ξ

4 C2(G)
)
− Y2(S)

)
,

(8.4.7)

SΦGGΦ → −2β(1) + 2γ(1)
G + 2γ(1)

Φ = −2~
16π2

(
g2
(

(3− ξ)C2(S)− 3 + ξ

2 C2(G)
)
− Y2(S)

)
,

(8.4.8)

SΦ4
mnop
→ −βλ(1)

mnop + 4γ(1)
Φ λmnop = −2~

16π2
1
2(3g4A− g2ξΛS − 4H + Λ2)mnop , (8.4.9)

S
ψR

C
i ΦmψRj

→ −(β(1)
Y )mij + (YR)mij (γ

(1)
Φ + 2γ(1)

ψ )

= −2~
16π2

(
(Y n

R (Y m
R )∗Y n

R )− g2 2C2(R)(3 + ξ)− C2(S)(3− ξ)
2 Y m

R

)
ij

,
(8.4.10)

Sc̄c, Sρc → −γ(1)
G + γ(1)

c = −2~
16π2 g

2 3− ξ
4 C2(G) , (8.4.11)

Sc̄Gc, SρGc, Sζcc, SR̄cψR , SRcψR , SYcΦ → −β
(1) + γ(1)

c = 2~
16π2 g

2 ξC2(G)
2 . (8.4.12)

This is an overdetermined system of equations that provides the following solutions for
the β-functions and anomalous dimensions at 1-loop level:

β = ~
16π2 g

2
(
−22C2(G) + 4S2(R) + S2(S)

6

)
, (8.4.13)

βλmnop = ~
16π2 (3g4Amnop − 4Hmnop + Λ2

mnop + ΛY
mnop − 3g2ΛS

mnop) , (8.4.14)

βY
m
ij = ~

16π2

(
2(Y n

R (Y m
R )∗Y n

R )ij − 3g2{C2(R), Y m
R }ij + (YR)mijY2(S)

+1
2((YR)mijY2(R) + Y2(R̄)(YR)mij )

)
,

(8.4.15)

γG = ~
16π2 g

2 (3ξ − 13)C2(G) + 4S2(R) + S2(S)
6 , (8.4.16)

γψ = ~
16π2

2g2ξC2(R) + Y2(R)
2 , (8.4.17)

γΦ = ~
16π2

(
g2(ξ − 3)C2(S) + Y2(S)

)
, (8.4.18)

γc = ~
16π2 g

2 (6ξ − 22)C2(G) + 4S2(R) + S2(S)
6 . (8.4.19)
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In the next chapter, we will solve the same system in the standard approach via renormal-
ization constants and compare the results.
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CHAPTER 9

COMPARISON WITH THE STANDARD MULTIPLICATIVE
RENORMALIZATION APPROACH IN THE BMHV SCHEME

In this chapter, we explain the derivation of the RGE using the standard approach
based on divergences of renormalization constants, that are used in the textbook’s approach
for vector-like theories, e.g. the one in the fashion of [68]. In the BMHV scheme, there are
extra divergences for evanescent operators, so we first analyze their influence at the 1-loop
level. All these new objects present must be properly treated so that true renormalization
group equation is derived, i.e. the one that has only anomalous dimensions and beta
functions present in the classical limit. We will see that at the 1-loop level this rather
involved task reduces to the discarding of evanescent objects.

9.1 | Renormalization group equations in BMHV scheme

The standard textbook approach to deriving RGEs in the context of DReg was devel-
oped in Ref. [90] and applied e.g. in Refs. [67–69] for general gauge model up to 2-loop
level. DReg, besides keeping symmetries intact for vector-like theories, gives a transparent
answer to how the theory behaves under spacetime scale transformations. This information
is stored in the renormalization group equation that relates beta functions for couplings
and anomalous dimensions in the theory.

Derivation starts from the fact that the bare action (i.e. the sum of tree-level and
counterterm action) can be written in terms of bare fields and parameters which depend
on the MS-renormalization scale µ. For a generic bare parameter gi,bare in a massless
theory defined in d = 4− 2ε, and in the MS-renormalization scheme, this may be written
as

gi,bare µ
−ρiε = gi + δgi , δgi =

∞∑
n=1

a
(n)
i

εn
, (9.1.1)
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where ρi is a constant dependent of the fields coupled in the vertex (equal to 1 for gauge
and Yukawa couplings and 2 for quartic coupling), gi the renormalized parameter and δgi
the renormalization constant, which contains divergent poles in ε. The coefficients a(n)

i

depend explicitly on the parameters of the theory and on µ implicitly via the µ-dependence
of these parameters. On which parameters these coefficients depend depends on the types
of interactions present in the theory. The β function for the parameter gi is given by

βi(ε) ≡
∂gi
∂ lnµ = −ρiεgi − ρia(1)

i +
∑
k

ρkgk
∂a

(1)
i

∂gk
(9.1.2)

where the sum runs over all parameters gk of the theory. Notice that the β function
is completely determined by the coefficients of the single pole term in Eq. (9.1.1). The
anomalous dimension is obtained from the renormalization constant associated with a
self-energy Green’s function for fields φ, which has the expansion in ε-poles as

Zφ = 1 +
∞∑
n=1

a
(n)
φ

εn
, (9.1.3)

and, assuming equal renormalization of the fields contained in self-energy Green’s function,
is equal to

γφ(ε) = 1
2µ

d

dµ
lnZφ . (9.1.4)

If we take into account all coupling constants and full field content of the theory, β and γ
functions represent coefficients of operators acting on the effective action so that

µ
∂

∂µ
ΓDReg =

(
−
∑
k

βk(ε)
∂

∂gk
+
∑
φ

γφ(ε)Nφ

)
ΓDReg , (9.1.5)

holds, where Nφ is number-counting operator for a generic field φ. This is the RGE for
regularized action and it holds even for ε 6= 0. Notice that at this level of regularized
action the β and γ functions are ε-dependent and have the structure

βi(ε), γi(ε) = O(ε)× (tree-level) +O(ε0)× (≥ 1-loop level) . (9.1.6)

For the RGE derivation in vector-like theories or naive treatment, basis of operators
need for insertion is the one present at the tree-level. Multiplicative renormalization is
sufficient and one derives γ and β functions as linear combination of respective renormal-
ization constants Z-s coming from the calculation and cancellation of divergent parts of
loop diagrams at the order of interest that are part of the Ssct, inv. In the BMHV scheme,
however, the action contains additional types of counterterms as we discussed in Chapter 5,
one of them being evanescent divergent counterterms, see Eq. (6.3.13). These have no
tree-level counterpart, so our tree-level action is not sufficient to construct the basis of
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operators and we have to extend it with evanescent operators that appear at higher orders.
New operators contain new parameters ĝi that generally also have some renormalization
transformation

ĝi → ĝi + δĝi . (9.1.7)

and hence their own β functions. Also, the additional renormalization constants Ẑ-s mul-
tiply the emerging evanescent operators. Using standard renormalization transformations
in the fashion of Chapter 5, we would get all the singular countertems (now including
evanescent counterterms too) and our RGE now have additional term,

µ
∂

∂µ
ΓDReg =

(
−
∑
k

βk(ε)
∂

∂gk
−
∑
k

β̂k(ε)
∂

∂ĝk
+
∑
φ

γφ(ε)Nφ

)
ΓDReg , (9.1.8)

where the second sum on the right-hand side is over all parameters ĝk of the evanescent
additional action.

In the following, we will discuss the influence of these additional “evanescent” parame-
ters ĝk. We emphasize to the reader that such or similar parameters have been discussed
in various contexts before. Ref. [91] considered the same problem as the present section,
but in the context of a non-gauge theory, hence the BHMV scheme treatment shouldn’t
influence the final result. It is found that if these parameters would be omitted, that would
lead to incorrect RGE in general. The β functions for evanescent parameters influence
the ones for regular parameters if the limit where evanescent parameters vanish is taken
at the very end of the calculation.

Similarly, in the context of regularization by dimensional reduction (DRed), evanescent
quantities do not correspond to γ5 but to the extra (4−d) degrees of freedom of the gauge
fields, the so-called “ε-scalars”. Accordingly, the impact of the ε-scalar mass term on the
2-loop RGE of softly broken supersymmetric gauge theories has been discussed in Ref. [92].
Finally, in applications of DRed to non-supersymmetric QCD, the evanescent coupling αe
between the ε-scalar and quarks appears. The need for treating this coupling and its β
function as independent has been explained first in Ref. [93], for a further overview and
references see [9].

Our original formulation of the theory in Chapters 4 to 6 corresponds to setting the
evanescent parameters ĝk = 0 at tree-level. This is compatible with the RGE in ε 6= 0
only at one particular renormalization scale µ. At other scales µ′, the RGE generates
non-vanishing tree-level values, i.e.

ĝk(µ) = 0; ĝk(µ′) 6= 0. (9.1.9)

Non-vanishing ĝi will contribute up to the tree level in the purely evanescent part, at
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the 1-loop level in singular contributions to evanescent Green’s functions and in finite
contributions to β̂ functions of evanescent parameters, and finally at the 1-loop level
in finite contributions to standard (non-evanescent) Green’s functions, what is of great
importance at higher orders. Now, applying the LIMd→4 operation to the generic RGE
we get at the 1-loop level

LIM
d→4

µ
∂

∂µ
ΓDReg =

(
−
∑
k

βk(0) ∂

∂gk
−
∑
k

β̂k(0) ∂

∂ĝk
+
∑
φ

γφ(0)Nφ

)
ΓRen , (9.1.10)

with important remarks:

1. the derivative ∂
∂ĝk

ΓDReg reduces to a finite, pure 1-loop quantity, since the tree-level
action is free from evanescent parameters;

2. all coefficients βk(ε), γφ(ε), and β̂k(ε) vanish at tree-level and become quantities of
1-loop order; in the ε→ 0 limit we denote βk(0) ≡ βk , γφ(0) ≡ γφ ;

3. the coefficients βk and γφ corresponding to non-evanescent operators are independent
of the evanescent ĝk.

In renormalized limit at the 1-loop order we then have

µ
∂ΓRen

∂µ
=
(
−
∑
k

βk
∂

∂gk
+
∑
φ

γφNφ

)
ΓRen , (9.1.11)

where both sides are evaluated up to the 1-loop level. We get independence on evanescent
parameters ĝi, and the non-evanescent coefficients βk, γφ may be evaluated without any
impact on calculation by setting the ĝi = 0. This shows that the correct 1-loop and
1-loop only RGE in the BMHV context may be obtained by the the usual procedure of
Refs. [68, 90] from the divergences of renormalization constants, discarding the additional
evanescent objects contained in the amended tree-level action, and instead taking only the
theory as defined in Chapters 4 to 6. We strongly emphasize again that this statement is
valid only at the 1-loop level, where at the higher orders ĝi parameters start to influence
non-evanescent parts of the action. E.g. at the 2-loop level and further we expect:

1. The term
β̂k

∂

∂ĝk
ΓDReg

can be expected to provide finite, non-vanishing 2-loop contributions.

2. The βi, γφ coefficients might too depend on the evanescent parameters ĝi.

Both effects have appeared in the contexts of Refs. [44, 91–93] mentioned above, and
additional calculations are required to replace the dependence on the ĝi by modifications
of the βi, γφ. Ignoring the ĝi parameters is justified exclusively at the 1-loop order and in
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general leads to incorrect RGE. The 2-loop study of RGE-s is hence of great importance
and work is in progress.

9.2 | Self-energies and anomalous dimensions

Since at the 1-loop level, the ignoring of evanescent parameters is allowed by the
particular choice of renormalization scheme, and the procedure follows to one usual for
vector-like theories, for the sake of comparison we now evaluate γ and β functions for
chiral Yang-Mills in this way.
Starting from the Green’s function for scalar self energy at the 1-loop level, the corre-
sponding anomalous dimension can be derived from the 1/ε pole, using the standard
approach [90] (see also Machacek & Vaughn [68]). From the general definition of the
anomalous dimension Eq. (9.1.4) we derive the 1-loop anomalous dimension as

γφ = 1
2µ

d

dµ
lnZφ = −a(1)

φ ≡ −εδZ
(1)
φ , (9.2.1)

where we assumed equal renormalization of the fields in self-energy Green’s function and
took into account that scale dependence is implicitly coming from the renormalization
constant coefficients. We obtain the 1-loop level anomalous dimensions respectively for
the scalar γΦ, the fermion γψ, and the gauge γG fields:

γ
mn (1)
Φ = − 1

16π2 (g2(3− ξ)C2(S)− Y2(S))δmn , (9.2.2)

γ
ij (1)
ψ = 1

16π2

(
g2ξC2(R) + Y2(R)

2

)
δij , (9.2.3)

γ
ab (1)
G = − g2

16π2
(13− 3ξ)C2(G)− S2(S)− 4S2(R)

6 δab . (9.2.4)

In a choice of ghost renormalization where both the ghost and the antighost are chosen
to renormalize equally, their anomalous dimension γc is then:

γab (1)
c = − g2

16π2
3− ξ

4 C2(G)δab . (9.2.5)

9.3 | Vertex counterterms and beta functions

The renormalization of the coupling constant g for our Yang-Mills model is defined by:

g = Z−1
vertex

∏
Z

1/2
field gbare µ

−ε , (9.3.1)

in terms of its “bare” value gbare and of the associated renormalization constants Zfield of
the fields attached to the considered vertex. The coupling constant is expanded as an
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infinite Laurent series in ε,

gbareµ
−ε = g + a(1) g3

(4π)2
1
ε

+ . . . , (9.3.2)

where µ is the renormalization scale parameter with mass dimension, so as the coupling
constant remains dimensionless, and a(1) is the 1-loop contribution. Using the definition
Eq. (9.1.2), the derivation of the β-function for g is then straightforward:

µ
d

dµ
(gbareµ−ε) = −ε(gbareµ−ε) = −ε(g + a(1) g3

(4π)2
1
ε

+ . . . )

= βg − εg + a(1) 3g2

(4π)2
1
ε
(βg − εg) + . . . .

(9.3.3)

Taking the terms of order ε0 we obtain the β-function for the coupling constant g at 1-loop
level:

βg = 2a(1) g3

(4π)2 ≡ g β . (9.3.4)

Beta function for the gauge coupling constant

The gauge coupling constant renormalization can be obtained via the scalar sector
according to:

gbare µ
−ε = g Z

−1/2
G Z−1

Φ ZΦΦG . (9.3.5)

The renormalization constant for the scalar-scalar-gauge boson vertex ıΓ̃mn,a,µΦΦG is defined
by:

δZ
(1)
ΦΦG = g2

16π2ε

(
−3 + ξ

4 C2(G) + (3− ξ)C2(S)− Y2(S)
)
. (9.3.6)

The coupling constant renormalization up to 1-loop level is then:

gbare µ
−ε = g (1− 1

2δZG − δZΦ + δZΦΦG)

= g3

16π2ε

−22C2(G) + S2(S) + 4S2(R)
12

(9.3.7)

From the fermion sector we have:

gbare µ
−ε = g Z

−1/2
G Z−1

ψ Zψψ̄G . (9.3.8)

Thus, the renormalization constant for fermion-fermion-gauge boson vertex ıΓ̃ij,a,µ
ψψ̄G

is
defined by:

δZ
(1)
ψψ̄G

= 1
16π2ε

(
−g2 (3 + ξ)C2(G) + 4ξC2(R)

4 − Y2(R)
2

)
. (9.3.9)
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The coupling constant renormalization up to 1-loop level is then:

gbare µ
−ε = g (1− 1

2δZG − δZψ + δZψψ̄G)

= g3

16π2ε

−22C2(G) + S2(S) + 4S2(R)
12 .

(9.3.10)

We also obtain the same result from the gauge sector, where the vertex counterterm
is defined via:

δZ
(1)
GGG = g2

16π2ε

(
17− 9ξ

12 C2(G)− S2(S)
6 − 2S2(R)

3

)
. (9.3.11)

The β-function for the coupling constant at the 1-loop level is then

β(1)
g = g3

16π2
−22C2(G) + S2(S) + 4S2(R)

6 ≡ g β(1) . (9.3.12)

Notice that the gauge dependence present in particular renormalization constants gets
canceled in their linear combination present in the derivation of the beta function. Similarly,
beta functions neither depend on Yukawa coupling, while renormalization constants do.
All these results are consistent with each other, and they agree as expected with the result
obtained from the Background-field method [94], where there is a nice1 property that the
β function for the coupling is proportional to the anomalous dimension of the background
gauge field, or more precisely, equal to gγGb.

Beta function for Yukawa coupling

From the Green’s function for the Yukawa vertex

iΓ̃ji,m
ψψCΦ

(p1, p2)|(1)
div = ı

16π2ε

(
Y n
R (Y m

R )∗Y n
R − g2 2C2(R)(3 + ξ)− C2(S)(3− ξ)

2 Y m
R

)
ij

PR ,

(9.3.13)
we obtain the vertex renormalization constant:

δZ
ji,m (1)
ψψCΦ

= 1
16π2ε

(
Y n
R (Y m

R )∗Y n
R − g2 2C2(R)(3 + ξ)− C2(S)(3− ξ)

2 Y m
R

)
ij

. (9.3.14)

The renormalization of the Yukawa coupling is obtained via:

(Y m
R, bare)ijµ−ε =

(
Z
−1/2
Φ Z

†−1/2
ψ Zψψ̄ΦY

m
R Z

−1/2
ψ

)
ij

= (YR)mij + (amY )ij
1
ε
, (9.3.15)

1For very high order β function calculations, e.g. 4-loop level, this property is not just nice but crucial.
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what at the 1-loop level results in

(Y m
R, bare)ijµ−ε =

(
Y m
R (1− 1

2δZΦ−
1
2δZ

†
ψ−

1
2δZψ)+δZm

ψψ̄Φ

)
ij

= (YR)mij +(amY )(1)
ij

1
ε
. (9.3.16)

The β-function is then obtained straightforwardly

βY
m
ij =2(amY )(1)

ij

= 1
16π2

(
2(Y n

R (Y m
R )∗Y n

R )ij − 3g2{C2(R), Y m
R }ij + Y m

ij Y2(S) + 1
2(Y m

ij Y2(R) + Y2(R̄)Y m
ij )
)
,

(9.3.17)

and it depends both on Yukawa couplings and gauge coupling.

Beta function for scalar quartic coupling

The scalar quartic coupling λabcd is renormalized as follows:

λabcd,bare µ
−2ε = Z

−1/2
Φ (a)Z−1/2

Φ (b)Z−1/2
Φ (c)Z−1/2

Φ (d)Z4Φ λabcd

= λabcd + a
(1)
λ,abcd

1
ε

+ . . . ,
(9.3.18)

with λabcd,bare its corresponding “bare” coupling. We read off the vertex renormalization
factor from ıΓ̃abcdΦΦΦΦ as:

δZ4Φ,abcd = 1
16π2ε

1
2(3g4Aabcd − g2ξΛS

abcd − 4Habcd + Λ2
abcd) . (9.3.19)

The β-function for the scalar quartic coupling at the 1-loop level is:

βλ = 2a(1)
λ,abcd = 1

16π2 (3g4Aabcd − 4Habcd + Λ2
abcd + ΛY

abcd − 3g2ΛS
abcd) , (9.3.20)

being dependent on scalar, gauge, and Yukawa couplings. Notice the 1/2 difference with
the respect to the non-chiral model, in the contribution for Habcd coming from the fermion
loops, expected since we only have right-handed fermions in our model, i.e. half of fermionic
content "is missing".

All results for anomalous dimensions and all beta functions are in agreement with the
BMHV approach and [67–69].
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9.4 | Full system of renormalization group equations

In Chapters 6 and 7 we explicitly renormalized the theory at the 1-loop level by
calculating and introducing the singular and finite counterterms in the action:

S
(1)
Ren = LIM

d→4
(S0 + S

(1)
sct + S

(1)
fct ) , (9.4.1)

what rendered the theory finite and restored BRST invariance. If we focus on singular
part S(1)

sct , we can interpret divergent factors as Z renormalization constants:

S
(1)
sct = δZ

(1)
G SGG + δZ

(1)
3GSGGG + δZ

(1)
4G SGGGG + δZ

(1)
G SGG + δZ

(1)
3G SGGG + δZ

(1)
4G SGGGG

+ δZ
(1)
ψ Sψ̄ψR + δZ

(1)
ψGψR

SψGψR + δZ
(1)
c̄c Sc̄c + δZ(1)

ρc Sρc + δZ
(1)
c̄Gc Sc̄Gc

+ δZ
(1)
ρGc SρGc + δZ

(1)
ζcc Sζcc + δZ

(1)
R̄ψR

SR̄ψR + δZ
(1)
RψR

SRψR + δZ
(1)
YcΦ SYcΦ

+ δẐ
(1)
G

∫
dd x 1

2Ḡ
a µ∂̂2Ḡa

µ + δZ
(1)
Φ SΦΦ + δZ

(1)
ΦGΦSΦGΦ + δZ

(1)
ΦGGΦ SΦGGΦ

+ δZ
(1)
Φ SΦΦ + δZ

(1)
ΦGΦ SΦGΦ + δZ

(1)
ΦGGΦ SΦGGΦ + δZ

(1)
4Φ,mnop SΦ4

mnop

+ δZ
m,(1)
Y,ij S

ψR
C
i ΦmψRj

+ h.c. + δẐ
(1)
φ ŜΦΦ .

(9.4.2)

The naive dimensional regularization result would correspond to d-dimensional part of
(9.4.2) (meaning we interpret δZ̄ as δZ + δẐ and add d-dimensional contribution to the
corresponding δZ). To obtain the β and γ functions from renormalization constants, we
have to solve the following system of equations:

δZ
(1)
G → −γ

(1)
G = ~

16π2 g
2 (13− 3ξ)C2(G)− S2(S)− 4S2(R)

6 ,

δZ
(1)
3G →

1
2β

(1) − 3
2γ

(1)
G = ~

16π2 g
2 (17− 9ξ)C2(G)− 2S2(S)− 8S2(R)

12 ,

δZ
(1)
4G → β(1) − 2γ(1)

G = ~
16π2 g

2((2− 3ξ)C2(G)− 2S2(R)
3 − S2(S)

6 ) ,

δZ
(1)
ψ → −γ

(1)
ψ = −~

16π2

(
g2ξC2(R) + Y2(R)

2

)
,

δZ
(1)
ψGψR

→ 1
2β

(1) − 1
2γ

(1)
G − γ

(1)
ψ = −~

16π2

(
g2 (3 + ξ)C2(G) + 4ξC2(R)

4 + Y2(R)
2

)
,

δZ
(1)
Φ → −γ

(1)
Φ = ~

16π2

(
g2(3− ξ)C2(S)− Y2(S)

)
,

δZ
(1)
ΦGΦ →

1
2β

(1) − 1
2γ

(1)
G − γ

(1)
Φ = ~

16π2

(
g2
(

(3− ξ)C2(S)− 3 + ξ

4 C2(G)
)
− Y2(S)

)
,

δZ
(1)
ΦGGΦ → β(1) − γ(1)

G − γ
(1)
Φ = ~

16π2

(
g2
(

(3− ξ)C2(S)− 3 + ξ

2 C2(G)
)
− Y2(S)

)
,

δZ
(1)
4Φ,mnop →

1
2β

(1)
λmnop

− 2γ(1)
Φ λmnop = ~

16π2
1
2(3g4A− g2ξΛS − 4H + Λ2)mnop ,
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δZ
m,(1)
Y,ij →

1
2(β(1)

Y )mij − Y m
ij (1

2γ
(1)
Φ + γ

(1)
ψ )

= ~
16π2

(
(Y n

R (Y m
R )∗Y n

R )− g2 2C2(R)(3 + ξ)− C2(S)(3− ξ)
2 Y m

R

)
ij

,

δZ
(1)
c̄c → −

1
2γ

(1)
c + 1

2γ
(1)
G = ~

16π2 g
2 3− ξ

4 C2(G) ,

δZ
(1)
c̄Gc →

1
2β

(1) − 1
2γ

(1)
c = −~

16π2 g
2 ξ

2C2(G) ,

δZ(1)
ρc → −

1
2γ

(1)
ρ −

1
2γ

(1)
c = ~

16π2 g
2 3− ξ

4 C2(G) ,

δZ
(1)
ρGc →

1
2β

(1) − 1
2γ

(1)
ρ −

1
2γ

(1)
G −

1
2γ

(1)
c = −~

16π2 g
2 ξ

2C2(G) ,

δZ
(1)
ζcc →

1
2β

(1) − 1
2γ

(1)
ζ − γ(1)

c = −~
16π2 g

2 ξ

2C2(G) ,

δZ
(1)
R̄ψR
→ 1

2β
(1) − 1

2γ
(1)
R −

1
2γ

(1)
c −

1
2γ

(1)
ψ = −~

16π2 g
2 ξ

2C2(G) ,

δZ
(1)
RψR
→ 1

2β
(1) − 1

2γ
(1)
R −

1
2γ

(1)
c −

1
2γ

(1)
ψ = −~

16π2 g
2 ξ

2C2(G) ,

δZ
(1)
YcΦ →

1
2β

(1) − 1
2γ

(1)
Y −

1
2γ

(1)
c −

1
2γ

(1)
Φ = −~

16π2 g
2 ξ

2C2(G) ,

again overdetermined and with the solution at 1-loop level:

β = ~
16π2 g

2
(
−22C2(G) + 4S2(R) + S2(S)

6

)
,

βλ = ~
16π2 (3g4Aabcd − 4Habcd + Λ2

abcd + ΛY
abcd − 3g2ΛS

abcd) ,

βY
m
ij = ~

16π2

(
2(Y n

R (Y m
R )∗Y n

R )ij − 3g2{C2(R), Y m
R }ij + Y m

ij Y2(S) + 1
2(Y m

ij Y2(R) + Y2(R̄)Y m
ij )
)
,

γG = ~
16π2 g

2 (3ξ − 13)C2(G) + 4S2(R) + S2(S)
6 = −γc̄ = −γρ ,

γψ = ~
16π2

2g2ξC2(R) + Y2(R)
2 = −γR ,

γΦ = ~
16π2

(
g2(ξ − 3)C2(S) + Y2(S)

)
= −γY ,

γc = ~
16π2 g

2 (6ξ − 22)C2(G) + 4S2(R) + S2(S)
6 = −γζ .

If we compare solution of the system with the one obtained in Section 8.4, the β-functions
and anomalous dimensions do not differ.

The result is the same as the one obtained in Chapter 8, demonstrating that both
methods may be applied to obtain the correct 1-loop RGE in the BMHV scheme. We again
strongly emphasize that this is valid exclusively at the 1-loop level. For the higher orders,
explicit calculation is needed and is recommended as future proposal of this research.
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CHAPTER 10

THE LEFT-HANDED (L) MODEL

In this chapter, we indicate how our previous results adapt for a model including only
left-handed fermions. Since the result is a straightforward list of the results analogous
to the right-handed chiral theory, we strictly follow the [47]. We define the Left-handed
(L) model to be the same as the Right-handed (R) model studied so far, except now with
the usage of purely left-handed fermions ψL ≡ PLψ: the gauge, scalar, and gauge-scalars
sectors remain unchanged, while only the fermion kinetic and Yukawa terms get modified.
We aim to know how our results derived so far change when considering these left-handed
fermions. This is needed as an ingredient for future phenomenological studies in SM and
beyond.

10.1 | Transition to Left-handed model

It is possible to construct a mapping between the L-model and the R-model indeed,
using the charge-conjugation construction from Section 2.2.2, the charge-conjugate of a
left-handed fermion is a right-handed fermion:

ψL
C = CψL

T = C(ψPR)T = CPR
Tψ

T = CPR
TC−1Cψ

T = PRCψ
T = PRψ

C ≡ PRψ̂ ≡ ψ̂R ,

(10.1.1)
with the definition ψ̂ ≡ ψC .

The same discussion as in Section 4.2 holds and we can promote this L-model to d
dimensions. The left-handed fermion-kinetic term is:

Lfermions = iψi/∂ψi + gTL
a
ijψLi /G

a
ψLj , (10.1.2)

where TL is the generator for their corresponding representation. Since the kinetic term
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is a scalar function, it is also equal to its transpose in spinor space, and thus we obtain:

Lfermions = i(ψi/∂ψi)T + gTL
a
ij(ψLi /G

a
ψLj)T = −iψTi

←
/∂
T
ψ
T

i − gTLaijGa
µψL

T
j (γµ)TψL

T

i

= −iψTi C−1C
←
/∂
T
C−1Cψ

T

i − gTLaijGa
µψL

T
j C
−1C(γµ)TC−1CψL

T

i

= iψ
C

i C
←
/∂
T
C−1ψCi + gTL

a
ijG

a
µψL

C

j C(γµ)TC−1ψL
C
i

= −iψ̂i
←
/∂ψ̂i + g(−TLaij)Ga

µψ̂Rjγ
µψ̂Ri = iψ̂i/∂ψ̂i + gTL

a
ijψ̂Ri /G

a
ψ̂Rj ,

(10.1.3)

where in the second equality we used the anticommutativity of the fermion fields, in the
second line we inserted 1 = C−1C and used the properties of the charge-conjugation as
defined in Section 2.2.2, and in the last line we used an integration by parts (supposing
the absence of surface terms) to rewrite the pure kinetic (first) term, and defined in the
interaction term TL

a
ij = −TLaji corresponding to the complex-conjugated representation of

the left-handed fermions. Posing T
R̂
a
ij
≡ TL

a
ij, we see that this conjugated L-representation

corresponds to the representation for the associated right-handed fermions.
Let us now turn to the Yukawa term, which is a real number and therefore equals to

its hermitian conjugate:

2× LYukawa = −(YL)mijΦmψL
C

i ψLj − (YL)m ∗ij Φ†mψLiψLCj = −(YL)m ∗ij Φ†mψ̂R
C

i ψ̂Rj + h.c. ,
(10.1.4)

and we can define (Y
R̂

)mij ≡ (YL)m ∗ij the corresponding Yukawa matrix for the associated
right-handed fermions, which is just the complex conjugate of the one for the left-handed
fermions.

External sources for the fermion fields need to be introduced in the L-model due to
the BRST quantization procedure:

SL̄cψL = L̄isdψi = igL̄icaTL
a
ijψLj ≡ igL̄icaTL

a
ijPLψj ,

SLcψL = sdψiL
i = igψLjc

aTL
a
jiL

i ≡ igψjPLc
aTL

a
jiL

i .
(10.1.5)

Since these are scalar functions, we can take their transpose, and use the fact that L and
L̄ are commuting fermions (their ghost number is equal to 1) to obtain:

SL̄cψL = igcaTL
a
ij(L̄iψLj)T = igcaTL

a
ijψL

T
j L̄

T
i = igcaTL

a
ijψL

T
j C
−1CL̄Ti

= igψL
C

j c
a(−TLaij)(−CL̄Ti ) = igψ̂Rjc

aTR
a
jiR̂i ≡ S

R̂cψ̂R
,

(10.1.6)

where we have employed the notations introduced above and have defined the external
source R̂i for the corresponding right-handed fermions: R̂i ≡ −CL̄Ti = −LCi. Similarly
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we obtain for the other source term:

SLcψL = ig(ψLjLi)T caTLaji = igLT
i
ψL

T

j c
aTL

a
ji = igLT

i
C−1CψL

T

j c
aTL

a
ji

= ig(−TLaji)LT
i
C−1caψL

C
j = igTR

a
ijR̂

i
caψ̂Rj ≡ S

R̂cψ̂R
,

(10.1.7)

where we used that R̂i = −LCi = LTi C
−1, stemming from the properties of C.

These calculations demonstrate that we can establish a one-to-one mapping between
a left-handed model with fermions ψ (ψL ≡ PLψ) defined in a left-representation of the
considered gauge group with generators TL that couple to scalar fields with the Yukawa in-
teraction (YL)mij , and a right-handed model with fermions ψ̂ related via charge-conjugation:
ψ̂ ≡ ψC (ψ̂R ≡ PRψ̂), in a right-representation T

R̂
a
ij
≡ TL

a
ij that couple to the scalar fields

with the Yukawa interaction (Y
R̂

)mij ≡ (YL)m ∗ij . Therefore, all of our calculations derived
so far in this work apply to the left-handed model as well.

10.2 | Evaluation of the tree-level breaking in left-handed
model

We will evaluate the tree-level breaking of the BRST symmetry by the action of this
Left-handed model, similarly to what has been done in Section 4.3. We find that the
breaking ∆̂ = sdS0 is given by:

∆̂ =
∫

dd x (gTLaij)ca
{
ψi

(←
/̂∂PL +

→

/̂∂PR

)
ψj

}
≡
∫

dd x ∆̂(x) , (10.2.1)

generating a corresponding Feynman rule:

̂∆ ca

p2
ψjβ

p1

ψ
i
α

= g

2TL
a
ij

(
( /̂p1 + /̂p2)− ( /̂p1 − /̂p2)γ5

)
αβ

= gTL
a
ij

(
/̂p1PL + /̂p2PR

)
αβ
,

(10.2.2)

and the one corresponding to the charge-conjugated fermions:

∆̂ =
∫

dd x (gTLaij)c
a

{
ψCi

(←
/̂∂PR +

→

/̂∂PL

)
ψCj

}
, (10.2.3)
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generating the Feynman rule:

̂∆ ca

p2
ψC,jβ

p1

ψ
C,i
α

= g

2TL
a
ij

(
( /̂p1 + /̂p2) + ( /̂p1 − /̂p2)γ5

)
αβ

= gTL
a
ij

(
/̂p1PR + /̂p2PL

)
αβ
.

(10.2.4)

where the difference with the previous result is in the appearance of the generator TLa for
the fermionic conjugate representation L.

10.3 | The group invariants

The group invariants related to the scalar-fields representation C2(S), S2(S), Y2(S) and
those defined in Eq. (6.2.15): Amnop, Hmnop,Λ2

mnop,ΛS
mnop all remain the same. The group

invariants C2(L), S2(L), Y2(L) of the left-representation are actually equal to those of the
corresponding right-representation:

C2(L)1 = TL
aTL

a = (−TLaT )(−TLaT ) = TL
aTL

a = C2(L)1 ≡ C2(R̂)1;

S2(L)δab = Tr(TLaTLb) = Tr((−TLbT )(−TLaT ))

= Tr(TLbTLa) = S2(L)δab = Tr(T
R̂
aT

R̂
b) = S2(R̂)δab;

and
Y2(L)1 = (Y m

L )∗Y m
L = Y m

R̂
(Y m

R̂
)∗ = (Y m

R̂
)∗Y m

R̂
≡ Y2(R̂)1

by using the symmetry of the Yukawa matrices.

10.4 | Counterterms in left-handed model

The singular counterterms are now obtained, and are the same as in Eqs. (6.3.3), (6.3.4)
and (13.2.2), except for the replacements of group invariants:

S2(R)→ S2(L) ,
C2(R)→ C2(L) ,
Y2(R)→ Y2(L) ,
Y m
R → Y m

L ,

and of course action operators involving fermion fields,

Sψ̄ψR → Sψ̄ψL ,
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SψGψR → SψGψL , (10.4.1a)
S
ψR

C
i ΦmψRj

→ S
ψL

C
i ΦmψLj

,

SR̄cψR → SL̄cψL ,

SRcψR → SLcψL .

Again, we can make contact to the usual renormalization transformation, and express the
singular counterterms as follows:

S
(1)
sct = S

(1)
sct,inv + S

(1)
sct,evan . (10.4.2)

The invariant counterterms S(1)
sct,inv acquire the same form as those from Eq. (5.2.4), in

terms of the functionals Lϕ, and with the changes:

δZψRLψR → δZψLLψL , δ(YR)mijLYRmij → δ(YL)mijLYLmij , (10.4.3)

and the corresponding δZϕ, δgi renormalization constants are again the same as their coun-
terparts Eqs. (6.3.6) to (6.3.12), but with the coefficients changed according to Eq. (10.4.1).
The purely evanescent counterterms S(1)

sct,evan Eqs. (6.3.13) and (6.3.14) are also expressed
in the same way, with the substitution S2(R)→ S2(L).

Therefore, following the explanations given in Chapters 8 and 9, the resulting renor-
malization group equations for the Left-handed model are the very same ones as those for
the Right-handed model, with the obvious changes R↔ L.

The BRST-restoring finite counterterms Eq. (7.4.19) now read:

S
(1)
fct,restore = ~

16π2

{
g2S2(L)

6

(
5SGG + SGGG −

∫
d4 x Gaµ∂2Ga

µ

)
+ Y2(S)

3 SΦΦ

+g2 (TL)abcd
3

∫
d4 x

g2

4 G
a
µG

b µGc
νG

d ν − (CL)abmn
3

∫
d4 x

g2

2 G
a
µG

b µΦmΦn

+g2
(

1 + ξ − 1
6

)
C2(L)Sψψ −

((Y m
L )∗TLaY m

L )ij
2

∫
d4 x gψi /G

a
PLψj

−g2 ξC2(G)
4 (SL̄cψL + SLcψL)

}
,

(10.4.4)

where we have used the following group factors:

(T
R̂

)a1···an = Tr[TLa1 · · ·TL
an ] = Tr

[
(−TLa1 T ) · · · (−TLan T )

]
= (−1)nTr[TLan · · ·TLa1 ] = (−1)n(TL)an···a1 ,

(10.4.5a)

(CL)abmn ≡ Tr
[
2{TLa, TLb}(Y n

L )∗Y m
L − TLa(Y n

L )∗TLbY m
L

]
, (10.4.5b)
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Again, this expression is formally completely unchanged with respect to Eq. (7.4.19), with
the only change R↔ L. However, the relevant (non-spurious) anomalies Eq. (7.4.20) now
become:

~g2

16π2

(
S2(L)

3 dabcL

∫
d4 x gεµνρσca(∂ρGb

µ)(∂σGc
ν) + D

abcd
L

3× 3!

∫
d4 x g2caε

µνρσ∂σ
(
Gb
µG

c
νG

d
ρ

))
,

(10.4.6)
where the group factors are the fully symmetric symbol

dabcL = Tr[TLa{TLb, TLc}]

and
DabcdL = 1

2(dabeL f ecd + daceL f edb + dadeL f ebc)

for the L-representation. The opposite of sign in front of the equation, with respect to the
one in Eq. (7.4.20), comes from the fact that these group factors for the L-representation
are related to the corresponding ones in the corresponding right-handed model by two
important relations:

dabcL = −dabc
R̂
,

DabcdL = −Dabcd
R̂

.

We note to the reader this has important phenomenological consequences for model-
building: relevant anomalies can be cancelled in a given model if ones includes both right-
handed and left-handed fermions whose representations are the complex-conjugate of the
other. This gives one possible realization of anomaly cancellation condition Eq. (7.4.21).
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CHAPTER 11

RIGHT-HANDED CHIRAL QED (χQED) AND ITS
EXTENSION TO D DIMENSIONS

In the first part of this thesis, we have shown the BMHV scheme application on the
Yang-Mills model with a general gauge group. The use of the BMHV scheme resulted
in several types of counterterms, including one need for restoration of gauge and BRST
symmetry. We have restored the symmetry at the 1-loop level, showed that anomalies
cancel, and evaluated renormalization group equations for this model. During that research
first published in [47] we found out that situations at the 1-loop level do not differ from
one we would get if we treat the same model in a naive scheme, but we would expect severe
change once we treat higher orders. The next step in our research was then determined
by these important guidelines:

1. Since 2-loop treatment requires a significant increase of complications in calculations,
it would be useful to decrease the complexity of the group structure in a model.

2. Since we want to do a complete study at the 2-loop level, it is important to have
a benchmark model to compare the results. At the 1-loop level, a great source of
information would be the results from our previous work in [47], so the next model
should be contained in the general model we have already investigated.

3. Since we do not have any direct comparison available in literature, we should look for
an additional symmetry check or property arising from the Slavnov-Taylor identities
of the considered model.

4. Due to the comprehensiveness present in this kind of calculation, it would be useful
that it is possible to write and run the computer codes to automatize the calculation
as much as possible. From the previous experience, we can estimate the possibility
and duration of these calculations, so it is important to make a reasonable choice
from this point of view, too.
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5. We didn’t forget the phenomenology. It would be useful if the model is embedded
in SM.

11.1 | The new model proposal

The best possible model enabling to follow the mentioned guidelines is the chiral
quantum electrodynamics, with right-handed fermion fields but without scalar fields. It
may be understood as a chiral version of QED with right-handed couplings only, or as a
variant of the U(1) part of the electroweak standard model, or if you want, as a U(1) limit
of previously defined and studied general Yang-Mills model with replacements

T aRij → YRij, (11.1.1)
T aR̄ij → YR̄ij ≡ −YRij, (11.1.2)
fabc = 0, (11.1.3)

and all scalars and their interactions are absent. We note this model as χQED. Since the
adjoint representation is trivial, trilinear and quartic gauge boson interactions as well as
ghost-gauge interaction are absent. In this chapter, we again define the model as we did
for the Yang-Mills case. The theory is defined firstly in 4 dimensions: its action, BRST
transformations rules, and basic Slavnov-Taylor identity. Then the theory is defined in
d-dimensions: its action with d dimensional kinetic terms and the most symmetric right-
handed fermion–gauge boson vertex, BRST transformations and Slavnov-Taylor identities
in analogy with the 4-dimensional case. The breaking of the BRST symmetry of the action
and Slavnov-Taylor identity for the action were identified with the evanescent part of the
fermion kinetic term, and this is followed by detailed analysis and restoration of these
breakings.

11.2 | χQED in 4 dimensions

In χQED, the only generator is the hypercharge, which we assume to be diagonal and
real,

YRij ≡ (diag{Y1
R, . . . ,Y

Nf
R })ij,

where Nf is the number of fermion flavours. The 4-dimensional classical Lagrangian of
the model reads:

L = iψRi /DijψRj −
1
4F

µνFµν −
1
2ξ (∂µAµ)2 − c̄∂2c+ ρµsAµ + R̄isψRi +RisψRi, (11.2.1)
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where only purely right-handed fermions ψR appear. In general, we use the standard
chirality projectors Eq. (4.1.6) and abbreviate ψR/L = PR/Lψ. The covariant derivative
acting on the fermion field is defined in the diagonal basis for couplings by

Dµ
ij = ∂µδij − ieAµYRij , (11.2.2)

and the field strength tensor is defined as

Fµν = ∂µAν − ∂νAµ . (11.2.3)

In order not to have anomalies in χQED, the following anomaly cancellation condition is
imposed on the hypercharge couplings,

Tr(Y3
R) = 0 (11.2.4)

We emhasize to the reader that this condition cancels 3-photon interaction at 1-loop level,
also known as the triangle diagram. Next, the Lagrangian contains an Rξ gauge fixing term
with gauge parameter ξ and a corresponding Faddeev-Popov ghost kinetic term. The last
three terms of Eq. (11.2.1) are the BRST transformations of the physical fields, coupled to
external sources (or Batalin-Vilkovisky “anti-fields”, [75–77]), where the external sources
do not transform under BRST transformations by design. The non-vanishing BRST
transformations are

sAµ = ∂µc , (11.2.5a)
sψi = sψRi = i e cYRijψRj , (11.2.5b)
sψi = sψRi = i e ψRjcYRji (11.2.5c)

sc = B ≡ −1
ξ
∂A, (11.2.5d)

where “s” is the nilpotent generator of the BRST transformation, which acts as a fermionic
differential operator. The last of these equations also introduces the auxiliary Nakanishi-
Lautrup field B, which is integrated out from the action in Eq. (11.2.1) and in the rest of
the χQED study. The 4-dimensional tree-level action

S
(4d)
0 =

∫
d4 x L (11.2.6)

satisfies the following Slavnov-Taylor identity

S(S(4d)
0 ) = 0 , (11.2.7)
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where the Slavnov-Taylor operation is given for a general functional F as

S(F) =
∫

d4 x

(
δF
δρµ

δF
δAµ

+ δF
δR̄i

δF
δψi

+ δF
δRi

δF
δψi

+B
δF
δc̄

)
, (11.2.8)

where again B is treated as an abbreviation to its value given in Eq. (11.2.5d). As
usual in the context of algebraic renormalization, several additional functional identities
hold. In particular all functional derivatives of S(4d)

0 with respect to the fields c, c̄ or
ρµ are linear in the propagating fields, and one may write down identities of the form
δS

(4d)
0 /δc(x) = (linear expression). Such identities may be required to hold at all orders

as part of the definition of the theory.1 We highlight first the so-called ghost equation(
δ

δc̄
+ ∂µ

δ

δρµ

)
S

(4d)
0 = 0 , (11.2.9)

which is a linear combination which has analogues also in the non-abelian case.2 Sec-
ond, starting from the Slavnov-Taylor Eq. (11.2.8) operator performed on the χQED
4-dimensional action (for simplicity we discard 4d action superscript till the end of this
section)

S(S0) =
∫
d4x

(
δS0

δρµ
δS0

δAµ
+ δS0

δR̄i

δS0

δψRi
+ δS0

δRi

δS0

δψRi
+B

δS0

δc̄

)
, (11.2.10)

and then applying variation with the respect to the ghost field, where non-vanishing
functional derivatives appearing in the Slavnov-Taylor operation are the following,

δS0

δρµ
= sAµ = ∂µc ,

δS0

δR̄i
= sψRi = ieYRicψRi ,

δS0

δRi
= sψRi = ieYRiψRic ,

δS0

δc̄
= −∂2c ,

δS0

δψRi
= −eYRiψRi /A− ieR̄icYRi ,

δS0

δψRi
= eYRi /AψRi + iecYRiRi .

we get for the functional derivative of S(S0) with respect to c this expression:

δS(S0)
δcx

=
∫
d4y

[(
δ

δcx

δS0

δρµy

)
δS0

δAyµ
+
(
δ

δcx

δS0

δR̄i
y

)
δS0

δψyRi
+ δS0

δR̄i
y

(
δ

δcx

δS0

δψyRi

)

+
(
δ

δcx

δS0

δRi
y

)
δS0

δψyRi
+ δS0

δRi
y

(
δ

δcx

δS0

δψyRi

)
+By

(
δ

δcx

δS0

δc̄y

)]
, (11.2.11)

1If B is not integrated out, the same is true for the functional derivative δS(4d)
0 /δB(x).

2It can be obtained in general from evaluating δS(S(4d)
0 )/δB if the field B is not eliminated.
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where the coordinate dependence is now explicitly written in (as an index x or y). After
applying the results for functional derivatives,

δS(S0)
δcx

= −∂xµ
δS0

δAxµ
+ ieYRiψxRi

δS0

δψxRi
+ δS0

δR̄i
x

(−ieR̄i
xYRi)

− ieYRiψxRi
δS0

δψxRi
+ δS0

δRi
x

(ieYRiRi
x)− ∂2

xBx

= −∂xµ
δS0

δAxµ
− ∂2

xBx + ieYRi
(
ψxRi

δ

δψxRi
− ψxRi

δ

δψxRi
+Ri

x

δ

δRi
x

− R̄i
x

δ

δR̄i
x

)
S0, (11.2.12)

and taking Eq. (11.2.7) into account, we obtain the functional form of the abelian Ward
identity (

∂µ
δ

δAµ(x) − ieY
j
R

∑
Ψ

(±)Ψ(x) δ

δΨ(x)

)
S

(4d)
0 = −∂2B(x) . (11.2.13)

The summation extends over the charged fermions and their sources, Ψ ∈
{ψRj, ψRj, Rj, R̄j}, and the signs are +,−,+,−, respectively. For extensive discussions of
Ward identity of the more general case and the importance to the Standard Model and
extensions see e.g. [36, 95,96].
Finally, we summarize in Table 11.1 a list of the quantum numbers (mass dimension, ghost
number and (anti)commutativity) of the fields and the external sources of the theory, that
are necessary for building the whole set of all possible renormalizable mass-dimension ≤ 4
field-monomial operators with a given ghost number.

Table 11.1
List of fields, external sources and operators, and their quantum numbers for χQED

model.

Aµ ψi, ψi c c̄ B ρµ Ri, R̄i ∂µ s

mass dimension 1 3/2 0 2 2 3 5/2 1 0
ghost number 0 0 1 -1 0 -1 -1 0 1

(anti)commutativity +1 -1 -1 -1 +1 -1 +1 +1 -1

11.3 | The χQED in d dimensions and its BRST breaking

The extension of the χQED model Eq. (11.2.1) to d dimensions is not unique, due to
the fermionic interaction terms. Again, we can use the experience from Yang-Mills model
renormalization, since now it is of even greater importance to use the most symmetric
interaction vertex due to the complexity of 2-loop calculations. We follow the procedure
used in Ref. [47]. Again, the extension to d dimensions requires fully d-dimensional fermion
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propagators, so as to ensure that Feynman diagrams involving fermions can be regularized.
This is achieved by introducing a left-chiral U(1)-singlet fermion into the kinetic part of the
Lagrangian, thus promoting the intrisically 4-dimensional χQED fermionic kinetic term to
a full d-dimensional one. On the other side the fermion-gauge boson interaction is chosen
to be fully chiral-projected, with right-handed fermions only. This procedure, together
with the straightforward extension of the other terms in Eq. (11.2.1) to d dimensions, leads
to the tree-level action S0,

S0 =
∫

dd x
(
iψi/∂ψi + eYRijψRi /AψRj −

1
4F

µνFµν −
1
2ξ (∂µAµ)2

− c̄∂2c+ ρµ(∂µc) + i e R̄icYRijψRj + i e ψRicYRijRj

)
≡
∑
i

Si
ψψ

+
∑
i

Si
ψRAψR

+ SAA + Sg-fix + Sc̄c + Sρc + SR̄cψR + SRcψR .

(11.3.1)

In Eq. (11.3.1) a set of abbreviations for the S0 terms is introduced. To define some of
the expressions for these terms we use either the notation A

↔
∂B ≡ A(∂B) − (∂A)B or

the gauge-fixing Eq. (4.1.11) is used or the fact the BRST transformations Eq. (11.2.5)
retain the same form in d dimensions up to the replacement of 4-dimensional objects by
corresponding d-dimensional ones, where we introduced the following abbreviations for
the action operators and we list them explicitly for the later use:

SAA =
∫

dd x −1
4 FµνF

µν =
∫

dd x 1
2Aµ(gµν∂2 − ∂µ∂ν)Aν , (11.3.2)

Sψψ =
∫

dd x iψi/∂ψi ≡
∫

dd x i

2ψi
↔
/∂ψi , (11.3.3)

SψRAψR =
∫

dd x eYRijψiPL /APRψj =
∫

dd x eYRijψi /APRψj , (11.3.4)

Sg-fix =
∫

dd x
(
ξ

2B
2 +B∂µAµ

)
=
∫

dd x −1
2ξ (∂µAµ)2 , (11.3.5)

Sc̄c =
∫

dd x (∂µc̄)(∂µc) ≡
∫

dd x (−c̄∂2c) , (11.3.6)

Sρc =
∫

dd x ρµsdAµ =
∫

dd x ρµ(∂µc) , (11.3.7)

SR̄cψR =
∫

dd x R̄isdψi =
∫

dd x i e R̄icYRijψRj ≡
∫

dd x i e R̄icYRijPRψj , (11.3.8)

SRcψR =
∫

dd x Risdψi ≡
∫

dd x sdψiRi =
∫

dd x i e ψRjcYRjiRi

≡
∫

dd x i e ψjPLcYRjiRi , (11.3.9)

Following the discussion of the [47] in the rest of this section we investigate the
BRST symmetry (breaking) of the tree-level action S0. We define the d-dimensional
Slavnov-Taylor operation Sd by straightforward extension of its 4-dimensional version to
d-dimensions, as an extension of the four-dimensional Slavnov-Taylor operator S from
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Eq. (11.2.8) to d dimensions,

Sd(S0) =
∫

dd x
(
δS0

δρµ
δS0

δAµ
+ δS0

δR̄i

δS0

δψi
+ δS0

δRi

δS0

δψi
+B

δS0

δc̄

)
, (11.3.10)

where there is an analogous definition for any functional F . The d-dimensional action
may be written as the sum of two parts, an “invariant” and an “evanescent” part,

S0 = S0,inv + S0,evan , (11.3.11a)

S0,evan =
∫

dd x iψi /̂∂ψi . (11.3.11b)

The second part S0,evan consists solely of one single, evanescent fermion kinetic term, the
reminiscent of d-dimensional propagator. Acting with the d-dimensional BRST operator
on the tree-level action Eq. (11.3.1) gives:

sdS0 = sdS0,inv + sdS0,evan = 0 + sd

∫
dd x iψi /̂∂ψi ≡ ∆̂, (11.3.12)

where non-vanishing integrated breaking term ∆̂ is given by

∆̂ =
∫

dd x eYRij c
{
ψi

(←
/̂∂PR +

→

/̂∂PL

)
ψj

}
≡
∫

dd x ∆̂(x). (11.3.13)

This breaking generates an interaction vertex whose Feynman rule (with all momenta
incoming) is:

̂∆ ca

p2
ψjβ

p1

ψ
i
α

= e

2 YRij
(
( /̂p1 + /̂p2) + ( /̂p1 − /̂p2)γ5

)
αβ

= eYRij
(
/̂p1PR + /̂p2PL

)
αβ
.

(11.3.14)

The Feynman rule corresponding to the charge-conjugated fermions (applying flipping
rules as in [78, 79] and charge conjugation as in [47]) follows from the breaking term
rewritten as:

∆̂ =
∫

dd x eYRij c
{
ψCi

(←
/̂∂PL +

→

/̂∂PR

)
ψCj

}
, (11.3.15)

and leads to the Feynman rule:

̂∆ ca

p2
ψC,jβ

p1

ψ
C,i
α

= −e2 YRij
(
( /̂p1 + /̂p2)− ( /̂p1 − /̂p2)γ5

)
αβ

= −eYRij
(
/̂p1PL + /̂p2PR

)
αβ
.

(11.3.16)
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Acting with the d-dimensional Slavnov-Taylor operator Sd on the tree-level action, we
obtain the BRST breaking

Sd(S0) = Sd(S0,inv) + Sd(S0,evan) = 0 + ∆̂ . (11.3.17)

At this point it is again convenient to introduce the linearized Slavnov-Taylor operator
bd. In later applications we use the Slavnov-Taylor identity at higher orders in the form
S(S0 +F), where the functional F is e.g. the 1-loop regularized or renormalized effective
action or the 1-loop counterterm action. We can then expand to first order in F according
to (4.3.2),

Sd(S0 + F) = Sd(S0) + bdF +O(F2), (11.3.18)

where bd can be written in functional form as

bd =
∫

dd x
(
δS0

δρµ
δ

δAµ
+ δS0

δAµ

δ

δρµ
+
(
δS0

δR̄i

δ

δψi
+ δS0

δψi

δ

δR̄i

)
+
(
δS0

δRi

δ

δψi
+ δS0

δψi

δ

δRi

)
+B

δ

δc̄

)

= sd +
∫

dd x
(
δS0

δAµ

δ

δρµ
+ δS0

δψi

δ

δR̄i
+ δS0

δψi

δ

δRi

)
,

(11.3.19)

i.e. it is extended BRST transformation operator that acts also on the source fields.

11.4 | Defining symmetry requirements for the renormalized
theory

Symmetry identities valid at the tree level must be fulfilled at all orders of perturbation
theory. If the symmetries are broken in the regularization and renormalization procedure,
as is the case when we use the BMHV scheme, they must be restored order by order in
perturbation theory. Possibility of this restoration at higher orders comes from the struc-
ture and the properties of chiral QED. Arguments are coming from the general analysis
of algebraic renormalization of gauge theories3 and the anomaly condition Eq. (11.2.4).

We will briefly collect the relevant symmetry identities for chiral QED. These iden-
tities may be viewed as part of the definition of the model; they constrain the regu-
larization/renormalization procedure and particularly determine the symmetry-restoring
counterterms.

The symmetry requirements are defined for renormalized and finite 4-dimensional
effective action of form

ΓRen = S
(4d)
0 +O(~). (11.4.1)

3See Refs. [1, 97–99] for important treatments of abelian theories in such contexts and Refs. [1, 25] for
general overviews.
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The first and most important symmetry requirement is BRST invariance, which is
expressed as the Slavnov-Taylor identity

S(ΓRen) = 0 (11.4.2)

for the renormalized theory. Notice that the fields c, c̄ and ρµ do not have higher order
corrections, so relations

δΓRen

δc(x) = δS
(4d)
0

δc(x) ,
δΓRen

δc̄(x) = δS
(4d)
0

δc̄(x) ,
δΓRen

δρµ(x) = δS
(4d)
0

δρµ(x) , (11.4.3)

hold trivially, since the respective derivatives of the tree-level action are linear in the
dynamical fields as described between Eqs. (11.2.8) and (11.2.13). Fact that the ghost
doesn’t have higher loop corrections will of course also play the part in reducing the
number of diagrams appearing in higher orders.

The Ward identity(
∂µ

δ

δAµ(x) − ieY
j
R

∑
Ψ

(±)Ψ(x) δ

δΨ(x)

)
ΓRen = −∂2B(x) , (11.4.4)

is an automatic consequence of the Slavnov-Taylor identity Eq. (11.4.2) combined with
the antighost equation in Eq. (11.4.3). It is not manifestly valid at higher orders but it
will be automatically valid once the Slavnov-Taylor identity holds, i.e. when symmetry is
restored by proper counterterms. In fact we will see that the breaking and restoration of
the Slavnov-Taylor identity can be well interpreted in terms of the Ward identity.

Eq. (11.4.4) supplies us with three well-known QED Ward identities for renormalized
Green functions (in momentum space):

1. The transversality of the photon self energy,

ipν
δ2Γ̃Ren

δAµ(p)δAν(−p)
= 0 ; (11.4.5)

2. The transversality of multi-photon vertices, and in particular the photon 4-point
amplitude,

i(p1+2+3)σ
δ4Γ̃Ren

δAρ(p3)δAν(p2)δAµ(p1)δAσ(−p1+2+3) = 0 (11.4.6)

(denoting p1+2+3 ≡ p1 + p2 + p3);

3. The relation between fermion self energy and fermion-photon interaction for vanish-
ing photon momentum q = 0,

− ieYR
∂

∂pµ

δ2Γ̃Ren

δψ(−p)δψ(p)
+ i

δ3Γ̃Ren

δAµ(0)δψ(−p)δψ(p)
= 0 . (11.4.7)
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The Γ̃Ren as usual denotes the renormalized effective action in momentum representation.
Those equations will provide important check for finite counterterms. In what follows we
will only refer to BRST invariance and the Slavnov-Taylor identity, which are the most
important symmetry requirements. The requirements Eq. (11.4.3) are manifestly valid at
all steps and individually for the regularized Green functions and for the counterterms.
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CHAPTER 12

MULTILOOP REGULARIZATION AND
RENORMALIZATION FORMULAE

In the first part of this thesis, we were dealing with 1-loop breaking and restoration
of BRST symmetry for the chiral Yang-Mills model. For that purpose, we studied the
renormalization in the BMHV scheme up to 1-loop order, but now we will expand our
study to a general, multiloop case and then restrict it to a 2-loop level.

12.1 | General action and effective action structure

Recall that the BMHV scheme introduces several new types of counterterms, listed in
Eq. (5.2.3)

Sct = Ssct,inv + Ssct,noninv + Sfct,inv + Sfct,restore + Sfct,evan ≡ Ssct + Sfct , (12.1.1)

that can be splitted into singular (divergent) and finite counterterms. We recall that
in our notation symbols without indices denote all-order quantities. For the following
perturbative expressions, we will also use an upper index i for quantities of precisely order
i, and upper index (i) for quantities up to and including order i. For example, the bare
action and the counterterm action split as

Sbare = S0 + Sct, Sct =
∞∑
i=1

Sict, S
(i)
ct =

i∑
j=1

Sjct . (12.1.2)

The effective action in dimensional regularization and renormalization is constructed
iteratively at each order of ~, starting from the tree-level action S0 of order ~0. At each
higher loop order i ≥ 1 a counterterm action Sict has to be constructed from the calculation
of counterterms. The counterterms are subject to the two conditions that the renormalized
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theory is UV finite and in agreement with all required symmetries listed in Section 11.4.
In general, at each order i one may distinguish Green functions at various levels of

regularization, partial or full renormalization. Of particular importance are “subloop-
renormalized” Green functions and the corresponding effective action. For simplicity we
use the symbol Γi for this subloop-renormalized effective action of order i. By definition
this is obtained at order i by using Feynman rules from the tree-level action up to and
including order i − 1 counterterms. As usual, by constructing and including singular
counterterms of the order i we obtain the finite quantity

Γi + Sisct = finite for ε→ 0 . (12.1.3)

This equation fixes the singular counterterms unambiguously, including their evanescent
parts, introduced in Eq. (12.1.1). By also including additional, finite counterterms of the
order i we obtain

ΓiDReg := Γi + Sisct + Sifct . (12.1.4)

This resulting effective action is finite at this order and essentially renormalized but still
contains the variable ε and evanescent quantities, so for final procedure includes taking
the limit d→ 4 and by setting all evanescent quantities to zero. This operation is denoted
as

ΓiRen := LIMd→4ΓiDReg . (12.1.5)

It is important to note that this limit is performed at the respective loop order at the
very end when all quantities are calculated and all counterterms are known. E.g. if we
are dealing with 2-loop calculation, quantities from 1-loop order must be inserted in the
calculation in their original form.

12.2 | All-orders symmetry requirements

Once we broke gauge and BRST invariance using the BMHV scheme, our main task
is to determine the finite counterterms needed to restore the symmetries. The ultimate
symmetry requirement is the Slavnov-Taylor identity expressing BRST invariance for the
fully renormalized theory, which can be written as

S(ΓRen) = LIMd→4
(
Sd(ΓDReg)

)
= 0 . (12.2.1)

As we discussed in detail in Ref. [47] there are several possibilities to extract the symmetry-
restoring counterterms from this equation. The first option is to calculate the complete
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finite part of the action at the loop order of interest and then find which part breaks BRST
invariance and then impose counterterms to remedy this breaking. This straightforward
or brute-force way complicates significantly already complicated calculations and is not
pragmatic from the practitioner’s point of view. Fortunately, the regularized quantum
action principle [20] gives the possibility to extract only the symmetry breaking parts of
finite action and we can understand the breaking parts as local insertions into ΓDreg

1

Sd(ΓDReg) = (∆̂ + ∆ct) · ΓDReg

= ∆̂ +
∞∑
i=1

~i
(

∆̂ · ΓiDReg +
i−1∑
k=1

∆k
ct · Γ

(i−k)
DReg + ∆i

ct

)
,

(12.2.2)

where the insertions or breakings ∆̂ and ∆ct in the present abelian theory are given as

∆̂ = Sd(S0) = sdS0 , (12.2.3a)
∆̂ + ∆ct = Sd(S0 + Sct) , (12.2.3b)

∆ct ≡ sdSct . (12.2.3c)

The first two equations are completely general, the third one is valid in the present context
because our external fields do not have loop corrections, so there will be no counterterms
involving external fields, hence bd operator reduces to sd. If the regularized quantum
action principle is inserted into Eq. (12.2.1) and perturbatively expanded at the order i,
we get crucial equation for symmetry restoration at the i-th loop order

LIMd→4

(
∆̂ · ΓiDReg +

i−1∑
k=1

∆k
ct · Γi−kDReg + ∆i

ct

)
= 0 (12.2.4)

valid for i ≥ 1, which explicitly exhibits the genuine i-loop counterterm via ∆i
ct (see

Eq. (12.2.3)). The fact that the limit d → 4 exists provides a consistency check on the
divergent part of ∆i

ct, which contains the singular counterterms Sisct. The finite part of the
equation determines the finite part of ∆i

ct. This equation extracts the finite counterterms
of our interest – the ones that break BRST symmetry. It is possible to add any finite
BRST invariant counterterms to this set without spoiling the symmetry to e.g. adjust
renormalization conditions, but they are not of our interest (as long as they do not induce
non-spurious anomalies in the theory). Now when we know all-order Eq. (12.2.4), we can
apply it to the 2-loop order to restore the symmetries broken in BMHV treated χQED.

1The same equation has been presented specifically for the 1-loop case in Ref. [47] and for the general
case in Ref. [54]. Ref. [27] presents a slightly different version where external source fields are taken into
account. All versions of the equation become equal in the present context of an abelian gauge theory
where there are no counterterms involving external fields.

113



CHAPTER 13

EVALUATION OF THE ONE-LOOP SINGULAR
COUNTERTERM ACTION IN χQED VERSUS QED

Our regularization procedure of χQED starts with the evaluation of the 1-loop (order
~1) singular counterterm action S1

sct defined from the divergent parts of the 1-loop diagrams.
Counterterms, once determined, will become part of 1-loop singular conterterm action
Sct which, canceling the divergent terms in the 1-loop effective action Γ(1), lead to the
1-loop χQED regularized action Γ(1)

DReg. We will also evaluate the same diagrams in
standard quantum electrodynamics (QED) where it will be interesting to see where are
the differences coming from and why. This, we hope, can serve a pedagogical purpose since
the QED is the common textbook example used in loop calculations. The calculations
are again performed in d = 4− 2ε dimensions, and calculation procedure is similar to one
explained in Chapter 6.

13.1 | List of the one-loop divergent terms

We present in this section the results of the divergent parts of the self-energies and
vertex of the theory, evaluated at 1-loop order, both for the χ-QED and QED. In the
following calculations all momenta are taken as incoming. The blobs shown in the
diagrams represent the sum of the all possible 1-loop corrections within our theory.
First we list all self-energy results for 2-point Green functions.

114



Gauge boson:
Aµ Aνp

iΓ̃νµAA(p)|1div, χQED = ie2

16π2ε

2Tr(Y2
R)

3 (pµpν − p2gµν)− ie2

16π2ε

Tr(Y2
R)

3 p̂2gµν ,

iΓ̃νµAA(p)|1div, QED = ie2

16π2ε

4Tr(Y2)
3 (pµpν − p2gµν) .

(13.1.1)

Notice that, since the interaction vertex in the χQED differs from the one given in the
standard QED by

VQED = ieγµYij, VχQED = ieγ̄µPRYR,ij,

it will project the fermion loop content, so the transversal part becomes 4-dimensional.
Due to the half of the fermion degrees of freedom in the loop for the chiral case, there
is a relative factor of 2 with respect to the QED. In addition, gauge boson self-energy
breaks gauge invariance with the second, evanescent term.

Fermion field:
ψj ψi

p

iΓ̃ji
ψψ̄

(p)|1div, χQED = ie2ξ

16π2ε
(Y2

R)ij 6p PR ,

iΓ̃ji
ψψ̄

(p)|1div, QED = ie2ξ

16π2ε
(Y2)ij 6p ,

(13.1.2)

and for the charge-conjugated fermion field:

iΓ̃ji
ψC ψ̄C

(p)|1div, χQED = ie2ξ

16π2ε
(Y2

R)ij 6p PL ,

iΓ̃ji
ψC ψ̄C

(p)|1div, QED = ie2ξ

16π2ε
(Y2)ij 6p .

(13.1.3)

Notice that again projectors in vertices make the momentum 4-dimensional.
Since the theory does not comprise a ghost-gauge boson interaction, ghost field can’t
obtain loop corrections, and therefore there are no self-energy contributions at any loop
order. That confirms that symmetry requirements in Eq. (11.4.3) hold.
The only vertex in the χQED that has singular part at the 1-loop level is fermion-gauge
boson interaction.
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Fermion-gauge boson interaction:

ψj ψi

p1 p2

qAµ

iΓ̃ji,µ
ψψ̄A

(p1, p2)|1div, χQED = ie3ξ

16π2ε
(Y3

R)ij γµ PR ,

iΓ̃ji,µ
ψψ̄A

(p1, p2)|1div, QED = ie3ξ

16π2ε
(Y3)ij γµ .

(13.1.4)

Vertices with external BRST source fields ρ, R and R̄ can’t obtain loop corrections at any
loop order, since there is no ghost-gauge boson interaction in the theory. Interactions of
three and four gauge bosons do not have singular part at the 1-loop level, as it is expected
for loop-induced interactions. In all above expressions one has to take into account that
YR and Y are diagonal matrices.

13.2 | The one-loop singular counterterm action

The singular 1-loop counterterm action is defined as usual such as to cancel the divergent
parts of the 1-loop vertices:

S1
sct = −Γ|1div . (13.2.1)

After restoring the powers of ~, it reads at the 1-loop level

S1
sct,χQED = −~ e

2

16π2ε

2Tr(Y2
R)

3 SAA + ξ
∑
j

(YjR)2
(
Sj
ψψR

+ Sj
ψRAψR

)

+Tr(Y2
R)

3

∫
dd x 1

2Āµ∂̂
2Āµ

)
,

(13.2.2)

and it may be compared to the corresponding result of ordinary QED with Dirac fermions
of (hyper)charges Y ,

S1
sct,QED = −~ e

2

16π2ε

4Tr(Y2)
3 SAA + ξ

∑
j

(Yj)2
(
Sj
ψψ

+ Sj
ψAψ

) . (13.2.3)

Notice the difference in 4-dimensional and d-dimensional operators respectively and evanes-
cent part in the chiral version of QED. The monomials not yet introduced are terms Si

ψψR
,

Si
ψRAψR

, the fully right-chiral-projected equivalents to their usual d-dimensional versions,

Si
ψψR

=
∫

dd x iψi/∂PRψi ≡
∫

dd x i

2ψi
↔
/∂PRψi , (13.2.4a)

Si
ψRAψR

=
∫

dd x eY iRψi /APRψi , (13.2.4b)
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and the bar in SAA designates the fully 4-dimensional version of SAA.
The results Eqs. (13.2.2) and (13.2.3) differ in three characteristic ways respectively:

1. χQED has half as many fermionic degrees of freedom, hence the fermion loop con-
tributions to the photon self energy generate the prefactor 2/3 instead of 4/3.

2. The fermion self-energy and the fermion-photon interaction receive only purely 4-
dimensional right-handed corrections in χQED, while in (non-chiral) QED these
contributions remain d-dimensional.

3. The purely right-handed nature of the boson-fermion interaction leads to a purely
evanescent divergent non-transverse contribution to the photon self energy in χQED.

Also, since Eq. (11.4.3) holds, this implies in particular that the linearized Slavnov-Taylor
operator bd reduces to the BRST operator sd when acting on the loop contributions of the
effective action, justifying Eq. (12.2.3c).

13.3 | The BRST breaking of one-loop singular counterterm
action

As in Ref. [47] we can re-express the result for the singular 1-loop counterterms S1
sct

in a fashion of the usual renormalization transformations, where fields renormalize multi-
plicatively as

φ→
√
Zφ φ, Zφ ≡ 1 + δZφ,

and the coupling constant renormalizes additively as

e→ e+ δe.

We will split the sum of singular counterterms into invariant and evanescent (BRST
breaking) part,

S1
sct = S1

sct,inv + S1
sct,evan , (13.3.1)

where the first term arises in the usual way from a renormalization transformation used
in non-chiral theories, while the second term has a different structure. The first term can
be obtained by applying the renormalization transformation

S0,inv −→ S0,inv + Sct,inv,

and it is given by

S1
ct,inv = δZ1

A

2 LA + δZ1
c

2 Lc +
δZ1

ψRj

2 LψRj + δe1

e
Le , (13.3.2)
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with the Lϕ functionals corresponding to field renormalizations that can be written as a
field-numbering operators acting on the tree-level action as we did for Yang-Mills model
in Chapter 5. The 1-loop renormalization constants δZϕ, δe agree with the usual ones for
QED up to the different fermion content (see e.g. [67–69]) and read

δZ1
A = δZ1

c = −2δe
1

e
, (13.3.3a)

δZ1
A = −~ e

2

16π2ε

2Tr(Y2
R)

3 , (13.3.3b)

δZ1
ψR j

= −~ e
2

16π2ε
ξ(YjR)2 . (13.3.3c)

The first of these relations again reflects Eq. (11.4.3) as in ordinary QED, what is trans-
parent if we write the invariant counterterms as

S1
sct,inv = δZ1

ASAA +
(
δZ1

c

2 − δZ1
A

2

)
(Scc + Sρc) +

(
δZ1

c

2 + δe1

e

)
(SRcψR + SRcψR)

+ δZ1
ψR

(
SψψR + SψAψR

)
+
(
δZ1

A

2 + δe1

e

)
SψAψR ,

(13.3.4)

where it is interesting to see that fermion-self energy counterterm and fermion-gauge
boson vertex renormalize with the same renormalization constant (since the last term in
Eq. (13.3.4) vanishes), what agrees with the preservation of the Ward identity at 1-loop
level. The Lϕ functionals as field-numbering operators acting on the tree-level action in
terms of the monomials of Eq. (11.3.1) (or total bd-variations if possible) are given by

LA = bd

∫
dd x ρ̃µAµ = 2SAA + SψAψR − Sc̄c − Sρc , (13.3.5a)

where ρ̃µ = ρµ + ∂µc̄ is the natural combination arising from the ghost equation (11.2.9);

Lc =
∫

dd x c(x) δS0

δc(x) = Sc̄c + Sρc + SR̄cψR + SRcψR , (13.3.5b)

LψR = −bd
∫

dd x (R̄i
PRψi + ψiPLR

i)

= 2
(∫

dd x iψi/∂PRψi + SψAψR

)
+
∫

dd x iψi /̂∂ψi ≡ LψR + S0,evan =
∑
i

LψRi .

(13.3.5c)

The Le functional corresponding to renormalization of the physical coupling can be ex-
pressed in terms of the monomials of Eq. (11.3.1) or related to the field renormalization
functionals as

Le = e
∂S0

∂e
= SψAψR + SR̄cψR + SRcψR = Lc + LA − 2SAA . (13.3.6)
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It is interesting to note that despite the non-nilpotency of bd, several of the Lϕ are
actually bd-invariant:

bdLA = 0 , bdLψR = 0 . (13.3.7)

while Lc is not bd-invariant in this sense, since

bdLc = ∆̂ , (13.3.8)

with the same breaking as in Eq. (11.3.13). Since Lc is contained in the Le, also Le

corresponding to gauge coupling renormalization, is not bd-invariant. Again we have that
in the limit d→ 4 and evanescent terms vanishing, all the Lϕ functionals presented here
become invariant under the linear b transformation in 4 dimensions. Finally, the evanescent
counterterms appearing in Eq. (13.3.1) can be written in the form

S1
sct,evan = −~ e

2

16π2ε

Tr(Y2
R)

3

(
2(SAA − SAA) +

∫
dd x 1

2Ā
µ∂̂2Āµ

)
. (13.3.9)

The BRST breaking of the singular 1-loop counterterms originates solely from the evanes-
cent non-invariant second term of S1

sct,evan and is given by

∆1
ct

∣∣∣
div

= sdS
1
sct = − ~

16π2ε

e2Tr(Y2
R)

3

∫
dd x (∂µc) (∂̂2Āµ) . (13.3.10)

With the help of the regularized quantum action principle, we have to prove that this
singular breaking corresponds to some local insertion. This is the case as we will see soon.
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CHAPTER 14

BRST SYMMETRY BREAKING AND ITS RESTORATION
AT THE ONE-LOOP LEVEL FOR χQED

In the previous chapter, we determined the singular counterterms action S1
sct,

Eq. (13.2.2), where we found out there is the BRST symmetry breaking term already at
the singular level. To restore the BRST symmetry, we must first prove that the singular
part of Eq. (12.2.4) vanishes, and we need to determine a set of finite symmetry-restoring
counterterms S1

fct at the 1-loop level. Here we will apply the general procedure outlined
in Chapter 12 to the 1-loop case.

14.1 | Renormalization conditions

At the 1-loop level the regularized action and breaking are given by

Γ(1)
DReg = Γ(1) + S1

sct + S1
fct , (14.1.1a)

∆1
ct = Sd(S0 + Sct)1 , (14.1.1b)

where we apply discussion given in Chapter 12 what at the 1-loop level leads us to the
following renormalization conditions:

S1
sct + Γ1

div = 0 , (14.1.2a)(
∆̂ · Γ1 + ∆1

ct

)
div

= 0 , (14.1.2b)

LIMd→4
(
∆̂ · Γ1 + ∆1

ct

)
fin

= 0 . (14.1.2c)

Here the subscripts ‘div,fin’ refer to the pure 1/ε pole part and the ε-independent finite
part, respectively1. Equation (14.1.2a) is regularizing condition at the 1-loop level and

1Compared to Eq. (12.2.4) we dropped the index ‘DReg’ because the 1-loop insertions arise from
genuine 1-loop diagrams and not from 1-loop counterterms.
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has already been satisfied in the previous section. Eq. (14.1.2b) should automatically hold
by construction, providing a consistency check and is a demonstration of the regularized
quantum action principle. The last equation determines the finite symmetry-restoring
counterterms, with a remaining ambiguity of adding finite symmetric or evanescent coun-
terterms without spoiling restored symmetries. If we write the last equation as

N
[
∆̂ · Γ1

]
+ ∆1

fct = 0 , (14.1.3)

this form implicitly fixes the choice of the finite, evanescent counterterms. This version
of the equation uses the result (13.3.10) that the BRST variation of the 1-loop singular
counterterms contains no finite term (which could in principle arise from the evaluation
of sd), hence ∆ct|fin = ∆fct. The symbol N [O] denotes the Zimmermann-like definition of
a renormalized local operator introduced in the Chapter 3.

14.2 | The divergent one-loop breaking

For evaluating [∆̂ · Γ(1)]div we calculate the 1-loop vertex correction with insertion of
the ∆̂ evanescent operator. All momenta are incoming and d = 4 − 2ε. For χQED we
have only one non-vanishing diagram, ∆̂ cAµ:

̂

∆ c

p1Aµ

i[∆̂ · Γ̃µAc]
(1)
div = ~ e2

16π2ε

Tr(Y2
R)

3 p̂1
2p1

µ , (14.2.1)

producing the only non-vanishing contribution to [∆̂ · Γ](1)
div:

[∆̂ · Γ](1)
div = ~ e2

16π2ε

Tr(Y2
R)

3

∫
dd x ∂̄µc ∂̂2Āµ, (14.2.2)

so we have, as expected,
[∆̂ · Γ(1)]div + sdS

(1)
sct = 0. (14.2.3)

So, evanescent breaking found in Eq. (13.3.10) is completely cancelled by the insertion
diagram ∆̂ cAµ, what satisfied second renormalization condition Eq. (14.1.2).
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̂∆ c

p1Aµ

̂∆

AνAµ p2p1

c
̂∆

Aν

AρAµ

c

p1
p2

p3

̂

∆

p2 p1
ψj ψi

c

Figure 14.1: The four diagrams contributing to ∆̂ · Γ1 and determining 1-loop
symmetry restoring counterterms.

14.3 | Finite symmetry restoring counterterms at one-loop

In order to determine the finite symmetry restoring counterterms we need to compute
the quantity ∆̂ · Γ1, corresponding to the breaking of the Slavnov-Taylor identity or
BRST symmetry by 1-loop regularized Green functions. This is given by 1-loop Feynman
diagrams with one insertion of the vertex ∆̂, the BRST breaking of the d-dimensional
action given in Eq. (12.2.3). Theoretically speaking, infinitely many Feynman diagrams
can give a nonzero result but fortunately, in most cases the result is purely evanescent or
of order ε. Only power-counting divergent diagram can lead to a result which contributes
to the above equations, i.e. which contains either a 1/ε pole or which is finite and survives
in the big limit LIMd→4. For the χQED there are only four possible diagrams at the 1-loop
level and they are given in Fig. 14.1. The finite results for contributing diagrams are given
by:

i [∆̂ · Γ̃]1Aµc = e2

16π2
Tr(Y2

R)
3 p2

1p
µ
1 , (14.3.1)

i [∆̂ · Γ̃]1AµAνc = e3

16π2
2iTr(Y3

R)
3 εµναβp1αp2β , (14.3.2)

i [∆̂ · Γ̃]1AµAνAρc = e4

16π2
2Tr(Y4

R)
3 (gµσgνρ + gµρgνσ + gµνgρσ)(p1σ + p2σ + p3σ) , (14.3.3)

i [∆̂ · Γ̃]1
ψψc

= e3

16π2
−Y3

R(ξ + 5)
6 (/p1 + /p2)PR . (14.3.4)

The result of these diagrams can be written in the field-operator representation in the
coordinate space, as an insertion in the effective action in terms of field monomials of

122



ghost number one, as2

∆̂ · Γ1 = ~
16π2

∫
dd x

[
e2Tr(Y2

R)
3 (∂µc)(∂

2
Āµ)

+ e4Tr(Y4
R)

3 c ∂µ(ĀµĀ2)− 5 + ξ

6 e3∑
j

(YjR)3 c ∂
µ(ψjγµPRψj)

− 2 e3Tr(Y3
R)

3 εµνρσc(∂ρAµ)(∂σAν)
]
,

(14.3.5)

where further terms of order ε and evanescent terms of order ε0 have been omitted. The
first term correspond to the first diagram of Fig. 14.1 and represents the the violation of the
Slavnov-Taylor identity for the photon self-energy (describing essentially its transversality).
The divergent part of same diagram was discussed in the previous section. The next two
terms are UV finite and non-evanescent. They correspond in an obvious way to the
third and fourth diagrams of Fig. 14.1, and they represent the violation of the Slavnov-
Taylor identities involving the photon 4-point function and the fermion–photon interaction,
respectively.

Notice that the last term in Eq. (14.3.5), arising from the second diagram in Fig. 14.1,
cannot be written as the BRST transformation of any local field operator in the action,
hence it cannot be removed by any counterterm we can possibly construct. Counterterm
that cancels this contribution would have to be proportional to a structure like

εµνρσ∂µAνAρAσ

which however vanishes because of its BRST invariance. The last term represents the
non-spurious or essential anomaly, but since it is proportional to the Tr(Y3

R), it will vanish
due to the anomaly cancelation condition Eq. (11.2.4), ensuring that the theory is anomaly
free3. In general, Eq. (14.3.5) reflects important statements established in the context
of algebraic renormalization [1, 25, 95–98]. The breaking of the Slavnov-Taylor identity
at any order is a local, power-counting renormalizable expression with ghost number one.
The term in the last line is the unique and only kind of term that can possibly represent
a true anomaly that cannot be canceled by symmetry-restoring counterterms, i.e. this
object belongs to the non-trivial cohomology class of the Slavnov-Taylor operator. It is
known that if the term vanishes at 1-loop order, like here, it vanishes at all orders and
the theory is free of anomalies.

Determination of the finite counterterms S(1)
fct , which serve to restore the Slavnov-Taylor

identity in the form of Eqs. (14.1.2c) or (14.1.3) is now proceeded in a few steps. Since we
2We restore ~ explicitly at the end result.
3Such a condition can be realized in realistic models by either, having multiple families of fermions of

same chirality with property that the cube of their hypercharges sum up to zero, or by having the same
number of both right and left handed fermions whose hypercharges are equal but of opposite signs.
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have the result for breaking, we recall that it must correspond to the BRST transformation
of the wanted counterterm action,

sdS
1
fct = −N [∆̂] · Γ1 , (14.3.6)

where the right-hand side corresponds to the part of Eq. (14.3.5) without the essential
anomaly (cancelled by corresponding condition). Further, the counterterms do not depend
on external source fields, which implies

sdS
1
fct = bdS

1
fct = Sd(S0 + Sfct)1 = ∆1

fct . (14.3.7)

Now, proceeding as we did for the Yang-Mills model, we assume that the finite counterterm
action contains operators i.e. local polynomials that emerge from loop calculations. By sd
variation of these polynomials and direct comparison with the the breaking (14.3.5) we
obtain the finite 1-loop counterterm action,

S1
fct = ~

16π2

∫
d4 x

−e2Tr(Y2
R)

6 Āµ∂
2
Āµ + e4Tr(Y4

R)
12 ĀµĀ

µĀνĀ
ν

+ 5 + ξ

6 e2∑
j

(YjR)2ıψjγ
µ∂µPRψj

 .
(14.3.8)

The first finite counterterm restores transversality of the photon self energy, and the second
restores the Ward identity relation for the quartic photon interaction. The third term
restores the Ward identity between the fermion self energy and its photon interaction. The
counterterms S1

fct restore the symmetry, and all equations (14.1.2c, 14.1.3) and ultimately
(12.2.1) are valid at the 1-loop level and all renormalization conditions at the 1-loop level
are satisfied at this point.

We emphasize again that finite counterterms are not uniquely fixed. One can add any
BRST-symmetric term to these finite counterterms without spoiling the restoration of the
BRST symmetry. Further, the finite counterterms are defined as purely 4-dimensional
quantities. This corresponds to our requirement (14.1.3). As discussed there, one may
change the finite counterterms by evanescent contributions which vanish in the LIMd→4.

This means that it would be allowed e.g. to change the counterterms by extending
them to d dimensions, i.e. to replace some or all of the Āµ and ∂̄µ by full Aµ and ∂µ and so
on. Such changes are irrelevant for pure 1-loop discussions, however at the higher orders
the changes matter and might change the form of 2-loop results since for higher-loop order
calculations, it is required to insert these counterterms in loop diagrams. Such a choice
will differ by the addition of an evanescent part added to these counterterms, and as a
result, will affect either the evanescent singular counterterms (case ∼ ĝµν/ε) or the finite
parts (case ∼ ε/ε). However, our choice is finite counterterms in 4-dimensional form and

124



that is how we will implement them in 2-loop calculations.
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CHAPTER 15

EVALUATION OF THE TWO-LOOP SINGULAR
COUNTERTERM ACTION IN χQED VERSUS QED AND ITS

BRST BREAKING

In this chapter, we list all the UV divergences in χQED and we compare the results
with the standard QED. Calculation includes photon and fermion self-energy and the
interaction vertex. Since now we are heading at the 2-loop order, a lot of technical
difficulties must be overcome. We used a wide range of computation tools available and
adjusted the codes, implemented different techniques, and constructed the algorithms
needed for 2-loop renormalization and the complete counterterm action S2

sct.

15.1 | Calculation procedure at two-loop order

Now for the first time in this research, we have to deal with the regularization of
the 2-loop divergent integrals, which is not a trivial task, technically speaking. Packages
available for the 2-loop calculations, e.g. TARCER [50], contain the basis of 2-loop self-energy
type scalar integrals (that is integrals depending on two propagators only). Therefore,
to calculate our quantities of interest, we must reduce our objects to those 2-loop self-
energy scalar integrals. This is performed in two steps. First, one has to perform tensor
decomposition of tensor integrals to scalar integrals in the fashion of Eq. (2.1.2). Then the
scalar integrals have to be reduced to the integrals od self-energy (type) diagrams. This
is even more difficult when we are dealing with vertex diagrams proportional to momenta.
We will briefly explain how we managed to overcome those problems.

The general calculation procedure uses the same tools already mentioned in Chapter 6,
which is sufficient to define the model, calculate Feynman rules, create topologies, calculate
Feynman diagrams and prepare them for calculation. In addition, we need to compute
2-loop self-energy integrals what was done using TARCER, that implements the basis of
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2-loop scalar integrals where we manually added solutions to integrals that were missing
in our calculations.

Divergences of three-point functions can not be calculated directly so we have to reduce
them to two-point functions. The first solution is to set one external momentum to zero
where the diagram effectively reduces to self-energy. This is possible for diagrams with
the UV divergences which are local and independent of external momenta. However, this
approach fails in case zero external momenta induce infrared divergences or in case the
diagram is itself momentum dependent. In this case, we use a UV/IR-decomposition
[100–102] where effectively all external momenta vanish and propagators become massive.
For example, consider the expansion of propagator with loop momentum q and external
momentum p,

1
(q + p)2 −m2 = 1

q2 −m2 + −2qp− p2

(q2 −m2)((q + p)2 −m2) , (15.1.1)

where the splitting results in a last part that contributes to integrands with a lower degree
of divergence and is polynomial in external momenta. Performing this expansion iteratively
many times we end with massive self energies without external momenta, i.e. massive
vacuum integrals. Reduction to self-energy again makes calculation possible. Wherever it
was possible, the calculation was done in both ways and the results agree.

15.2 | List and interpretation of divergent two-loop Green func-
tions

The calculations are performed in d = 4− 2ε dimensions, and in the Feynman gauge
ξ = 1, and the results are compared with the corresponding results for QED. Same as at
the 1-loop level we have three types of UV divergent Green functions, corresponding to the
photon self energy, the fermion self energy and the fermion–photon interaction. Here we
first present the explicit results for each subrenormalized 2-loop Green function separately
and both for χQED and ordinary QED. The blobs shown in the diagrams represent the
sum of the all possible subrenormalized 2-loop corrections, i.e. 2-loop diagrams with tree-
level vertices and 1-loop diagrams with singular and finite BRST-restoring counterterm
insertions. The latter represent diagrams that are specific to the BMHV scheme, since
1-loop finite counterterms generate Feynman rules for new finite insertions.
Gauge boson self energy:

Aµ Aνp

iΓ̃νµAA(p)|2div, χQED = ie4

256π4
Tr(Y4

R)
3

[2
ε
(pµpν − p2gµν) +

( 17
24ε −

1
2ε2

)
p̂2gµν

]
, (15.2.1a)
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iΓ̃νµAA(p)|2div, QED = ie4

256π4ε
2Tr(Y4)(pµpν − p2gµν) . (15.2.1b)

Notice again that d-dimensional transversal part for QED is projected to 4 dimensions in
the chiral case where also the new evanescent term is present, again spoiling gauge and
BRST invariance. Also, unlike at the 1-loop case, the global factor in front of the chiral
transversal part is not half of the content of the QED case, since now in the loop we have
an additional diagram with finite 1-loop counterterm insertion.
When performing renormalization in the BMHV scheme, one question that usually comes
to mind is: Would the direct sum of left and right-handed model reproduce the coefficients
for the regularization of corresponding vector-like theory? From the example of gauge
boson self energy we see that 1-loop comparison

(Γ̃νµAA(p)|1div, χQED)L+R = Γ̃νµAA(p)|1div, 4dQED , (15.2.2)

fails at 2-loop level:

(Γ̃νµAA(p)|2div, χQED)L+R 6= Γ̃νµAA(p)|2div, 4dQED . (15.2.3)

Fermion self energy:
ψj ψi

p

iΓ̃ji
ψψ

(p)|2div, χQED = −ie4

256π4

[
(Y2

R)ij Tr(Y2
R)

9ε + (Y4
R)ij

( 7
12ε + 1

2ε2
)]
6p PR , (15.2.4a)

iΓ̃ji
ψψ

(p)|2div, QED = −ie4

256π4

[
(Y2)ij Tr(Y2)

ε
+ (Y4)ij

( 3
4ε + 1

2ε2
)]
6p . (15.2.4b)

Notice again that the chiral result is projected onto 4-dimensions.

Fermion-gauge boson interaction:

ψj ψi

p1 p2

qAµ

iΓ̃ji,µ
ψψA
|2div, χQED = −ie5

256π4

[
(Y2

R)ij Tr(Y3
R)

ε
− (Y3

R)ij Tr(Y2
R)

9ε + (Y5
R)ij

( 17
12ε + 1

2ε2
)]
γµ PR ,

(15.2.5a)

iΓ̃ji,µ
ψψA
|2div, QED = −ie5

256π4

[
(Y3)ij Tr(Y2)

ε
+ (Y5)ij

( 3
4ε + 1

2ε2
)]
γµ . (15.2.5b)
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The first term with Tr(Y3
R) = 0 does not contribute due to the previously imposed anomaly

cancellation condition.
Fermion self-energy and fermion gauge-boson interaction are interesting due to the Ward
identity. We will illustrate it in the following discussion. If we redefine Green functions as

Γ̃ji
ψψ
≡ Γ̃ψψ δji and Γ̃ji,µ

ψψA
≡ e δji Y Γ̃µ

ψψA
,

Ward identity can be written for momentum representation in the form

∂

∂pµ
Γ̃ψψ − Γ̃µ

ψψA
= 0, (15.2.6)

where we take p, −p and q = 0 for fermion, antifermion, and photon momenta respectively.
The reader can easily see that Ward identity is trivially satisfied for respective Green
functions at the 1-loop level using the results from Chapter 13 both for chiral and generic
QED. If we apply same relation at the 2-loop level, we get

∂

∂pµ
Γ̃ψψ|

(2)
div, χQED − Γ̃µ

ψψA
|(2)
div, χQED

= − e4

256π4ε
γµ PR

(
Y2
R Tr(Y2

R)
9 + 7Y4

R

12 + 1
ε

Y4
R

2 + Y
2
R Tr(Y2

R)
9 − 17Y4

R

12 − 1
ε

Y4
R

2

)

= − e4

256π4ε
γµ PR

(
2Y2

R Tr(Y2
R)

9 − 5Y4
R

6

)
,

(15.2.7)

and

∂

∂pµ
Γ̃ψψ|

(2)
div, QED − Γ̃µ

ψψA
|(2)
div, QED

= − e4

256π4ε
γµ
(
Y2 Tr(Y2) + 3Y4

4 + Y
4

2ε − Y
2 Tr(Y2)− 3Y4

4 − Y
4

2ε

)
= 0,

(15.2.8)

as expected for non-chiral model. We will soon find out what is correct interpretation of
this breaking of Ward identity in χQED1.

Due to the completeness of results, we note that triple-photon interaction ampli-
tude is equal to zero for QED models, while it is finite and purely evanescent for χQED.
The four-photon interaction amplitude is finite.

1When this result was calculated for the first time, at the first sight we suspected that the calculations
were incorrect. However, we will soon see that this is not the case, since at this point we are dealing with
the Green functions at the point where symmetries are not restored yet.
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15.3 | Singular two-loop counterterms

From the singular parts of the 2-loop diagrams listed above we reconstruct Green
functions in field-operator representation in the coordinate space and get

Γ2,AA
div = e4

256π4
Tr(Y4

R)
3

[1
ε
Aµ(∂2

gµν − ∂µ∂ν)Aν + Aµ∂̂
2A

µ
( 1

4ε2 −
17
48ε

)]
, (15.3.1a)

Γ2,ψψ
div = −e

4(YjR)2

256π4 ψji/∂ PRψj

[( 1
2ε2 + 7

12ε

)
(YjR)2 + 1

9εTr(Y
2
R)
]
, (15.3.1b)

Γ2,Aψψ
div = −e

5(YjR)3

256π4 ψj /APRψj

[( 1
2ε2 + 17

12ε

)
(YjR)2 − 1

9εTr(Y
2
R)
]
. (15.3.1c)

The singular counterterm action at the 2-loop level is then defined to cancel this divergences

S2
sct = − Γ2

div

= −
 ~ e2

16π2

2
Tr(Y4

R)
3

[2
ε
SAA +

( 1
4ε2 −

17
48ε

) ∫
dd x Aµ∂̂2A

µ
]

+
 ~ e2

16π2

2∑
j

(YjR)2
[( 1

2ε2 + 17
12ε

)
(YjR)2 − 1

9εTr(Y
2
R)
] (
Sj
ψψR

+ Sj
ψRAψR

)

−

 ~ e2

16π2

2∑
j

(YjR)2

3ε

(5
2(YjR)2 − 2

3Tr(Y
2
R)
)
Sj
ψψR

.

(15.3.2)

First, notice that the operator content is the same as at the 1-loop level, see Eq. (13.2.2).
A conceptually new feature compared to the 1-loop case is the term in the last line of
S2
sct, which breaks BRST invariance by a non-evanescent amount, which was already

detected as the Ward identity breaking. If we re-express the result using renormalization
transformations, now we have a structure comparable to those of the 1-loop singular
counterterms, Eq. (13.3.1), except this time, the BRST-breaking, non-invariant term also
contains non-evanescent part:

S2
sct = S2

sct,inv + S2
sct,break . (15.3.3)

Again, the first term is BRST invariant and arises from the renormalization transformation

S0,inv −→ S0,inv + Sct,inv,
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and is given by

S2
sct,inv = δZ2

A

2 LA + δZ2
c

2 Lc +
δZ2

ψRj

2 LψRj + δ(e)2

e
Le

= δZ2
ASAA +

(
δZ2

c

2 − δZ2
A

2

)
(Scc + Sρc) +

(
δZ2

c

2 + δ(e)2

e

)
(SRcψR + SRcψR)

+ δZ2
ψR

(
SψψR + SψAψR

)
+
(
δZ2

A

2 + δ(e)2

e

)
SψAψR ,

(15.3.4)

with 2-loop renormalization constants δZ2
ϕ and δ(e)2. The renormalization constants are

given by

δZ2
A = δZ2

c = −2δ(e)
2

e
, (15.3.5a)

δZ2
A = − e4

256π4ε

2Tr(Y4
R)

3 , (15.3.5b)

δZ2
ψRj

= e4

256π4 (YjR)2
[( 1

2ε2 + 17
12ε

)
(YjR)2 − 1

9εTr(Y
2
R)
]
. (15.3.5c)

If we recall 1-loop interpretation of renormalization constants, the first equation (15.3.5a)
here shows the validity of the trivial identities equation (11.4.3) and the analog of the
usual QED Ward identity on the level of S2

sct,inv, because the fermion self-energy and
fermion-boson vertex now renormalize with the common factor δZ2

ψRj
. Nevertheless, the

results for the renormalization constants differ from the ones in the literature obtained
without the BMHV scheme, see e.g. Refs. [67–69]. This difference implies the modified
relationship between the renormalization-group β functions and singular counterterms in
the BMHV scheme, see the discussions in Refs. [47,103]. A detailed investigation of this
issue is of great importance and is recommend as future proposal.

The BRST-breaking singular counterterms appearing in Eq. (15.3.3) is given by

S2
sct,break = −

 ~ e2

16π2

2
1
ε

Tr(Y4
R)

3

(
2(SAA − SAA) +

( 1
2ε −

17
24

) ∫
dd x 1

2A
µ
∂̂2Aµ

)

−

 ~ e2

16π2

2
1
3ε
∑
j

(YjR)2
(5

2(YjR)2 − 2
3Tr(Y

2
R)
)
Sj
ψψR

,

(15.3.6)
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what generates a BRST breaking,

∆2
sct = sdS

2
sct = −~

2e4

256π4
Tr(Y4

R)
6

( 1
ε2
− 17

12ε

) ∫
dd x (∂µc)(∂̂2A

µ)

− ~2e5

256π4
1
3ε
∑
j

(YjR)3
(5

2(YjR)2 − 2
3Tr(Y

2
R)
) ∫

dd x c ∂µ(ψγµPRψ) ,

(15.3.7)

where we have used the BRST invariance of SAA and SAA. We again emphasize that
at the 2-loop level we obtain non-evanescent BRST breaking for the first time in the
regularization procedure.

Table 15.1
Types of singular BRST breaking counterterms in χQED.

evanescent non-evanescent
1-loop X 7

2-loop X X
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CHAPTER 16

TWO-LOOP FINITE COUNTERTERM ACTION AND BRST
SYMMETRY RESTORATION

Once we know the 2-loop singular counterterm action, the final missing piece of the
puzzle in the renormalization procedure is a set of finite counterterms needed to restore
broken gauge and BRST symmetry. At this point, we have a set of strong theoretical tools
(like regularized quantum action principle and Ward identities) and practical algorithms
for 2-loop calculations we have established at the singular level. Thanks to the general
set of identities in Chapter 12 we can now restrict the renormalization conditions to this
loop order.

16.1 | Renormalization conditions

The two loop renormalization is defined by regularization of the 2-loop effective action
and the BRST transform of the counterterm,

Γ(2)
DReg = Γ(2) + S2

sct + S2
fct , (16.1.1a)

∆2
ct = (Sd(S0 + Sct))2 . (16.1.1b)

Using the conditions on conterterms given by Eq. (12.1.3) and Eq. (12.2.4) at the 2-loop
order one obtains the following equations for the counterterms that must hold:

S2
sct + Γ2

div = 0 , (16.1.2a)(
∆̂ · Γ2 + ∆1

ct · Γ1 + ∆2
ct

)
div

= 0 , (16.1.2b)

LIMd→4
(
∆̂ · Γ2 + ∆1

ct · Γ1 + ∆2
ct

)
fin

= 0 . (16.1.2c)
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The first equation represents a regularization condition that renders effective action finite
by imposing a set of singular counterterms. Procedure corresponds to standard regulariza-
tion in vector-like theories. The second equation must hold by construction and provides
a useful consistency check (that is so welcome at this loop level since we do not have a
comparison from literature). The third equation determines the finite symmetry-restoring
counterterms: once it is satisfied, χQED renormalization task is done up to 2-loop order.
Using the operation LIMd→4 the first two terms in Eq. (16.1.2c) become normal products
of corresponding operators, while last term is replaced by finite part of ∆2

ct, leading to
equation

N
[
∆̂ · Γ2 + ∆1

ct · Γ1
]

+ ∆2
fct = 0 , (16.1.3)

what implicitly discards finite, evanescent counterterms. Once again, the breaking of the
Slavnov-Taylor identity is given via the quantum action principle by Green functions with
breaking insertions and the finite symmetry-restoring counterterms are defined such that
they cancel the finite, purely 4-dimensional part of the breaking. Same as at the 1-loop
level, we have used that the BRST variation of the singular counterterms ∆2

sct contains
no finite terms and we could drop the index ‘DReg’.

In the following, we first describe the required Feynman diagrammatic computation
that has some insertions that appear for the first time at this loop level. The second task
is to check Eq. (16.1.2b) in the singular sector. Finally, we determine the finite, symmetry-
restoring counterterms. At the very end of this chapter, we provide the ultimate test of
correctness: validity of corresponding Ward identities.

16.2 | Computation of the full two-loop breaking of BRST sym-
metry

Feynman diagrams describing the 2-loop symmetry breakings are, by quantum action
principle, the diagrams with insertions of the symmetry breaking of the tree-level and (for
the first time at this loop order) counterterm action. Eqs. (16.1.3) and (16.1.2b) imply
the ingredients of diagrams, e.g.

∆̂ · Γ2

∆̂·(2L) ∆̂·(1L +1LCT)

where 1L/2L denotes the 1/2-loop diagrams and 1LCT denote generic 1-loop counterterm,
and also
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∆1
ct · Γ1

∆1
sct · Γ1 ∆1

fct · Γ1

Note that in the case of this model for finite insertions we have

(∆1
sct · Γ1)2 = 0 =⇒ (∆1

ct · Γ1)2 = (∆1
fct · Γ1)2,

since in χQED there are no ghost loop corrections.
The only relevant results are the ones that are either divergent or finite but not

evanescent (since the latter will not survive the 4-dimensional limit). Since the breaking
insertions ∆̂ are by themselves evanescent, non-vanishing results can only arise from power-
counting divergent Feynman diagrams. To convince the reader this is the case we recall
the 1-loop Bonneau identity Eq. (7.3.5) for ∆̂ insertion,

[N [∆̂] · ΓRen](1) = LIM
d→4

(
−r.s.p.

[
q∆ · ΓDreg

](1)

ǧ=0

)
≡ N

[
− r.s.p.

[
N [q∆] · ΓDreg

](1)

ǧ=0

]
, (16.2.1)

that resulted in a convenient procedure for poles extraction and discarded evanescent
symmetry-restoring counterterms. However, the hidden beauty of Bonneau identity mani-
fests at the 2-loop level where all possible insertions are given by

[N [∆̂]·ΓRen](2) = LIM
d→4

(
−r.s.p.

[
q∆ · Γ

](2)

ǧ=0

)
+N

[
−r.s.p.

[
N [q∆]·ΓDreg

](1)

ǧ=0

]
·Γ(1)

Ren, , (16.2.2)

where in the last term we see that 1-loop Bonneau insertion is now inserted in effective
action and is equal

N
[
− r.s.p.

[
N [q∆] · ΓDreg

](1)

ǧ=0

]
· Γ(1)

Ren = [N [∆̂] · ΓRen](1) · Γ(1)
Ren = −N [∆(1)

fct ] · Γ
(1)
Ren. (16.2.3)

Now, the breaking of the Slavnov-Taylor identity at the 2-loop level contains

[N [∆̂ + ∆(1)
fct ] · ΓRen](2) = LIM

d→4

(
−r.s.p.

[
q∆ · Γ

](2)

ǧ=0

)
, (16.2.4)

again the diagrams with the UV poles and possible evanescent finite symmetry-restoring
counterterms are discarded. For this reason, fortunately only a finite number of Feynman
diagrams with a specific set of external fields need to be computed.
The relevant diagrams with non-vanishing contributions are shown in Figs. 16.1 to 16.3.
The first contributing diagram is the ghost-photon breaking interaction.

The total ghost-gauge boson contribution from the diagrams with external fields cA

135



̂∆ c

p1Aµ

̂∆ c

p1Aµ

∆
1

ct c

p1Aµ

̂∆ c

p1Aµ

+ loop on the other
fermion propagator.

̂∆ c

p1Aµ

+ fermion counterterm on
the other fermion

propagator.

̂∆ c

p1Aµ

F

+ fermion finite
counterterm on the other

fermion propagator.

Figure 16.1: List of Feynman diagrams for the ghost–photon breaking contribution
given in Eq. (16.2.5).

shown in Fig. 16.1 is

i
(
[∆̂ + ∆1

ct] · Γ̃
)2

Aµc
= 1

256π4
e4Tr(Y4

R)
6

[( 1
ε2
− 17

12ε

)
p̂2

1p
µ
1 −

11
4 p

2
1p
µ
1 +O(̂.)

]
, (16.2.5)

where in figure the diagrams in the first column are 2-loop diagrams with one insertion
of the tree-level breaking ∆̂. The diagrams in the second column are 1-loop diagrams
with one insertion of a 1-loop singular counterterm, denoted as a circled cross. The
third column contains a 1-loop diagram with an insertion of a 1-loop symmetry-restoring
counterterm obtained from the fermion self-energy operator, denoted by a boxed F , and
a 1-loop diagram with an insertion of the 1-loop breaking ∆1

ct. The result contains 1/ε2

poles and 1/ε poles with local, evanescent coefficients and finite, non-evanescent term.
Finite but evanescent terms O(̂.) may be and are suppressed in Eq. (16.2.5) as well as in
following equations due to procedure described by Eq. (16.1.3), hence we discard them in
the following results.

The ghost-fermion-fermion contribution from the diagrams with external fields cψψ
shown in Fig. 16.2 is

i
(
[∆̂ + ∆1

ct] · Γ̃
)2

ψψc
= 1

256π4
e5(YjR)3

3 (/̄p1 + /̄p2)PR×[1
ε

(5
2(YjR)2 − 2

3Tr(Y
2
R)
)

+ 127
12 (YjR)2 − 1

9Tr(Y
2
R)
]
.

(16.2.6)
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The result contains 1/ε poles with local, evanescent coefficients and finite, non-evanescent
terms.

The ghost-two gauge bosons contribution from diagrams with external fields cAA turns
out to vanish. Hence

i
(
[∆̂ + ∆1

ct] · Γ̃
)2

AAc
= 0 , (16.2.7)

and the 1-loop essential anomaly does not appear at the higher orders, as it shouldn’t,
keeping the theory anomaly free.

The ghost-three gauge bosons contribution from the diagrams with external fields
cAAA shown in Fig. 16.3 is

i
(
[∆̂ + ∆1

ct] · Γ̃
)2

AρAνAµc
= 1

256π4 3e6Tr(Y6
R)(p1 + p2 + p3)σ

(ḡµν ḡρσ + ḡµρḡνσ + ḡµσḡνρ) .
(16.2.8)

We emphasize that this result contains no UV divergence but only a finite term. At this
point, we encourage the reader to try to construct any other possible insertion diagram
with ghost number 1 and mass-dimension 4 with the help of Table 11.11.

Collecting the results of Eqs. (16.2.5) to (16.2.8), we obtain the result for the 2-loop
breaking of the Slavnov-Taylor identity of 2-loop subrenormalized Green functions:

(
[∆̂ + ∆1

ct] · Γ
)2

= ~2e4

256π4

∫
dd x{

− Tr(Y4
R)

6

[( 1
ε2
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12ε

)
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4 c ∂µ∂

2
Āµ
]

+ e
∑
j

(YjR)3

3

[
1
ε

(5
2(YjR)2 − 2

3Tr(Y
2
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)

+ 127
12 (YjR)2 − 1

9Tr(Y
2
R)
]
c ∂µ(ψj γ̄µ PR ψj)

+ 3 e2Tr(Y6
R)

2 c ∂µ(ĀµĀνĀν)
}

+O(̂.) .

(16.2.9)

Despite significant complications in calculations at higher-order, the term structure re-
mained the same as it was at the 1-loop level.

16.3 | Two-loop singular breaking

Like at the 1-loop level, we first use the result to check the cancellation of the UV
divergences as prescribed by Eq. (16.1.2b). A expected, this cancellation with sdS(2)

sct given
1Better luck next time.
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in Eq. (15.3.7) occurs as

∆2
sct = sdS

(2)
sct = −

(
[∆̂ + ∆1

ct] · Γ
)2

div
, (16.3.1)

confirming the computation. This check ensures both correctness of counterterms we
evaluated at the 1-loop and 2-loop order and of 1-loop BRST breaking term ∆1

ct, as
well as of the calculation procedure we implemented in codes for insertion evaluation.
Furthermore, this also implies the correctness of the finite part of our breaking diagrams,
since each diagram is evaluated without approximations, and the expansion in powers of
ε is performed at very end of calculation.

16.4 | Two-loop Finite Symmetry-Restoring Counterterms

The 2-loop symmetry-restoring counterterms are calculated using Eq. (16.1.3), with
the result

∆2
fct = −N

[
∆̂ · Γ2

DReg + ∆1
ct · Γ1

DReg

]
= − LIM

d→4

{(
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27Tr(Y

2
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s
∫
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+ ~2e6

256π4
3Tr(Y6

R)
8 s

∫
d4 x ĀµĀ

µĀνĀ
ν .

(16.4.1)

From the BRST restoration requirement that S(ΓRen) = 0 in the last of Eq. (16.1.2), this
enables one to define the 2-loop finite counterterm action which cancels the finite BRST
breaking, up to any additional BRST-symmetric terms that can be added at will,

S2
fct =

(
~

16π2

)2 ∫
d4 x e4

{
Tr(Y4

R)11
48Āµ∂

2
Āµ + 3 e2Tr(Y6

R)
8 ĀµĀ

µĀνĀ
ν

−
∑
j

(YjR)2
(127

36 (YjR)2 − 1
27Tr(Y

2
R)
)(

ψji /̄∂ PR ψj

) .

(16.4.2)

The terms we obtain correspond to the restoration of the Ward identity relations for
the photon self-energy, the photon 4-point function, and the fermion self-energy/photon
interaction, as we will explicitly show in the next section. Also, the set of operators
remains the same at the 2-loop level.
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16.5 | Tests of Ward identities

Since here we present a complete 2-loop study of renormalization in the BMHV scheme,
it would be useful to provide the additional check for counterterm for which we claim that
restore gauge and BRST invariance. Fortunately, we can make use of Ward identities which
express relations of Green’s functions and their properties due to gauge invariance of the
theory. In Section 11.4 we have seen that in our U(1) model the Slavnov-Taylor identity
straightforwardly leads to Ward identities since certain functional relations trivially survive
renormalization. Once the Slavnov-Taylor identity is satisfied, the Ward identities will
likewise be valid, but they provide a check that is independent of breaking diagrams.
Ward identities given in Eqs. (11.4.5) to (11.4.7) are used to extract their breaking of the
finite parts of Green functions we successfully avoided using the quantum action principle.
However, we will calculate the relevant part once to provide this ultimate check. We begin
with the example of the 2-loop divergent part of the photon self-energy. If we contract it
with one momentum, what we obtain is

i pν Γ̃µνA(−p)A(p)

∣∣∣2
div

= ie4

256π4
Tr(Y4

R)
6

( 17
12ε −

1
ε2

)
p̂2pµ = −

(
[∆̂ + ∆1

ct] · Γ̃
)2

div, Aµ(−p)c(p)
.

(16.5.1)
The first of these equations is obtained by direct computation of the appropriate 2-loop
diagrams. The second equation is then an observation using Eq. (15.3.7) and Eq. (16.3.1).
These equations confirm that the part of the divergent photon self-energy that would violate
transversality is cancelled by the divergent counterterm2 calculated from the breaking
insertion, restoring gauge invariance.
The finite part of photon self-energy at the two loop level is given by

iΓ̃µνAA(p)
∣∣∣2
fin

= ie4

256π4
Tr(Y4

R)
3

[(673
23 − 6 log(−p2)− 24ζ(3)

)
(pµpν − p2gµν) + 11

8 p
µpν

]
,

(16.5.2)
and after the momentum contraction we obtain

i pν Γ̃µνA(−p)A(p)

∣∣∣2
fin

= ie4

256π4
Tr(Y4

R)
6

11
4 p

2pµ = −
(
[∆̂ + ∆1

ct] · Γ̃
)2

fin, Aµ(−p)c(p)
. (16.5.3)

The first of these equations is again obtained by direct computation of the finite parts of
diagrams. It illustrates that the non-local log(−p2) and transcendental ζ(3) parts are by
themselves transversal and so can not break the gauge invariance. The second equation is
then observed by comparison with Eq. (16.4.1). Hence we confirm that the violation of
the symmetry is restored by our finite counterterm evaluated from breaking diagrams.

The 4-photon amplitude is completely finite. A direct, explicit manipulation of the
corresponding Feynman diagrams shows that we can relate the breaking of the Ward

2Of course, to restore gauge invariance, counterterm must by itself be gauge non-invariant.
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identity to the breaking of the Slavnov-Taylor identity as

− i pν Γ̃µ1µ2µ3ν
A(−p1)A(−p2)A(−p3)A(p)
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(16.5.4)

Via Eq. (16.4.1) this shows again that the counterterms of Eq. (16.4.2) appropriately
restore this Ward identity.

We can investigate the Ward identity between the fermion self energy and fermion-
photon interaction Eq. (11.4.7) in a similar way. The divergent 2-loop violation is given
by
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(16.5.5)

so it is directly cancelled by 2-loop singular counterterm that emerges from insertion
procedure. The finite 2-loop violation of this Ward identity is
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(16.5.6)

In each case again the first equations are obtained from explicit computation of the
Feynman diagrams, and the last equations are obtained by comparing with Eq. (15.3.7),
Eq. (16.3.1) and Eq. (16.4.1).3 This is direct confirmation that the counterterms in
Eq. (16.4.2) restore all Ward identities at the 2-loop level.

3The divergent 1/ε2 poles in (16.5.5) are omitted since they cancel completely. The second and third
rows in (16.5.6) represent the full results for finite (momentum-differentiated) photon self energy and
vertex interaction, respectively.
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Figure 16.2: List of Feynman diagrams for the ghost–fermion–fermion breaking
contribution.The results are given in Eq. (16.2.6).
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Figure 16.3: List of Feynman diagrams for the Ghost–three gauge bosons breaking
contribution (additional diagrams corresponding to {(p1, µ) , (p2, ν) , (p3, ρ)}

permutations are not shown). The symbols are as in Fig. 16.1 and the results are given
in Eq. (16.2.8).
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CHAPTER 17

CHIRALITY PROBLEM AND PHYSICAL OBSERVABLES

In this chapter, we reflect on our research up to this point and put it in the context of
modern particle physics theory and phenomenology. In the first section, we explain the
importance of this work and the results as well as the observables of interest which have
been computed and which are of interest. In the second section, we propose possible next
steps in the research.

17.1 | Renormalization and observables, so far and so forth

At the time the research described in this thesis started, in 2017, there was no complete
study of a general chiral gauge theory with scalar fields in the BMHV scheme even at the
1-loop level. The problem first occurred when we wanted to evaluate in Standard Model
and Minimal Supersymmetric Standard Model diagrams involving fermion loops. The
question was, do we implement naive prescription, or do we continue with axiomatically
correct and mathematically rigorous BMHV scheme and proceeded with the complete
study. We decided to use BMHV and apply it first to the general gauge model, where the
work of [27] presented the very nice and detailed benchmark for the scalarless limit of our
model. The renormalization and symmetry restoration of this SU(N) model proceed with
the complete 2-loop study of U(1), which gave the important foundation for the complete
study of Standard Model, being a direct product of SU(3)×SU(2)×U(1). In this research,
we calculated a full list of the counterterms for the models, with the aim, among others,
to make BMHV more useful to renormalization practitioners. In addition, at the 1-loop
level, we found renormalization group equations and prooved the agreement with the naive
prescription, justifying it.
Although Standard Model has shown enormous success in predicting and explaining ex-
perimental data (where no significant deviations from SM have been found), it fails to
incorporate e.g. dark matter, baryogenesis, and neutrino masses from phenomenological,
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and e.g. theory of gravitation, hierarchies, and naturalness from a theoretical point of
view. It is then of great importance to treat the calculation of observables properly in the
consistent scheme, since results from the other approaches can not be checked without com-
parison with the other schemes – the privilege possessed by the BMHV treatment. From the
other point, a promising solution to SM problems is the supersymmetric class of theories
(SUSY). Although there is still no experimental signature of SUSY [104], a belief that it
may play a fundamental role in particle physics is based on the Haag-Lopuszanski-Sohnius
theorem which proves that SUSY algebra is the only graded Lie algebra of symmetries
of the S-matrix consistent with relativistic quantum field theory [105]. Physical QFTs
have the property of renormalizability – all infinities that appear in higher orders of per-
turbation theory can be canceled in the procedure of regularization and renormalization
(where usually different counterterms are introduced) leaving theory finite i.e. divergences
never show up in observable quantities. If a theory is renormalizable it is possible to
investigate its behavior at energy scales inaccessible to experiments using a theoretical
tool called renormalization group (RG). The evolution of parameters of the theory (e.g.
coupling constants and masses) is described by a set of linear differential equations called
Renormalization Group Equations (RGEs), where low-energy (experimental) data is used
as their initial condition. To extrapolate theory to the unexplored scales, investigate its
asymptotic behavior and test the possibility of unification of parameters, it is inevitable
to calculate RGEs. For the SU(N) gauge model (referred to as Yang-Mills model in this
thesis) we confirmed the naive result at the 1-loop level in the chiral theory.

As we have stated many times, no consistent regularization scheme is known that
preserves BRST symmetry and chiral gauge symmetries simultaneously. There is a similar
problem in SUSY theories: there is no consistent regularization scheme that preserves
both gauge invariance and supersymmetry. For example, the dimensional regularization
(DREG) scheme respects gauge symmetry to all orders in perturbation theory but breaks
SUSY already at one loop. The algebraic renormalization method is introduced to remedy
this problem [54]. In the approach, the Slavnov-Taylor identity and its derivatives are
used to determine the non-supersymmetric counterterms introduced to remedy the SUSY
noninvariance amplitudes. At the 1-loop level, the algebraic procedure singles out the
dimensional reduction (DRED) scheme as a SUSY preserving and, i.e. no extra SUSY
restoring term is needed. Nevertheless, its full compatibility at the 2-loop level is not
completely tested, although it has been shown DRED can be defined in a mathematically
consistent way.

Once the theoretical problems related to regularization and renormalization are solved,
RGEs can be calculated and the evolution of parameters for (BSM) model is known.
Model is in practice tested by calculation of physical observables which means that the
amplitudes for relevant processes must be calculated. Physical low-energy observables of
our interest which can give insight to physics beyond SM can be grouped into the three

144



classes: forbidden, precision, and suppressed observables. For precision and suppressed
observables, it is mandatory to calculate them in higher orders of perturbation theory.
Forbidden observables include e.g. lepton flavor violation processes (LFV) and lepton
number violation processes (LNV). It is interesting that with the expected sensitivities of
next-generation experiments, CLFV will become the most powerful probe of new physics
signals [106]. For example, the sensitivity of the process muon to three electrons is expected
to improve for four orders of magnitude [107], while the sensitivity of muon to electron
conversion on nuclei is expected to be improved four orders of magnitude in the next
generation experiments [108].

In the recent past, electroweak precision observables have played a key role in con-
straining new physics, which resulted in e.g. predictions of the top quark and Higgs masses.
Currently, one of the most interesting precision observables is Higgs mass. Measurements
of the Higgs boson mass had reached a precision of 0.2 % in 2015 [109], and are expected
to reach 0.1 % in the second 13 TeV run of LHC. Current status for Higgs boson mass
is 125.25 ± 0.17 GeV [110]. From the other side, the theoretical precision of Higgs boson
mass evaluation is 3 %, so the improvement of theoretical evaluation of Higgs boson mass
in the SM and BSM became mandatory.

Magnetic moments of leptons are precision observables in the SM, and they are, together
with electric dipole moments of leptons (which are suppressed observables in the SM)
described by the same Lorentz operator as the LFV processes lepton to lepton photon.
Experimental value (116 591 821 (45) × 10−10 [111]) and theoretical value in the SM (116
0591 821 (45) × 10−10 [112]) of the anomalous magnetic moment of muon amu differ by 3.4
σ CL. A new measurement of the amu is being performed at the FERMILAB where data
taking started in 2017. Experiment will improve precision on amu by factor four [113].

Examples of suppressed observables in the SM are electric dipole moments of leptons
and decays of B mesons into two muons. Upper limit of electric dipole moment is known to
be < 0.11× 10−28 e cm with 90% confidence [110]. This measurement of atto-electronvolt
energy shifts in a molecule probes new physics at the tera-electronvolt energy scale.

Although current experimental results are more or less consistent with the SM predic-
tions, it cannot be a complete theory of elementary particles due to neutrino oscillation
experiments and the existence of dark matter. Therefore the right question is not whether
new physics will be found but what is its scale. The precision observables and processes
and observables suppressed/forbidden in the Standard Model are tools for detection of
new physics scale and they are very intensively investigated. From the theoretical and
phenomenological point of view, the results are the most reliable if those observables are
calculated in a completely consistent way. We hope that here we have helped and will
help to overcome this gap between the theory and phenomenology.

145



17.2 | Future proposal

So far we have applied a consistent BMHV scheme to general gauge the Yang-Mills
model up to first order in the perturbation theory and found the renormalization group
equations of the model. Further, we renormalized chiral quantum electrodynamics up to
second order in perturbation theory. A full list of renormalization coefficients is provided
for both models. The natural next steps in this research include:

1. This research is at the stage where the collaboration gained some theoretical knowl-
edge, calculation experience and has set up the semi-automated algorithms and codes
for application of the BMHV scheme. It is interesting to renormalize the general
U(1) model where we keep all possible interaction vertices and compare the results
with the ones we already have.

2. Application of the BMHV scheme in chiral Yang-Mills model up to 2-loop order and
the restoration of symmetries is planned.

3. The renormalization group equations of the above model at the 2-loop order are of
interest because of the comparison with the naive approach.

4. The renormalization group equations of the abelian model at the 2-loop order are
needed for the same comparison.

5. Those calculations are key ingredients for Standard Model application at the both 1
and 2-loop level.

6. By systematic studies of the BMHV scheme, we hope to bridge the gap between the
theory and phenomenology. By providing full lists or renormalization coefficients,
we hope that the particle physics community will embrace the scheme.

7. The calculation of the wide range of observables in this treatment is of great interest.
At this stage, we hope this study will be pursued not only by this group but also by
other theoretical and phenomenology collaborations.
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CHAPTER 18

CONCLUSIONS

Today, in the era of high precision particle physics, the increasing accuracy of many
experiments leads to the necessity of theoretically well-established calculations in higher
and higher orders of perturbation theory in the Standard Model and beyond. A great
amount of these calculations were performed in dimensional regularization, which preserves
symmetries of vector-like theories and makes higher-order calculations feasible. Today
dimensional regularization is mathematically well established, widely used, and incorpo-
rated in computer codes. However, this scheme faces problems when applied to chiral
theories, that possess strictly 4-dimensional objects. Unfortunately, this class of theo-
ries can not be swept under the carpet, since the electroweak Standard Model is chiral
itself. This problem can be attacked in different ways, wherein this work we choose the
Breitenlohner-Maison-t’Hooft-Veltman scheme, which possesses unmatched mathematical
rigor and consistency when compared to other schemes. That is the reason why the results
of calculations coming from this scheme can be checked for correctness without using the
information from other schemes. Its understanding is thus not only important for practical
BMHV calculations but also as a point of reference and benchmark for the study of alter-
native γ5 schemes. However, the high cost of this choice comes because this scheme in its
intermediate steps breaks gauge and BRST invariance, introducing the new set of so-called
evanescent operators. That is the reason why we, besides the usual counterterms that must
be computed and implemented in renormalization, must find the set of symmetry-restoring
counterterms for each order of perturbation theory. Thanks to the regularized quantum
action principle, those counterterms can be constructed from so-called breaking diagrams,
constructed in a way that breaking of BRST invariance from the previous orders is as a
Feynman rule inserted in the effective action diagrams. This procedure was applied to the
general gauge Yang-Mills model up to 1-loop level and chiral quantum electrodynamics
up to 2-loop level. It is shown that the BRST symmetry breaking can be canceled order
by order by proper local finite symmetry restoring counterterms. To remind the reader,
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we briefly recall our main steps and the results discussed in this thesis.
The present thesis starts a systematic study of the BMHV scheme for γ5 and its applica-
tion to chiral gauge theories such as the electroweak Standard Model. We first apply the
BMHV scheme to chiral gauge theory with massless chiral fermions and scalars, so-called
right-handed Yang-Mills theory, and for simplicity restrict the model to irreducible repre-
sentations and a simple gauge group. We find that the breaking of BRST invariance at
the tree-level is localized in one single term, the evanescent part of the fermion kinetic
term; the breaking has been expressed in a set of Feynman rules. We proceed with the
1-loop study: we provide a detailed overview of the different renormalization and countert-
erm structure in the BMHV scheme compared to the usual case where counterterms can
be generated by a renormalization transformation. Even in the BMHV scheme, a large
part of the counterterms can be generated by the usual renormalization transformation,
but there are several additional, BMHV-specific new counterterm structures. We evalu-
ate all 1-loop singular counterterms in this model and find that most of the evanescent
counterterms are still BRST invariant (despite being evanescent), but there are two non-
BRST invariant evanescent counterterms, related to the scalar and vector self-energies,
respectively. Evanescent counterterms, despite their vanishing in the 4-dimensional limit,
must be implemented in higher orderer calculations where this limit is performed at the
very end. We proceed with the evaluation of BRST symmetry restoring counterterms at
this level. We have explained in detail the role and the structure of these counterterms
and described various possible ways of how these counterterms may be determined. Our
calculation is based on the regularized quantum action principle. The list of symmetry
restoring counterterms is not unique, since it is always possible to add evanescent or
BRST invariant finite counterterms without spoiling the restored symmetry. Our choice
is particularly simple and is constructed to the largest possible extent from objects which
appear already in the tree-level action. In other words, we shrink from the extending
of our basis of operators from the form that is originally present at the tree level. We
evaluate renormalization group equations for this model. We demonstrate in two different
ways that despite the extra, BMHV-specific counterterms the 1-loop RGE is unchanged
compared to the familiar case of using a symmetry-invariant regularization. Keep in mind
that this result is the 1-loop privilege.
Starting from the 1-loop experience, we decide that it is now theoretically and practically
possible to proceed with this investigation to the 2-loop level. We apply the BMHV
scheme to the chiral gauge theory i.e. chiral QED or χQED at the 2-loop level. We again
follow the same procedure but now for the first time, we do a systematic study to the
second order. Again, the application of the BMHV scheme leads to several specific kinds
of counterterms: the ultraviolet (UV) divergences cannot be canceled by counterterms
generated by field and parameter renormalization; additional, UV divergent evanescent
counterterms are needed; and the breaking of BRST symmetry needs to be repaired by
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adding finite, symmetry-restoring counterterms. We have evaluated all these counterterms
explicitly at the 1-loop and 2-loop level. We confirm an important result: the structure
at the 1-loop and 2-loop levels of those restoring counterterms are essentially the same.
The UV divergences arise in the fermion and the photon self-energy and in the fermion–
photon interaction. The triple and quartic photon self interactions are UV finite. However,
there are purely evanescent divergences in the photon self-energy, and at the 2-loop level
there is a non-evanescent divergence in the fermion self-energy, both of which require
an extra counterterm which cannot be obtained from field or parameter renormalization.
Symmetry- restoring counterterms have simple physical interpretations: counterterm to
the photon self-energy restores transversality of the renormalized photon self-energy, a
counterterm to the photon 4-point function restores the Ward identity for this Green
function and a counterterm to the fermion self-energy restores its Ward identity-like rela-
tion to the fermion–photon interaction. An important outcome is that the precise form
of these counterterms is now known, and it is established that this is the complete set
of symmetry-restoring counterterms for arbitrary 2-loop calculations in the model. The
2-loop level renormalization involves Feynman diagrams of four different kinds: genuine
2-loop diagrams with insertion of the tree-level breaking, 1-loop diagrams with insertions
of the 1-loop breaking or of the 1-loop divergent or finite counterterms. The χQED study
is restricted to an abelian gauge theory with right-handed fermions and establishes the
methodology. However, the same method will be applicable to general non-abelian gauge
theories with scalar and fermionic matter. Several future extensions are of interest, es-
pecially for phenomenological studies. First, the results can be slightly extended and
specialized to the case of the electroweak SM, which has a non-semisimple gauge group,
reducible representations and both right-handed and left-handed chiral fermions. This
is work in progress. Since the method is now established and not restricted to abelian
theories, it will be possible to apply it to general non-abelian chiral gauge theories and to
the Standard Model at the 2-loop level. In this way, 2-loop Standard Model calculations
will become feasible in the BMHV scheme without worrying about symmetry violations or
scheme inconsistencies. As a further outlook, it will be of interest to explore in detail the
relationship between the modified counterterm structure (with additional UV divergent
and non-symmetric finite terms) and the renormalization group.
Since the BMHV renormalization scheme is usually (unnecessarily) avoided, in this thesis
and in the main publications it is based on, we tried to present our results in a detailed
and systematic way, using among the other things the language of renormalization factors
familiar to the renormalization practitioners. We sincerely hope we gave some founda-
tions to ourselves and to anybody who uses our result as the starting point of consistent
multiloop renormalization of the Standard Model and chiral theories in general.
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