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Abstract

This thesis deals with several problems in condensed matter theory involving strong correlations
and/or a disorder. It is divided into four parts, with the effects of electron-phonon interaction
appearing as the key subject of the first three parts. The focus of the last part is on the role of
strong disorder in strongly correlated systems.

In the first part, we provide the exact solution to the polaronic impurity problem and exploit
it to study some aspects of local and transport properties in systems with dilute concentrations
of polaronic impurities. We find a non-universal power-law decay of the electron mobility
with temperature in bulk systems, which may be relevant for rationalizing the unconventional
power-law exponents observed in organic semiconductors.

In the next step, the translational invariance of the electron-phonon system is restored. In
the second part, we perturbatively address the polaron problem. We show that the leading order
momentum-dependent electron self-energy becomes suppressed in the antiadiabatic limit. We
argue that the polarization may be treated within the two-vertices renormalization scheme, with
vertex corrections involving electron processes only.

Several experimental findings are analyzed by simulating angle-resolved photoemission
spectroscopy (ARPES), electron energy loss spectroscopy, and phonon spectra for cases of
strongly doped polar semiconductors in the third part. We show that ARPES spectra can provide
a robust estimate of the electron-phonon interaction range. Emphasis is placed on the importance
of the coupling strength in shaping both raw and integrated spectra of phonon-plasmon coupled
systems.

In the last part of the thesis, we consider the very interesting phenomenon of many-body
localization (MBL). We argue that the change from the thermal to the MBL phase may be
thought of as a percolation transition in the Fock space, with the anomalous transport behaviors
characterizing the large portion of the thermal phase.

Keywords: polaronic impurity, polaron, vertex corrections, phonon sidebands, phonon-
plasmon coupling, many-body localization
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Prošireni sažetak

U ovom radu teorĳski je izučavano nekoliko odabranih problema u fizici kondenzirane tvari
koji uključuju jako međudjelovanje i/ili nered. Rad je podĳeljen u četiri dĳela, gdje je okosnica
prvih trĳu tema elektron-fonon međudjelovanje, dok se u zadnjem dĳelu rada proučava međuigra
elektronskog međudjelovanja i jakog nereda. Prvo poglavlje služi kao općeniti uvod u sve četiri
teme, a uključuje kratak osvrt na modernu fiziku kondenzirane tvari i osnovne koncepte vezane
uz dĳagramatski perturbativni razvoj s posebnim naglaskom na važnost analize Feynmanovih
dĳagrama u vremenskoj domeni.

U žarištu interesa prvog dĳela rada je model polaronske nečistoće koji uključuje vezanje
elektrona s lokalnim fononskim stupnjem slobode na čvoru rešetke koji slama translacĳsku
invarĳantnost modela. U poglavlju 2 izvedeno je egzaktno rješenje modela u formalizmu
Greenovih funkcĳa. Uveden je operator Γ̂ preko kojega je izražena egzaktna Greenova funkcĳa
relevantna za problem polaronske nečistoće, a koja uključuje i sve neelastične procese vezane uz
emisĳu i apsorpcĳu realnih fonona. Budući da je elektron-fonon međudjelovanje unutar modela
ograničeno na jedan čvor rešetke sa nečistoćom, moguće je izraziti matrične elemente operatora Γ̂
preko proširenih razlomaka koji uključuju samo lokalne Greenove funkcĳe slobodnog elektrona.
Za danu rešetku, pripadna lokalna Greenova funkcĳa slobodnog elektrona može biti izračunata
analitički ili numerički, čime je egzaktno rĳešen problem polaronske nečistoće za sustav s
proizvoljnom dimenzĳom i geometrĳom rešetke.

To egzaktno rješenje se dalje koristi u poglavljima 3 i 4 za analizu odabranih lokalnih i
transportnih svojstava sustava s malim koncentracĳama polaronskih nečistoća. U poglavlju
3 dobiven je tako zatvoreni izraz za koeficĳent transmisĳe za proces tuneliranja elektrona
kroz polaronsku nečistoću u sustavima reducirane dimenzĳe, relevantan za analizu spektara
dobivenih neelastičnom elektronskom tunelirajućom spektroskopĳom. Uočeno je da u punom
dinamičkom problemu transmisĳa kao funkcĳa energĳe elektrona doživljava maksimume i
minimume diktirane fononskom energetskom skalom za jako elektron-fonon vezanje.

U poglavlju 4 razmatraju se trodimenzionalni sustavi. Računanjem lokalne gustoće stanja
pokazano je da za dovoljno snažno elektron-fonon vezanje može doći do stvaranja velikog broja
vezanih elektronskih stanja čĳa je konkretna struktura vrlo osjetljiva na parametre modela.
Potpis jakog elektron-fonon vezanja također je uočen i u delokaliziranom dĳelu elektronskog
spektra karakteriziranim jasnom rezonantnom strukturom koja ukazuje na rezonantno raspršenje
elektrona na polaronskoj nečistoći. Računanjem svih elastičnih i neelastičnih parcĳalnih udarnih
presjeka za raspršenje elektrona na polaronskoj nečistoći dobiveno je relaksacĳsko vrĳeme
elektrona te mobilnost elektrona kao funkcĳa temperature. Uočen je pad mobilnosti s potencĳom
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temperature vrlo osjetljivom na parametre modela. Ovakvo neuniverzalno ponašanje mobilnosti
potencĳalno može objasniti nekonvencionalne eksponente u padu mobilnosti s temperaturom
zabilježenim u nekim organskim poluvodičima.

U drugom i trećem dĳelu rada uvodi se elektron-fonon međudjelovanje na svaki čvor rešetke
čime se vraća translacĳska invarĳantnost elektron-fonon sistema. Poglavlje 5 uvodno je poglavlje
u drugi dio rada i posvećeno je polaronskom problemu koji je analiziran metodama dĳagramatske
perturbativne teorĳe s naglaskom stavljenim na vršne popravke. Prvo su proučavana elektronska
svojstva polarona računanjem vlastite energĳe elektrona te karakterističnih svojstava koherentne
polaronske vrpce u vodećem i prvom sljedećem redu razvoja po elektron-fonon međudjelovanju.
Jedan od glavnih rezultata poglavlja 6 jest da je nelokalni dio vodeće vršne popravke vlastitoj
energĳi elektrona potisnut kvadratom adĳabatskog parametra u antiadĳabatskoj granici.

U poglavlju 7 polaronski problem dodatno je izučavan kroz prizmu fononskog stupnja
slobode. Izvedeno je egzaktno rješenje za q = 0 dio fononskog propagatora te je argumentirano
da polarizacĳa može biti tretirana u shemi s dva renormalizirana elektron-fonon vrha, gdje
vršna funkcĳa uključuje samo elektronske procese. Pomoću te činjenice izvedena je egzaktna
renormalizacĳa elektron-fonon vrha u “ladder” aproksimacĳi. Također je argumentirano da
je renormalizacĳa fononske frekvencĳe u polaronskoj granici zanemariva uz činjenicu da se
određeni dio njezine spektralne težine prelĳeva u polaronsku vrpcu. Uz navedeni transfer
fononske spektralne težine dodatno je uočeno i stvaranje viška fononske spektralne težine u
polaronskoj vrpci. Ovaj višak spektralne težine, nazvan fononska produkcĳa, odgovara oblaku
fonona vezan uz elektron u osnovnom stanju polarona.

Elektronska i fononska svojstva translacĳski invarĳantnih elektron-fonon sistema analizirana
su metodama dĳagramatske perturbativne teorĳe i u trećem dĳelu rada, ali sada u slučajevima
sa znatnim dopiranjem, odnosno kada degeneracĳa elektronskog plina bitno dolazi do izražaja.
Rezultati u poglavlju 8 izravno su vezani na eksperimentalne spektre mjerene kutno-razlučivom
fotoelektronskom spektroskopĳom (ARPES - angle-resolved photoemission spectroscopy) po-
larnih materĳala. Ti ARPES spektri sadržavaju karakteristične fononske pojaseve koji su
simulirani računanjem vlastite energĳe šupljine u vodećem i prvom sljedećem redu razvoja
po elektron-fonon međudjelovanju. Stavljajući fokus na imaginarni dio vodeće vlastite energĳe
šupljine koja ulazi u simulirani ARPES spektar u energetskom prozoru pridruženom prvom
fononskom pojasu, pokazano je da se distribucĳa njenog intenziteta u 𝑘 prostoru značajno
mĳenja varirajući doseg elektron-fonon međudjelovanja. Na temelju te distribucĳe intenziteta
imaginarnog dĳela vlastite energĳe šupljine uvedeno je nekoliko parametara za karakterizacĳu
distribucĳe koji pružaju robusnu procjenu efektivnog dosega elektron-fonon međudjelovanja u
stvarnim materĳalima.

U poglavlju 9 fonon-plazmon vezanje u trodimenzionalnim i dvodimenzionalnim sustavima
je sistematizirano analizirano kroz prizmu komplementarnih EELS (electron energy loss spec-
troscopy) spektara i fononskih spektralnih funkcĳa računatih unutar aproksimacĳe nasumičnih
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faza. Pokriven je cĳeli eksperimentalno relevantni parametarski prostor problema, određen adi-
jabatskim parametrom, odnosno elektronskom gustoćom i jačinom elektron-fonon međudjelo-
vanja. Uočeno je da jakost međudjelovanja igra značajnu ulogu u preraspodjeli spektralne težine
među vezanim pobuđenjima u EELS spektru, što otvara mogućnost procjene jakosti međudjelo-
vanja iz eksperimentalnih integriranih EELS spektara. Projekcĳom vezanih pobuđenja na fonon-
ski stupanj slobode ponovno su uočeni značajni doprinosi fononskoj produkcĳi za jako vezanje,
ali čĳa se fizikalna priroda razlikuje od one u polaronskoj granici i znatno ovisi o adĳabatskom
parametru. Konkretno, u adĳabatskoj granici ona je posljedica mekšanja fononske frekvencĳe,
dok je u antiadĳabatskoj granici fononska produkcĳa povezana s oblakom virtualnih fonona koji
je vezan na kolektivnu elektronsku oscilacĳu plazme. Također su komentirana fononska svo-
jstva fonon-plazmon problema dobivena u aproksimacĳi statičkog zasjenjenja i granici statičke
polarizacĳe od kojih se prva redovno koristi u proučavanju neadĳabatskih efekata na fononska
svojstva u ab initio modeliranju. Pokazano je da aproksimacĳa statičkog zasjenjenja ne može
reproducirati fononski spektar dobiven u aproksimacĳi nasumičnih faza niti u jednom dĳelu
parametarskog prostora, dok se aproksimacĳa statičke polarizacĳe pokazuje prihvatljivom za
opis fononske spektralne funkcĳe jedino u adĳabatskoj granici trodimenzionalnih sustava. Treći
dio rada završava poglavljem 10 u kojem je pokazano da vršne korekcĳe u “ladder” aproksimacĳi
mekšaju 2𝑘𝐹 singularnost Lindhardove funkcĳe.

U zadnjem, četvrtom dĳelu rada napušta se elektron-fonon međudjelovanje i proučava se
međuigra elektronskog međudjelovanja i nereda u kontekstu fenomena mnogočestične lokalizacĳe
(MBL - many-body localization). Kao model za istraživanje ovog fenomena promatra se jednodi-
menzionalni lanac s neredom i koreliranim fermionima bez spina čĳem se rješavanju pristupa
metodama numeričke egzaktne dĳagonalizacĳe. Uvod u ovo vrlo dinamično područje istraži-
vanja dan je u poglavlju 11, gdje je posebno naglašeno da je MBL faza izoliranog sustava,
koja se pojavljuje za dovoljno jaki nered, karakterizirana odsustvom transporta i neergodičnim
ponašanjem. S druge strane, za slabi nered isti model pokazuje tendencĳe ergodičnog pon-
ašanja koji vodi do termalizacĳe sistema pa za neku kritičnu vrĳednost jačine nereda dolazi do
termalnog-MBL prĳelaza.

U poglavlju 12 pokazano je da prilikom tog prĳelaza dolazi do fundamentalne promjene u
klasterizacĳi mnogočestičnih stanja u Fockovom prostoru. Dok za jake nerede u MBL fazi stanja
u Fockovom prostoru imaju tendencĳu grupirati se u mnogo klastera s malim brojem stanja, za
male nerede dolazi do formacĳe jednog makroskopskog klastera što upućuje na perkolacĳsku
prirodu termalnog-MBL prĳelaza u Fockovom prostoru stanja.

Egzistencĳa MBL faze ima snažne implikacĳe i na transportna svojstva, odnosno na re-
laksacĳu gustoće fermiona u realnom prostoru. U zadnjem poglavlju 13 relaksacĳa gustoće
početnog stanja sustava prema ravnoteži u termalnoj fazi proučavana je klasičnim jednadžbama
ne uzimajući u obzir učinke kvantnih interferencĳa mnogočestičnih stanja, gdje su dodatno uzeti
u obzir samo rezonantni prĳelazi između mnogočestičnih stanja. Za vrlo slabe nerede dobiveno
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je difuzno ponašanje, dok su približavanjem kritičnoj vrĳednosti nereda uočena anomalna trans-
portna svojstva sa sporĳom relaksacĳom prema ravnotežnom stanju nego što je očekivano kod
difuznog ponašanja. Rezultati dobiveni preko klasičnih jednadžbi za relaksacĳu početnog stanja
dobro se slažu s rezultatima dobivenima punim kvantnim računima te ukazuju na eksponenci-
jalno trnjenje efektivnog parametra difuzĳe s jakošću nereda.

Ključne rĳeči: polaronska nečistoća, polaron, vršne popravke, fononski pojasevi, fonon-
plazmon vezanje, mnogočestična lokalizacĳa
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Chapter 1

General introduction

1.1 Condensed matter physics: a brief retrospective

It is human nature to try to understand the world that surrounds us. From elementary particles
to the condensed matter we meet on a daily basis, to astronomical objects, nature is pervaded
with enchanting physical phenomena puzzling the human mind for over a few thousand years.
But the human mind is inexorable and just as miraculous, and the unified picture of building
blocks of nature describing elementary particles and fundamental interactions emerged by the
name of Standard model [1]. One is tempted to say that with the discovery of those fundamental
physical laws and principles, more often than not expressed by means of pleasant mathematical
equations, the job of physicists is done, but this cannot be further from the truth. As it happens,
nature is more complex, and this complexity is hidden under the notion of “many”. Indeed,
large and correlated aggregates of elementary particles, to cite the words from P. W. Anderson’s
renowned More is different [2], constituting condensed matter is what underlies a plethora of
fascinating phenomena observed in our everyday lives.

One may argue that the theory of matter is as old as ancient civilizations. Both ancient
Greeks, Indians, and Tibetans claimed that all complexity of matter may be explained in terms
of a few classical elements: water, fire, earth, air, and aether [3]. The idea of an atom was
born in ancient Greece as well, albeit centuries past since the theory of classical elements was
abandoned and the atomic theory, preceded by the ideas of Josip Ruđer Bošković, was widely
accepted as the true theory of matter. The theory defines the atom as the basic particle that
composes chemical elements, which are in turn rigorously classified in the periodic table [4].
All matter is correspondingly made up of a huge and (not necessarily) a different number of
those elements. Similarly as different groups of chemical elements in the periodic table have
different physical properties, it was recognized that the physical properties of matter composed
of distinct chemical elements may vary significantly as well. However, it was not until the
advent of statistical physics, quantum mechanics, and quantum field theory that the theory and
the understanding of matter flourished.

The main actors of the modern condensed matter theory are atomic cores, formed by an
atom’s nucleus and core electrons tightly bound to it, and valence electrons set in the framework
of non-relativistic quantum field theories. The irony is that although all degrees of freedom
and their interactions are formally known, that is to say, the microscopic equations of motion
describing dynamics of matter can be formally written, to find their exact solutions is impossible
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in practice. The main reason for that lies in particle interactions, which drastically complicate
equations of motion when many (of the order 1023) correlated particles constituting the matter
are taken under consideration.

An elegant way to overcome peculiarities of particle interactions is to treat them within
various mean-field schemes, where the effect of interactions is confined within effective single-
particle potentials, usually determined self-consistently. Those schemes proved to be very
fruitful in understanding materials’ properties, especially in the early stages of condensed matter
theory. In that regard, one of the earliest successes of condensed matter theory was the develop-
ment of the band theory [4], when it was realized that electrons moving in a periodic potential
of fixed atomic cores, that is in a crystal lattice, occupy continuous energy ranges called bands,
well separated by energetically forbidden zones called gaps. This naturally explained why are
some materials with partially filled bands metals, while other semiconductors or insulators,
depending on the size of a band gap between the highest occupied (valence) band and the lowest
unoccupied (conductance) band.

Essences of the theory of metals were furthermore understood in the framework of Lan-
dau’s phenomenological Fermi-liquid theory [5] and later elaborated within the random phase
approximation (RPA) scheme on a microscopic level [6–8], explaining why a dense system of
fermions with generic two-particle interactions behaves similarly as a free fermion system. At
about the same time as the RPA was applied to describe a normal state of the metal, the BCS
theory of superconductivity [9] emerged, unraveling the mystery of a dissipation-free electrical
current conduction reported experimentally for the first time almost 50 years earlier by Heike
Kamerlingh Onnes [10]. A crucial ingredient of the BCS theory is the lattice-mediated attrac-
tive electron-electron interaction, which is shown to destabilize the Fermi sea in the favor of
a Cooper-pair condensate, resulting in a metal-superconductor transition. The phenomenon of
superconductivity, therefore, highlighted a decisive role of atomic cores’ dynamics in under-
standing the fundamental properties of materials.

The physical properties of many materials were shown to be well described by means of the
above-mentioned and several other similar theories. Since their behavior is well understood from
today’s point of view, we call those materials conventional. However, there exist several classes of
non-conventional materials like cuprates [11], various oxides [12,13], and organics [14], which,
among other, strange spectral and transport properties puzzle physicists to date. Although it is
not completely clear whether those peculiar properties stem from electron-electron, electron-
lattice, or some combination of both interactions, it is widely accepted that strong correlations
play a dominant role in shaping their rich phase diagrams. Interestingly, those phase diagrams
are oftentimes heavily dependent on chemical doping which opens the question about the role
of disorder just as well, further supported by the fact that every synthesized sample is inherently
prone to structural inhomogeneities.

Roughly speaking, at the present time, there are two alternative approaches commonly
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invoked to theoretically study the properties of both conventional and non-conventional matter,
both with their shortcomings and advantages. The first relies on the computational modeling of
matter going under the name of density functional theory (DFT), also called ab initio modeling.
It is based on two Hohenberg-Kohm theorems [15], which state that the ground state properties of
a many electron system are uniquely determined by an electron density that depends on only three
spatial coordinates. This electron density in turn defines an energy functional for the system and
the theorems prove that the ground state electron density minimizes this energy functional. The
main game of DFT is therefore to guess and minimize the energy functional that best suits the
lattice structure and chemical elements composing material of interest to obtain its ground state
electron density and ground state properties. One of the main advantages of such an approach is
that it can for a relatively cheap computational price predict realistic electron and lattice spectra,
providing a direct quantitative comparison of theory with real-life experiments. On the other
hand, it is not the most powerful tool when the qualitative understanding of phenomena is of
interest. Furthermore, it struggles to model materials with strong correlations. Despite that,
DFT is among the most popular methods used by the condensed matter community.

Where the DFT lags, the second approach excels. It does not bear any particular name
and does not rely on a single theory, but rather encompasses a bunch of various analytical and
numerical schemes to tackle minimal model (toy) Hamiltonians. The modus operandi is to,
based on a theoretical intuition or experimental results, single out the most relevant degrees of
freedom that capture the essential physical behavior one seeks to understand and write down
a toy Hamiltonian describing them and their interactions. The procedure is further continued
either by the numerical study of the toy Hamiltonian, for example by the exact numerical
diagonalization, by invoking analytical approaches like the diagrammatic perturbation theory,
or by some combination of both. The advantage of the exact numerical diagonalization is that
it provides a full solution for the problem, albeit it is oftentimes restricted to small system
sizes, which makes it difficult to interpret the results in the thermodynamic limit. On the other
hand, the diagrammatic perturbation theory is convenient since it provides a picturesque way
of representing physical processes in terms of Feynman diagrams, rendering the diagrammatic
perturbation theory a suitable choice when the qualitative description of phenomena is of interest.
The downside is, however, that the number of contributions in a given perturbation order grows
exponentially as the perturbation order increases, making it difficult to tame when no small
perturbation parameter exists. Anyhow, in this thesis we follow this second approach to study
the effects of interactions and disorder in various condensed matter systems. In particular, we
mainly use the diagrammatic perturbation theory and the Feynman representation of physical
processes to study systems with primarily significant electron-lattice interactions. When the
interplay of strong electronic correlations and disorder without any particular small parameter
is of interest, numerical methods are rather invoked.
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1.2 Feynman diagrams: frequency vs time domain

When it comes to the perturbation expansion in a many-body quantum field theory, one of the
most useful tools to study system’s properties is a Green’s function, or a two-point correlator,
defined in the case of fermions by

𝐺 (𝑖, 𝑡; 𝑖′, 𝑡′) = −𝑖 ⟨Ω| 𝑇
[
𝑐
†
𝑖
(𝑡)𝑐𝑖′ (𝑡′)

]
|Ω⟩ . (1.1)

The expectation value is taken in the ground state |Ω⟩ of the full Hamiltonian 𝐻, implicitly
entailing zero temperature calculations suitable for a discussion of ground state properties and
low energy excitations. The operator 𝑐†

𝑖
(𝑡) (𝑐𝑖 (𝑡)) denotes the creation (annihilation) of a fermion

with the quantum number 𝑖 at the time 𝑡, and the operator 𝑇 is a time order product with the
property

𝑇 [𝐴(𝑡)𝐵(𝑡′)] =

𝐴(𝑡)𝐵(𝑡′) , 𝑡 > 𝑡′ ,

𝐵(𝑡′)𝐴(𝑡) , 𝑡 < 𝑡′ .
(1.2)

The time evolution of the annihilation (and similarly the creation) operator is given by

𝑐𝑖 (𝑡) = 𝑒𝑖𝐻𝑡𝑐𝑖𝑒−𝑖𝐻𝑡 , (1.3)

providing an interpretation of the Green’s function as amplitude for the process in which a
particle with the quantum number 𝑖 at the time 𝑡 is added (removed) to (from) the system, after
which the system with an additional (missing) particle evolves under its Hamiltonian dynamics,
and ending with a particle labeled by the quantum number 𝑖′ being removed (added) at the time
𝑡′. As the depicted process principally describes the propagation of a single particle, Green’s
function is also called the propagator.

Generally, as in any perturbation theory, we divide the full Hamiltonian into two parts

𝐻 = 𝐻0 +𝑉 , (1.4)

where 𝐻0 part of the Hamiltonian can be solved and 𝑉 represents all other contributions to the
full Hamiltonian whose effects are treated perturbatively. Since 𝐻0 is fully solvable, its ground
state |Ω⟩0 and all excited states are formally known. Within the scope of this thesis, 𝐻0 is
usually contributed by the Fermi sea of electrons populating a single band, |Ω⟩0 ≡ |𝐹𝑆⟩, with
each electron sitting in a Bloch state with the energy 𝜀k labeled by the (crystal) momentum k.
By neglecting for the moment the perturbation 𝑉 , the Green’s function then takes a simple form
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(a) (b)

(c) (d)

Figure 1.1: Pictorial representation of the fermion propagator. Propagators in (a) and (b)
are conceptually equal, corresponding both to the Green’s function in the frequency domain,
Eq. (1.7). The direction of arrows only denotes the flow of momentum. On the other hand,
the arrows in (c) and (d) explicitly represent the direction of time. Correspondingly, the dotted
propagator (c) corresponds to the propagation of an electron, while the dotted propagator (d)
to the propagation of a hole, that is, to the first and the second term in Eqs. (1.5) and (1.7),
respectively.

𝐺0(k, 𝑡; k, 𝑡′) = −𝑖 ⟨𝐹𝑆 | 𝑇
[
𝑐
†
k
(𝑡)𝑐k(𝑡′)

]
|𝐹𝑆⟩

= −𝑖 [Θ(𝑡 − 𝑡′)𝑛𝐹𝐷 (𝜉k) − Θ(𝑡′ − 𝑡)𝑛𝐹𝐷 (−𝜉k)] 𝑒−𝑖𝜉k (𝑡−𝑡
′)𝛿k,k′ ,

(1.5)

where the energy 𝜉k = 𝜀k − 𝜇 is the electron energy measured from the Fermi level 𝜇. In the
Fermi sea, all states below (above) the Fermi level are occupied (empty). This is well captured
by the Fermi-Dirac distribution

𝑛𝐹𝐷 (𝜉k) ≡ 𝑛k =
1

𝑒
𝜉k
𝑘𝐵𝑇 + 1

, (1.6)

which takes the form of the step function Θ(𝜉k) as 𝑇 → 0.

For translationally invariant Hamiltonians 𝐻0 in time, such as the ones usually considered in
this thesis, the time-dependent Green’s function in Eq. (1.5) depends only on the time difference
𝑡 − 𝑡′. It is then suitable to perform the Fourier transform of Eq. (1.5), resulting in a frequency-
dependent Green’s function

𝐺0(k, 𝐸) =
1 − 𝑛k

𝐸 − 𝜉k + 𝑖𝜂
+ 𝑛k

𝐸 − 𝜉k − 𝑖𝜂
, (1.7)

where 𝜂 → 0+. While the first term in Eqs. (1.5) and (1.7) can be attributed to the propagation
of an electron with the energy 𝜉k = 𝜀k − 𝜇 > 0 added above the Fermi sea, the second term
is slightly more delicate to interpret. Evidently, it corresponds to the propagation of a system
with an electron missing from the Fermi sea. However, the same process can be rather viewed
as the propagation of a hole added to the Fermi sea with the negative energy 𝜉k = 𝜀k − 𝜇 < 0,
propagating backward in time, according to the second term in Eq. (1.5). In any case, valuable
information encoded in the frequency-dependent Green’s function is immediately apparent - its
poles correspond to the excitation energies of the system.
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With the perturbation 𝑉 included, the full Green’s function cannot be generally put in such
a simple form. Nevertheless, Wick’s theorem [16] ensures that it can be represented by means
of Green’s functions corresponding solely to the unperturbed Hamiltonian 𝐻0. This was further
elaborated by Richard Feynman, who noted that each contribution in the perturbation series
for the full Green’s function can be represented by a drawing, called after him a Feynman
diagram. Thus, by representing the Green’s function in Eq. (1.7) by a suitable symbol, a
Feynman diagram can be sketched for each order of the perturbation theory contributing to the
full Green’s function. The advantage of this approach is twofold. First of all, since each symbol
attributed to the Green’s function in Eq. (1.7) represents the propagation of an electron or a hole,
Feynman diagrams provide a pictorial way of representing physical processes appearing in each
order of perturbation theory. Secondly, there exists a one-to-one mapping between Feynman
diagrams and corresponding mathematical expressions appearing in the perturbation theory,
meaning that the whole complicated mathematical apparatus behind the perturbation theory can
be put aside and one can immediately start by considering physical processes of interest.

The most common way is to work with frequency-dependent Green’s functions and to
draw Feynman diagrams in the frequency domain. The standardized way of representing the
frequency-dependent fermion propagator in Eq. (1.7) is to use a solid line, Figs. 1.1(a) and
1.1(b). Here, the direction of the arrow does not have any deeper physical meaning other than
to denote the direction of the momentum flow. Correspondingly, the lines in Figs. 1.1(a) and
1.1(b) are conceptually indistinguishable.

An alternative, seldom used approach is to work with Feynman diagrams in the time domain.
The purpose of it is to strictly distinguish the propagation of an electron and the propagation of
a hole, represented by the dotted lines in Figs. 1.1(c) and 1.1(d), respectively, highlighting the
difference between the frequency and the time representation of Feynman diagrams. In contrast to
the frequency representation, arrows now explicitly show the direction of time, pointing forward
for the electron propagating forward, and backward for the hole propagating backward in time.
Since this approach explicitly reveals the role of electrons and holes in physical processes,
Feynman diagrams in the time domain may prove to be helpful when a deeper understanding of
microscopic mechanisms behind physical phenomena will be of interest.

In this thesis, the majority of the focus is put on electron-lattice interactions, so this brief
introduction would not be complete without commenting on the lattice degrees of freedom.
Similarly as for fermions, the lattice Green’s function is defined as a two-point correlator of the
atomic core displacement (from the equilibrium position) operator 𝑥q

𝐷 (q; 𝑡, 𝑡′) = −𝑖2𝑀𝜔
ℏ

⟨Ω| 𝑇
[
𝑥q(𝑡)𝑥−q(𝑡′)

]
|Ω⟩ , (1.8)

where 𝜔 is the frequency of lattice oscillations and 𝑀 is the characteristic atomic core mass.
However, it is much more common to reexpress the lattice Green’s function in terms of the
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quanta of lattice vibrations called phonons. In particular, with 𝑎†q(𝑡)
(
𝑎q(𝑡)

)
being the creation

(annihilation) operator of a phonon with the (quasi) momentum q, the Green’s function in
Eq. (1.8) takes the form

𝐷 (q; 𝑡, 𝑡′) = −𝑖 ⟨Ω| 𝑇
[
𝐴q(𝑡)𝐴−q(𝑡′)

]
|Ω⟩ , (1.9)

where 𝐴q = 𝑎q + 𝑎†−q. Accordingly, hereafter the term lattice vibrations will be replaced by the
notion of phonons, and the Green’s function in Eq. (1.9) named the phonon Green’s function or
the phonon propagator, since the phonon can be thought of as a particle carrying momentum
and energy propagating through the system.

As we have argued, all physical processes can be sketched with the use of Feynman diagrams
and processes involving the electron-phonon interaction are no exception. Thus, to represent the
phonon propagator in Feynman diagrams we will use wavy lines. Because of the symmetry

𝐷 (q; 𝑡 − 𝑡′) = 𝐷 (−q; 𝑡′ − 𝑡) , (1.10)

phonons can be viewed as going in either direction in time, making no differences between
the phonon propagators in the frequency and the time domain. Consequently, the arrows on
phonon propagators may be omitted. Nevertheless, it should be emphasized that the momentum
is preserved by interactions, denoted by vertices in Feynman diagrams. Vertices representing
the bare electron-phonon coupling are denoted with full circles.

Lastly, in systems with finite electron densities, the electron-electron interaction cannot be
overlooked. When drawing Feynman diagrams, it will be represented by a dashed line. Since
the interaction is instantaneous, it does not make sense to associate the direction of time with
the line.

1.3 Outline and contributions of the thesis

The content of this thesis can be divided into four main parts, with each part covering several
chapters. Effects of electron-phonon interaction are appearing as the key subject of the first three
parts, discussing impurity problems, polaronic correlations, and the interplay between direct
electron repulsion in the presence of correlations mediated by a crystal lattice. The focus of the
last part is on the role of the strong disorder in strongly correlated systems in the context of the
fundamental problem of many-body localization. It is the purpose of this section to provide a
summary and the main contributions of each chapter.
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Part I: Polaronic impurity problem

In Part I, we deal with the polaronic impurity problem, which involves coupling between an
electron and a local phonon degree of freedom at an impurity site, together with the change in the
atomic orbital energy. We seek the solution to the problem within Green’s function formalism
in Chapter 2. We introduce an operator Γ̂ in terms of which the full Green’s function relevant
for the problem can be expressed, which apart from elastic processes, includes all inelastic
processes involving emission and absorption of real phonons as well. Because the electron-
phonon coupling is being restricted to the single impurity site, we are able to calculate all matrix
elements of Γ̂ in terms of the continued fractions involving only unperturbed local electron
Green’s functions. For a given lattice dimension and geometry, the corresponding unperturbed
local electron Green’s function can be calculated either analytically or numerically, since it
involves the simple problem of finding solutions to a non-interacting tight-binding problem.
This provides us in the next step with the exact solution to the polaronic impurity problem.

The exact solution to the polaronic impurity problem is used in Chapter 3 to study electron
transmission through the polaronic impurity in systems with the reduced dimensionality relevant
for inelastic electron tunneling spectroscopy measurements. We find the closed expression for
the transmission coefficient and show that it exhibits multiple maxima and minima as a function
of the incident electron energy governed by the phonon energy scale for strong couplings.

Local and transport properties of bulk three-dimensional (3D) systems in the presence of
dilute concentrations of polaronic impurities are analyzed in Chapter 4. By studying the local
density of states, we show that strong electron-phonon couplings may lead to many localized
electron states, which exact structure is very sensitive to impurity parameters. We observe
signatures of the strong coupling also in the delocalized part of electron spectra, manifested
through the resonant structure of the local density of states and pointing to the resonant electron
scattering on polaronic impurities. By calculating all elastic and inelastic scattering cross
sections for the electron scattering on a polaronic impurity, to the best of our knowledge not
considered in previous works, we obtain the electron relaxation time and the electron mobility
as a function of temperature. We observe power-law decay of the mobility with temperature,
with the exponent very sensitive to impurity parameters. The latter can explain unconventional
power-law exponents observed experimentally in organic semiconductors.

Part II: Perturbative approach to the polaron problem

In Parts II and III, the translationally invariant electron-phonon problem is restored by introducing
the electron-phonon coupling on each lattice site. Chapter 5 is devoted to the introduction to the
polaron limit of the problem, studied in Part II with the methods of the diagrammatic perturbation
theory, with the special emphasis put on vertex corrections. In particular, in Chapter 6 we study
the electronic properties of polarons by considering the electron self-energy and the characteristic
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behaviors of the polaron band in the leading and the next-to-leading order of the perturbation
theory in electron-phonon coupling. We show that the leading order momentum-dependent
electron self-energy becomes suppressed with the square of the adiabaticity parameter in the
antiadiabatic limit.

Several analytical results regarding phononic properties of polarons are obtained in Chapter 7.
We provide the exact solution for the q = 0 part of the phonon propagator and argue that the
phonon polarization may be treated within the two-vertices renormalization scheme, with the
vertex function involving electron processes only. This fact is exploited to obtain analytically
the vertex renormalization in the ladder approximation. We also argue that the renormalization
of the phonon frequency is negligible, with the important fact that some of its spectral weight
is being transferred to the polaron band. Apart from the effects associated with the transfer
of the phonon spectral weight, we also observe an additional phonon spectral weight in the
polaron band. We call this additional phonon spectral weight a phonon production, which may
be attributed to the cloud of virtual phonons accompanying the electron in the polaron ground
state.

Part III: Spectral properties of moderately to heavily doped polar systems

We continue with the analysis of electron and phonon properties in translationally invariant
electron-phonon problems in Part III, but now for strongly doped polar systems. The results
presented in Chapter 8 are directly related to the experimental angle-resolved photoemission
spectroscopy (ARPES) spectra of polar materials. These ARPES spectra contain characteristic
phonon sidebands, which we simulate by calculating the leading and the next-to-leading order
hole self-energy in electron-phonon coupling. By focusing on the imaginary part of the leading
order hole self-energy entering the simulated ARPES spectra in the energy range of the first
phonon sideband, we show that the confinement of its intensity in the momentum space changes
drastically by varying the range of the electron-phonon interaction. Based on that confine-
ment, we introduce several confinement estimators, which may provide a robust estimate of the
electron-phonon interaction range in real materials.

In Chapter 9, we analyze the phonon-plasmon coupling in 3D and two-dimensional (2D)
systems through the prism of complementary electron energy loss spectroscopy (EELS) spectra
and phonon spectral functions calculated within the RPA. We cover the whole experimentally
relevant parametric space spanned by the electron-phonon interaction strength and the adiabatic-
ity parameter, that is, the electron density. We find that the electron-phonon interaction strength
plays a determining role in distributing spectral weights among coupled excitations, which opens
the possibility of estimating it directly from measured EELS spectra. The projection of the exci-
tations onto the phonon degree of freedom reveals for strong couplings large phonon production
contributions, which are of very different origins depending on the adiabaticity parameter. In
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particular, in the adiabatic regime, it is the consequence of phonon softening effects, while in
the antiadiabatic regime the phonon production can be related to the cloud of phonons follow-
ing plasma oscillations. We also comment on phonon properties of phonon-plasmon coupled
systems within the static screening and the static polarization approximation, where the former
is being frequently used in studying the impact of nonadiabatic effects on phonon spectra in ab
initio modeling. We find that the static screening approximation generally fails to reproduce
full RPA phonon spectra in the whole parametric space in both 3D and 2D cases, while the
static polarization approximation works well only in the 3D adiabatic regime. Part III ends with
Chapter 10, where we show that vertex corrections in the ladder approximation tend to soften
the 2𝑘𝐹 singularity of the Lindhard function.

Part IV: Competition between interactions and disorder: many-body localization

In the last Part IV of the thesis, we abandon the lattice degrees of freedom and consider the
interplay of electronic correlations and disorder in the context of the many-body localization
(MBL) phenomenon. An introduction to this very dynamic field of research is given in Chap-
ter 11. As for the model exhibiting the MBL phenomenon, we consider the disordered chain of
spinless interacting fermions which we approach by using the numerical exact diagonalization.
The many-body localized phase, observed within the considered model for sufficiently strong
disorders, is characterized by the absence of transport and non-ergodic behaviors. On the other
hand, when the disorder is weak the same model exhibits ergodic behaviors, leaving us with
the conclusion that the thermal-MBL transition takes place for some critical value of disorder
strength.

In Chapter 12, we show that the thermal-MBL transition is accompanied by the drastic change
in clustering of many-body states in the Fock space. For strong disorders when the many-body
localized phase is expected, we show that states in the Fock space tend to group into many
clusters containing no more than a few states, while for weak disorders one macroscopically
large cluster emerges, indicating the percolative nature of the thermal-MBL transition, albeit in
the Fock space.

The existence of the MBL drastically influences transport properties in real space as well.
In the last Chapter 13, we study the relaxation of the charge density distribution of some initial
states in the thermal phase toward the equilibrium via the simplified rate equations, omitting the
quantum interferences effects between many-body states. In addition, we consider only resonant
transitions between many-body states, neglecting thus perturbatively small contributions. For
weak disorders, we notice the diffusive behavior, while for stronger disorders anomalous transport
properties are observed, including very slow relaxation processes toward the equilibrium. The
results obtained via the rate equations agree well with the full quantum calculations and suggest
the exponential decrease of the effective diffusion parameter as the disorder strength increases.
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Part I

Polaronic impurity model
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Chapter 2

Exact solution

Parts of Chapter 2 have been published in [17].

The number of exactly solvable (interacting) quantum models can be counted on the fingers of
one hand. One of them is the polaronic impurity model. To our surprise, to the best of our
knowledge, the scattering part of the polaronic impurity problem was not discussed in a closed
form, albeit the exact results for tunneling through a polaronic impurity on one-dimensional
(1D) lattices were obtained numerically [18–20]. In Part I of the thesis, we provide the exact
analytical solution of the problem, and discuss its relevance in the context of local and transport
properties of 1D and 3D systems, with the majority of focus being put on the 3D case.

2.1 Model Hamiltonian

In its essence, the polaronic impurity model describes an electron that locally interacts with an
impurity characterized by the phonon degree of freedom. There are several variations of the
model, albeit the concrete model Hamiltonian considered in this thesis reads

𝐻 =
∑︁

k
𝜀k𝑐

†
k
𝑐k + 𝜔0𝑎

†
l
𝑎l +

[
𝜀0 + 𝑔(𝑎†l + 𝑎l)

]
𝑐
†
l
𝑐l , (2.1)

The scheme of the model for a 3D simple cubic lattice is shown in Fig. 2.1. Here, the operators
𝑐
†
k
(𝑐k) and 𝑎†

l
(𝑎l) create (annihilate) the electron with the wave vector k in a band with the

dispersion 𝜀k and the phonon with the frequency 𝜔0 (we set ℏ = 1 throughout the thesis and
recover its full value when needed) at the site l of a lattice, respectively. In particular, the site l

denotes the impurity site that hosts the electron-phonon interaction 𝑔 and breaks the translational
symmetry of the lattice. Let us just briefly mention that other variations of the model may for
example include multiple phonon modes [18], or extend the electron-phonon interaction over
several lattice sites [19].

For our upcoming analysis, it is convenient to divide the full Hamiltonian 𝐻 in Eq. (2.1) into
two parts, 𝐻0 and 𝑉 . We take that 𝐻0 includes the non-interacting electron, 𝐻𝑒𝑙 =

∑
k 𝜀k𝑐

†
k
𝑐k,

and phonon, 𝐻𝑝ℎ = 𝜔0𝑎
†
l
𝑎l, part of the Hamiltonian. The rest of the Hamiltonian involving

the electron-phonon interaction 𝑔 and the impurity orbital energy 𝜀0 is put into 𝑉 . The orbital
energy at all other lattice sites is taken as zero energy.
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Figure 2.1: Scheme of the polaronic impurity model in Eq. (2.1) for a 3D simple cubic lattice.
The impurity site l is denoted with the blue color, hosting the electron-phonon coupling 𝑔.

2.2 Experimental motivation

The initial interest in studying the polaronic impurity problem stemmed from the inelastic
electron tunneling spectroscopy measurements [21]. The experimental setup we should have
in mind is a metal-insulator (molecule/oxide/quantum dot)-metal junction for which an I-V
characteristic is measured. For low bias voltages, the linear dependence of the I-V characteristic
is expected in accordance with Ohm’s law. However, for higher voltages nonlinearities and
nonmonotonicities of the I-V characteristic are generally anticipated. Indeed, it was found
that d2I/dV2 characteristics of molecular junctions show clear signatures related to vibrational
excitations of molecular impurities in the insulator [22–28]. In particular, the characteristics
showed resonant peaks and minima appearing at characteristic vibrational frequency scales of
the system. This electron tunneling through a molecular junction can be in the most simple
approximation modeled via an electron moving on a 1D lattice and running into a barrier
containing a phonon degree of freedom. Indeed, this scenario is well captured by the polaronic
impurity Hamiltonian in Eq. (2.1) in the 1D case.

Whether there exists such relevance of the polaronic impurity model for the description of
transport properties of bulk materials is yet unknown. Perhaps, this is so because peculiarities of
the polaronic impurity model are rarely if at all, examined for 3D (and 2D) lattices. However, it
was just recently realized that polaronic impurities may serve as strong phonon scatterers, dras-
tically reducing the thermal conductivity in anatase TiO2 single crystals [29]. Moreover, we find
that electron scattering on polaronic impurities may provide some insights into the anomalous
transport properties observed in some organic semiconductors [30–32]. In particular, uncon-
ventional power-law behaviors of mobility with temperature were reported for those materials
and there is still an ongoing debate about what physical mechanism lies behind such behaviors.
It is not uncommon that the electron-phonon interaction plays a very important role in organics.
A great number of theoretical works try to explain those unconventional power law behaviors by
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means of various electron-phonon theories [33–39], but we are not aware of any work invoking
the polaronic impurity model. However, we cannot stress enough that here we provide a full
solution to the polaronic impurity model and examine general behaviors of the electron mobility
within the model, prior to any application of the obtained results to some specific experimental
finding. Whether polaronic impurities play a significant role in shaping the transport properties
of transition-metal oxides and organic semiconductors is indeed an interesting question, which
serves as a motivation for the possible continuation of the results obtained in this thesis.

2.3 Green’s function approach

In order to examine electron transport properties, we adopt the usual relaxation time approxima-
tion [40] and consider the electron scattering on polaronic impurities. We use Green’s function
formalism and generalize the standard textbook approach to the scattering problem [41] by
introducing the unperturbed Green’s function of the electron-phonon system

𝐺 (0) (𝜔) = 1/(𝜔 − 𝐻0 + 𝑖𝜂), (2.2)

with 𝐻0 = 𝐻𝑒𝑙 + 𝐻𝑝ℎ, and the full Green’s function

𝐺 (𝜔) = 1/(𝜔 − 𝐻 + 𝑖𝜂), (2.3)

with𝐻 = 𝐻0+𝑉 . Note the factor 𝑖𝜂, pointing to the fact that only an electron (and not a hole) may
propagate in the system. This is so because we are interested in the case when only one electron
is injected into an otherwise empty band. Correspondingly, the time-ordered fermion Green’s
function is used and the renormalization of phonons is absent since it necessarily involves the
creation of an electron-hole pair.

It should also be stressed that two of Green’s functions in Eqs. (2.2) and (2.3) are neither
pure fermion nor pure boson propagators, but rather simultaneously describe the propagation of
both the electron and the phonon. This is evident from our definition of 𝐻0 containing both the
unperturbed electron and the phonon, and is particularly clear in the real space representation of
𝐺 (0) (𝜔) and 𝐺 (𝜔) [42]

𝐺
(0)𝛾,𝛼
n,m (𝜔) = ⟨0| (𝑎l)

𝛾√︁
𝛾!
𝑐n

1

𝜔 − 𝐻0

𝑐
†
m

(𝑎†
l
)𝛼

√
𝛼!

|0⟩ , (2.4)

and

𝐺
𝛾,𝛼
n,m(𝜔) = ⟨0| (𝑎l)

𝛾√︁
𝛾!
𝑐n

1

𝜔 − 𝐻
𝑐
†
m

(𝑎†
l
)𝛼

√
𝛼!

|0⟩ . (2.5)
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Here, the Greek letters 𝛼 and 𝛾 denote the number of phonons in the initial and in the final (after
the scattering) state, respectively. The Latin letters denote lattice sites at which the electron
is created/annihilated. As an example, 𝐺𝛾,𝛼

n,m(𝜔) describes a process in which an electron is
injected at the site m of the crystal containing 𝛼 phonons, after which the electron may interact
with the phonon, and as a result 𝛾 phonons are left at the time when the electron leaves the
system at the site n.

This mixed character of the Green’s functions should not particularly trouble us. In fact, it is
easy to show that all final results regarding the electron subsystem may be expressed by means
of the pure electron propagator. The crucial step to note is that the non-interacting Green’s
function is diagonal in the phonon number and that it is given by the pure electron propagator
whose argument is shifted by the energy of phonons present in the system

𝐺
(0)𝛾,𝛼
n,m (𝜔) = 𝛿𝛾,𝛼𝐺 (0)𝛼,𝛼

n,m (𝜔) = 𝛿𝛾,𝛼𝐺 (0)0,0
n,m (𝜔 − 𝛼𝜔0) = 𝛿𝛾,𝛼𝐺 (0)

n,m(𝜔 − 𝛼𝜔0) . (2.6)

Here, we recognize 𝐺 (0)0,0
n,m (𝜔 − 𝛼𝜔0) as the purely electronic propagator. Thus, we may

omit zeros in the superscript. Its matrix elements may usually be calculated analytically or
numerically, depending on a system dimension and geometry of the lattice [41].

2.3.1 Local operator Γ̂

Our goal is to completely solve the polaronic impurity problem by finding the exact expression
for the full propagator 𝐺 (𝜔). Since the unperturbed propagator 𝐺 (0) (𝜔) is known, we can
exploit the interaction 𝑉 to relate it with 𝐺 (𝜔)

𝐺 (𝜔) = 𝐺 (0) (𝜔) + 𝐺 (0) (𝜔)𝑉𝐺 (𝜔) . (2.7)

However, this relation is not so convenient since on the right-hand side of Eq. (2.7) the unknown
𝐺 (𝜔) appears. This can be overcome by introducing the 𝑇-matrix, T̂ (𝜔) = 𝑉𝐺 (𝜔)

(
𝜔 − 𝐻0

)
,

which transforms Eq. (2.7) into

𝐺 (𝜔) = 𝐺 (0) (𝜔) + 𝐺 (0) (𝜔)T̂ (𝜔)𝐺 (0) (𝜔) . (2.8)

Evidently, it is sufficient to calculate all matrix elements of the𝑇-matrix to completely determine
Green’s function 𝐺 (𝜔). Let us add that the 𝑇-matrix may also be used to construct eigenstates
|𝜓⟩ of 𝐻

|𝜓⟩ = |𝜙⟩ + 𝐺 (0) (𝜔)T̂ (𝜔) |𝜙⟩ , (2.9)
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Figure 2.2: Typical diagram contributing to Γ0,0 involving the static 𝜀0 scattering (vertical
dashed lines) and the dynamic scattering on phonons (wavy lines).

where |𝜙⟩ is an eigenstate of 𝐻0, which will prove especially handy later.

In the polaronic impurity model given by Eq. (2.1), the interaction 𝑉 is restricted to a single
site l, being local in real space

𝑉
𝛾,𝛼
n,m = 𝛿n,l𝛿m,l

[
𝛿𝛾,𝛼𝜀0 + 𝑔(

√
𝛾𝛿𝛾,𝛼+1 +

√
𝛼𝛿𝛾,𝛼−1)

]
. (2.10)

Correspondingly, so is the 𝑇-matrix, T 𝛾,𝛼
n,m (𝜔) = 𝛿n,l𝛿m,lT 𝛾,𝛼

l,l (𝜔) ≡ T 𝛾,𝛼 (𝜔), and consequently
the matrix representation of Eqs. (2.7) and (2.8) reads

𝐺
𝛾,𝛼
n,m(𝜔) = 𝛿𝛾,𝛼𝐺 (0)𝛼,𝛼

n,m (𝜔) + 𝐺 (0)𝛾,𝛾
n,l

(𝜔)
∑︁
𝜁

𝑉
𝛾,𝜁

l,l
𝐺
𝜁,𝛼

l,m
(𝜔) , (2.11)

and
𝐺
𝛾,𝛼
n,m(𝜔) = 𝛿𝛾,𝛼𝐺 (0)𝛼,𝛼

n,m (𝜔) + 𝐺 (0)𝛾,𝛾
n,l

(𝜔)T 𝛾,𝛼 (𝜔)𝐺 (0)𝛼,𝛼
l,m

(𝜔) . (2.12)

We find particularly convenient to introduce and the third matrix equation

𝐺
𝛾,𝛼
n,m(𝜔) ≡ 𝛿𝛾,𝛼𝐺 (0)𝛼,𝛼

n,m (𝜔) + 𝐺 (0)𝛾,𝛾
n,l

(𝜔)Γ𝛾,𝛼 (𝜔)𝐺𝛼,𝛼

l,m
(𝜔) , (2.13)

where we have introduced a local operator Γ̂(𝜔), whose matrix elements are defined via
Eq. (2.13), Γ𝛾,𝛼n,m(𝜔) = 𝛿n,l𝛿m,lΓ

𝛾,𝛼

l,l (𝜔) ≡ Γ𝛾,𝛼 (𝜔).

In particular, Γ0,0 corresponds to the electron self-energy with a typical diagram shown in
Fig. 2.2. The electron propagator 𝐺 (0)

l,l is represented by the horizontal dotted lines, the vertical
dashed lines correspond to the static 𝜀0 ≠ 0 scattering, whereas the wavy lines correspond to the
phonon propagators. Generally, the diagrammatic representation of the 𝑇-matrix involves both
the reducible and the irreducible diagrams, while the operator Γ̂ involves only irreducible ones.

To justify the introduction of the local operator Γ̂, we consider Eq. (2.13) in the elastic case
𝛾 = 𝛼 and for n = l

𝐺
𝛼,𝛼

l,m
(𝜔) =

𝐺
(0)𝛼,𝛼
l,m

(𝜔)

1 − 𝐺 (0)𝛼,𝛼
l,l

(𝜔)Γ𝛼,𝛼 (𝜔)
. (2.14)
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By putting this result back into Eq. (2.13) and by comparing it with Eq. (2.12), the relation
between matrix elements of the local operator Γ̂(𝜔) and matrix elements of the 𝑇-matrix can
simply be read out

T 𝛾,𝛼 (𝜔) = Γ𝛾,𝛼 (𝜔)
1 − 𝐺 (0)𝛼,𝛼

l,l
(𝜔)Γ𝛼,𝛼 (𝜔)

. (2.15)

Therefore, in order to find the full solution to the problem, it is enough to find all matrix elements
of the local operator Γ̂(𝜔). As we shall show, this can be achieved in the whole parametric space
of the Hamiltonian in Eq. (2.1).

2.3.2 Static case

To demonstrate the elegance of the present formalism, we first consider the simpler static 𝑔 = 0

case, when only the electron orbital energy at the impurity site is changed. In that case, the
interaction matrix elements simplify to 𝑉𝛾,𝛼n,m = 𝛿n,l𝛿m,l𝛿𝛾,𝛼𝜀0 ≠ 0. We note that 𝛾 = 𝛼 since
there are no processes in which the initial number of phonons is changed. Consequently, both
Eqs. (2.11) and (2.13) read

𝐺
𝛼,𝛼
n,m(𝜔) = 𝐺 (0)𝛼,𝛼

n,m (𝜔) + 𝐺 (0)𝛼,𝛼
n,l

(𝜔) 𝜀0 𝐺𝛼,𝛼

l,m
(𝜔) , (2.16)

yielding the simple expressions for the matrix elements of the local operator Γ̂, Γ𝛾,𝛼 (𝜔) = 𝛿𝛾,𝛼𝜀0,
and the 𝑇-matrix, T 𝛾,𝛼 (𝜔) = 𝛿𝛾,𝛼 (𝜀−10 − 𝐺 (0)𝛼,𝛼

l,l
(𝜔))−1. We note also that Eq. (2.16) takes the

Dyson form for the Green’s function at the impurity site, n = m = l

𝐺
𝛼,𝛼

l,l
(𝜔) = 1[

𝐺
(0)𝛼,𝛼
l,l

(𝜔)
]−1

− 𝜀0
. (2.17)

Before moving to the case of dynamical impurity, it is particularly interesting to comment
on the |𝜀0 | → ∞ limit, corresponding to the vacancy or the infinite barrier problem. In this
limit, the 𝑇-matrix is independent of impurity parameters, T (𝜔) = −1/𝐺 (0) (𝜔), yielding

𝐺n,m(𝜔) = 𝐺 (0)
n,m(𝜔) −

𝐺
(0)
n,l

(𝜔)𝐺 (0)
l,m

(𝜔)

𝐺
(0)
l,l

(𝜔)
. (2.18)

2.3.3 Dynamic case

We now switch on the electron-phonon interaction. We assume that all static scattering effects
have been embedded into 𝐺𝛾,𝛼

n,m(𝜔) |𝑔=0 ≡ 𝛿𝛾,𝛼𝐺
𝛼,𝛼

𝐼n,m
(𝜔), with 𝐺𝛼,𝛼

𝐼l,l
(𝜔) ≡ 𝐺

𝛼,𝛼

𝐼
(𝜔) = 𝐺 𝐼 (𝜔 −

𝛼𝜔0), as described in previous Subsection 2.3.2. Eqs. (2.10) and (2.11) now give
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𝐺
𝛾,𝛼
n,m(𝜔) = 𝛿𝛾,𝛼 𝐺

𝛾,𝛼

𝐼n,m
(𝜔) + 𝐺𝛾,𝛾

𝐼n,l
(𝜔) 𝑔

(√︁
𝛾 + 1𝐺

𝛾+1,𝛼
l,m

(𝜔) + √
𝛾𝐺

𝛾−1,𝛼
l,m

(𝜔)
)
. (2.19)

In order to proceed, we take advantage of the ansatz [42]

𝐺
𝛾−1,𝛼
l,m

(𝜔) = √
𝛾𝐴𝛾 (𝜔)𝐺𝛾,𝛼

l,m
(𝜔),

√︁
𝛾 + 1𝐺

𝛾+1,𝛼
l,m

(𝜔) = 𝐵𝛾 (𝜔)𝐺𝛾,𝛼

l,m
(𝜔) . (2.20)

As shown in [42], 𝐴𝛾 (𝜔) may be represented by the finite continued fraction

𝐴𝛾 (𝜔) =
𝑔

𝐺−1
𝐼
(𝜔 − (𝛾 − 1)𝜔0) − (𝛾−1)𝑔2

𝐺−1
𝐼

(𝜔−(𝛾−2)𝜔0)− (𝛾−2)𝑔2
𝐺−1
𝐼

(𝜔−(𝛾−3)𝜔0 )−...

, (2.21)

while 𝐵𝛾 (𝜔) by the infinite continued fraction

𝐵𝛾 (𝜔) =
(𝛾 + 1)𝑔

𝐺−1
𝐼
(𝜔 − (𝛾 + 1)𝜔0) − (𝛾+2)𝑔2

𝐺−1
𝐼

(𝜔−(𝛾+2)𝜔0)− (𝛾+3)𝑔2
𝐺−1
𝐼

(𝜔−(𝛾+3)𝜔0 )−...

. (2.22)

Correspondingly, by successive applications of Eq. (2.20), the right-hand side of Eq. (2.19)
may be expressed in terms of only diagonal (hereafter we really mean diagonal in the phonon
number) matrix elements of the full Green’s function.

In fact, the diagonal matrix elements of the full Green’s function are straightforwardly
obtained by applying Eq. (2.20) once in Eq. (2.19)

𝐺
𝛼,𝛼
n,m(𝜔) = 𝐺

𝛼,𝛼

𝐼n,m
(𝜔) + 𝐺𝛼,𝛼

𝐼n,l
(𝜔) [𝑔𝛼𝐴𝛼 (𝜔) + 𝑔𝐵𝛼 (𝜔)] 𝐺𝛼,𝛼

l,m
(𝜔) . (2.23)

On the other hand, the evaluation of the non-diagonal, 𝛾 ≠ 𝛼, matrix elements𝐺𝛾,𝛼
n,m(𝜔) demands

a little bit more work. In that case, Eq. (2.19) gives

𝐺
𝛾,𝛼
n,m(𝜔) = 𝐺

𝛾,𝛾

𝐼n,l
(𝜔) 𝑔

(√︁
𝛾 + 1𝐺

𝛾+1,𝛼
l,m

(𝜔) + √
𝛾𝐺

𝛾−1,𝛼
l,m

(𝜔)
)
, (2.24)

and it is necessary to consider cases for 𝛾 > 𝛼 and 𝛾 < 𝛼 separately.

Here we consider the situation 𝛾 > 𝛼, while the case with 𝛾 < 𝛼 is treated analogously.
In order to obtain diagonal matrix elements on the right-hand side of Eq. (2.24), successive
applications of Eqs. (2.20) may be utilized to get from 𝐺

𝛾+1,𝛼
l,m

(𝜔) and 𝐺𝛾−1,𝛼
l,m

(𝜔) to 𝐺𝛼,𝛼

l,m
(𝜔).

In particular, we have
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𝐺
𝛾+1,𝛼
l,m

(𝜔) =
𝐵𝛾 (𝜔)𝐺𝛾,𝛼

l,m
(𝜔)

√
𝛾 + 1

=
𝐵𝛾 (𝜔)𝐵𝛾−1(𝜔)𝐺𝛾−1,𝛼

l,m
(𝜔)√︁

(𝛾 + 1) 𝛾

=
𝐵𝛾 (𝜔)𝐵𝛾−1(𝜔)...𝐵𝛼 (𝜔)𝐺𝛼,𝛼

l,m
(𝜔)√︁

(𝛾 + 1) 𝛾 · ... · (𝛼 + 1)
,

(2.25)

and

𝐺
𝛾−1,𝛼
l,m

(𝜔) =
𝐵𝛾−2(𝜔)𝐺𝛾−2,𝛼

l,m
(𝜔)√︁

(𝛾 − 1)
=
𝐵𝛾−2(𝜔)𝐵𝛾−3(𝜔)𝐺𝛾−3,𝛼

l,m
(𝜔)√︁

(𝛾 − 1) (𝛾 − 2)

=
𝐵𝛾−2(𝜔)𝐵𝛾−3(𝜔)...𝐵𝛼 (𝜔)𝐺𝛼,𝛼

l,m
(𝜔)√︁

(𝛾 − 1) (𝛾 − 2) · ... · (𝛼 + 1)
,

(2.26)

which yields the expression for 𝐺𝛾,𝛼
n,m(𝜔) in terms of the diagonal matrix elements 𝐺𝛼,𝛼

n,m(𝜔)

𝐺
𝛾,𝛼
n,m(𝜔) =


𝐺
𝛾,𝛾

𝐼n,l
(𝜔)𝑔

√︃
𝛼!
𝛾!

(
𝛾 + 𝐵𝛾 (𝜔)𝐵𝛾−1(𝜔)

) ∏𝛾−2
𝑖=𝛼

𝐵𝑖 (𝜔)𝐺𝛼,𝛼

l,m
(𝜔) , 𝛾 > 𝛼 + 1 ,

𝐺
𝛾,𝛾

𝐼n,l
(𝜔)𝑔

√︃
𝛼!
𝛾!

(
𝛾 + 𝐵𝛾 (𝜔)𝐵𝛼 (𝜔)

)
𝐺
𝛼,𝛼

l,m
(𝜔) , 𝛾 = 𝛼 + 1 .

(2.27)

Following the similar procedure, we obtain for 𝛾 < 𝛼

𝐺
𝛾,𝛼
n,m(𝜔) =


𝐺
𝛾,𝛾

𝐼n,l
(𝜔)𝑔

√︃
𝛼!
𝛾!

(
1 + 𝛾𝐴𝛾 (𝜔)𝐴𝛼 (𝜔)

)
𝐺
𝛼,𝛼

l,m
(𝜔) , 𝛾 = 𝛼 − 1 ,

𝐺
𝛾,𝛾

𝐼n,l
(𝜔)𝑔

√︃
𝛼!
𝛾!

(
1 + 𝛾𝐴𝛾 (𝜔)𝐴𝛾+1(𝜔)

) ∏𝛼
𝑖=𝛾+2 𝐴𝑖 (𝜔)𝐺

𝛼,𝛼

l,m
(𝜔) , 𝛾 < 𝛼 − 1 .

(2.28)

What is left to do is to compare expressions in Eqs. (2.23), (2.27), and (2.28) with Eq. (2.13),
and to simply read out the matrix elements Γ̃𝛾,𝛼 (𝜔). For 𝛾 = 𝛼, by comparing Eqs. (2.13) and
(2.23) we have

Γ̃𝛼,𝛼 (𝜔) = 𝑔𝛼𝐴𝛼 (𝜔) + 𝑔𝐵𝛼 (𝜔) , (2.29)

while by comparing Eq. (2.13) with Eqs. (2.27) and (2.28) for non-diagonal, 𝛾 ≠ 𝛼, matrix
elements we get
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Γ̃𝛾,𝛼 (𝜔) =



𝑔

√︃
𝛼!
𝛾!

(
𝛾 + 𝐵𝛾 (𝜔)𝐵𝛾−1(𝜔)

) ∏𝛾−2
𝑖=𝛼

𝐵𝑖 (𝜔) , 𝛾 > 𝛼 + 1 ,

𝑔

√︃
𝛼!
𝛾!

(
𝛾 + 𝐵𝛾 (𝜔)𝐵𝛼 (𝜔)

)
, 𝛾 = 𝛼 + 1 ,

𝑔

√︃
𝛼!
𝛾!

(
1 + 𝛾𝐴𝛾 (𝜔)𝐴𝛼 (𝜔)

)
, 𝛾 = 𝛼 − 1 ,

𝑔

√︃
𝛼!
𝛾!

(
1 + 𝛾𝐴𝛾 (𝜔)𝐴𝛾+1(𝜔)

) ∏𝛼
𝑖=𝛾+2 𝐴𝑖 (𝜔) , 𝛾 < 𝛼 − 1

(2.30)

Since now all matrix elements of the local operator Γ̂ are known, the polaronic impurity model
in Eq. (2.1) is fully solved.

2.3.4 Combining static and dynamic contributions

We note that the matrix elements of the local operator Γ̂ in Eqs. (2.29) and (2.30) are denoted
with a tilde. The reason is that this operator ˆ̃Γ(𝜔) is defined by assuming that the unperturbed
Green’s function already contains all static scattering processes. In other words, it is defined via
Eq. (2.13) in terms of the Green’s function 𝐺 𝐼 (𝜔).

However, we actually need to attain the matrix elements of Γ̂ with respect to the Green’s
function for which the translational symmetry is preserved, that is 𝐺 (0) (𝜔), since this Green’s
function is the starting point of all our calculations. In order to do that, we substitute Eq. (2.16)
in Eq. (2.23)

𝐺
𝛼,𝛼
n,m(𝜔) = 𝐺 (0)𝛼,𝛼

n,m (𝜔) + 𝐺 (0)𝛼,𝛼
n,l

(𝜔) 𝜀0 𝐺𝛼,𝛼

𝐼l,m
(𝜔)+

+
[
𝐺

(0)𝛼,𝛼
n,l

(𝜔) + 𝐺 (0)𝛼,𝛼
n,l

(𝜔) 𝜀0 𝐺𝛼,𝛼

𝐼l,l
(𝜔)

]
[𝑔𝛼𝐴𝛼 (𝜔) + 𝑔𝐵𝛼 (𝜔)] 𝐺𝛼,𝛼

l,m
(𝜔)

= 𝐺
(0)𝛼,𝛼
n,m (𝜔) + 𝐺 (0)𝛼,𝛼

n,l
(𝜔) [𝑔𝛼𝐴𝛼 (𝜔) + 𝑔𝐵𝛼 (𝜔)] 𝐺𝛼,𝛼

l,m
(𝜔)+

+ 𝐺 (0)𝛼,𝛼
n,l

(𝜔) 𝜀0
{
𝐺
𝛼,𝛼

𝐼l,m
(𝜔) + 𝐺𝛼,𝛼

𝐼l,l
(𝜔) [𝑔𝛼𝐴𝛼 (𝜔) + 𝑔𝐵𝛼 (𝜔)] 𝐺𝛼,𝛼

l,m
(𝜔)

}
= 𝐺

(0)𝛼,𝛼
n,m (𝜔) + 𝐺 (0)𝛼,𝛼

n,l
(𝜔) [𝜀0 + 𝑔𝛼𝐴𝛼 (𝜔) + 𝑔𝐵𝛼 (𝜔)] 𝐺𝛼,𝛼

l,m
(𝜔),

(2.31)

where in obtaining the last equality Eq. (2.23) for n = l was used. By comparing now this
expression with the definition of the diagonal matrix elements Γ𝛼,𝛼 in Eq. (2.13), we have

Γ𝛼,𝛼 (𝜔) = 𝜀0 + Γ̃𝛼,𝛼 (𝜔) = 𝜀0 + 𝑔𝛼𝐴𝛼 (𝜔) + 𝑔𝐵𝛼 (𝜔) . (2.32)

Note that the full Green’s function at the impurity site, n = m = l, in Eq. (2.31) takes the Dyson
form.

Moreover, non-diagonal, 𝛾 ≠ 𝛼, matrix elements Γ𝛾,𝛼 (𝜔) are given by

𝐺
𝛾,𝛼
n,m(𝜔) = 𝐺

(0)𝛾,𝛾
n,l

(𝜔)Γ𝛾,𝛼 (𝜔)𝐺𝛼,𝛼

l,m
(𝜔) , (2.33)
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which combined with

𝐺
𝛾,𝛼
n,m(𝜔) = 𝐺

𝛾,𝛾

𝐼n,l
(𝜔)Γ̃𝛾,𝛼 (𝜔)𝐺𝛼,𝛼

l,m
(𝜔) = 𝐺 (0)𝛾,𝛾

n,l
(𝜔)

𝐺
𝛾,𝛾

𝐼n,l
(𝜔)

𝐺
(0)𝛾,𝛾
n,l

(𝜔)
Γ̃𝛾,𝛼 (𝜔)𝐺𝛼,𝛼

l,m
(𝜔) , (2.34)

and Eqs. (2.16) and (2.17) finally gives

Γ𝛾,𝛼 (𝜔) =
𝐺
𝛾,𝛾

𝐼n,l
(𝜔)

𝐺
(0)𝛾,𝛾
n,l

(𝜔)
Γ̃𝛾,𝛼 (𝜔) =

(
1 + 𝜀0𝐺𝛾,𝛾

𝐼l,l
(𝜔)

)
Γ̃𝛾,𝛼 (𝜔) = Γ̃𝛾,𝛼 (𝜔)

1 − 𝜀0𝐺 (0)𝛾,𝛾
l,l

(𝜔)
. (2.35)

We stress one more time that expressions in Eqs. (2.32) and (2.35) hold irrespectively of a lattice
dimension and geometry, allowing us to employ them to study both the electron tunneling and
scattering in the 1D and 3D case, respectively.

2.3.5 Green’s function 𝐺1,0
l,l

(𝜔)

To provide a pictorial example of how our developed formalism accounts for the exact solution,
we consider the case of Green’s function 𝐺1,0

l,l
(𝜔). This Green’s function describes a process

in which an electron enters the system and emits a real phonon, with no phonons previously
present in the system. For this purpose, we assume that all the static scattering processes have
already been accounted for and we are interested only in the effects due to the electron-phonon
interaction.

By referencing to Eq. (2.27), we have for the full Green’s function 𝐺1,0
l,l

(𝜔)

𝐺
1,0
l,l

(𝜔) = 𝐺1,1
𝐼l,l

(𝜔)𝑔 (1 + 𝐵1(𝜔)𝐵0(𝜔))𝐺0,0
l,l

(𝜔) . (2.36)

From here, we can use Eq. (2.23) to express 𝐺0,0
l,l

(𝜔) in the Dyson form, yielding

𝐺
1,0
l,l

(𝜔) = 𝐺1,1
𝐼l,l

(𝜔)𝑔 (1 + 𝐵1(𝜔)𝐵0(𝜔))𝐺0,0
𝐼l,l

(𝜔)
[
1 − 𝑔𝐵0(𝜔)𝐺0,0

𝐼l,l
(𝜔)

]−1
. (2.37)

We focus on a few lowest order processes, so we expand the denominator with respect to 𝑔

𝐺
1,0
l,l

(𝜔) = 𝐺1,1
𝐼l,l

(𝜔)𝑔 (1 + 𝐵1(𝜔)𝐵0(𝜔))𝐺0,0
𝐼l,l

(𝜔)
(
1 + 𝑔𝐵0(𝜔)𝐺0,0

𝐼l,l
(𝜔)

)
. (2.38)

Analogously, the lowest order expansions of the continued fractions 𝐵𝛼 (𝜔) read 𝐵0(𝜔) ≈
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𝑔𝐺
1,1
𝐼l,l

(𝜔) and 𝐵1(𝜔) ≈ 2𝑔𝐺2,2
𝐼l,l

(𝜔). By keeping only contributions to the third order in 𝑔, we
finally get

𝐺
1,0
l,l

(𝜔) ≈ 𝐺1,1
𝐼l,l

(𝜔)𝑔𝐺0,0
𝐼l,l

(𝜔) + 𝐺1,1
𝐼l,l

(𝜔)𝑔𝐺0,0
𝐼l,l

(𝜔)𝑔𝐺1,1
𝐼l,l

(𝜔)𝑔𝐺0,0
𝐼l,l

(𝜔)+

+ 2𝐺1,1
𝐼l,l

(𝜔)𝑔𝐺2,2
𝐼l,l

(𝜔)𝑔𝐺1,1
𝐼l,l

(𝜔)𝑔𝐺0,0
𝐼l,l

(𝜔) .
(2.39)

(a) (b) (c)

(d) (e)

Figure 2.3: (a) Leading and (b)-(d) next-to-leading order contributions to 𝐺1,0
l,l

(𝜔). (e) The
exact 𝐺1,0

l,l
(𝜔). Single dotted lines represent the electron propagator with the static scattering

included; double dotted lines represent the exact one. The full circle represents the electron-
phonon vertex 𝑔, while the square in (e) is the exact electron-phonon vertex function.

The three (actually four) contributions in Eq. (2.39) are diagrammatically sketched in
Figs. 2.3(a)-(d). It is worth emphasizing that the appearance of Green’s functions and ver-
tices in three contributions of Eq. (2.39), from right to left, exactly follows the time order of
events depicted in Figs. 2.3(a)-(d). In particular, the first contribution in Eq. (2.39), correspond-
ing to Fig. 2.3(a), describes a process in which an electron propagates (𝐺0,0

𝐼l,l
(𝜔)) and emits (𝑔)

a phonon, after which the electron and the phonon continue to propagate through the system
(𝐺1,1

𝐼l,l
(𝜔)). Evidently, there are no virtual phonons involved, nor the renormalization of the

vertex 𝑔, so this is the lowest order process which contributes to 𝐺1,0
l,l

(𝜔).

This changes with the next-to-leading order process corresponding to the second contribution
in Eq. (2.39) and Fig. 2.3(b). Namely, it takes into account the renormalization of the incoming
electron propagator (𝐺0,0

𝐼l,l
(𝜔)) due to the emission of a virtual phonon. By inspecting Eq. (2.36),

this term comes from the expansion of the full Green’s function 𝐺0,0
l,l

(𝜔).

Finally, the term with continued fractions in Eq. (2.36) yields the remaining two next-to-
leading contributions, which are depicted by two diagrams in Figs. 2.3(c) and (d), and which
equally contribute to 𝐺1,0

l,l
(𝜔) - note the factor 2 in Eq. (2.39). In particular, the diagram in

Fig. 2.3(c) describes the renormalization of the outgoing propagator (𝐺1,1
𝐼l,l

(𝜔)). On the other
hand, the diagram in Fig. 2.3(d) corresponds to the leading vertex correction, involving the
crossing of the phonon propagators. It is particularly interesting that those two diagrams give
the same contribution, which is a direct consequence of the locality of the electron-phonon
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interaction in real space. Namely, all electron-phonon interaction vertices are limited to a single
(impurity) site.

Based on this low order expansion, we anticipate that all processes involving the renor-
malization of the ingoing and outgoing propagators, as well as the renormalization of the
electron-phonon vertex, will be covered when all higher order contributions would be consid-
ered. This would finally result in the exact propagator 𝐺1,0

l,l
(𝜔) depicted in Fig. 2.3(e), where

the exact propagators 𝐺0,0
l,l

(𝜔), 𝐺1,1
l,l

(𝜔), and the exact vertex function, denoted with the square,
appear.

2.4 Conclusions

Within Green’s function formalism, we provide the exact analytical solution to the polaronic
impurity problem involving the electron interaction with the local phonon degree of freedom
and the change of the atomic orbital energy at the impurity site for an arbitrary lattice model.
Apart from the diagonal Green’s functions in the phonon number, we obtain all the non-diagonal
Green’s functions describing processes with emission and absorption of real phonons, where
the latter are of utter importance in studying the inelastic electron transmission and the inelastic
scattering on polaronic impurities. The key to solving the problem lies in the locality of the
electron-phonon interaction in real space, which ensures that the full Green’s function can
be expressed by means of continued fractions containing only the local free electron Green’s
function. A vertex contribution to the full Green’s function in a given order turned out to be
exactly equal to a non-vertex contribution, whose diagrammatic representations involve the same
number of phonon lines when cut with vertical lines at any instance of time.
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Chapter 3

Tunneling through a polaronic impurity

Parts of Chapter 3 have been published as the supplemental material to [17].

In this short Chapter 3, we exploit the exact solution of Chapter 2 to study electron tunneling
across molecular junctions.

3.1 Transmission coefficient

The presence of impurities profoundly affects transport properties in low-dimensional systems
(𝐷 ≤ 2). Those effects are particularly prominent in 1D systems since a propagating electron
cannot avoid an impurity site. Thus, in the 1D case, the impurity for the propagating electron
acts as an unavoidable barrier resulting in a tunneling problem, where one can study the electron
transmission/reflection through the impurity site.

The problem of electron tunneling in the presence of polaronic impurities gained a lot
of theoretical interest [18–20, 43–46] due to its relevance for the inelastic electron tunneling
spectroscopy, as already emphasized at the beginning of Chapter 2. In particular, it was
solved in the continuum limit [43], whereas the problem on a lattice was exactly solved only
numerically [18–20]. Using our formalism, we are able to solve the problem for an arbitrary
system of interest without the need for any approximations.

To set us in the framework of the tunneling problem, we consider the situation with𝛼 phonons
present at the impurity and the electron moving on a 1D lattice (with the lattice constant 𝑎 = 1),
from left to right in the 𝑥 direction toward the impurity site l = 0. The electron has a momentum
k and an energy 𝜀𝛼 = −2𝑡 cos(k · 𝑥), where 𝑡 is the nearest neighbor hopping integral. By
reaching the impurity site the electron has a certain probability to be transmitted/reflected. The
probability of finding the electron with a momentum k′ and an energy 𝜀𝛾 = −2𝑡 cos(k′ · 𝑥) at
the site |r| > |l|, together with 𝛾 phonons present at the impurity site defines the transmission
coefficient

𝑇𝛾𝛼 (𝜀𝛼) = 𝑁 |⟨r, 𝛾 |𝜓⟩|2 , (3.1)

where |𝜓⟩ = |k, 𝛼⟩ + 𝐺 (0) (𝜔)T̂ (𝜔) |k, 𝛼⟩ is the state describing the scattered electron and
𝛾 phonons left in the system, in accordance with Eq. (2.9). The factor 𝑁 accounts for the
degeneracy of choosing the impurity site from 𝑁 possible lattice sites.

24



In order to proceed, we note that the initial state is simply a product of the Bloch and the
phonon state

|k, 𝛼⟩ = 1
√
𝑁

∑︁
j

𝑒𝑖k·j |j, 𝛼⟩ . (3.2)

Accordingly, we have for the scattered state

|𝜓⟩ = 1
√
𝑁

∑︁
j

𝑒𝑖k·j |j, 𝛼⟩ + 1
√
𝑁

∑︁
j

𝑒𝑖k·j𝐺 (0) (𝜔)
∑︁
𝜁,𝜉

|l, 𝜁⟩ T 𝜁,𝜉 (𝜔) ⟨l, 𝜉 |j, 𝛼⟩ , (3.3)

where we have exploited the 𝑇-matrix written in the |j, 𝛼⟩ basis.

To compute now the scalar product in Eq. (3.1), we recall that the states |j, 𝛼⟩ are orthonormal,
⟨i, 𝛼 |j, 𝛽⟩ = 𝛿i,j𝛿𝛼,𝛽, while the matrix elements of the electron Green’s function for the 1D lattice
satisfy [41]

⟨r, 𝛾 |𝐺 (0) (𝜔) |l, 𝛼⟩ = 𝛿𝛾,𝛼𝐺 (0)𝛼,𝛼
r,l

(𝜔) = 𝛿𝛾,𝛼𝑒𝑖k
′·(r−l)𝐺 (0)𝛼,𝛼

l,l
(𝜔) . (3.4)

By taking into account all the above expressions, we get for the transmission coefficient

𝑇𝛾𝛼 (𝜀𝛼) =
���𝛿𝛾,𝛼𝑒𝑖kr + 𝑒𝑖kl𝑒𝑖k′·(r−l)𝐺 (0)𝛾,𝛾

l,l
(𝜔)T 𝛾,𝛼 (𝜔)

���2
=

������𝛿𝛾,𝛼𝑒𝑖kr + 𝑒𝑖kl𝑒𝑖k′·(r−l)
𝐺

(0)𝛾,𝛾
l,l

(𝜔)Γ𝛾,𝛼 (𝜔)

1 − 𝐺 (0)𝛼,𝛼
l,l

(𝜔)Γ𝛼,𝛼 (𝜔)

������
2

.

(3.5)

It is convenient to separetly consider elastic, k = k′ and 𝛾 = 𝛼, and inelastic, k ≠ k′ and 𝛾 ≠ 𝛼,
tunneling cases, yielding

𝑇𝛾𝛼 (𝜀𝛼) =


1���1−𝐺 (0)𝛼,𝛼

l,l
(𝜔)Γ𝛼,𝛼 (𝜔)

���2 , elastic ,���� 𝐺
(0)𝛾,𝛾
l,l

(𝜔)Γ𝛾,𝛼 (𝜔)

1−𝐺 (0)𝛼,𝛼
l,l

(𝜔)Γ𝛼,𝛼 (𝜔)

����2 , inelastic .
(3.6)

Here, it cannot be overstated that 𝜔 is the total energy of the electron-phonon system, 𝜔 =

𝜀𝛼 + 𝛼𝜔0 = 𝜀𝛾 + 𝛾𝜔0, while 𝑇𝛾𝛼 (𝜀𝛼) exclusively depends on the incoming electron energy 𝜀𝛼.

Next, we have to take into account the conservation of electron current. The total current
produced by the ingoing electron with the momentum k = 𝑘𝑥 reads

𝑗 =
∑︁
i

⟨k| 𝑗̂i |k⟩ , (3.7)
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where 𝑗̂i = 𝑖𝑡
(
𝑐
†
i
𝑐i−1 − 𝑐†i−1𝑐i

)
is the current density operator at the site i [47]. Since |k⟩ is a

Bloch state, we calculate

⟨k| 𝑐†
i
𝑐i−1 |k⟩ =

1

𝑁

∑︁
n,m

𝑒−𝑖k·𝑅m𝑒𝑖k·𝑅n ⟨𝑅m | 𝑐†i 𝑐i−1 |𝑅n⟩

= 𝛿i−1,n𝛿i,m
1

𝑁

∑︁
n,m

𝑒−𝑖k·𝑅m𝑒𝑖k·𝑅n =
1

𝑁
𝑒−𝑖k·𝑥 ,

(3.8)

where we have used 𝑅i±1 = 𝑅i ± 𝑥 (𝑎 = 1). Analogously, we have ⟨k| 𝑐†
i−1𝑐i |k⟩ =

1
𝑁
𝑒𝑖k·𝑥 , so by

going back to Eq. (3.7) the total current of the ingoing electron reads

𝑗 = 𝑖𝑡
1

𝑁

∑︁
i

[
𝑒−𝑖k·𝑥 − 𝑒𝑖k·𝑥

]
= (𝑖𝑡) [−2𝑖 sin (k · 𝑥)] 1

𝑁

∑︁
i

= 2𝑡 sin (k · 𝑥) . (3.9)

Similarly, we have for the current of the outgoing electron scattered on the impurity

𝑗 ′ = 2𝑡 sin (k′ · 𝑥)
[
𝑇𝛾𝛼 (𝜀𝛼) + 𝑅𝛾𝛼 (𝜀𝛼)

]
. (3.10)

Here, we have immediately divided the total outgoing current in the 𝛾, 𝛼 channel on the trans-
mitted 𝑗 ′

𝑇
= 2𝑡 sin (k′ · 𝑥) 𝑇𝛾𝛼 (𝜀𝛼) and the reflected 𝑗 ′

𝑅
= 2𝑡 sin (k′ · 𝑥) 𝑅𝛾𝛼 (𝜀𝛼) current, where

𝑅𝛾𝛼 (𝜀𝛼) = 1 − 𝑇𝛾𝛼 (𝜀𝛼) is the reflection coefficient, and k′ can be obtained by means of the
energy conservation law

𝜀𝛼 = −2𝑡 cos(k · 𝑥) = −2𝑡 cos(k′ · 𝑥) + 𝜔0 (𝛾 − 𝛼) . (3.11)

Lastly, by assuming that the system is in the thermal equilibrium, the probability of finding 𝛼
phonons initially present in the system at a temperature 𝑇 is given by the distribution 𝑃(𝛼,𝑇) =(
1 − 𝑒−𝜔0/𝑇

)
𝑒−𝛼𝜔0/𝑇 (𝑘𝐵 = 1). During the process of tunneling the initial number of phonons 𝛼

may change to arbitrary 𝛾 (however, restricted by the energy conservation law, Eq. (3.11)), so we
have to take account of all possible tunneling channels 𝛾, 𝛼. In particular, the total transmission
at an arbitrary temperature 𝑇 reads

𝑇 (𝜀𝛼) =
(
1 − 𝑒−𝜔0/𝑇

) ∑︁
𝛼,𝛾

𝑒−𝛼𝜔0/𝑇 𝑗 ′
𝑇

𝑗
=

(
1 − 𝑒−𝜔0/𝑇

) ∑︁
𝛼,𝛾

𝑒−𝛼𝜔0/𝑇 sin(k′ · 𝑥) 𝑇𝛾𝛼 (𝜀𝛼)
sin(k · 𝑥) .

(3.12)

As an example, we show in Fig. 3.1 the electron transmission in dependence on the incoming
electron energy for the system parameters 𝑡 = 1, 𝜔0 = 0.5, 𝜀0 = 0.1, and 𝑔 = 0, 2, at zero
temperature. For the weak static impurity, when the electron-phonon coupling is absent, only
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Figure 3.1: Electron transmission in dependence on the incoming electron energy for the system
parameters 𝑡 = 1, 𝜔0 = 0.5, 𝜀0 = 0.1, and 𝑔 = 0, 2, at zero temperature. The black solid curve
represents the total transmission in the presence of the finite electron-phonon coupling, while the
red dashed curve and the violet dot-dashed curve denote its elastic and inelastic contributions,
respectively. The green dashed curve represents the transmission when only the static impurity
is present, 𝑔 = 0.

low energy electrons are reflected by the impurity, green dashed curve in Fig. 3.1. Contrary, for
the strong electron-phonon coupling, the energy dependence of the transmission is governed by
the phonon frequency scale, where energy regions with both minima and maxima of the electron
transmission are observed. This is well in accordance with the experimental findings [22–28].

Since the results shown in Fig. 3.1 were obtained for the zero temperature case, there were
no phonons that the electron could have absorbed upon reaching the impurity. Consequently,
absorption channels were absent and the inelastic tunneling turned on as soon as the incident
electron energy become high enough for the emission of a phonon. As seen from Fig. 3.1,
this inelastic contribution to the total transmission is for most energies 𝜀𝛼 negligible compared
to the elastic contribution, albeit both contributions get comparable when the electron energy
𝜀𝛼 = −2𝑡 + 𝑛𝜔0 is the multiple of the phonon energy 𝜔0, with the electron energy measured
from the bottom of the band, 𝜀𝐵 = −2𝑡.

3.2 Conclusions

We apply the exact analytical solution of the polaronic impurity model in Eq. (2.1) to calculate
the electron transmission coefficient for the process involving tunneling of the electron through
the polaronic impurity. We observe multiple minima and maxima of the electron transmission as
a function of the incident electron energy for strong couplings. Our formalism and results may
be relevant for the interpratation of inelastic electron tunneling spectroscopy measurements.
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Chapter 4

Scattering on polaronic impurities

Parts of Chapter 4 have been published in [17].

Given the great attention that the polaronic impurity problem acquired in the context of electron
tunneling across molecular junctions, it comes as a surprise that the problem was seldom if at
all, considered for bulk (𝐷 > 1) systems. Motivated by that, and the fact that our exact solution
works for an arbitrary system dimension, we investigate some aspects of electronic transport
properties in the presence of polaronic impurities in the 3D case. In particular, we put the
majority of focus on the temperature dependence of electron mobility.

Additionally, we comment on the appearance of localized electron states outside the contin-
uum of delocalized states. Such localized states exist for arbitrary weak (static) impurities in
the 1D case, while in the 3D case the impurity should be strong enough for a localized state to
appear [41]. In that regard, it is particularly interesting to study how the dynamic nature of impu-
rity influences the structure of localized states. In contrast to the previous approaches [18–20],
where this part of the Hilbert space is not so simple to include even in the 1D case, within our
formalism it is straightforwardly addressed.

4.1 Scattering cross section

In order to address electronic transport properties, we first consider the electron scattering cross
section due to the scattering on a single polaronic impurity. For that purpose, we refer to the
general approach to stationary scattering problems in quantum mechanics [48]. Namely, we are
interested in a solution that has the asymptotic form of a plane wave plus an outgoing scattered
wave, which is well described by Eq. (2.9).

4.1.1 Scattered wave

To be specific, similarly as in the 1D case, let us take that the initial state (prior to the scattering
event) involves 𝛼 phonons and an incident electron with an energy 𝜀𝛼 and a momentum k. The
electron eventually scatters at the impurity site l = 0, and, as a result, 𝛾 phonons and the electron
with an energy 𝜀𝛾 and a momentum k′ are left in the system. The state after the scattering is
described by Eq. (3.3), with the wave function given by
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𝜓 = ⟨r, 𝛾 |𝜓⟩ =
∑︁

j
𝑒𝑖kj ⟨r, 𝛾 |j, 𝛼⟩ +

∑︁
j
𝑒𝑖kj

∑︁
𝜅,𝜁

⟨r, 𝛾 |𝐺 (0) (𝜔) |l, 𝜅⟩ T 𝜅,𝜁 (𝜔) ⟨l, 𝜁 |j, 𝛼⟩ , (4.1)

which with the use of Eq. (2.6) and the orthonormality of states |j, 𝛼⟩ simplifies to

𝜓 = 𝛿𝛾,𝛼𝑒
𝑖kr + 𝐺 (0)𝛾,𝛾

r,l
(𝜔)T 𝛾,𝛼 (𝜔) . (4.2)

Hereafter, we consider the simple cubic lattice with the lattice constant 𝑎 and the electron
dispersion 𝜀 = −2𝑡 [cos(k · 𝑎𝑥) + cos(k · 𝑎𝑦) + cos(k · 𝑎𝑧̂)], characterized by the nearest neigh-
bor hopping integral 𝑡. The local Green’s function 𝐺 (0)

l,l
(𝜔) for such a lattice may be obtained in

a closed form in terms of the complete elliptic integrals of the first kind [49], and can be easily
evaluated numerically [50].

While for high order contributions to T 𝛾,𝛼 (𝜔) the exact form of 𝐺 (0)
l,l

(𝜔) has to kept,
𝐺

(0)𝛾,𝛾
r,l

(𝜔) in Eq. (4.2) may be approximated by its asymptotic form at great distances from the
impurity site |r| ≫ l = 0 given by [51, 52]

𝐺
(0)
|r|→∞ ≈ −𝑎

4𝜋 |𝑡 |
∑︁
k′

√√
sin2 𝑘′𝑥 + sin2 𝑘′𝑦 + sin2 𝑘′𝑧

sin2 𝑘′𝑥 cos 𝑘
′
𝑦 cos 𝑘

′
𝑧 + sin2 𝑘′𝑦 cos 𝑘

′
𝑧 cos 𝑘

′
𝑥 + sin2 𝑘′𝑧 cos 𝑘

′
𝑥 cos 𝑘

′
𝑦

𝑒𝑖k
′·r

𝑟

≡
∑︁
k′
𝐹 (k′) 𝑒

𝑖k′·r

𝑟
.

(4.3)

Here, the sum involves only those momenta k′ which satisfy two conditions

𝜀𝛾 = 𝜀𝛾 (k′) , and ∇k𝜀𝛾 (k′) | | 𝑟 , (4.4)

with 𝑟 the direction of the position vector r relative to l = 0. In particular, the first condition is
nothing but the energy conservation law which for the given energy 𝜀𝛾 of the scattered electron
determines an energy surface in the momentum space. The second condition is more stringent
and says that the direction of the greatest rate of increase of the energy at point k′ has to be
collinear with 𝑟 . That is, momenta k′ are uniquely determined by 𝜀𝛾 and 𝑟 and the outgoing
scattered wave in Eq. (4.2) is a sum of waves with various momenta k′

𝜓 ≈ 𝛿𝛾,𝛼𝑒𝑖kr +
∑︁
k′
𝐹 (k′) 𝑒

𝑖k′r

𝑟
T 𝛾,𝛼 (𝜔) . (4.5)

29



4.1.2 Probability current

As a next step in evaluating the electron scattering cross section, we need to determine the
probability current

j =
ℏ

𝑚
ℜ{−𝑖𝜓∗∇𝑒𝑙𝜓} , (4.6)

where the operator ∇𝑒𝑙 ≡ ∇ acts only on the electron degree of freedom. For that purpose, we
use Eqs. (4.2) and (4.3) to calculate

𝜓∗ = 𝑒−𝑖kr + T 𝛾,𝛼∗(𝜔)
∑︁
k′
𝐹∗(k′) 𝑒

−𝑖k′r

𝑟
, (4.7)

and

∇𝜓 = 𝑖k𝑒𝑖kr + T 𝛾,𝛼∗(𝜔)
∑︁
k′

[
𝑖k′𝐹 (k′) 𝑒

𝑖k′r

𝑟
− 𝐹 (k′) 𝑒

𝑖k′r

𝑟2
𝑟

]
, (4.8)

giving in total

𝜓∗∇𝜓 = 𝑖k + T 𝛾,𝛼 (𝜔)
∑︁
k′

[
𝑖k′𝐹 (k′) 𝑒

𝑖(k′−k)r

𝑟
− 𝐹 (k′) 𝑒

𝑖(k′−k)r

𝑟2
𝑟

]
+

+ 𝑖kT 𝛾,𝛼 (𝜔)
∑︁
k′′
𝐹∗(k′′) 𝑒

𝑖(k−k′′)r

𝑟
+ |T 𝛾,𝛼 (𝜔) |2

∑︁
k′k′′

𝑖k′𝐹 (k′)𝐹∗(k′′) 𝑒
𝑖(k′−k′′)r

𝑟2
+

− |T 𝛾,𝛼 (𝜔) |2
∑︁
k′k′′

𝐹 (k′)𝐹∗(k′′) 𝑒
𝑖(k′−k′′)r

𝑟3
𝑟 .

(4.9)

We can immediately ignore the last term in Eq. (4.9) because it goes like 𝑟−3. Furthermore,
in general, the sum

∑
k′ 𝑒𝑖(k

′−k)r oscillates rapidly due to the nonlinearity of r and k′(k), and
as a result such terms are strongly suppressed and can be neglected. Thus, we can in addition
neglect the second, third, and fourth terms in Eq. (4.9). Only the fifth term survives under the
condition k′ = k′′ giving

𝜓∗∇𝜓 ≈ 𝑖k + |T 𝛾,𝛼 (𝜔) |2
∑︁
k′
𝑖k′

|𝐹 (k′) |2

𝑟2
, (4.10)

and yielding finally for the probability current

j ≈ ℏ

𝑚
k + ℏ

𝑚
|T 𝛾,𝛼 (𝜔) |2

∑︁
k′

k′
|𝐹 (k′) |2

𝑟2
. (4.11)
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The first term in Eq. (4.11) corresponds to the incident current j𝑖𝑛, while the second term to the
scattered current j𝑠𝑐.

4.1.3 Partial scattering cross sections

We are now finally in a position to calculate the electron scattering cross section. The number of
particles crossing the area that subtend a solid angle 𝑑Ω at the origin (the impurity) is given by
j𝑠𝑐 · 𝑟𝑑𝐴, while the incident flux is simply j𝑖𝑛 · 𝑘 . Therefore, the partial differential cross section
in the 𝛾, 𝛼 scattering channel is given by

𝑑𝜎𝛾,𝛼 (𝜀𝛼)
𝑑Ω

=
j𝑠𝑐 · 𝑟𝑑𝐴
j𝑖𝑛 · 𝑘𝑑Ω

= |T 𝛾,𝛼 (𝜔) |2
∑︁
k′

|𝐹 (k′) |2 k
′ · 𝑟
𝑘

. (4.12)

Since the 𝑇-matrix is momentum independent, the anisotropy of the scattering cross section
arises only due to the anisotropy of the Green’s function 𝐺 (0)𝛾,𝛾

r,l
(𝜔). This is in Eq. (4.12)

manifested as a sum over different wave vectors k′. However, we are mostly interested in the
scattering of low-frequency electrons close to the bottom of the band, when 𝐺 (0)𝛾,𝛾

r,l
(𝜔) may

be approximated by its isotropic low-frequency form corresponding to the outgoing 𝑠 wave. In
particular, close to the bottom of the band the electron dispersion effectively becomes quadratic,
𝜀 ≈ 𝑡𝑘2. This implies that there is only one k′ for a given 𝑟 and the two vectors are mutually
collinear k′ · 𝑟 = 𝑘′ [52]. Furthermore, 𝐹 (k′) ≈ − 𝑎

4𝜋 |𝑡 | , so the scattered current reduces to

j𝑠𝑐 ≈
ℏ

𝑚
k′

𝑎2

16𝜋2𝑡2
|T 𝛾,𝛼 (𝜔) |2

𝑟2
, (4.13)

and correspondingly the partial differential cross section in the 𝛾, 𝛼 scattering channel reads

𝑑𝜎𝛾,𝛼 (𝜀𝛼)
𝑑Ω

=
𝑎2

16𝜋2𝑡2
𝑘′

𝑘
|T 𝛾,𝛼 (𝜔) |2 , (4.14)

being isotropic in real space. Note that the exact form of 𝐺 (0)𝛾,𝛾
l,l

(𝜔) has to be kept in the
isotropic T 𝛾,𝛼 (𝜔) nonetheless.

The partial cross section in the 𝛾, 𝛼 channel is now easily obtained by the integration over
all solid angles

𝜎𝛾,𝛼 (𝜀𝛼) =
∫

𝑑𝜎𝛾,𝛼 (𝜀𝛼)
𝑑Ω

𝑑Ω =
𝑎2

4𝜋𝑡2

√︂
𝜀𝛾

𝜀𝛼
|T 𝛾,𝛼 (𝜀𝛼 + 𝛼𝜔0) |2 , (4.15)

where 𝜀𝛼 and 𝜀𝛾 satisfy the energy conservation law 𝜀𝛼 + 𝛼𝜔0 = 𝜀𝛾 + 𝛾𝜔0. As an example, we
show in Fig. 4.1(a) the partial cross sections for several elastic and inelastic scattering channels as
a function of the incoming electron energy 𝜀𝛼. We set 𝑎2 = 1, which is the area associated with
a unit cell. The phonon frequency scale has its strong reflection in Fig. 4.1(a), similarly to the
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Figure 4.1: (a) Partial scattering cross sections for a few elastic and inelastic scattering channels
and (b) the total scattering cross section as a function of the incoming electron energy 𝜀𝛼 for the
system parameters 𝑡 = 1, 𝜀0 = −1, 𝜔0 = 2, and 𝑔 = 2.9

energy dependence of the transmission coefficient in Fig. 3.1. In particular, 𝜔0 characterizes the
energy thresholds for the inelastic scattering involving phonon emission (𝛾 > 𝛼) processes and
governs to a great extent the energy-dependence of all 𝜎𝛾,𝛼. This is particularly prominent for
low energies 𝜀𝛼 of the incoming electron, when 𝜎0,0 in Fig. 3.1 reaches very large values. Note
that we have only shown the phonon emission channels in Fig. 3.1. This is so because phonon
absorption channels are related to phonon emission channels by the time-reversal symmetry,
T 𝛾,𝛼 (𝜔) = T 𝛼,𝛾 (𝜔), that is, 𝜀𝛾𝜎𝛾,𝛼 (𝜀𝛼) = 𝜀𝛼𝜎𝛼,𝛾 (𝜀𝛾).

4.1.4 Total scattering cross section

Similarly as in the tunneling problem, for the state of the system involving an incident electron
with the energy 𝜀𝛼 and 𝛼 phonons at the impurity site, the total cross section for the electron
scattering is obtained by summing over all possible final states resulting from all the elastic and
inelastic scattering processes,

∑
𝛾 𝜎

𝛾,𝛼 (𝜀𝛼). Moreover, for the system in the thermal equilibrium,
the total cross section ⟨𝜎(𝜀𝛼)⟩𝑇 , as a function of the incident electron energy 𝜀𝛼, is obtained
by additionally averaging over the phonon thermal distribution 𝑃(𝛼,𝑇) for the initial number of
phonons 𝛼, giving in total

⟨𝜎(𝜀𝛼)⟩𝑇 = (1 − 𝑒−𝜔0/𝑇 )
∑︁
𝛼,𝛾

𝑒−𝛼𝜔0/𝑇𝜎𝛾,𝛼 (𝜀𝛼) . (4.16)

The total electron scattering cross section for the generic system parameters is shown in
Fig. 4.1(b) for three different temperatures. As anticipated, for low temperatures the total
scattering cross section for low energy electrons is determined solely by the 𝜎0,0 channel,
prominently showing the resonant structure. However, as soon as electrons become more
energetic, or as the temperature gets elevated, this resonant structure is smoothened, resulting in
an almost constant cross section for all electrons.
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4.2 Intermezzo: localized electron states

Although we have set up everything for the calculation of the electron relaxation time due to the
scattering on polaronic impurities, in this Section 4.2 we slightly deviate from our main goal of
calculating the electron mobility and exploit the developed formalism to consider the structure of
localized electron states relevant for the energy-loss spectroscopy, atom-probe tomography, and
scanning tunneling microscopy [53–56]. As is well known, in the presence of static impurities
localized states may appear below or above the continuum of delocalized states [41]. The same
is true with polaronic impurities, with an additional factor that the impurity is dynamic, so a
much richer structure of localized states is generally anticipated in comparison to the simpler
static case.

4.2.1 Scattering cross section dependence on impurity parameters

To gain an initial insight into the structure of localized electron states, it is sufficient to examine
the scattering cross section of the lowest energy electron in dependence on impurity parameters
describing the impurity strength. In the polaronic impurity model, those two parameters are 𝜀0
and 𝑔.

To be specific, we consider the zero temperature case, 𝑇 = 0, when there are no thermally
excited phonons present in the system (𝛼 = 0) and assume that the electron occupies the lowest
energy state of the band, 𝜀𝛼 = 𝜀𝐵. Consequently, the electron does not have enough energy to
emit phonons, so the total scattering cross section for this electron is contributed only by the
elastic 0, 0 channel

𝜎(𝜀𝐵) = 𝜎0,0(𝜀𝐵) =
𝑎2

4𝜋𝑡2

��T 0,0(𝜀𝐵)
��2 . (4.17)

From Eq. (2.15), we have for the matrix element T 0,0(𝜀𝐵)

T 0,0(𝜀𝐵) =
Γ0,0(𝜀𝐵)

1 − 𝐺 (0)
l,l

(𝜀𝐵)Γ0,0(𝜀𝐵)
, (4.18)

where

Γ0,0(𝜀𝐵) = 𝜀0 + 𝑔𝐵0(𝜀𝐵) . (4.19)

Static case

It is instructive to consider first the static case with 𝑔 = 0. Then Γ0,0(𝜀𝐵) = 𝜀0 and
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T 0,0(𝜀𝐵) =
𝜀0

1 − 𝐺 (0)
l,l

(𝜀𝐵)𝜀0
, (4.20)

so the scattering cross section equals

𝜎(𝜀𝐵) =
𝑎2

4𝜋𝑡2
𝜀20���1 − 𝐺 (0)

l,l
(𝜀𝐵)𝜀0

���2 =
𝑎2

4𝜋𝑡2
𝜀20[

1 − Re𝐺 (0)
l,l

(𝜀𝐵)𝜀0
]2

+
[
Im𝐺 (0)

l,l
(𝜀𝐵)𝜀0

]2 . (4.21)

As the bottom of the band is approached, in the 3D case holds

lim
𝜔→𝜀𝐵

Im𝐺 (0)
l,l

(𝜔) = 0 , (4.22)

and the scattering cross section in Eq. (4.21) acquires the resonant behavior around the critical
value 𝜀𝑐𝑟 of the impurity parameter 𝜀0 defined by

1 − Re𝐺 (0)
l,l

(𝜀𝐵)𝜀𝑐𝑟 = 0 . (4.23)

This pole of the scattering cross section indicates the appearance of a true localized state.
The critical (minimal) value of the impurity strength for this localized state to appear is
𝜀𝑐𝑟 =

1

|Re𝐺 (0)
l,l

(𝜀𝐵) |
. In particular, for the 3D simple cubic lattice this criterion gives 𝜀𝑐𝑟 ≈ 4|𝑡 |,

which almost perfectly matches the reported value in [57]. Contrary, in 1D and 2D cases
|Re𝐺 (0)

l,l
(𝜀𝐵) | → ∞ and the localized state emerges for an arbitrary weak impurity. In any case,

it is important to note that one and only one 𝜀𝑐𝑟 may solve Eq. (4.23), so one static impurity may
result in maximally one localized state.

Dynamic case

As we shall now argue, this situation changes with the inclusion of the finite electron-phonon
coupling. In the weak coupling limit, we can expand the local operator Γ̂ in the powers of 𝑔 and
keep only the lowest order terms. The first correction in 𝑔 of Γ0,0(𝜀𝐵) reads

Γ0,0(𝜀𝐵) ≈ 𝜀0 + 𝑔2𝐺 𝐼 (𝜀𝐵 − 𝜔0) , (4.24)

resulting in a somewhat more complicated form for the scattering cross section

𝜎(𝜀𝐵) =
𝑎2

4𝜋𝑡2

��𝜀0 + 𝑔2𝐺 𝐼 (𝜀𝐵 − 𝜔0)
��2���1 − 𝐺 (0)

l,l
(𝜀𝐵)

[
𝜀0 + 𝑔2𝐺 𝐼 (𝜀𝐵 − 𝜔0)

] ���2 . (4.25)
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In principle, the scattering cross section acquires two new qualitative features due to the
introduction of the electron-phonon interaction. First, because of the form of the denominator,
Eq. (4.25) may exhibit more than one pole, which potentially results in the appearance of many
localized states. Generally, as the electron-phonon coupling increases, the increasing number
of contributions to Γ0,0(𝜀𝐵) has to be kept, leading to the increasing number of localized
states. Secondly, for certain impurity parameters, concretely those corresponding to the zeros
of Γ0,0(𝜀𝐵), the numerator of Eq. (4.25) may vanish as well. As we will later show, for those
impurity parameters the electron mobility diverges and the polaronic impurity appears fully
transparent for the propagating electron.

4.2.2 Local density of states

The above analysis based on poles of the scattering cross section showed us, without the need
for any computational effort, that many localized electron states may appear in the presence of a
polaronic impurity. In order to gain deeper insights into the precise structure of those localized
electron states, we further investigate local electron properties.

(a) (b)

(c) (d)

-6 6ω0

0.15

°(
ω

)

ε
0
 = 0, g = 0

ε
0
 = -1, g = 1.7

ε
0
 = -5.8, g = 0

ω0 = 0.5
t = 1

Figure 4.2: Exact LDoS at the impurity site for different polaronic impurity parameters.

The suitable quantity for studying in detail the local electron properties, in particular the
localized electron states, is the local density of states (LDoS) defined by

𝜌(𝜔) = −𝜋−1Im𝐺0,0
l,l

(𝜔) . (4.26)

𝐺
0,0
l,l

(𝜔) can be straightforwardly computed by means of the Dyson equation given by Eq. (2.14)
for m = l and 𝛼 = 0, and the easily attainable matrix element Γ0,0. In order to discuss the
properties of LDoS in the presence of the polaronic impurity, we show in Fig. 4.2 the exact 𝜌(𝜔)
for three different impurity parameter sets. In particular, with the dot-dashed black curve, the
LDoS for the unperturbed electron is shown. It exhibits the 𝜌(𝜔) ∝

√
𝜔 behavior near the band’s

35



edges, |𝜔| ∼ 6, and the Van Hove singularities, as is expected for the 3D simple cubic lattice.
By introducing the (attractive) static impurity, much of the LDoS, shown with the red dashed
line, is shifted toward the bottom of the band. Since for the chosen parameters the impurity is
strong enough, 𝜀0 = −5.8 > 𝜀𝑐𝑟 , for a localized state to appear, we readily observe the localized
state as a resonance below the continuum, 𝜔 < −6.

The most interesting is, however, the case with the strong electron-phonon coupling 𝑔 = 1.7,
𝜀0 = −1. It is evident that the corresponding LDoS, shown by the full blue curve in Fig. 4.2,
exhibits multiple resonances below the continuum, corresponding to multiple localized states.
Although this is not fully apparent from Fig. 4.2, the differences in energies of localized states
closer to the continuum are weakly softened in comparison to the bare phonon energy 𝜔0.
This points to the anharmonicity effects, which are weaker for the deep localized states. These
harmonic deep localized states involve large lattice deformations because of which the electron is
heavily dressed. Consequently, the corresponding electron spectral weight is strongly suppressed
in comparison to electron spectral weights of shallow states just below the continuum, suggesting
the weakening of dressing effects for states closer to the continuum.

The phonon nature of the impurity also greatly affects the continuum of electron states, the
energy region −6 ≤ 𝜔 ≤ 6 in Fig. 4.2. In particular, similarly to the transmission coefficient in
Fig. 3.1 and the scattering cross section in Fig. 4.1, we observe alternate occurrences of minima
and maxima of the LDoS, with the alternation dictated by the phonon energy 𝜔0. Although
broadened due to being embedded in the continuum of delocalized states, these maxima are still
well defined, giving rise to the resonant scattering of electrons on the impurity. In other words,
although the corresponding electrons are delocalized, they spent a significantly large amount of
time in the vicinity of the impurity site.

Number of localized states

It is by now quite obvious that the specific structure of localized states heavily depends on the
impurity parameters. Consequently, it is a tedious task to analyze distinct properties of the LDoS
in the whole parametric space. However, the thing which is both instructive and fairly easy to
implement is the counting of the number of localized states in dependence on the impurity
strength parameters, 𝜀0 and 𝑔. For that purpose, we have developed an algorithm that counts
the maxima below the continuum in the LDoS, providing the number of resonances, that is, the
number of localized states.

For our customary choice of parameters, 𝑡 = 1 and 𝜔0 = 0.5, the number of localized states
in dependence on the impurity strength, 𝜀0 and 𝑔, is shown as a contour plot in Fig. 4.3. The
region without localized states is denoted with black color, while regions get brighter as the
number of localized states increases. As expected, in the static case, 𝑔 = 0, no localized states
exist for a weak impurity, |𝜀0 | < |𝜀𝑐𝑟 | ≈ 4. However, the critical value 𝜀𝑐𝑟 softens as soon as
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Figure 4.3: The number of localized states in dependence on the impurity strength parameters,
𝜀0 and 𝑔, for 𝑡 = 1 and 𝜔0 = 0.5.

the electron-phonon coupling is included, |𝜀𝑐𝑟 (𝑔 ≠ 0) | < |𝜀𝑐𝑟 (𝑔 = 0) |, suggesting that phonons
assist the static impurity to localize an electron. Eventually, for values of the electron-phonon
coupling exceeding the critical value 𝑔𝑐𝑟 ∼ 1.6, phonons alone (𝜀0 = 0) are able to localize the
electron.

As we have shown in Subsection 4.2.1, the presence of a single static impurity may result
in maximally one localized state. This is no longer true even for very small, but finite electron-
phonon couplings. In particular, for finite 𝑔, by increasing |𝜀0 | additional localized states appear
above some threshold values 𝜀𝑐𝑟𝑖 , as can be clearly seen from Fig. 4.3.

Similarly, the appearance of localized states may be initiated by raising the electron-phonon
coupling strength above threshold values 𝑔𝑐𝑟𝑖 for some fixed 𝜀0. In that regard, it is interesting
to note that the electron-phonon coupling is much more efficient in producing localized electron
states than the impurity orbital energy. In other words, in order to increase the number of
localized states by one, the relative change in the electron-phonon coupling strength may be
smaller than the relative change in the impurity orbital energy, |𝑔𝑐𝑟𝑖 − 𝑔𝑐𝑟𝑖+1 | < |𝜀𝑐𝑟𝑖 − 𝜀𝑐𝑟𝑖+1 |, at
least for the parameter space shown in Fig. 4.3.

4.3 Electron mobility

We head back to our main objective of calculating the electron mobility for non-degenerate
electrons in the presence of polaronic impurities. Henceforth, we assume that the concentration
of impurities 𝑛𝑖 is dilute and that they are randomly distributed, so that correlation effects due
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to the scattering by multiple different impurities may be neglected. In such cases, the total
scattering cross section (due to all impurities) may be simply obtained as a product 𝑛𝑖 ⟨𝜎(𝜀𝛼)⟩𝑇 ,
where ⟨𝜎(𝜀𝛼)⟩𝑇 is the scattering cross section due to a single impurity given by Eq. (4.16).

With the total scattering cross section known, it is now trivial to obtain the electron mean
free path, 𝑙−1(𝜀𝛼, 𝑇) = 𝑛𝑖 ⟨𝜎(𝜀𝛼)⟩𝑇 , and the electron relaxation time

𝜏−1(𝜀𝛼, 𝑇) = 𝑙−1(𝜀𝛼, 𝑇)𝑣𝛼 = 𝑛𝑖 ⟨𝜎(𝜀𝛼)⟩𝑇 𝑣𝛼 , (4.27)

where 𝑣𝛼 = 𝑎
ℏ

√
4𝑡𝜀𝛼 is the velocity of the incident electron situated near the bottom of the band,

which in turn can be exploited to calculate the mobility for non-degenerate electrons [58], such
as electrons in weakly doped semiconductors

𝜇(𝑇) = |𝑒 |
𝑚𝑒𝑙

2

3𝑘𝐵𝑇

∫
𝜀

3
2 𝜏(𝜀, 𝑇 )𝑒−𝜀/𝑘𝐵𝑇 𝑑𝜀

/ ∫
𝜀

1
2 𝑒−𝜀/𝑘𝐵𝑇 𝑑𝜀 . (4.28)

Here, it should be stressed that we assume that polaronic impurities are the only source of electron
scatterers. With additional types of relaxation processes included, we may use Matthiessen’s
rule [40] to account for the total relaxation time.

4.3.1 Static case

It is again instructive to consider the static case, 𝑔 = 0, first. Then, as we have already discussed
in Subsection 4.2.1, the temperature independent total scattering section is contributed only by
the 0, 0 channel

𝜎(𝜀𝛼) = 𝜎0,0(𝜀𝛼) =
𝑎2

4𝜋𝑡2

��T 0,0(𝜀𝛼)
��2 , (4.29)

with

T 0,0(𝜀𝛼) =
𝜀0

1 − 𝐺 (0)
l,l

(𝜀𝛼)𝜀0
. (4.30)

Weak impurity

Specifically, for a weak impurity, |𝜀0 | ≪ 1, the 𝑇-matrix is particularly simple, T 0,0 ≈ 𝜀0,
leaving the total scattering cross section both temperature and energy independent

𝜎 =
𝑎2

4𝜋𝑡2
𝜀20 = const . (4.31)

In such circumstances, the temperature independent relaxation time has a trivial energy depen-
dence, 𝜏−1(𝜀𝛼) ∝

√
𝜀𝛼, coming from the electron velocity, and the expression for the mobility
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in Eq. (4.28) reduces to

𝜇(𝑇) ∝ 1

𝑘𝐵𝑇

∫
𝜀𝛼𝑒

−𝜀𝛼/𝑘𝐵𝑇 𝑑𝜀𝛼
/ ∫

𝜀
1
2
𝛼 𝑒

−𝜀𝛼/𝑘𝐵𝑇 𝑑𝜀𝛼 . (4.32)

While evaluating the integrals in Eq. (4.32), we can set the upper limits of integrations to
+∞ since we are only interested in the states near the bottom of the band. The two integrations
then give [59] ∫ +∞

0
𝜀 𝑒−𝜀/𝑘𝐵𝑇 𝑑𝜀 = (𝑘𝐵𝑇)2 , (4.33)

and ∫ +∞

0
𝜀

1
2 𝑒−𝜀/𝑘𝐵𝑇 𝑑𝜀 =

√
𝜋

2
(𝑘𝐵𝑇)

3
2 , (4.34)

resulting in the simple power-law behavior of mobility with temperature

𝜇(𝑇) ∝ 𝑇−𝜈 , with 𝜈 =
1

2
. (4.35)

Vacancy/infinite barrier case

It is also worth commenting on the opposite case of an infinitely strong impurity, |𝜀0 | → ∞,
when the impurity acts as a vacancy/infinite barrier. In that case, the 𝑇-matrix in Eq. (4.30)
approximately equals

T 0,0(𝜀𝛼) ≈ − 1

𝐺
(0)
l,l

(𝜀𝛼)
≈ − 1

𝐺
(0)
l,l

(𝜀𝛼 ≈ 0)
, (4.36)

where we have exploited the fact that near the bottom of the band
[
𝐺

(0)
l,l

(𝜀𝛼)
]−1

does not vary
much. Consequently, the scattering cross section is again energy independent and the mobility
follows the power-law behavior in Eq. (4.35), the same as in the weak impurity case.

Reference value for mobility

We find it particularly convenient to exploit the vacancy/infinite barrier problem to set the
reference value for mobility. In particular, in that special case, with the use of Eqs. (4.27),
(4.28), (4.29), and (4.36), we have

𝜇𝑉 (𝑇) =
|𝑒 |
𝑚𝑒𝑙

4𝜋ℏ𝑡2 |𝐺 (0)
l,l

(𝜀𝛼 = 0) |2

𝑛𝑖𝑎
3
√
4𝑡

2

3𝑘𝐵𝑇

∫
𝜀𝑒−𝜀/𝑘𝐵𝑇 𝑑𝜀

/ ∫
𝜀

1
2 𝑒−𝜀/𝑘𝐵𝑇 𝑑𝜀 , (4.37)
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where we have recovered ℏ, 𝑎, and 𝑘𝐵. With the results in Eqs. (4.33) and (4.34), and the
expression for the effective mass 𝑚 = ℏ2

2𝑡𝑎2
, Eq. (4.37) gives

𝜇𝑉 (𝑇) =
16
√
𝜋

3

|𝑒 |
ℏ𝑛𝑖𝑎

𝑡
3
2 |𝐺 (0)

l,l
(𝜀𝛼 = 0) |2(𝑘𝐵𝑇)−

1
2 . (4.38)

Finally, to define the reference value 𝜇0, we evaluate the mobility in Eq. (4.38) at the
temperature corresponding to the phonon energy, 𝑘𝐵𝑇 = ℏ𝜔0. Specifically, for the choice of
parameters 𝑎 = 1Å, 𝑛𝑖 = (10𝑎)−3, and 𝑡 = 2𝜔0 = 1eV, we have

𝜇0 ≡ 𝜇𝑉 (𝑘𝐵𝑇 = ℏ𝜔0) = 1093.570337 × |𝑒 |𝑎2
ℏ

≈ 166.14
cm2

Vs
. (4.39)

4.3.2 Dynamic case

As soon as the electron-phonon coupling 𝑔 is turned on, such closed-form expressions for the
temperature dependence of the mobility generally become too inconvenient to be analyzed ana-
lytically. Therefore, for cases with the finite electron-phonon coupling, we evaluate numerically
the mobility in Eq. (4.28), with scattering cross sections/relaxation times calculated exactly
within the formalism developed in Chapters 2 and 4.

Temperature dependence

The polaronic impurity parameters may largely differ from one real material to another, affecting
the mobility differently over a wide temperature range. Here, we are mostly interested in the
temperature regime, 𝑇 ≤ 𝜔0, for which thermally activated scattering processes on acoustical
phonons, that frequently dominate at higher temperatures, may not be so prominent as the
effects coming from polaronic impurities. In particular, we show in Fig. 4.4 the temperature
dependence of the mobility in the log-log scale for three sets of parameters. The case with
the weak electron-phonon coupling, 𝑔/𝜔0 ≪ 1, is shown with the full green line. Evidently,
the corresponding mobility shows the power-law behavior, 𝜇(𝑇) ∝ 𝑇−𝜈, in a wide range of
temperatures, further supported by the fit, log 𝜇(𝑇) = −𝜈 log𝑇 + 𝐶, yielding 𝜈 = 1

2 , similarly as
in the case with the weak static impurity. This behavior can be rationalized by noting that for
weak couplings 𝑔 the scattering cross section is mainly dominated by the 𝜎0,0 channel, which is
in turn almost energy independent, similarly as it was in the purely static case.

More interesting cases are, however, cases with strong electron-phonon couplings. In order
to probe the mobility in the strong coupling regime, we have fixed the ratio 𝑔/𝜔0 = 1.45 and
considered two different phonon energies, 𝜔0 = 0.5 and 𝜔0 = 2. The temperature dependence
of mobility for those two choices of 𝜔0 is shown in Fig. 4.4 with the dot-dashed blue line and
the dashed red line, respectively. Although the corresponding mobility shows a more complex
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Figure 4.4: Mobility 𝜇(𝑇) as a function of temperature for different couplings 𝑔 shown in the
log-log scale. Fits log 𝜇(𝑇) = −𝜈 log𝑇 + 𝐶 are shown with the dashed lines.

temperature dependence than in the weak coupling case, we note that in the relevant temperature
range, 0.2 ≤ 𝑇 ≤ 0.5, they again exhibit the power-law behavior. However, the fits now give
𝜈 = 1.61 and 𝜈 = 2.48 for the case with 𝜔0 = 0.5 and 𝜔0 = 2, respectively. As it seems,
those unconventional power-law behaviors are always present, albeit highly non-universal. In
other words, the coefficient 𝜈 is highly sensitive to impurity parameters. The scattering on
polaronic impurities thus may serve as a possible explanation for the broad range of power-law
exponents observed experimentally in various organic crystals [30–32]. It is worth commenting
that the two cases with 𝑔/𝜔0 = 1.45, for which the unconventional power-law behaviors are
observed, fall into the highly non-perturbative regime for which the total scattering cross section
is contributed by many different scattering channels 𝛾, 𝛼. Namely, it implies contributions from
processes described by many high-order diagrams, with many different scattering channels and
partial cross sections becoming increasingly important upon increasing the temperature.

Lastly, regarding the temperature dependence of mobility, we note that the power-law behav-
ior is generally followed by a weak upturn of mobility at elevated temperatures. It is important to
realize that this is not the effect of the phonon nature of the impurity, but rather a consequence of
the slight energy dependence of the scattering cross section. Namely, at elevated temperatures
higher energy states also contribute to the scattering cross section, resulting in the observed
upturn.

Sensitivity of mobility on impurity parameters

As our last remark to the polaronic impurity problem, we consider in Fig. 4.5 the sensitivity
of mobility on impurity parameters 𝜀0 and 𝑔 (inset) for three different temperatures. We
immediately note that all singularities are sensitive to the electron incident energy and get
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averaged out at elevated 𝑇 . In particular, as 𝑇 approaches 𝜔0 in Fig. 4.5, thermal averages in
Eqs. (4.16) and (4.28) make 𝜇 a smooth function of impurity parameters.
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Figure 4.5: Mobility 𝜇(𝑇), shown in the lin-log scale, as a function of 𝜀0 and 𝑔 (inset).

We therefore focus only on the low-temperature case, 𝑇 ≪ 𝜔0, shown with the full black line
in Fig. 4.5. The structure of the corresponding mobility is very rich, showing multiple minima
and maxima as the impurity parameters are varied. In particular, when the model parameters
satisfy resonant scattering conditions, 𝜇 drops sharply, corresponding to a large residual re-
sistivity due to a strong relaxation of electron momenta. For the same model parameters, the
scattering cross section diverges, indicating the appearance of localized states. By comparing
values of 𝜀𝑖 for which the mobility takes minimum values in Fig. 4.5, we note that they roughly
match the values 𝜀𝑐𝑟𝑖 for which localized states appear in Fig. 4.3 for the fixed 𝑔 = 1. The same
holds for 𝜀0 = 0 and the critical values of 𝑔𝑐𝑟𝑖 , shown in the inset of Fig. 4.3. Between the two
minima, the divergences of the mobility are fully apparent as well. This behavior stems from
zeros of T 0,0 ∝ Γ0,0 and indicates a fully transparent behavior of polaronic impurities for some
fine-tuned model parameters.

4.4 Conclusions

We exploit the exact solution of the polaronic impurity model in Eq. (2.1) to exactly solve
the problem of electrons in 3D weakly doped semiconductors strongly scattered by polaronic
impurities, which concentration is assumed to be low. Similarly like the electron transmission,
the electron scattering cross section as a function of the incident electron energy shows multiple
minima and maxima governed by the phonon energy scale. The rich resonant structure of the
electron scattering cross section is also apparent when it is analyzed as a function of impurity
parameters at low temperatures. These resonances point to the appereance of localized electron
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states, which exact structure, studied by the local density of states, heavily depends on impurity
parameters. Generally, for strong electron-phonon couplings, many localized electron states
appear, which is in sharp contrast with the case of a static impurity when only one localized state
may emerge. By calculating the total scattering cross section, including all elastic and inelastic
scattering processes, the electron relaxation time and the electron mobility are obtained. The
temperature dependence of the electron mobility shows the power-law dependence, with the
exponent being highly sensitive to impurity parameters. The latter may explain unconventional
power-law exponents observed experimentally in organic semiconductors. This is a highly non-
perturbative effect for which a large number of scattering channels 𝛾, 𝛼 calculated in very high
orders has to be taken into account. We also note that for some specific impurity parameters
the low-temperature electron mobility diverges, indicating the possibility of a fully transparent
behavior of polaronic impurities.
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Part II

Perturbative approach to the polaron
problem
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Chapter 5

The polaron concept

In the next two Parts II and III of the thesis, we restore the translational invariance of a lattice
by considering the electron-phonon coupling at every lattice site. Our main goal is to address
two aspects of the translationally invariant electron-phonon system. First, we go beyond the
leading order of the perturbation theory in electron-phonon interaction to study both electron
and phonon properties, putting a special emphasis on the role of vertex corrections. Second, we
aim to understand peculiarities and find the correct perturbative treatment of the translationally
invariant electron-phonon system for very different electron density cases. In particular, in Part
II we consider the situation when the electron density is so low that each electron may be treated
independently - the problem known as the polaron problem, while cases with finite electron
densities are left to be discussed in Part III.

The notion of polaron was first introduced by Landau back in 1933 [60], attributed to an
electron trapped by a polarizable lattice deformation. Since then, the concept of polaron was
generalized to describe any single quantum degree of freedom interacting with a bath of bosons.
For example, we can mention ripplopolarons, identified with a self-trapped electron on a surface
deformation of liquid 4He (ripplon) [61–63], angulons as quantum rotors dressed by a quantum
bose field [64, 65], and Bose polarons describing a mobile impurity strongly interacting with a
surrounding Bose-Einstein condensate [66,67]. In particular, the latter gained a lot of attention
in the past years due to the experimental realizations in ultracold atom systems [68,69]. However,
from the whole zoo of polaron quasiparticles that emerged during the past 90 years, in this thesis,
we put focus on the polaron problem in the spirit of Landau’s seminal work. That is, we analyze
the problem of a single electron interacting with a single phonon mode.

5.1 Relevance of polaronic physics

Before we introduce the polaron model Hamiltonian and start with the showcase of our con-
tributions to polaron physics, we want to emphasize its invaluable importance stemming from
the growing number of experimental evidence of polaronic effects in a great variety of ma-
terials. It is by now well established that in some conventional ionic and covalent materials,
like KCl and GaAs, the electron-phonon interaction accounts for the renormalized inertial mass
of electrons due to the surrounding cloud of phonons influencing their motion [70]. Colossal
magnetoresistance in transition metal manganites is also believed to be a consequence of po-
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laronic effects [71–74], supported by the thermally activated hopping reported in manganites
films [75] originating from the small polaron physics. Peculiarities of transport properties of
some quasi-1D systems [76–82] exhibiting the Peierls instability [83], particularly conductive
polymers, are argued to be of polaronic (soliton) origins as well. Apart from transport, polaronic
effects also greatly influence the spectral properties of materials. One of the greatest hallmarks
of polaronic correlations is the occurrence of phonon sidebands in ARPES measurements of
transition metal oxides [84–87]. Last but not least, the open question remains whether and
to what extent polaronic effects shape the puzzling phase diagrams of unconventional super-
conductors like cuprates [88]. Indeed, there exist several indications that the electron-phonon
interaction plays an important role in the physics of cuprates [89–94]. In addition, it is worth
mentioning that Alexandrov and Mott proposed a theory of high-temperature superconductivity
based solely on the electron-phonon interaction in terms of the Bose-Einstein condensate of
small bipolaronic states [95]. However, despite the great theoretical and experimental effort
invested in understanding the properties of cuprate materials, their anomalous behaviors and the
role of electron-phonon interaction is far from understood.

5.2 Model Hamiltonian

The model Hamiltonian which captures the main essences of the polaron problem is given by

𝐻 =
∑︁
k

𝜀k𝑐
†
k
𝑐k +

∑︁
k

𝜔k𝑎
†
k
𝑎k +

∑︁
k,q

𝑔 (k, q)
√
𝑁

𝑐
†
k+q𝑐k

(
𝑎
†
−q + 𝑎q

)
. (5.1)

Here, the operator 𝑐†
k
(𝑐k) creates (annihilates) an electron with a momentum k and an energy 𝜀k,

while the operator 𝑎†
k
(𝑎k) creates (annihilates) a phonon with a momentum k and a frequency𝜔k.

The electron-phonon coupling is described by the last term of the Hamiltonian, characterized
by an electron-phonon matrix element 𝑔 (k, q) /

√
𝑁 , where 𝑁 is the number of lattice sites.

Throughout the thesis, we will mostly consider scenarios where electrons couple to an optical
phonon, which frequency can be approximated by a constant, 𝜔k = 𝜔0.

There are two frequently used electron-phonon matrix elements used in theoretical studies.
The first one implies that the electron-phonon interaction is long-ranged

𝑔 (k, q) = 𝑔 (q) ∝ 1√︁
𝑞𝐷−1

, (5.2)

which identifies the model in Eq. (5.1) with the Fröhlich model, where 𝐷 is a dimension of a
system. The second choice, known in the literature as the Holstein coupling, corresponds to the
momentum-independent electron-phonon interaction

46



𝑔 (k, q) = 𝑔 , (5.3)

describing the short-range interaction in real space. It is worth noting that the Holstein model
can be interpreted as a strongly screened Fröhlich model. Thus, we can argue that by considering
the Holstein model, screening effects are a priori taken into account.

5.3 Categorization of polarons

Despite the apparent simplicity of the Hamiltonian in Eq. (5.1), its solution cannot be obtained in
a closed form. Consequently, one can find various nomenclatures and classifications of polarons
in the literature, among which we highlight [96] as the most systematic and detailed. For example,
some of the classifications include large and small polarons, adiabatic and antiadiabatic regimes,
delocalized and self-trapped polarons, and weak and strong coupling regimes, albeit it is not
always clear what is the connection between those different classifications of polarons/regimes
in terms of the Hamiltonian’s parameters. Moreover, discrepancies even exist between the
interpretation of polaron states within the same classification. As an example, large and small
polarons are sometimes identified with the extended and localized (in space) lattice deformation
following an electron motion, respectively. Alternatively, the large polaron is also defined as a
quasiparticle that almost freely travels through a crystal, while the notion of small polaron is
reserved for the case when the polaron hopping to neighboring lattice sites is very small. In
order to avoid any misinterpretations which may result due to the ambiguities related to the
polaron physics nomenclature, in the following, we present an (over)simplified classification of
polarons that will be used in this thesis.

The parametric space of the model in Eq. (5.1) with the Holstein coupling is spanned by
three energy scales: a hopping integral 𝑡, characterizing the electron dispersion 𝜀k, the phonon
frequency 𝜔0, and the electron-phonon coupling strength 𝑔. One of them can always be set as a
unit of energy, resulting in two independent dimensionless constants governing the categorization
of polarons

𝜅 =
𝜔0

𝑡
, 𝜆 =

𝑔2

𝑡𝜔0
. (5.4)

The parameter 𝜅 is usually used to define different adiabaticity regimes. Analogously, here
we identify 𝜅 ≪ 1 with the adiabatic and 𝜅 ≫ 1 with the antiadiabatic regime. We note
that in a more detailed categorization [96] the adiabaticity of polarons actually depends on the
electron-phonon coupling strength as well, which we do not take into account here.

Regarding the coupling strength, following Eq. (5.4), it would be natural to further classify
polarons based on the parameter𝜆. However, here we rather exploit the electron-phonon coupling
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strength 𝑔 to simply associate the weak coupling regime, 𝑔 ≪ 1, and the strong coupling regime,
𝑔 ≪ 1, with the notion of large and small polarons, respectively. This is motivated by the
paper [97], where the parameter 𝑔 was used to distinguish light delocalized polaron states and
heavy self-trapped polaron states characterized by the exponentially large effective mass. The
former is expected for 𝑔 < 𝑔𝑐, while the latter for 𝑔 > 𝑔𝑐, where 𝑔𝑐 is the critical point of
self-trapping

𝑔𝑐 = 𝜔0 +
√
𝑡𝜔0 . (5.5)

Without going into further details, our oversimplified classification of polaron states distin-
guishes only large (𝑔 ≪ 1) and small (𝑔 ≫ 1) polarons, and adiabatic (𝜅 ≪ 1) and antiadiabatic
(𝜅 ≫ 1) regimes. It is just worth adding that there exists no phase transition but rather a smooth
crossover from large to small polarons in the Holstein model as the coupling strength increases,
at least for non-zero phonon frequencies 𝜔0 ≠ 0 [98, 99].

5.4 Theoretical approaches to the polaron problem

Throughout the years, various theoretical techniques, with more or less success, were used to
address the polaron problem. For weak and strong electron-phonon coupling regimes, analytical
schemes based on the (mostly leading order) perturbation theory gave an initial insight into
the polaron physics [40], albeit failed to correctly account for the polaron properties in the
intermediate coupling regime. This motivated the adaptation of other approaches to the polaron
problem like various variational methods [100, 101], exact (numerical) diagonalization [102],
or density matrix renormalization group [103] in order to fill the gap between the weak and the
strong electron-phonon coupling cases. Among the non-perturbative computational approaches,
we especially highlight Diagrammatic Quantum Monte Carlo simulations [104,105], which were
shown to be very fruitful in studying the polaron problem due to the absence of fermion sign
problem [106]. As an example, they were successfully applied to calculate very accurately the
optical conductivity [107] and the mobility [108] of polarons for all coupling strengths.

5.4.1 DMFT of polarons - bridging the gap between the polaronic impurity
and the polaron problem

One more non-perturbative approach which was shown to be very insightful is the dynamical
mean field theory (DMFT) of polarons [109]. We have singled it out from other approaches
since it shares a deep connection with the polaronic impurity problem, which we have exactly
solved in Part I.

In particular, in the DMFT of polarons one may lift off with the exact solution of the polaronic
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impurity model, albeit considering only diagonal matrix elements Γ𝛼,𝛼 (𝜔) in Eq. (2.32) with
𝜀0 = 0. Specifically, at zero temperature, it is enough to keep only Γ0,0(𝜔) ≡ Σ(0) (𝜔),
corresponding to the momentum-independent electron self-energy. The translational invariance
of the problem, that is of the electron propagator, is then obtained by treating all lattice sites on
equal footing by using the self-energy Σ(0) (𝜔) [110]

G(0)
i,j

(𝜔) = 𝐺 (0)
i,j

(𝜔) + Σ(0) (𝜔)
∑︁
r

𝐺
(0)
i,r

(𝜔)G(0)
r,j

(𝜔) . (5.6)

The propagator G(0)
i,j

(𝜔) is equal [111] to the electron propagator derived in the context of the
momentum averaging approximation [112,113]. In particular, it involves only the processes for
which the phonons occupy just one lattice site at the same time [110].

The next step of the DMFT is to iteratively use Eq. (2.32) to account also for other processes
involving multiple lattice sites. To be specific, in the 𝑛−th step of the iteration one determines
the new local propagator

G (𝑛)
l,l

(𝜔) = 𝐺 (0)
l,l

(𝜔) + Σ(𝑛−1) (𝜔)
∑︁
r≠l

𝐺
(0)
l,r

(𝜔)G (𝑛)
r,j

(𝜔) . (5.7)

Such a propagator prevents the double counting of diagrams [114]. Now, this new local
propagator can be utilized to calculate Σ(𝑛) (𝜔) by means of Eq. (2.32), which in turn gives the
polaron Green’s function in the 𝑛−th iteration

G(𝑛)
i,j

(𝜔) = 𝐺 (0)
i,j

(𝜔) + Σ(𝑛) (𝜔)
∑︁
r

𝐺
(0)
i,r

(𝜔)G(𝑛)
r,j

(𝜔) . (5.8)

This procedure is commonly repeated until the self-consistency condition

[
G (𝑛)
l,l

(𝜔)
]−1

=

[
G(𝑛)

l,l
(𝜔)

]−1
+ Σ(𝑛) (𝜔) , (5.9)

is achieved.

Despite the many high-order processes taken into account by the DMFT, it gives an approx-
imate solution to the polaron problem, so it is worth knowing its limitations. Following the
arguments presented in [110], the DMFT cannot account for vertex corrections that involve more
than one lattice site, which is in accordance with the local nature of the momentum-independent
self-energy Σ(𝑛) (𝜔). However, it becomes that in the limit of infinite dimensional system the
self-energy is purely local [109] and correspondingly the DMFT provides the exact solution for
that case, with non-local vertex contributions becoming increasingly important with reducing
the dimensionality of the system. Moreover, it was also argued [110] that non-local vertex
corrections become irrelevant as the adiabaticity parameter 𝜅 = 𝜔0/𝑡 increases, rendering the
DMFT generally suitable in the antiadiabatic regime. This provides us a clear motivation to study
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in more depth the role and properties of vertex corrections in the polaron problem, especially
for systems with reduced dimensionality, depending on the adiabaticity parameter.
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Chapter 6

Electronic properties of polarons

In this Chapter 6, we analyze the polaron problem through the lens of the electron degree of
freedom. In particular, we consider the propagation of an electron injected in an otherwise
empty band in the presence of the Holstein coupling. Similarly as in the polaronic impurity
problem, in that special case, the ground state in Eq. (1.1) contains zero electrons, which allows
us to draw all Feynman diagrams in terms of fermion propagators involving only the electron
propagation, represented by the dashed line in Fig. 1.1(c). Correspondingly, in all calculations,
we may keep only the electron part of the unperturbed fermion Green’s function

𝐺+
0 (k, 𝐸) =

1

𝐸 − 𝜉k + 𝑖𝜂
. (6.1)

Motivated by the discussion in Chapter 5, specifically in Subsection 5.4.1, we are eager
to analyze how the (non-)locality of the self-energy manifests in the perturbation theory for
low-dimensional systems. Therefore, we put focus on the 1D case with the electron dispersion
𝜀𝑘 = 2𝑡 (1 − cos 𝑘) (with the lattice constant 𝑎 = 1 and k ≡ 𝑘), such that the bottom of the band
is at 𝜀𝑘=0 = 0 and the Fermi level for the non-interacting case equals 𝜇 = 0, and consider the
electron self-energy in the weak coupling perturbation theory. The strong coupling case is only
briefly discussed at the end of Chapter 6.

For starters, we evaluate the electron self-energy in the leading order of the weak coupling
perturbation theory and introduce relevant concepts describing the renormalization of electron
properties. In particular, we focus on the polaron binding energy, the electron spectral weight,
and the electron effective mass. The main actors of Chapter 6 are, however, two next-to-leading
order contributions to the electron self-energy, particularly the contribution involving the leading
vertex correction. In contrast to the leading order contribution, the two next-to-leading order
contributions were rarely studied in the polaron problem in details [115–117], where the non-
locality of the vertex correction contribution was only briefly discussed in [115]. Therefore, we
contribute by studying in more depth the two contributions and the non-locality of the vertex
correction contribution in dependence on the adiabaticity parameter, in the light of the three
aforementioned electron properties.
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q

k + q

Figure 6.1: Diagrammatic representation of the leading-order contribution in the weak coupling
perturbation theory to the electron self-energy in the polaron problem.

6.1 Leading order weak coupling perturbation theory

The leading order contribution in the weak coupling perturbation theory to the electron Green’s
function comes from the second order contribution in the electron-phonon interaction, with the
corresponding electron self-energy being pictorially represented by the Feynman diagram in
Fig. 6.1. By using the standard rules [40] for evaluating Feynman diagrams, this self-energy
contribution can be written as

Σ(2) (𝑘, 𝐸) = 𝑖 𝑔
2

𝑁

∑︁
𝑞

∫ +∞

−∞

𝑑𝜔

2𝜋
𝐺+

0 (𝑘 + 𝑞, 𝐸 + 𝜔)𝐷0(𝑞, 𝜔) . (6.2)

Here, 𝐷0(𝑞, 𝜔) corresponds to the Fourier transform of the free phonon Green’s function in
Eq. (1.9)

𝐷0(𝑞, 𝜔) =
1

𝜔 − 𝜔0 + 𝑖𝜂
− 1

𝜔 + 𝜔0 − 𝑖𝜂
. (6.3)

By recalling that 𝐺+
0 (𝑘 + 𝑞, 𝐸 + 𝜔) only propagates the electron, Eq. (6.1), the integration

over the frequency 𝜔 can be straighforwardly carried out in the complex plane, giving

Σ(2) (𝐸) = 𝑔2

𝑁

∑︁
𝑞

1

𝐸 − 𝜔0 − 𝜀𝑞 + 𝑖𝜂
. (6.4)

The remaining summation over the first Brillouin zone,
∑
𝑞 → ∑𝜋

𝑞=−𝜋, may in the physically
relevant regimes of a huge number of lattice sites, 𝑁 → ∞, be replaced by the integral,∑𝜋
𝑞=−𝜋 → 𝑁

2𝜋

∫ +𝜋
−𝜋 𝑑𝑞. As shown in Appendix A.1, this integration can be carried out analytically,

resulting in the momentum-independent, that is local self-energy

ReΣ(2) (𝐸) =


− 𝑔2√

(𝐸−𝜔0) (𝐸−𝜔0−4𝑡)
, 𝐸 < 𝜔0 ,

𝑔2√
(𝐸−𝜔0) (𝐸−𝜔0−4𝑡)

, 𝐸 > 𝜔0 + 4𝑡 ,

0 , elsewhere ,

(6.5)
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and

ImΣ(2) (𝐸) = − 𝑔2√︁
(𝐸 − 𝜔0) (𝜔0 + 4𝑡 − 𝐸)

Θ(𝐸 − 𝜔0)Θ(𝜔0 + 4𝑡 − 𝐸) . (6.6)

6.1.1 Electron spectral properties

The influence of this leading order self-energy contribution on electron properties can be most
beautifully demonstrated by considering the electron spectral function defined by

𝐴(𝑘, 𝐸) = −1

𝜋
𝐺 (𝑘, 𝐸) . (6.7)

By taking advantage of the self-energy Σ(𝑘, 𝐸), the full electron Green’s function can be written
as

𝐺 (𝑘, 𝐸) = 1

𝐸 − 𝜉𝑘 − ReΣ(𝑘, 𝐸) + ReΣ(0, 0) + 𝑖ImΣ(𝑘, 𝐸) , (6.8)

so

𝐴(𝑘, 𝐸) = −1

𝜋

ImΣ(𝑘, 𝐸)
[𝐸 − 𝜉𝑘 − ReΣ(𝑘, 𝐸) + ReΣ(0, 0)]2 + [ImΣ(𝑘, 𝐸)]2

. (6.9)

Here, ReΣ(0, 0) accounts for the change of the chemical potential due to the change in the band
minimum and brings the zero excitation energy back at 𝐸 = 0. As we shall argue, it can be
exploited to calculate the polaron binding energy.

In the absence of interactions (ReΣ(𝑘, 𝐸) = ImΣ(𝑘, 𝐸) = 0), it is easy to see that the spectral
function in Eq. (6.9) reduces to the delta peak located at the unperturbed electron energy
(measured from the Fermi level)

𝐴0(𝑘, 𝐸) = 𝛿(𝐸 − 𝜉𝑘 ) . (6.10)

Correspondingly, the total electron spectral weight, obtained by integrating the spectral function
over the energy 𝐸 , is trivially conserved and normalized to unity

𝑍𝑘 =

∫ +∞

−∞
𝑑𝐸𝐴0(𝑘, 𝐸) = 1 . (6.11)

This simple scenario changes with the inclusion of the finite electron-phonon interaction.
In particular, in Fig. 6.2, we show a typical electron spectrum in the leading order of the weak
coupling perturbation theory. It is immediately evident that polaronic effects drastically render
the spectrum even in the lowest order of the perturbation theory, dividing the spectrum into the
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Figure 6.2: Typical electron spectral function in the leading order of the weak coupling pertur-
bation theory. The unperturbed electron dispersion 𝜀𝑘 is shown with the dashed line, while the
zero excitation energy, the phonon energy, and the energy 𝐸 = 𝜔0 + 4𝑡 (all measured from the
Fermi level 𝜇 = 0) are shown with the dot-dashed, full, and dotted lines, respectively.

coherent and the incoherent parts, within the energy windows 0 < 𝐸 < 𝜔0 and𝜔0 < 𝐸 < 𝜔0+4𝑡,
respectively. The structure of the spectrum above 𝐸 > 𝜔0 + 4𝑡 is an artifact of the truncation of
perturbation theory.

This division of the spectrum can be easily rationalized by looking into the expression for
the imaginary part of the self-energy in Eq. (6.6), being zero and finite in the coherent and the
incoherent frequency window, respectively, resulting in a smearing of the spectrum in the latter
case. Namely, for energies 𝐸 > 𝜔0, the electron has enough energy to emit a real phonon, which
significantly reduces its lifetime proportional to ImΣ by relaxing its momentum and excitation
energy. Accordingly, a state within the incoherent region may be interpreted as a polaron state
plus a real phonon, which are not, however, spatially correlated [118].

On the other hand, for energies 𝐸 < 𝜔0 the emission of phonons is forbidden by the energy
conservation law. Correspondingly, this part of the spectrum is perfectly coherent and only
phonons appearing in the system are virtual phonons that coherently follow an electron motion
and renormalize its properties. In particular, as can be clearly seen from Fig. 6.2, within the
coherent frequency window a polaron band emerges, characterized by the renormalized effective
mass 𝑚∗ and electron spectral weight 𝑍𝑘 , and the shifted band minimum, when compared to the
unperturbed band 𝜀𝑘 .
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6.1.2 Renormalization effects

Polaron binding energy

To put the zero excitation energy back at 𝐸 = 0 for 𝑔 ≠ 0 in Fig. 6.2, it was mandatory to
account for the change in the chemical potential due to the shift in the polaron band minimum.
Namely, due to the electron-phonon correlations the ground state energy of the unperturbed
system 𝐸0 = 𝜀𝑘=0 = 0 was lowered Δ𝐸0 < 0, providing the new ground state energy of the
coupled system, 𝐸𝐺 = Δ𝐸0, and defining the new polaron band minimum. Accordingly, the
shift Δ𝐸0 can be interpreted as the polaron binding energy and is given by

𝐸𝐵 = Δ𝐸0 = ReΣ(0, 0) . (6.12)

By recalling our result for ReΣ(2) (𝐸) in Eq. (6.5), we recover the well known result [40] for
the leading order contribution to the polaron binding energy

𝐸
(2)
𝐵

= − 𝑔2√︁
𝜔0(𝜔0 + 4𝑡)

≡ −𝛼𝜔0 , (6.13)

where we have introduced the dimensionless parameter

𝛼 =
𝑔2

𝜔
3/2
0

√
𝜔0 + 4𝑡

, (6.14)

with 𝛼 = 𝑔2/𝜔2
0 and 𝛼 ∼ 𝑔2/𝜔3/2

0 𝑡1/2, in the antiadiabatic and the adiabatic regime, respectively.
As shall become evident from our upcoming discussion, the polaron perturbation expansion
should rather be viewed as the expansion in 𝛼, rather than as the expansion in the coupling
strength 𝑔.

Electron spectral weight

Following the logic of the division of the spectrum into the coherent and the incoherent parts,
we can single out the singular part of the full electron Green’s function from the incoherent
smooth contribution

𝐺 (𝑘, 𝐸) ≈ 𝐺𝑐 (𝑘, 𝐸) + 𝐺𝑖𝑛𝑐 (𝑘, 𝐸) =
𝑍𝑘 (𝐸)

𝐸 − 𝜉∗
𝑘
+ 𝑖𝜂 + 𝐺𝑖𝑛𝑐 (𝑘, 𝐸) . (6.15)

Here, 𝑍𝑘 (𝐸) is the electron spectral weight confined within the coherent polaron excitation.
In contrast to the non-interacting case, where all of the electron spectral weight was confined
within the peak at 𝜉𝑘 , some of the electron spectral weight is now also distributed among the
incoherent contribution𝐺𝑖𝑛𝑐 (𝑘, 𝐸). Since the total electron spectral weight is always conserved,
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we generally expect 𝑍𝑘 (𝐸) ≤ 1.

𝑍𝑘 (𝐸) can easily be calculated with the knowledge of the electron self-energy [40]

𝑍𝑘 (𝐸) =
[
1 − 𝜕ReΣ(𝑘, 𝐸)

𝜕𝐸

]−1
. (6.16)

In the leading order we get

𝑍 (2) (𝐸) = 1

1 − 𝑔2 𝐸−𝜔0−2𝑡
[(𝐸−𝜔0) (𝐸−𝜔0−4𝑡)]

3
2

. (6.17)

It is now straightforward to estimate how much of the electron spectral weight is confined around
the bottom of the polaron band. We simply evaluate

𝑍 (2) (𝐸 = 0) = 1

1 + 𝑔2 𝜔0+2𝑡
[𝜔0 (𝜔0+4𝑡)]

3
2

≈ 1 − 𝑔2 𝜔0 + 2𝑡

[𝜔0(𝜔0 + 4𝑡)]
3
2

, (6.18)

where we have exploited the assumption that 𝑔 is small. Correspondingly, the electron spectral
weight near the bottom of the polaron band is only slightly lower than in a free electron case,
due to the spectral weight of the order 𝑔2 being transferred to the incoherent continuum.

It is particularly interesting to obtain the adiabatic and the antiadiabatic limit of the electron
spectral weight in Eq. (6.18). In the adiabatic limit, we get

𝑍 (2) (𝐸 = 0) ≈ 1 − 1

4

𝑔2

𝜔2
0

√
𝜅 ≈ 1 − 𝛼

2
, (6.19)

while in the antiadiabatic regime we have

𝑍 (2) (𝐸 = 0) ≈ 1 − 𝑔2

𝜔2
0

≈ 1 − 𝛼 . (6.20)

We note that in the adiabatic regime the electron spectral weight is less reduced than in the
antiadiabatic regime, due to the appearance of the factor

√
𝜅.

The value of 𝑍𝑘 (𝐸), however, decreases dramatically as the polaron band reaches the phonon
energy near the Brillouin zone boundaries, where the polaron band peak is barely visible in
Fig. 6.2. This readily follows from Eq. (6.17), giving

𝑍 (2) (𝐸 → 𝜔0) ≈
4
√
𝑡

𝑔2
(𝜔0 − 𝐸)

3
2 → 0 . (6.21)

As the polaron band approaches the phonon energy, the electron content of the polaron band
evidently decreases and the phonon character starts to dominate the polaron state.

This decrease of the electron spectral weight near the phonon energy is accompanied by the
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flattening of the polaron band, as is also clearly evident from Fig. 6.2. To quantitatively estimate
this flattening, we search for the poles of the electron Green’s function

𝐺 (2) (𝑘, 𝐸) = 1

𝐸 − 𝜀𝑘 − 𝑔2√
𝜔0 (𝜔0+4𝑡)

+ 𝑔2√
(𝐸−𝜔0) (𝐸−𝜔0−4𝑡)

+ 𝑖𝜂
, (6.22)

providing the equation for the dispersion

𝐸 − 𝜀𝑘 −
𝑔2√︁

𝜔0(𝜔0 + 4𝑡)
+ 𝑔2√︁

(𝐸 − 𝜔0) (𝐸 − 𝜔0 − 4𝑡)
= 0 . (6.23)

Since we are interested in the part of the dispersion just below the phonon energy, 𝐸 ≈ 𝜔0, we
can simplify the above equation to

𝜔0 − 𝜀𝑘 +
𝑔2√︁

4𝑡 (𝜔0 − 𝐸)
= 0 , (6.24)

where we introduced 𝜀𝑘 ≡ 𝜀𝑘 + 𝑔2√
𝜔0 (𝜔0+4𝑡)

. This simplified equation can now be readily solved,

yielding

(𝜀𝑘 − 𝜔0)2 ≈
𝑔4

4𝑡 (𝜔0 − 𝐸)
⇒ 𝐸 ≈ 𝜔0 −

𝑔4

4𝑡 (𝜀𝑘 − 𝜔0)2
. (6.25)

Interestingly, 𝐸 does not decrease with 𝑔2, but rather with 𝑔4.

Electron effective mass

The last electron property we consider, which gets renormalized upon the interaction with
phonons, is the electron effective mass, which characterizes the polaron band dispersion 𝜉∗

𝑘
in

Eq. (6.15). As was the case with the electron spectral weight, the electron effective mass can
also be fully calculated by knowing the electron self-energy [40]

𝑚∗

𝑚
= lim
𝜀𝑘→0

[
1 − 𝜕ReΣ(𝑘,𝐸)

𝜕𝐸

1 + 𝜕ReΣ(𝑘,𝐸)
𝜕𝜀𝑘

] �����
𝐸=0

. (6.26)

It is important to note that the results obtained for the electron spectral weight in the leading
order can be straightforwardly exploited to calculate the electron effective mass. This is a direct
consequence of the locality of the leading order self-energy in Eq. (6.5), resulting in

𝑚∗(2)

𝑚
= 1 − 𝜕ReΣ(2) (𝐸)

𝜕𝐸

����
𝐸=0

=

[
𝑍 (2) (𝐸 = 0)

]−1
= 1 + 𝑔2 ℏ𝜔0 + 2𝑡

[ℏ𝜔0(ℏ𝜔0 + 4𝑡)]
3
2

≥ 1 . (6.27)

57



(a) (b)

k+q k+qk+q+q’ k+q k+q’k+q+q’

q
q’

q q’

Figure 6.3: Diagrammatic representation of two next-to-leading order contributions to the
electron self-energy in the polaron problem. (a) Non-crossing and (b) crossing diagram.

As anticipated, the electron gets heavier, 𝑚∗ > 𝑚, due to the virtual cloud of phonons accompa-
nying its motion.

For completeness, we note that in the adiabatic regime the electron effective mass equals

𝑚∗(2)

𝑚
= 1 + 1

4

𝑔2

(ℏ𝜔0)2
√
𝜅 ≈ 1 + 𝛼

2
, (6.28)

while in the antiadiabatic regime we have

𝑚∗(2)

𝑚
= 1 + 𝑔2

(ℏ𝜔0)2
≈ 1 + 𝛼 . (6.29)

Evidently, the electron effectively becomes heavier in the latter case. This is easy to rationalize
since in the antiadiabatic regime the virtual cloud of phonons is localized on a single site and
not smeared over several sites like in the adiabatic case, so the electron hopping demands a shift
of the whole lattice deformation.

6.2 Next-to-leading order weak coupling perturbation theory

The leading order electron self-energy in Eq. (6.5) turned out to be momentum independent,
so to obtain the leading non-local contribution to the electron self-energy, we have to make a
step further and consider the next-to-leading order electron self-energy as well. In particular,
in Fig. 6.3, two Feynman diagrams representing the two next-to-leading order contributions to
the electron self-energy are shown. Since the two phonon lines in the diagram Fig. 6.3(b) cross
each other, and those in the diagram Fig. 6.3(a) do not, we call the diagram in Fig. 6.3(a) the
non-crossing diagram, and the diagram in Fig. 6.3(b) the crossing diagram. Obviously, the
crossing diagram involves the leading vertex correction and provides us with the anticipated
non-local contribution to the electron self-energy.

The two diagrams in Fig. 6.3 are evaluated in Appendix A.2 for finite electron densities,
from which the results in the polaron limit may be simply obtained by setting all Fermi-Dirac
distributions to zero, 𝑛k = 0. As shown in [115], the two resulting contributions can be
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computed analytically in the 1D case for energies below the phonon energy, while in [117] they
were calculated in the whole relevant energy range. However, since we are interested in the
properties of the polaron band, which is anyway located only below the phonon energy due to
the leading order contribution, here we just exploit the results in [115] to account for the polaron
binding energy, electron spectral weight, and electron effective mass.

6.2.1 Non-crossing diagram

Following [115] and the short derivation in Appendix A.2.4, we have for the electron self-energy
coming from the non-crossing diagram

ReΣ(𝑁𝐶) (𝐸 < 𝜔0) = −𝑔4 1

(𝜔0 − 𝐸)
3
2 (4𝑡 + 𝜔0 − 𝐸)

3
2

(2𝑡 + 𝜔0 − 𝐸)
(2𝜔0 − 𝐸)

1
2 (4𝑡 + 2𝜔0 − 𝐸)

1
2

. (6.30)

Since Σ(𝑁𝐶) does not have momentum dependence, we conclude that this contribution to the
electron self-energy is local.

The corresponding correction to the polaron binding energy can be simply evaluated

𝐸
(𝑁𝐶)
𝐵

= ReΣ(𝑁𝐶) (0) = −1
2
𝛼2𝜔0

√︂
𝜔0 + 2𝑡

𝜔0 + 4𝑡
, (6.31)

together with the results in the adiabatic

𝐸
(𝑁𝐶)
𝐵

= − 1

2
√
2
𝛼2𝜔0 ≈ −0.35𝛼2𝜔0 , (6.32)

and in the antiadiabatic regime

𝐸
(𝑁𝐶)
𝐵

= −1
2
𝛼2𝜔0 . (6.33)

On the other hand, the evaluation of the correction to the electron spectral weight, Eq. (6.16),
and the electron effective mass, Eq. (6.26), is slightly more complicated. Namely, we have to
evaluate the derivative of ReΣ(𝑁𝐶) (𝐸)
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𝜕ReΣ(𝑁𝐶) (𝐸)
𝜕𝐸

= 𝑔4
1

(𝜔0 − 𝐸)
3
2 (4𝑡 + 𝜔0 − 𝐸)

3
2

1

(2𝜔0 − 𝐸)
1
2 (4𝑡 + 2𝜔0 − 𝐸)

1
2

×

×
[
1 + (2𝑡 + 𝜔0 − 𝐸)

{
−3
2

[
1

𝜔0 − 𝐸
+ 1

4𝑡 + 𝜔0 − 𝐸

]
− 1

2

[
1

2𝜔0 − 𝐸
+ 1

4𝑡 + 2𝜔0 − 𝐸

]}]
=

{
1

𝐸 − 𝜔0 − 2𝑡
+ 3

2

[
1

𝜔0 − 𝐸
+ 1

4𝑡 + 𝜔0 − 𝐸

]
+ 1

2

[
1

2𝜔0 − 𝐸
+ 1

4𝑡 + 2𝜔0 − 𝐸

]}
×

× Σ(𝑁𝐶) (𝐸) ,
(6.34)

so

𝜕ReΣ(𝑁𝐶) (𝐸)
𝜕𝐸

����
𝐸=0

=

{
− 1

2𝑡 + 𝜔0
+ 3

2

[
1

𝜔0
+ 1

4𝑡 + 𝜔0

]
+ 1

2

[
1

2𝜔0
+ 1

4𝑡 + 2𝜔0

]}
×

×
{
−1
2
𝛼2𝜔0

√︂
𝜔0 + 2𝑡

𝜔0 + 4𝑡

}
.

(6.35)

This expression is not particularly suggestive, so we consider its adiabatic and antiadiabatic
limits separately. In the adiabatic regime, we have

𝜕ReΣ(𝑁𝐶) (𝐸)
𝜕𝐸

����
𝐸=0

= − 7

8
√
2
𝛼2 ≈ −0.62𝛼2 , (6.36)

while in the antiadiabatic regime we get

𝜕ReΣ(𝑁𝐶) (𝐸)
𝜕𝐸

����
𝐸=0

= −5
4
𝛼2 . (6.37)

6.2.2 Crossing diagram

The adaptation of the self-energy contribution coming from the crossing diagram in [115] is not
so straightforward and demands a little bit more work. The lengthy, albeit rather simple algebra
is again presented in Appendix A.2.4, resulting in
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ReΣ(𝐶) (𝑘, 𝐸 < 𝜔0) = −𝑔4
[

(2𝑡 + 𝜔0 − 𝐸)2 − 2𝑡2

(𝜔0 − 𝐸) (4𝑡 + 𝜔0 − 𝐸)
+ (2𝑡 + 𝜔0 − 𝐸) (2𝑡 + 2𝜔0 − 𝐸)√︁

(4𝑡 + 𝜔0 − 𝐸) (𝜔0 − 𝐸) (4𝑡 + 2𝜔0 − 𝐸) (2𝜔0 − 𝐸)

]
×

× 1

(2𝑡 + 2𝜔0 − 𝐸)
[
(2𝑡 + 𝜔0 − 𝐸)2 − 2𝑡2

]
+ (2𝑡 + 𝜔0 − 𝐸)

√︁
(4𝑡 + 𝜔0 − 𝐸) (𝜔0 − 𝐸) (4𝑡 + 2𝜔0 − 𝐸) (2𝜔0 − 𝐸) − 4𝑡3 cos 𝑘

.

(6.38)
Evidently, Σ(𝐶) (𝑘, 𝐸) represents the leading order non-local contribution to the electron self-
energy, due to the momentum dependence coming from cos 𝑘 in the denominator.

In order to compare contributions of the non-crossing and the crossing diagram to the
renormalized electron properties, we consider the correction to the polaron binding energy due
to ReΣ(𝐶) (𝑘, 𝐸 < 𝜔0)

𝐸
(𝐶)
𝐵

= ReΣ(𝐶) (0, 0) = −𝑔4
[
(2𝑡 + 𝜔0)2 − 2𝑡2

𝜔0 (4𝑡 + 𝜔0)
+ (2𝑡 + 𝜔0) (2𝑡 + 2𝜔0)√︁

(4𝑡 + 𝜔0)𝜔0(4𝑡 + 2𝜔0)2𝜔0

]
×

× 1

(2𝑡 + 2𝜔0)
[
(2𝑡 + 𝜔0)2 − 2𝑡2

]
+ (2𝑡 + 𝜔0)

√︁
(4𝑡 + 𝜔0)𝜔0(4𝑡 + 2𝜔0)2𝜔0 − 4𝑡3

,

(6.39)

and provide in Appendix A.2.4 its derivatives 𝜕ReΣ (𝐶 ) (𝑘,𝐸)
𝜕𝐸

and 𝜕ReΣ (𝐶 ) (𝑘,𝐸)
𝜕𝜀𝑘

.

Due to the complexity of the obtained expressions, it is, however, much more instructive
to just consider the results in the adiabatic and the antiadiabatic regime. In particular, in the
adiabatic regime, we get

𝐸
(𝐶)
𝐵

= − 2 +
√
2

2
√
2(3 + 2

√
2)
𝛼2𝜔0 =

[
− 1
√
2
+ 1

2

]
𝛼2𝜔0 ≈ −0.21𝛼2𝜔0 , (6.40)

and

𝜕ReΣ(𝐶) (𝑘, 𝐸)
𝜕𝐸

����
0,0

= − 46 + 33
√
2

8
(
3 + 2

√
2
)2𝛼2 , 𝜕ReΣ(𝐶) (𝑘, 𝐸)

𝜕𝜀𝑘

����
0,0

=
2 +

√
2

4
√
2(3 + 2

√
2)2

𝛼2 . (6.41)

On the other hand, the antiadiabatic limit yields

𝐸
(𝐶)
𝐵

= −1
2
𝛼2𝜔0 , (6.42)

and
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𝜕ReΣ(𝐶) (𝑘, 𝐸)
𝜕𝐸

����
0,0

= −5
4
𝛼2 ,

𝜕ReΣ(𝐶) (𝑘, 𝐸)
𝜕𝜀𝑘

����
0,0

=
1

4𝜅2
𝛼2 ∼ O(𝜅−2) . (6.43)

One striking result is immediately apparent. Namely, in the antiadiabatic regime, 𝜅 ≫ 1, the
non-local contribution 𝜕ReΣ (𝐶 ) (𝑘,𝐸)

𝜕𝜀𝑘

���
0,0

is suppressed by the factor 𝜅−2. Thus, our analysis, based
on the perturbation theory, strongly supports the anticipated result that non-local contributions
of the electron self-energy are negligible in the antiadiabatic regime.

6.2.3 Total next-to-leading order contributions to the renormalized elec-
tron properties

Finally, we are in a position to evaluate and compare the contributions of both the non-crossing
and the crossing diagram to the polaron binding energy, electron spectral weight, and electron
effective mass. Following the logic of two precedent Subsections 6.2.1 and 6.2.1, we consider
only the results in the adiabatic and the antiadiabatic regime.

Polaron binding energy

By exploiting Eqs. (6.32) and (6.40), we have for the polaron binding energy to the next-to-
leading order in the adiabatic regime

𝐸
(4)
𝐵

= 𝐸
(2)
𝐵

+ 𝐸 (𝑁𝐶)
𝐵

+ 𝐸 (𝐶)
𝐵

= −𝛼𝜔0 −
1

2
√
2
𝛼2𝜔0 −

2 −
√
2

2
√
2
𝛼2𝜔0

= −𝛼𝜔0 −
[
3
√
2

4
− 1

2

]
𝛼2𝜔0 ≈ −𝛼𝜔0 − 0.56𝛼2𝜔0 ,

(6.44)

while from Eqs. (6.33) and (6.42) in the antiadiabatic regime we get

𝐸
(4)
𝐵

= 𝐸
(2)
𝐵

+ 𝐸 (𝑁𝐶)
𝐵

+ 𝐸 (𝐶)
𝐵

= −𝛼𝜔0 −
1

2
𝛼2𝜔0 −

1

2
𝛼2𝜔0 = −𝛼𝜔0 − 𝛼2𝜔0 . (6.45)

It is interesting to note that both the non-crossing and the crossing diagram contributions take an
equally important part in determining the polaron binding energy in both the adiabatic and the
antiadiabatic regime, clearly opposing Migdal’s result [119] valid in cases with high electron
densities. In particular, while the contribution from the crossing diagram slightly subceeds that
of the non-crossing diagram in the adiabatic regime, in the antiadiabatic regime both diagrams
give an equal correction to the polaron binding energy. This highlights the importance of
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vertex corrections in the polaron problem and once more supports the almost local nature of the
crossing diagram contribution in the antiadiabatic regime.

Electron spectral weight and electron effective mass

By combining together all contributions in Eqs. (6.19), (6.36), and (6.41), and inserting them
into Eq. (6.16), we also get the next-to-leading order result for the electron spectral weight in
the adiabatic regime

𝑍
(4)
𝑘≈0(𝐸 ≈ 0) = 1 − 𝛼

2
− 185 + 130

√
2

8
√
2
(
3 + 2

√
2
)2𝛼2 ≈ 1 − 𝛼

2
− 0.96𝛼2 . (6.46)

In contrast to the leading order scenario, where the inverse of 𝑍 (2) (𝐸 ≈ 0) was sufficient to
evaluate the electron effective mass, the inverse of Eq. (6.46) cannot be so simply exploited to
calculate 𝑚∗(4)

𝑚
due to the finite non-local contribution of the crossing diagram in Eq. (6.41).

Namely, in order to obtain 𝑚∗(4)

𝑚
, we have to consider full Eq. (6.26) with both the local and

the non-local contribution of Eq. (6.41) in the numerator and the denominator, respectively,
resulting in

𝑚∗(4)

𝑚
=

1 + 𝛼
2 + 185+130

√
2

8
√
2
(
3+2

√
2
)2𝛼2

1 + 2+
√
2

4
√
2(3+2

√
2)2
𝛼2

. (6.47)

By expanding the denominator for small 𝛼, we have to the order 𝛼2

𝑚∗(4)

𝑚
= 1 + 𝛼

2
+


185 + 130

√
2

8
√
2
(
3 + 2

√
2
)2 − 2 +

√
2

4
√
2(3 + 2

√
2)2

 𝛼
2

= 1 + 𝛼
2
+ 181 + 128

√
2

8
√
2
(
3 + 2

√
2
)2𝛼2 ≈ 1 + 𝛼

2
+ 0.94𝛼2 .

(6.48)

Although the overall difference between
[
𝑍 (4)]−1 and 𝑚∗(4)

𝑚
turned out to be rather small, it

highlights the distinguished non-local nature of vertex corrections in the adiabatic regime.

The simple leading order scenario, however, continues to hold true in the antiadiabatic
regime, for which we have provided the strong argument that the non-local part of the electron
self-energy is truly negligible. In particular, in the antiadiabatic regime, we have
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𝑍
(4)
𝑘≈0(𝐸 ≈ 0) = 1 − 𝛼 − 5

2
𝛼2 ,

𝑚∗(4)

𝑚
=

[
𝑍
(4)
𝑘≈0(𝐸 ≈ 0)

]−1
= 1 + 𝛼 + 5

2
𝛼2 , (6.49)

which we obtained by putting results of Eqs. (6.20), (6.37), and (6.43) into Eq. (6.16). It is
worth noting that both contributions from the non-crossing and the crossing diagram to 𝑍 (4) are
again equal, similarly as were contributions 𝐸 (𝑁𝐶)

𝐵
and 𝐸 (𝐶)

𝐵
to the polaron binding energy.

6.3 Strong coupling perturbation theory

The strong coupling regime demands a conceptually different view of the polaron problem.
Rather than assuming that the electron moves freely through the lattice and that the electron-
phonon interaction perturbates its motion, it is more natural to assume that an unperturbed
electron strongly interacts with a phonon at a given lattice site, with the electron hopping being
the perturbation. Accordingly, when referring to this strong coupling scenario, we have in mind
the following hierarchy of the energy scales, 𝑔 ≫ 𝑡, 𝜔0, and the perturbation expansion should
be viewed as the expansion in 𝑡, rather than the expansion in 𝑔.

6.3.1 Atomic limit

Specifically, the case with 𝑡 = 0 corresponds to the atomic limit, when the Holstein model reduces
to the independent boson model [40]. This celebrated model is especially important since it is
one of the few electron-phonon models that can be solved exactly. In particular, the Holstein
model with 𝑡 = 0 can be diagonalized by means of the unitary Lang-Firsov transformation [120]

𝑈 = exp
[√
𝛼𝑐†𝑐(𝑎 − 𝑎†)

]
. (6.50)

The main idea behind the transformation is to shift the phonon operators by a quantity
√
𝛼 to

eliminate the electron-phonon interaction. By performing this exact diagonalization, the exact
polaron binding energy 𝐸𝐵 = −𝛼𝜔0 and the energies of excited polaron states 𝐸𝐵 + 𝑛𝜔0 are
obtained.

The corresponding exact electron Green’s function can also be obtained by means of the
Lang-Firsov transformation [40]

𝐺 (𝐸) =
∞∑︁
𝑛=0

𝛼𝑛𝑒−𝛼

𝑛!

1

𝐸 − 𝐸𝐵 − 𝑛𝜔0 + 𝑖𝜂
, (6.51)

which we note is completely local. The resulting spectral function 𝐴(𝜔) consists of a series of
delta peaks, spaced exactly 𝜔0 apart, with the Poisson distribution of electron spectral weights.
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In particular, the electron spectral weight close to the ground state energy is exponentially small
in the interaction strength, while it is maximal for excitations involving approximately 𝑛 ∼ 𝛼

phonons, which is the number of phonons in a virtual cloud surrounding the localized electron.

6.3.2 Small 𝑡 expansion

The 𝑁-fold degeneracy of the atomic limit is lifted by the introduction of the finite hopping term
𝑡, resulting in the occurrence of the small polaron band. This is immediately apparent from
the electron Green’s function, which can be again (approximately) obtained by means of the
Lang-Firsov transformation [121] for finite, but small 𝑡 cases

𝐺 (𝑘, 𝐸) = 𝑒−𝛼

𝐸 − 2𝑡𝑒−𝛼 cos 𝑘 + 𝑖𝜂 +
∞∑︁
𝑛=1

1

𝑁

∑︁
𝑞

𝛼𝑛𝑒−𝛼

𝑛!

1

𝐸 − 2𝑡𝑒−𝛼 cos 𝑘 − 𝑛𝜔0 + 𝑖𝜂
. (6.52)

Namely, by comparing the Green’s function in Eq. (6.52) with the general form of the fermion
Green’s function in Eq. (6.15), we note that the first contribution in Eq. (6.52) may be attributed
to the coherent polaron band with the exponentially narrow bandwidth, while the second term
in Eq. (6.52) represents the incoherent part of the electron Green’s function.

The direct comparison of the first terms in Eqs. (6.52) and (6.52) also provides us with
the electron spectral weight and the electron effective mass in the strong coupling regime.
In particular, we have 𝑍 = 𝑒−𝛼 and 𝑚∗

𝑚
= 𝑒𝛼. The two quantities are obviously related by

the relation, 𝑍−1 = 𝑚∗

𝑚
, which, due to the arguments presented in Section 6.2, suggests the

antiadiabatic nature of small polarons in the strong coupling regime. This is further supported
by the local electron self-energy for strong couplings [109]

ReΣ(𝐸) = 𝐸𝐵𝑒𝛼 + 𝐸 (1 − 𝑒𝛼) , (6.53)

contributed equally by non-vertex and vertex contributions. In fact, the situation here is quite
similar to the situation we have already met in the polaronic impurity model, where the relevant
unperturbed electron Green’s function was completely local and where some diagrams in a given
order, either without or with vertex corrections, contributed equally to the full Green’s function
- remember the factor two in Subsection 2.3.5.

6.4 Conclusions

We study the properties of the polaron band up to the next-to-leading order of the perturbation
theory in electron-phonon interaction, which includes the leading vertex correction to the electron
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self-energy. The special emphasis is put on the momentum dependence of the vertex correction,
which influence is best manifested through the difference between the electron effective mass
and the inverse of the electron spectral weight in the polaron band. We show that in the
antiadiabatic regime the momentum-dependent part of the leading vertex correction is suppressed
with the square of the adiabaticity parameter. However, although the non-local part of the
vertex contribution becomes vanishingly small in the antiadiabatic regime, the whole vertex
contribution is not, and contributes exactly as much as the non-vertex contribution in the next-
to-leading order to the renormalization of electron properties for small momenta. On the other
hand, the vertex contributions to the renormalization of electron properties for small momenta
slightly subceed that of the non-vertex contributions in the adiabatic regime, while for large
momenta they become even more suppressed.

66



Chapter 7

Phononic properties of polarons

In this last Chapter 7 of Part II, we complement the picture of the polaron physics from the
phonon’s point of view. To be specific, in order to treat on an equal footing the phonon and
the electron degree of freedom, we consider the perturbation expansion of the phonon Green’s
function given by Eq. (1.9). Namely, we consider the propagation of the phonon inserted in the
system with one electron already present in the lowest energy state 𝜀k=0 = 0 (𝜇 ≈ 0). In contrast
to the scenario in Chapter 6, where the free fermion propagator in Eq. (6.1) involved only an
electron propagation, the free fermion Green’s function underlying the forthcoming perturbation
expansion reads

𝐺0(k, 𝐸) = 𝐺+
0 (k, 𝐸) + 𝐺

−
0 (k, 𝐸) =

1 − 𝛿k,0
𝐸 − 𝜀k + 𝑖𝜂

+
𝛿k,0

𝐸 − 𝜀k − 𝑖𝜂
, (7.1)

due to the permanent electron present in the system. In particular, when compared to Eq. (6.1),
the second term in Eq. (7.1) additionally appears, representing the propagation of a hole in the
k = 0 state.

The form of the Green’s function in Eq. (7.1) has profound implications for the distinguish-
ment of dominant from negligible contributions to the phonon propagator in the perturbation
expansion. Technically speaking, due to the Kronecker delta 𝛿k,0 in the hole part of the free
fermion Green’s function, each hole line with different internal momenta, Fig. 1.1(d), in a
Feynman diagram should contribute with the factor 1/𝑁 , with 𝑁 being the number of lattice
sites, to a corresponding contribution in the perturbation expansion. Therefore, the dominant
contributions to the perturbation expansion come from the Feynman diagrams which have the
least number of hole propagators, making it primarily viewed as the expansion in 1/𝑁 , rather
than the expansion in 𝑔. As a consequence, the Dyson approach is inferior to the simple addition
of irreducible phonon self-energy, hereafter called a phonon polarization, contributions to the
full phonon propagator, with the number of contributions kept in the sum determined by the
strength of the electron-phonon coupling.

In this context, we derive a few explicit results for the polarization and the phonon spectral
function to the next-to-leading order in the weak coupling perturbation theory. Special attention
is again devoted to the contributions involving vertex corrections, with a particular emphasis
on their treatment in the 1/𝑁 expansion. To the best of our knowledge, phononic properties
of polarons were seldom studied, with the most of analysis being restricted to the leading
order perturbation theory [102, 122]. Thus, we may state that the results presented here give
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a fresh view of the polaron problem from the perspective of the phonon degree of freedom.
However, before exploiting those specific results, we first comment on the consequences of
the particle number conservation manifested in terms of the Ward identity [123], which brings
robust connections between the non-vertex and vertex corrections to the phonon polarization in
the polaron limit, as well as for finite electron density cases.

7.1 Ward identity

The exact phonon polarization Π(q, 𝜔) has a simple diagrammatic representation shown in
Fig. 7.1. Here, the double lines correspond to the full fermion Green’s function 𝐺 (k, 𝐸), while
two different symbols are used to distinguish two quite different vertices. In particular, the left
vertex in Fig. 7.1 corresponds to the bare electron-phonon vertex 𝑔, represented by the full circle
as usual, while the right vertex denoted with the full square represents the fully renormalized
electron-phonon vertex.

The contributions to the phonon polarization due to the renormalization of a vertex may be
represented by the vertex function Γ(k, 𝐸 ; k + q, 𝐸 + 𝜔) and are correspondingly called vertex
contributions. Similarly, since the exact interacting fermion Green’s function involves the exact
fermion self-energy Σ(k, 𝐸)

𝐺 (k, 𝐸) = 1

𝐸 − 𝜀k − Σ(k, 𝐸) , (7.2)

we call the contributions stemming from the interacting 𝐺 (k, 𝐸) self-energy contributions. As
implied by the Ward identity [40,123], those two conceptually different contributions to Π(q, 𝜔)
are related by

𝜔Γ(k, 𝐸 ; k + q, 𝐸 + 𝜔)−|q|Γ(k, 𝐸 ; k + q, 𝐸 + 𝜔) = 𝐺−1(k + q, 𝐸 + 𝜔) − 𝐺−1(k, 𝐸)
= 𝜔 + 𝜀k − 𝜀k+q + Σ(k, 𝐸) − Σ(k + q, 𝐸 + 𝜔) .

(7.3)

With the use of 𝐺 (k, 𝐸) and Γ(k, 𝐸 ; k + q, 𝐸 + 𝜔), we can write the formal expression for
the exact phonon polarization in Fig. 7.1

Π(q, 𝜔) = −𝑖 𝑔
2

𝑁

∑︁
k

∫ +∞

−∞

𝑑𝐸

2𝜋
𝐺 (k, 𝐸)𝐺 (k + q, 𝐸 + 𝜔)Γ(k, 𝐸 ; k + q, 𝐸 + 𝜔) . (7.4)

Here, we have kept the momentum-independent Holstein coupling, while we allowed for an
arbitrary system dimension, indicated with the vector notation for momenta. Besides the
additional factor 𝑔2, we recognize in Eq. (7.4) the exact (electron) density-density correlation
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Figure 7.1: The exact phonon polarization diagram. Double lines represent the exact fermion
Green’s function. The bare electron-phonon vertex is represented by the full circle, whereas the
full square denotes the fully renormalized vertex.

function 𝜒(q, 𝜔) [40]

Π(q, 𝜔) = 𝑔2𝜒(q, 𝜔) . (7.5)

Thus, due to the momentum-independent electron-phonon coupling, the two quantities, Π(q, 𝜔)
and 𝜒(q, 𝜔), are exactly proportional.

Let us now exploit the consequences of the Ward identity in Eq. (7.3). In particular, we
consider the dynamic long-wavelength limit of the correlation function 𝜒(q, 𝜔). In that case,
the Ward identity reduces to

Γ(k, 𝐸 ; k, 𝐸 + 𝜔) = 1 + Σ(k, 𝐸) − Σ(k, 𝐸 + 𝜔)
𝜔

, (7.6)

and correspondingly we get in the q = 0 limit

𝜒(0, 𝜔) = −𝑖 1
𝑁

∑︁
k

∫ +∞

−∞

𝑑𝐸

2𝜋
𝐺 (k, 𝐸)𝐺 (k, 𝐸 + 𝜔)Γ(k, 𝐸 ; k, 𝐸 + 𝜔)

= 𝑖
1

𝑁

∑︁
k

∫ +∞

−∞

𝑑𝐸

2𝜋

[
𝐺 (k, 𝐸) − 𝐺 (k, 𝐸 + 𝜔)

𝐺−1(k, 𝐸 + 𝜔) − 𝐺−1(k, 𝐸)

] [
𝜔 + Σ(k, 𝐸) − Σ(k, 𝐸 + 𝜔)

𝜔

]
= 𝑖

1

𝑁

∑︁
k

∫ +∞

−∞

𝑑𝐸

2𝜋

[
𝐺 (k, 𝐸) − 𝐺 (k, 𝐸 + 𝜔)

𝜔 + Σ(k, 𝐸) − Σ(k, 𝐸 + 𝜔)

] [
𝜔 + Σ(k, 𝐸) − Σ(k, 𝐸 + 𝜔)

𝜔

]
= 𝑖

1

𝑁𝜔

∑︁
k

∫ +∞

−∞

𝑑𝐸

2𝜋
[𝐺 (k, 𝐸) − 𝐺 (k, 𝐸 + 𝜔)] = 0 .

(7.7)

Evidently, due to the Ward identity, the correlation function 𝜒(q, 𝜔) vanishes in the dynamic
long-wavelength limit implying the same behavior for the phonon polarization, Π(0, 𝜔) =

0. Since this simple exact result would not be achievable by not taking into account vertex
corrections, it beautifully highlights the importance of vertex corrections on phonon properties,
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Figure 7.2: Diagrammatic representation of a typical contribution to the phonon propagator for
q = 0.

which are oftentimes neglected in comparison to self-energy contributions.

7.1.1 The q = 0 mode

Regarding the q = 0 mode, the only question remains what happens with the phonon propagator
in the static limit, 𝜔 = 0? As shown in [118], the q = 0 part of the Holstein Hamiltonian is
decoupled from the q ≠ 0 part and describes the coupling of the (homogeneous) q = 0 phonon
mode with the total electron density 𝑛. A typical contribution in the perturbation expansion
to the phonon propagator, in that case, is shown in Fig. 7.2, where the single closed fermion
loop corresponds to the total electron density. However, all the trouble which comes along with
the perturbation expansion for the q = 0 case can be avoided since the exact solution for the
phonon propagator may be obtained by exploiting the Lehmann representation of the Green’s
function [40]. Namely, the eigenstates of the q = 0 phonon mode are coherent states, which
yields for the full phonon propagator

𝐷 (q = 0, 𝜔) = 𝐷0(q = 0, 𝜔) − 𝑖8𝑛𝑁𝑒𝑙
𝑔2

𝜔2
0

𝛿(𝜔) , (7.8)

with the details of the derivation left for Appendix B.1.

7.2 Diagrammatic expansion of polarization

For finite momenta q, such an exact solution for the phonon propagator can no longer be obtained.
We are then left with no other choice but to seek the best possible approximation for the phonon
propagator depending on the model parameters (𝑡, 𝜔0, 𝑔). In particular, here we concentrate on
the weak coupling regime, 𝑔 ≪ 1, and consider the expansion of the phonon polarization in the
weak coupling perturbation theory.
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q’

Figure 7.3: Diagrammatic representation of the phonon polarization to the fourth order of the
weak coupling perturbation theory. (a) Leading order contribution, (b) and (c) leading self-
energy contributions, and (d) leading vertex contribution.

7.2.1 Leading order and leading self-energy corrections

Leading order polarization

The leading order contribution in the weak coupling perturbation theory to the phonon polar-
ization is diagrammatically presented in Fig. 7.3(a). Physically, it represents the creation of a
single electron-hole pair. Note that all fermion lines in Fig. 7.3 are full, and not dotted, giving
a hint that we will immediately consider the polarization for finite electron density cases, and
simply extract the polaron limit results by setting 𝑛k = 𝛿k,0 in the obtained expressions.

To demonstrate how this works, we use Feynman rules [40] for the leading order polarization
diagram in Fig. 7.3(a), giving

Π (2) (q, 𝜔) = −𝑖 𝑔
2

𝑁

∑︁
k

∫ +∞

−∞

𝑑𝐸

2𝜋
𝐺0(k, 𝐸)𝐺0(k + q, 𝐸 + 𝜔)

= −𝑖 𝑔
2

𝑁

∑︁
k

∫ +∞

−∞

𝑑𝐸

2𝜋

[
1 − 𝑛k

𝐸 − 𝜀k + 𝑖𝜂
+ 𝑛k

𝐸 − 𝜀k − 𝑖𝜂

] [
1 − 𝑛k+q

𝐸 + 𝜔 − 𝜀k+q + 𝑖𝜂
+

𝑛k+q
𝐸 + 𝜔 − 𝜀k+q − 𝑖𝜂

]
.

(7.9)
The integration over the energy 𝐸 yields non-vanishing contributions only when two poles are
located in different halves of the complex plane, resulting in

Π (2) (q, 𝜔) = 𝑔2

𝑁

∑︁
k

[
𝑛k

(
1 − 𝑛k+q

)
𝜔 + 𝜀k − 𝜀k+q + 𝑖𝜂

−
𝑛k+q (1 − 𝑛k)

𝜔 + 𝜀k − 𝜀k+q − 𝑖𝜂

]
. (7.10)
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For q = 0, the Fermi-Dirac distributions in the numerators ensure Π (2) (0, 𝜔) = 0, in accordance
with the discussion in Section 7.1.

By putting now 𝑛k = 𝛿k,0 in Eq. (7.10), and by remembering that we consider the case with
the electron dispersion, 𝜀k=0 = 0, we get in the polaron limit

Π (2) (q, 𝜔) = 𝑔2

𝑁

[
1

𝜔 − 𝜀q + 𝑖𝜂
− 1

𝜔 + 𝜀q − 𝑖𝜂

]
. (7.11)

It is interesting to note that Π (2) (q, 𝜔) in Eq. (7.11) resembles the form of the free phonon
Green’s function in Eq. (6.3), with the phonon energy replaced by the electron dispersion,
𝜔0 → 𝜀q. For future conveniences, we introduce

Π (2)±(q, 𝜔) = ±𝑔
2

𝑁

1

𝜔 ∓ 𝜀q ± 𝑖𝜂
, (7.12)

in terms of which we can write

Π (2) (q, 𝜔) = Π (2)+(q, 𝜔) + Π (2)−(q, 𝜔) . (7.13)

Leading self-energy contributions

Such simplicity is no longer present when the leading self-energy contributions to the polariza-
tion, shown in Figs. 7.3(b) and (c), are taken into account. Their evaluation for finite electron
density cases, as well as in the polaron limit, is due to the long derivation procedure presented
in Appendix B.2, with the end result in the polaron case reading

Π (4𝑏) (q, 𝜔) = 𝑔4

𝑁2

∑︁
k

[
1

(𝜀k + 𝜔0 − 𝑖𝜂)2(𝜔 − 𝜀k+q − 𝜔0 + 𝑖𝜂)
− 1

(𝜀k + 𝜔0 − 𝑖𝜂)2(𝜔 − 𝜀q + 𝑖𝜂)
+

+ 1

(𝜀k + 𝜔0 − 𝑖𝜂) (𝜔 − 𝜀q + 𝑖𝜂)2
− 1

(𝜔 + 𝜀q − 𝑖𝜂)2(𝜔 + 𝜀k + 𝜔0 − 𝑖𝜂)

]
= Π (4𝑐) (−q,−𝜔) .

(7.14)
Strictly speaking, in the summation over k, the states k = 0,−q should be omitted. However,
this introduces a negligible effect of the order O(1/𝑁2).

7.2.2 Leading vertex contribution

Lastly, we consider the leading vertex contribution to the polarization, shown in Fig. 7.3(d).
As commented in Section 7.1, all vertex contributions can be expressed in terms of the vertex
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q’

k + q’

k + q + q’

Figure 7.4: Diagrammatic representation of the leading order contribution to the vertex function.

function Γ(k, 𝐸 ; k + q, 𝐸 + 𝜔). Here in particular, in order to account for the leading vertex
contribution to the polarization, it is sufficient to keep only the leading order contribution of the
full vertex function, shown diagrammatically in Fig. 7.4. By using the Feynman rules [40], we
can write for this leading order contribution

Γ(2) (k, 𝐸 ; k + q, 𝐸 + 𝜔) = 𝑖 𝑔
2

𝑁

∑︁
q′

∫ +∞

−∞

𝑑𝜔′

2𝜋
𝐺0(k + q′, 𝐸 + 𝜔′)𝐷0(q′, 𝜔′)×

× 𝐺0(k + q + q′, 𝐸 + 𝜔 + 𝜔′) ,
(7.15)

with the details of the integration over 𝜔′ in the complex plane presented in Appendix A.2.2.

With Γ(2) (k, 𝐸 ; k + q, 𝐸 + 𝜔) known, we can go back to Eq. (7.4) and calculate the leading
vertex contribution to the polarization in Fig. 7.3(d)

Π (4𝑑) (q, 𝜔) = −𝑖 𝑔
2

𝑁

∑︁
k

∫ +∞

−∞

𝑑𝐸

2𝜋
𝐺0(k, 𝐸)𝐺0(k + q, 𝐸 + 𝜔)Γ(2) (k, 𝐸 ; k + q, 𝐸 + 𝜔) . (7.16)

The details of the derivation are again left for Appendix B.2.4, with the final result in the polaron
limit

Π (4𝑑) (q, 𝜔) = −2 𝑔
4

𝑁2

∑︁
k

[
1

(𝜔 − 𝜀q + 𝑖𝜂) (𝜔 − 𝜔0 − 𝜀k+q + 𝑖𝜂) (𝜔0 + 𝜀k)

+ 1

(𝜔 + 𝜀q − 𝑖𝜂) (𝜔 + 𝜔0 + 𝜀k − 𝑖𝜂) (𝜔0 + 𝜀k+q)

]
.

(7.17)

Interestingly, in terms of the leading order polarization, Eq. (7.12), Π (4𝑑) (q, 𝜔) can be written
as

Π (4𝑑) (q, 𝜔) = 2Π (2)+(q, 𝜔)Θ(2) (q, 𝜔) + 2Π (2)−(q, 𝜔)Θ(2) (−q,−𝜔) , (7.18)
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(a) (b)

Figure 7.5: Two possible time-ordered diagrams for the leading vertex contribution to the
polarization involving at most one hole line.

where Θ denotes the part of the vertex function involving only electron-electron processes, see
Appendix A.2.4. Accordingly, Θ(2) (q, 𝜔) can be evaluated by keeping only the electron parts
of fermion Green’s functions in Eq. (7.15)

Θ(2) (q, 𝜔) = 𝑖 𝑔
2

𝑁

∑︁
q′

∫ +∞

−∞

𝑑𝜔′

2𝜋
𝐺+

0 (q
′, 𝜔′)𝐺+

0 (q + q′, 𝜔 + 𝜔′)𝐷0(q′, 𝜔′)

= 𝑖
𝑔2

𝑁

∑︁
q′

∫ +∞

−∞

𝑑𝜔′

2𝜋

1

𝜔′ − 𝜀q′ + 𝑖𝜂
1

𝜔 + 𝜔′ − 𝜀q+q′ + 𝑖𝜂

[
1

𝜔′ − 𝜔0 + 𝑖𝜂
− 1

𝜔′ + 𝜔0 − 𝑖𝜂

]
= −𝑔

2

𝑁

∑︁
q′

1

(𝜔 − 𝜔0 − 𝜀q+q′ + 𝑖𝜂) (𝜔0 + 𝜀q′)
.

(7.19)

We note that Θ lacks the k and 𝐸 dependence since one of its external fermion lines necessarily
involves the k = 0 hole state in the polaron limit. Moreover, Θ(2) (q, 𝜔) satisfies the Ward
identity in Eq. (7.6) in the leading order

1 + Θ(2) (0, 𝜔) = 1 + Σ(2) (0) − Σ(2) (𝜔)
𝜔

, (7.20)

where Σ(2) is the leading order electron self-energy, Eq. (6.4).

Exploitation of the 1/𝑁 expansion

So far, all four polarization diagrams in Fig. (7.3) were considered exclusively in the (standard-
ized) frequency domain. Accordingly, we could not distinguish whether corresponding fermion
lines denote the propagation of an electron or the propagation of a hole. However, in polaron
physics this turns out to be important since dominant contributions to the phonon polarization
should contain as few as possible hole lines with different internal momenta, as discussed at the
beginning of Chapter 7. Therefore, in what follows, we consider the diagrammatic representation
of the polarization in the time domain, with the focus being put on the vertex contribution.

In particular, as shown in Fig. 7.5, in the polaron limit there are just two different time-
ordered polarization diagrams with the leading vertex correction involving at most one hole line.
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Figure 7.6: Phonon polarization with both vertices renormalized, albeit with the vertex function
involving only the electron part of fermion Green’s functions.

(a) (b)

Figure 7.7: Two higher-order vertex polarization diagrams. Diagram (a) involves the crossing
of phonon propagators, while diagram (b) represents a contribution to the ladder series.

Following Fig. 7.1, that is by assuming that the right vertex is being renormalized, we conclude
that the diagram in Fig. 7.5(a) involves the vertex correction with two electron propagators,
whereas the diagram in Fig. 7.5(b) involves the vertex correction with an electron-hole process.
However, the diagram in Fig. 7.5(b) as a whole may just be equally interpreted in terms of the
leading correction of the left vertex, with a purely electron-electron process. This interpretation
also rationalizes the appearance of the vertex function Θ in Eq. (7.18), as well as the factor 2,
accounting for two diagrams in Fig. 7.5.

Based on this observation, we propose that in the polaron limit we may renormalize both
vertices in the exact phonon polarization, albeit with the vertex function involving only the
electron part of fermion Green’s functions. This is diagrammatically presented in Fig. 7.6,
where the renormalized vertex is denoted with the square with an arrow pointing to the right,
emphasizing the fact that the vertex function involves only electron propagators, while the formal
expression for the exact phonon polarization in Eq. (7.4) according to Fig. 7.6 becomes

Π(q, 𝜔) = −𝑖 𝑔
2

𝑁

∫ +∞

−∞

𝑑𝐸

2𝜋
𝐺 (0, 𝐸)𝐺 (q, 𝐸 + 𝜔) [Θ(q, 𝜔)]2 . (7.21)

This analysis based on the next-to-leading order polarization seems so convincing that we
are tempted to proclaim the polarization in Fig. 7.6 the exact polarization in the polaron limit.
However, we should be very careful before jumping to a such firm conclusion. Here we do not
provide any rigorous mathematical proof, but we rather base our statements on intuitive grounds.
In particular, we consider two higher order vertex diagrams in Fig. 7.7. It is obvious that if we
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q’’
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q + q’ + q’’

q + q’ 

q’
 +

 q
’’

q’

Figure 7.8: Next-to-leading order time-ordered ladder vertex function.

would take that one of the middle (straight) fermion lines in the diagram in Fig. 7.7(a), with the
crossed phonon propagators, corresponds to the hole propagator, then we would not be able to
disentangle the renormalization of the right and the left vertex. In other words, the polarization
in Fig. (7.6) cannot fully account for the vertex diagram in Fig. 7.7(a). In contrast, it is quite
intuitive that the renormalization of both vertices would work fine with the ladder diagram in
Fig. 7.7(b). In fact, we expect it to work fine with the infinite series of ladder diagrams, for
which we show that the exact vertex function Θ𝐿 can be obtained in the closed form.

7.2.3 Ladder approximation

We start by considering the next-to-leading order contribution to the ladder vertex function Θ
(4)
𝐿

,
shown diagrammatically in Fig. 7.8. With the Feynman rules [40], we have

Θ
(4)
𝐿

(q, 𝜔) = 𝑖 𝑔
2

𝑁

∑︁
𝑞′

∫ +∞

−∞

𝑑𝜔′

2𝜋
𝐺+

0 (q
′, 𝜔′)𝐺+

0 (q + q′, 𝜔 + 𝜔′)𝐷0(q′, 𝜔′)

× 𝑖 𝑔
2

𝑁

∑︁
q′′

∫ +∞

−∞

𝑑𝜔′′

2𝜋
𝐺+

0 (q
′ + q′′, 𝜔′ + 𝜔′′)𝐺+

0 (q + q′ + q′′, 𝜔 + 𝜔′ + 𝜔′′)𝐷0(q′′, 𝜔′′) .
(7.22)

First, we compute the integral over 𝜔′′. Since all fermion propagators have poles only in the
lower half of the complex plane, the integration is easy to evaluate
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∫ +∞

−∞

𝑑𝜔′′

2𝜋
𝐺+

0 (q
′ + q′′, 𝜔′ + 𝜔′′)𝐺+

0 (q + q′ + q′′, 𝜔 + 𝜔′ + 𝜔′′)𝐷0(q′′, 𝜔′′)

=

∫ +∞

−∞

𝑑𝜔′′

2𝜋

[
1

𝜔′ + 𝜔′′ − 𝜀q′+q′′ + 𝑖𝜂

] [
1

𝜔 + 𝜔′ + 𝜔′′ − 𝜀q+q′+q′′ + 𝑖𝜂

]
×

×
[

1

𝜔′′ − 𝜔0 + 𝑖𝜂
− 1

𝜔′′ + 𝜔0 − 𝑖𝜂

]
= −𝑖 1

(𝜔′ − 𝜔0 − 𝜀q′+q′′ + 𝑖𝜂) (𝜔 + 𝜔′ − 𝜔0 − 𝜀q+q′+q′′ + 𝑖𝜂)
.

(7.23)

The remaining integration over𝜔′ can be carried out in the similar fashion, giving (q′′ → q′′ − q′)

Θ
(4)
𝐿

(q, 𝜔) = 𝑖 𝑔
4

𝑁2

∑︁
q′

∑︁
q′′

∫ +∞

−∞

𝑑𝜔′

2𝜋

1

(𝜔′ − 𝜔0 − 𝜀q′′ + 𝑖𝜂) (𝜔 + 𝜔′ − 𝜔0 − 𝜀q+q′′ + 𝑖𝜂)

×
[

1

𝜔 + 𝜔′ − 𝜀q+q′ + 𝑖𝜂

] [
1

𝜔′ − 𝜀q′ + 𝑖𝜂

] [
1

𝜔′ − 𝜔0 + 𝑖𝜂
− 1

𝜔′ + 𝜔0 − 𝑖𝜂

]
=
𝑔2

𝑁

∑︁
q′

(−1)
(𝜔 − 𝜔0 − 𝜀q+q′ + 𝑖𝜂) (𝜔0 + 𝜀q′)

× 𝑔2

𝑁

∑︁
q′′

(−1)
(𝜔 − 2𝜔0 − 𝜀q+q′′ + 𝑖𝜂) (2𝜔0 + 𝜀q′′)

.

(7.24)

We recognize the expression for the leading order vertex function Θ(2) (q, 𝜔), Eq. (7.19), in both
factors in the final expression for Θ(4)

𝐿
(q, 𝜔). However, the phonon energy 𝜔0 is being replaced

by 2𝜔0 in the second factor. Therefore, by introducing

Θ(2) (q, 𝜔|𝑛𝜔0) = −𝑔
2

𝑁

∑︁
q′

1

(𝜔 − 𝑛𝜔0 − 𝜀q+q′ + 𝑖𝜂) (𝑛𝜔0 + 𝜀q′)
, (7.25)

we can write Θ(4)
𝐿

(q, 𝜔) in a particularly convenient form

Θ
(4)
𝐿

(q, 𝜔) = Θ(2) (q, 𝜔|𝜔0)Θ(2) (q, 𝜔|2𝜔0) . (7.26)

Each higher-order contribution in the ladder approximation adds an additional phonon line,
parallel to the phonon lines in Fig. 7.8, to the ladder vertex, so analogously as with the result for
Θ

(4)
𝐿

(q, 𝜔), we can write for the ladder vertex function in the 2𝑛-th order

Θ
(2𝑛)
𝐿

(q, 𝜔) =
𝑛∏
𝑘=1

Θ(2) (q, 𝜔|𝑘𝜔0) . (7.27)

Thus, in the ladder approximation, the full vertex function is given by the infinite sum
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Θ𝐿 (q, 𝜔) =
∞∑︁
𝑛=1

Θ
(2𝑛)
𝐿

(q, 𝜔) =
∞∑︁
𝑛=1

𝑛∏
𝑘=1

Θ(2) (q, 𝜔|𝑘𝜔0)

= Θ(2) (q, 𝜔|𝜔0)
(
1 + Θ(2) (q, 𝜔|2𝜔0)

(
1 + Θ(2) (q, 𝜔|3𝜔0) (1 + ...)

))
.

(7.28)

7.3 Phonon spectral properties

The phonon polarization is a powerful theoretical tool, however, it is not particularly useful from
the experimental point of view. Therefore, to conclude the polaron Part II of the thesis, we also
consider the more experimentally relatable phonon spectral function defined by

𝐵(q, 𝜔 > 0) = −1

𝜋
Im𝐷 (q, 𝜔 > 0) . (7.29)

We restrict 𝐵(q, 𝜔) to positive frequencies only, since 𝐷 (q, 𝜔) is symmetric in 𝜔. For the free
phonon Green’s function in Eq. (6.3), 𝐵(q, 𝜔 > 0) has a simple delta peak structure

𝐵0(q, 𝜔 > 0) = 𝛿(𝜔 − 𝜔0) , (7.30)

accounting for all of the phonon spectral weight

𝑧q =

∫ +∞

0
𝑑𝜔𝐵0(q, 𝜔 > 0) = 1 . (7.31)

Following the reasonings from the introduction to Chapter 7, in the polaron limit, we may
obtain the full phonon Green’s function by simply summing irreducible polarization contribu-
tions, rather than by solving the Dyson equation. That is, we may write for the phonon Green’s
function

𝐷 (q, 𝜔) = 𝐷0(q, 𝜔) + Π𝐼𝑅𝑅 (q, 𝜔) [𝐷0(q, 𝜔)]2 , (7.32)

where Π𝐼𝑅𝑅 (q, 𝜔) is the sum of irreducible polarization contributions. Correspondingly,

Im𝐷 (q, 𝜔) = Im𝐷0(q, 𝜔) + ImΠ𝐼𝑅𝑅 (q, 𝜔)Re [𝐷0(q, 𝜔)]2 + Im [𝐷0(q, 𝜔)]2 ReΠ𝐼𝑅𝑅 (q, 𝜔) ,
(7.33)

with

Re [𝐷0(q, 𝜔)]2 =
4𝜔2

0[
𝜔2 − 𝜔2

0

]2 , (7.34)
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and

Im [𝐷0(q, 𝜔)]2 = − 𝜋𝛿(𝜔 − 𝜔0)
𝑑

𝑑𝜔
+ 𝜋𝛿(𝜔 + 𝜔0)

𝑑

𝑑𝜔

+ 2𝜋
1

𝜔 + 𝜔0
𝛿(𝜔 − 𝜔0) − 2𝜋

1

𝜔 − 𝜔0
𝛿(𝜔 + 𝜔0) ,

(7.35)

where we have used the identity 1
(𝜔±𝑖𝜂)2 = 1

𝜔2 ∓ 𝑖𝜋𝛿(0) 𝑑
𝑑𝜔

[124].

7.3.1 Phonon transfer and phonon production

Let us now consider the phonon spectral function to the leading order, when Π𝐼𝑅𝑅 (q, 𝜔) ≈
Π (2) (q, 𝜔), given by Eq. (7.12). In that case we have

ReΠ (2) (q, 𝜔) = 𝑔2

𝑁

2𝜀q

𝜔2 − 𝜀2q
, ImΠ (2) (q, 𝜔) = −𝜋𝑔

2

𝑁

[
𝛿(𝜔 − 𝜀q) + 𝛿(𝜔 + 𝜀q)

]
, (7.36)

resulting in

𝐵(2) (q, 𝜔 > 0) =
1 −

𝑔2

𝑁

4𝜀q

(
2𝜔2 + 𝜔0𝜔 − 𝜀2q

)
(𝜔 + 𝜔0)

[
𝜔2 − 𝜀2q

]2  𝛿(𝜔 − 𝜔0) +
𝑔2

𝑁

4𝜔2
0[

𝜔2 − 𝜔2
0

]2 𝛿(𝜔 − 𝜀q) .

(7.37)
There are two important novelties to notice in comparison to the non-interacting case. First,
some of the phonon spectral weight has been transferred from the pole at 𝜔 = 𝜔0 to the new
pole at 𝜔 = 𝜀q - the effect we dub a phonon transfer. The phonon spectral weight at the pole
𝜔 = 𝜀q corresponds to the phonon spectral weight in the polaron band, introduced in Chapter 6,
located below the phonon energy, 𝜀q < 𝜔0. Second, the sum rule in Eq. (7.31) is violated and
the additional phonon spectral weight appears - we dub this effect a phonon production

Δ𝐵(2) (q, 𝜔 > 0) =
∫ +∞

0
𝑑𝜔𝐵(2) (q, 𝜔 > 0) − 1 =

𝑔2

𝑁

2
(
2𝜔0 + 𝜀q

)
𝜔0

(
𝜔0 + 𝜀q

)2 . (7.38)

The additional phonon spectral weight is a consequence of the lattice deformation that accom-
panies the polaron formation [102]. In particular, in the long-wavelength limit, Δ𝐵(q, 𝜔 > 0) ∼
𝑛𝑝ℎ, where 𝑛𝑝ℎ is the mean number of phonons in the ground state. Both those effects are
actually very weak, scaling as 1/𝑁 .

By going to the next-to-leading order, we expect no new qualitative effects, however, we
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can for example study how is the phonon spectral weight in the polaron band affected by
including the self-energy and vertex contributions in Figs. 7.3 (b), (c), and (d). As shown
in Appendix B.2.4, the total imaginary part of the polarization in the next-to-leading order,
Π (4) (q, 𝜔) = Π (4𝑏) (q, 𝜔) + Π (4𝑐) (q, 𝜔) + Π (4𝑑) (q, 𝜔), relevant for the pole at 𝜔 = 𝜀q reads

ImΠ (4) (q, 𝜔 < 𝜔0) = −𝜋𝑔
2

𝑁
𝐹q

[
𝛿(𝜔 − 𝜀q) + 𝛿(𝜔 + 𝜀q)

]
, (7.39)

where

𝐹q =
∑︁
q′

[
1

𝜔0 + 𝜀q′
− 1

𝜔0 + 𝜀q+q′ − 𝜀q

]2
. (7.40)

Each term of 𝐹q can be mapped one-to-one to the fourth order polarization diagrams in Figs. 7.3
(b), (c), and (d). Particularly, when squared, each term in the bracket characterizes the renor-
malization of one of the fermion lines, 𝑍 (2)

q and 𝑍 (2)
0 , coming from the self-energy diagrams in

Figs. 7.3(b) and (c), respectively. On the other hand, the product of these two terms corresponds
to the vertex polarization diagram, Fig. 7.3(d), and is given by Θ(2) (q, 𝜀𝑞). Therefore, in the
next-to-leading order, the phonon spectral weight in the polaron band reads

𝐵(4) (q, 𝜔 = 𝜀q) =
𝑔2

𝑁

4𝜔2
0[

𝜀2q − 𝜔2
0

]2 [
1 + 𝐹q

]
. (7.41)

In the 1D case, the expression for 𝐹𝑞 can be obtained in the closed form. The details of
derivations of all contributions to 𝐹𝑞 can be found in Appendices A.2.4 and B.2.4, giving

𝑍
(2)
𝑞 =

∑︁
𝑞′

[
1

𝜔0 + 𝜀𝑞+𝑞′ − 𝜀𝑞

]2
= −𝑔2

(𝜔0 + 2𝑡 − 𝜀𝑞)[
(𝜔0 − 𝜀𝑞) (𝜔0 + 4𝑡 − 𝜀𝑞)

] 3
2

< 0 , (7.42)

and

Θ(2) (𝑞, 𝜀𝑞) =
𝑔2

2𝑡2


𝛾1√︃
𝛾21−1

+ 𝛾2√︃
𝛾22−1

𝛾1𝛾2 +
√︃
(𝛾21 − 1) (𝛾22 − 1) − cos 𝑞

 > 0 , (7.43)

where 𝛾1 = 1 + 𝜔0
2𝑡 and 𝛾2 = 1 + 𝜔0−𝜔

2𝑡 . Since 𝑍 (2)
𝑞 is negative, self-energy corrections suppress

the phonon spectral weight in the polaron band pole due to dressing effects. On the other hand,
the vertex function Θ(2) (𝑞, 𝜀𝑞) given by Eq. (7.43) is always positive, enhancing the phonon
spectral weight in the polaron band pole by enhancing the bare vertex contribution

𝑔2 → 𝑔2
(
1 + Θ(2) (𝑞, 𝜀𝑞)

)2
≈ 𝑔2

(
1 + 2Θ(2) (𝑞, 𝜀𝑞)

)
. (7.44)
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7.3.2 Renormalized electron propagator

By inspecting Eq. (7.37), there are, however, two evident issues that need to be addressed. First,
the polaron band pole is located at the free electron energy 𝜀q, while according to Chapter 6 it
should be located at the renormalized energy 𝜀∗q. Second, which is more severe, the spectral
weights in Eq. (7.37) diverge as the electron energy approaches the phonon energy, 𝜀q → 𝜔0.
This latter issue is a general property of a perturbation theory when two energy levels are
degenerate. To cure both of these problems, we thus have to renormalize the electron dispersion
by means of the Dyson equation.

In particular, we use the renormalized fermion Green’s function in the spirit of Chapter 6 to
calculate the leading order polarization in Fig. 7.3(a). To be specific, we rederive Eq. (7.11) by
replacing 𝐺0 in Eq. (7.9) by the renormalized fermion Green’s function

𝐺 𝑝𝑜𝑙 (k, 𝐸) ≈
𝑍k (1 − 𝑛k)
𝐸 − 𝜀∗

k
+ 𝑖𝜂 + 𝑍k𝑛k

𝐸 − 𝜀∗
k
− 𝑖𝜂 , (7.45)

with 𝑍k and 𝜀∗
k

being the electron spectral weight and the polaron band dispersion, respectively,
from Chapter 6. Here, we neglected the incoherent contribution to the fermion Green’s function.
Moreover, we assume that differences between the fermion Green’s functions calculated for cases
when an electron is injected in an empty band or a band with one electron already present are
negligible.

The new form of the fermion Green’s function in Eq. (7.45) does not change the actual
derivation of Π (2) (q, 𝜔) presented earlier. The only difference is that 𝜀∗q replaces 𝜀q and that
additional factors 𝑍0 and 𝑍q appear, resulting in

Π (2) (q, 𝜔) = 𝑔2

𝑁

[
𝑍0𝑍q

𝜔 − 𝜀∗q + 𝑖𝜂
−

𝑍0𝑍q

𝜔 + 𝜀∗q − 𝑖𝜂

]
. (7.46)

The corrected corresponding phonon spectral function now reads

𝐵(2) (q, 𝜔 > 0) =
1 −

𝑔2

𝑁

4𝑍0𝑍q𝜀
∗
q

(
2𝜔2 + 𝜔0𝜔 − 𝜀∗2q

)
(𝜔 + 𝜔0)

[
𝜔2 − 𝜀∗2q

]2  𝛿(𝜔−𝜔0) +
𝑔2

𝑁

4𝑍0𝑍q𝜔
2
0[

𝜔2 − 𝜔2
0

]2 𝛿(𝜔− 𝜀∗q) .

(7.47)

By recalling the results (we expect they hold also for 𝐷 > 1) for the polaron band dispersion
near the phonon energy in Eqs. (6.21) and (6.25), we note that true divergencies in Eq. (7.47)
never appear. Moreover, 𝑍q smoothly vanishes as the phonon energy is approached, so the
spectral weight at the polaron band pole vanishes too, as well as all the phonon transfer and
phonon production effects. Evidently, the polaron band pole is located at the right energy 𝜀∗q
just as well.
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7.3.3 Small polaron

As our final result related to the polaron physics, we diagrammatically recover the well-known
result for the phonon spectral weight in the polaron band pole in the small polaron case. As
commented in Section 6.3, the electron self-energy in the small polaron case is momentum
independent Σ(𝐸) = 𝐸𝐵/𝑍 + 𝐸 (1 − 1/𝑍) and the polaron band exponentially narrow 𝜀∗q = 𝑍𝜀q,
with 𝑍 = exp

(
−𝑔2/𝜔2

0

)
. The Ward identity, Eq. (7.6), therefore gives for the time-ordered

vertex function

Θ( |q| → 0, 𝜔) = 1 + 𝐸𝐵/𝑍 − 𝐸𝐵/𝑍 − 𝜔(1 − 1/𝑍)
𝜔

=
1

𝑍
, (7.48)

while the fermion Green’s function can be expressed in terms of the scaled free fermion Green’s
function 𝐺 𝑝𝑜𝑙 (k, 𝐸) = 𝐺0(k, 𝐸/𝑍).

By exploiting those two expressions in Eq. (7.21) for the phonon polarization, a simple result
readily follows

ImΠ(q, 𝜔 < 𝜔0) = −𝜋𝑔
2

𝑁

[
𝛿(𝜔 − 𝑍𝜀q) + 𝛿(𝜔 + 𝑍𝜀q)

]
. (7.49)

In other words, in the small polaron limit, for small frequencies, the exact polarization has
the same form as the polarization obtained in the leading order of the perturbation theory,
Eq. (7.36). The only difference is that the free electron dispersion 𝜀q is replaced by the small
polaron dispersion 𝑍𝜀q. Although this result has been obtained previously by other methods,
it is quite fascinating to see how the diagrammatic expansion, when summed to the infinite
order, recovers the simple ImΠ(q, 𝜔) ∝ 𝑔2

𝑁
behavior. In particular, for future works it would be

interesting to study in more detail how is the exact result in the small polaron limit obtained by
the approximate form for the phonon polarization in Eq. (7.21).

7.4 Conclusions

We calculate the phonon polarization in the leading order and the next-to-leading order in
electron-phonon coupling for cases with finite electron densities. For very low electron densities,
we exploit the fact that in the polaron problem only one hole with the momentum k = 0 may
appear in order to obtain the dominant contributions to the polarization of the order O(1/𝑁),
with 𝑁 being the number of lattice sites. By taking a closer look at the polarization diagram
with the leading vertex correction in the time domain, we propose an approximate two-vertices
renormalization scheme with the vertex function involving only the electron processes. Here, the
crucial thing is to observe that the leading order vertex function of the order O(1/𝑁), involving
the hole k = 0 line, can be interpreted as it renormalizes the left vertex in Fig. 7.5(b), albeit
rather with only the electron processes. We argue that such a scheme gives the exact solution
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for the phonon polarization in the ladder approximation and provides the analytical expression
for the corresponding vertex function to the infinite order.

By further exploiting the 1/𝑁 expansion, we argue that the Dyson approach is inferior
to the simple addition of irreducible polarizations in determining the full phonon propagator.
Consequently, the renormalization of the phonon frequency is negligible, albeit some of its
phonon spectral weight is nevertheless being transferred to the polaron band. The phonon
spectral weight in the polaron band is calculated up to the next-to-leading order of the perturbation
theory in electron-phonon interaction. Apart from the phonon transfer effects, we note a phonon
production contribution, accounting for an additional, enhanced total phonon spectral weight.
It can be attributed to the virtual cloud of phonons accompanying the electron in the polaron
ground state.
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Part III

Spectral properties of moderately to
heavily doped polar systems
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Chapter 8

Electron spectral properties

Parts of Chapter 8 have been published in [125]. Some of the results discussed here were
performed in collaboration with A. S. Mishchenko.

In the previous two Parts I and II of the thesis, we considered systems with very low electron
densities. In such situations, correlations between dilute electrons are arguably negligible and
charge carriers behave as a non-degenerate gas coupled to a crystal lattice. As the electron
concentration starts increasing, the correlations, however, become growingly important, giving
rise to novel phenomena in combination with the electron-phonon interaction. In metallic
systems, for instance, the electron-phonon interaction may lead to a transition to a conventional
BCS superconducting [126] or a charge density wave state accompanied by the Peierls instability
[127–129]. Profound influences of the electron-phonon interaction are noticeable in spectral
features of moderately to heavily doped polar semiconductors as well. In particular, while the
ARPES spectra feature phonon sidebands below the quasiparticle band [84, 87, 125, 130, 131],
both the Raman and the infrared spectroscopy measurements on doped polar semiconductors
contain fingerprints of a phonon-plasmon coupling [132–143]. Here, we put a major of focus
on latter systems and it is the task of Part III of the thesis to shed some light on some of electron
and phonon spectral properties.

8.1 Leading order weak coupling perturbation theory

Following the same approach as in Part II, we start the discussion by considering electron spectral
properties of polar systems with finite electron densities (𝜇 ≠ 0) within the perturbation theory
in the electron-phonon coupling. In particular, we consider the weak coupling expansion of the
fermion self-energy, with the leading order contribution shown diagrammatically in Fig. 8.1.
The diagrams in Figs. 6.1 and 8.1 are topologically equivalent, with the important difference
that the fermion line in Fig. 8.1 goes in both directions of time, representing either the electron
or the hole propagation, while in Fig. 6.1 it strictly represents the electron propagation. From
the technical point of view, this implies that in all our forthcoming calculations we have to keep
both contributions to the fermion Green’s function in Eq. (1.7).

By using the standard Feynman rules [40], we can write the expression for the leading order
fermion self-energy in Fig. 8.1
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k + q

q

Figure 8.1: Diagrammatic representation of the leading order fermion self-energy in the weak
coupling perturbation theory in cases with finite electron densities.

Σ(2) (k, 𝐸) =
∑︁
q

|𝑔(q) |2 𝑖
∫ +∞

−∞

𝑑𝜔

2𝜋
𝐺0(k + q, 𝐸 + 𝜔)𝐷0(q, 𝜔) . (8.1)

The integration over the energy 𝜔 gives

𝑖

∫ +∞

−∞

𝑑𝜔

2𝜋
𝐺0(k + q, 𝐸 + 𝜔)𝐷0(q, 𝜔) =

= 𝑖

∫ +∞

−∞

𝑑𝜔

2𝜋

[
1 − 𝑛k+q

𝐸 + 𝜔 − 𝜉k+q + 𝑖𝜂
+

𝑛k+q
𝐸 + 𝜔 − 𝜉k+q − 𝑖𝜂

] [
1

𝜔 − 𝜔0 + 𝑖𝜂
− 1

𝜔 + 𝜔0 − 𝑖𝜂

]
=

[
1 − 𝑛k+q

𝐸 − 𝜔0 − 𝜉k+q + 𝑖𝜂
+

𝑛k+q
𝐸 + 𝜔0 − 𝜉k+q − 𝑖𝜂

]
.

(8.2)

As a result, the expression for the leading order self-energy reads

Σ(2) (k, 𝐸) =
∑︁
q

|𝑔(q) |2
[

1 − 𝑛k+q
𝐸 − 𝜔0 − 𝜉k+q + 𝑖𝜂

+
𝑛k+q

𝐸 + 𝜔0 − 𝜉k+q − 𝑖𝜂

]
. (8.3)

8.1.1 First phonon sideband

The expression in Eq. (8.3) is completely general, in the sense that it holds irrespectively to the
system dimension, and we did not specify the exact form of the electron-phonon interaction.
This allows us to exploit the properties of Eq. (8.3) in both the 2D and the 3D cases, with both
short-range and long-range electron-phonon interactions, in order to model ARPES spectra of
real materials. However, it is instructive to also consider properties of the leading order fermion
self-energy in some simpler cases, when both the real and the imaginary part of Eq. (8.3) can
be evaluated analytically. In particular, the exact evaluation of the summation/integration over
𝑞 is presented in Appendix A.1.1 in the 1D case with the electron dispersion 𝜀𝑘 = 2𝑡 (1 − cos 𝑘)
and the Holstein coupling. The final result for the real part of Eq. (8.3) in that case reads
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ReΣ(2) (𝐸) =



− 𝑔2√
(𝐸+𝜔0+𝜇) (𝐸+𝜔0+𝜇−4𝑡)

{
2
𝜋
arctan

[√︃
𝐸+𝜔0+𝜇−4𝑡
𝐸+𝜔0+𝜇

√︃
𝜇

4𝑡−𝜇

]}
, 𝐸 < −𝜔0 − 𝜇 ,

𝑔2√
(𝐸+𝜔0+𝜇) (𝐸+𝜔0+𝜇−4𝑡)

{
2
𝜋
arctan

[√︃
𝐸+𝜔0+𝜇−4𝑡
𝐸+𝜔0+𝜇

√︃
𝜇

4𝑡−𝜇

]}
, 𝐸 > −𝜔0 − 𝜇 + 4𝑡

𝑔2√
(𝐸+𝜔0+𝜇) (4𝑡−𝜔0−𝜇−𝐸)

{
1
𝜋
ln

�����√4𝑡−𝜔0−𝜇−𝐸
√︃

𝜇

4𝑡−𝜇+
√
𝐸+𝜔0+𝜇

√
4𝑡−𝜔0−𝜇−𝐸

√︃
𝜇

4𝑡−𝜇−
√
𝐸+𝜔0+𝜇

�����
}
, −𝜔0 − 𝜇 < 𝐸 < −𝜔0 − 𝜇 + 4𝑡 ,

− 𝑔2√
(𝐸−𝜔0+𝜇) (𝐸−𝜔0+𝜇−4𝑡)

{
1 − 2

𝜋
arctan

[√︃
𝐸−𝜔0+𝜇−4𝑡
𝐸−𝜔0+𝜇

√︃
𝜇

4𝑡−𝜇

]}
, 𝐸 < 𝜔0 − 𝜇 ,

𝑔2√
(𝐸−𝜔0+𝜇) (𝐸−𝜔0+𝜇−4𝑡)

{
1 − 2

𝜋
arctan

[√︃
𝐸−𝜔0+𝜇−4𝑡
𝐸−𝜔0+𝜇

√︃
𝜇

4𝑡−𝜇

]}
, 𝐸 > 𝜔0 + 4𝑡 − 𝜇 ,

− 𝑔2√
(𝐸−𝜔0+𝜇) (4𝑡+𝜔0−𝜇−𝐸)

{
1
𝜋
ln

�����√4𝑡+𝜔0−𝜇−𝐸
√︃

𝜇

4𝑡−𝜇+
√
𝐸−𝜔0+𝜇

√
4𝑡+𝜔0−𝜇−𝐸

√︃
𝜇

4𝑡−𝜇−
√
𝐸−𝜔0+𝜇

�����
}
, 𝜔0 − 𝜇 < 𝐸 < 𝜔0 + 4𝑡 − 𝜇 ,

0 , elsewhere ,
(8.4)

while its imaginary part equals

ImΣ(2) (𝐸) = 𝑔2
{
− Θ(𝐸−𝜔0)Θ(4𝑡+𝜔0−𝜇−𝐸)√

(𝐸−𝜔0+𝜇) (4𝑡+𝜔0−𝜇−𝐸)
+ Θ(𝐸+𝜔0+𝜇)Θ(−𝜔0−𝐸)√

(𝐸+𝜔0+𝜇) (4𝑡−𝜔0−𝜇−𝐸)

}
. (8.5)

By simply putting Fermi level to zero, 𝜇 → 0, in Eqs. (8.4) and (8.5), the results in Eqs. (6.5)
and (6.6), corresponding to the polaron limit, are straighforwardly recovered.

In contrast to the polaron case where we were most interested in the renormalization effects
coming from the real part of the self-energy, here we put more attention on its imaginary
part. By inspecting Eq. (8.5), we see that the imaginary part of the self-energy is zero in the
energy window around the Fermi level −𝜔0 < 𝐸 < 𝜔0 (𝐸 is measured from the Fermi energy),
suggesting that electron excitations around the Fermi level stay perfectly coherent despite the
interaction with the optical phonon, at least to the leading order. This changes, however, as
soon as the phonon energy is surpassed, as indicated by non-zero values of the imaginary part
of the self-energy in the energy window 𝜔0 < 𝐸 < 4𝑡 + 𝜔0 − 𝜇, present already in the polaron
case (𝜇 = 0), but also within the new energy range −𝜔0 − 𝜇 < 𝐸 < −𝜔0. In those two energy
windows, electron spectral functions exhibit non-trivial incoherent structures, which we call first
phonon sidebands.

8.1.2 Comment on the leading order diagram in the time domain

Before the study of the structure of the imaginary part of the fermion self-energy in the next-to-
leading order of the weak coupling perturbation theory, it is instructive to discuss the leading
order contribution from the point of view of time-ordered diagrams. In particular, since in
Fig. 8.1 the fermion line represents either the electron or the hole, the propagation of an electron
in the leading order can be diagrammatically sketched by two processes shown in Fig. 8.2.
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(a) (b)

Figure 8.2: Two possible time-ordered Feynman diagrams that represent the leading order
electron Green’s function in cases with finite electron densities.

Obviously, the diagram in Fig. 8.2(a) represents the electron scattered in the intermediate state
with one phonon in the system. However, the more intriguing is the diagram in Fig. 8.2(b)
involving the formation of an electron-hole pair and the subsequent annihilation of the hole
with the incoming electron. During the intermediate process in Fig. 8.2(b), it appears that two
electrons with the same momentum and spin are present, violating thus the Pauli exclusion
principle.

The resolution to the apparent breakdown of the Pauli exclusion principle in the process
shown in Fig. 8.2(b) consists of two parts. First, we note that this process actually raises,
rather than lowers, the energy of the electron [144]. Namely, in the ground state, there are
virtual fluctuations that lower the ground state energy. However, by adding the electron with the
momentum k, the vacuum fluctuations with k′ = k are prevented and the elimination of those
vacuum fluctuations raises the energy of the electron. Accordingly, the time-ordered diagram in
Fig. 8.2(b) violating the Pauli exclusion principle actually describes the suppression of vacuum
fluctuations.

Following this interpretation, the time-ordered self-energy contribution in Fig. 8.2(b) cancels
with some vacuum fluctuation, meaning that in the formal expansion of the Green’s function
this contribution vanishes. However, when doing the standard Green’s function expansion by
keeping only irreducible connected diagrams, all vacuum fluctuations are already canceled since
they are represented by disconnected diagrams, leaving no choice but to keep in the expansion
all time-ordered connected diagrams which violate the Pauli exclusion principle. For more
details see Appendix C. The point here is that only the Green’s function as a whole represents
a physical process, while its parts, like one in Fig. 8.2(b) may or may not be physical [145].
Those non-physicalities are the consequence of the mathematical regrouping in the perturbation
theory, that is, of the decomposition of the whole physical process into its simpler parts, which
are not necessarily physical.
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Figure 8.3: Diagrammatic representation of two next-to-leading order contributions in the
electron-phonon coupling to the fermion self-energy in cases with finite electron densities. (a)
Non-crossing and (b) crossing diagram.

8.2 Next-to-leading order weak coupling perturbation theory

Similar to the polaron case, two contributions to the fermion self-energy in the next-to-leading
order in cases with finite electron densities are represented by the non-crossing and the crossing
diagram shown in Figs. 8.3(a) and (b), respectively. Both diagrams are straightforward, although
tedious to evaluate, with the details of calculations given in Appendices A.2.1 and A.2.2. The
final expression for the fermion self-energy corresponding to the non-crossing diagram can be
represented as a sum of six contributions

Σ(𝑁𝐶) (k, 𝐸) =
∑︁
q,q′

|𝑔(q) |2 |𝑔(q′) |2
6∑︁
𝑖=1

𝜎
(𝑁𝐶)
𝑖

, (8.6)

while the correction to the fermion self-energy stemming from the crossing diagram as a sum
of eighteen contributions

Σ(𝐶) (k, 𝐸) =
∑︁
q,q′

|𝑔(q) |2 |𝑔(q′) |2
18∑︁
𝑖=1

𝜎
(𝐶)
𝑖

, (8.7)

with all 𝜎 (𝑁𝐶)
𝑖

and 𝜎 (𝐶)
𝑖

listed in Appendices A.2.1 and A.2.2.

Evidently, the number of contributions to the fermion self-energy in the next-to-leading
order is enormous and the whole analysis of the fermion self-energy can be a bit overwhelming.
Therefore, we put focus only on imaginary parts of the calculated self-energy contributions,
which is, as we shall argue, sufficient to study the structure of phonon sidebands and the lifetime
of excitations in the vicinity of the Fermi level. In particular, we distinguish electron (𝐸 > 0)
and hole (𝐸 < 0) part of spectra, and electron and hole phonon sidebands located above and
below 𝐸 = 0, respectively, and analyze only the latter. In that regard, we note that whenever 𝑛k
appears in the numerator of 𝜎 (𝑁𝐶)

𝑖
or 𝜎 (𝐶)

𝑖
, in the denominator we have 𝜉k < 0. Analogously,

for 1 − 𝑛k in the numerator, 𝜉k > 0 holds in the denominator.

With that in mind, we can start extracting imaginary parts of the self-energy expressions
in Eqs. (8.6) and (8.7) by recalling the identity 1

𝜔±𝑖𝜂 = 1
𝜔
∓ 𝑖𝜋𝛿(𝜔). For starters, we note that
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both the non-crossing and the crossing diagram give non-vanishing contributions in the energy
window of the first hole phonon sideband, −𝜔0 − 𝜇 < 𝐸 < −𝜔0. In particular, we see that
two contributions 𝜎 (𝑁𝐶)

𝑖
of the non-crossing diagram given by Eqs. (A.38) and (A.39) satisfy

Im𝜎 (𝑁𝐶)
𝑖

∝ ∑
q 𝑛k+q𝛿(𝐸 +𝜔0−𝜀k+q), while the same holds true for the contributions 𝜎 (𝐶)

𝑖
of the

crossing diagram given by Eqs. (A.52), (A.55), (A.56), (A.57), (A.58), (A.61), (A.64), (A.65),
(A.66), and (A.67). Nevertheless, we anticipate that the contributions of ImΣ(𝐶) and ImΣ(𝑁𝐶)

to the first hole phonon sideband are very small in comparison to the leading order contribution
coming from ImΣ(2) , at least for weak electron-phonon couplings, so we exclude them from our
further discussions.

There are, however, two novelties that were not present in the leading order case. Namely, by
inspecting the contributions Im𝜎 (𝑁𝐶)

𝑖
of the non-crossing diagram coming from Eqs. (A.35) and

(A.38), and the contributions Im𝜎 (𝐶)
𝑖

of the crossing diagram coming from Eqs. (A.59), (A.61),
(A.65), and (A.67), we see that they additionally have non-vanishing values in the energy region
−2𝜔0 − 𝜇 < 𝐸 < −2𝜔0. In other words, the next-to-leading order fermion self-energy gives
rise to the leading order contribution to the second hole phonon sideband. In particular, in the
corresponding energy window, −2𝜔0− 𝜇 < 𝐸 < −2𝜔0, the imaginary part of Σ(𝑁𝐶) (k, 𝐸) reads

ImΣ(𝑁𝐶) (k, 𝐸) = 𝜋
∑︁
q,q′

|𝑔(q) |2 |𝑔(q′) |2𝛿(𝐸 + 2𝜔0 − 𝜉k+q+q′)×

×
[

(1 − 𝑛k+q)2𝑛k+q+q′
(𝜉k+q + 𝜔0 − 𝜉k+q+q′)2

+
(𝑛k+q)2𝑛k+q+q′

(𝜉k+q+q′ − 𝜔0 − 𝜉k+q)2

]
= 𝜋

∑︁
q,q′

|𝑔(q) |2 |𝑔(q′) |2
𝑛k+q+q′

(𝜉k+q+q′ − 𝜔0 − 𝜉k+q)2
𝛿(𝐸 + 2𝜔0 − 𝜉k+q+q′) ,

(8.8)

while Σ(𝐶) (k, 𝐸) contributes to the second hole phonon sideband with

ImΣ(𝐶) (k, 𝐸) = 𝜋
∑︁
q,q′

|𝑔(q) |2 |𝑔(q′) |2𝛿(𝐸 + 2𝜔0 − 𝜉k+q+q′)×

×
[ (

1 − 𝑛k+q
)
𝑛k+q+q′ (1 − 𝑛k+q′)

(𝜉k+q+q′ − 𝜔0 − 𝜉k+q) (𝜉k+q+q′ − 𝜔0 − 𝜉k+q′)
+

𝑛k+q𝑛k+q+q′ (1 − 𝑛k+q′)
(𝜉k+q+q′ − 𝜔0 − 𝜉k+q) (𝜉k+q+q′ − 𝜔0 − 𝜉k+q′)

(1 − 𝑛k+q)𝑛k+q+q′𝑛k+q′
(𝜉k+q+q′ − 𝜔0 − 𝜉k+q) (𝜉k+q+q′ − 𝜔0 − 𝜉k+q′)

+
𝑛k+q𝑛k+q+q′𝑛k+q′

(𝜉k+q+q′ − 𝜔0 − 𝜉k+q) (𝜉k+q+q′ − 𝜔0 − 𝜉k+q′)

]
= 𝜋

∑︁
q,q′

|𝑔(q) |2 |𝑔(q′) |2
𝑛k+q+q′

(𝜉k+q+q′ − 𝜔0 − 𝜉k+q) (𝜉k+q+q′ − 𝜔0 − 𝜉k+q′)
𝛿(𝐸 + 2𝜔0 − 𝜉k+q+q′) .

(8.9)
giving in total
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ImΣ(4) (k, 𝐸) =𝜋
∑︁
q,q′

|𝑔(q) |2 |𝑔(q′) |2
𝑛k+q+q′

𝜉k+q+q′ − 𝜔0 − 𝜉k+q
𝛿(𝐸 + 2𝜔0 − 𝜉k+q+q′)×

×
[

1

𝜉k+q+q′ − 𝜔0 − 𝜉k+q
+ 1

𝜉k+q+q′ − 𝜔0 − 𝜉k+q′

]
.

(8.10)

8.2.1 Exchange processes

The second novelty appearing in the next-to-leading order is related to the excitations’ lifetime
in the vicinity of the Fermi level. Namely, we have shown that the imaginary part of the leading
order self-energy has non-vanishing values only in the energy regions corresponding to phonon
sidebands, leaving the energy window around the Fermi level perfectly coherent. The same holds
true for the non-crossing diagram contributions, however, on closer inspection of the crossing
diagram contributions, we note that the imaginary parts of 𝜎 (𝐶)

𝑖
given by Eqs. (A.53), (A.55),

(A.56), (A.58), (A.59), (A.60), (A.62), and (A.63), have non-zero values arbitrarily close to
the Fermi level. Specifically, the former four contribute to the hole, while the latter four to the
electron side of spectra. By focusing only on the hole side, we have for energies 𝐸 around the
Fermi level

ImΣ(𝐶) (k, 𝐸) = 𝜋
∑︁
q,q′

|𝑔(q) |2 |𝑔(q′) |2𝑛k+q(1 − 𝑛k+q+q′)𝑛k+q′𝛿(𝐸 − 𝜉k+q − 𝜉k+q′ + 𝜉k+q+q′)×

×
[

1

(𝜉k+q′ − 𝜔0 − 𝜉k+q+q′)
(
𝜉k+q + 𝜔0 − 𝜉k+q+q′

) + 1(
𝜉k+q − 𝜔0 − 𝜉k+q+q′

) (
𝜉k+q′ + 𝜔0 − 𝜉k+q+q′

)−
− 1(
𝜉k+q − 𝜔0 − 𝜉k+q+q′

) (
𝜉k+q′ − 𝜔0 − 𝜉k+q+q′

) − 1(
𝜉k+q + 𝜔0 − 𝜉k+q+q′

) (
𝜉k+q′ + 𝜔0 − 𝜉k+q+q′

) ]
= −𝜋

∑︁
q,q′

|𝑔(q) |2 |𝑔(q′) |2
4𝜔2

0[
(𝜉k+q − 𝜉k+q+q′)2 − 𝜔2

0

] [
(𝜉k+q′ − 𝜉k+q+q′)2 − 𝜔2

0

]
× 𝑛k+q(1 − 𝑛k+q+q′)𝑛k+q′𝛿(𝐸 − 𝜉k+q − 𝜉k+q′ + 𝜉k+q+q′) .

(8.11)
Since the excitation’s lifetime is determined by 𝜏−1(k, 𝐸) = |ImΣ(k, 𝐸) |, we may conclude that
the leading vertex contribution to the fermion self-energy influences the damping of excitations
in the vicinity of the Fermi level.

We should carefully interpret this intriguing result, because for finite electron densities there
exists one more fermion self-energy contribution in the next-to-leading order shown diagram-
matically in Fig. 8.4. The process depicted by the corresponding diagram can be interpreted
either as the phonon-mediated electron/hole scattering on the electron-hole continuum or as the
electron/hole emitting and absorbing a phonon dressed by an electron-hole pair. Anyhow, the
evaluation of the self-energy diagram in Fig. 8.4 is presented in Appendix A.2.3, where the final
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Figure 8.4: Next-to-leading order fermion self-energy diagram representing the phonon-
mediated electron scattering on the electron-hole continuum.

result has been expressed as the sum of fourteen contributions 𝜎 (𝐵)
𝑖

Σ(𝐵) (k, 𝐸) =
∑︁
q,q′

|𝑔(q) |4
14∑︁
𝑖=1

𝜎
(𝐵)
𝑖

. (8.12)

By inspecting the imaginary parts of 𝜎 (𝐵)
𝑖

, we can see that ImΣ(𝐵) (k, 𝐸) contributes only to the
first phonon sidebands and not to the second. More importantly, ImΣ(𝐵) (k, 𝐸) does not vanish
in the vicinity of the Fermi level, but rather reads, see Appendix A.2.3,

ImΣ(𝐵) (k, 𝐸) = 𝜋
∑︁
q,q′

|𝑔(q) |4
4𝜔2

0[
(𝜉k+q′ − 𝜉k+q+q′)2 − 𝜔2

0

]2
× 𝑛k+q(1 − 𝑛k+q+q′)𝑛k+q′𝛿(𝐸 − 𝜉k+q − 𝜉k+q′ + 𝜉k+q+q′) ,

(8.13)

in the relevant energy window around the Fermi energy.

Evidently, in both Eqs. (8.11) and (8.13) the following factor appears

ImΣ(𝐵,𝐶) (k, 𝐸) ∝
∑︁
q,q′

𝑛k+q(1 − 𝑛k+q+q′)𝑛k+q′𝛿(𝐸 − 𝜉k+q − 𝜉k+q′ + 𝜉k+q+q′) , (8.14)

determining the available phase space for the excitations’ relaxation. In fact, this is the same
phase space factor that appears in Landau’s general argument regarding the relaxation rate of
excitations near the Fermi level in a Fermi liquid [145]. It states that the relaxation rate of
excitations becomes smaller and eventually vanishes as the Fermi level is approached.

It is not so unexpected that the process in Fig. 8.4 leads to the Fermi liquid behavior since we
have already argued that it can be interpreted as the phonon-mediated electron/hole scattering
on the electron-hole continuum. Namely, the applicability of Landau’s original result depends
only on the phase space available for the scattering on the electron-hole continuum and not on
the specific details of the effective electron-electron interaction. What is more exciting is that
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(a) (b) (c)

Figure 8.5: (a) Time-ordered crossing diagram influencing the hole relaxation rate near the
Fermi level. While in the crossing diagram all fermion lines necessarily possess the same
projection of spin, denoted with up/down arrows, as the incident hole, the closed loop in the
bubble diagram may have both projections of spin (b) and (c).

the same phase space factor stems from the processes involving the leading vertex correction
as well. On top of that, the two contributions ImΣ(𝐵,𝐶) (k, 𝐸) are of the opposite sign, meaning
that leading vertex correction processes tend to suppress the electron/hole scattering on the
electron-hole continuum.

In order to fully rationalize this result, one should take into account and fermionic spin
degree of freedom. In particular, for an incoming hole with a spin 𝑠 = +1

2 , which we denote
with an up arrow, the relevant time-ordered self-energy diagrams with non-vanishing imaginary
parts around the Fermi level are shown in Fig. 8.5. Following Fig. 8.5(a), the corresponding
time-ordered leading vertex contribution can be interpreted as an exchange process, in which
an incoming hole is exchanged with a hole created from a vacuum fluctuation. Because the
electron-phonon interaction in Eq. (5.1) cannot flip the fermion spin, all fermion propagators
in the vertex correction diagram in Fig. 8.5(a) necessarily possess the same projection of spin.
This is not the case with the bubble diagram, where the fermion propagators contributing to the
closed loop may possess both projections of spin, Figs. 8.5(b) and (c). Obviously, the exchange
process depicted in Fig. 8.5(a) suppresses only the scattering of holes with the same projections
of spin 𝑠, Fig. 8.5(b).

Finally, we note that in the case with the momentum-independent Holstein coupling the
two contributions given by Eqs. (8.11) and (8.13), that is, the contributions of the diagrams in
Figs. 8.5(a) and (b), respectively, cancel exactly in the antiadiabatic regime when there are no
retardation effects. This scenario is analogous to the scenario in the Hubbard model [83], where
electrons mutually interact with the short-range instantaneous electron-electron interaction. Due
to this specific nature of the Hubbard interaction, the scattering between electrons with the same
projections of spin is forbidden by the Pauli exclusion principle, meaning that the topologically
equivalent diagrams to the ones in Figs. 8.5(a) and (b), with the phonon lines replaced by
the Hubbard interaction lines, are absent, and that the electron/hole scattering on the electron-
hole continuum is fully determined by the process in Fig. 8.5(c). This points to the fact that
the suppression/cancellation of the diagrams in Fig. 8.5(a) and (b) is a diagrammatic way of
obeying the Pauli exclusion principle [40]. However, since the electron-phonon interaction is
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generally retarded, the cancellation of diagrams in Fig. 8.5(a) and (b) is not fully complete and
the scattering between electron/holes with the same projection of spin becomes only partially
suppressed by the exchange processes. Nevertheless, it is interesting to find that the Fermi liquid
behavior, ImΣ(𝐸 → 0) → 𝐸2, may be obtained in the context of the electron-phonon model
alone.

8.3 Determination of electron-phonon interaction range from
ARPES spectra

To show that the presented thorough analytical evaluations of the self-energy to the next-to-
leading order are not interesting only from the point of view of theoretical considerations per
se, in what follows we exploit the results obtained in Sections 8.1 and 8.2 to simulate ARPES
spectra measured on real materials. Namely, in an ARPES measurement one expels an electron
from a material and de facto engages a propagation of a hole. Therefore, the spectral function
of the hole is measured, which in turn can be theoretically simulated by knowing the hole’s
self-energy.

As has been well established [146], and shown in our calculations, an ARPES spectrum
of materials with significant polaronic correlations exhibits hole phonon sidebands below the
quasiparticle band. Indeed, this was confirmed in a great number of experiments on 2D and
3D materials [84–87,147–150] characterized by the significant electron-phonon interaction, see
Fig. 8.6. Soon after, these experimental observations of hole phonon sidebands were followed by
numerous ab initio simulations of measured spectra [130,149,151], reproducing the occurrence
of hole phonon sidebands below the quasiparticle band. Due to limited resolutions, only two
hole phonon sidebands are usually well captured in ARPES experiments. This is also the
reason to stop at the next-to-leading order of the perturbation theory, giving the leading order
contributions to second phonon sidebands.

With the powerful ab initio computations available, one can ask why even bother with toy
models and complicated next-to-leading order analytical calculations? There are two main
reasons for that. First, ab initio computations of the self-energy are exact only in the leading
order of the perturbation theory [152, 153], while higher order contributions are obtained via
the cumulant expansion [130, 149, 154]. On the one hand, the cumulant expansion captures
contributions of all orders to the self-energy. However, it is restricted to self-energy diagrams
in which fermion Green’s functions move only in one direction of time [155]. For example, it
cannot capture the diagram in Fig. 8.5(a), that is all the effects coming from the next-to-leading
(and higher) order of the perturbation theory. Contrary to that, our calculations capture exactly
all such effects, including the exact leading vertex contribution to second phonon sidebands.

Moreover, ab initio simulations are restricted to specific materials and they seldom unravel
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(a) (b) (c)

Figure 8.6: Measured ARPES spectra containing phonon sidebands below the quasiparticle band
located at the integer number of phonon energies 𝑛ℏ𝜔𝐿𝑂 measured from the Fermi level 𝐸𝐹 . (a)
Anatase TiO2 with ℏ𝜔𝐿𝑂 = 108 meV [84], (b) SrTiO3(001) with ℏ𝜔𝐿𝑂 ∼ 100 meV [147], and
(c) LaAlO3/SrTiO3 interface with ℏ𝜔𝐿𝑂 ∼ 100 meV [87].

qualitative effects governing the structure of generic spectra. For example, it is not clear to
what extent the range of the electron-phonon interaction determines energy and momentum
intensity distributions of phonon sidebands. Therefore, our analysis focuses on identifying
different behaviors of phonon sidebands across all ranges of the electron-phonon interaction and
provides a general procedure for the estimation of the electron-phonon interaction range from
experimental data, prior to material-specific calculations.

8.3.1 Modeling prerequisites

In order to account for cases with very different ranges of the electron-phonon interaction, we
assume the following form of the electron-phonon interaction in Eq. (5.1)

|𝑔(q) |2 = 𝑎𝐷

|q|𝐷−1 + 𝑞𝐷−1
𝑇𝐹

, (8.15)

with 𝑎𝐷=3 = 2
√
2𝜋𝛼 for 3D and 𝑎𝐷=2 =

√
2𝜋𝛼 for 2D systems [156], and 𝛼 characterizing the

strength of the interaction [157]. One way to rationalize the choice of interaction in Eq. (8.15) is
by noting that it corresponds to the Fröhlich interaction, albeit statically screened by electrons.
This static screening is characterized by the Thomas-Fermi wave vector 𝑞𝑇𝐹 and 𝑟𝑇𝐹 = 𝜋/𝑞𝑇𝐹 ,
the latter roughly giving the screening range in the lattice constant units. Therefore, by varying
𝑞𝑇𝐹 , the screening and the range of the electron-phonon interaction can be tuned. In particular,
𝑞𝑇𝐹 → 0 (𝑞𝑇𝐹 → ∞) corresponds to the long-(short-) range Fröhlich (Holstein) electron-phonon
interaction.

To further specify the parameters of the Hamiltonian in Eq. (5.1), we set𝜔0 = 1 and consider
the dispersion of a simple cubic/square lattice in 3D/2D cases, 𝜀k = 2𝑡

∑𝐷
𝑖=1 (1 − cos 𝑘𝑖), where
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𝑡 is the nearest neighbor hopping. With the lattice constant 𝑎 = 1, the effective mass of the
unperturbed electron at the bottom of the band reads𝑚0 = 1/2𝑡. To search for general properties
of ARPES phonon sidebands components in various systems, we use two very different sets
of parameters for the broad and the narrow electron band: S1 (S2) denotes 𝜇 = 0.5 (𝜇 = 0.1)
and 𝑡 = 1 (𝑡 = 1/24), with the effective mass 𝑚0 = 0.5 (𝑚0 = 12). In both these cases, only a
small fraction of the lowest band states are occupied, such that the condition 𝜇 < 𝜔0 is always
satisfied. This ensures a pattern of spectrally separated phonon sidebands, the situation observed
in numerous experiments [84–86,149].

In accordance with the interpretation of ARPES measurements, we are interested only in the
hole spectral function given by

𝐴(k, 𝐸 < 0) = 1

𝜋
Im𝐺 (k, 𝐸 < 0)

=
1

𝜋

ImΣ(k, 𝐸 < 0)
[𝐸 − 𝜉k − ReΣ(k, 𝐸 < 0) + ReΣ(0, 0)]2 + [ImΣ(k, 𝐸 < 0)]2

.
(8.16)

When the electron-phonon interaction is weak, the self-energy contributions in the denominator
may be neglected, simplifying Eq. (8.16) to

𝐴(k, 𝐸 < 0) ≈ 1

𝜋

ImΣ(k, 𝐸 < 0)
[𝐸 − 𝜉k]2

. (8.17)

On the other hand, for a stronger electron-phonon interaction, the real part of the self-energy
leads to a renormalized dispersion, 𝜀̃k = 𝜀k +ReΣ(k, 𝜀̃k). This facilitates experimental analysis
because 𝜀̃k is the quantity that is actually measured in an experiment, rather than the bare
dispersion 𝜀k. Moreover, we argue that the imaginary part of the self-energy in the denominator
of Eq. (8.16) can be neglected since it barely affects the k and 𝐸 dependence of the spectral
function 𝐴(k, 𝐸), giving finally for stronger couplings

𝐴(k, 𝐸 < 0) ≈ 1

𝜋

ImΣ(k, 𝐸 < 0)[
𝐸 − 𝜉k

]2 . (8.18)

In any case, here we consider only weak interaction scenarios when it is sufficient to evaluate
the imaginary part of the self-energy to simulate ARPES spectra in accordance with Eq. (8.17).
In particular, by recalling Eqs. (8.3) and (8.10), the expressions for the leading order contributions
of ImΣ in the energy windows of the first and the second hole phonon sidebands read

ImΣ(2) (k, 𝐸) = 𝜋
∑︁
q

|𝑔(q) |2 𝑛k+q𝛿
(
𝐸 + 𝜔0 − 𝜉k+q

)
, (8.19)

and
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ImΣ(4) (k, 𝐸) =𝜋
∑︁
q,q′

|𝑔(q) |2 |𝑔(q′) |2
𝑛k+q+q′

𝜉k+q+q′ − 𝜔0 − 𝜉k+q
𝛿(𝐸 + 2𝜔0 − 𝜉k+q+q′)×

×
[

1

𝜉k+q+q′ − 𝜔0 − 𝜉k+q
+ 1

𝜉k+q+q′ − 𝜔0 − 𝜉k+q′

]
,

(8.20)

respectively. The required wave vector summations over the whole Brillouin zone generally
cannot be carried out analytically. Moreover, even the brute force numerical evaluations of
summations are extremely time-consuming for 2D and 3D systems. Therefore, the required
summations were performed by the importance sampling similar to that used for a fixed diagram
order integration within the Diagrammatic Monte Carlo approach [105].

8.3.2 Short-range interaction

We first consider the behaviors of ARPES spectra when the screening is strong and the electron-
phonon interaction is short-ranged. An example of a typical ARPES spectrum in the energy
window of the first hole phonon sideband, in that case, is shown in Fig. 8.7(a). We can see that
the majority of the spectrum is confined within the Fermi surface, left of the vertical dashed
line denoting the Fermi wave vector. In experimental works, it is often concluded that this
accumulation of the spectral weight stems due to the weakly screened Fröhlich interaction,
however, our results evidently do not support that hypothesis.

0.0 0.5 1.0

-1.5
-1.4
-1.3
-1.2
-1.1
-1.0

MAX

MAX

MIN

(b)

(a)

kFw
/w

0
w

/w
0

0.50.1
0.0

0.3

0.5

0.8

1.0

0.0

0.5

1.0

EDC

[kkk]0.0 0.5 1.0

-1.5
-1.4
-1.3
-1.2
-1.1
-1.0

kF

0.1 0.5

0

3

5

8

10

13

15

MIN

0 4 8 12

EDC

[kkk]

Figure 8.7: Contour plot of the (a) ARPES spectrum 𝐴(2) (k, 𝐸) and (b) ImΣ(2) (k, 𝐸) in the
energy window of the first hole phonon sideband for the 3D parameter set S1 and strong screening
𝑟𝑇𝐹 = 0.1. The right panels show EDCs for the corresponding cuts in the left panels.

Therefore, in order to elaborate on that finding, in Fig. 8.7(b) we show the imaginary part
of the self-energy in the same energy window. Clearly, it is uniformly spread and momentum
independent throughout the whole Brillouin zone. This is further supported by the energy
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distribution curves (EDCs), being equal for two choices of momenta, one inside and one outside
the Fermi surface. In fact, the energy dependence of ImΣ(2) (k, 𝐸) is determined solely by the
density of occupied electron states at the bottom of the band, which is readily seen by assuming
the momentum-independent interaction in Eq. (8.19). We note that this behavior also agrees
with the local nature of the leading order self-energy in cases with the Holstein coupling.

By inspecting Eq. (8.17), it is then natural to conclude that the strong momentum dependence
of the ARPES spectrum comes from the denominator [𝐸 − 𝜉k]2, and is not the result of the
range of the electron-phonon interaction. Actually, since the factor [𝐸 − 𝜉k]2 is always present
in the spectral function, we may suggest that the confinement of spectral weight within the
Fermi surface is a generic behavior of ARPES spectra, which is indeed generally found in the
ARPES experiments [84–86, 149]. In contrast, the same obviously does not hold true for the
imaginary part of the self-energy corresponding to the first hole phonon sideband. Therefore,
the momentum dependence, that is the confinement in the momentum space of the imaginary
part of the self-energy within the energy window of the first hole phonon sideband potentially
serves as a more suitable estimator of the electron-phonon interaction range.

8.3.3 Long-range interaction

Following the above reasonings, in Fig. 8.8 we show the imaginary part of the self-energy in
the energy regions of the quasiparticle band and the first two hole phonon sidebands when the
screening is weak and the electron-phonon interaction long-range. Clearly, in sharp contrast to
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Figure 8.8: Contour plot of ImΣ in the energy regions of the quasiparticle band and the first two
hole phonon sidebands for the 3D parameter set S1 and weak screening 𝑟𝑇𝐹 = 100.

the short-range interaction case, ImΣ corresponding to the first hole phonon sideband exhibits
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maxima that approximately follow the quasiparticle dispersion. Using this property, the cases
with the long-range interaction can be unambiguously identified and differentiated from the
cases with short-range interactions. In particular, while for the short-range interaction ImΣ

corresponding to the first hole phonon sideband is momentum independent and uniformly
spread over the Brillouin zone, for long-range interactions its maxima follow the quasiparticle
dispersion.
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Figure 8.9: Contour plot of (a) ImΣ(4) (k, 𝐸) and (b) its second derivative 𝑑2ImΣ(4) (k, 𝐸)/𝑑k2
for the 3D parameter set S1 and 𝑟𝑇𝐹 = 100. Right panels in (a) and (b) show the EDCs and the
upper panels show the MDCs along the cuts highlighted in the left-bottom panels of (a) and (b).
The dashed curves represent the quasiparticle dispersion shifted by 2𝜔0.

Regarding the second hole phonon sideband in Fig. 8.8, our analysis of the EDCs and the
momentum distribution curves (MDCs) is presented in Fig. 8.9(a) together with the contour plot
of ImΣ. It shows no particular maxima of ImΣ in the corresponding energy region. However,
as can be seen in Fig. 8.9(b), by taking the second derivative 𝑑2ImΣ(2) (k, 𝜔)/𝑑k2, a dispersion
resembling to that of the quasiparticle dispersion is recovered.
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8.3.4 Anomalous phonon sideband structures

Between the regimes with strong and weak screenings, with the short-range and the long-
range electron-phonon interaction, respectively, characterized by the different and characteristic
behaviors of ImΣ in the energy region of the first hole phonon sideband, an intermediate regime
sets in, which we estimate to be found for 3 ≤ 𝑟𝑇𝐹 ≤ 20. For corresponding interaction ranges,
ImΣ in the energy region of the first hole phonon sideband shows anomalous behaviors which
are very sensitive to system parameters, as shown in Fig. 8.10. In particular, while for long-
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Figure 8.10: (a) Contour plot of ImΣ(2) (k, 𝐸) for the 3D parameter set S1 and 𝑟𝑇𝐹 = 7. The
dashed curve represents the quasiparticle dispersion 𝜀k shifted downward by 𝜔0. The circles
follow the maxima of EDCs, fitted by a parabola (solid line) that gives the effective mass
𝑚∗ = 0.76 𝑚0. (b) EDCs for cuts shown in panel (a). (c) 𝑚∗ derived from EDCs maxima of
ImΣ(2) (k, 𝐸). (d) Upward shifts 𝜀0 characterizing the EDCs maxima of ImΣ(2) (k, 𝐸).

range interactions the EDCs maxima of ImΣ follow closely the quasiparticle dispersion, in the
intermediate regime the dispersion of EDCs maxima appears to be shifted upward from the
lower edge of the sideband by 𝜀0. Moreover, the parabolic fit yields an effective mass different
than that characterizing the quasiparticle dispersion. Such anomalies are found for all parameter
sets considered here, with the emphasis that the anomalies in 3D and 2D cases behave quite
differently. Namely, Figs. 8.10(c) and 8.10(d) show that 𝑚∗ is smaller (larger) in 3D (2D) and
𝜀0 varies (being zero) in 3D (2D). While in the 3D cases the EDCs maxima follow the parabolic
dispersion over the whole sideband, in the 2D cases the parabolic dispersion exhibits a jump
toward large momenta.

A similar anomalous structure characterizes the ARPES spectrum in the energy region of
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the first hole phonon sideband as well, as presented in Fig. 8.11. However, the shifts 𝜀0 and
the effective masses 𝑚∗ characterizing the anomalous dispersion of EDCs maxima of ImΣ and
the ARPES spectrum are generally different. Lastly, from Fig. 8.11 it is also clear that the
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Figure 8.11: Contour plot of (a) 𝐴(2) (k, 𝐸) and (b) ImΣ(2) (k, 𝐸) for the 3D parameter set
S2 and 𝑟𝑇𝐹 = 5. Circles follow the maxima of EDCs. These are fitted by parabolas, giving
corresponding effective masses 𝑚∗ and shifts 𝜀0 of anomalous phonon sideband dispersions.

confinement of spectral weight within the Fermi surface of the ARPES spectrum is enhanced
in comparison to that obtained from ImΣ, being reduced to momenta, 𝑘 < 𝑘𝑟 , where 𝑘𝑟 is
considerably smaller than 𝑘𝐹 . This effect is experimentally observed as well [84, 87, 149], as
can be seen in Fig. 8.6.

8.3.5 Confinement estimators

We have seen how different interaction regimes can be simply identified by considering the
structure of ImΣ in the energy region of the first hole phonon sideband. In particular, based on
our qualitative arguments, we saw how the confinement of ImΣ within the Fermi surface varies
with the electron-phonon interaction range. In what follows, we give a more robust, quantitative
mean to determine the electron-phonon interaction range based on that confinement.

For that purpose, we introduce several confinement estimators. First, we consider the ImΣ

intensity integrated over the energies within the 𝑛-th hole phonon sideband for a given k

R𝑛 (k) =
∫ −𝑛𝜔0

−𝑛𝜔0−𝜇
𝑑𝐸ImΣ(𝑛) (k, 𝐸) . (8.21)

Now, by using R𝑛 (k), the confinement of ImΣ within the Fermi surface may be expressed by an
confinement estimator corresponding to the ratio of the R𝑛 (k) intensity within and outside the
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Fermi surface

𝑅𝑛 =

(∫ 𝑘𝐹

0
𝑑𝑘

R𝑛 (k)
𝑘𝐹

)
/
(∫ 𝜋

𝑘𝐹

𝑑𝑘
R𝑛 (k)
𝜋 − 𝑘𝐹

)
. (8.22)

Such an estimator of the confinement is particularly suitable for an analysis of the experimental
data since it involves averaging over energy and momenta intervals, reducing the inevitable
effects of noise in experimental ARPES spectra. Moreover, it is unaffected by the arbitrariness
in the normalization of the experimental ARPES intensity, as well as it is independent of the
coupling strength 𝛼. Furthermore, the case with the short-range interaction, when ImΣ is
momentum independent, may be identified directly from 𝑅𝑛. In particular, when 𝑟𝑇𝐹 → 0, we
have 𝑅𝑛 → 1.

0.1 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

0.1 1 10 100

3D

C
n

rTF

 S1, O1, [kkk]
 S1, O1, [k00]
 S2, O1, [kkk]
 S2, O1, [k00]
 S1, O2, [kkk]
 S1, O2, [k00]
 S2, O2, [kkk]
 S2, O2, [k00]

(a)
2D

(b)
rTF

 S1, O1, [kkk
 S1, O1, [k00
 S2, O1, [kk]
 S2, O1, [k0]
 S1, O2, [kk]
 S1, O2, [k0]
 S2, O2, [kk]
 S2, O2, [k0]

Figure 8.12: Confinement estimator𝐶𝑛 (𝑟𝑇𝐹) defined by Eq. (8.23) for the parameter sets S1 and
S2, the first O1 and the second O2 phonon sidebands in (a) 3D and (b) 2D cases.

Except for the 𝑟𝑇𝐹 → 0 limit, the confinement estimator 𝑅𝑛 may vary by an order of
magnitude for different systems. This motivates us to introduce the third confinement estimator

𝐶𝑛 (𝑟𝑇𝐹) = [𝑅𝑛 (𝑟𝑇𝐹) − 1] [𝑅𝑛 (∞) − 1]−1 . (8.23)

As shown in Fig. 8.12, for all cases (parameter sets S1 and S2, 3D and 2D cases, diagonal
[𝑘′𝑘′𝑘′]/[𝑘′𝑘′] and non-diagonal [𝑘′00]/[𝑘′, 0] directions) considered and for the both phonon
sidebands, the confinement estimator𝐶𝑛 (𝑟𝑇𝐹) exhibits a fairly universal behavior. This suggests
that one can unambiguously determine the electron-phonon interaction range in a real material
by evaluating solely the confinement estimator 𝐶𝑛 (𝑟𝑇𝐹) from experimental data, irrespectively
of the peculiarities of the experimental setup and the material.

However, in order to evaluate 𝐶𝑛 (𝑟𝑇𝐹) one should know the value 𝑅𝑛 (∞) specific for the
material of interest. As we show, it can always be computed numerically, at least for the first
hole phonon sideband. In particular, with the details shown in Appendix A.1.1, we can evaluate
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exactly the summation/integration in Eq. (8.19) in the limit 𝑟𝑇𝐹 → ∞. In the 3D case, we have

ImΣ(2) (k, 𝐸) = 𝛼

2
√
2𝑡𝜀k

ln

����� (√𝜀k − √
𝐸 + 𝜔0 + 𝜇)2

(√𝜀k +
√
𝐸 + 𝜔0 + 𝜇)2

�����Θ(−𝐸 − 𝜔0)Θ(𝐸 + 𝜇 + 𝜔0) , (8.24)

while in the 2D case

ImΣ(2) (k, 𝐸) = 𝛼
√
2𝑡

(√
𝜀k +

√
𝐸 + 𝜔0 + 𝜇

)𝐾 (
2 [𝜀k (𝐸 + 𝜔0 + 𝜇)]

1
4

√
𝜀k +

√
𝐸 + 𝜔0 + 𝜇

)
×

× Θ(−𝐸 − 𝜔0)Θ(𝐸 + 𝜇 + 𝜔0) .
(8.25)

The remaining integrations in Eq. (8.22) can be easily carried out numerically, yielding finally
the numerical value for 𝑅1(∞). The only data needed for its concrete evaluation are the effective
mass characterizing the quasiparticle dispersion, Fermi energy, and Fermi wave vector. All
those data can be read out from an experimental ARPES spectrum.

8.3.6 Application to real experimental ARPES data

To conclude this Chapter 8, we provide an illustrative example of determining the electron-
phonon interaction range from the real ARPES data by using our developed formalism. In
particular, we consider the ARPES spectrum of oxygen-deficient LaAlO3/SrTiO3 interface [158],
involving different phonons and the limited experimental resolution (0.04 eV), making the
theoretical modeling very challenging. Yet, even in such circumstances, our approach based on
confinement estimators and integrated spectra may provide valuable insights into the range of
the electron-phonon interaction.

The corresponding ARPES spectrum with the constant background removed is shown in
Fig. 8.13(a). In particular, always present lattice imperfections cause a scattering of electrons,
giving a finite constant contribution 𝐵 to the imaginary part of the self-energy. For weak
electron-phonon interactions, this constant contribution may easily dominate over the self-
energy contributions arising due to the interaction with the phonon, and in such circumstances,
we need to adapt our expression for the ARPES spectrum in Eq. (8.17). According to Eq. (8.16),
for finite 𝐵 we have

𝐴(k, 𝐸 < 0) ≈ 1

𝜋

ImΣ(k, 𝐸 < 0)
[𝐸 − 𝜉k]2 + 𝐵2

+ 1

𝜋

𝐵

[𝐸 − 𝜉k]2 + 𝐵2
. (8.26)

First, the value 𝐵 = 0.15 eV was determined by fitting Gaussian-like peaks to the quasiparticle
band signal and by evaluating the average value of the full width at half the maximum of the
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Figure 8.13: (a) Raw ARPES data [158] with the constant background removed. (b) ImΣ

corresponding to (a). (c) Measure of confinement R1(𝑘𝑥)/MAX{R1(𝑘𝑥)} for data in (a) (black)
and (b) (red) panel.

Gaussian-like peaks. From the same fits, peculiarities of the dispersion 𝜉k have been extracted
as well. In the next step, the minimal value of the ARPES signal has been removed as a constant
background, and the remaining ARPES intensity was normalized for each given momentum to
the maximum of the quasiparticle peak, resulting finally in the spectrum shown in Fig. 8.13(a).
From Fig. 8.13(a), 𝑘𝐹 ≈ 0.37 A−1 and 𝜇 ≈ 0.07 eV were easily read out.

In the last step, the ImΣ intensity was extracted from the resulting ARPES spectrum. In
particular, the quasiparticle band signal was subtracted in order to obtain the signal corresponding
purely to phonon sidebands, after which ImΣ was obtained by means of Eq. (8.26) (without the
second term). The resulting ImΣ intensity is shown in Fig. 8.13(b). Here, we assumed that
electrons dominantly couple to the LO3 phonon, with the energy ℏ𝜔𝐿𝑂3 ≈ 0.12 eV [87].

Once the imaginary part of the self-energy is known, it is straightforward to calculate the
confinement estimators. Namely, by averaging ImΣ over the energy interval −𝜇 − ℏ𝜔𝐿𝑂3 ≤
𝐸 ≤ −ℏ𝜔𝐿𝑂3, the value of 𝑅1 = 1.03 was obtained. This is almost the minimal value that
this estimator can attain, pointing to the short-range nature of the electron-phonon interaction,
without the need of referencing to the estimator 𝐶𝑛 (𝑟𝑇𝐹).

For such short-ranges couplings, ImΣ should be almost momentum independent in the energy
region of the first hole phonon sideband, which is ungrateful to estimate from Fig. 8.13(b) due to
the limited experimental resolution. However, it is quite clear that ImΣ is approximately evenly
spread over the whole momentum range shown. On the other hand, the ARPES intensity is
almost completely confined deeply within the Fermi surface, which is, as we argued, the general
property of all ARPES spectra. The confinement estimator of the ARPES intensity can also
be calculated and reads 𝑅1 = 1.85. Based on that value one would obviously overestimate the
range of the electron-phonon interaction.
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8.4 Conclusions

We perform the evaluation of the fermion self-energy up to the next-to-leading order of the
electron-phonon interaction perturbation theory, including the leading vertex correction and
the correction involving the renormalization of the phonon line, in cases with finite electron
densities. While we briefly comment on the influence of the retarded electron-phonon interaction
and exchange processes on the excitations’ lifetime in the vicinity of the Fermi level, the major
focus is put on the self-energy corrections away from the Fermi level in the energy windows
of phonon sidebands. Based on the momentum and energy structure of phonon sidebands,
we provide means to estimate the effective electron-phonon interaction range from measured
ARPES spectra. Our reasonings are based on the confinement in the momentum space of
the imaginary part of the self-energy intensity in the regions of phonon sidebands, which is
experiencing significant change as the interaction range is varied. Based on that confinement, a
few confinement estimators involving integrated spectra are introduced, which provide a robust
estimate of the effective interaction range even when the experimental resolution is very limited.
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Chapter 9

Phonon-plasmon coupling

Some results of Chapter 9 have been published in [159].

9.1 Introduction

In the previous Chapter 8, the electron-electron interaction was only implicitly taken into account
through the static screening of the electron-phonon interaction. We change that here by explicitly
introducing the Coulomb interaction between electrons, which long-range nature results in
the collective electron excitation called plasmon [40]. In polar materials, the longitudinal
plasma oscillation may strongly couple with the longitudinal optical (LO) phonon resulting in
a hybridization of those two boson modes. This coupling in 3D polar semiconductors has been
addressed as early as in the 1960s in seminal works by Yokota [160], Varga [161], Singwi
et al. [162], and Cochran et al. [163]. Since the long-wavelength plasma energy directly
depends on the electron density, it may be easily controlled. In particular, a resonance with the
phonon energy may be achieved, which results in a level repulsion of two boson modes. This
phenomenon was oftentimes observed experimentally in the Raman [132–137] and infrared
spectroscopy [138–140] measurements of a highly doped GaAs, as well as of some transition
metal oxides [141–143], giving an excellent agreement with theoretical predictions [164]. In
the past decade, the level repulsion of modes was captured in ultrafast transient reflectivity
measurements of III-IV semiconductors [165–168] as well, leading to the renewed interest in
studying the phonon-plasmon coupled excitations in 3D systems.

A scenario in 2D cases is radically different since the energy of long-wavelength plasma
oscillations vanishes [169]. Peculiarities of the 2D case were seldom discussed until recently
when the renewed interest in 2D systems emerged due to the synthesis of mono- to few-layer
materials. The relevance of the phonon-plasmon coupling in monolayer graphene was pointed
out in several experiments showing clear signatures of the coupling of graphene’s plasmon
with the substrate’s phonon [170–175], while the interaction of the intrinsic phonon with the
plasmon in bilayer graphene was recorded in [176]. The important role of the electron-phonon
interaction was recognized in transition metal dichalcogenides (TMDs) as well, where it is
frequently invoked to explain spectral and transport properties of monolayer TMDs [177–181].
Experimental evidence also exist for the coupling of a monolayer MoS2 plasmon with a substrate
phonon [182], albeit, to the best of our knowledge, no coupling of an intrinsic phonon to a
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plasmon has been observed in monolayer TMDs to our knowledge. Indeed, for most monolayer
TMDs, a polar coupling is expected to be rather weak [183]. However, experiments and 𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜
calculations suggest a large ionic character of bonds and a strong polar coupling for monolayer
TMDs with the 1T polytype structure [183–185], given by the chemical formula MX2 with M
= Hf, Zr and X = S, Se. It is for these materials that a strong hybridization of a 2D plasmon
with intrinsic phonon modes is expected, demanding a thorough analysis of the effects of the
phonon-plasmon coupling on the spectral properties of 2D materials.

Apart from the examination of the phonon-plasmon coupled excitations in the long-wavelength
limit, several studies analyzed the dispersions of coupled modes outside the electron-hole con-
tinuum, examined by considering zeros of the longitudinal dielectric function or extracted from
the simulated EELS spectra in 3D [161, 163, 164, 186, 187] and 2D [188–193] cases. The level
of influence of the continuum on coupled modes remained thus unclear, which was tried to
be reconciled by considering the scattering of electrons on collective excitations [194, 195].
However, the definite answer about excitations’ damping is still not provided.

Another important problem of the excitations’ character was addressed in [164, 188, 189,
192, 195] by considering phonon and plasmon strengths in the total dielectric function and
EELS spectra. These results were further supplemented by considering phonon strengths of
coupled modes in the long-wavelength limit [161,162,194]. However, the full phonon spectrum
in the presence of the phonon-plasmon coupling was seldom analyzed. We may mention a
work by Yi et al. [196] considering phonon spectra in the 3D case, which, however, overlooks
the spectral weight of collective excitations outside the continuum and lacks a very interesting
resonant regime. Actually, in all of the works, to the best of our knowledge, only the adiabaticity
parameter, that is, the electron density, was considered as a quantity that separates quantitatively
different coupling regimes, while the influence of the electron-phonon interaction strength was
not discussed at all. We shall also add that in the context of the phonon degree of freedom, the
interest in investigating phonon spectral properties recently increased due to the potential impact
of nonadiabatic effects in 𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜 modeling of phonon spectra of highly doped monolayer
TMDs [180,181, 197].

Here, we provide a systematic and thorough analysis of phonon-plasmon coupled excitations
in the whole two-dimensional parametric space, spanned by both the adiabaticity parameter
and the electron-phonon interaction strength. In particular, we distinguish six very different
regimes, which come as a product of three adiabaticity regimes: (a) antiadiabatic, (b) resonant,
and (c) adiabatic, and two electron-phonon interaction strength cases: (A) weak and (B) strong.
Characteristics of all the regimes are studied by means of fully momentum and energy resolved
raw and integrated EELS and phonon (corresponding to the LO phonon) spectra, providing an
original side-by-side comparison of coupled excitations’ projections onto the electron and the
phonon degree of freedom. To cover all of the experimentally relevant parametric space, we
refer to four semiconducting materials that are of particular interest. Namely, we consider the
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bulk GaAs, which is on the weak electron-phonon interaction side of the phase diagram, and
TiO2 with the considerably stronger electron-phonon interaction. When it comes to the 2D case,
we refer to the monolayer MoS2, which is assumed to be weakly polar, and ZrS2 which should
be a much more polar system.

Both the momentum and energy resolved EELS and phonon spectra may be probed ex-
perimentally. In particular, when a high-energy electron beam is directed onto a material, by
measuring the energy loss of transmitted electrons the EELS spectrum is formed. It shows
peaks at excitations’ energies with spectral weights proportional to the rate at which electrons
inelastically scatter by corresponding excitations. EELS measurements are regularly used to
experimentally determine plasmon energies in metals [198–200] and are recently exploited to
study plasmon dispersions in heavily doped semiconductors [201, 202]. The EELS measure-
ments should in principle capture phonon-plasmon coupled excitations as well. However, at
the present time the energy resolution Δ𝐸 ∼ 30 − 100 meV is not high enough to fully spec-
trally resolve characteristic energies of coupled modes. While new techniques that overcome
these technical difficulties are appearing [203], our analysis based on integrated spectra may
circumvent the problem of the limited experimental resolutions to a great extent.

Besides the standard Raman and the infrared spectroscopy for momenta close to the center of
the Brillouin zone, an alternative with a sufficient energy resolution to capture [204] dispersions
of phonon-plasmon coupled modes are experiments based on the inelastic neutron scattering
[205,206]. The coupling strength of a neutron to material excitations is directly proportional to
the amount of ionic motion present in corresponding excitations, highlighting the importance
of the projection of coupled excitations on the phonon degree of freedom. By conducting an in-
depth analysis of phonon spectral features, we show that the strong coupling case is accompanied
by large phonon production contributions, which makes us especially emphasize the importance
of a distinction between phonon softening effects and effects caused by a cloud of phonons
attached to charge fluctuations.

9.2 Random phase approximation

To be able at all to account for the plasmon excitation, we need to complement the electron-
phonon Hamiltonian in Eq. (5.1) with the electron-electron interaction, 𝐻𝑒𝑙−𝑒𝑙 = 1

2

∑
q 𝑣

∞
q 𝜌q𝜌−q.

Here, 𝜌q =
∑

k 𝑐
†
k+q𝑐k is the charge density operator, while 𝑣∞q = 𝑣q/𝜀∞ characterizes the

interaction between electrons, with 𝑣q = 𝑒2/𝜖0𝑞𝐷−1𝑉 the Coulomb potential, where 𝜖0 is the
vacuum permittivity. The screening from high-energy excitations across band gaps is taken into
account through the high-frequency dielectric constant 𝜀∞. Due to this screening, the interband
excitations renormalize the plasmon frequency, Ω∞

𝑃𝐿
= Ω𝑃𝐿/

√
𝜀∞, where Ω𝑃𝐿 would be the

plasmon frequency in the absence of other bands. With these necessary inclusions, our minimal
model capturing the essences of the phonon-plasmon coupling reads
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𝐻 =
∑︁
k

𝜀k𝑐
†
k
𝑐k + ℏ𝜔0

∑︁
k

𝑎
†
k
𝑎k +

1

2

∑︁
q

𝑣∞q 𝜌q𝜌−q +
∑︁
q

𝑔(q)𝜌q
[
𝑎
†
q + 𝑎−q

]
. (9.1)

Hereafter, we recover the full ℏ.

We are interested in a single band model that describes a semiconductor with a bottom/top
of conduction/valence band doped, such that dispersion of electrons/holes may be assumed
quadratic 𝜀k = ℏ2𝑘2

2𝑚∗ , characterized by an effective mass 𝑚∗. In addition to the Coulomb inter-
action between itinerant charges, we investigate the effects of the electron/hole interaction with
lattice phonons, assuming that the latter is dominated by the polar coupling to a dispersionless
LO phonon branch with the frequency 𝜔0 = 𝜔𝐿𝑂 . Regarding the electron-phonon interaction,
corresponding to the last term in Eq. (9.1), we assume a polar coupling described by the Fröhlich
model [207]

𝑔(q) = −𝑖
√︃
𝑣∞q

√︂
ℏ𝜔𝐿𝑂

2

√︂
1 − 𝜀∞

𝜀0
. (9.2)

Here, 𝜀0 is the static dielectric constant of a polar crystal, measured well below the phonon
frequency 𝜔𝐿𝑂 (not to be confused with 𝜖0). In the spirit of the earlier introduced polaron
theory, we take a dimensionless electron-phonon coupling constant [207]

𝛼 =
𝑒2

4𝜋𝜖0ℏ

√︂
𝑚∗

2ℏ𝜔𝐿𝑂

(
1

𝜀∞
− 1

𝜀0

)
, (9.3)

as a measure of the electron-phonon interaction strength. In particular, values 𝛼 ≪ 1 and 𝛼 ≈ 1

correspond to the weak and the strong electron-phonon interaction case, respectively, as found in
standard semiconducting materials. It should be emphasized that all the bare model parameters
in Eq. (9.1) may be determined either from experiments or by performing 𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜 calculations
for the undoped polar semiconductor of interest.

9.2.1 EELS spectrum

The inelastic scattering cross section of electrons measured in an EELS experiment is related via
the fluctuation-dissipation theorem to the system’s charge density-density correlation function
[83] and hence an EELS spectrum is directly proportional to the imaginary part of the inverse
of system’s total dielectric function
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𝑆(q, 𝜔) ∝ −𝜋−1Im
[
𝜀−1(q, 𝜔)

]
= 𝜋−1

Im 𝜀(q, 𝜔)
[Re 𝜀(q, 𝜔)]2 + [Im 𝜀(q, 𝜔)]2

.
(9.4)

In order to simulate EELS spectra, we adopt the RPA kind of scheme for the total dielectric
function of the system. Within this scheme, the electron and the phonon contributions to the
dielectric function are additive, yielding [40]

𝜀(q, 𝜔) = 𝜀∞ − 𝑣q𝜒0(q, 𝜔) + 𝜀∞
𝜔2
𝑝𝑙

𝜔2
𝑇𝑂

− 𝜔2

= 𝜀∞

[
𝜀𝑅𝑃𝐴 (q, 𝜔) +

𝜔2
𝑝𝑙

𝜔2
𝑇𝑂

− 𝜔2

]
.

(9.5)

The first term in the first row of Eq. (9.5) accounts for the high-energy interband excitations, the
second term for the intraband excitations, and the last term for the phonon contribution. In the
second row of Eq. (9.5), we simply exploited the standard RPA form for the electron dielectric
function [40]

𝜀𝑅𝑃𝐴 (q, 𝜔) = 1 − 𝑣∞q 𝜒0(q, 𝜔) . (9.6)

Here, as well as in Eq. (9.5), 𝜒0(q, 𝜔) is the density-density correlation function of a free electron
system, that is the Lindhard function [40]

𝜒0(q, 𝜔) =
2

𝑉

∑︁
k

𝑛k − 𝑛k+q
ℏ𝜔 − 𝜀k+q + 𝜀k + 𝑖𝜂

, (9.7)

where factor 2 accounts for the electron spin degeneracy. The frequency of the transversal
optical (TO) phonon is given by the LO phonon frequency through the Lydanne-Sachs-Teller
(LST) relation𝜔2

𝑇𝑂
= 𝜔2

𝐿𝑂
𝜀∞/𝜀0, or through the ionic plasma frequency𝜔2

𝑝𝑙
= 𝜔2

𝐿𝑂
−𝜔2

𝑇𝑂
[40].

Outside the electron-hole continuum, Im𝜀(q, 𝜔) is zero and 𝑆(q, 𝜔) is contributed only by
delta peaks at frequencies of system collective excitations 𝜔𝑖, with the corresponding spectral
weights given by

𝑠𝑖 (q) = ℏ

[
𝜕𝜀(q, 𝜔)
𝜕𝜔

]−1�����
𝜔=𝜔𝑖

. (9.8)

Once the continuum is reached, the EELS spectrum acquires an incoherent contribution from
electron-hole pair excitations 𝑠𝑒−ℎ (q, 𝜔) as well. By integrating the spectrum over frequencies,
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one obtains the total spectral weight as a function of q

𝑠𝑡𝑜𝑡 (q) =

∫ +∞

0
𝑑𝜔

{
−𝜋−1Im

[
𝜀−1(q, 𝜔)

]}
=

∑︁
𝑖

𝑠𝑖 (q) + 𝑠𝑒−ℎ (q) . (9.9)

In the long-wavelength limit and in the absence of the electron-phonon interaction, the EELS
spectrum is dominated by plasmon excitation. The corresponding EELS spectral weight may be
easily derived by noting that, in that case, the long-wavelength form of the dielectric function
reads ( |q| ≡ 𝑞)

𝜀(𝑞 → 0, 𝜔) = 𝜀∞ −
Ω2
𝑃𝐿

𝜔2
, (9.10)

resulting in

𝑠𝑡𝑜𝑡 (𝑞 → 0) ≈ 𝑠Ω∞
𝑃𝐿

(𝑞 → 0) =
ℏΩ∞

𝑃𝐿

2𝜀∞
. (9.11)

With the introduction of finite electron-phonon interaction, the electrons scatter on phonons
at a rate proportional to the strength of the interaction. Correspondingly, the EELS spectral
weight at 𝜔 = 𝜔𝐿𝑂 , characterizing this scattering, is given by

𝑠𝜔𝐿𝑂
(𝑞 → 0) = ℏ𝜔𝐿𝑂

2

(
1

𝜀∞
− 1

𝜀0

)
. (9.12)

This result was derived by noting that in the cases with the finite electron-phonon interaction
the long-wavelength form of the dielectric function in Eq. (9.10) acquires an additional term
according to Eq. (9.5)

𝜀(𝑞 → 0, 𝜔) = 𝜀∞ −
Ω2
𝑃𝐿

𝜔2
+ 𝜀∞

𝜔2
𝑝𝑙

𝜔2
𝑇𝑂

− 𝜔2
, (9.13)

which derivative’s inverse reads

[
𝜕𝜀(𝑞 → 0, 𝜔)

𝜕𝜔

]−1
=
1

2

[
𝜔2
𝑇𝑂

− 𝜔2
]2
𝜔3

Ω2
𝑃𝐿

[
𝜔2
𝑇𝑂

− 𝜔2
]2 + 𝜀∞𝜔4𝜔2

𝑝𝑙

. (9.14)

In the limit when the ionic plasma frequency 𝜔𝑝𝑙 exceeds that of the electron plasma Ω𝑝𝑙 , we
get
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[
𝜕𝜀(𝑞 → 0, 𝜔)

𝜕𝜔

]−1�����
𝜔=𝜔𝐿𝑂

Ω𝑃𝐿≪𝜔𝑝𝑙≈ 1

2

𝜔2
𝐿𝑂

− 𝜔2
𝑇𝑂

𝜀∞𝜔𝐿𝑂
=
1

2

𝜔2
𝐿𝑂

− 𝜔2
𝐿𝑂

𝜀∞
𝜀0

𝜀∞𝜔𝐿𝑂

=
𝜔𝐿𝑂

2

(
1

𝜀∞
− 1

𝜀0

)
,

(9.15)

giving the desired result. As an immediate consequence of Eq. (9.14), we note that the EELS
spectral weight at the frequency of the TO phonon vanishes, 𝑠𝜔𝑇𝑂

(𝑞 → 0) = 0.

However, for the itinerant charge concentrations when the plasmon and the phonon energies
become comparable, the two excitations are strongly coupled, resulting in significantly renor-
malized energies of coupled excitations. They do not necessarily have predominantly a phonon
nor a plasmon character, but rather a hybridization of excitations is generally expected. In such
circumstances, in the long-wavelength limit, the EELS spectrum shows two peaks at frequencies
𝜔− and 𝜔+, hereafter referred to the lower frequency excitation (LFE) and higher frequency
excitation (HFE), respectively. With 𝑠− and 𝑠+, we denote the corresponding spectral weights
of the two coupled excitations in EELS spectra.

9.2.2 Phonon spectral function

In parallel to the EELS spectrum, we also consider the experimentally relevant phonon spectral
function that may be investigated by neutron scattering experiments, defined by Eq. (7.29),
where 𝐷 (q, 𝜔) now corresponds to the LO phonon propagator. The spectral function of the
unperturbed LO phonon propagator

𝐷0(q, 𝜔) =
1

ℏ𝜔 − ℏ𝜔𝐿𝑂 + 𝑖𝜂 − 1

ℏ𝜔 + ℏ𝜔𝐿𝑂 − 𝑖𝜂 , (9.16)

is characterized by the LO phonon frequency only

𝐵0(q, 𝜔) = [𝛿(ℏ𝜔 − ℏ𝜔𝐿𝑂) + 𝛿(ℏ𝜔 + ℏ𝜔𝐿𝑂)] , (9.17)

satisfying the sum rule

ℏ

∫ +∞

0
𝑑𝜔𝐵0(q, 𝜔) = 1 , (9.18)

where we again restrict the analysis to positive frequencies only. For the upcoming discussion,
it is convenient to exploit Eq. (1.8) to write for the total LO phonon spectral weight

ℏ

∫ ∞

−∞
𝐵(q, 𝜔)𝑑𝜔 =

2𝑀𝜔𝐿𝑂
ℏ

⟨Ω|𝑥q𝑥−q |Ω⟩ . (9.19)
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According to Eq. (9.19), the total phonon spectral weight is defined by the lattice quantum
fluctuations in the ground state of the interacting system |Ω⟩. In general, this spectral weight
may be distributed among different excitations of the system.

Specifically, with the interactions included, in contrast to the polaron case, the renormalized
LO phonon propagator can be obtained by means of the Dyson equation

[𝐷 (q, 𝜔)]−1 = [𝐷0(q, 𝜔)]−1 − Π(q, 𝜔) , (9.20)

and the phonon spectral function develops new peaks corresponding to collective system excita-
tions, given by the poles of Eq. (9.20). This is accompanied by the appearance of an incoherent
contribution from electron-hole pair excitations, yielding

𝐷 (q, 𝜔 > 0) =
∑︁
𝑖

𝑧𝑖 (q)
ℏ𝜔 − ℏ𝜔𝑖 (q) + 𝑖𝜂

+ 𝐷𝑒−ℎ (q, 𝜔 > 0) . (9.21)

Here, 𝑧𝑖 measures directly the projection of system excitations to the unperturbed phonon,
providing information about their phonon character. Similarly as in the polaron problem, it is
crucial to observe that in addition to the spectral weight redistribution among excitations and the
incoherent continuum (phonon transfer), an additional spectral weight might appear (phonon
production)

ℏ

∫ +∞

0
𝑑𝜔𝐵(q, 𝜔) =

∑︁
𝑖

𝑧𝑖 (q) + 𝑧𝑒−ℎ (q) ≥ 1 , (9.22)

where 𝑧𝑒−ℎ (q, 𝜔 > 0) denotes the phonon spectral weight associated with the incoherent con-
tinuum. This additional spectral weight, as we show, heavily depends on the electron-phonon
interaction strength and may be of very different physical origins.

In analogy to the EELS spectrum, due to the phonon-plasmon coupling, in the long-
wavelength limit two excitations with finite frequencies, 𝜔±, appear in the phonon spectral
function. Each of these two excitations is characterized by its own spectral weight 𝑧±. The cases
with the phonon production, 𝑧+ + 𝑧− > 1, deserve special attention since they may be caused
by different physical mechanisms, ranging from the standard phonon frequency softening to a
presence of a permanent, yet dynamic lattice deformation that does not break the translational
symmetry. In the context of phonon-plasmon coupled systems, to the best of our knowledge,
phonon production has not been discussed previously, with the exception of seminal work by
Varga [161].

To treat on an equal footing EELS and phonon spectra, we adopt the RPA kind of scheme
for calculations of the phonon propagator. Diagrammatically, this scheme is shown in Fig.
9.1. The first row in Fig. 9.1 represents the Dyson equation for the phonon propagator, with the
polarization being represented by the bubble denoted with double fermion lines ending by the pair
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Figure 9.1: Diagrammatic representation of the RPA kind of scheme for the phonon propagator.
The corresponding polarization consists of the density-density correlation function (bubble
with double solid lines) ending with the electron-phonon interaction vertices. In the RPA, the
density-density correlation function can be pictorially represented by the infinite chain of bubble
diagrams coupled with the Coulomb interaction, as shown in the second row.

of electron-phonon vertices (dots). The bubble in the first row stands for the standard RPA for the
density-density correlation function in a system with the electron-electron interaction, shown in
the second row in Fig. 9.1, with the dashed line representing the instantaneous electron-electron
interaction. It is easy to verify that the scheme in Fig. 9.1 corresponds to an infinite series of
diagrams for the phonon propagator, where the series consists of the diagrams with all different
numbers of polarization bubbles connected either with phonon or electron-electron interaction
lines in all possible combinations. It is worth mentioning that the scheme in Fig. 9.1 can be
utilized to obtain the total dielectric function in Eq. (9.5), simply by reinterpreting the double
wavy line as the effective electron-electron interaction and interchanging the phonon (together
with the electron-phonon interaction vertices) and the Coulomb interaction propagators.

By recalling that the electron dielectric function in the standard RPA takes the form given
by Eq. (9.6), the polarization corresponding to that in Fig. 9.1 may be written as

Π(q, 𝜔) = |𝑔(q) |2
𝑣∞q

[
1

𝜀𝑅𝑃𝐴 (q, 𝜔)
− 1

]
. (9.23)

This expression is especially appealing since it readily allows for the calculation of polarization
beyond the RPA. Namely, replacing 𝜒0(q, 𝜔) with 𝜒𝑖𝑟𝑟 (q, 𝜔) in 𝜀𝑅𝑃𝐴 (q, 𝜔), where 𝜒𝑖𝑟𝑟 (q, 𝜔)
denotes the sum of irreducible density-density correlation function diagrams, allows for the
inclusion of some fermion self-energy and vertex corrections due to both the electron-electron
and the electron-phonon interaction.

However, we emphasize that the RPA kind of scheme used here is generally valid in describing
high electron density liquids such as in heavily doped semiconductors. In particular, in doped
semiconductors, an actual density of itinerant charge carriers is usually quite low in comparison
to metals, albeit due to the smallness of effective masses and large values of effective Bohr radii,
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effective carrier densities may be even larger than in metals, making many semiconductors a
suitable environment to implement the RPA [40]. The use of the RPA for the phonon propagator
is further supported by Migdal’s theorem [119], which justifies the omission of electron-phonon
vertex corrections for sufficiently high electron densities and high momenta. Moreover, as long
as Migdal’s theorem may be applied, it may be argued that fermion self-energy contributions
bring only quantitative corrections to spectra, for example through the (weak) renormalization
of effective masses or damping of excitations [208], while qualitatively no new features should
be expected.

9.2.3 Adiabaticity parameter and limiting behaviors

The complex mixing of a phonon and a plasmon is captured by Eqs. (9.5) and (9.23), accounting
for the full dynamic treatment of the total dielectric function and the polarization in the presence
of electrons coupled to the crystal lattice. However, for a better understanding of the interplay
between the lattice and the electron subsystem, it is particularly useful to consider some limiting
cases.

First, we redefine the adiabaticity parameter introduced in Part II of the thesis 𝜅 = 𝜔0/𝑡.
Namely, now the plasmon frequency Ω∞

𝑃𝐿
naturally sets the frequency scale for the electron

subsystem, similarly to the way the phonon frequency 𝜔𝐿𝑂 characterizes the lattice subsystem.
Therefore, we redefine the adiabaticity parameter as the ratio of those two frequency scales
𝜅 = 𝜔𝐿𝑂/Ω∞

𝑃𝐿
in the long-wavelength limit. Depending on the value of 𝜅, three different

regimes may be distinguished, followed by the three limiting choices for the electron dielectric
function 𝜀𝑅𝑃𝐴 (q, 𝜔) in Eqs. (9.5) and (9.23).

The case 𝜅 ≫ 1 corresponds to the antiadiabatic regime when the plasmon frequency
significantly subceeds that of the phonon. Apart from the polaronic effects described in Part
II, the phonon remains unrenormalized, since the slow electron plasma oscillations cannot
influence the fast lattice vibrations. This readily follows from Eq. (9.23), by noting that only the
high-frequency part of the electron dielectric function 𝜀𝑅𝑃𝐴 (q, 𝜔 ≈ ∞) → 1 contributes to the
frequency window situated around the phonon frequency.

When the plasmon frequency is tuned so that it approximately matches that of the phonon,
the resonant regime with 𝜅 ≈ 1 is reached. In such situations, the full frequency dependence of
the electron dielectric function should be kept.

Lastly, for small 𝜅, corresponding to the adiabatic regime, the electron degrees of freedom
are much faster than the phonon. Correspondingly, the electron dielectric function in Eqs. (9.5)
and (9.23) may be approximated by its static value 𝜀𝑅𝑃𝐴 (q, 𝜔 ≈ 0). This suggests that the
correct way of approximating the total dielectric function or the polarization is to first determine
their dynamic properties through the electron dielectric function 𝜀𝑅𝑃𝐴 (q, 𝜔), depending on
the adiabaticity parameter 𝜅, and only after that eventual approximations on their momentum
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dependence can be made.

Resonant regime

The resonant regime naturally serves as a starting playground for studying the phonon-plasmon
mixing, since then the frequencies of two excitations are nearly degenerate. In particular, in
the long-wavelength limit, the physics of the resonant regime reduces solely to the phonon-
plasmon coupling due to the absence of the continuum and the corresponding polaronic effects.
Namely, the dynamic long-wavelength limit of the electron dielectric function takes the form
𝜀𝑅𝑃𝐴 (𝑞 → 0, 𝜔) = 1 − (Ω∞

𝑃𝐿
)2/𝜔2, yielding for the polarization

Π(𝑞 → 0, 𝜔) =
ℏΩ∞

𝑃𝐿
|𝑔(q) |2

2𝑣∞q

2ℏΩ∞
𝑃𝐿

(ℏ𝜔)2 −
(
ℏΩ∞

𝑃𝐿
− 𝑖𝜂

)2 . (9.24)

We note that the second factor on the right-hand side of Eq. (9.24) has the form of the free
plasmon propagator, while the first factor may be interpreted as the effective matrix element of
phonon-plasmon coupling |𝑔(q) |2.

By inserting Eq. (9.24) into the Dyson equation in Eq. (9.20) and by looking for the poles
of the phonon propagator, the biquadratic equation is obtained, describing the coupling of two
boson modes. Its solutions are given by

2𝜔2
± = 𝜔2

𝐿𝑂 +
[
Ω∞
𝑃𝐿

]2 ± √︂(
𝜔2
𝐿𝑂

−
[
Ω∞
𝑃𝐿

]2)2 + 16|𝑔(q) |2𝜔𝐿𝑂Ω∞
𝑃𝐿
/ℏ2 , (9.25)

corresponding to the frequencies of the collective excitations of the coupled phonon-plasmon
system. The same solutions are obtained from the zeros of Eq. (9.5), assuming in Eq. (9.25) the
polar coupling given by Eq. (9.2). Here, it should be stressed that in describing the phonon-
plasmon coupled system via the total dielectric function, Eq. (9.5), the polar coupling is explicitly
assumed. On the other hand, the approach involving the phonon propagator allows for a general
type of the electron-phonon interaction matrix element 𝑔(q).

Although Eq. (9.25) is strictly speaking obtained in the resonant regime, as we shall show,
it provides the excitations’ frequencies of the phonon-plasmon coupled system around 𝑞 ≈ 0

irrespectively of the adiabaticity parameter. In particular, we first consider the 3D case with
Ω2
𝑃𝐿

(𝑞 → 0) = const ∝ 𝑛 in the antiadiabatic 𝜅 ≫ 1 regime, when two solutions of Eq. (9.25)
are 𝜔+ = 𝜔𝐿𝑂 and 𝜔− = Ω0

𝑃𝐿
= Ω𝑃𝐿/

√
𝜀0. That is, the phonon frequency remains unchanged,

while the plasmon gets screened by both the interband excitations and the lattice vibrations.
By exploiting Eq. (9.14) and the inequality Ω0

𝑃𝐿
≪ 𝜔𝑇𝑂 , the corresponding plasmon spectral

weight in an EELS spectrum then equals
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𝑠Ω0
𝑃𝐿

(𝑞 → 0) =
ℏΩ0

𝑃𝐿

2𝜀0
. (9.26)

For higher electron densities when the adiabatic regime is reached, the electron subsystem
completely screens long-range interactions between ions. This reduces the frequency of the LO
phonon to that of the TO phonon. Accordingly, for 𝜅 ≪ 1, two solutions of Eq. (9.25) read
𝜔− = 𝜔𝑇𝑂 and 𝜔+ = Ω∞

𝑃𝐿
. Since only the interband excitations are fast enough to screen the

plasmon, 𝜔+ is characterized by 𝜀∞.

In addition, we can obtain the momentum dependence of the𝜔− mode in the adiabatic regime
by taking the static limit of the electron dielectric function in Eq. (9.23). In particular, with
𝜀𝑅𝑃𝐴 (𝑞 → 0, 𝜔 ≈ 0) = 1+𝑞2

𝑇𝐹
/𝑞2 giving 1/𝜀𝑅𝑃𝐴 (𝑞 → 0, 𝜔 ≈ 0) ≈ 𝑞2/𝑞2

𝑇𝐹
in Eq. (9.23), where

𝑞𝑇𝐹 is the Thomas-Fermi wave vector, we obtain by solving the Dyson equation, Eq. (9.20), for
the LFE

𝜔− =

√︄
𝜔2
𝑇𝑂

+ 𝜔2
𝑝𝑙

𝑞2

𝑞2
𝑇𝐹

. (9.27)

For metals in the jellium model 𝜀0 diverges [209] and Eq. (9.27) may be used to obtain 𝜔− by
setting 𝜔𝑇𝑂 = 0. The ionic plasma oscillations get screened, acquiring an acoustic dispersion
𝜔−/𝜔𝑝𝑙 = 𝑞/𝑞𝑇𝐹 , with 𝜔𝑝𝑙 = 𝜔𝐿𝑂 .

Such analysis of the phonon-plasmon coupling in 2D cases requires a bit more attention.
In particular, in 2D systems the plasmon is gapless and its frequency vanishes in the long-
wavelength limit Ω∞

𝑃𝐿
(𝑞 → 0) =

√︃
𝑒2𝑛

2𝜖0𝜀∞𝑚∗ 𝑞 [169], raising the question whether the different
adiabaticity regimes are well defined at all. Thus, we argue that it is unimportant to study
Eq. (9.25) for different limits of 𝜅, but rather for various strengths of the electron-phonon
interaction.

With the polar coupling given by Eq. (9.2) substituted in Eq. (9.25), the frequencies of
phonon-plasmon coupled excitations in the long-wavelength limit read

𝜔2
± =

𝜔2
𝐿𝑂

+
[
Ω∞
𝑃𝐿

]2
2

± 1

2

√︂(
𝜔2
𝐿𝑂

−
[
Ω∞
𝑃𝐿

]2)2 + 4𝜆𝜔2
𝐿𝑂

[
Ω∞
𝑃𝐿

]2
, (9.28)

where 𝜆 = 1 − 𝜀∞
𝜀0

. In the weak coupling case 𝜀∞ ≈ 𝜀0 ⇒ 𝜆 → 0, so

𝜔2
− ≈

[
Ω∞
𝑃𝐿

]2 − 𝜆 [
Ω∞
𝑃𝐿

]2
=
𝜀∞
𝜀0

[
Ω∞
𝑃𝐿

]2
=

[
Ω0
𝑃𝐿

]2
, 𝜔2

+ ≈ 𝜔2
𝐿𝑂 + 𝜆

[
Ω∞
𝑃𝐿

]2 ≈ 𝜔2
𝐿𝑂 . (9.29)

On the other hand, for a much stronger coupling holds 𝜀∞ ≪ 𝜀0 ⇒ 𝜆 → 1. With the introduction
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of 𝜆 ≡ 1 − 𝜆 =
𝜀∞
𝜀0

, Eq. (9.25) can be written as

𝜔2
± =

𝜔2
𝐿𝑂

+
[
Ω∞
𝑃𝐿

]2
2

± 1

2

√︂(
𝜔2
𝐿𝑂

+
[
Ω∞
𝑃𝐿

]2)2 − 4𝜆𝜔2
𝐿𝑂

[
Ω∞
𝑃𝐿

]2
, (9.30)

giving in the strong coupling case (𝜆 → 0)

𝜔2
− ≈ 𝜆

[
Ω∞
𝑃𝐿

]2
=
𝜀∞
𝜀0

[
Ω∞
𝑃𝐿

]2
=

[
Ω0
𝑃𝐿

]2
, 𝜔2

+ ≈ 𝜔2
𝐿𝑂 +

(
1 − 𝜆

) [
Ω∞
𝑃𝐿

]2 ≈ 𝜔2
𝐿𝑂 +

[
Ω∞
𝑃𝐿

]2
.

(9.31)
In both cases, the LFE follows the plasmon dispersion screened by both interband excitations
and the phonon. However, the HFE retains the constant frequency situated at 𝜔𝐿𝑂 for weak
couplings, while it starts developing the linear dispersion, 𝜔+ ≈ 𝜔𝐿𝑂 + 𝑒2𝑛

4𝜖0𝜀∞𝑚∗𝜔𝐿𝑂
𝑞, as the

coupling increases, with the slope directly proportional to the electron density.

The behaviors discussed above correspond to the long-wavelength limit, with nothing said
about the large-𝑞 behaviors nor a character of the corresponding excitations. Without the
electron-hole continuum in Eq. (9.25), the damping effects are absent as well. To overcome
these limitations, by preserving the full momentum and frequency dependence in Eqs. (9.4) and
(9.23), we investigate in detail the structure of EELS spectra and phonon spectral functions, along
with the distribution of corresponding spectral weights among different excitations. Our results
show that in addition to the adiabaticity parameter, the electron-phonon interaction strength is
essentially important for the shape of spectra of phonon-plasmon coupled systems, motivating us
to discuss regimes, with the experimentally relevant weak and strong electron-phonon interaction
separately. From the technical point of view, we use the analytical expression for the 3D and the
2D Lindhard function 𝜒0(q, 𝜔) [210], which simplifies the numerical work.

9.3 3D case

9.3.1 Weak coupling

All our calculated spectra correspond to actual materials. As a first model of a bulk polar
semiconductor, we consider the frequently studied GaAs. With the effective mass𝑚∗ = 0.0657𝑚,
the energy of the LO phonon ℏ𝜔𝐿𝑂 = 36.77 meV, and the dielectric constants 𝜀∞ = 10.9 and
𝜀0 = 12.83 [211], it qualifies as a material with a weak polar coupling 𝛼 ≈ 0.07.

Spectral functions

In Fig. 9.2, we show the calculated EELS spectra, Figs. 9.2(a)-9.2(c), and the phonon spectral
functions of the LO phonon, Figs. 9.2(d)-9.2(f), of the doped bulk GaAs for three different
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Figure 9.2: EELS spectra (upper row) and phonon spectral functions (corresponding to the LO
phonon) (lower row) of the bulk GaAs for three different electron densities 𝑛. The first column
corresponds to 𝑛 = 1016 cm−3, the second to 𝑛 = 5 · 1017 cm−3, and the third to 𝑛 = 1019

cm−3, depicting the antiadiabatic (𝜅 ≫ 1), resonant (𝜅 ≈ 1), and adiabatic (𝜅 ≪ 1) regime,
respectively. Note that MAX on the intensity scale takes a different absolute value for each of
the panels.

electron densities 𝑛 = 1016 cm−3 (𝑘𝐹 = 6.6 · 10−3 Å−1), 5 · 1017 cm−3 (𝑘𝐹 = 2.4 · 10−2 Å−1),
and 1019 cm−3 (𝑘𝐹 = 6.6 · 10−2 Å−1). In all the figures, the red and blue dashed lines denote
the phonon frequencies 𝜔𝑇𝑂 and 𝜔𝐿𝑂 , respectively. The plasmon frequencies Ω0

𝑃𝐿
and Ω∞

𝑃𝐿
in

the long-wavelength limit are denoted by the dot-dashed red and blue lines, respectively, while
the boundaries of the electron-hole continuum are denoted by the turquoise dotted lines.

From Figs. 9.2(a) and 9.2(d), for 𝑞 = 0 we see two well-defined excitations at frequencies
Ω0
𝑃𝐿

and 𝜔𝐿𝑂 , indicating clearly that the electron density 𝑛 = 1016 cm−3 corresponds to the
antiadiabatic regime. As 𝑞 increases, the LFE follows a plasmon-like dispersion and gets
Landau damped upon entering the continuum. The HFE stays a well-defined excitation of
constant frequency 𝜔𝐿𝑂 up to the highest values of 𝑞 shown.

Upon increasing the electron density, the resonant regime is reached, with the corresponding
spectra shown in Figs. 9.2(b) and 9.2(e). The strong level repulsion of coupled excitations is
evident for small momenta 𝑞 < 𝑘𝐹 , because of which neither of the two excitations in Figs. 9.2(b)
and 9.2(e) exhibit long-wavelength limiting behaviors denoted by the horizontal lines. With
increasing 𝑞, both excitations develop a considerable dispersion and the HFE gets completely
Landau damped by the continuum. The frequency of the LFE monotonically increases from the
minimum value at 𝑞 = 0 to the frequency of the LO phonon 𝜔𝐿𝑂 for 𝑞 ≳ 𝑘𝐹 . Upon reaching
the continuum roughly at 𝜔 ≈ 𝜔𝑇𝑂 , it gets strongly damped and ceases to be a well-defined
excitation. However, with the further increase of 𝑞, the spectral weight corresponding to the
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Figure 9.3: Integrated EELS spectra (upper row) and integrated phonon spectra (lower row)
shown in Fig. 9.2.

LFE sharpens again, forming a well-defined excitation characterized by a lifetime that becomes
longer as 𝑞 increases.

For the highest electron density considered, the EELS spectrum shows only the HFE for low
𝑞, Fig. 9.2(c). The LFE is, however, well captured by the phonon spectral function in Fig. 9.2(f),
with exactly the frequency of the TO phonon for 𝑞 ≈ 0, suggesting the adiabatic behavior of
the system for the corresponding electron density. The absence of the LFE’s spectral weight
around 𝑞 ≈ 0 in the EELS spectrum is in accordance with the vanishing spectral weight at
𝜔𝑇𝑂 , when the total dielectric function diverges. In Fig. 9.2(c), the HFE evidently follows the
plasmon dispersion Ω∞

𝑃𝐿
unaffected by the phonon and gets Landau damped in the continuum.

As seen from Fig. 9.2(f), the frequency of the LFE continuously increases from 𝜔𝑇𝑂 to 𝜔𝐿𝑂 and
remains a well-defined excitation for all momenta, although weakly damped upon entering the
continuum (the large energy scale set by the HFE partially hinders these details in Fig. 9.2(f)).

Integrated spectra

In order to get a better insight into the nature of excitations in Fig. 9.2 as a function of 𝑞,
in Fig. 9.3 we consider EELS and phonon spectral weights given by Eqs. (9.9) and (9.22),
respectively, obtained by integrating the spectra in Fig. 9.2. In particular, aside from the total
spectral weight, we consider spectral weights in two specific frequency regions. The first
corresponds to the frequency window 𝜔− < 𝜔 < 𝜔+, while the second to 𝜔 > 𝜔+. This should
provide an estimation of the spectral weights 𝑠± and 𝑧± even in the presence of a strong damping
or a limited experimental resolution. For example, to capture the total spectral weight in the
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HFE, 𝑠+ or 𝑧+, the integration cutoff is defined below 𝜔+ such that it correctly reproduces the
corresponding spectral weight in the long-wavelength limit. In the resonant regime, a weakly
momentum-dependent integration cutoff has been taken. The spectral weights corresponding
to the reference limiting behaviors, Eqs. (9.11), (9.12) and (9.26), are indicated by the straight
lines in Fig. 9.3, normalized to the spectral weight at 𝜔 = 𝜔𝐿𝑂 . Momenta for which in Fig. 9.2
the LFE and the HFE get damped are shaded by the red and blue color, respectively. These two
shaded areas overlap in Figs. 9.3(b) and 9.3(e), that is, in the resonant regime.

For small momenta 𝑞, it is clear from Fig. 9.3(a) that in the antiadiabatic regime both the
LFE and the HFE contribute significantly to the total EELS spectral weight, matching perfectly
the predictions of Eqs. (9.26) and (9.12), respectively. For larger 𝑞, the spectral weight of the
LFE vanishes, while in the HFE case it stays roughly constant, well described by Eq. (9.12),
with a slight enhancement for momenta 𝑞 ≥ 3𝑘𝐹 , which should be attributed to the electron-
hole continuum 𝑠𝑒−ℎ. Thus, the plasmon and the phonon character of the LFE and the HFE,
respectively, are unquestionable in the antiadiabatic regime. This is further confirmed by
Fig. 9.3(d), with almost all the phonon spectral weight being associated with the HFE.

Contrary, for the highest density case shown in Fig. 9.3(c), the HFE’s spectral weight is
almost purely plasmon-like. As predicted by Eq. (9.11), it accounts for almost all of the total
spectral weight at small momenta. For higher momenta, the spectral weight in the frequency
window 𝜔 > 𝜔+ should rather be attributed to the electron-hole continuum. On the other hand,
the LFE spectral weight may be completely ascribed to the phonon subsystem. Indeed, the LFE
contribution to the EELS spectrum appears in Fig. 9.3(c) when the LFE approaches 𝜔𝐿𝑂 , due
to the electron scattering by the LO vibrations, as described by Eq. (9.12). At the same time,
the phonon spectral function in Fig. 9.3(f) is fully dominated by the LFE.

The results become slightly more difficult for interpretation in the resonant regime, Figs. 9.3(b)
and 9.3(e). For small momenta, both collective excitations involve a strong mixture of the
phonon and the plasmon component, signaling strongly hybridized modes. However, as seen
from Fig. 9.3(e), for 𝑞 ≥ 0.4𝑘𝐹 , the dominant character of excitations is unambiguous. In
particular, the LFE is dominated by the phonon, while the HFE with the plasmon component.

The common property of all three phonon spectra in Fig. 9.2 is the phonon production effect,
manifested as a small increase of the total phonon spectral weight around 𝑞 ≈ 0. For larger 𝑞, this
additional phonon spectral weight vanishes and the total spectral weight approaches the value
given by Eq. (9.18). Such a weak phonon production is an indication that, concerning the lattice
subsystem, the ground state of the coupled phonon-plasmon system is approximately given
by the LO phonon vacuum. However, this situation changes for the stronger electron-phonon
interaction.
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9.3.2 Strong coupling

In contrast to III-IV semiconductors, bulk transition metal oxides may host much stronger polar
couplings. As a representative material with a significant electron-phonon interaction, we take
anatase TiO2, which electrons upon doping the conduction band, characterized by the effective
mass 𝑚∗ = 0.42 𝑚, couple to a LO 𝐸𝑢 phonon with the energy ℏ𝜔𝐿𝑂 = 108 meV [84]. The
corresponding dielectric functions read 𝜀∞ = 5.82, and 𝜀0 = 45.1 [212], resulting in the much
larger electron-phonon interaction constant 𝛼 ≈ 1.09 than in GaAs. From the experimental point
of view, TiO2 is very appealing, since𝜔𝐿𝑂 and Fermi wave vectors 𝑘𝐹 corresponding to relevant
electron densities are a few times larger than in GaAs, making it more suitable for experiments
with low energy and momentum resolutions.

Spectral functions

In Fig. 9.4, we show the EELS spectra, Figs. 9.4(a)-9.4(c), and the phonon spectral functions
corresponding to the LO 𝐸𝑢 phonon, Figs. 9.4(d)-9.4(f), of the bulk anatase TiO2 for three
different electron densities 𝑛 = 1017 cm−3 (𝑘𝐹 = 1.4 · 10−2 Å−1), 5 · 1018 cm−3 (𝑘𝐹 = 0.2 Å−1),
and 5 · 1021 cm−3 (𝑘𝐹 = 0.53 Å−1). These choices of electron densities correspond to the
antiadiabatic, resonant, and adiabatic regime, respectively. The structure of spectra remained
overall similar to that in the weak coupling case. However, it should be immediately emphasized
that in the antiadiabatic and resonant regime the excitations get much more strongly damped
within the continuum. Additionally, in the antiadiabatic regime, the HFE develops a visible kink
as it enters the continuum, which may well be seen in Figs. 9.4(a) and 9.4(d).

Integrated spectra

Because of the strong damping, which completely blurs some parts of the EELS and the phonon
spectra, for stronger couplings, it is particularly useful to analyze the integrated spectra shown
in Fig. 9.5. From Fig. 9.5(a), corresponding to the antiadiabatic regime, it is evident that the
total spectral weight of the EELS spectrum is dictated by the constant spectral weight of the
HFE due to the strong electron-phonon interaction, Eq. (9.12), pointing to the phonon character
of the HFE, well supported by Fig. 9.5(d).

In the resonant regime, the spectral weight of the HFE continues to dominate the EELS
spectrum for small 𝑞, albeit slightly higher spectral weight is confined within it than predicted
by Eq. (9.12), suggesting the appreciable plasmon component in addition to the phonon one. In
the adiabatic regime, similarly to the weak coupling case, the plasmon-like spectral weight of
the HFE dominates the EELS spectrum for small 𝑞, while for larger momenta the total spectral
weight is contributed by the LFE at 𝜔𝐿𝑂 , as described by Eq. (9.12), and the electron-hole
continuum. The latter is also true in the resonant regime. In all the regimes, despite the change
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Figure 9.4: EELS spectra (upper row) and phonon spectral functions (corresponding to the LO
𝐸𝑢 phonon) (lower row) of the bulk anatase TiO2 for three different electron densities 𝑛. The
first column corresponds to 𝑛 = 1017 cm−3, the second to 𝑛 = 5 · 1018 cm−3, and the third to
𝑛 = 5 · 1021 cm−3, depicting the antiadiabatic (𝜅 ≫ 1), resonant (𝜅 ≈ 1), and adiabatic (𝜅 ≪ 1)
regime, respectively. Note that MAX on the intensity scale takes a different absolute value for
each of the panels.

0 2 4 6 8
0

0.25

0.5

0.75

1

EE
LS

 s
pe

ct
ra

l w
ei

gh
t

 stot
 s[ - <  < +]
 s[  > +]
 Eq. (9.12)
 Eq. (9.26)

(a)

0 1 2 3
0

0.25

0.5

0.75

1

1.25

 stot
 s[ - <  < +]
 s[  > +]
 Eq. (9.12)

(b)

0 0.5 1 1.5 2 2.5
0

5

10

15

20

 stot
 s[ - <  < +]
 s[  > +]
 Eq. (9.11)
 Eq. (9.12)

(c)

0 2 4 6 8
Wave vector q/kF

0

0.25

0.5

0.75

1

1.25

Ph
on

on
 s

pe
ct

ra
l w

ei
gh

t

 ztot
 z[ -   < +]
 z[   +]

(d)

0 1 2 3
Wave vector q/kF

0

0.5

1

1.5

2

2.5
 ztot
 z[ -   < +]
 z[   +]

(e)

0 0.5 1 1.5 2 2.5
Wave vector q/kF

0

0.5

1

1.5

2

2.5

3
 ztot
 z[ -   < +]
 z[   +]

(f)

Figure 9.5: Integrated EELS spectra (upper row) and integrated phonon spectra (lower row)
shown in Fig. 9.4.
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Figure 9.6: Phonon production for 𝑞 = 0 as a function of the electron density 𝑛 for (a) GaAs and
(b) TiO2 in the antiadiabatic regime.

in the character of excitations, the HFE contributes much more to the total EELS spectral weight
than the LFE for small 𝑞.

Even bigger discrepancies between the weak and the strong coupling case are evident from
the integrated phonon spectral functions, Figs. 9.5(d)-9.5(f). The first striking result is that the
additional phonon spectral weight, associated with the phonon production, is very large for small
𝑞. This large contribution in Fig. 9.5 characterizes only the LFE for all considered electron
densities. However, the physical origin of this effect seems to be quite different depending
on the adiabaticity parameter. In particular, in the antiadiabatic regime, phonon production is
apparently associated with plasma oscillations. Indeed, by comparing the three curves in Fig.
9.5(d), we see that all the additional phonon spectral weight due to the phonon production clearly
involves only the plasmon-like LFE and not the HFE, the latter having the predominantly phonon
character. This additional phonon spectral weight scales sublinearly with the electron density, as
is evident from Fig. (9.6), indicating that it involves a collective effect, rather than being related
to a simple polaronic dressing of individual electrons. On the other hand, in Fig. 9.5(d), one
as well observes a small contribution to the phonon production belonging to the electron-hole
continuum. This stems from polaronic effects, corresponding to the phonon dressing by itinerant
electrons, as described in Part II.

In the adiabatic regime, the electrons are fast and dense, and for small 𝑞 fully screen the LO
phonon. Therefore, 𝜔𝑇𝑂 , instead of 𝜔𝐿𝑂 , defines the small-𝑞 LFE frequency in Fig. 9.4(f). As
𝑞 increases, the LFE frequency approaches the LO phonon frequency, while the effects of the
phonon production weaken. Our analysis of this additional phonon spectral weight in Fig. 9.5(f),
with the details presented in Appendix D, confirms that in the adiabatic regime the LFE should
be interpreted as the pure harmonic excitation of the lattice subsystem. That is, in Fig. 9.5(f),
the values obtained for the phonon production scale with the LFE frequency exactly as expected
for the adiabatic phonon softening effects. Namely, for softer phonons with the LFE frequency,
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the uncertainty in space of lattice vibration increases, which through Eq. (9.19) explains the
phonon production observed in Fig. 9.5(f).

9.4 2D case

In order to discuss the phonon-plasmon coupling in the 2D case, we choose model parameters
that bear close resemblances with TMDs. In particular, for a representative value of the effective
mass, we take 𝑚∗ = 0.43𝑚 and set the phonon energy at ℏ𝜔𝐿𝑂 = 47 meV. Together with those
two values, we make two sets of parameters 𝑆1 and 𝑆2 by considering the values of dielectric
constants calculated in [183]. Specifically, to complete the parameter set 𝑆1 we take 𝜀1∞ = 15.1

and 𝜀10 = 15.3 predicted for MoS2, resulting in a weak electron-phonon interaction constant
𝛼1 ≈ 0.01. On the other hand, the values 𝜀2∞ = 11.2 and 𝜀20 = 66.7 calculated for ZrS2 give rise
to a much stronger polar coupling with 𝛼2 ≈ 0.83, defining the parameter set 𝑆2.

9.4.1 Weak coupling

In Fig. 9.7, we show the EELS spectra, Figs. 9.7(a)-9.7(b), and the phonon spectral functions
corresponding to the LO phonon, Figs. 9.7(c)-9.7(d), for the parameter set 𝑆1 and two different
electron densities 𝑛 = 7·1011 cm−2 (𝑘𝐹 = 2.1·10−2 Å−1), and 5·1012 cm−2 (𝑘𝐹 = 5.6·10−2 Å−1).
In the 2D case, the plasmon dispersion can be exactly calculated for all momenta [169], allowing
us to track the exact dispersions Ω∞

𝑃𝐿
and Ω0

𝑃𝐿
in Fig. 9.7. We note that for the electron density

𝑛 = 7 · 1011 cm−2 the plasmon Ω∞
𝑃𝐿

gets Landau damped before it crosses with the phonon,
leading to an avoided crossing of the unperturbed modes. The corresponding EELS spectrum in
Fig. 9.7(a) is clearly dominated by the plasmon-like excitation (it is hard to distinguish between
Ω∞
𝑃𝐿

andΩ0
𝑃𝐿

due to the small difference between 𝜀1∞ and 𝜀10), while the phonon spectral function
in Fig. 9.7(c) shows the well-defined (throughout the whole continuum) phonon-like excitation
with the constant frequency 𝜔𝐿𝑂 , which, however, develops a faint, yet visible kink as it enters
the continuum.

In the case with the higher electron density 𝑛 = 5 · 1012 cm−2, the unperturbed plasmon and
phonon meet before entering the continuum, which is manifested in the spectra in Figs. 9.7(b)
and 9.7(d) as the repulsion of two modes. In particular, the EELS spectrum shows the plasmon-
like dispersion repelled at the momentum where the unperturbed phonon and plasmon modes
cross. Similarly, the phonon spectral function exhibits the well-defined phonon-like excitation
with the constant frequency 𝜔𝐿𝑂 repelled at the same momentum. With the further increase of
electron density, no new spectral features appear.

Integrated EELS and phonon spectra in Fig. 9.7 show identical behaviors for both electron
densities considered. They are not shown here since their behaviors are trivial and confirm
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Figure 9.7: EELS spectra (upper row) and phonon spectral functions (corresponding to the LO
phonon) (lower row) for the parameter set 𝑆1 and two different electron densities 𝑛. The first
column corresponds to 𝑛 = 7 · 1011 cm−2 and the second to 𝑛 = 5 · 1012 cm−2. Note that MAX
on the intensity scale takes a different absolute value for each of the panels.

that the EELS spectrum is solely given by the plasmon excitation, while all the phonon spectral
weight is confined at 𝜔𝐿𝑂 . This justifies the clear distinction between the plasmon and the
phonon excitation and the absence of hybridization, apart from the obvious repulsion at the
crossing point. Concerning the total phonon spectral weight, it obeys the sum rule in Eq. (9.18)
for all momenta, suggesting negligible phonon transfer and phonon production effects for weak
couplings in 2D systems.

9.4.2 Strong coupling

Spectral functions

In Fig. 9.8, we show the EELS spectra, Figs. 9.8(a)-9.8(c), and the phonon spectral functions
corresponding to the LO phonon, Figs. 9.8(d)-9.8(f), for the parameter set 𝑆2 and three different
electron densities 𝑛 = 5 · 1011 cm−2 (𝑘𝐹 = 1.8 · 10−2 Å−1), 5 · 1012 cm−2 (𝑘𝐹 = 5.6 · 10−2 Å−1),
and 5 · 1013 cm−2 (𝑘𝐹 = 1.7 · 10−1 Å−1). Contrary to the 3D case where the raw spectra did
not differ much in the weak and the strong coupling case, except for the damping within the
continuum, the 2D spectra in Figs. 9.7 and 9.8 show drastically different behaviors. In particular,
for the lowest electron density considered, 𝑛 = 5 ·1011 cm−2, the spectra in Figs. 9.8(a) and 9.8(d)
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Figure 9.8: EELS spectra (upper row) and phonon spectral functions (corresponding to the LO
phonon) (lower row) for the parameter set 𝑆2 for three different electron densities. The first
column corresponds to 𝑛 = 5 · 1011 cm−2, the second to 𝑛 = 5 · 1012 cm−2, and the third column
to 𝑛 = 5 · 1013 cm−2. Note that MAX on the intensity scale takes a different absolute value for
each of the panels.

show that the LFE follows the plasmon-like dispersion screened by both interband excitations and
the phonon, while the HFE develops the anticipated linear dispersion and bends as it approaches
the continuum. Inside the continuum, both excitations get strongly damped, while above the
continuum a well-defined excitation again emerges and approaches the LO phonon frequency
𝜔𝐿𝑂 as 𝑞 increases.

With an increase of the electron density to 𝑛 = 5 ·1012 cm−2 two effects are readily observed.
First, the linear slope of the HFE gets steeper. Second, the LFE seems to merge with the
excitation above the continuum into a single LFE. For the electron density 𝑛 = 5 ·1012 cm−2, this
single LFE is still strongly damped within the continuum and develops two kinks upon crossing
the boundaries of the electron-hole continuum.

For the highest electron density 𝑛 = 5 · 1013 cm−2, the linear slope of the HFE gets even
steeper and continues into the plasmon dispersion Ω∞

𝑃𝐿
near the boundary of the continuum,

where it gets strongly damped. The LFE becomes a well-defined excitation for all momenta,
albeit weakly damped as it enters the continuum at the critical momentum defined by the
crossing of the TO phonon frequency with the continuum. Both kinks in its dispersion move
toward 𝑞 ≈ 2𝑘𝐹 . The damping of excitations for three chosen electron densities, from lower to
higher, qualitatively closely follows the damping behaviors observed in the strong coupling 3D
case in the antiadiabatic, resonant, and adiabatic regimes, respectively.
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Figure 9.9: Integrated EELS spectra (upper row) and integrated phonon spectra (lower row)
shown in Fig. 9.8.

Integrated spectra

Similarities between the 3D and the 2D case for strong couplings continue to show up also in
the integrated spectra, presented for the 2D case in Fig. 9.9. Here, apart from the total spectral
weight, we consider spectral weights in two specific frequency regions. The first corresponds to
the frequency window𝜔 < 𝜔+, while the second to𝜔 > 𝜔+, which should provide an estimation
of the spectral weights in the LFE and the HFE, respectively. In particular, for the lowest electron
density 𝑛 = 5 ·1011 cm−2, the total EELS spectral weight around 𝑞 ≈ 0 is dictated by the spectral
weight of the HFE situated around 𝜔𝐿𝑂 . Correspondingly, the HFE can be well attributed to
the phonon excitation in the long-wavelength limit, which is further supported by its dominating
phonon spectral weight in Fig. 9.9(d). Regarding the LFE, although its EELS spectral weight is
very small compared to that of HFE’s, it well follows the behavior predicted by Eq. (9.26) for
small 𝑞, and for corresponding momenta, the LFE can be associated with the Ω0

𝑃𝐿
plasmon.

With the electron density increased to 𝑛 = 5 · 1013 cm−2, the phonon contribution given
by Eq. (9.12) still accounts for a large amount of HFE’s EELS spectral weight. However, its
plasmon component also becomes appreciable, pointing to the mixed phonon-plasmon character
of the HFE. Finally, for the highest electron density, the EELS spectral weight of the HFE follows
the plasmon-like spectral weight given by Eq. (9.11), except around 𝑞 ≈ 0, where it approaches
the value in Eq. (9.12) expected for the LO phonon. Hence, in a wide range of momenta,
0 < 𝑞 ≤ 𝑘𝐹 , we can attribute the HFE to the plasmon mode. For all electron densities, the
EELS spectral weight of the LFE is negligible compared to the spectral weight confined within
the HFE in the long-wavelength limit, similarly to the 3D case.
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The observation that the EELS spectral weight of the HFE for 𝑞 ≈ 0 is given solely by the
phonon contribution is reflected also in the phonon spectral weights in Figs. 9.9(d)-(f). Namely,
for 𝑞 ≈ 0 the total phonon spectral weight is always confined within the HFE and satisfies the
sum rule in Eq. (7.31). Consequently, for all electron densities around 𝑞 ≈ 0, the HFE can
be attributed to the unperturbed phonon, while the LFE to the plasmon renormalized both by
interband excitations and the phonon.

As 𝑞 increases, the HFE (LFE) transitions from a purely phononic (plasmon Ω0
𝑃𝐿

) to a
dominantly plasmonic Ω∞

𝑃𝐿
(phonon) mode, with the transition being sharper and faster as

the electron density increases. In particular, for the lowest electron density considered, the
HFE (LFE) can be well attributed to the phonon (plasmon Ω0

𝑃𝐿
) mode for momenta below the

continuum, with only an appreciable plasmon Ω∞
𝑃𝐿

component of the HFE near the continuum
boundary. Contrary, in the case with the highest electron density, the HFE (LFE) attains the
phonon (plasmon Ω0

𝑃𝐿
) character only in a small region of the momentum space around 𝑞 ≈ 0,

while for 𝑞 > 0 it corresponds to the Ω∞
𝑃𝐿

plasmon (phonon). For the intermediate density and
finite momenta, both excitations show a strongly mixed character. Interestingly, the total phonon
spectral weight in Figs. 9.9(e) and (f) exhibits a kink at the momentum 𝑞 = 2𝑘𝐹 .

In accordance with the above discussion, the phonon production is absent for 𝑞 = 0, albeit it
becomes appreciable for finite, but small momenta. In the case with the lowest electron density,
the phonon production can be unambiguously attributed to the plasmon-like LFE, similarly to
the 3D case. On the other hand, from Fig. 9.9(f) is evident that the phonon production, again
associated with the LFE, turns on and is maximal roughly around the momentum corresponding
to the crossing of the LFE with the 𝜔𝑇𝑂 phonon. This suggests that the phonon production
has the same nature as in the 3D case also for very high electron densities and is related to the
phonon frequency softening effects.

9.5 Static screening and static polarization approximation

We close the discussion of the phonon-plasmon coupling by commenting on the static screening
approximation used frequently in 𝑎𝑏 𝑖𝑛𝑖𝑡𝑖𝑜 simulations of nonadiabatic phonon spectra [180,
181, 197, 213–215]. For that purpose, with the use of the expression Eq. (9.6) for the electron
dielectric function, we rewrite the RPA result for the polarization in Eq. (9.23) as

Π (𝑅𝑃𝐴) (q, 𝜔) = |𝑔(q) |2

𝜀(𝑅𝑃𝐴) (q, 𝜔)
𝜒0(q, 𝜔) . (9.32)

In this new form, we see that the electron dielectric function divides the squared matrix element
of the electron-phonon interaction, which can be understood as if one of the electron-phonon

129



Figure 9.10: Phonon spectral functions for the bulk TiO2 (upper row) and the 2D parameter set
𝑆2 (lower row), and electron densities 𝑛 = 5 · 1018 cm−3, and 𝑛 = 5 · 1012 cm−2, respectively,
obtained within the static screening approximation (first column) and with the full dynamic
expression in the RPA for the phonon polarization (second column). Note that MAX on the
intensity scale takes a different absolute value for each of the panels.

vertices is being renormalized/screened by the electron-electron interaction, see Fig. 7.1. Thus,
the static screening approximation consists of approximating the electron dielectric function in
the denominator of Eq. (9.32) by its static counterpart.

To compare phonon spectra obtained within the static screening approximation with spectra
in the full dynamic RPA, we show in Fig. 9.10 phonon spectral functions calculated within
the two approximations for the bulk TiO2 and the 2D parameter set 𝑆2, and electron densities
𝑛 = 5 · 1018 cm−3 (corresponding to the resonant regime), and 𝑛 = 5 · 1012 cm−2, respectively.
From Figs. 9.10(a) and 9.10(b), it is evident that the static screening approximation completely
foresees the repulsion of a phonon and a plasmon in the 3D case. In particular, the phonon
frequency 𝜔𝐿𝑂 remains unperturbed in the long-wavelength limit, while the second excitation
does not exist at all. The static screening approximation fails to reproduce some of the key
features of the phonon spectrum in the 2D case as well. Although the HFE develops a dispersion
and bends near the continuum, the expected linear dispersion of the excitation for small 𝑞 is
missing and the absolute values of its energies are underestimated. The well-defined LFE is also
absent, analogously as in the 3D case.

The failure of the static screening approximation in describing the phonon-plasmon coupled
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Figure 9.11: Phonon spectral functions for the bulk TiO2 (upper row) and the 2D parameter set
𝑆2 (lower row), and electron densities 𝑛 = 5 · 1021 cm−3, and 𝑛 = 5 · 1013 cm−2, respectively,
obtained within the static polarization approximation (first column) and with the full dynamic
expression in the RPA for the phonon polarization (second column). Note that MAX on the
intensity scale takes a different absolute value for each of the panels.

system is, however, not surprising at all, since the static electron dielectric function cannot
account for a plasmon mode. Apart from that, a more important issue lies in the lack of
self-consistency of the static screening approximation which can be immediately seen from the
diagrammatic expansion of the phonon propagator in Fig. 9.1. Namely, it consists of approxi-
mating some of the bubbles in the infinite chain of bubbles with their static counterpart, while
for others the full dynamic dependence is kept. This suggests that instead of the static screening
approximation one should rather use a self-consistent static polarization approximation, which
assumes the static electron dielectric function in the denominator of Eq. (9.23), rather than in
Eq. (9.32), and treats all the bubbles in the infinite chain equally with their static counterpart.
We anticipate that the static polarization approximation should capture some of the key features
of the full dynamic phonon spectra as long as the frequency scale of the electron subsystem
is much larger than the phonon frequency scale. This should in theory hold for large electron
densities when the onset of the adiabatic regime is expected.

To check the validity of the static polarization approximation, we show in Fig. 9.11 phonon
spectral functions for the bulk TiO2 (upper row) and the 2D parameter set 𝑆2 (lower row), and
electron densities 𝑛 = 5 · 1021 cm−3, and 𝑛 = 5 · 1013 cm−2, respectively, obtained within the
static polarization approximation and within the fully dynamic RPA. By focusing first on the
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3D case, we see that the static polarization approximation correctly describes the dispersion
of the phonon-like LFE - it starts at 𝜔𝑇𝑂 for 𝑞 = 0 and reaches 𝜔𝐿𝑂 at higher momenta.
However, it underestimates the damping of the phonon mode within the continuum, which is
just a quantitative effect, and misses the existence of the plasmon-like HFE, which phonon
spectral weight is negligibly small in the full dynamic spectrum anyway. Overall, the static
polarization approximation roughly satisfactory reproduces the full RPA phonon spectrum in
the adiabatic regime in the 3D case.

On the other hand, the static polarization approximation fails to reproduce the phonon
spectrum in the 2D case even for the very high electron density considered. Apart from some
less important discrepancies similar to the ones found in the 3D case, it predicts that the LFE
saturates to 𝜔𝑇𝑂 as the long-wavelength limit is approached and that it completely corresponds
to the phonon mode. This is in sharp contrast to the result obtained by keeping the full dynamic
dependence of the polarization, where the LFE follows the plasmon dispersion Ω0

𝑃𝐿
in the long-

wavelength limit and vanishes identically for 𝑞 = 0. The reason is that the plasmon in the 2D
case is gapless, and correspondingly the true adiabatic regime in the 2D case is never fulfilled.
Thus, neither the static screening nor the static polarization approximation is satisfactory in the
2D case and the full dynamic dependence of the phonon polarization should be kept.

9.6 Conclusions

We systematically analyze and compare raw and integrated EELS spectra and phonon spectral
functions corresponding to a LO phonon of 3D and 2D doped polar semiconductors within the
full dynamic RPA. In parallel with the commonly studied influence of the adiabaticity parameter,
we highlight the important role of the electron-phonon interaction strength in shaping phonon-
plasmon spectral features.

By studying the raw spectra, we observe that the interaction strength strongly influences the
damping of coupled excitations within the electron-hole continuum. In the 3D case for weak
couplings, we note that the phonon-like excitation is well defined for all momenta, while the
plasmon-like excitation gets damped as soon as it enters the continuum. Moreover, in the resonant
regime, while the HFE gets strongly damped, the LFE stays well defined through almost the
whole continuum. This situation changes with the increase of the interaction strength when the
only well-defined excitation within the continuum is the phonon-like excitation in the adiabatic
regime. In 2D cases for weak couplings, the phonon-like excitation is always well defined,
while the plasmon-like excitation gets damped within the continuum. For strong couplings, the
excitations’ damping resembles that in the 3D strong coupling case. The excitations’ dispersions
in 2D cases differ significantly in the weak and the strong coupling case as well. In the weak
coupling case, two excitations follow the unperturbed phonon and plasmon dispersions, with the
exception of the repulsion of the renormalized dispersions where the unperturbed dispersions
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meet. Contrary, for strong couplings the HFE acquires the linear dispersion in the long-
wavelength limit, while the LFE’s energy vanishes for 𝑞 = 0, and gradually increases toward the
LO phonon energy for very high electron densities.

Even bigger discrepancies between the weak and the strong coupling case are evident from
the integrated spectra exhibiting similar behaviors in both 3D and 2D cases. In particular,
while for strong couplings the HFE accounts for almost all the EELS spectral weight in the
long-wavelength limit, irrespective of the adiabaticity parameter, for weak couplings the same is
true only in the adiabatic limit. In the antiadiabatic and the resonant regime, the EELS spectral
weight is rather approximately equally redistributed among the LFE and the HFE, which opens
the possibility of estimating the electron-phonon coupling strength from (integrated) EELS
spectra, even from data with very limited energy resolutions.

By projecting the excitations onto the phonon degree of freedom large phonon production
contributions are revealed for strong couplings, which are of different origins than that observed
in the polaron case. In the adiabatic regime, the calculated phonon production confirms that
the LFE is associated with the harmonic lattice vibrations, softened by the electron screening.
On contrary, in the antiadiabatic regime, the phonon production can be associated with the LFE
plasmon-like mode, indicating that due to the electron-phonon interaction the cloud of virtual
phonons accompanies the plasma oscillations.

Lastly, we argue that the static screening approximation generally fails to reproduce full
RPA phonon spectra in the whole parametric space in both 3D and 2D cases, while the static
polarization approximation works well only in the 3D adiabatic regime.
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Chapter 10

Vertex corrections and the 2𝑘𝐹 singularity

In this Chapter 10, we slightly deviate from the main theme of Part III and consider the
particularly interesting subject of the role of vertex corrections on the 2𝑘𝐹 singularity stemming
from the Lindhard function 𝜒0(q, 𝜔). The latter is the foundation of both the Kohn anomaly
and the Peierls transition in electron-phonon systems [83]. In particular, in 2D and 3D cases
the Lindhard function itself is continuous and only its derivative is singular for the momentum
|q| = 2𝑘𝐹 . On the other hand, in the 1D case, the singularity is the most severe and the Lindhard
function itself exhibits a true logarithmic singularity for the momentum |q| = 2𝑘𝐹 . Following
Eq. (7.5), we note that the same 2𝑘𝐹 singularity pervades the leading order polarization as well,
and it is interesting to study what is its fate when high order vertex contributions in the ladder
approximation to the polarization are taken into account.

10.1 Anatomy of the leading order vertex function

It proves convenient to first recall the four contributions to the leading order vertex function given
by Eqs. (A.44), (A.45), (A.46), and (A.47). By taking advantage of the notation 𝑛±

k
= 𝛿1,±1 ∓ 𝑛k

and by assuming the Holstein coupling, those four contributions can be rewritten as (we set
again ℏ = 1)

Γ±±(k, 𝐸 ; k + q, 𝐸 + 𝜔) = 𝑔2

𝑁

∑︁
q′

𝑛±
k+q′𝑛

±
k+q+q′

(𝐸 ∓ 𝜔0 − 𝜀k+q′ ± 𝑖𝜂) (𝐸 + 𝜔 ∓ 𝜔0 − 𝜀k+q+q′ ± 𝑖𝜂)
, (10.1)

and

Γ+−(k, 𝐸 ; k + q, 𝐸 + 𝜔) = 𝑔2

𝑁

∑︁
q′

𝑛+
k+q′𝑛

−
k+q+q′

𝜔 + 𝜀k+q′ − 𝜀k+q+q′ − 𝑖𝜂
×

×
{

1

𝐸 − 𝜔0 − 𝜀k+q′ + 𝑖𝜂
− 1

𝐸 + 𝜔 + 𝜔0 − 𝜀k+q+q′ − 𝑖𝜂

}
= Γ−+(k − q, 𝐸 − 𝜔; k, 𝐸) .

(10.2)

Here, the newly introduced notation is handy since the superscript + can be attributed to
the electron part, while the superscript − to the hole part of the fermion Green’s functions
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in Eq. (7.15). In particular, we can see that the contributions Γ±± contain either an electron-
electron or a hole-hole process, while the contributions Γ±∓ contain only electron-hole processes.
Evidently, the leading vertex function is contributed by different processes and the interesting
question arises in which physical regimes are they relevant.

In the long-wavelength limit (|q| → 0), 𝑛+
k
𝑛−
k+q → 0 holds, and the contributions Γ±∓ vanish

linearly in |q|. Consequently, only Γ±± contribute to the leading order vertex function and enter
the Ward identity in Eq. (7.6). That is, Γ++ is related via the Ward identity to the electron
self-energy Σ+, given by the first term in Eq. (8.3), while Γ−− to the hole self-energy Σ−, that is
to the second term in Eq. (8.3), yielding in total

Γ(k, 𝐸 ; k, 𝐸 + 𝜔) = Γ++(k, 𝐸 ; k, 𝐸 + 𝜔) + Γ−−(k, 𝐸 ; k, 𝐸 + 𝜔)

=
Σ+(k, 𝜔) − Σ+(k, 𝜔 + 𝐸)

𝜔
+ Σ−(k, 𝜔) − Σ−(k, 𝜔 + 𝐸)

𝜔

=
Σ(k, 𝜔) − Σ(k, 𝜔 + 𝐸)

𝜔
.

(10.3)

At first glance Γ±± make a dominant contribution also in the polaron case since the contri-
butions Γ±∓ are suppressed by the factor

∑
q 𝑛

+
q𝑛

−
k+q ∼ O(1/𝑁). In fact, Γ++ corresponds to the

time-ordered vertex function Θ(2) introduced in Chapter 7. However, here we should be very
careful since both Γ±± and Γ±∓ result in the polarization of the order O(1/𝑁). In particular,
in the electron polaron case discussed in Chapter 7, Γ++ led to the time-ordered diagram in
Fig. 7.5(a), while Γ±∓ to the time-ordered diagram in Fig. 7.5(b). It was the peculiarity of the
next-to-leading order that the polarization with the vertex correction could have been written
solely in terms of Θ(2) . This is not generally valid in higher orders, where both vertex functions
with electron-electron and electron-hole processes contribute equally to the net polarization.
Specifically, in the ladder approximation, all polarizations can be expressed solely in terms of
Θ.

The 1/𝑁 suppression of the vertex functions Γ±∓, containing electron-hole processes, in
the polaron case stems from the small phase space available for electron-hole excitations. This
phase space gets larger as the electron density increases and becomes maximal for a half-filled
band. In that case, we expect Γ±∓ to be of utter importance.

10.2 2𝑘𝐹 singularity

10.2.1 Leading order polarization

Before inspecting the influence of vertex corrections on the 2𝑘𝐹 singularity, we briefly recall
the occurrence of the 2𝑘𝐹 singularity in the leading order polarization. For that purpose, we go
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back to Eq. (7.10), which in the static, 𝜔 = 0, limit yields for the leading order polarization

ReΠ (2) (q, 0) = 𝑔2

𝑁

∑︁
k

𝑛k − 𝑛k+q
𝜀k − 𝜀k+q

. (10.4)

We stick to the 1D case when the singularity is the strongest. In particular, in the half-filled
case 𝑘𝐹 = 𝜋/2, and the singularity is expected at 𝑞 = 2𝑘𝐹 = 𝜋. As shown in Appendix B.3, the
summation in Eq. (10.4) can be carried out analytically around 𝑞 = 𝜋, giving

ReΠ (2) (𝑞 = 𝜋 ± 𝛿, 0) = 𝑔2

2𝜋

2 ln tan
[
1
2 arctan

𝛿
2

]
𝑡
√
4 + 𝛿2

≈ 𝑔2

2𝜋𝑡
ln

[
𝛿

4

]
, 𝛿 → 0+ . (10.5)

Here, the anticipated logarithmic singularity is clearly apparent.

10.2.2 Leading vertex contribution to polarization

In Appendix B.2.2, the leading vertex contribution to the polarization, shown diagrammatically
in Fig. 7.3(d), is expressed as a sum of four contributions stemming from the four contributions
of the vertex function Γ±± and Γ±∓. To be specific, the corresponding contributions Π++, Π−−,
Π+−, and Π−+ that together contribute to Π (4𝑑) (q, 𝜔) are given by Eqs. (B.13), (B.14), (B.15),
and (B.16), respectively.

For the analysis of the |q| = 2𝑘𝐹 singularity, only Π+− and Π−+ are relevant, since for the
corresponding q at half-filling 𝑛+

k+q = 𝑛−
k

holds and contributions in Eqs. (B.13) and (B.14)
vanish identically. Moreover, the identity 𝑛+

k+q = 𝑛−
k

also simplifies Eqs. (B.15) and (B.16),
resulting in

Π+−(q, 𝜔) = Π−+(−q,−𝜔) = 𝑔4

𝑁2

∑︁
k,k′

(1 − 𝑛k′)𝑛k′+q
(𝜀k′ − 𝜀k′+q + 𝜔 − 𝑖𝜂) ×

×
{

𝑛k(1 − 𝑛k+q)
(𝜀k+q − 𝜀k − 𝜔 − 𝑖𝜂)

[
1

𝜀k′ − 𝜀k + 𝜔0 − 𝑖𝜂
+ 1

𝜀k+q − 𝜀k′+q + 𝜔0 − 𝑖𝜂

]
+

(1 − 𝑛k)𝑛k+q
(𝜀k − 𝜀k+q + 𝜔 − 𝑖𝜂)

[
1

𝜀k′ − 𝜀k+q + 𝜔0 + 𝜔 − 𝑖𝜂 + 1

𝜀k − 𝜀k′+q + 𝜔0 + 𝜔 − 𝑖𝜂

]}
.

(10.6)

For 𝜔 = 0 in the antiadiabatic limit 𝜅 = 𝜔0/𝑡 ≫ 1, the expression for the real part of
Eq. (10.6) reduces to

ReΠ+−(q, 0) = ReΠ+−(−q, 0) ≈ 2

𝜔0

𝑔4

𝑁2

∑︁
k′

(1 − 𝑛k′)𝑛k′+q
𝜀k′ − 𝜀k′+q

∑︁
k

𝑛k+q − 𝑛k
𝜀k − 𝜀k+q

, (10.7)
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k + q k’ + q

k k’

q

Figure 10.1: Reducible double bubble diagram in the next-to-leading order of the weak coupling
perturbation theory.

giving at half-filling for the real part of Π (4𝑑) (q, 0) near |q| = 2𝑘𝐹 the same kind of summation
that appears in Eq. (10.4)

ReΠ (4𝑑) (q, 0) ≈ ReΠ+−(q, 0) + ReΠ−+(−q, 0) ≈ 2

𝜔0

𝑔4

𝑁2

[∑︁
k

𝑛k − 𝑛k+q
𝜀k − 𝜀k+q

]2
. (10.8)

Therefore, the polarization with the leading vertex correction in the antiadiabatic limit possesses
the same 2𝑘𝐹 singularity as the leading order polarization.

However, Eqs. (10.4) and (10.8) cannot be directly compared since they belong to a different
order of perturbation theory. Instead, we consider the reducible double bubble diagram in the
next-to-leading order, sketched diagrammatically in Fig. 10.1. By using the standard Feynman
rules [40], its contribution to the polarization can be expressed as

Π (𝐷𝐵) (q, 𝜔) = 𝐷0(q, 𝜔)
[
Π (2) (q, 𝜔)

]2
. (10.9)

In the static limit, the free phonon Green’s function may be written as 𝐷0(q, 0) ≈ − 2
𝜔0

,
which gives

ReΠ (𝐷𝐵) (q, 0) = − 2

𝜔0

𝑔4

𝑁2

[∑︁
k

𝑛k − 𝑛k+q
𝜀k − 𝜀k+q

]2
. (10.10)

This expression is exactly equal to the one in Eq. (10.8), obtained for the polarization with the
leading vertex correction in the antiadiabatic limit, albeit of the opposite sign. We are therefore
left with an important result that the vertex correction in the next-to-leading order works against
the 2𝑘𝐹 singularity, canceling it completely in the antiadiabatic limit. This result further opens
the question of what is the overall fate of the 2𝑘𝐹 singularity in electron-phonon systems in the
antiadiabatic limit. To address this issue, we consider also higher order vertex corrections, since
analytical treatments of the effects of the singularity on electron and phonon properties usually
rely on the RPA, which takes into account the bubble diagrams to the infinite order.
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...

(a)

(b)

Figure 10.2: (a) Reducible 𝑛-tuple bubble and (b) 𝑛-tuple ladder polarization diagrams. The
diagram in (a) contains 𝑛 bubbles, while the diagram in (b) 𝑛 vertical phonon lines.

10.2.3 Ladder approximation

Ladder polarization diagrams

In order to account for polarizations with vertex corrections in higher orders, we consider
the ladder approximation with the 𝑛-tupple ladder polarization diagram shown in Fig. 10.2(b),
coming from the 2(𝑛 + 1)-th order of the perturbation theory. This is to be compared with the
reducible 𝑛-tuple bubble diagram, shown in Fig. 10.2(a), for which the standard Feynman rules
give

Π (𝑛𝐵) (q, 𝜔) = (−1)𝑛𝑖𝑛
[ 𝑔
𝑁

]2𝑛
[𝐷0(q, 𝜔)]𝑛−1

[∑︁
k

∫ +∞

−∞

𝑑𝐸

2𝜋
𝐺0(k, 𝐸)𝐺0(k + q, 𝐸 + 𝜔)

]𝑛
.

(10.11)

We note that for 𝑛 = 1 Eq. (10.11) reduces to the expression for the leading order polarization
in Eq. (7.9), which can be exploited to write for a general 𝑛

Π (𝑛𝐵) (q, 𝜔) = [𝐷0(q, 𝜔)]𝑛−1
[
Π (2) (q, 𝜔)

]𝑛
. (10.12)

The expression for the 𝑛-tuple ladder polarization diagram in Fig. 10.2(b) is more involving
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Π (𝑛𝐿) (q, 𝜔) = (−1)𝑖𝑛+1
[ 𝑔
𝑁

]2(𝑛+1) ∑︁
k,k1,..,k𝑛

∫ +∞

−∞

𝑑𝐸

2𝜋

∫ +∞

−∞

𝑑𝐸1

2𝜋
...

∫ +∞

−∞

𝑑𝐸𝑛

2𝜋
×

× 𝐺0(k, 𝐸)𝐺0(k + q, 𝐸 + 𝜔)𝐺0(k1, 𝐸1)𝐺0(k1 + q, 𝐸1 + 𝜔)...𝐺0(k𝑛, 𝐸𝑛)𝐺0(k𝑛 + q, 𝐸𝑛 + 𝜔)
× 𝐷0(k − k1, 𝐸 − 𝐸1)...𝐷0(k𝑛−1 − k𝑛, 𝐸𝑛−1 − 𝐸𝑛) .

(10.13)
Here, we are interested in the antiadiabatic regime, when we may assume that the phonon
propagation is instantaneous with respect to the electron propagation. This means that in time-
ordered diagrams the phonon propagators have no retardation effects and may be accordingly
represented by vertical lines. This as well means that the fermion propagators connecting these
vertical lines in Fig. 10.2 necessarily appear in electron-hole pairs. Accordingly, all phonon
propagators may be approximated by the constant static value 𝐷0(q, 0) ≈ − 2

𝜔0
and taken outside

of the integrals, giving

Π (𝑛𝐿) (q, 𝜔) = (−1)𝑖𝑛+1𝐷𝑛
0(q, 0)

[ 𝑔
𝑁

]2(𝑛+1) [∑︁
k

∫ +∞

−∞

𝑑𝐸

2𝜋
𝐺0(k, 𝐸)𝐺0(k + q, 𝐸 + 𝜔)

]𝑛+1
.

(10.14)

Now, we may as well rewrite Eq. (10.14) in terms of the leading order polarization in Eq. (7.9)

Π (𝑛𝐿) (q, 𝜔) = (−1)𝑛𝐷𝑛
0(q, 0)

[
Π (2) (q, 𝜔)

]𝑛+1
. (10.15)

As a last step in bringing Eqs. (10.12) and (10.15) into a form convenient for comparison,
we note that 𝑛 in Eqs. (10.12) and (10.15) does not refer to the same order of the perturbation
theory. To fix that, we write both expressions in the 2(𝑛 + 1)-th order with 𝑛 = 1, 2, 3, ... . In
particular, by assuming the constant 𝐷0(q, 0) in Eq. (10.11) we have

Π (2𝑛+2𝐵) (q, 𝜔) = 𝐷𝑛
0(q, 0)

[
Π (2) (q, 𝜔)

]𝑛+1
, (10.16)

and

Π (2𝑛+2𝐿) (q, 𝜔) = (−1)𝑛𝐷𝑛
0(q, 0)

[
Π (2) (q, 𝜔)

]𝑛+1
, (10.17)

which finally gives
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Figure 10.3: Diagramatic content of the ladder approximation for the phonon propagator. The
bubble with the double fermion lines represents the irreducible polarization which is given by
the sum of the leading order and all 𝑛-tuple ladder polarizations.

Π (2𝑛+2𝐵) (q, 𝜔) + Π (2𝑛+2𝐿) (q, 𝜔) =

0 , for n odd ,

2𝐷𝑛
0(q, 0)

[
Π (2) (q, 𝜔)

]𝑛+1
, for n even .

(10.18)

The main message of Eq. (10.18) is that in the antiadiabatic regime 𝑛-tupple ladder polar-
izations work against the 2𝑘𝐹 singularity of bubble diagrams for 𝑛 odd, while for 𝑛 even they
enhance it. This is a direct consequence of counting the number of closed fermion loops con-
tained in the diagrammatic representation of the 𝑛-tuple bubble and 𝑛-tuple ladder polarization
diagrams. Namely, each closed fermion loop brings the factor −1. Since ladder polarizations
diagrams have only one closed fermion loop they are always contributed with one −1. On the
other hand, 𝑛-tuple bubble diagrams are contributed either with 1 or −1, depending on whether
𝑛 is even or odd, respectively, leading either to the total subtraction or the exact addition of two
contributions in the antiadiabatic regime.

Dyson series

Within the diagrammatic approach it is not consistent, however, to directly compareΠ (2𝑛+2𝐿) (q, 𝜔)
with Π (2𝑛+2𝐵) (q, 𝜔) in a given order 𝑛. The reason is that the 𝑛-tuple ladder polarizations dia-
grams are irreducible, while the 𝑛-tuple bubble polarization diagrams come into play through
the Dyson summation of the irreducible leading order polarization. Therefore, we should sum
up all irreducible polarizations diagrams first and then carry out the Dyson summation for the
phonon propagator. In particular, the sum of all irreducible 𝑛-tuple ladder polarization diagrams
together with the leading order polarization defines the irreducible polarization in the ladder
approximation, which diagrammatic content is presented in Fig. 10.3.

In the antiadiabatic limit, 𝐷0(q, 0) = − 2
𝜔0

, the irreducible polarization in the ladder approx-
imation in Fig. 10.3 reads
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Π (𝐿) (q, 𝜔) = Π (2) (q, 𝜔) +
∞∑︁
𝑛=1

Π (2𝑛+2𝑉) (q, 𝜔)

= Π (2) (q, 𝜔) + Π (2) (q, 𝜔)
∞∑︁
𝑛=1

[
2

𝜔0
Π (2) (q, 𝜔)

]𝑛
= Π (2) (q, 𝜔) + Π (2) (q, 𝜔)

∞∑︁
𝑛=0

[
2

𝜔0
Π (2) (q, 𝜔)

]𝑛
− Π (2) (q, 𝜔)

=
Π (2) (q, 𝜔)

1 − 2
𝜔0

Π (2) (q, 𝜔)
=

Π (2) (q, 𝜔)
1 + Π (2) (q, 𝜔)𝐷0(q, 0)

.

(10.19)

With the irreducible polarization Π (𝐿) (q, 𝜔), the Dyson summation given by Eq. (9.20) yields
for the phonon propagator

𝐷 (q, 𝜔) = 𝐷0(q, 𝜔)
1 − 𝐷0(q, 𝜔)Π (𝐿) (q, 𝜔)

=
𝐷0(q, 𝜔)

1 − 𝐷0(q, 𝜔) Π (2) (q,𝜔)
1+Π (2) (q,𝜔)𝐷0 (q,0)

≈ 𝐷0(q, 𝜔)
1 − 𝐷0(q, 𝜔) Π (2) (q,𝜔)

1+Π (2) (q,𝜔)𝐷0 (q,𝜔)

= 𝐷0(q, 𝜔) + 𝐷0(q, 𝜔)Π (2) (q, 𝜔)𝐷0(q, 𝜔) ,

(10.20)

where we have recovered the full expression for the free phonon propagator. Interestingly, the
infinite order Dyson summation ended with the leading order result. Consequently, although the
singular ReΠ (2) (q, 𝜔) is still present in Eq. (10.20), it does not change the phonon dispersion,
however, it introduces some of the phonon spectral weight within the electron continuum,
similarly like in the polaron problem, see Eq. (7.37). This finding is actually well in line
with the numerical findings [216–218] suggesting the absence of softening of the phonon
frequency in the antiadiabatic regime and the appearance of electronic excitations’ signatures
in phonon spectra. On the other hand, in the adiabatic regime, a physically very different
scenario is observed involving gradual softening of the phonon frequency as the momentum 2𝑘𝐹

is approached. This second scenario goes hand in hand with the RPA treatment of the phonon
propagator [83], imposing an interesting question of how vertex corrections [219–221] become
growingly important as the system is varied from the adiabatic to the antiadiabatic regime, which
serves as a motivation for the possible continuation of the results obtained here.

10.3 Conclusions

We divide the leading vertex function into parts containing either only electron, only hole, or
only electron-hole processes. We argue that the former two enter the Ward identity and account
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for the total vertex function in the polaron problem in the leading order. The latter, on the other
hand, becomes growingly important as the doping starts increasing and is the most important
part of the leading vertex function in the case of a half-filled band.

We show that the polarization with the leading vertex correction in the 1D case with the half-
filled band exhibits the 2𝑘𝐹 singularity, which is exactly equal, but of the opposite sign, to the 2𝑘𝐹
singularity of the double bubble diagram contribution in the antiadiabatic regime. Motivated
by that finding, we argue that in the antiadiabatic limit the 𝑛-tupple ladder contribution to the
polarization works in favor or against the 2𝑘𝐹 singularity of the 𝑛-tupple bubble contribution,
depending on whether 𝑛 is odd or even. By exploiting this result in the ladder approximation, we
show that the Dyson summation reduces to the leading order result for the phonon propagator.
Consequently, we do not get softening of phonon frequency in the antiadiabatic regime, which
is opposite to the scenario with the softening of phonon frequency at |q| = 2𝑘𝐹 expected in the
adiabatic regime.
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Part IV

Competition between interactions and
disorder: many-body localization
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Chapter 11

From Anderson to many-body localization

In the last Part IV of the thesis, we abandon the electron-phonon interaction and consider the
interplay of electron-electron interactions and disorder. In particular, we are dealing with a
hot topic of the MBL phenomenon. Since this is a very interesting and fundamental problem,
gaining a lot of interest in the last fifteen years, we devote the introductory Chapter 11 to a brief
overview of the subject.

11.1 Anderson localization

In the late 1950s, P. W. Anderson published one of his most influential works [222] on the role
of a disorder and impurities on the transport properties of crystals. His main motivation was
to rationalize anomalously long spin relaxation times in phosphorus-doped silicon [223–225].
The results of Anderson’s work were, however, much conceptually deeper and opened a new
perspective on the role of disorder in condensed matter systems. Namely, he showed that
in certain random lattices, where the randomness is introduced by requiring the orbital on-site
energy to vary randomly from site to site, electron wave functions become localized in real space,
in contrast to delocalized Bloch waves in clean translationally invariant crystals - the phenomenon
dubbed Anderson localization. Such lattices are characterized by the absence of diffusion, so
the onset of the Anderson localization eventually leads to the metal-insulator transition. Thus,
in addition to the simple band structure arguments [70] or the Mott metal-insulator transition
dictated by strong electronic correlations [226], it was shown that an insulating behavior may
also be driven by the disorder.

The simple toy Hamiltonian which captures the main essences of the Anderson localization
is given by

𝐻𝐴 = −𝑡
∑︁
⟨𝑖, 𝑗⟩

(
𝑐
†
𝑖
𝑐 𝑗 + 𝑐†𝑗𝑐𝑖

)
+

∑︁
𝑖

ℎ𝑖𝑐
†
𝑖
𝑐𝑖 . (11.1)

Here, the notation ⟨𝑖, 𝑗⟩ implies the hopping 𝑡 only between nearest neighbours, while the
diagonal (in the real space) disorder ℎ𝑖 is randomly distributed from the interval −𝑊 < ℎ𝑖 < 𝑊 ,
where 𝑊 > 0 denotes the disorder strength. In the simple limit when the hopping vanishes,
𝑡 = 0, each electron sits at a distinct site 𝑖 with the random energy ℎ𝑖. Accordingly, the system
is trivially localized.
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The question is then what happens as the hopping 𝑡 becomes finite? Surely, the states 𝑖
hybridize and we would expect that electrons start to propagate through the system. However,
Anderson’s perturbative results showed that the probability of finding an electron at the initial
site 𝑖 stays finite for arbitrarily large times, while the probability for the electron occupying
neighboring lattice sites exponentially falls with the distance from the site 𝑖. In other words,
steady state electron wave functions are exponentially localized in real space

|𝜓𝑖 (𝑟) |2 ∼ 𝑒−
|𝑟−𝑟𝑖 |
𝜉𝑖 , (11.2)

where 𝜉𝑖 denotes the corresponding localization length. Here, 𝑟𝑖 is the position of the site 𝑖 in
the crystal.

This perturbative Anderson’s result can be easily checked numerically by the exact diago-
nalization of the Anderson Hamiltonian in Eq. (11.1). For that purpose, we considered a 1D
lattice with 𝐿 = 16 sites and the hopping 𝑡 = 1 set as the unit of energy, and we calculated
probability densities of typical Anderson wave functions for various disorder strengths𝑊 . The
end results are shown in Fig. 11.1, together with the exponential fits in Eq. (11.2). We see that
the Anderson wave functions are indeed exponentially localized in real space. Importantly, the
localization is apparent for all disorder strengths, where the localization length decreases as the
disorder strength increases.
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Figure 11.1: Probability densities of typical Anderson wave functions together with exponential
fits in Eq. (11.2) for several disorder strengths𝑊 .
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The observation that the Anderson localization occurs in the 1D case for an arbitrary disorder
strength is actually well rationalized by the scaling theory of localization. In particular, in [227]
it was shown that the Anderson localization arises in 1D and 2D systems for an arbitrary weak
disorder strength. This is in contrast with 3D systems, for which the disorder strength 𝑊 has
to be strong enough for the Anderson localization to appear. Actually, in the 3D case, the
situation is slightly more complicated due to the appearance of the mobility edge 𝐸𝐶 [228].
Namely, the mobility edge separates the localized states near the lower and the upper part of an
energy spectrum from the delocalized states in the middle of the spectrum. The position of the
mobility edge in the spectrum is determined by the disorder strength and profoundly affects the
low-temperature transport properties of the system. In particular, for 𝐸𝐶 > 𝜇, where 𝜇 is the
Fermi energy, the DC transport is absent in the low-temperature 𝑇 → 0 limit, while for elevated
temperatures the transport is thermally activated in accordance with the Arrhenius law [229].

11.2 Many-body localization

Despite the great effort put to explore the richness of the Anderson localization phenomenon
[230], the question about the stability of the Anderson localized phase concerning the interactions
started to be thoroughly discussed only at the beginning of the 21st century. In the pioneering
works [229, 231], it was argued that the localized phase is perturbatively stable (to very high
orders) in weak interactions. Specifically, for a sufficiently strong disorder 𝑊 > 𝑊𝑐, it was
suggested that the DC conductivity vanishes in the presence of weak interactions up to some
critical temperature. Similar conclusions have also been drawn by carrying out numerical
simulations [232–234], involving averages over all many-body states (𝑇 → ∞) and different
disorder configurations, on several model Hamiltonians containing both the disorder and strong
interactions between relevant degrees of freedom, leading to the proposal of a new stable
localized phase, popularly dubbed many-body localized phase. In particular, two prototype
models which are believed to exhibit the MBL phenomenon [235, 236], when the disorder
strength exceeds some critical value, are the 1/2 Heisenberg spin chain in a random magnetic
field and the spinless disordered chain of fermions with nearest neighbor interactions. The two
models are related through the Jordan-Wigner transformation [144], while the latter model is
a simple extension of the Anderson model in Eq. (11.1) with the inclusion of nearest neighbor
interactions

𝐻𝑀𝐵𝐿 = −𝑡
∑︁
⟨𝑖, 𝑗⟩

(
𝑐
†
𝑖
𝑐 𝑗 + 𝑐†𝑗𝑐𝑖

)
+

∑︁
𝑖

ℎ𝑖𝑐
†
𝑖
𝑐𝑖 +𝑉

∑︁
𝑖

𝑛𝑖𝑛𝑖+1 , (11.3)

where 𝑛𝑖 is the electron density at the site 𝑖 and 𝑉 denotes the interaction strength.

We were careful not to state firmly that the stable many-body localized phase exists, empha-
sizing the fact that the occurrence of a true MBL phenomenon is still under debate. Namely, the
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Hamiltonian in Eq. (11.3) is not analytically solvable, meaning that one may study its properties
either by some approximate treatment or by the numerical exact diagonalization. However, the
three energy scales in Eq. (11.3), namely, the kinetic energy 𝑡, the disorder strength𝑊 , and the
interaction strength 𝑉 , may all be comparable and is usually very hard to disentangle effects
coming from the interaction and the disorder. Therefore, finding a correct approximate treatment
of the MBL Hamiltonian in Eq. (11.3) is generally a very difficult task. In most of the studies,
the numerical exact diagonalization is thus used, which on the other hand suffers from the expo-
nentially large Hilbert space in system size. In particular, for a lattice with 𝐿 sites and a binary
degree of freedom per site, the Hilbert space dimension reads 𝐷H = 2𝐿 , which, however, can
be effectively somewhat reduced in numerical calculations by explicitly exploiting appropriate
conservation laws. Accordingly, cases with 𝐿 > 16 are out of reach for numerical simulations
due to the current computational limitations. Therefore, almost all conclusions about the MBL
phenomenon are obtained on 1D lattices with 𝐿 ≤ 16 sites, leaving open questions about the
scaling of results to the thermodynamic limit. This problem is particularly pronounced in sys-
tems with the MBL behaviors, since potentially very slow dynamics may lead to long relaxation
times over long spatial scales, not captured by the current finite-size numerical calculations.

The problem of finite-size effects was tried to be reconciled by the reduced basis approxi-
mation [237, 238]. The rough idea behind the approximation was to find only a fraction of the
total Hilbert space relevant for the dynamics of some quenched initial state, which would corre-
spondingly reduce the computational cost of the exact diagonalization and open the possibility
of studying larger systems with 𝐿 > 16 lattice sites. Specifically, the approximation made it
possible to study systems with 𝐿max ≈ 30 lattice sites, however, those 𝐿 were still not large
enough for a trustworthy extrapolation of the results to the thermodynamic limit. Moreover,
the approximation was efficient in substantially reducing the Hilbert space only for very large
disorder strengths.

Here, we put focus on the properties of the MBL phenomenon given that it exists, while in
future works it would be interesting to exploit our approaches and results to study whether the true
MBL phenomenon persists in thermodynamically large systems. To put our results, presented
in Chapters 12 and 13, in the perspective of the current knowledge of the MBL phenomenon, in
what follows, we list some of its properties as obtained from the exact numerical simulations on
small 1D systems with 𝐿 ≤ 16 lattice sites.

11.2.1 Properties of many-body localized systems

Spectral properties [232, 234,239]

As the first property of many-body localized systems, we single out the characteristic structure
of their local energy spectra. In particular, the MBL is characterized by the avoided repulsion
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of energy levels. This can be easily shown by considering the computational quantifier, namely,
the average value of the ratio of consecutive level spacings 𝑟𝑛 = min(𝛿𝑛, 𝛿𝑛+1)/max(𝛿𝑛, 𝛿𝑛+1),
where 𝛿𝑛 = 𝐸𝑛+1 − 𝐸𝑛 is the difference between two consecutive eigenenergies. Many-body
localized systems show ⟨𝑟⟩ → 0.386, which indicates the Poisson distribution of level spacings.
This is in sharp contrast with generic interacting quantum systems showing the Wigner-Dyson
distribution of level spacings.

Transport properties [240, 241]

As already stated, the DC conductivity vanishes in the many-body localized phase. Hence, the
MBL is characterized by the absence of transport of globally conserved quantities. Currently,
the interesting question is what are the features of transport when the disorder is moderate, albeit
not strong enough for the onset of the MBL. We will provide some answers to that problem in
Chapter 13.

Entanglement properties [233, 239,242,243]

To present the next important feature of the MBL phenomenon, we first briefly introduce the
notion of entanglement entropy. For that purpose, we assume that some pure state |𝑛⟩ is given
and that we have divided the full system 𝐴 ∪ 𝐵 into two subsystems 𝐴 and 𝐵. Now, the
entanglement entropy of the state |𝑛⟩ is defined as the trace 𝑆 ( |𝑛⟩) = −Tr𝐴 (𝜌𝐴 ln 𝜌𝐴), where
the reduced density matrix 𝜌𝐴 = Tr𝐵 |𝑛⟩ ⟨𝑛| is obtained by tracing over the degrees of freedom
of the subsystem 𝐵.

Such defined entanglement entropy scales with the subsystem size qualitatively quite differ-
ently in generic interacting quantum systems and many-body localized systems. In particular,
in a generic quantum system, that is for a generic state corresponding to that system, the entan-
glement entropy shows the volume-law scaling with the size of the subsystem 𝐴. On the other
hand, states of the many-body localized system exhibit the area-law scaling with the subsystem
size.

The differences persist also when the dynamics of the entanglement entropy are considered.
It has been shown that the entanglement entropy in many-body localized systems increases
logarithmically in time, which is much slower than in generic interacting quantum systems.
Specifically, it is expected that in the thermodynamic limit it increases indefinitely, while for
finite systems, feasible for numerical simulations, it saturates to some finite value which is
extensive, albeit lower than the value expected for a generic interacting quantum system.
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11.2.2 Local integrals of motion

An important step forward in understanding the properties of the MBL phenomenon was provided
by its phenomenological description in terms of quasi-local degrees of freedom called local
integrals of motion (LIOMs) [244,245]. The key assumption underlying this phenomenological
approach is that there exists a quasi-local unitary transformation that diagonalizes the MBL
Hamiltonian

𝐻𝑀𝐵𝐿 = −
∑︁
𝑖

ℎ𝑖𝜏
𝑧
𝑖
+

∑︁
𝑖, 𝑗

𝐽𝑖, 𝑗𝜏
𝑧
𝑖
𝜏𝑧
𝑗
+

∑︁
𝑖, 𝑗 ,𝑘

𝐽𝑖, 𝑗 ,𝑘𝜏
𝑧
𝑖
𝜏𝑧
𝑗
𝜏𝑧
𝑘
+ ... , (11.4)

where 𝜏𝑧
𝑖

are quasi-local operators obeying the Pauli algebra, which commute mutually and with
the whole Hamiltonian. They are popularly called l-bits (localized bits) and serve as a starting
point for the construction of LIOMs. In particular, any product of operators 𝜏𝑧

𝑖
may be seen as

a valid LIOM.

The crucial feature of the phenomenological Hamiltonian in Eq. (11.4) is that 𝜏𝑧
𝑖

are quasi-
local. Namely, they are formally constructed from original spin (or electron density) operators
𝜏𝑧
𝑖
= 𝜎𝑧

𝑖
+ ∑

𝑗 ,𝑘

∑
𝛼,𝛽=𝑥,𝑦,𝑧 𝑐

𝛼,𝛽

𝑖, 𝑗 ,𝑘
𝜎𝛼
𝑗
𝜎
𝛽

𝑘
+ ..., where 𝑐𝛼,𝛽

𝑖, 𝑗 ,𝑘
decay exponentially with the distance

between the site 𝑖 and sites 𝑗 , 𝑘 . 𝜏𝑧
𝑖

are also binary operators with eigenvalues ±1, so the
exact many-body eigenstates of the Hamiltonian in Eq. (11.4) may be simply obtained by the
set of eigenvalues for each 𝜏𝑧

𝑖
. From these simple properties of l-bits, one may show that the

phenomenological Hamiltonian in Eq. (11.4) exhibits many hallmarks of the MBL phenomenon,
from the Poisson statistics of level spacings to the absence of transport, and peculiar properties
of the entanglement entropy.

Although the notion of l-bits de facto resolves the MBL phenomenon in some scenarios
to a great extent, it is very challenging to explicitly construct them in practice starting from
some prototype MBL Hamiltonian, since as we have argued, MBL Hamiltonians cannot be
analytically diagonalized. We can mention several numerical algorithms [244,246–249] for the
construction of LIOMs for small system sizes on the one hand, and a few papers devoted to
the rigorous analytical [250–252], specifically perturbative, approaches to their construction on
the other hand. However, none of them provide a simple and tractable set of LIOMs for some
concrete model Hamiltonian exhibiting the MBL phenomenon.

Distinction between Anderson localization and MBL

The l-bits can be trivially constructed, though, in the case of the Anderson Hamiltonian in
Eq. (11.1). In particular, the l-bits, in that case, correspond to the densities 𝑛𝑙 of electrons in a
single-particle Anderson state 𝑙. Since the Anderson Hamiltonian is diagonal in the 𝑙 basis, we
can write
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𝐻𝐴 =
∑︁
𝑙

𝜀𝑙𝑛𝑙 , (11.5)

and by comparing this Hamiltonian with Eq. (11.4), we immediately notice that in the Anderson
case all 𝐽𝑖, 𝑗 ,... vanish, meaning that there are no interactions between l-bits. This is the crucial
difference between the Anderson localization and the MBL, which heavily influences the dy-
namics and provides experimental means for distinguishing the two localization phenomena. In
particular, interactions in Eq. (11.4) introduce a mechanism for dephasing, in addition to the sim-
ple precession due to the first term in Eq. (11.4), which entangles degrees of freedom at arbitrary
distances. In systems exhibiting the MBL, the interactions 𝐽𝑖, 𝑗 ,... exponentially decrease with
the distance, explaining the logarithmically slow, albeit indefinite increase of the entanglement
entropy in time. On the other, in an Anderson insulator, the dephasing is completely absent and
the entanglement entropy saturates to some finite value even in the thermodynamic limit.

11.2.3 Thermal-MBL transition

The existence of LIOMs evidently signals the appearance of some emergent local integrabilities.
Accordingly, the information about local initial conditions of the system exhibiting LIOMs may
stay encoded in local observables up to very long times [244,253]. This suggests the non-ergodic
behavior and the absence of thermalization in many-body localized systems. In that regard, the
study of MBL has profound implications on the fundamental question of quantum chaos and
quantum thermalization, providing the example of an (isolated) interacting quantum system that
avoids thermalization.

As already emphasized at the beginning of Section 11.2, the MBL phenomenon sets in for
sufficiently strong disorders𝑊 > 𝑊𝑐. When the disorder is low𝑊 < 𝑊𝑐, the MBL Hamiltonian
in Eq. (11.3) rather shows drastically different behaviors. In particular, it has been shown
[254] that for low disorders eigenstates of the Hamiltonian in Eq. (11.3) satisfy the eigenstate
thermalization hypothesis (ETH) [255, 256]. Without going into too much detail, the main
proposal of ETH is that each eigenstate behaves similarly to a statistical ensemble. Specifically,
the ETH proposes that the reduced density matrix corresponding to an energy eigenstate takes
the thermal form, which would simultaneously reconcile the quantum thermalization and the
unitary quantum evolution. Accordingly, the model in Eq. (11.3) thermalizes for low disorders,
which is in sharp contrast with the non-ergodic MBL behavior for strong disorders. Obviously,
the transition (crossover) from the thermal to the many-body localized phase sets in as the
disorder strength increases above the critical value𝑊𝑐.

The thermal-MBL transition is very subtle and intriguing, and its complete understanding
is currently lacking. One of the reasons for that is that it separates a thermal and a non-ergodic
phase, and hence the knowledge of equilibrium statistical physics is not quite helpful. In
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particular, well-established mean-field theories, like Landau’s theory, are not appropriate for
its description. Moreover, at the current time there exist no other simpler phenomenological
theories or toy models which would help to capture the transition’s essence. In the absence of its
full understanding, however, it is popularly dubbed eigenstate phase transition since eigenstates
in the thermal and the many-body localized phase behave radically differently, or the dynamical
phase transition due to the fact that only dynamical probes may distinguish the two phases.
Anyhow, the thermal-MBL transition is currently an open problem to which we devote the
whole Chapter 12.

11.2.4 Experimental observations of the MBL phenomenon

The development of the field of MBL was mostly driven by theoretical curiosity, raising the
question of whether the phenomenon can be observed at all in real-life experiments. This
question is particularly delicate since in experiments it is quite challenging to isolate a system
from the environment and to have full control of the system’s parameters, such as the disorder
strength and the interaction. However, while the plausible signatures of the many-body localized
phase were reported in some condensed matter systems [257,258], it was for the first time shown
in ultra-cold atoms and trapped ions setups [259–261] that the MBL phenomenon may truly
arise in a real experiment.

In particular, cold atom setups are reasonably well isolated from an environment (baths), at
least for sufficiently long times, while the disorder may be simulated with laser beams forming
a quasi-periodic potential and the interaction tuned with Feshbach resonances. These ideas
were implemented in [259], where, within such a setup, the study of the time evolution of the
state initially prepared as the charge density wave was carried out. It was shown that for weak
disorders and sufficiently long times the density homogeneously spreads through the system
leaving no evidence of the initial charge density wave. Contrary, for strong disorders the traces
of the initial charge density wave remained apparent for the longest accessible experimental
times, providing strong evidence of the thermal-MBL transition and the MBL phenomenon.

To conclude this introductory Chapter 11, we can say that MBL experiments today play a vital
role in understanding the phenomenon, going hand-by-hand with theoretical considerations. It
is strongly anticipated that experiments will provide means to investigate the MBL phenomenon
in higher dimensional (𝐷 > 1) systems and be exploited to study the thermal-MBL phase
transition, both of these goals being very challenging from the theoretical point of view.
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Chapter 12

MBL as a percolation phenomenon

Parts of Chapter 12 have been published in [262]. The work discussed here was performed in
collaboration with P. Prelovšek and M. Mierzejewski.

In this Chapter 12, we show that the thermal-MBL transition is accompanied by the drastic change
in clustering of many-body states. Accordingly, we provide evidence that the transition may be
thought of as a percolation transition, albeit in the Fock space. Our results are in line with the
absence of thermalization in systems with the Hilbert space fragmentation [263–265], showing
that in non-ergodic many-body localized systems the Hilbert space fragmentation is driven by
the disorder. Namely, it is by now well established that the non-ergodic MBL-like behaviors are
present in lattice gauge theories [263,266], fracton systems [264], and, in general, systems with
many conservation laws [265]. In all those systems the disorder is not present, but they are all
characterized by the emergent set of conserved quantities and the Hilbert space fragmentation.
This suggests that those two ingredients, unlike disorder, are essential for the MBL phenomenon.
While the emergent set of conserved quantities in the many-body localized phase corresponds
to l-bits, as discussed in Subsection 11.2.2, here we further show that the model in Eq. (11.3)
exhibits the disorder-driven Hilbert space fragmentation. We note that similar ideas about the
percolative nature of the thermal-MBL transition were discussed in [267–269]. However, there
the connectivity of many-body states was studied by the means of hopping 𝑡, while here we
consider the connectivity of many-body Anderson states through the interaction 𝑉 .

12.1 MBL model in the Anderson many-body basis

In order to separately track effects of the disorder and interactions, it is convenient to divide
the full MBL Hamiltonian in Eq. (11.3) into the non-interacting part, which corresponds to
the Anderson Hamiltonian in Eq. (11.1), and the interacting part 𝐻𝐼 = 𝑉

∑
𝑖 𝑛𝑖𝑛𝑖+1. The non-

interacting Anderson Hamiltonian can be easily diagonalized

𝐻𝐴 =
∑︁
𝑙

𝜀𝑙𝜑
†
𝑙
𝜑𝑙 , 𝜑

†
𝑙
=

∑︁
𝑖

𝜙𝑙,𝑖𝑐
†
𝑖
, (12.1)

where the operator 𝜑†
𝑙
(𝜑𝑙) creates (annihilates) an electron in the single-particle Anderson

localized state 𝑙, and 𝜙𝑙,𝑖 relate the Anderson and the real space basis. Those single-particle
Anderson localized states may be utilized to construct the Anderson many-body basis
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|𝑛⟩ =
∏
𝑙

(
𝜑
†
𝑙

)𝑛𝑙
|0⟩ , 𝐸0

𝑛 =
∑︁
𝑙

𝜖𝑙𝑛𝑙 , (12.2)

with 𝑛𝑙 = 0, 1 since we consider electrons as spinless fermions.

With the inclusion of interactions, the eigenstates |𝑛⟩ start to mix. In order to track this
mixing, it is convenient to rewrite the interacting Hamiltonian 𝐻𝐼 = 𝑉

∑
𝑖 𝑛𝑖𝑛𝑖+1 in the Anderson

basis 𝑙. Since 𝐻𝐼 contains a two-particle interaction, it can generally be written as

𝐻𝐼 = 𝑉
∑︁
𝑗 𝑘𝑙𝑚

𝜒𝑙𝑚𝑗 𝑘 𝜑
†
𝑙
𝜑†𝑚𝜑𝑘𝜑 𝑗 , (12.3)

where matrix elements 𝜒𝑙𝑚
𝑗 𝑘

read

𝜒𝑙𝑚𝑗 𝑘 =
∑︁
𝑖

𝜙∗𝑙,𝑖𝜙
∗
𝑚,𝑖+1𝜙𝑘,𝑖+1𝜙 𝑗 ,𝑖 . (12.4)

As thoroughly discussed in [238], the interacting Hamiltonian in Eq. (12.3) can be divided
into three parts, depending on the number of equal indices 𝑗 , 𝑘, 𝑙, 𝑚. In particular, the part with
only two different indices reads

𝐻𝐻𝐹 = 2𝑉
∑︁
𝑘> 𝑗

(
𝜒
𝑗 𝑘

𝑗 𝑘
− 𝜒𝑘 𝑗

𝑗 𝑘

)
𝑛𝑘𝑛 𝑗 . (12.5)

It corresponds to the Hartree-Fock correction, diagonal in the many-body Anderson basis,
which can be added to the Anderson Hamiltonian to redefine the unperturbed Hamiltonian
𝐻0 = 𝐻𝐴 + 𝐻𝐻𝐹 . Accordingly, the new unperturbed eigenenergies read

𝐸
(0)
𝑛 = 𝐸

(0)
𝑛 + ⟨𝑛| 𝐻𝐻𝐹 |𝑛⟩ =

∑︁
𝑙

𝜖𝑙𝑛𝑙 + 2𝑉
∑︁
𝑘> 𝑗

(
𝜒
𝑗 𝑘

𝑗 𝑘
− 𝜒𝑘 𝑗

𝑗 𝑘

)
𝑛𝑘𝑛 𝑗 . (12.6)

The mixing of many-body Anderson states comes from the parts of the interacting Hamilto-
nian in Eq. (12.3) when three or all four indices 𝑗 , 𝑘, 𝑙, 𝑚 are different

𝐻3
𝐼 = 𝑉

∑︁
𝑗≠𝑘≠𝑚

(
𝜒
𝑗𝑚

𝑗 𝑘
+ 𝜒𝑚 𝑗

𝑘 𝑗
− 𝜒𝑚 𝑗

𝑗 𝑘
− 𝜒 𝑗𝑚

𝑘 𝑗

)
𝜑†𝑚𝜑𝑘𝑛 𝑗 , (12.7)

and

𝐻4
𝐼 = 𝑉

∑︁
𝑗≠𝑘≠𝑙≠𝑚
𝑙>𝑚,𝑘> 𝑗

(
𝜒𝑙𝑚𝑗 𝑘 + 𝜒

𝑚𝑙
𝑘 𝑗 − 𝜒

𝑚𝑙
𝑗 𝑘 − 𝜒

𝑙𝑚
𝑘 𝑗

)
𝜑
†
𝑙
𝜑†𝑚𝜑𝑘𝜑 𝑗 , (12.8)

describing single and double electron-hole pair excitations, respectively. We redefine the inter-
acting part of the MBL Hamiltonian so that it contains only those two terms 𝐻′

𝐼
= 𝐻3

𝐼
+ 𝐻4

𝐼
.
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When discussing the clustering of many-body states, we are mostly interested in the connec-
tivity of many-body Anderson states through the Hamiltonian 𝐻′

𝐼
. In that regard, we primarily

consider connections satisfying the resonant condition

��⟨𝑛′| 𝐻′
𝐼 |𝑛⟩

�� > 𝑅 (𝐸 (0)
𝑛′ − 𝐸 (0)

𝑛 ) , (12.9)

in accordance with the second-order perturbation theory. For the value of the resonant parameter
𝑅we take 𝑅 ≈ 0.3, which correctly reproduces the thermal-MBL transition expected at𝑊𝑐 ∼ 6−8
[237, 239, 270] for our chosen parameter set. In all our calculations, we use 𝑡 = 1 as the unit
of energy, set 𝑉 = 2𝑡, and consider the half-filled case with 𝑁 = 𝐿/2 fermions, where 𝐿 is the
number of lattice sites.

12.2 Many-body clustering

In order to reveal the clusterization of many-body states, it is sufficient to show that the matrix
𝑀𝑛,N = ⟨𝑛|N⟩ has the block diagonal structure. Here, |𝑛⟩ represents a many-body Anderson
state, while |N⟩ is an exact eigenstate, so perfect clustering implies that the many-body Anderson
basis may be split into disconnected sets (clusters) such that each exact eigenstate has a projection
on a single cluster only. However, to numerically reveal the block diagonal structure of 𝑀𝑛,N ,
first we have to properly sort eigenstates |𝑛⟩ and |N⟩ since the labelling of states |𝑛⟩ is arbitrary,
while states |N⟩ are commonly sorted according to their energies. To achieve that, we use the
following scheme. We consider some arbitrary exact eigenstate and we put it at the first position
|N = 1⟩. Then, we calculate

𝑂 (N ,N ′) =
∑︁
𝑛

|⟨𝑛|N⟩| |⟨𝑛|N ′⟩| , (12.10)

with |N = 1⟩ and determine which |N ′⟩ yields maxN ′>N𝑂 (N ,N ′) > 0, which is then considered
as the consecutive eigenstate |N = 2⟩. The procedure proceeds for each newly added eigenstate,
grouping together all eigenstates |N⟩ related to the same cluster. Now that the exact eigenstates
are all sorted depending on clusters they are related to, we only need to suitably sort many-body
Anderson states |𝑛⟩. To do this, for each |N⟩, starting with |N = 1⟩, we simply find |𝑛⟩ which
gives max𝑛≥N ⟨𝑛|N⟩, defining in this way the place of |𝑛⟩ on the list, 𝑛 = N .

Following this algorithm, in Fig. 12.1(a) we show the matrix 𝑀𝑛,N = ⟨𝑛|N⟩ obtained by the
exact diagonalization of the MBL Hamiltonian in Eq. (11.3) for the disorder strength 𝑊 = 10

and the lattice with 𝐿 = 12 sites, with the non-resonant matrix elements excluded. From
Fig. 12.1(a), the clusterization of many-body states is clearly visible. In particular, the Hilbert
space is drastically fragmented, shattered into a macroscopically large number of small clusters
containing no more than a few eigenstates.
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(a)

(b)

Figure 12.1: Clusterization of many-body states (a) without and (b) with resonant matrix
elements in Eq. (12.9) included, for the disorder strength 𝑊 = 10 and the lattice with 𝐿 = 12
sites. Colorbars represent numerical values of log10 |𝑀𝑛,N |2.

In order to show that this clusterization is not an artifact of neglecting non-resonant matrix
elements, we repeat the same process, albeit with the full Hamiltonian, that is, with non-resonant
matrix elements included. For that purpose, we keep the ordering of many-body Anderson states
|𝑛⟩ as obtained for the truncated Hamiltonian, while exact eigenstates |N⟩ we order according
to their maximal projections on states |𝑛⟩, N = 𝑛. The resulting matrix 𝑀𝑛,N for the full
Hamiltonian, and the same 𝑊 = 10 and 𝐿 = 12 as for the truncated Hamiltonian, is shown in
Fig. 12.1(b). Despite the fact that non-vanishing overlaps exist between different clusters, the
block-like diagonal structure of 𝑀𝑛,N is still clearly apparent. That is, the majority of overlaps
is vanishingly small, such that the full Hilbert space is effectively fragmented into many small
clusters even when the resonant condition is lifted. This suggests that the MBL scenario in
model Eq. (11.3) is accompanied by the Hilbert space fragmentation, similarly to other, clean
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translationally invariant models. We note that the further analysis of Fig. 12.1(b) may reveal an
additional structure of the Hilbert space, for example multifractal properties [267, 271, 272].

12.3 Percolation in the Fock space

Now that we have established that for strong disorders𝑊 > 𝑊𝑐 the Hilbert space gets fragmented
into many small clusters, it is particularly interesting to study the distribution of cluster sizes,
especially as the disorder strength is varied across 𝑊𝑐. In accordance with the thermal-MBL
transition, we expect that for 𝑊 < 𝑊𝑐 one macroscopically large cluster emerges, which would
signal the breakdown of the Hilbert space fragmentation and the many-body localized phase.
In other words, this scenario suggests that the thermal-MBL transition can be thought of as
a percolation transition, albeit in the Fock space. In order to emphasize these ideas, in our
following considerations, we study the statistics of cluster sizes, where we explicitly exploit the
resonant condition in Eq. (12.9). The reason for that is twofold. First, it ensures the perfect block
diagonal structure of the matrix 𝑀𝑛,N . Second, it explicitly supports the scenario in which is
the thermal-MBL transition driven by the resonant, rather than by the non-resonant transitions.

12.3.1 Statistics of cluster sizes

In order to analyse the cluster statistics, we introduce the parameter 𝑠 = 𝑁𝐶/𝑁𝑀𝐵, as the ratio of
the number of states in a cluster 𝑁𝐶 and the total number of states 𝑁𝑀𝐵 =

( 𝐿
𝐿/2

)
. In particular,

we start the analysis by considering the 𝑊 dependence of the relative number of states in a
maximal cluster, 𝑠𝑚𝑎𝑥 . Since the number of states in the maximal cluster varies from one
disorder realization to another, we evaluate typical averages 𝑠𝑡𝑦𝑝𝑚𝑎𝑥 = exp ⟨ln 𝑠𝑚𝑎𝑥⟩𝑑𝑖𝑠, where
⟨...⟩𝑑𝑖𝑠 represents the average over 𝑁𝑑𝑖𝑠 different disorder configurations.

In Fig. 12.2(a), we show results for 𝑠𝑡𝑦𝑝𝑚𝑎𝑥 sampled over 𝑁𝑑𝑖𝑠 ∼ 300 disorder configurations
as a function of 𝑊 for four different lattice sizes 𝐿 = 12 − 24. Although 𝑠

𝑡𝑦𝑝
𝑚𝑎𝑥 exhibits a

moderate 𝐿 dependence, it is evident that for weak disorders𝑊 ∼ 2 practically all states belong
to the maximal and thus macroscopically large cluster since 𝑠𝑡𝑦𝑝𝑚𝑎𝑥 → 1. On the other hand,
for significantly stronger disorders, 𝑊 ∼ 10, 𝑠𝑡𝑦𝑝𝑚𝑎𝑥 becomes vanishingly small, pointing to the
degradation of the macroscopic cluster into many smaller clusters. This is well in accordance
with the percolation scenario of the thermal-MBL transition and the Hilbert space fragmentation
in the many-body localized phase. Note also that as the 𝐿 increases, the drop of 𝑠𝑡𝑦𝑝𝑚𝑎𝑥 becomes
sharper near𝑊 ∼ 8, where the transition point is expected for the chosen parameter set.

To further support those findings, we also consider the probability distribution of cluster
sizes P(𝑠), which near the percolation transition exhibits the universal power-law behavior
with the critical exponent 𝜏, P(𝑠) ∼ 𝑠−𝜏, in the thermodynamic limit [273]. In particular, in
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Figure 12.2: (a) Typical relative number of states in the maximal cluster averaged over 𝑁𝑑𝑖𝑠 ∼ 300
disorder configurations in dependence on the disorder strength𝑊 for four different lattice sizes
𝐿 = 12 − 24. (b) Integrated distribution 𝐼 (𝑠) of cluster sizes 𝑠 for several disorder strengths
𝑊 = 3 − 12 evaluated for 𝐿 = 24.

Fig. 12.2(b) we show our results in terms of the integrated distribution 𝐼 (𝑠) =
∫ 1

𝑠
P(𝑠′)𝑑𝑠′ for the

lattice with 𝐿 = 24 sites, obtained by averaging over 𝑁𝑑𝑖𝑠 ∼ 50 configurations of disorder. The
normalization 𝐼 (𝑠 → 0) = 1 is used. As is clearly evident, for𝑊 < 𝑊𝑐 the integrated distribution
𝐼 (𝑠) exhibits long plateaus with the value 𝐼 (𝑠 ≈ 1) in a broad range of 𝑠, 0 ≠ 𝑠𝑝 < 𝑠 ≤ 1. This
behavior is consistent with the existence of one macroscopically large cluster and several smaller
clusters with the relative number of eigenstates 𝑠 < 𝑠𝑝. As the disorder strength increases, the
distributions near 𝑠 ≈ 1 start to bend, indicating the degradation of the macroscopically large
cluster into smaller clusters. However, due to finite size effects, 𝐼 (𝑠 ≈ 1) remains finite, albeit
very low, even for 𝑊 > 𝑊𝑐, signaling the finite, but very small probability of finding the
macroscopic cluster even in the many-body localized phase. Lastly, let us add that the simple
power-law fit of P(𝑠) at 𝑊 = 8 gives 𝜏 = 2.47. Interestingly, this is very close to the value of
5/2 predicted for the percolation models in high dimensions (𝐷 > 6) [274, 275], captured by
the mean-field theory of the Potts model [276].

12.4 Conclusions

We show that the prototype MBL model Hamiltonian, involving a disordered chain of interacting
spinless fermions, exhibits a drastic change in the clustering of many-body states as the disorder
strength is varied across a critical value. In particular, for strong disorders, the Anderson many-
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body basis is split into many small clusters involving no more than a few states. By inspecting the
relative number of states in the largest cluster and the distribution of cluster sizes, we notice that
in the opposite limit of weak disorders one macroscopically large cluster emerges. These two
results point to the percolative nature of the thermal-MBL transition, albeit in the Fock space.
Near the transition, the distribution of cluster sizes shows the universal power-law behavior with
the exponent very close to the one predicted for percolation models in high dimensions. The
shattering of the Fock space into many small clusters for strong disorders is in line with the
Hilbert space fragmentation observed in disorder-free models exhibiting MBL-like behaviors.
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Chapter 13

Anomalous transport properties

Parts of Chapter 13 have been published in [262]. The work discussed here was performed in
collaboration with P. Prelovšek and M. Mierzejewski.

In this last Chapter 13 of the thesis, we discuss the delicate topic of transport properties of the
MBL model in Eq. (11.3) for moderate disorder strengths. In the many-body localized phase,
the transport is absent and the DC conductivity vanishes. On the other hand, in the complete
absence of the disorder, interactions and particle collisions lead to diffusive transport, while
without interactions the model is integrable. The important question therefore arises, what is
the nature of transport as soon the disorder is turned on when it is not strong enough for the
MBL phenomenon to set in?

In several works [270,277–279], an anomalously slow transport was reported in the thermal
portion of the MBL phase diagram for moderate disorder strengths, ascribed to the subdiffusive-
like transport regime settled in prior to the thermal-MBL transition. These results were, however,
contradicted by other numerical studies [241,280] showing non-vanishing values of the DC con-
ductivity in the whole thermal phase, while in [281] it was argued that the observed subdiffusive
regime is actually transient. The latter scenario is also favored by the numerical study [282]
on large spin chains, with a conclusion that for weak disorders the purely diffusive behavior
prevails. The intricate nature of the transport in the thermal portion of the MBL phase diagram
below the localized phase,𝑊 < 𝑊𝑐, was further supported by several experiments [283,284] as
well. In particular, it was observed that the decay of imbalance after a quench is slow, following
a power-law behavior with non-universal exponents.

Despite the great theoretical and experimental effort put to investigate anomalous transport
properties in the whole thermal pase, a definite consensus about this important topic is still not
provided. Hence, it is paramount to investigate in more detail this anomalous transport and its
dependence on the disorder strength, as well as to understand its origins. Here, we contribute
to this rich and intricate topic by investigating electron density relaxations in the context of the
percolation scenario discussed in Chapter 12. In particular, following the results of the precedent
Chapter 12, we investigate the relaxation of the electron density toward the equilibrium as a
cascade of transitions between different many-body Anderson states in the macroscopic cluster
by means of rate equations.
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13.1 Density relaxations

As a probe for studying transport properties in the thermal phase, we analyze the time dependence
of the density correlation function 𝐶𝑞 (𝑡) = ⟨𝜌𝑞 (𝑡)𝜌0−𝑞⟩, where 𝜌𝑞 is the 𝑞 component of the
electron density operator and ⟨...⟩ denotes averaging over relevant many-body states. To be
more specific, we are actually interested in the time-dependent diffusion function

𝐷 (𝑡) = − 1

𝑞2

¤𝐶𝑞 (𝑡)
𝐶𝑞 (𝑡)

, (13.1)

which long-time behavior may be taken as the definition of the diffusion parameter lim
𝑡→∞

𝐷 (𝑡) ≡
𝐷0.

Before the analysis of the behavior of 𝐷 (𝑡) in the thermal part of the MBL phase diagram,
it is instructive to briefly consider the behavior of the diffusion parameter 𝐷0 in several special
cases. In particular, in the many-body localized phase, the density correlation function stays
finite for arbitrarily long times, 𝐶𝑞 (𝑡 → ∞) = 𝐶0

𝑞 ≠ 0. In that case, it is easy to see from
Eq. (13.1) that 𝐷0 = 0, in accordance with the absence of transport. On the other hand, from
the Fick’s law of diffusion [285] follows 𝐶𝑞 (𝑡) ∝ exp(−𝐷𝑞2𝑡), and the diffusion parameter 𝐷0

corresponds to the parameter 𝐷. The most interesting is, however, the subdiffusive case for
which the decay of 𝐶𝑞 (𝑡) is not exponential but power-law, 𝐶𝑞 (𝑡) ∼ 𝑡−𝜁 , in which case we get

𝐷 (𝑡) ∼ 𝜁/𝑡 , 𝐷 (𝑡 → ∞) = 𝐷0 → 0 . (13.2)

13.1.1 Rate equations

In the presence of interactions, many-body Anderson states |𝑛⟩ are not eigenstates of the system.
Nevertheless, these states may be used as quenched initial states from which the relaxation toward
the equilibrium may be studied. In particular, we start from some non-equilibrium many-body
state determined by the probabilities 𝑝𝑛, satisfying the sum rule

∑
𝑛 𝑝𝑛 = 1, of finding the state in

the many-body Anderson state |𝑛⟩. Due to the interaction𝑉 , a state |𝑛⟩ may transit to a state |𝑛′⟩
and vice versa, eventually relaxing the initial charge density profile toward the equilibrium. In
order to describe this relaxation, here we neglect the quantum coherence of transitions between
many-body Anderson states |𝑛⟩ and regard the relaxation toward the equilibrium as a cascade of
(irreversible) transitions which can be described by the rate equations for the probabilities 𝑝𝑛

𝑑

𝑑𝑡
𝑝𝑛 =

∑︁
𝑛′≠𝑛

[Γ𝑛𝑛′ 𝑝𝑛′ − Γ𝑛′𝑛𝑝𝑛] . (13.3)

For the transition rates Γ𝑛𝑛′ = Γ𝑛′𝑛 > 0, we take the Fermi’s golden rule-like form, Γ𝑛𝑛′ =
𝜁
��⟨𝑛′| 𝐻′

𝐼
|𝑛⟩

��2N𝑛𝑛′ , with 𝜁 = 1/(𝜋𝑅). The resonant condition in Eq. (12.9) for transitions
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between states |𝑛⟩ and |𝑛′⟩ is explicitly taken into account through the many-body density of
states N𝑛𝑛′

N𝑛𝑛′ ∼
𝑅

2
��⟨𝑛′| 𝐻′

𝐼
|𝑛⟩

��Θ
( ��⟨𝑛′| 𝐻′

𝐼
|𝑛⟩

��
𝑅

−
(
𝐸
(0)
𝑛 − 𝐸 (0)

𝑛′

))
, (13.4)

so the final expression for the transition rates reads

Γ𝑛𝑛′ =

��⟨𝑛′| 𝐻′
𝐼
|𝑛⟩

��
2𝜋

Θ

( ��⟨𝑛′| 𝐻′
𝐼
|𝑛⟩

��
𝑅

−
(
𝐸
(0)
𝑛 − 𝐸 (0)

𝑛′

))
. (13.5)

Following our percolation picture of the thermal-MBL transition, it is natural to assume that
these transition rates between different many-body Anderson states |𝑛⟩ may be interpreted as
bonds in the standard bond percolation theory.

The system in Eq. (13.3) is a linear system of 𝑁𝑀𝐵 coupled differential equations which
may be easily solved numerically. Namely, its eigenvalues 𝜆𝛼 and eigenfunctions 𝑤𝛼𝑛 may be
straightforwardly numerically computed. Since the rate equations are diagonal in eigenfunctions
𝑤𝛼𝑛, they obey a simple time evolution, 𝑤𝛼𝑛 (𝑡) = 𝑤𝛼𝑛𝑒−𝜆𝛼𝑡 , which can be exploited to obtain
the time evolution of probabilities 𝑝𝑛 (𝑡) as their linear combination

𝑝𝑛 (𝑡) =
∑︁
𝛼

𝑐𝛼𝑤𝛼𝑛𝑒
−𝜆𝛼𝑡 . (13.6)

In particular, for the linear system in Eq. (13.3) the eigenfunctions𝑤𝛼𝑛 may always be normalized∑
𝛼 𝑤

2
𝛼𝑛 = 1, so in the case that the initial state corresponds to a single many-body Anderson

state |𝑛0⟩, we have 𝑝𝑛 (0) = 𝛿𝑛𝑛0 and

1 =
∑︁
𝛼

𝑐𝛼𝑤𝛼𝑛0 → 𝑐𝛼 = 𝑤𝛼𝑛0 . (13.7)

Density correlation function

Now we have all the ingredients to study the time evolution of the density correlation function
𝐶𝑞 (𝑡) = ⟨𝜌𝑞 (𝑡)𝜌0−𝑞⟩ within the rate equation approach. In particular, the 𝑞 component of the
density 𝜌𝑞 may be obtained as

𝜌𝑞 =
∑︁
𝑛

𝑛𝑞 [𝑛]𝑝𝑛 , (13.8)

where 𝑛𝑞 [𝑛] describes the 𝑞 component of the density profile of the many-body Anderson state
|𝑛⟩. 𝑛𝑞 [𝑛] can be easily obtained in terms of the occupation of a single-particle Anderson state
𝑛𝑙 [𝑛]
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𝑛𝑞 [𝑛] =
1
√
𝐿

∑︁
𝑗

𝑒𝑖𝑞 𝑗𝑛𝑖 [𝑛] =
1
√
𝐿

∑︁
𝑗 ,𝑙

𝑒𝑖𝑞 𝑗 |𝜙 𝑗 ,𝑙 |2𝑛𝑙 [𝑛] , (13.9)

where 𝑛𝑙 [𝑛] = 0, 1, depending whether the single-particle Anderson state 𝑙 is occupied or not in
the many-body Anderson state |𝑛⟩.

By combining the above Eqs. (13.6) and (13.8) with the expression for the density correlation
function, we get

𝐶𝑞 (𝑡) =
〈∑︁
𝑛

𝑛𝑞 [𝑛]𝑝𝑛 (𝑡)
∑︁
𝑛′
𝑛−𝑞 [𝑛′]𝑝𝑛′ (0)

〉
=

〈∑︁
𝑛

𝑛𝑞 [𝑛]
∑︁
𝛼

𝑐𝛼𝑤𝛼𝑛𝑒
−𝜆𝛼𝑡

∑︁
𝑛′
𝑛−𝑞 [𝑛′]

∑︁
𝛼′
𝑐𝛼′𝑤𝛼′𝑛′

〉
.

(13.10)

By further introducing 𝑊𝛼 =
∑
𝑛 𝑛𝑞 [𝑛]𝑤𝛼𝑛

(
𝑊∗
𝛼 =

∑
𝑛 𝑛−𝑞 [𝑛]𝑤𝛼𝑛

)
, the expression for 𝐶𝑞 (𝑡)

takes a compact form

𝐶𝑞 (𝑡) =
〈∑︁
𝛼,𝛼′

𝑐𝛼𝑐𝛼′𝑊𝛼𝑊
∗
𝛼′𝑒

−𝜆𝛼𝑡
〉
, (13.11)

which by averaging over all many-body Anderson states as the initial non-equilibrium states
|𝑛0⟩, and the use of Eq. (13.7) finally yields

𝐶𝑞 (𝑡) =
∑︁
𝛼,𝛼′

𝑊𝛼𝑊
∗
𝛼′𝑒

−𝜆𝛼𝑡 1

𝑁𝑀𝐵

∑︁
𝑛0

𝑤𝛼𝑛0𝑤𝛼′𝑛0

= 𝛿𝛼,𝛼′
1

𝑁𝑀𝐵

∑︁
𝛼,𝛼′

𝑊𝛼𝑊
∗
𝛼′𝑒

−𝜆𝛼𝑡 =
1

𝑁𝑀𝐵

∑︁
𝛼

|𝑊𝛼 |2𝑒−𝜆𝛼𝑡 .
(13.12)

Here, all 𝛼 with 𝜆𝛼 = 0 should be omitted from the sum since they represent the equilibrium
solutions. In particular, we consider the smallest 𝑞 = 𝜋/𝐿 in order to probe the relaxation over
large spatial scales.

13.1.2 Full diagonalization of rate equations

For the moment, we deviate from our main goal of calculating the time-dependent diffusion
parameter in order to briefly discuss general quantitative aspects of the rate equations solutions.
In particular, we study the two-dimensional parameter space spanned by the eigenvalues 𝜆𝛼 and
the inverse participation ratio for each of the solutions, IPR𝛼 =

∑
𝑛 𝑤

4
𝛼𝑛. IPR𝛼 measures a level

of localization of the solution in the basis of many-body Anderson states, with the values close
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Figure 13.1: 𝜆-IPR points obtained by the exact solution of rate equations for one configuration
of disorder with the strength (a) 𝑊 = 2 and (b) 𝑊 = 5 on a lattice with 𝐿 = 16 sites. In order
not to overexaggerate the plot, every tenth point is shown.

to IPR𝛼 ∼ 1/𝑁𝑀𝐵, and IPR𝛼 ∼ 1, in the thermal and the MBL phase, respectively. On the other
hand, large and small 𝜆𝛼 values correspond to fast and slow relaxation processes, respectively.

In Fig. 13.1, we plot 𝜆-IPR points obtained by exactly solving the rate equations for one
configuration of disorder and two distinct disorder strengths𝑊 = 2 and𝑊 = 5 on a lattice with
𝐿 = 16 sites. We see that for the weaker disorder 𝑊 = 2 almost all 𝜆, with the exception of a
few, are large with small values of the corresponding IPR. This suggests a strong delocalization
in the many-body space of states and fast relaxation processes, pointing to the evidence for
normal diffusive transport. On the other hand, for 𝑊 = 5 a completely different distribution of
𝜆-IPR points is apparent, clearly indicating a fundamentally different transport regime from the
diffusive one observed for the weaker disorder. In particular, we observe a large spread of 𝜆
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values, suggesting that in addition to many fast processes, now exist also very slow relaxation
processes which may be important for the active system dynamics even at very long times. This
is accompanied by much higher values of IPR values, which interestingly, tend to group along
the horizontal lines at values IPR ≈ 1/2, 1/4, ..., which is apparently related to the formation of
very small clusters in the Fock space.

Time-dependent diffusion parameter

The full diagonalization of rate equations has both its advantages and downsides. On the one
hand, since the Hilbert space is exponentially large in the system size 𝐿, it is restricted to systems
with 𝐿 ≤ 16 lattice sites. On the other hand, it allows for the evaluation of dynamical properties
over long times 𝑡, which is important when the dynamics are potentially very slow. Therefore,
with the intention of exploiting the best of both worlds, in Fig. 13.2 we present results for the
time-dependent diffusion parameter obtained by the full diagonalization of rate equations on
a lattice with 𝐿 = 16 sites over very long times. In particular, the cases with four different
moderate disorder strengths are shown, all belonging to the thermal part of the MBL phase
diagram for which anomalous transport properties are expected. For each disorder strength, the
average 𝐷 (𝑡) is shown, where the averaging was made over 𝑁𝑑𝑖𝑠 ∼ 200 disorder configurations.
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Figure 13.2: Average time-dependent diffusion parameter 𝐷 (𝑡) obtained by the full diagonal-
ization of rate equations on a lattice with 𝐿 = 16 sites and various disorder strengths𝑊 = 3− 6.

As seen from Fig. 13.2, for all disorder strengths the time-dependent diffusion parameter
monotonically decreases even for the largest times shown, which may be attributed to a large
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spread of eigenvalues 𝜆, as seen from Fig. 13.1(b). Namely, as the fast relaxation processes with
the large values of 𝜆 die out, the system dynamics remain active due to a large number of small
𝜆 values, leading to very slow relaxation processes. In any case, for all disorder strengths the
anomalous transport, with no clear evidence of the subdiffusive character, is evident, at least for
the very long times taken into account.

13.1.3 Direct time integration of rate equations

In order to probe the transport properties of systems with a somewhat larger number of lattice
sites, 𝐿 ∼ 24, we soften the undoable full diagonalization approach by introducing several
modifications to the calculation of the density correlation function. First, we employ the direct
time integration of rate equations in Eq. (13.3), which, however, limits us to consider the
system dynamics up to times that are a few orders of magnitudes shorter than the longest times
obtainable by the exact diagonalization. Second, we take into account the many-body Anderson
states contained only within the macroscopic cluster since it is natural to expect that the transport
properties of the whole system are dominantly determined by the transport in the macroscopic
cluster. Finally, to go around the infeasible sampling over all initial many-body Anderson states
|𝑛⟩ within the cluster, we assume a convenient initial inhomogeneous distribution 𝑝𝑛 (𝑡 = 0) =
1
𝑍
exp[−𝑛𝑞 [𝑛]/𝑇], with 𝑍 =

∑
𝑛 exp[−𝑛𝑞 [𝑛]/𝑇], corresponding to a potential imposing an

initial density modulation (𝑇 = 0.5). In particular, within such simplified scheme, we consider
the time dependence of the modified density correlation function, 𝐶𝑞 (𝑡) = ⟨𝜌𝑞 (𝑡)⟩/⟨𝜌0𝑞⟩, where
⟨𝜌𝑞 (𝑡)⟩ =

∑
𝑛 𝑛𝑞 [𝑛]𝑝𝑛

exp[−𝑛𝑞 [𝑛]/𝑇]
𝑍

.

Modified density correlation function

By taking advantage of the direct time integration of the rate equations, in Fig. 13.3 we show
the modified density correlation function calculated on the lattice with 𝐿 = 24 sites for several
disorder strengths. To be specific, the average modified density correlation function is shown,
with𝑁𝑑𝑖𝑠 ∼ 50 different disorder realizations considered. Evidently, and particularly apparent for
disorder strengths𝑊 > 2, the modified density correlation function has neither the exponential
nor the power-law form. Actually, it seems that the decays of 𝐶𝑞 (𝑡) in Fig. 13.3 may be much
better represented by the stretched-exponential form

𝐶𝑞 (𝑡) = exp
[
−𝐷0𝑞

2𝑡𝐴(𝑡)
]
, (13.13)

where𝐷0 is an effective diffusion parameter, while 𝐴(𝑡) = 1
𝛽
(𝑡0/𝑡)1−𝛽 introduces corrections due

to the non-diffusive dynamics, with 𝛽 < 1. Both parameters 𝐷0 and 𝛽 may be easily estimated
by fitting Eq. (13.13) to our numerical results in Fig. 13.3, allowing us to study peculiarities of
decay in Eq. (13.13) as the disorder strength is varied from weak to moderate values.
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Figure 13.3: Average modified density correlation function 𝐶𝑞 (𝑡) obtained by the direct time
integration of rate equations on a lattice with 𝐿 = 24 sites for several disorder strengths𝑊 = 2−6.

Distribution of the diffusion parameter

We should be careful, however, when estimating the diffusion parameter 𝐷0 and the exponent
𝛽 based solely on average quantities like 𝐶𝑞 (𝑡) in Fig. 13.3. The reason for that lies in the
generally very broad nature of distributions of physical observables in MBL models, exhibiting
strong sample-to-sample fluctuations. There is no reason that the same does not hold true for
the (modified) density correlation function, so the estimates based solely on the average values
of 𝐶𝑞 (𝑡) might be obscured.

That the nature of distributions in MBL models is generally very broad, is indeed supported
by our analysis of the distribution of the time-dependent diffusion parameter 𝐷 (𝑡). In particular,
we have calculated the time-dependent diffusion parameter in Eq. (13.1) for each disorder
configuration separately and studied how the integrated distribution 𝐼 (𝐷) of 𝐷 (𝑡) evolves in
time. The results are presented in Fig. 13.4, where we show the integrated distribution 𝐼 (𝐷) for
several disorder strengths 𝑊 = 2 − 6, evaluated at different times 𝑡 = 2𝑛𝑡0, for the lattice with
𝐿 = 24 sites and by employing 𝑁𝑑𝑖𝑠 = 300 different disorder configurations. From the technical
point of view, in order to get 𝐴(𝑡) of the order of unity in the studied time window, 𝑡 ∼ 102, we
set 𝑡0 = 50. As anticipated, 𝐼 (𝐷) reveals a broad distribution of 𝐷. In particular, the results
appear to follow roughly a log-normal distribution which is symmetric on the ln𝐷 scale around
the median 𝐷𝑚, defined by 𝐼 (𝐷𝑚) = 1/2.
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Figure 13.4: Integrated distributions 𝐼 (𝐷) of the time-dependent diffusion parameter 𝐷 (𝑡)
evaluated by the direct time integration of the rate equations for the lattice with 𝐿 = 24 sites at
different times 𝑡, for several disorder strengths𝑊 = 2 − 6.

13.1.4 Characteristics of anomalous transport

A quite uniform shifting of 𝐼 (𝐷) in time in Fig. 13.4 further supports the stretched-exponential
form for the decay of the modified density correlation function, since by means of Eq. (13.1),
Eq. (13.13) gives for the time-dependent diffusion parameter

𝐷 (𝑡) = 𝐷0 (𝑡0/𝑡)1−𝛽 . (13.14)

In particular, while the shift of the distribution 𝐼 (𝐷) for 𝑊 = 2 is barely visible, it is quite
pronounced for disorder strengths𝑊 ≥ 3. This suggest the values 𝛽 → 1 and 𝛽 < 1, that is the
diffusive and the anomalous transport for𝑊 = 2 and𝑊 ≥ 3, respectively, with the coefficient 𝛽
getting smaller as the disorder strength𝑊 increases.

However, in order to make the most of all our results to quantify the effective diffusion
parameter 𝐷0 and the exponent 𝛽 in dependence on the disorder strength as best as possible,
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Figure 13.5: (a) Effective diffusion parameter 𝐷0 and (b) the exponent 𝛽. Open squares show
results extracted from average𝐶𝑞 (𝑡) in Fig. 13.3, while solid squares show results extracted from
distributions 𝐼 (𝐷) in Fig. 13.4. In (a) we also plot 𝐷0 (open triangles) from the full quantum
calculations [262]. Fits of the results obtained from the distributions 𝐼 (𝐷) are denoted with the
dotted lines.

we estimate 𝐷0(𝑊) and 𝛽(𝑊) in three different ways. We obtain the first set of data by simply
fitting the stretched-exponential form in Eq. (13.13) to the numerical results in Fig. 13.3. The
second set of data is much more delicate to get and is relying on the extraction of results from
the distributions 𝐼 (𝐷) in Fig. 13.4. In particular, we can read off the medians 𝐷𝑚 (𝑡) for each of
the distributions, and use them together with Eq. (13.14) to estimate 𝐷0(𝑊) and 𝛽(𝑊). Namely,
with the use of Eq. (13.14) we can write for two different times 𝑡1 and 𝑡2

𝛽 = 1 − ln (𝐷1/𝐷2)
ln (𝑡2/𝑡1)

. (13.15)
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Now, for the value of 𝛽 we take the value obtained by substituting in Eq. (13.15) the results for
two smallest consecutive times 𝑡1 and 𝑡2. For example, following the results in Fig. 13.4(a), we
have 𝛽(𝑊 = 2) = 1 − ln[𝐷𝑚 (𝑡=50)/𝐷𝑚 (𝑡=100)]

ln(100/50) ≈ 0.85. With the values of 𝛽 in Eq. (13.14) known,
we can now also calculate the corresponding effective diffusion parameter 𝐷0. This completes
the second set of data, obtained by considering the distributions 𝐼 (𝐷). As the third and last set
of data, we take the results obtained by the full quantum calculations [262], in order to test our
rate equations approach both quantitatively and qualitatively.

All our results for 𝐷0(𝑊) and 𝛽(𝑊) obtained from the fits of the stretched-exponential
form in Eq. (13.13) to the results in Fig. 13.3 and extracted from distributions 𝐼 (𝐷) in Fig. 13.4,
together with the full quantum results for a comparison, are summarized in Fig. 13.5. Apparently,
the effective diffusion parameter 𝐷0 decreases roughly exponentially with the disorder strength,
𝐷0 ∝ exp(−𝑏𝑊), with the estimated 𝑏 ∼ 1.2, which is accompanied by the approximately linear
decrease of 𝛽 with𝑊 . It is interesting to note that this result is in accordance with the findings
of the previous studies [286, 287], where 𝐷0 was related to the DC conductivity, 𝜎0 = 𝐷0/4,
which was shown to exhibit the exponential dependence on𝑊 as well, with essentially the very
same coefficient, 𝑏 ≈ 1.1. By comparing our two approximate sets of data with the full quantum
calculations, we see that much more reliable results are obtained from the distributions 𝐼 (𝐷),
rather than from the decay of the average density correlation function, as anticipated.

13.2 Conclusions

We study the density relaxation in the thermal phase below the MBL transition in the context
of rate equations by keeping only resonant transitions between many-body states. Tendencies
toward the normal diffusive behavior for very weak disorders are observed, while the diffusion
happens to be anomalous in a wide range of disorders 2 < 𝑊 < 𝑊𝑐, characterized by the
dynamical exponent 𝛽 < 1. The exponential decrease of the effective diffusion parameter as
the disorder strength increases is apparent as well. Both very good quantitative and qualitative
agreements of our rate equations approach with the full quantum results provide a strong
justification of the rate equations approximation and the overall physical picture of the percolative
nature of the thermal-MBL transition. In particular, the observed anomalous diffusion indicates
a weakly coupled many-body substructure within the degrading macroscopic cluster, but with
no evident relations to the weak-link scenario in real space.
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Summary

We present novel results related to a plethora of problems involving electron-phonon correla-
tions, interelectronic interactions, and/or the disorder. We address these problems theoretically
either with the methods of the diagrammatic perturbation theory or by the exact numerical diag-
onalization. The former allows us to gain deeper insights into physical processes underlying the
system’s behaviors of interest, for which the drawing of Feynman diagrams in the time domain
turns out to be particularly useful. We relate our findings to experimental results, so the results
of this thesis are not only relevant for fundamental theoretical physics but are applicable in
real-life experiments as well.

The exact analytical solution to the polaronic impurity problem for an arbitrary lattice model
is given, including the exact treatment of all inelastic processes corresponding to the emission and
absorption of real phonons. We exploit this solution to exactly solve for the electron tunneling
across molecular junctions in systems with reduced dimensionality and to calculate charge
mobility in the presence of dilute concentrations of polaronic impurities in semiconducting bulk
systems. We find that the scattering on polaronic impurities imposes the possible explanation
for unconventional power-law exponents in the temperature dependence of the charge mobility
observed experimentally in various organic crystals. Our exact solution may also be readily
extended to various systems of current interest, including atomically thin crystalline films,
where the effects of impurities with internal degrees of freedom can be experimentally accessed
through energy-loss spectroscopy, atom-probe tomography, and scanning tunneling microscopy.

We provide analytical expressions for the fermion self-energy and the phonon polarization
to the next-to-leading order of the weak electron-phonon coupling translationally invariant
diagrammatic perturbation theory, where special attention is devoted to vertex corrections. By
focusing on the polaron limit, we perturbatively recover the known result which states that
the non-local part of the electron self-energy with vertex corrections becomes irrelevant in the
antiadiabatic regime. We introduce the two-vertices renormalization scheme for the treatment of
phonon polarization, involving the vertex function with fermion propagators all pointing in the
same direction of time. The former may rationalize the replacement of the bare electron-phonon
matrix element with the screened one in cases with dilute concentrations of electrons, used
frequently in ab initio simulations of phonon properties. We observe an additional, enhanced
phonon spectral weight which we call a phonon production, and we attribute it to the virtual
cloud of phonons accompanying the electron in the polaron ground state.

We provide convenient ways to directly estimate the electron-phonon interaction range and
the electron-phonon coupling strength from measured ARPES and EELS spectra of strongly
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doped polar materials, regardless of the limited experimental resolution. The k and 𝐸 structures
of phonon sidebands appearing in ARPES spectra are analyzed as the function of the range of
the electron-phonon interaction, which is argued that may be estimated from the confinement
of the intensity of the imaginary part of the hole self-energy in the corresponding energy
windows. This methodology is not restricted to electron-phonon systems only, since the electron
coupling to bosonic excitations of other nature (plasmons, magnons, ...) may be analyzed in
a similar manner. We show that the electron-phonon coupling strength plays a prominent role
in distributing spectral weights among phonon-plasmon coupled excitations in EELS spectra,
providing an experimentally convenient way to estimate it from integrated spectra. In particular,
for weak couplings in the antiadiabatic and the resonant regime the EELS spectral weight is
equally redistributed among coupled excitations, while in all the other parametric space the EELS
spectral weight is dominantly located within the higher frequency excitation. By projecting the
excitations onto the phonon degree of freedom, we also report for strong couplings large phonon
production contributions, which are of very different origins depending on the adiabaticity
parameter and generally different from that in the polaron limit. We show that the static
screening approximation generally fails to reproduce phonon spectral functions. We argue
that the vertex corrections in the ladder approximation tend to remove the 2𝑘𝐹 singularity of
the Lindhard function, opening the interesting question about the Kohn anomaly and Peierls
instability in the antiadiabatic regime.

Fundamental aspects of relaxation processes in strongly correlated and disordered systems
are also addressed in this thesis in the context of the MBL phenomenon. By studying the MBL
problem in the Fock space, we show that the system dynamics is confined up to very long times
to many disconnected small many-body clusters in the Fock space. By keeping only resonant
transitions between many-body states, neglecting thus perturbatively small contributions, we
locate the thermal-MBL transition via the emergence of the macroscopic cluster in analogy with
the percolation phase transition. On the thermal side, we use a simplified rate equations approach
to study relaxation processes within the macroscopic cluster, which agrees quantitatively and
qualitatively with the full quantum calculations. For very low disorder strengths the diffusive
transport prevails, while for stronger disorders we find that the large portion of the thermal side
is characterized by the anomalously slow relaxation toward the equilibrium.
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Appendix A

Derivations related to fermion self-energy

In this Appendix A, we show details of calculations related to the results for the fermion self-
energy used in Parts II and III. In particular, we calculate exactly the fermion self-energy in the
leading order of the perturbation theory in electron-phonon interaction in the 1D case with the
Holstein coupling and provide the derivations of all the fermion self-energy contributions in the
next-to-leading order, with the special emphasis on the polaron limit. We consider the electron
coupling to an optical phonon with a constant energy 𝜔q ≈ 𝜔0 (ℏ = 1).

A.1 Leading order fermion self-energy

A.1.1 Finite electron densities

The leading order fermion self-energy in electron-phonon interaction has been fully derived in
Section 8.1 and reads, see Eq. (8.3)

Σ(2) (k, 𝐸) =
∑︁
q

|𝑔(q) |2
[

1 − 𝑛k+q
𝐸 − 𝜔0 − 𝜉k+q + 𝑖𝜂

+
𝑛k+q

𝐸 + 𝜔0 − 𝜉k+q − 𝑖𝜂

]
. (A.1)

In the 1D case with the Holstein coupling 𝑔(𝑞) = 𝑔, the summation/integration over 𝑞 can be
carried out analytically for both the real and the imaginary part of local Σ(2) (𝐸). If we assume
the dispersion, 𝜀𝑘 = 2𝑡 (1− cos 𝑘), such that the bottom of a band is at 𝜀𝑘=0 = 0, for the real part
of Σ(2) (𝐸) we have

ReΣ(2) (𝐸) = 𝑔2

𝑁

𝑁

2𝜋

∫ 𝜋

−𝜋
𝑑𝑞

[
1 − 𝑛𝑞

𝐸 − 𝜔0 + 𝜇 − 2𝑡 (1 − cos 𝑞) +
𝑛𝑞

𝐸 + 𝜔0 + 𝜇 − 2𝑡 (1 − cos 𝑞)

]
=
𝑔2

2𝜋

{[∫ −𝑘𝐹

−𝜋
+
∫ 𝜋

𝑘𝐹

]
𝑑𝑞

𝐸 − 𝜔0 + 𝜇 − 2𝑡 + 2𝑡 cos 𝑞
+

∫ 𝑘𝐹

−𝑘𝐹

𝑑𝑞

𝐸 + 𝜔0 + 𝜇 − 2𝑡 + 2𝑡 cos 𝑞

}
,

(A.2)

while the imaginary part of Σ(2) (𝐸) reads
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ImΣ(2) (𝐸) = 𝑔2

𝑁

𝑁

2𝜋
𝜋

∫ 𝜋

−𝜋
𝑑𝑞

[
−(1 − 𝑛𝑞)𝛿(𝐸 − 𝜔0 + 𝜇 − 𝜀𝑞) + 𝑛𝑞𝛿(𝐸 + 𝜔0 + 𝜇 − 𝜀𝑞)

]
=
𝑔2

2

{
−

[∫ −𝑘𝐹

−𝜋
+
∫ 𝜋

𝑘𝐹

]
𝑑𝑞 𝛿(𝐸 − 𝜔0 + 𝜇 − 𝜀𝑞) +

∫ 𝑘𝐹

−𝑘𝐹
𝑑𝑞 𝛿(𝐸 + 𝜔0 + 𝜇 − 𝜀𝑞)

}
.

(A.3)

Due to the delta functions, the imaginary part can be trivially evaluated

ImΣ(2) (𝐸) = 𝑔2
{
− Θ(𝐸−𝜔0)Θ(4𝑡+𝜔0−𝜇−𝐸)√

(𝐸−𝜔0+𝜇) (4𝑡+𝜔0−𝜇−𝐸)
+ Θ(𝐸+𝜔0+𝜇)Θ(−𝜔0−𝐸)√

(𝐸+𝜔0+𝜇) (4𝑡−𝜔0−𝜇−𝐸)

}
. (A.4)

For the evaluation of the real part of Σ(2) (𝐸), we consult the integral table [59] providing

∫
𝑑𝑥

𝑎 + 𝑏 cos 𝑥 =


2√

𝑎2−𝑏2
arctan

[ (𝑎−𝑏) tan 𝑥
2√

𝑎2−𝑏2

]
, 𝑎2 > 𝑏2 ,

1√
𝑏2−𝑎2

ln

���� (𝑏−𝑎) tan 𝑥
2+

√
𝑏2−𝑎2

(𝑏−𝑎) tan 𝑥
2−

√
𝑏2−𝑎2

���� , 𝑏2 > 𝑎2 .
(A.5)

In the first term of Eq. (A.2), 𝑎 = 𝐸 − 𝜔0 + 𝜇 − 2𝑡 and 𝑏 = 2𝑡, so

𝑎2 > 𝑏2 → (𝐸 − 𝜔0 + 𝜇 − 2𝑡)2 > 4𝑡2 →

𝐸 − 𝜔0 + 𝜇 − 2𝑡 > 2𝑡 → 𝐸 > 𝜔0 + 4𝑡 − 𝜇 ,

𝐸 − 𝜔0 + 𝜇 − 2𝑡 < −2𝑡 → 𝐸 < 𝜔0 − 𝜇 ,
(A.6)

𝑎2 < 𝑏2 → (𝐸 − 𝜔0 + 𝜇 − 2𝑡)2 < 4𝑡2

→ −2𝑡 < 𝐸 − 𝜔0 + 𝜇 − 2𝑡 < 2𝑡 → 𝜔0 − 𝜇 < 𝐸 < 𝜔0 + 4𝑡 − 𝜇 ,
(A.7)

and

𝑎2 − 𝑏2 = (𝐸 − 𝜔0 + 𝜇 − 2𝑡)2 − 4𝑡2 = (𝐸 − 𝜔0 + 𝜇)2 − 4𝑡 (𝐸 − 𝜔0 + 𝜇) + 4𝑡2 − 4𝑡2

= (𝐸 − 𝜔0 + 𝜇) (𝐸 − 𝜔0 + 𝜇 − 4𝑡) .
(A.8)

Moreover, for 𝑎2 > 𝑏2
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[∫ −𝑘𝐹

−𝜋
+
∫ 𝜋

𝑘𝐹

]
𝑑𝑥

𝑎 + 𝑏 cos 𝑥 =
2

√
𝑎2 − 𝑏2

{
arctan

[
(𝑎 − 𝑏) tan −𝑘𝐹

2√
𝑎2 − 𝑏2

]
−

− arctan

[ (𝑎 − 𝑏) tan −𝜋
2√

𝑎2 − 𝑏2

]
+ arctan

[ (𝑎 − 𝑏) tan 𝜋
2√

𝑎2 − 𝑏2

]
− arctan

[
(𝑎 − 𝑏) tan 𝑘𝐹

2√
𝑎2 − 𝑏2

]}
=

2
√
𝑎2 − 𝑏2

{
sign(𝑎 − 𝑏)𝜋 − 2 arctan

[
(𝑎 − 𝑏) tan 𝑘𝐹

2√
𝑎2 − 𝑏2

]}
,

(A.9)

while for 𝑎2 < 𝑏2

[∫ −𝑘𝐹

−𝜋
+
∫ 𝜋

𝑘𝐹

]
𝑑𝑥

𝑎 + 𝑏 cos 𝑥 =
1

√
𝑏2 − 𝑎2

{
ln

����� (𝑏 − 𝑎) tan −𝑘𝐹
2 +

√
𝑏2 − 𝑎2

(𝑏 − 𝑎) tan −𝑘𝐹
2 −

√
𝑏2 − 𝑎2

�����−
− ln

����� (𝑏 − 𝑎) tan −𝜋
2 +

√
𝑏2 − 𝑎2

(𝑏 − 𝑎) tan −𝜋
2 −

√
𝑏2 − 𝑎2

����� + ln

����� (𝑏 − 𝑎) tan 𝜋
2 +

√
𝑏2 − 𝑎2

(𝑏 − 𝑎) tan 𝜋
2 −

√
𝑏2 − 𝑎2

�����−
− ln

����� (𝑏 − 𝑎) tan 𝑘𝐹
2 +

√
𝑏2 − 𝑎2

(𝑏 − 𝑎) tan 𝑘𝐹
2 −

√
𝑏2 − 𝑎2

�����
}

=
1

√
𝑏2 − 𝑎2

{
2 ln

����� (𝑏 − 𝑎) tan 𝑘𝐹
2 −

√
𝑏2 − 𝑎2

(𝑏 − 𝑎) tan 𝑘𝐹
2 +

√
𝑏2 − 𝑎2

�����
}
.

(A.10)

We have similarly for the second term in Eq. (A.2), where 𝑎 = 𝐸 + 𝜔0 + 𝜇 − 2𝑡 and 𝑏 = 2𝑡

𝑎2 > 𝑏2 → (𝐸 + 𝜔0 + 𝜇 − 2𝑡)2 > 4𝑡2 →

𝐸 + 𝜔0 + 𝜇 − 2𝑡 > 2𝑡 → 𝐸 > −𝜔0 − 𝜇 + 4𝑡 ,

𝐸 + 𝜔0 + 𝜇 − 2𝑡 < −2𝑡 → 𝐸 < −𝜔0 − 𝜇 ,
(A.11)

𝑎2 < 𝑏2 → (𝐸 + 𝜔0 + 𝜇 − 2𝑡)2 < 4𝑡2 → −2𝑡 < 𝐸 + 𝜔0 + 𝜇 − 2𝑡 < 2𝑡

→ −𝜔0 − 𝜇 < 𝐸 < −𝜔0 − 𝜇 + 4𝑡 ,
(A.12)

and

𝑎2 − 𝑏2 = (𝐸 + 𝜔0 + 𝜇 − 2𝑡)2 − 4𝑡2 = (𝐸 + 𝜔0 + 𝜇)2 − 4𝑡 (𝐸 + 𝜔0 + 𝜇) + 4𝑡2 − 4𝑡2

= (𝐸 + 𝜔0 + 𝜇) (𝐸 + 𝜔0 + 𝜇 − 4𝑡) .
(A.13)
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Now, for 𝑎2 > 𝑏2 we get

∫ 𝑘𝐹

−𝑘𝐹

𝑑𝑥

𝑎 + 𝑏 cos 𝑥 =
2

√
𝑎2 − 𝑏2

{
arctan

[
(𝑎 − 𝑏) tan 𝑘𝐹

2√
𝑎2 − 𝑏2

]
− arctan

[
(𝑎 − 𝑏) tan −𝑘𝐹

2√
𝑎2 − 𝑏2

]}
=

2
√
𝑎2 − 𝑏2

{
2 arctan

[
(𝑎 − 𝑏) tan 𝑘𝐹

2√
𝑎2 − 𝑏2

]}
,

(A.14)

while for 𝑎2 < 𝑏2

∫ 𝑘𝐹

−𝑘𝐹

𝑑𝑥

𝑎 + 𝑏 cos 𝑥 =
1

√
𝑏2 − 𝑎2

{
ln

����� (𝑏 − 𝑎) tan 𝑘𝐹
2 +

√
𝑏2 − 𝑎2

(𝑏 − 𝑎) tan 𝑘𝐹
2 −

√
𝑏2 − 𝑎2

�����−
− ln

����� (𝑏 − 𝑎) tan −𝑘𝐹
2 +

√
𝑏2 − 𝑎2

(𝑏 − 𝑎) tan −𝑘𝐹
2 −

√
𝑏2 − 𝑎2

�����
}
=

1
√
𝑏2 − 𝑎2

{
2 ln

����� (𝑏 − 𝑎) tan 𝑘𝐹
2 +

√
𝑏2 − 𝑎2

(𝑏 − 𝑎) tan 𝑘𝐹
2 −

√
𝑏2 − 𝑎2

�����
}
.

(A.15)

By combining all the above results, we finally get

ReΣ(2) (𝐸) =



− 𝑔2√
(𝐸+𝜔0+𝜇) (𝐸+𝜔0+𝜇−4𝑡)

{
2
𝜋
arctan

[√︃
𝐸+𝜔0+𝜇−4𝑡
𝐸+𝜔0+𝜇

√︃
𝜇

4𝑡−𝜇

]}
, 𝐸 < −𝜔0 − 𝜇 ,

𝑔2√
(𝐸+𝜔0+𝜇) (𝐸+𝜔0+𝜇−4𝑡)

{
2
𝜋
arctan

[√︃
𝐸+𝜔0+𝜇−4𝑡
𝐸+𝜔0+𝜇

√︃
𝜇

4𝑡−𝜇

]}
, 𝐸 > −𝜔0 − 𝜇 + 4𝑡

𝑔2√
(𝐸+𝜔0+𝜇) (4𝑡−𝜔0−𝜇−𝐸)

{
1
𝜋
ln

�����√4𝑡−𝜔0−𝜇−𝐸
√︃

𝜇

4𝑡−𝜇+
√
𝐸+𝜔0+𝜇

√
4𝑡−𝜔0−𝜇−𝐸

√︃
𝜇

4𝑡−𝜇−
√
𝐸+𝜔0+𝜇

�����
}
, −𝜔0 − 𝜇 < 𝐸 < −𝜔0 − 𝜇 + 4𝑡 ,

− 𝑔2√
(𝐸−𝜔0+𝜇) (𝐸−𝜔0+𝜇−4𝑡)

{
1 − 2

𝜋
arctan

[√︃
𝐸−𝜔0+𝜇−4𝑡
𝐸−𝜔0+𝜇

√︃
𝜇

4𝑡−𝜇

]}
, 𝐸 < 𝜔0 − 𝜇 ,

𝑔2√
(𝐸−𝜔0+𝜇) (𝐸−𝜔0+𝜇−4𝑡)

{
1 − 2

𝜋
arctan

[√︃
𝐸−𝜔0+𝜇−4𝑡
𝐸−𝜔0+𝜇

√︃
𝜇

4𝑡−𝜇

]}
, 𝐸 > 𝜔0 + 4𝑡 − 𝜇 ,

− 𝑔2√
(𝐸−𝜔0+𝜇) (4𝑡+𝜔0−𝜇−𝐸)

{
1
𝜋
ln

�����√4𝑡+𝜔0−𝜇−𝐸
√︃

𝜇

4𝑡−𝜇+
√
𝐸−𝜔0+𝜇

√
4𝑡+𝜔0−𝜇−𝐸

√︃
𝜇

4𝑡−𝜇−
√
𝐸−𝜔0+𝜇

�����
}
, 𝜔0 − 𝜇 < 𝐸 < 𝜔0 + 4𝑡 − 𝜇 ,

0 , elsewhere ,
(A.16)

where we have exploited

tan
𝑘𝐹

2
=
1 − cos 𝑘𝐹
sin 𝑘𝐹

=

𝜇

2𝑡√︂
1 −

(
2𝑡−𝜇
2𝑡

)2 =

√︂
𝜇

4𝑡 − 𝜇 , (A.17)

since by definition 𝜇 = 2𝑡 (1 − cos 𝑘𝐹). In particular, in the polaron limit holds 𝜇 = 0, which
substituted in Eqs. (A.4) and (A.16) yields
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ImΣ(2) (𝐸) = − 𝑔2√︁
(𝐸 − 𝜔0) (𝜔0 + 4𝑡 − 𝐸)

Θ(𝐸 − 𝜔0)Θ(𝜔0 + 4𝑡 − 𝐸) , (A.18)

and

ReΣ(2) (𝐸) =


− 𝑔2√

(𝐸−𝜔0) (𝐸−𝜔0−4𝑡)
, 𝐸 < 𝜔0 ,

𝑔2√
(𝐸−𝜔0) (𝐸−𝜔0−4𝑡)

, 𝐸 > 𝜔0 + 4𝑡 ,

0 , elsewhere .

(A.19)

In 2D and 3D cases, such closed expressions for the full Σ(2) (k, 𝐸) generally cannot be
obtained. However, when the doping is low, such that the electron dispersion may be assumed
quadratic 𝜀k = 𝑡𝑘2, ImΣ(2) (k, 𝐸) may be evaluated analytically in cases with the long-range
Fröhlich coupling due to the appearance of the delta functions 𝛿(𝐸 ± 𝜔0 − 𝜉q). In particular,
with the matrix element of the electron-phonon interaction given by |𝑔(q) |2 =

√
2𝜋𝛼/|q|, the

summation/integration in Eq. (A.1) for the imaginary part of Σ(2) (k, 𝐸) can be evaluated in
polar coordinates in the 2D case

ImΣ(2) (k, 𝐸) =
√
2𝜋2𝛼

(2𝜋)2

∫
𝑑𝑞 𝑞 Θ(−𝜉q)𝛿

(
𝐸 − 𝜉q + 𝜔0

) ∫ 2𝜋

0

𝑑𝜙√︁
𝑘2 + 𝑞2 − 2𝑘𝑞 cos 𝜙

.

(A.20)

Integration over the polar angle 𝜙 yields [59]

∫ 2𝜋

0

𝑑𝜙√︁
𝑘2 + 𝑞2 − 2𝑘𝑞 cos 𝜙

= 2

∫ 𝜋

0

𝑑𝜙√︁
𝑘2 + 𝑞2 − 2𝑘𝑞 cos 𝜙

=
4

|𝑘 + 𝑞 |𝐾
( √︁

4𝑘𝑞

|𝑘 + 𝑞 |

)
, (A.21)

where 𝐾 (𝑥) is the complete elliptic integral of the first kind. The remaining integration over 𝑞
is particularly simple due to the delta function 𝛿

(
𝐸 − 𝜉q + 𝜔0

)
, giving

ImΣ(2) (k, 𝐸) = 𝛼
√
2𝑡

(√
𝜀k +

√
𝐸 + 𝜔0 + 𝜇

)𝐾 (
2 [𝜀k (𝐸 + 𝜔0 + 𝜇)]

1
4

√
𝜀k +

√
𝐸 + 𝜔0 + 𝜇

)
×

× Θ(−𝐸 − 𝜔0)Θ(𝐸 + 𝜇 + 𝜔0) .
(A.22)

In the 3D case, the summation/integration in Eq. (A.1) for the imaginary part of Σ(2) (k, 𝐸)
can be carried out analytically even for an arbitrary screening of the Fröhlich interaction,
|𝑔(q) |2 = 2

√
2𝜋𝛼/

(
|q|2 + 𝑞2

𝑇𝐹

)
, yielding [40]
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ImΣ(2) (k, 𝐸) = 𝛼

2
√
2𝑡𝜀k

ln

�����𝜀𝑇𝐹 + (√𝜀k −
√
𝐸 + 𝜔0 + 𝜇)2

𝜀𝑇𝐹 + (√𝜀k +
√
𝐸 + 𝜔0 + 𝜇)2

�����Θ(−𝐸 −𝜔0)Θ(𝐸 + 𝜇+𝜔0) . (A.23)

The limit with the unscreened Fröhlich interaction is simply obtained by setting 𝜀𝑇𝐹 → 0.

A.2 Next-to-leading order fermion self-energy

In the next-to-leading order of the perturbation theory in electron-phonon interaction, there
are three irreducible contributions to the fermion self-energy represented diagrammatically in
Figs. 8.3 and 8.4. The two diagrams in Figs. 8.3(a) and (b) are dubbed the non-crossing and the
crossing diagram, respectively, while the contribution shown in Fig. 8.4 may be viewed as the
renormalization of the phonon. In what follows, we evaluate all three contributions within the
zero temperature diagrammatic perturbation theory [40].

A.2.1 Non-crossing diagram

By using the standard Feynman rules [40], we can write for the fermion self-energy stemming
from the non-crossing diagram in Fig. 8.3(a)

Σ(𝑁𝐶) (k, 𝐸) = 𝑖2
∑︁
q,q′

|𝑔(q) |2 |𝑔(q′) |2
∫ ∞

−∞

𝑑𝜔

2𝜋

∫ ∞

−∞

𝑑𝜔′

2𝜋

× 𝐷0(q, 𝜔)𝐷0(q′, 𝜔′) [𝐺0(k + q, 𝐸 + 𝜔)]2𝐺0(k + q + q′, 𝐸 + 𝜔 + 𝜔′) ,
(A.24)

with the unperturbed fermion and the unperturbed phonon propagator reading

𝐺0(k, 𝐸) =
1 − 𝑛k

𝐸 − 𝜉k + 𝑖𝜂
+ 𝑛k

𝐸 − 𝜉k − 𝑖𝜂
, (A.25)

and

𝐷0(q, 𝜔) =
1

𝜔 − 𝜔0 + 𝑖𝜂
− 1

𝜔 + 𝜔0 − 𝑖𝜂
, (A.26)

respectively.

In Eq. (A.24), we recognize the expression in Eq. (8.2), appearing in the leading order
self-energy contribution given by Eq. (8.1)
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Σ(2) (k + q, 𝐸 + 𝜔) = 𝑖
∑︁
q′

|𝑔(q′) |2
∫

𝑑𝜔′

2𝜋
𝐷0 (q′, 𝜔′)𝐺0 (k + q + q′, 𝐸 + 𝜔 + 𝜔′)

=
∑︁
q′

|𝑔(q′) |2
[

𝑛k+q+q′

𝐸 + 𝜔 − 𝜉k+q+q′ + 𝜔0 − 𝑖𝜂
+

1 − 𝑛k+q+q′
𝐸 + 𝜔 − 𝜉k+q+q′ − 𝜔0 + 𝑖𝜂

]
.

(A.27)

In terms of Σ(2) (k + q, 𝐸 + 𝜔), the contribution of the non-crossing diagram may be written as

Σ(𝑁𝐶) (k, 𝐸) = 𝑖
∑︁
q

|𝑔(q) |2
∫ ∞

−∞

𝑑𝜔

2𝜋
𝐷0(q, 𝜔) [𝐺0(k + q, 𝐸 + 𝜔)]2Σ(2) (k + q, 𝐸 + 𝜔) , (A.28)

where

[𝐺0(k + q, 𝐸 + 𝜔)]2 =
(1 − 𝑛k+q)2

(𝐸 + 𝜔 − 𝜉k+q + 𝑖𝜂)2
+

(𝑛k+q)2

(𝐸 + 𝜔 − 𝜉k+q − 𝑖𝜂)2
, (A.29)

since (1 − 𝑛k+q)𝑛k+q = 0 holds at zero temperature.

In order to rationalize Eq. (A.28) further, we consider four terms of the product [𝐺0(k +
q, 𝐸 + 𝜔)]2Σ(2) (k + q, 𝐸 + 𝜔) = ∑

q′ |𝑔(q′) |2(𝑤1 + 𝑤2 + 𝑤3 + 𝑤4), where

𝑤1 =
(1 − 𝑛k+q)2𝑛k+q+q′

(𝐸 + 𝜔 − 𝜉k+q + 𝑖𝜂)2(𝜔 + 𝐸 + 𝜔0 − 𝜉k+q+q′ − 𝑖𝜂)
, (A.30)

𝑤2 =
(1 − 𝑛k+q)2(1 − 𝑛k+q+q′)

(𝐸 + 𝜔 − 𝜉k+q + 𝑖𝜂)2(𝜔 + 𝐸 − 𝜔0 − 𝜉k+q+q′ + 𝑖𝜂)
, (A.31)

𝑤3 =
(𝑛k+q)2𝑛k+q+q′

(𝐸 + 𝜔 − 𝜉k+q − 𝑖𝜂)2(𝜔 + 𝐸 + 𝜔0 − 𝜉k+q+q′ − 𝑖𝜂)
, (A.32)

𝑤4 =
(𝑛k+q)2(1 − 𝑛k+q+q′)

(𝐸 + 𝜔 − 𝜉k+q − 𝑖𝜂)2(𝜔 + 𝐸 − 𝜔0 − 𝜉k+q+q′ + 𝑖𝜂)
. (A.33)

As the last step in obtaining Σ(𝑁𝐶) (k, 𝐸), these four terms should be multiplied with the phonon
propagator 𝐷0(q, 𝜔) and the integration in the complex plane over 𝜔 carried out. While
performing the integrations, it is useful to note that 𝑤2 and 𝑤3 involve poles only in one half of
the complex plane. The final result forΣ(𝑁𝐶) (k, 𝐸) can be expressed as a sum of six contributions

Σ(𝑁𝐶) (k, 𝐸) =
∑︁
q,q′

|𝑔(q) |2 |𝑔(q′) |2
6∑︁
𝑖=1

𝜎
(𝑁𝐶)
𝑖

, (A.34)

where
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𝜎
(𝑁𝐶)
1 =

(1 − 𝑛k+q)2𝑛k+q+q′
(𝐸 − 𝜉k+q+q′ + 2𝜔0 − 𝑖𝜂) (𝜉k+q+q′ − 𝜔0 − 𝜉k+q + 𝑖𝜂)2

, (A.35)

𝜎
(𝑁𝐶)
2 = −

(1 − 𝑛k+q)2𝑛k+q+q′
(𝐸 − 𝜔0 − 𝜉k+q + 𝑖𝜂) (𝜉k+q+q′ − 𝜔0 − 𝜉k+q + 𝑖𝜂)

×
[

1

𝐸 − 𝜔0 − 𝜉k+q + 𝑖𝜂
+ 1

𝜉k+q+q′ − 𝜔0 − 𝜉k+q + 𝑖𝜂

]
,

(A.36)

𝜎
(𝑁𝐶)
3 =

(1 − 𝑛k+q)2(1 − 𝑛k+q+q′)
(𝐸 − 𝜔0 − 𝜉k+q + 𝑖𝜂)2(𝐸 − 2𝜔0 − 𝜉k+q+q′ + 𝑖𝜂)

, (A.37)

𝜎
(𝑁𝐶)
4 =

(𝑛k+q)2𝑛k+q+q′
(𝐸 − 𝜉k+q + 𝜔0 − 𝑖𝜂)2(𝐸 + 2𝜔0 − 𝜉k+q+q′ − 𝑖𝜂)

, (A.38)

𝜎
(𝑁𝐶)
5 = −

(𝑛k+q)2(1 − 𝑛k+q+q′)
(𝐸 + 𝜔0 − 𝜉k+q − 𝑖𝜂) (𝜉k+q+q′ + 𝜔0 − 𝜉k+q − 𝑖𝜂)

×
[

1

𝐸 + 𝜔0 − 𝜉k+q − 𝑖𝜂
+ 1

𝜉k+q+q′ + 𝜔0 − 𝜉k+q − 𝑖𝜂

]
,

(A.39)

and

𝜎
(𝑁𝐶)
6 =

(𝑛k+q)2(1 − 𝑛k+q+q′)
(𝐸 − 2𝜔0 − 𝜉k+q+q′ + 𝑖𝜂) (𝜉k+q+q′ + 𝜔0 − 𝜉k+q − 𝑖𝜂)2

. (A.40)

A.2.2 Crossing diagram

Following the Feynman rules [40], the expression for the fermion self-energy stemming from
the crossing diagram in Fig. 8.3(b) may be casted in the form

Σ(𝐶) (k, 𝐸) = 𝑖2
∑︁
q

|𝑔(q) |2
∫ ∞

−∞

𝑑𝜔

2𝜋
Γ(2) (k, 𝐸 ; k+q, 𝐸 +𝜔)𝐷0(q, 𝜔)𝐺0(k+q, 𝐸 +𝜔) , (A.41)

where

Γ(2) (k, 𝐸 ; k + q, 𝐸 + 𝜔) =
∑︁
q′

|𝑔(q′) |2
∫ ∞

−∞

𝑑𝜔′

2𝜋
𝐷0(q′, 𝜔′)𝐺0(k + q′, 𝐸 + 𝜔′)×

× 𝐺0(k + q + q′, 𝐸 + 𝜔 + 𝜔′) ,
(A.42)
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is the leading order contribution to the vertex function. Γ(2) (k, 𝐸 ; k+q, 𝐸 +𝜔) can be expressed
as a sum of four contributions after the straightforward integration over 𝜔′ in the complex plane

Γ(2) (k, 𝐸 ; k + q, 𝐸 + 𝜔) =
4∑︁
𝑖=1

Γ
(2)
𝑖

(k, 𝐸 ; k + q, 𝐸 + 𝜔) =
∑︁
q′

|𝑔(q′) |2
4∑︁
𝑖=1

𝛾𝑖 , (A.43)

where

𝛾1 =
(1 − 𝑛k+q+q′) (1 − 𝑛k+q′)

(𝐸 + 𝜔 − 𝜉k+q+q′ − 𝜔0 + 𝑖𝜂) (𝐸 − 𝜉k+q′ − 𝜔0 + 𝑖𝜂)
, (A.44)

𝛾2 = −
(1 − 𝑛k+q+q′)𝑛k+q′

𝜔 + 𝜉k+q′ − 𝜉k+q+q′ + 𝑖𝜂

[
1

𝐸 + 𝜔 − 𝜉k+q+q′ − 𝜔0 + 𝑖𝜂
− 1

𝐸 − 𝜉k+q′ + 𝜔0 − 𝑖𝜂

]
, (A.45)

𝛾3 = −
(1 − 𝑛k+q′)𝑛k+q+q′

𝜔 + 𝜉k+q′ − 𝜉k+q+q′ − 𝑖𝜂

[
1

𝐸 + 𝜔 − 𝜉k+q+q′ + 𝜔0 − 𝑖𝜂
− 1

𝐸 − 𝜉k+q′ − 𝜔0 + 𝑖𝜂

]
, (A.46)

and

𝛾4 =
𝑛k+q+q′𝑛k+q′

(𝐸 + 𝜔 − 𝜉k+q+q′ + 𝜔0 − 𝑖𝜂) (𝐸 − 𝜉k+q′ + 𝜔0 − 𝑖𝜂)
. (A.47)

In order to get the final result for Σ(𝐶) (k, 𝐸), these four contributions should be multiplied
by the two remaining 𝜔-dependent propagators

𝐷0(q, 𝜔)𝐺0(k + q, 𝐸 + 𝜔) =
(1 − 𝑛k+q)

(𝜔 − 𝜔0 + 𝑖𝜂) (𝐸 + 𝜔 − 𝜉k+q + 𝑖𝜂)
−

𝑛k+q
(𝜔 + 𝜔0 − 𝑖𝜂) (𝐸 + 𝜔 − 𝜉k+q − 𝑖𝜂)

−

−
(1 − 𝑛k+q)

(𝜔 + 𝜔0 − 𝑖𝜂) (𝐸 + 𝜔 − 𝜉k+q + 𝑖𝜂)
+

𝑛k+q
(𝜔 − 𝜔0 + 𝑖𝜂) (𝐸 + 𝜔 − 𝜉k+q − 𝑖𝜂)

,

(A.48)
and the integration over 𝜔 in the complex plane carried out, resulting in a total of eighteen
contributions to the fermion self-energy coming from the crossing diagram

Σ(𝐶) (k, 𝐸) =
∑︁
q,q′

|𝑔(q) |2 |𝑔(q′) |2
18∑︁
𝑖=1

𝜎
(𝐶)
𝑖

, (A.49)

with
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𝜎
(𝐶)
1 = −

𝑛k+q(1 − 𝑛k+q+q′) (1 − 𝑛k+q′)
(𝜉k+q − 𝜔0 − 𝜉k+q+q′ + 𝑖𝜂) (𝐸 − 2𝜔0 − 𝜉k+q+q′ + 𝑖𝜂) (𝐸 − 𝜔0 − 𝜉k+q′ + 𝑖𝜂)

, (A.50)

𝜎
(𝐶)
2 =

(1 − 𝑛k+q) (1 − 𝑛k+q+q′) (1 − 𝑛k+q′)
(𝐸 − 2𝜔0 − 𝜉k+q+q′ + 𝑖𝜂) (𝐸 − 𝜔0 − 𝜉k+q + 𝑖𝜂) (𝐸 − 𝜔0 − 𝜉k+q′ + 𝑖𝜂)

, (A.51)

𝜎
(𝐶)
3 =

𝑛k+q(1 − 𝑛k+q+q′) (1 − 𝑛k+q′)
(𝜉k+q − 𝜔0 − 𝜉k+q+q′ + 𝑖𝜂) (𝐸 − 𝜔0 − 𝜉k+q′ + 𝑖𝜂) (𝐸 + 𝜔0 − 𝜉k+q − 𝑖𝜂)

, (A.52)

𝜎
(𝐶)
4 = −

𝑛k+q(1 − 𝑛k+q+q′)𝑛k+q′(
𝜉k+q′ − 𝜔0 − 𝜉k+q+q′ + 𝑖𝜂

) (
𝐸 − 2𝜔0 − 𝜉k+q+q′ + 𝑖𝜂

)
(𝐸 − 𝜔0 − 𝜉k+q)

−

−
𝑛k+q(1 − 𝑛k+q+q′)𝑛k+q′(

𝜉k+q − 𝜔0 − 𝜉k+q+q′ + 𝑖𝜂
) (
𝐸 − 𝜉k+q − 𝜉k+q′ + 𝜉k+q+q′ − 𝑖𝜂

)
(𝐸 − 𝜔0 − 𝜉k+q)

,

(A.53)

𝜎
(𝐶)
5 = −

(
1 − 𝑛k+q

)
(1 − 𝑛k+q+q′)𝑛k+q′(

𝜉k+q′ − 𝜔0 − 𝜉k+q+q′ + 𝑖𝜂
) (
𝐸 − 2𝜔0 − 𝜉k+q+q′ + 𝑖𝜂

)
(𝐸 − 𝜔0 − 𝜉k+q + 𝑖𝜂)

, (A.54)

𝜎
(𝐶)
6 =

𝑛k+q(1 − 𝑛k+q+q′)𝑛k+q′(
𝜉k+q − 𝜔0 − 𝜉k+q+q′ + 𝑖𝜂

) (
𝐸 − 𝜉k+q − 𝜉k+q′ + 𝜉k+q+q′ − 𝑖𝜂

)
(𝐸 + 𝜔0 − 𝜉k+q − 𝑖𝜂)

,

(A.55)

𝜎
(𝐶)
7 =

𝑛k+q(1 − 𝑛k+q+q′)𝑛k+q′
(𝜉k+q′ − 𝜔0 − 𝜉k+q+q′ + 𝑖𝜂) (𝐸 − 𝜉k+q − 𝜉k+q′ + 𝜉k+q+q′ − 𝑖𝜂)

(
𝐸 + 𝜔0 − 𝜉k+q′ − 𝑖𝜂

) ,
(A.56)

𝜎
(𝐶)
8 =

(
1 − 𝑛k+q

)
(1 − 𝑛k+q+q′)𝑛k+q′

(𝜉k+q′ − 𝜔0 − 𝜉k+q+q′ + 𝑖𝜂) (𝐸 − 𝜔0 − 𝜉k+q + 𝑖𝜂)
(
𝐸 + 𝜔0 − 𝜉k+q′ − 𝑖𝜂

) , (A.57)

𝜎
(𝐶)
9 = −

𝑛k+q(1 − 𝑛k+q+q′)𝑛k+q′(
𝐸 − 𝜉k+q − 𝜉k+q′ + 𝜉k+q+q′ − 𝑖𝜂

)
(𝐸 + 𝜔0 − 𝜉k+q − 𝑖𝜂)

(
𝐸 + 𝜔0 − 𝜉k+q′ − 𝑖𝜂

) ,
(A.58)
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𝜎
(𝐶)
10 = −

(
1 − 𝑛k+q

)
𝑛k+q+q′ (1 − 𝑛k+q′)(

𝜉k+q′ + 𝜔0 − 𝜉k+q+q′ − 𝑖𝜂
) (
𝐸 + 2𝜔0 − 𝜉k+q+q′ − 𝑖𝜂

)
(𝐸 + 𝜔0 − 𝜉k+q)

−

−
(
1 − 𝑛k+q

)
𝑛k+q+q′ (1 − 𝑛k+q′)(

𝜉k+q + 𝜔0 − 𝜉k+q+q′ − 𝑖𝜂
) (
𝐸 − 𝜉k+q − 𝜉k+q′ + 𝜉k+q+q′ + 𝑖𝜂

)
(𝐸 + 𝜔0 − 𝜉k+q)

,

(A.59)

𝜎
(𝐶)
11 =

(
1 − 𝑛k+q

)
𝑛k+q+q′ (1 − 𝑛k+q′)(

𝜉k+q + 𝜔0 − 𝜉k+q+q′ − 𝑖𝜂
) (
𝐸 − 𝜉k+q − 𝜉k+q′ + 𝜉k+q+q′ + 𝑖𝜂

)
(𝐸 − 𝜔0 − 𝜉k+q + 𝑖𝜂)

,

(A.60)

𝜎
(𝐶)
12 = −

𝑛k+q𝑛k+q+q′ (1 − 𝑛k+q′)(
𝜉k+q′ + 𝜔0 − 𝜉k+q+q′ − 𝑖𝜂

) (
𝐸 + 2𝜔0 − 𝜉k+q+q′ − 𝑖𝜂

)
(𝐸 + 𝜔0 − 𝜉k+q − 𝑖𝜂)

, (A.61)

𝜎
(𝐶)
13 =

(1 − 𝑛k+q)𝑛k+q+q′ (1 − 𝑛k+q′)(
𝜉k+q′ + 𝜔0 − 𝜉k+q+q′ − 𝑖𝜂

)
(𝐸 − 𝜉k+q − 𝜉k+q′ + 𝜉k+q+q′ + 𝑖𝜂) (𝐸 − 𝜔0 − 𝜉k+q′ + 𝑖𝜂)

,

(A.62)

𝜎
(𝐶)
14 = −

(1 − 𝑛k+q)𝑛k+q+q′ (1 − 𝑛k+q′)(
𝐸 − 𝜉k+q − 𝜉k+q′ + 𝜉k+q+q′ + 𝑖𝜂

)
(𝐸 − 𝜔0 − 𝜉k+q + 𝑖𝜂) (𝐸 − 𝜔0 − 𝜉k+q′ + 𝑖𝜂)

,

(A.63)

𝜎
(𝐶)
15 =

𝑛k+q𝑛k+q+q′ (1 − 𝑛k+q′)(
𝜉k+q′ + 𝜔0 − 𝜉k+q+q′ − 𝑖𝜂

)
(𝐸 − 𝜔0 − 𝜉k+q′ + 𝑖𝜂) (𝐸 + 𝜔0 − 𝜉k+q − 𝑖𝜂)

, (A.64)

𝜎
(𝐶)
16 = −

(1 − 𝑛k+q)𝑛k+q+q′𝑛k+q′
(𝜉k+q + 𝜔0 − 𝜉k+q+q′ − 𝑖𝜂) (𝐸 + 2𝜔0 − 𝜉k+q+q′ − 𝑖𝜂) (𝐸 + 𝜔0 − 𝜉k+q′ − 𝑖𝜂)

, (A.65)

𝜎
(𝐶)
17 =

(1 − 𝑛k+q)𝑛k+q+q′𝑛k+q′
(𝜉k+q + 𝜔0 − 𝜉k+q+q′ − 𝑖𝜂) (𝐸 − 𝜔0 − 𝜉k+q + 𝑖𝜂) (𝐸 + 𝜔0 − 𝜉k+q′ − 𝑖𝜂)

, (A.66)

and
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𝜎
(𝐶)
18 =

𝑛k+q𝑛k+q+q′𝑛k+q′

(𝐸 + 2𝜔0 − 𝜉k+q+q′ − 𝑖𝜂) (𝐸 + 𝜔0 − 𝜉k+q′ − 𝑖𝜂) (𝐸 + 𝜔0 − 𝜉k+q − 𝑖𝜂)
. (A.67)

A.2.3 Bubble diagram

Lastly, for the fermion self-energy stemming from the diagram in Fig. 8.4 involving the renor-
malization of the phonon, we can write

Σ(𝐵) (k, 𝐸) = −𝑖2
∑︁
q,q′

|𝑔(q) |4
∫ ∞

−∞

𝑑𝜔

2𝜋
[𝐷0(q, 𝜔)]2𝐺0(k + q, 𝐸 + 𝜔)×

×
∫ ∞

−∞

𝑑𝜔′

2𝜋
𝐺0(q′, 𝜔′)𝐺0(q + q′, 𝜔 + 𝜔′)

= −𝑖2
∑︁
q

|𝑔(q) |4
∫ ∞

−∞

𝑑𝜔

2𝜋
[𝐷0(q, 𝜔)]2𝐺0(k + q, 𝐸 + 𝜔)𝜒0(q, 𝜔) ,

(A.68)

where we have exploited the expression for the Lindhard function

𝜒0(q, 𝜔) =
∑︁
q′

∫ ∞

−∞

𝑑𝜔′

2𝜋
𝐺 (0) (q′, 𝜔′)𝐺 (0) (q + q′, 𝜔 + 𝜔′)

=
∑︁
q′
𝑖

[
𝑛q′ (1 − 𝑛q+q′)

𝜔 + 𝜉q′ − 𝜉q+q′ + 𝑖𝜂
−

(1 − 𝑛q′)𝑛q+q′
𝜔 + 𝜉q′ − 𝜉q+q′ − 𝑖𝜂

]
.

(A.69)

The product of 𝜒0(q, 𝜔) with the rest of 𝜔-dependent propagators reads

[𝐷0(q, 𝜔)]2𝐺0(k + q, 𝐸 + 𝜔)𝜒0(q, 𝜔) =
∑︁
q′
𝑖

[
1

𝜔 − 𝜔0 + 𝑖𝜂
1

𝜔 − 𝜔0 + 𝑖𝜂
−

− 1

𝜔 + 𝜔0 − 𝑖𝜂
1

𝜔 − 𝜔0 + 𝑖𝜂
− 1

𝜔 + 𝜔0 − 𝑖𝜂
1

𝜔 − 𝜔0 + 𝑖𝜂
+ 1

𝜔 + 𝜔0 − 𝑖𝜂
1

𝜔 + 𝜔0 − 𝑖𝜂

]
×

×
[ (

1 − 𝑛k+q
)

𝐸 + 𝜔 − 𝜉k+q + 𝑖𝜂
𝑛q′ (1 − 𝑛q+q′)

𝜔 + 𝜉q′ − 𝜉q+q′ + 𝑖𝜂
+

𝑛k+q
𝐸 + 𝜔 − 𝜉k+q − 𝑖𝜂

𝑛q′ (1 − 𝑛q+q′)
𝜔 + 𝜉q′ − 𝜉q+q′ + 𝑖𝜂

−

−
(1 − 𝑛q′)𝑛q+q′

𝜔 + 𝜉q′ − 𝜉q+q′ − 𝑖𝜂

(
1 − 𝑛k+q

)
𝐸 + 𝜔 − 𝜉k+q + 𝑖𝜂

−
(1 − 𝑛q′)𝑛q+q′

𝜔 + 𝜉q′ − 𝜉q+q′ − 𝑖𝜂
𝑛k+q

𝐸 + 𝜔 − 𝜉k+q − 𝑖𝜂

]
,

(A.70)

which after the integration over 𝜔 in the complex plane yields fourteen contributions to
Σ(𝐵) (k, 𝐸)
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Σ(𝐵) (k, 𝐸) =
∑︁
q,q′

|𝑔(q) |4
14∑︁
𝑖=1

𝜎
(𝐵)
𝑖

, (A.71)

with

𝜎
(𝐵)
1 =

𝑛k+q(1 − 𝑛q+q′)𝑛q′(
𝐸 − 𝜉k+q + 𝜔0 − 𝑖𝜂

)2 (
𝐸 − 𝜉k+q − 𝜉q′ + 𝜉q+q′ − 𝑖𝜂

) , (A.72)

𝜎
(𝐵)
2 =

(
1 − 𝑛k+q

)
𝑛q+q′ (1 − 𝑛q′)(

𝜉q+q′ − 𝜉q′ − 𝜔0 + 𝑖𝜂
)2 (

𝐸 − 𝜉k+q − 𝜉q′ + 𝜉q+q′ + 𝑖𝜂
) , (A.73)

𝜎
(𝐵)
3 =

𝑛k+q𝑛q+q′ (1 − 𝑛q′)(
𝜉q+q′ − 𝜉q′ − 𝜔0 + 𝑖𝜂

)2 (
𝐸 − 𝜉k+q − 𝜉q′ + 𝜉q+q′

)−
−

𝑛k+q𝑛q+q′ (1 − 𝑛q′)(
𝐸 − 𝜉k+q + 𝜔0 − 𝑖𝜂

)2 (
𝐸 − 𝜉k+q − 𝜉q′ + 𝜉q+q′

) , (A.74)

𝜎
(𝐵)
4 = −

(
1 − 𝑛k+q

)
(1 − 𝑛q+q′)𝑛q′

(2𝜔0 − 𝑖𝜂)
(
𝐸 − 𝜉k+q − 𝜔0 + 𝑖𝜂

) (
𝜉q′ − 𝜉q+q′ − 𝜔0 + 𝑖𝜂

) , (A.75)

𝜎
(𝐵)
5 = −

𝑛k+q(1 − 𝑛q+q′)𝑛q′
(2𝜔0 − 𝑖𝜂)

(
𝐸 − 𝜉k+q − 𝜔0

) (
𝜉q′ − 𝜉q+q′ − 𝜔0 + 𝑖𝜂

)−
−

𝑛k+q(1 − 𝑛q+q′)𝑛q′(
𝐸 − 𝜉k+q − 𝜔0

) (
𝐸 − 𝜉k+q + 𝜔0 − 𝑖𝜂

) (
𝐸 − 𝜉k+q − 𝜉q′ + 𝜉q+q′ − 𝑖𝜂

) , (A.76)

𝜎
(𝐵)
6 =

(
1 − 𝑛k+q

)
𝑛q+q′ (1 − 𝑛q′)

(2𝜔0 − 𝑖𝜂)
(
𝐸 − 𝜉k+q − 𝜔0 + 𝑖𝜂

) (
𝜉q′ − 𝜉q+q′ − 𝜔0

)−
−

(
1 − 𝑛k+q

)
𝑛q+q′ (1 − 𝑛q′)(

𝜉q+q′ − 𝜉q′ + 𝜔0
) (
𝜉q+q′ − 𝜉q′ − 𝜔0 + 𝑖𝜂

) (
𝐸 − 𝜉k+q − 𝜉q′ + 𝜉q+q′ + 𝑖𝜂

) , (A.77)

𝜎
(𝐵)
7 =

𝑛k+q𝑛q+q′ (1 − 𝑛q′)
(2𝜔0 − 𝑖𝜂)

(
𝐸 − 𝜉k+q + 𝜔0 − 𝑖𝜂

) (
𝜉q′ − 𝜉q+q′ + 𝜔0 − 𝑖𝜂

) , (A.78)
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𝜎
(𝐵)
8 = −

(
1 − 𝑛k+q

)
(1 − 𝑛q+q′)𝑛q′

(2𝜔0 − 𝑖𝜂) (𝐸 − 𝜉k+q − 𝜔0 + 𝑖𝜂) (𝜉q′ − 𝜉q+q′ − 𝜔0 + 𝑖𝜂)
, (A.79)

𝜎
(𝐵)
9 = −

𝑛k+q(1 − 𝑛q+q′)𝑛q′
(2𝜔0 − 𝑖𝜂) (𝐸 − 𝜉k+q − 𝜔0) (𝜉q′ − 𝜉q+q′ − 𝜔0 + 𝑖𝜂)

−

−
𝑛k+q(1 − 𝑛q+q′)𝑛q′

(𝐸 − 𝜉k+q − 𝜔0) (𝐸 − 𝜉k+q + 𝜔0 − 𝑖𝜂) (𝐸 − 𝜉k+q − 𝜉q′ + 𝜉q+q′ − 𝑖𝜂)
,

(A.80)

𝜎
(𝐵)
10 =

(
1 − 𝑛k+q

)
𝑛q+q′ (1 − 𝑛q′)

(2𝜔0 − 𝑖𝜂) (𝐸 − 𝜉k+q − 𝜔0 + 𝑖𝜂) (𝜉q′ − 𝜉q+q′ − 𝜔0)
−

−
(
1 − 𝑛k+q

)
𝑛q+q′ (1 − 𝑛q′)

(𝜉q+q′ − 𝜉q′ + 𝜔0) (𝜉q+q′ − 𝜉q′ − 𝜔0 + 𝑖𝜂) (𝐸 − 𝜉k+q − 𝜉q′ + 𝜉q+q′ + 𝑖𝜂)
,

(A.81)

𝜎
(𝐵)
11 =

𝑛k+q𝑛q+q′ (1 − 𝑛q′)
(2𝜔0 − 𝑖𝜂) (𝐸 − 𝜉k+q + 𝜔0 − 𝑖𝜂) (𝜉q′ − 𝜉q+q′ + 𝜔0 − 𝑖𝜂)

, (A.82)

𝜎
(𝐵)
12 = −

(
1 − 𝑛k+q

)
(1 − 𝑛q+q′)𝑛q′

(𝐸 − 𝜉k+q − 𝜔0 + 𝑖𝜂)2(𝐸 − 𝜉k+q − 𝜉q′ + 𝜉q+q′)
+

+
(
1 − 𝑛k+q

)
(1 − 𝑛q+q′)𝑛q′

(𝜉q+q′ − 𝜉q′ + 𝜔0 − 𝑖𝜂)2(𝐸 − 𝜉k+q − 𝜉q′ + 𝜉q+q′)
,

(A.83)

𝜎
(𝐵)
13 =

𝑛k+q(1 − 𝑛q+q′)𝑛q′
(𝜉q+q′ − 𝜉q′ + 𝜔0 − 𝑖𝜂)2(𝐸 − 𝜉k+q − 𝜉q′ + 𝜉q+q′ − 𝑖𝜂)

, (A.84)

and

𝜎
(𝐵)
14 =

(
1 − 𝑛k+q

)
𝑛q+q′ (1 − 𝑛q′)

(𝐸 − 𝜉k+q − 𝜔0 + 𝑖𝜂)2(𝐸 − 𝜉k+q − 𝜉q′ + 𝜉q+q′ + 𝑖𝜂)
. (A.85)

By taking a closer look at Eqs. (A.72), (A.76), (A.80), and (A.84), we note that ImΣ(𝐵) (k, 𝐸)
attains non-vanishing values around the Fermi level for 𝐸 < 0. In particular, in the corresponding
energy window, we have
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ImΣ(𝐵) (k, 𝐸) = 𝜋
∑︁
q,q′

|𝑔(q) |4
[

1(
𝜉q′ − 𝜉q+q′ + 𝜔0

)2 − 2

(𝜉q′ − 𝜉q+q′ − 𝜔0)
(
𝜉q′ − 𝜉q+q′ + 𝜔0

) +
+ 1

(𝜉q′ − 𝜉q+q′ − 𝜔0)2

]
𝑛k+q(1 − 𝑛q+q′)𝑛q′𝛿(𝐸 − 𝜉k+q − 𝜉q′ + 𝜉q+q′)

= 𝜋
∑︁
q,q′

|𝑔(q) |4
[
(𝜉q′ − 𝜉q+q′ − 𝜔0)2 − 2(𝜉q′ − 𝜉q+q′ − 𝜔0)

(
𝜉q′ − 𝜉q+q′ + 𝜔0

)
+

(
𝜉q′ − 𝜉q+q′ + 𝜔0

)2
(𝜉q′ − 𝜉q+q′ − 𝜔0)2

(
𝜉q′ − 𝜉q+q′ + 𝜔0

)2 ]
×

× 𝑛k+q(1 − 𝑛q+q′)𝑛q′𝛿(𝐸 − 𝜉k+q − 𝜉q′ + 𝜉q+q′)

= 𝜋
∑︁
q,q′

|𝑔(q) |4
4𝜔2

0[ (
𝜉q′ − 𝜉q+q′

)2 − 𝜔2
0

]2𝑛k+q(1 − 𝑛q+q′)𝑛q′𝛿(𝐸 − 𝜉k+q − 𝜉q′ + 𝜉q+q′)

= 𝜋
∑︁
q,q′

|𝑔(q) |4
4𝜔2

0[ (
𝜉k+q′ − 𝜉k+q+q′

)2 − 𝜔2
0

]2𝑛k+q(1 − 𝑛k+q+q′)𝑛k+q′𝛿(𝐸 − 𝜉k+q − 𝜉k+q′ + 𝜉k+q+q′) .

(A.86)

A.2.4 Polaron limit

The results for the next-to-leading electron self-energy contributions in the polaron limit may
be obtained by simply setting 𝑛k = 0 in Eqs. (A.34) and (A.49). However, for the purposes
of Part II, we need only the next-to-leading electron self-energy contributions in the 1D case
with the Holstein coupling in the energy window below the phonon energy, which were already
calculated in [102]. Therefore, we exploit the results from [102] and bring them into a convenient
form suitable for our purposes.

Non-crossing diagram

Following [102], the contribution to the electron self-energy coming from the non-crossing
diagram in the polaron limit in the 1D case with the Holstein coupling below the phonon energy
reads

Σ(𝑁𝐶) (𝐸 < 𝜔0) =
𝑔4

(2𝑡)3
𝐼′(𝜀)𝐼 (𝜀 + 𝛼) . (A.87)

Here, 𝜀 =
𝜔0−𝐸
2𝑡 , 𝛼 =

𝜔0
2𝑡 , and 𝐼 (𝜀) = 1

2𝑡
√
𝜀(𝜀+2𝑡)

, yielding simply

Σ(𝑁𝐶) (𝐸 < 𝜔0) = −𝑔4 1

(𝐸 − 𝜔0)
3
2 (𝐸 − 𝜔0 − 4𝑡) 32

(𝐸 − 𝜔0 − 2𝑡)
(𝐸 − 2𝜔0)

1
2 (𝐸 − 2𝜔0 − 4𝑡) 12

. (A.88)
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Crossing diagram

On the other hand, adapting the required expression for the electron self-energy due to the
crossing diagram requires more work, since from [102] we have

Σ(𝐶) (𝑘, 𝐸 < 𝜔0) = −𝑔
4

𝑡3

𝑥2+𝑦+ − 𝑥2−𝑦−
(𝑥+ − 𝑥−)2(𝑦+ − 𝑦−)

1

𝑥2+𝑦+ + 𝑥2−𝑦− − 2 cos 𝑘
, (A.89)

where

𝑥± = 𝛾1 ±
√︃
𝛾21 − 1 , 𝑦± = 𝛾2 ±

√︃
𝛾22 − 1 , 𝛾𝑛 = 1 + 𝑛𝛼 − 𝐸/2𝑡 > 1 , 𝑥+𝑥− = 𝑦+𝑦− = 1 .

(A.90)

We evaluate

𝑥2+ = 𝛾21 + 2𝛾1

√︃
𝛾21 − 1 + 𝛾21 − 1 = 2𝛾1

(
𝛾1 +

√︃
𝛾21 − 1

)
− 1 = 2𝛾1𝑥+ − 1 , (A.91)

𝑥2− = 𝛾21 − 2𝛾1

√︃
𝛾21 − 1 + 𝛾21 − 1 = 2𝛾1

(
𝛾1 −

√︃
𝛾21 − 1

)
− 1 = 2𝛾1𝑥− − 1 , (A.92)

yielding

𝑥2+𝑦+ ± 𝑥2−𝑦− = 2𝛾1𝑥+𝑦+ − 𝑦+ ± 2𝛾1𝑥−𝑦− ∓ 𝑦− = 2𝛾1(𝑥+𝑦+ ± 𝑥−𝑦−) − (𝑦+ ± 𝑦−) . (A.93)

Moreover

𝑥+ − 𝑥− = 2
√︃
𝛾21 − 1 , 𝑦+ + 𝑦− = 2𝛾2 , 𝑦+ − 𝑦− = 2

√︃
𝛾22 − 1 , (A.94)

𝑥+𝑦+ + 𝑥−𝑦− =

(
𝛾1 +

√︃
𝛾21 − 1

) (
𝛾2 +

√︃
𝛾22 − 1

)
+

(
𝛾1 −

√︃
𝛾21 − 1

) (
𝛾2 −

√︃
𝛾22 − 1

)
= 𝛾1𝛾2 + 𝛾1

√︃
𝛾22 − 1 + 𝛾2

√︃
𝛾21 − 1 +

√︃
𝛾21 − 1

√︃
𝛾22 − 1

+ 𝛾1𝛾2 − 𝛾1
√︃
𝛾22 − 1 − 𝛾2

√︃
𝛾21 − 1 +

√︃
𝛾21 − 1

√︃
𝛾22 − 1

= 2

(
𝛾1𝛾2 +

√︃
𝛾21 − 1

√︃
𝛾22 − 1

)
,

(A.95)
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𝑥+𝑦+ − 𝑥−𝑦− =

(
𝛾1 +

√︃
𝛾21 − 1

) (
𝛾2 +

√︃
𝛾22 − 1

)
−

(
𝛾1 −

√︃
𝛾21 − 1

) (
𝛾2 −

√︃
𝛾22 − 1

)
= 𝛾1𝛾2 + 𝛾1

√︃
𝛾22 − 1 + 𝛾2

√︃
𝛾21 − 1 +

√︃
𝛾21 − 1

√︃
𝛾22 − 1

− 𝛾1𝛾2 + 𝛾1
√︃
𝛾22 − 1 + 𝛾2

√︃
𝛾21 − 1 −

√︃
𝛾21 − 1

√︃
𝛾22 − 1

= 2

(
𝛾1

√︃
𝛾22 − 1 + 𝛾2

√︃
𝛾21 − 1

)
,

(A.96)

and

𝑥2+𝑦+ − 𝑥2−𝑦− = 2𝛾1(𝑥+𝑦+ − 𝑥−𝑦−) − (𝑦+ − 𝑦−)

= 4𝛾1

(
𝛾1

√︃
𝛾22 − 1 + 𝛾2

√︃
𝛾21 − 1

)
− 2

√︃
𝛾22 − 1

= 2

[(
2𝛾21 − 1

) √︃
𝛾22 − 1 + 2𝛾1𝛾2

√︃
𝛾21 − 1

]
.

(A.97)

By combining all the above results, we get

𝑥2+𝑦+ + 𝑥2−𝑦− = 2𝛾1(𝑥+𝑦+ + 𝑥−𝑦−) − (𝑦+ + 𝑦−) = 4

(
𝛾21𝛾2 + 𝛾1

√︃
𝛾21 − 1

√︃
𝛾22 − 1

)
− 2𝛾2

= 2

[
𝛾2

(
2𝛾21 − 1

)
+ 2𝛾1

√︃
𝛾21 − 1

√︃
𝛾22 − 1

]
= 2(1 + 𝜔0/𝑡 − 𝐸/2𝑡)

[
2(1 + 𝜔0/2𝑡 − 𝐸/2𝑡)2 − 1

]
+

+ 4(1 + 𝜔0/2𝑡 − 𝐸/2𝑡)
√︁
(2 + 𝜔0/2𝑡 − 𝐸/2𝑡) (𝜔0/2𝑡 − 𝐸/2𝑡) (2 + 𝜔0/𝑡 − 𝐸/2𝑡) (𝜔0/𝑡 − 𝐸/2𝑡)

=
1

2𝑡3
(2𝑡 + 2𝜔0 − 𝐸)

[
(2𝑡 + 𝜔0 − 𝐸)2 − 2𝑡2

]
+

+ 1

2𝑡3
(2𝑡 + 𝜔0 − 𝐸)

√︁
(4𝑡 + 𝜔0 − 𝐸) (𝜔0 − 𝐸) (4𝑡 + 2𝜔0 − 𝐸) (2𝜔0 − 𝐸) ,

(A.98)
and
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𝑥2+𝑦+ − 𝑥2−𝑦−
(𝑥+ − 𝑥−)2(𝑦+ − 𝑦−)

=

2

[ (
2𝛾21 − 1

) √︃
𝛾22 − 1 + 2𝛾1𝛾2

√︃
𝛾21 − 1

]
8
(
𝛾21 − 1

) √︃
𝛾22 − 1

=
1

4


2𝛾21 − 1

𝛾21 − 1
+ 2𝛾1𝛾2√︃

𝛾21 − 1
√︃
𝛾22 − 1

 =
1

4

[
2(1 + 𝜔0/2𝑡 − 𝐸/2𝑡)2 − 1

(𝜔0/2𝑡 − 𝐸/2𝑡) (2 + 𝜔0/2𝑡 − 𝐸/2𝑡)
+

+ 2 (1 + 𝜔0/2𝑡 − 𝐸/2𝑡) (1 + 𝜔0/𝑡 − 𝐸/2𝑡)√︁
(2 + 𝜔0/2𝑡 − 𝐸/2𝑡) (𝜔0/2𝑡 − 𝐸/2𝑡) (2 + 𝜔0/𝑡 − 𝐸/2𝑡) (𝜔0/𝑡 − 𝐸/2𝑡)

]
=
1

2

[
(2𝑡 + 𝜔0 − 𝐸)2 − 2𝑡2

(𝜔0 − 𝐸) (4𝑡 + 𝜔0 − 𝐸)
+ (2𝑡 + 𝜔0 − 𝐸) (2𝑡 + 2𝜔0 − 𝐸)√︁

(4𝑡 + 𝜔0 − 𝐸) (𝜔0 − 𝐸) (4𝑡 + 2𝜔0 − 𝐸) (2𝜔0 − 𝐸)

]
,

(A.99)

which in total yields

Σ(𝐶) (𝑘, 𝐸 < 𝜔0) = −𝑔4
[

(2𝑡 + 𝜔0 − 𝐸)2 − 2𝑡2

(𝜔0 − 𝐸) (4𝑡 + 𝜔0 − 𝐸)
+ (2𝑡 + 𝜔0 − 𝐸) (2𝑡 + 2𝜔0 − 𝐸)√︁

(4𝑡 + 𝜔0 − 𝐸) (𝜔0 − 𝐸) (4𝑡 + 2𝜔0 − 𝐸) (2𝜔0 − 𝐸)

]
×

× 1

(2𝑡 + 2𝜔0 − 𝐸)
[
(2𝑡 + 𝜔0 − 𝐸)2 − 2𝑡2

]
+ (2𝑡 + 𝜔0 − 𝐸)

√︁
(4𝑡 + 𝜔0 − 𝐸) (𝜔0 − 𝐸) (4𝑡 + 2𝜔0 − 𝐸) (2𝜔0 − 𝐸) − 4𝑡3 cos 𝑘

.

(A.100)

Vertex function

When we consider the electron self-energy in the polaron limit, we may set 𝑛k = 0 in the
expression for the leading order vertex function given by Eq. (A.42), emphasizing the fact that
it may only contain electron processes. It is evident then that only the term given by Eq. (A.44)
survives, giving

Γ(2) (0, 0; q, 𝜔) ≡ Θ(2) (q, 𝜔) = −
∑︁
q′

|𝑔(q′) |2 1

(𝜔 − 𝜉q+q′ − 𝜔0 + 𝑖𝜂) (𝜉q′ + 𝜔0)
. (A.101)

In the 1D case with the Holstein coupling for energies below the phonon energy, the sum-
mation/integration over 𝑞′ in Eq. (A.101) has been also carried out analytically in [102], with
the result

Θ(2) (𝑞, 𝜔) = −𝑔
2

𝑡2

𝑥+𝑦+ − 𝑥−𝑦−
(𝑥+ − 𝑥−) (𝑦+ − 𝑦−)

𝑧𝑞

(1 − 𝛿+𝑧𝑞) (1 − 𝛿−𝑧𝑞)
, (A.102)

where 𝛿± = 𝑦±/𝑥∓ (𝛿+𝛿− = 1), and 𝑧𝑞 = 𝑒𝑖𝑞. By exploiting the results in Eqs. (A.94) and (A.96),
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we have

𝑥+𝑦+ − 𝑥−𝑦−
(𝑥+ − 𝑥−) (𝑦+ − 𝑦−)

=
𝛾1

√︃
𝛾22 − 1 + 𝛾2

√︃
𝛾21 − 1

2
√︃
𝛾21 − 1

√︃
𝛾22 − 1

=
1

2


𝛾1√︃
𝛾21 − 1

+ 𝛾2√︃
𝛾22 − 1

 , (A.103)

and

1

(1 − 𝛿+𝑧𝑞) (1 − 𝛿−𝑧𝑞)
=

1

1 − (𝛿+ + 𝛿−) 𝑧𝑞 + 𝑧2𝑞
=

1

1 − (𝑥+𝑦+ + 𝑥−𝑦−) 𝑧𝑞 + 𝑧2𝑞

=
1

𝑧𝑞

1

𝑧𝑞 + 𝑧−1𝑞 − 2

(
𝛾1𝛾2 +

√︃
𝛾21 − 1

√︃
𝛾22 − 1

)
=

1

𝑧𝑞

1

2 cos 𝑞 − 2

(
𝛾1𝛾2 +

√︃
𝛾21 − 1

√︃
𝛾22 − 1

) ,
(A.104)

yielding

Θ(2) (𝑞, 𝜔) = 𝑔2

𝑡2


𝛾1√︃
𝛾21−1

+ 𝛾2√︃
𝛾22−1

𝛾1𝛾2 +
√︃
𝛾21 − 1

√︃
𝛾22 − 1 − cos 𝑞

 . (A.105)

By exploiting Eq. (A.90), we finally get

Θ(2) (𝑞, 𝜔) = 𝑔2
{ (𝜔0+2𝑡 )√

𝜔0 (𝜔0+4𝑡 )
+ (𝜔0−𝜔+2𝑡 )√

(𝜔0−𝜔) (𝜔0−𝜔+4𝑡 )

(𝜔0+2𝑡)(𝜔0−𝜔+2𝑡)+
√
𝜔0 (𝜔0+4𝑡)(𝜔0−𝜔) (𝜔0−𝜔+4𝑡)−4𝑡2 cos 𝑞

}
. (A.106)
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Appendix B

Derivations related to phonon polarization

In this Appendix B, we show details of calculations related to the results for the phonon
polarization used in Parts II and III. In particular, we find the exact solution for the phonon
propagator for the homogeneous 𝑞 = 0 mode and calculate the phonon polarization in the
next-to-leading order of the perturbation theory in electron-phonon interaction for arbitrary q,
with the special emphasis on the polaron limit. In addition, we recall the occurrence of the
2𝑘𝐹 logarithmic singularity in the Lindhard function in the 1D case. We explicitly assume the
constant phonon energy 𝜔q ≈ 𝜔0 (ℏ = 1) and the Holstein coupling in all calculations.

B.1 The homogeneous |q| = 0 mode

There is a special case for which the Holstein model is exactly solvable [118]. In particular,
for |q| = 0 the Holstein model describes the phonon interacting with the total electron density
and effectively reduces to the model of the harmonic oscillator in a constant external field. This
problem is exactly solvable and describes the oscillations of phonons around the new equilibrium
position, with the phonon eigenstates being the coherent states [40]. Consequently, we can find
the exact solution for the phonon propagator 𝐷 (0, 𝜔) as follows.

We exploit the fact that the exact phonon eigenstates are coherent states and write the phonon
propagator in the Lehmann representation [16]

𝐷 (0, 𝜔) =
∑︁
𝑛

[ ��⟨𝛼 | (𝑎 + 𝑎†) |𝛼𝑛⟩��2
𝜔 − (𝐸𝑛 − 𝐸0) + 𝑖𝜂

−
��⟨𝛼 | (𝑎 + 𝑎†) |𝛼𝑛⟩��2
𝜔 + (𝐸𝑛 − 𝐸0) − 𝑖𝜂

]
, (B.1)

with the ground state |𝛼⟩ = 𝐷 (𝛼) |0⟩, where 𝐷 (𝛼) = 𝑒𝛼𝑎†−𝛼∗𝑎 is the displacement operator and
|0⟩ the vacuum of 𝑎 phonons, and the ground state energy 𝐸0 =

𝜔0
2 − 𝛼2𝜔0. Energies of excited

states |𝛼𝑛⟩ = 𝐷 (𝛼) |𝑛⟩ = (𝑎†−𝛼)𝑛√
𝑛!

|𝛼⟩ read 𝐸𝑛 = 𝜔0(𝑛 + 1
2 ) − 𝛼

2𝜔0. Here, 𝛼 =
𝑁𝑒𝑙𝑔√
𝑁𝜔0

, with 𝑁𝑒𝑙
the number of electrons on a lattice with 𝑁 sites. Since |𝛼⟩ is the coherent state, 𝑎 |𝛼⟩ = 𝛼 |𝛼⟩,
we have
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⟨𝛼 |
(
𝑎 + 𝑎†

)
|𝛼𝑛⟩ = ⟨𝛼 |

(
𝑎 + 𝑎†

) (𝑎† − 𝛼)𝑛
√
𝑛!

|𝛼⟩

= ⟨𝛼 |
(
𝑎 + 𝑎†

) 1
√
𝑛!

𝑛∑︁
𝑚=0

(−1)𝑚
(
𝑛

𝑚

)
(𝑎†)𝑛−𝑚𝛼𝑚 |𝛼⟩

=
1

√
𝑛!

𝑛∑︁
𝑚=0

(−1)𝑚
(
𝑛

𝑚

)
𝛼𝑚

[
⟨𝛼 | 𝑎(𝑎†)𝑛−𝑚 |𝛼⟩ + ⟨𝛼 | 𝑎†(𝑎†)𝑛−𝑚 |𝛼⟩

]
=

1
√
𝑛!

𝑛∑︁
𝑚=0

(−1)𝑚
(
𝑛

𝑚

)
𝛼𝑚 ⟨𝛼 |

[
(𝑛 − 𝑚) (𝑎†)𝑛−𝑚−1 + (𝑎†)𝑛−𝑚𝑎 + 𝑎†(𝑎†)𝑛−𝑚 |𝛼⟩

]
=

1
√
𝑛!

𝑛∑︁
𝑚=0

(−1)𝑚
(
𝑛

𝑚

) [
(𝑛 − 𝑚)𝛼𝑛−1 + 𝛼𝑛+1 + 𝛼𝑛+1

]
=
𝛼𝑛
√
𝑛!

𝑛∑︁
𝑚=0

(−1)𝑚
(
𝑛

𝑚

) [
(𝑛 − 𝑚)𝛼−1 + 2𝛼

]
.

(B.2)

Next, we use

𝑛∑︁
𝑚=0

(−1)𝑚
(
𝑛

𝑚

)
= 𝛿𝑛,0 , and ,

𝑛∑︁
𝑚=0

(−1)𝑚
(
𝑛

𝑚

)
(𝑛 − 𝑚) = 𝛿𝑛,1 , (B.3)

to finally obtain

𝐷 (0, 𝜔) = 𝐷0(0, 𝜔) + 4𝛼2
[

1

𝜔 + 𝑖𝜂 − 1

𝜔 − 𝑖𝜂

]
. (B.4)

B.2 Next-to-leading order phonon polarization

There are three contributions to the phonon polarization in the next-to-leading order of the
perturbation theory in electron-phonon interaction represented diagrammatically in Figs. 7.3(b),
(c), and (d). Two diagrams in Figs. 7.3(b) and (c) clearly involve the renormalization of fermion
lines and are correspondingly called self-energy contributions. On the other hand, the diagram
in Fig. 7.3(d) represents the leading vertex contribution to polarization.

B.2.1 Self-energy contributions

By using the Feynmann rules [40], we can write for the two self-energy polarization contributions
in Figs. 7.3(b) and (c)
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Π (4𝑏) (q, 𝜔) = −𝑖2 𝑔
4

𝑁2

∑︁
k,q′

∫ +∞

−∞

𝑑𝐸

2𝜋
𝐺0(k, 𝐸) [𝐺0(k + q, 𝐸 + 𝜔)]2 ×

×
∫ +∞

−∞

𝑑𝜔′

2𝜋
𝐺0(k + q + q′, 𝐸 + 𝜔 + 𝜔′)𝐷0(q′, 𝜔′) ,

(B.5)

and

Π (4𝑐) (q, 𝜔) = −𝑖2 𝑔
4

𝑁2

∑︁
k,q′

∫ +∞

−∞

𝑑𝐸

2𝜋
[𝐺0(k, 𝐸)]2𝐺0(k + q, 𝐸 + 𝜔)×

×
∫ +∞

−∞

𝑑𝜔′

2𝜋
𝐺0(k + q′, 𝐸 + 𝜔′)𝐷0(q′, 𝜔′) .

(B.6)

It is immediately evident that those two contributions are not independent, since the set of
transformations k → k − q, q → −q, 𝐸 → 𝐸 − 𝜔, 𝜔 → −𝜔, relate the two polarizations

Π (4𝑐) (q, 𝜔) = Π (4𝑏) (−q,−𝜔) . (B.7)

Therefore, we evaluate only Π (4𝑏) (q, 𝜔).

Similarly like in the expression for the non-crossing diagram given by Eq. (A.24), in Eq. (B.5)
we again recognize the expression for the leading order fermion self-energy given by Eq. (A.27)

Π (4𝑏) (q, 𝜔) = −𝑖 𝑔
2

𝑁

∑︁
k

∫ +∞

−∞

𝑑𝐸

2𝜋
𝐺0(k, 𝐸) [𝐺0(k + q, 𝐸 + 𝜔)]2 Σ(2) (k + q, 𝐸 + 𝜔) , (B.8)

which now multiplies

𝐺0(k, 𝐸) [𝐺0(k + q, 𝐸 + 𝜔)]2 =

=

[
1 − 𝑛k

𝐸 − 𝜉k + 𝑖𝜂
+ 𝑛k

𝐸 − 𝜉k − 𝑖𝜂

] [(
1 − 𝑛k+q

𝐸 + 𝜔 − 𝜉k+q + 𝑖𝜂

)2
+

(
𝑛k+q

𝐸 + 𝜔 − 𝜉k+q − 𝑖𝜂

)2]
.

(B.9)

The product 𝐺0(k, 𝐸) [𝐺0(k + q, 𝐸 + 𝜔)]2 Σ(2) (k + q, 𝐸 + 𝜔) has eight contributions in total,
which after the straighforward integrations over 𝜔 in the complex plane yield
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Π (4𝑏) (q, 𝜔) = 𝑔4

𝑁2

∑︁
k,q′

×

×
{(
1 − 𝑛k+q+q′

) [
−

𝑛k𝑛
2
k+q(

𝜉k+q+q′ − 𝜉k+q + 𝜔0 − 𝑖𝜂
)2 (

𝜉k+q+q′ − 𝜉k + 𝜔0 − 𝜔 − 𝑖𝜂
) +

+
(1 − 𝑛k) 𝑛2k+q

𝜉k − 𝜉k+q+q′ − 𝜔0 + 𝜔

(
1(

𝜉k+q+q′ − 𝜉k+q + 𝜔0 − 𝑖𝜂
)2 − 1(

𝜉k − 𝜉k+q + 𝜔 − 𝑖𝜂
)2 ) −

−
𝑛k

(
1 − 𝑛k+q

)2(
𝜉k+q − 𝜉k − 𝜔 − 𝑖𝜂

)2 (
𝜉k+q+q′ − 𝜉k + 𝜔0 − 𝜔 − 𝑖𝜂

) ] +
+ 𝑛k+q+q′

[
−

(1 − 𝑛k) 𝑛2k+q(
𝜉k+q − 𝜉k − 𝜔 + 𝑖𝜂

)2 (
𝜉k − 𝜉k+q+q′ + 𝜔0 + 𝜔 − 𝑖𝜂

) +
+

𝑛k
(
1 − 𝑛k+q

)2
𝜉k − 𝜉k+q+q′ + 𝜔0 + 𝜔

(
1(

𝜉k − 𝜉k+q + 𝜔 + 𝑖𝜂
)2 − 1(

𝜉k+q+q′ − 𝜉k+q − 𝜔0 + 𝑖𝜂
)2 ) −

−
(1 − 𝑛k)

(
1 − 𝑛k+q

)2(
𝜉k − 𝜉k+q+q′ + 𝜔0 + 𝜔 − 𝑖𝜂

) (
𝜉k+q+q′ − 𝜉k+q − 𝜔0 + 𝑖𝜂

)2 ]} .

(B.10)

B.2.2 Vertex contribution

The expression for the polarization involving the leading vertex correction, represented di-
agrammatically in Fig. 7.3, may be written in terms of the leading order vertex function
Γ(2) (k, 𝐸 ; k + q, 𝐸 + 𝜔)

Π (4𝑑) (q, 𝜔) = −𝑔
2

𝑁

∑︁
k

∫ +∞

−∞

𝑑𝐸

2𝜋
𝐺0(k, 𝐸)𝐺0(k + q, 𝐸 + 𝜔)Γ(2) (k, 𝐸 ; k + q, 𝐸 + 𝜔) . (B.11)

Γ(2) (k, 𝐸 ; k + q, 𝐸 + 𝜔) was already calculated in Appendix A.2.2, where it was decomposed
into four contributions Γ

(2)
𝑖

. In order to get Π (4𝑑) (q, 𝜔), those four contributions should be
multiplied with

𝐺0(k, 𝐸)𝐺0(k + q, 𝐸 + 𝜔) = 1 − 𝑛k
𝐸 − 𝜉k + 𝑖𝜂

1 − 𝑛k+q
𝐸 + 𝜔 − 𝜉k+q + 𝑖𝜂

+ 1 − 𝑛k
𝐸 − 𝜉k + 𝑖𝜂

𝑛k+q
𝐸 + 𝜔 − 𝜉k+q − 𝑖𝜂

+

+ 𝑛k

𝐸 − 𝜉k − 𝑖𝜂
1 − 𝑛k+q

𝐸 + 𝜔 − 𝜉k+q + 𝑖𝜂
+ 𝑛k

𝐸 − 𝜉k − 𝑖𝜂
𝑛k+q

𝐸 + 𝜔 − 𝜉k+q − 𝑖𝜂
,

(B.12)
and the integration over 𝐸 in the complex plane carried out. The integrations are tedious, albeit
straightforward to evaluate, and yield
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Π
(4𝑑)
1 (q, 𝜔) = −𝑖 𝑔

2

𝑁

∑︁
k

∫
𝑑𝐸

2𝜋
𝐺0(k, 𝐸)𝐺0(k + q, 𝐸 + 𝜔)Γ(2)

1 (k, 𝐸 ; k + q, 𝐸 + 𝜔)

= − 𝑔
4

𝑁2

∑︁
k,k′

(1 − 𝑛k′) (1 − 𝑛k′+q)×

×
{

𝑛k(1 − 𝑛k+q)
(𝜉k+q − 𝜉k − 𝜔 − 𝑖𝜂) (𝜉k′ − 𝜉k + 𝜔0 − 𝑖𝜂) (𝜉k′+q − 𝜉k + 𝜔0 − 𝜔 − 𝑖𝜂) +

+
(1 − 𝑛k)𝑛k+q

(𝜉k − 𝜉k+q + 𝜔 − 𝑖𝜂) (𝜉k′ − 𝜉k+q + 𝜔0 + 𝜔 − 𝑖𝜂) (𝜉k′+q − 𝜉k+q + 𝜔0 − 𝑖𝜂)
+

+
𝑛k𝑛k+q

(𝜉k+q − 𝜉k − 𝜔)

[
1

(𝜉k′ − 𝜉k + 𝜔0 − 𝑖𝜂) (𝜉k′+q − 𝜉k + 𝜔0 − 𝜔 − 𝑖𝜂) −

− 1

(𝜉k′ − 𝜉k+q + 𝜔0 + 𝜔 − 𝑖𝜂) (𝜉k′+q − 𝜉k+q + 𝜔0 − 𝑖𝜂)

]}
,

(B.13)

Π
(4𝑑)
2 (q, 𝜔) = −𝑖 𝑔

2

𝑁

∑︁
k

∫
𝑑𝐸

2𝜋
𝐺0(k, 𝐸)𝐺0(k + q, 𝐸 + 𝜔)Γ(2)

2 (k, 𝐸 ; k + q, 𝐸 + 𝜔)

= − 𝑔
4

𝑁2

∑︁
k,k′

𝑛k′𝑛k′+q×

×
{

𝑛k(1 − 𝑛k+q)
(𝜉k+q − 𝜉k − 𝜔 − 𝑖𝜂) (𝜉k+q − 𝜉k′ + 𝜔0 − 𝜔 − 𝑖𝜂) (𝜉k+q − 𝜉k′+q + 𝜔0 − 𝑖𝜂)

+

+
(1 − 𝑛k)𝑛k+q

(𝜉k − 𝜉k+q + 𝜔 − 𝑖𝜂) (𝜉k − 𝜉k′ + 𝜔0 − 𝑖𝜂) (𝜉k − 𝜉k′+q + 𝜔0 + 𝜔 − 𝑖𝜂) +

+
(1 − 𝑛k) (1 − 𝑛k+q)
(𝜉k′+q − 𝜉k′ − 𝜔)

[
1

(𝜉k − 𝜉k′ + 𝜔0 − 𝑖𝜂) (𝜉k+q − 𝜉k′ + 𝜔0 − 𝜔 − 𝑖𝜂) −

− 1

(𝜉k − 𝜉k′+q + 𝜔0 + 𝜔 − 𝑖𝜂) (𝜉k+q − 𝜉k′+q + 𝜔0 − 𝑖𝜂)

]}
,

(B.14)

Π
(4𝑑)
3 (q, 𝜔) = −𝑖 𝑔

2

𝑁

∑︁
k

∫
𝑑𝐸

2𝜋
𝐺0(k, 𝐸)𝐺0(k + q, 𝐸 + 𝜔)Γ(2)

3 (k, 𝐸 ; k + q, 𝐸 + 𝜔)

=
𝑔4

𝑁2

∑︁
k,k′

(1 − 𝑛k′)𝑛k′+q
(𝜉k′ − 𝜉k′+q + 𝜔 − 𝑖𝜂)

[
−

𝑛k𝑛k+q
(𝜉k′ − 𝜉k + 𝜔0 − 𝑖𝜂) (𝜉k′ − 𝜉k+q + 𝜔0 + 𝜔 − 𝑖𝜂) +

+
𝑛k(1 − 𝑛k+q)

(𝜉k+q − 𝜉k − 𝜔 − 𝑖𝜂)

{
1

𝜉k′ − 𝜉k + 𝜔0 − 𝑖𝜂
+ 1

𝜉k+q − 𝜉k′+q + 𝜔0 − 𝑖𝜂

}
+

+
(1 − 𝑛k)𝑛k+q

(𝜉k − 𝜉k+q + 𝜔 − 𝑖𝜂)

{
1

𝜉k′ − 𝜉k+q + 𝜔0 + 𝜔 − 𝑖𝜂 + 1

𝜉k − 𝜉k′+q + 𝜔0 + 𝜔 − 𝑖𝜂

}
−

−
(1 − 𝑛k) (1 − 𝑛k+q)

(𝜉k − 𝜉k′+q + 𝜔0 + 𝜔 − 𝑖𝜂) (𝜉k+q − 𝜉k′+q + 𝜔0 − 𝑖𝜂)

]
,

(B.15)
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and

Π
(4𝑑)
4 (q, 𝜔) = −𝑖 𝑔

2

𝑁

∑︁
k

∫
𝑑𝐸

2𝜋
𝐺0(k, 𝐸)𝐺0(k + q, 𝐸 + 𝜔)Γ(2𝑑) (k, 𝐸 ; k + q, 𝐸 + 𝜔)

= −𝑖 𝑔
2

𝑁

∑︁
k

∫
𝑑𝐸

2𝜋
𝐺0(k, 𝐸)𝐺0(k + q, 𝐸 + 𝜔)Γ(2𝑐) (k + q, 𝐸 + 𝜔; k, 𝐸)

= −𝑖 𝑔
2

𝑁

∑︁
p

∫
𝑑𝐸

2𝜋
𝐺0(p − q, 𝐸 − 𝜔)𝐺0(p, 𝐸)Γ(2𝑐) (p, 𝐸 ;p − q, 𝐸 − 𝜔)

= Π
(4𝑑)
3 (−q,−𝜔) .

(B.16)

B.2.3 Ward identity

For the momentum |q| = 0, a lot of contributions to Π (4) (0, 𝜔) vanish identically. This is due
to the Fermi-Dirac distributions, satisfying 𝑛2

k
= 𝑛k, (1 − 𝑛k)2 = 1 − 𝑛k, and 𝑛k(1 − 𝑛k) = 0

for an arbitrary momentum k at zero temperature. In particular, the polarization Π (4𝑏) (q, 𝜔)
containing the self-energy contribution for |q| = 0 reduces to

Π (4𝑏) (0, 𝜔) = − 𝑔
4

𝑁2

∑︁
k,k′

[
𝑛k(1 − 𝑛k′)

(𝜉k′ − 𝜉k + 𝜔0 − 𝑖𝜂)2(𝜉k′ − 𝜉k + 𝜔0 + 𝜔 − 𝑖𝜂)
+

+ (1 − 𝑛k)𝑛k′
(𝜉k − 𝜉k′ + 𝜔0 − 𝑖𝜂)2(𝜉k − 𝜉k′ + 𝜔0 − 𝜔 − 𝑖𝜂)

]
= − 𝑔

4

𝑁2

∑︁
k,k′

𝑛k(1 − 𝑛k′)
(𝜉k′ − 𝜉k + 𝜔0 − 𝑖𝜂)2

×

×
[

1

𝜉k′ − 𝜉k + 𝜔0 + 𝜔 − 𝑖𝜂 + 1

𝜉k′ − 𝜉k + 𝜔0 − 𝜔 − 𝑖𝜂)

]
= − 𝑔

4

𝑁2

∑︁
k,k′

2𝑛k(1 − 𝑛k′)
(𝜉k′ − 𝜉k + 𝜔0 − 𝑖𝜂){(𝜉k′ − 𝜉k + 𝜔0 − 𝑖𝜂)2 − 𝜔2}

.

(B.17)

Since Π (4𝑏) (0, 𝜔) is symmetric in 𝜔, we immediately get Π (4𝑐) (0, 𝜔) = Π (4𝑏) (0,−𝜔) =

Π (4𝑏) (0, 𝜔), so the net contribution to the next-to-leading order polarization from the self-
energy contributions read 2Π (4𝑏) (0, 𝜔).

Next, by considering the polarization with the vertex correction Π (4𝑑) (0, 𝜔), we note that
Π

(4𝑑)
3 (0, 𝜔) = Π

(4𝑑)
4 (0, 𝜔) = 0 vanish identically owing to the common factor 𝑛k(1 − 𝑛k) = 0.

The remaining two contributions Π (4𝑑)
1 (0, 𝜔) and Π

(4𝑑)
2 (0, 𝜔) can be expressed as follows

Π
(4𝑑)
1 (0, 𝜔) = Π

(4𝑑)
2 (0, 𝜔) = 𝑔4

𝑁2

∑︁
k,k′

2(1 − 𝑛k)𝑛k′
(𝜉k − 𝜉k′ + 𝜔0 − 𝑖𝜂){(𝜉k − 𝜉k′ + 𝜔0 − 𝑖𝜂)2 − 𝜔2}

,

(B.18)
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so the net contribution of Π (4𝑑) (0, 𝜔) reads 2Π (4𝑑)
1 (0, 𝜔).

We note that expressions in Eqs. (B.17) and (B.18) are identical up to the − sign, so the net
contribution Π (4) (0, 𝜔) = 2Π (4𝑏) (0, 𝜔) +2Π (4𝑑)

1 (0, 𝜔) = 0 vanishes, which explicitly proves the
Ward identity in the next-to-leading order.

B.2.4 Polaron limit

Phonon polarization

When we consider phonon properties in the polaron limit, dominant contributions to the po-
larization are of the order O(1/𝑁), with 𝑁 being the number of lattice sites, and might be
obtained by simply putting 𝑛q = 𝛿q,0 in expressions for the polarization obtained for finite elec-
tron densities. In particular, in the next-to-leading order, the polarization involving self-energy
contributions given by Eq. (B.10) simplifies drastically

Π (4𝑏) (q, 𝜔) ≈ 𝑔4

𝑁2

∑︁
k,q′

{
− 𝑛k(
𝜉k+q − 𝜉k − 𝜔 − 𝑖𝜂

)2 (
𝜉k+q+q′ − 𝜉k + 𝜔0 − 𝜔 − 𝑖𝜂

) +
+

𝑛k+q
𝜉k − 𝜉k+q+q′ − 𝜔0 + 𝜔

[
1(

𝜉k+q+q′ − 𝜉k+q + 𝜔0 − 𝑖𝜂
)2 − 1(

𝜉k − 𝜉k+q + 𝜔 − 𝑖𝜂
)2 ] +

+ 𝑛k+q+q′
[
− 1(
𝜉k − 𝜉k+q+q′ + 𝜔0 + 𝜔 − 𝑖𝜂

) (
𝜉k+q+q′ − 𝜉k+q − 𝜔0 + 𝑖𝜂

)2 ]}
≈ 𝑔4

𝑁2

∑︁
k

{
− 1(
𝜉q − 𝜔 − 𝑖𝜂

)2 (
𝜉k+q + 𝜔0 − 𝜔 − 𝑖𝜂

) +
+ 1

𝜉q − 𝜉k − 𝜔0 + 𝜔

[
1

(𝜉k + 𝜔0 − 𝑖𝜂)2
− 1(

𝜉q + 𝜔 − 𝑖𝜂
)2 ] −

− 1

(𝜉k + 𝜔0 + 𝜔 − 𝑖𝜂)
(
−𝜉k+q − 𝜔0 + 𝑖𝜂

)2}
=
𝑔4

𝑁2

∑︁
k

{
− 1(
𝜉q − 𝜔 − 𝑖𝜂

)2 (
𝜉k+q + 𝜔k − 𝜔 − 𝑖𝜂

) +
+ 1(
𝜉q + 𝜔 − 𝑖𝜂

) 1

(−𝜉k − 𝜔0 + 𝑖𝜂)2
+ 1

(𝜉k + 𝜔0 − 𝑖𝜂)
1(

−𝜉q − 𝜔 + 𝑖𝜂
)2−

− 1

(𝜉k + 𝜔0 + 𝜔 − 𝑖𝜂)
(
−𝜉k+q − 𝜔0 + 𝑖𝜂

)2} ,

(B.19)
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where in obtaining the last equality we have used the identity 1
𝐴+𝐵

[
1
𝐴2

− 1
𝐵2

]
= 1

𝐴2𝐵
− 1

𝐴𝐵2
. The

contribution Π (4𝑐) (q, 𝜔) can now be also easily obtained via the relation

Π (4𝑐) (q, 𝜔) = Π (4𝑏) (−q,−𝜔) = 𝑔4

𝑁2

∑︁
k

{
− 1(
𝜉q + 𝜔 − 𝑖𝜂

)2 (𝜉k + 𝜔0 + 𝜔 − 𝑖𝜂)
+

+ 1(
𝜉q − 𝜔 − 𝑖𝜂

) 1(
−𝜉k+q − 𝜔0 + 𝑖𝜂

)2 + 1(
𝜉k+q + 𝜔0 − 𝑖𝜂

) 1(
−𝜉q + 𝜔 + 𝑖𝜂

)2−
− 1(
𝜉k+q + 𝜔0 − 𝜔 − 𝑖𝜂

)
(−𝜉k − 𝜔0 + 𝑖𝜂)2

}
.

(B.20)

Similarly, 1/𝑁 contributions of the polarization with the leading vertex correction come
only from Π

(4𝑑)
1 (q, 𝜔), Π (4𝑑)

3 (q, 𝜔), and Π
(4𝑑)
4 (q, 𝜔), given by Eqs. (B.13), (B.15), and (B.16),

respectively (note that Π (4𝑑)
2 (q, 𝜔) does not contribute in the polaron limit), and read

Π
(4𝑑)
1 (q, 𝜔) ≈ − 𝑔

4

𝑁2

∑︁
k,k′

[
𝑛k

(𝜉k+q − 𝜉k − 𝜔 − 𝑖𝜂) (𝜉k′ − 𝜉k + 𝜔0 − 𝑖𝜂) (𝜉k′+q − 𝜉k + 𝜔0 − 𝜔 − 𝑖𝜂) +

+
𝑛k+q

(𝜉k − 𝜉k+q + 𝜔 − 𝑖𝜂) (𝜉k′ − 𝜉k+q + 𝜔0 + 𝜔 − 𝑖𝜂) (𝜉k′+q − 𝜉k+q + 𝜔0 − 𝑖𝜂)

]
≈ − 𝑔

4

𝑁2

∑︁
k

[
1

(𝜉q − 𝜔 − 𝑖𝜂) (𝜉k + 𝜔0 − 𝑖𝜂) (𝜉k+q + 𝜔0 − 𝜔 − 𝑖𝜂) +

+ 1

(𝜉q + 𝜔 − 𝑖𝜂) (𝜉k + 𝜔0 + 𝜔 − 𝑖𝜂) (𝜉k+q + 𝜔0 − 𝑖𝜂)

]
,

Π
(4𝑑)
3 (q, 𝜔) ≈ − 𝑔

4

𝑁2

∑︁
k,k′

𝑛k′+q
(𝜉k′ − 𝜉k′+q + 𝜔 − 𝑖𝜂) (𝜉k − 𝜉k′+q + 𝜔0 + 𝜔 − 𝑖𝜂) (𝜉k+q − 𝜉k′+q + 𝜔0 − 𝑖𝜂)

≈ − 𝑔
4

𝑁2

∑︁
k

1

(𝜉q + 𝜔 − 𝑖𝜂) (𝜉k + 𝜔0 + 𝜔 − 𝑖𝜂) (𝜉k+q + 𝜔0 − 𝑖𝜂)
,

(B.21)
and

Π
(4𝑑)
4 (q, 𝜔) = Π

(4𝑑)
3 (−q,−𝜔) = − 𝑔

4

𝑁2

∑︁
k

1

(𝜉q − 𝜔 − 𝑖𝜂) (𝜉k+q + 𝜔0 − 𝜔 − 𝑖𝜂) (𝜉k + 𝜔0 − 𝑖𝜂)
,

(B.22)
giving in total
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Π (4𝑑) (q, 𝜔) ≈ −2 𝑔
4

𝑁2

∑︁
k

[
1

(𝜉q − 𝜔 − 𝑖𝜂) (𝜉k + 𝜔0 − 𝑖𝜂) (𝜉k+q + 𝜔0 − 𝜔 − 𝑖𝜂) +

+ 1

(𝜉q + 𝜔 − 𝑖𝜂) (𝜉k + 𝜔0 + 𝜔 − 𝑖𝜂) (𝜉k+q + 𝜔0 − 𝑖𝜂)

]
,

(B.23)

in the polaron limit.

Phonon spectral weight

With Π (4𝑏) (q, 𝜔), Π (4𝑐) (q, 𝜔), and Π (4𝑑) (q, 𝜔) known in the polaron limit, we can calculate
their imaginary parts. In particular, we are interested in ImΠ (4) (q, 𝜔 < 𝜔0) in the energy region
below the phonon energy, which should correspond to the phonon spectral weight in the polaron
band, as described in Section 7.3.

From Eq. (B.19), we have for 0 < 𝜔 < 𝜔0 and 𝜉q < 𝜔0

ImΠ (4𝑏) (q, 𝜔 < 𝜔0) = 𝜋
𝑔4

𝑁2

∑︁
k

1(
𝜉k+q + 𝜔0 − 𝜔

)2 𝛿(𝜔 − 𝜉q) , (B.24)

where we have used the identity 1
(𝜔±𝑖𝜂)2 = 1

𝜔2 ∓ 𝑖𝜋𝛿(0) 𝑑
𝑑𝜔

[124]. Similarly, from Eq. (B.20) we
have

ImΠ (4𝑐) (q, 𝜔 < 𝜔0) = 𝜋
𝑔4

𝑁2

∑︁
k

1

(𝜉k + 𝜔0)2
𝛿(𝜔 − 𝜉q) . (B.25)

Lastly, Eq. (B.23) gives in the energy region below the phonon energy

ImΠ (4𝑑) (q, 𝜔 < 𝜔0) = −𝜋2 𝑔
4

𝑁2

∑︁
k′

1

(𝜉k′ + 𝜔0) (𝜉k′+q + 𝜔0 − 𝜔)
𝛿(𝜔 − 𝜉q) , (B.26)

yielding in total

ImΠ (4) (q, 𝜔 < 𝜔0) = 𝜋
𝑔4

𝑁2

∑︁
k

[
1

𝜉k+q + 𝜔0 − 𝜔
− 1

𝜉k + 𝜔0

]2
𝛿(𝜔 − 𝜉q)

≡ 𝜋𝑔
2

𝑁
𝐹q𝛿(𝜔 − 𝜉q) .

(B.27)
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It is interesting to note that the spectral weight in the polaron band due to the polarization with
the vertex correction is actually proportional to the vertex function Θ(2) (q, 𝜀q), see Eq. (A.101),
motivating us to distinguish different contributions of 𝐹q = 𝑍0 + 𝑍q + 2Θ(2) (q, 𝜀q). Here, 𝑍0
and 𝑍q come from the self-energy contributions and read

𝑍q =
𝑔2

𝑁

∑︁
k

1(
𝜉k+q + 𝜔0 − 𝜉q

)2 . (B.28)

The summation/integration over 𝑘 in Eq. (B.28) in the 1D case can be calculated analytically
as we shall now show. We consider the summation

𝑓 (𝜔) = 𝑔2

𝑁

∑︁
𝑘

1

(𝜀𝑘 + 𝜔0 − 𝜔)2
, (B.29)

and exploit the integration over the unit circle

1

𝑁

∑︁
𝑘

=
1

2𝜋

∫ 𝜋

−𝜋
𝑑𝑘 =

1

2𝜋

∫ 2𝜋

0
𝑑𝜙 =

∮
|𝑧 |=1

𝑑𝑧

𝑖𝑧2𝜋
, (B.30)

where 𝑧 = 𝑒𝑖𝑘 and 𝜀𝑘 = 2𝑡 (1 − 1
2 𝑧 −

1
2 𝑧

−1), so

𝑓 (𝜔) = 𝑔2 1

2𝜋

∮
|𝑧 |=1

𝑑𝑧

𝑖𝑧

1(
2𝑡 − 𝑡 (𝑧 + 𝑧−1) + 𝜔0 − 𝜔

)2 . (B.31)

We are interested in the poles of the function under the integral, so we work out the
denominator

𝑡2𝑧2 − 2𝑡 (2𝑡 + 𝜔0 − 𝜔) 𝑧 + (2𝑡 + 𝜔0 − 𝜔)2 + 2𝑡2 − 2𝑡 (2𝑡 + 𝜔0 − 𝜔) 𝑧−1 + 𝑡2𝑧−2 =

=

(
𝑧2 + 𝑧−2

)
− 2𝑡 (2𝑡 + 𝜔0 − 𝜔)

𝑡2

(
𝑧 + 𝑧−1

)
+

[
(2𝑡 + 𝜔0 − 𝜔)2

𝑡2
+ 2

]
= 0 ,

(B.32)

where in the second row we have divided the expression by 𝑡2. Next, we introduce 𝑥 ≡ 𝑧 + 𝑧−1,
and one can easily show that 𝑥2 − 2 = 𝑧2 + 𝑧−2, so we end up with the quadratic equation

𝑥2 − 2 (2𝑡 + 𝜔0 − 𝜔)
𝑡

𝑥 + (2𝑡 + 𝜔0 − 𝜔)2

𝑡2
= 0 (B.33)

which solutions are

𝑥1,2 =
(2𝑡 + 𝜔0 − 𝜔)

𝑡
≡ 𝑥 . (B.34)
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Thus, we have two two-fold degenerate solutions given by the equation, 𝑧2 − 𝑥𝑧 + 1 = 0, which
solutions are

𝑧1,2 =
𝑥 ±

√
𝑥2 − 4

2
. (B.35)

By introducing 𝑦 ≡ 𝑥
2 =

2𝑡+𝜔0−𝜔
2𝑡 , we can write

𝑧1,2 = 𝑦 ±
√︁
𝑦2 − 1 (B.36)

giving finally the poles of the denominator under the integral. Correspondingly, we can write

𝑓 (𝜔) = 𝑔2 −𝑖
2𝜋𝑡2

∮
𝐶

𝑑𝑧
𝑧

(𝑧 − 𝑧1)2 (𝑧 − 𝑧2)2
. (B.37)

We have two second order poles and to check whether they contribute to the integral we
have to check whether they sit on the inside or the outside of the unit circle. Namely, 𝑧1,2 will
contribute to the integral if

|𝑧1,2 | ≤ 1 . (B.38)

In particular, we are interested in energies 𝜔 < 𝜔0, for which 𝑦 = 1 + 𝜔0−𝜔
2𝑡 > 1, so only

𝑧2 = 𝑦−
√︁
𝑦2 − 1 lies within the unit circle in our case. Correspondingly, we evaluate the residue

𝑧2

Res [𝑧2] = lim
𝑧→𝑧2

𝑑

𝑑𝑧

[
(𝑧 − 𝑧2)2

𝑧

(𝑧 − 𝑧1)2(𝑧 − 𝑧2)2

]
= lim
𝑧→𝑧2

(𝑧 − 𝑧1)2 − 2𝑧(𝑧 − 𝑧1)
(𝑧 − 𝑧1)4

=
(𝑧2 − 𝑧1)2 − 2𝑧2(𝑧2 − 𝑧1)

(𝑧2 − 𝑧1)4

=
4(𝑦2 − 1) + 4(𝑦 −

√︁
𝑦2 − 1)

√︁
𝑦2 − 1

16(𝑦2 − 1)2
=

𝑦

4(𝑦2 − 1) 32
,

(B.39)

providing the solution for 𝑓 (𝜔) in the energy range 𝜔 < 𝜔0

𝑓 (𝜔) = 𝑔2 −𝑖
2𝜋𝑡2

2𝜋𝑖Res [𝑧2] = 𝑔2
2𝑡 + 𝜔0 − 𝜔

[(𝜔0 − 𝜔) (4𝑡 + 𝜔0 − 𝜔)]
3
2

. (B.40)
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B.3 2𝑘𝐹 singularity

In this last Section B.3 of Appendix B, we derive the result in Eq. (10.5), explicitly recovering
the existence of the 2𝑘𝐹 logarithmic singularity in the leading order polarization in the 1D case.
In particular, we consider the static leading order polarization given by Eq. (10.4) in the 1D
half-filled case, with 𝑘𝐹 = 𝜋

2 . We then have 2𝑘𝐹 = 𝜋 and we are interested in the behavior of
Eq. (10.4) in the vicinity of that momentum

ReΠ (2) (𝑞, 0) = 𝑔2

𝑁

∑︁
𝑘

𝑛𝑘 − 𝑛𝑘+𝑞
𝜀𝑘 − 𝜀𝑘+𝑞

, 𝑞 = 𝜋 ± 𝛿 , |𝛿 | ≪ 1 . (B.41)

Exactly at half-filling and for 𝑞 = 2𝑘𝐹 = 𝜋 (𝛿 = 0) the Fermi-Dirac distribution satisfies
𝑛𝑘+𝑞 = (1 − 𝑛𝑘 ), while for the finite 𝛿 > 0 we can decompose the sum in Eq. (B.41) into five
contributions

∑︁
𝑘

[
𝑛𝑘 − 𝑛𝑘+𝑞

]
=

− 𝜋
2−𝛿∑︁

𝑘=−𝜋
[𝑛𝑘 − (1 − 𝑛𝑘 )] +

− 𝜋
2∑︁

𝑘=− 𝜋
2−𝛿

[𝑛𝑘 − 𝑛𝑘 ] +
𝜋
2−𝛿∑︁
𝑘=− 𝜋

2

[𝑛𝑘 − (1 − 𝑛𝑘 )] +

+
𝜋
2∑︁

𝑘= 𝜋
2−𝛿

[𝑛𝑘 − 𝑛𝑘 ] +
𝜋∑︁

𝑘= 𝜋
2

[𝑛𝑘 − (1 − 𝑛𝑘 )]

=


− 𝜋

2−𝛿∑︁
𝑘=−𝜋

+
𝜋
2−𝛿∑︁
𝑘=− 𝜋

2

+
𝜋∑︁

𝑘= 𝜋
2

 [2𝑛𝑘 − 1] =
− 𝜋

2−𝛿∑︁
𝑘=−𝜋

[−1] +
𝜋
2−𝛿∑︁
𝑘=− 𝜋

2

[+1] +
𝜋∑︁

𝑘= 𝜋
2

[−1] ,

(B.42)

which helps us get rid of the Fermi-Dirac distribution. What is left is to evaluate
∑
𝑘

1
𝜀𝑘−𝜀𝑘+𝑞

for three momentum regions in Eq. (B.42) and take care of the proper sign for each of the
contribution.

While evaluating the integrals, we use

𝜀𝑘+𝑞 = −2𝑡 cos(𝑘 + 𝜋 + 𝛿) ≈ −2𝑡 [cos(𝑘 + 𝜋) − 𝛿 sin(𝑘 + 𝜋))] = −2𝑡 [− cos 𝑘 + 𝛿 sin 𝑘]
= −𝜀𝑘 − 2𝑡𝛿 sin 𝑘 ,

(B.43)

valid for small 𝛿 and consult the integral table [59]. We have
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−
− 𝜋

2−𝛿∑︁
𝑘=−𝜋

[
1

𝜀𝑘 − 𝜀𝑘+𝑞

]
= −

− 𝜋
2−𝛿∑︁

𝑘=−𝜋

1

2𝜀𝑘 + 2𝑡𝛿 sin 𝑘
= − 𝑁

2𝜋

∫ − 𝜋
2−𝛿

−𝜋

𝑑𝑘

−4𝑡 cos 𝑘 + 2𝑡𝛿 sin 𝑘

= − 𝑁
2𝜋

∫ −𝛿

−𝜋
2

𝑑𝑘

4𝑡 sin 𝑘 + 2𝑡𝛿 cos 𝑘
=
𝑁

2𝜋

∫ −𝜋
2

−𝛿

𝑑𝑘

4𝑡 sin 𝑘 + 2𝑡𝛿 cos 𝑘

=
𝑁

2𝜋

ln tan
[
1
2

(
arctan 𝛿

2 −
𝜋
2

) ]
2𝑡
√
4 + 𝛿2

− 𝑁

2𝜋

ln tan
[
1
2

(
arctan 𝛿

2 − 𝛿
) ]

2𝑡
√
4 + 𝛿2

≈ − 𝑁
2𝜋

ln tan
[
1
2 arctan

𝛿
2

]
2𝑡
√
4 + 𝛿2

,

(B.44)

since tan
[
1
2

(
𝜋
2 − arctan 𝛿

2

) ]
→ 1. Similarly

𝜋
2−𝛿∑︁
𝑘=− 𝜋

2

[
1

𝜀𝑘 − 𝜀𝑘+𝑞

]
≈ −2 𝑁

2𝜋

ln tan
[
1
2 arctan

𝛿
2

]
2𝑡
√
4 + 𝛿2

, (B.45)

and

−
𝜋∑︁

𝑘= 𝜋
2

[
1

𝜀𝑘 − 𝜀𝑘+𝑞

]
≈ − 𝑁

2𝜋

ln tan
[
1
2 arctan

𝛿
2

]
2𝑡
√
4 + 𝛿2

, (B.46)

so in total we get

Π (0) (𝑞 = 𝜋 ± 𝛿, 0) = − 𝑔
2

2𝜋

[
2
ln tan

[
1
2 arctan

𝛿
2

]
𝑡
√
4 + 𝛿2

]
≈ − 𝑔2

2𝜋𝑡
ln

[
𝛿

4

]
. (B.47)
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Appendix C

Comment on the expansion of the Green’s
function

Generally, the exact Green’s function can be written as

𝐺 =
(1 + 𝐶 (2) + 𝐶 (4) + ...) (1 + 𝐷 (2) + 𝐷 (4) + ...)

(1 + 𝐷 (2) + 𝐷 (4) + ...)
, (C.1)

where 1 +𝐶 (2) +𝐶 (4) + ... represents the sum of contributions of all connected diagrams, while
1 + 𝐷 (2) + 𝐷 (4) + ... represents the sum of contributions of all disconnected diagrams, order
by order in some perturbation parameter. The usual approach is to consider only connected
diagrams in Green’s function expansion, due to the evident cancellation of the contributions of
disconnected diagrams in the denominator and the numerator. In that case, to the leading order,
we have

𝐺 (2) = 1 + 𝐶 (2) . (C.2)

However, we can first work out the product in the numerator and only then consider the
disconnected diagrams in the denominator. Following that approach, we get to the leading order

𝐺 (2) =
(1 + 𝐶 (2)) (1 + 𝐷 (2))

1 + 𝐷 (2) =
1 + 𝐶 (2) + 𝐷 (2) + 𝐶 (2)𝐷 (2)

1 + 𝐷 (2) ≈ 1 + 𝐶 (2) − 𝐶 (2)

1 + 𝐷 (2) =
1

1 + 𝐷 (2)

≈ 1 − 𝐷 (2) = 1 + 𝐶 (2) ,

(C.3)

where we have assumed 𝐶 (2) = −𝐷 (2) . In both cases, the same result for 𝐺 is obtained.

To show an example of how this works in praxis, we consider the time-ordered leading
order Green’s functions in a weak electron-phonon coupling perturbation theory with a self-
energy contribution and a vacuum fluctuation represented by the connected and the disconnected
diagrams in Figs. C.1(a) and (b), respectively. By using the Feynman rules in the time-domain
[16], for the connected diagram in Fig. C.1(a) we can write
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k

k k

k +
 q

q

q
k’

k’ + q

(a) (b)

Figure C.1: Diagrammatic representation of the time-ordered leading order Green’s functions
in a weak electron-phonon coupling perturbation theory involving (a) a self-energy contribution
and (b) a vacuum fluctuation.

𝐺+
𝐶 (k, 𝑡 − 𝑡

′) = 𝑖2
∑︁
q

|𝑔(q) |2
∫

𝑑𝑡1

∫
𝑑𝑡2 𝐺

−
0 (k + q, 𝑡2 − 𝑡1)𝐷0(q, 𝑡1 − 𝑡2)×

× 𝐺+
0 (k, 𝑡1 − 𝑡

′)𝐺+
0 (k, 𝑡 − 𝑡2)

= −
∑︁
q

|𝑔(q) |2
∫

𝑑𝑡1

∫
𝑑𝑡2 𝐺

−
0 (k + q, 𝑡2 − 𝑡1)𝐷0(q, 𝑡1 − 𝑡2)×

×
[
𝑖𝐺+

0 (k, 𝑡1 − 𝑡2)𝐺
+
0 (k, 𝑡2 − 𝑡

′)
] [
𝑖𝐺+

0 (k, 𝑡 − 𝑡1)𝐺
+
0 (k, 𝑡1 − 𝑡2)

]
= −𝐺+

0 (k, 𝑡 − 𝑡
′)×

×
∑︁
q

|𝑔(q) |2
∫

𝑑𝑡1

∫
𝑑𝑡2 𝐺

+
0 (k, 𝑡1 − 𝑡2)𝐺

−
0 (k + q, 𝑡2 − 𝑡1)𝐷0(q, 𝑡1 − 𝑡2) .

(C.4)

where we have used properties of unperturbed time-ordered fermion Green’s functions

𝐺+
0 (k, 𝑡 − 𝑡1)𝐺

+
0 (k, 𝑡1 − 𝑡

′) =
[
−𝑖Θ(𝑡 − 𝑡1)𝑛k𝑒−𝑖𝜉k (𝑡−𝑡1)

] [
−𝑖Θ(𝑡1 − 𝑡′)𝑛k𝑒−𝑖𝜉k (𝑡1−𝑡

′)
]

= −Θ(𝑡 − 𝑡′)𝑛k𝑒−𝑖𝜉k (𝑡−𝑡
′) = −𝑖𝐺+

0 (k, 𝑡 − 𝑡
′) ,

(C.5)

and

𝐺+
0 (k, 𝑡4 − 𝑡3)𝐺

+
0 (k, 𝑡3 − 𝑡2)𝐺

+
0 (k, 𝑡2 − 𝑡1) = −𝑖𝐺+

0 (k, 𝑡4 − 𝑡2)𝐺
+
0 (k, 𝑡2 − 𝑡1)

= −𝐺+
0 (k, 𝑡4 − 𝑡1) .

(C.6)

Similarly, we have for the disconnected diagram in Fig. C.1(b)
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𝐺+
𝐷 (k, 𝑡 − 𝑡′) = −𝑖2𝐺+

0 (k, 𝑡 − 𝑡
′)

×
∑︁
q,k′

|𝑔(q) |2
∫

𝑑𝑡1

∫
𝑑𝑡2 𝐺

+
0 (k

′, 𝑡1 − 𝑡2)𝐺−
0 (k

′ + q, 𝑡2 − 𝑡1)𝐷0(q, 𝑡1 − 𝑡2) ,

(C.7)

where an additional − sign appears due to the closed fermion loop. Evidently, k′ = k component
of 𝐺+

𝐷
(k, 𝑡 − 𝑡′) exactly cancels 𝐺+

𝐶
(k, 𝑡 − 𝑡′).

Following the standard Green’s function expansion, we can disregard all disconnected di-
agrams and consider in the expansion only connected diagrams, including the non-physical
diagram in Fig. C.1(a) which violates the Pauli exclusion principle. Alternatively, according to
Eq. (C.3), we can get rid of non-physical diagrams in the expansion by explicitly keeping also
disconnected diagrams, like the one in Fig. C.1(b).
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Appendix D

Phonon production for squeezed states

The Lehmann representation of the longitudinal optical (LO) phonon Green’s function is given
by [16]

𝐷 (q, 𝜔) =
∑︁
𝑛

[
|⟨Ω| (𝑎q + 𝑎†−q) |Ω𝑛⟩|2

𝜔 − (𝐸𝑛 − 𝐸0) + 𝑖𝜂
−
|⟨Ω| (𝑎q + 𝑎†−q) |Ω𝑛⟩|2

𝜔 + (𝐸𝑛 − 𝐸0) − 𝑖𝜂

]
, (D.1)

where |Ω⟩ and |Ω𝑛⟩ are the exact ground and the excited states of the (interacting) system,
respectively. From Eq. (D.1), it is easy to check that the integrated LO phonon spectral weight
satisfies Eq. (9.19)

−1
2𝜋

∫ ∞

−∞
Im𝐷 (q, 𝜔)𝑑𝜔 =

∑︁
𝑛

|⟨Ω| (𝑎q + 𝑎†−q) |Ω𝑛⟩|2 = ⟨Ω| (1 + 2𝑎†q𝑎q + 𝑎q𝑎−q + 𝑎†q𝑎†−q) |Ω⟩ .

(D.2)

By assuming that the ground state of the lattice subsystem is given by squeezed states of
harmonic oscillators

|Ω⟩ =
∏
q

exp

[
1

2

(
𝛾∗q𝑎

2
q − 𝛾q𝑎†2q

)]
|Ω0⟩ , (D.3)

with 𝛾q = |𝛾q |𝑒𝑖Θ and |Ω0⟩ the LO phonon vacuum, from Eq. (D.1) we obtain

⟨Ω|𝑥q𝑥−q |Ω⟩ =
ℏ

2𝑀𝜔𝐿𝑂

(
cosh2 |𝛾q | + sinh2 |𝛾q | + 2 cosΘ cosh |𝛾q | sinh |𝛾q |

)
. (D.4)

For Θ = 𝜋, the squeezed state is elongated along the real-space coordinate 𝑥q. Thus,
assuming that the LO phonon is fully screened and that the zero-point motion is characterized
by the TO frequency, we get

⟨Ω|𝑥q𝑥−q |Ω⟩ =
ℏ

2𝑀𝜔𝐿𝑂
𝑒2|𝛾 | =

ℏ

2𝑀𝜔𝑇𝑂
. (D.5)

For GaAs and TiO2, 𝑒2|𝛾 | = 𝜔𝐿𝑂/𝜔𝑇𝑂 =
√︁
𝜀0/𝜀∞ approximately equals 𝑒2|𝛾 | ≈ 1.08 and

𝑒2|𝛾 | ≈ 2.78, respectively. Those are almost the same values of the total phonon spectral weights
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obtained in Figs. 9.3(f) and 9.5(f) for the soft 𝑞 ≈ 0 phonon, which frequency is very close to
𝜔𝑇𝑂 .
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