Priprava i karakterizacija miješanih metilamonijevih halogenometalata(II)

Ferenčić, Petra

Master's thesis / Diplomski rad

2022

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:200635

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-12-27

Repository / Repozitorij:

Repository of the Faculty of Science - University of Zagreb

Sveučilište u Zagrebu

PRIRODOSLOVNO-MATEMATIČKI FAKULTET Kemijski odsjek

Petra Ferenčić

PRIPRAVA I KARAKTERIZACIJA MIJEŠANIH METILAMONIJEVIH HALOGENOMETALATA(II)

Diplomski rad

predložen Kemijskom odsjeku Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu radi stjecanja akademskog zvanja magistre kemije

Zagreb, 2022.

Ovaj diplomski rad izrađen je u Zavodu za opću i anorgansku kemiju i u Zavodu za analitičku kemiju Kemijskog odsjeka Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu pod mentorstvom prof. dr. sc. Mirte Rubčić i prof. dr. sc. Sande Rončević i neposrednim voditeljstvom mag. chem. Edija Topića.

Zahvale

Veliku zahvalnost prvenstveno dugujem svojim mentoricama prof. dr. sc. Mirti Rubčić i prof. dr. sc. Sandi Rončević na pomoći u izradi ovog diplomskog rada kao i na strpljenju i vremenu odvojenom za moje brojne upite.

Nakon njih, moje neizmjerne zahvale idu mag. chem. Ediju Topiću i dr. sc. Ivanu Nemetu na pomoći, svim udijeljenim savjetima i razumijevanju.

Posebnu zahvalnost iskazujem svom suprugu Josipu na bezuvjetnoj požrtvovnosti i ljubavi.

Također, zahvaljujem svojim sestrama, svim svojim prijateljima i prijateljicama koji su uvijek bili uz mene.

I na kraju, najveću zaslugu za sva moja postignuća pripisujem roditeljima, koji su uvijek bili spremni ulagati u moje znanje i napredak.

Sadržaj

SAŽ	ETAKX
ABS	FRACT
§ 1.	UVOD
§ 2.	LITERATURNI PREGLED
2.1.	Perovskiti
2.2.	Spektrometrija masa uz induktivno spregnutu plazmu9
2.3.	Analitičke metode u čvrstom stanju11
§ 3.	EKSPERIMENTALNI DIO
3.1.	Materijali
3.2.	Metode14
3.2.1.	Mehanokemijska sinteza14
3.2.2.	Infracrvena spekroskopija14
3.2.3.	Difrakcija rendgenskih zraka na praškastom uzorku14
3.2.4.	Difrakcija rendgenskih zraka na jediničnom kristalu14
3.2.5.	Spektrometrija masa uz induktivno spregnutu plazmu15
3.3.	Priprava bromidne soli metilamina15
3.4.	Priprava odabranih metilamonijevih halogenometalata(II), (MA) ₂ [MX ₄], (M ²⁺ = Cu ²⁺ , Mn ²⁺ , X ⁻ = Cl ⁻ , Br ⁻) otopinskom sintezom15
3.4. <i>3.4.1</i> .	Priprava odabranih metilamonijevih halogenometalata(II), $(MA)_2[MX_4]$, $(M^{2+} = Cu^{2+}, Mn^{2+}, X^- = Cl^-, Br^-)$ otopinskom sintezom
3.4. <i>3.4.1.</i> <i>3.4.2.</i>	Priprava odabranih metilamonijevih halogenometalata(II), (MA) ₂ [MX ₄], (M ²⁺ = Cu ²⁺ , Mn ²⁺ , X ⁻ = Cl ⁻ , Br ⁻) otopinskom sintezom
3.4. 3.4.1. 3.4.2. 3.4.3.	Priprava odabranih metilamonijevih halogenometalata(II), $(MA)_2[MX_4]$, $(M^{2+} = Cu^{2+}, Mn^{2+}, X^- = Cl^-, Br^-)$ otopinskom sintezom15Priprava odabranih metilamonijevih tetraklorometalata(II), $(MA)_2[MCl_4]$ i tetrabromometalata(II), $(MA)_2[MBr_4]$ ($M^{2+} = Cu^{2+}, Mn^{2+}$)15Priprava miješanih metilamonijevih halogenokuprata(II), $(MA)_2[CuCl_xBr_{(4-x)}]$ 16Priprava miješanih metilamonijevih tetraklorometalata(II), $(MA)_2[Cu_xMn_{(1-x)}Cl_4]$ 18
3.4. 3.4.1. 3.4.2. 3.4.3. 3.5.	Priprava odabranih metilamonijevih halogenometalata(II), (MA) ₂ [MX ₄], (M ²⁺ = Cu ²⁺ , Mn ²⁺ , X ⁻ = Cl ⁻ , Br ⁻) otopinskom sintezom
 3.4. <i>3.4.1.</i> <i>3.4.2.</i> <i>3.4.3.</i> 3.5. <i>3.5.1.</i> 	Priprava odabranih metilamonijevih halogenometalata(II), (MA) ₂ [MX ₄], (M ²⁺ = Cu ²⁺ , Mn ²⁺ , X ⁻ = Cl ⁻ , Br ⁻) otopinskom sintezom
 3.4. <i>3.4.1.</i> <i>3.4.2.</i> <i>3.4.3.</i> 3.5. <i>3.5.1.</i> <i>3.5.2.</i> 	Priprava odabranih metilamonijevih halogenometalata(II), $(MA)_2[MX_4]$, $(M^{2+} = Cu^{2+}, Mn^{2+}, X^- = C\Gamma, Br^-)$ otopinskom sintezom
3.4. <i>3.4.1.</i> <i>3.4.2.</i> <i>3.4.3.</i> 3.5. <i>3.5.1.</i> <i>3.5.2.</i> <i>3.5.3.</i>	Priprava odabranih metilamonijevih halogenometalata(II), (MA) ₂ [MX ₄], (M ²⁺ = Cu ²⁺ , Mn ²⁺ , X ⁻ = Cl ⁻ , Br ⁻) otopinskom sintezom
 3.4. 3.4.1. 3.4.2. 3.4.3. 3.5. 3.5.1. 3.5.2. 3.5.3. 3.6. 	Priprava odabranih metilamonijevih halogenometalata(II), (MA) ₂ [MX ₄], (M ²⁺ = Cu ²⁺ , Mn ²⁺ , X ⁻ = Cl ⁻ , Br ⁻) otopinskom sintezom
 3.4. 3.4.1. 3.4.2. 3.4.3. 3.5. 3.5.1. 3.5.2. 3.5.3. 3.6. 3.7. 	Priprava odabranih metilamonijevih halogenometalata(II), (MA) ₂ [MX ₄], (M ²⁺ = Cu ²⁺ , Mn ²⁺ , X ⁻ = Cl ⁻ , Br ⁻) otopinskom sintezom15Priprava odabranih metilamonijevih tetraklorometalata(II), (MA) ₂ [MCl ₄] i tetrabromometalata(II), (MA) ₂ [MBr ₄] (M ²⁺ = Cu ²⁺ , Mn ²⁺)15Priprava miješanih metilamonijevih halogenokuprata(II), (MA) ₂ [CuCl _x Br _(4-x)]16Priprava miješanih metilamonijevih tetraklorometalata(II), (MA) ₂ [Cu _x Mn _{(1-x})Cl ₄]18Priprava odabranih metilamonijevih halogenometalata(II), (MA) ₂ [MX ₄], (M ²⁺ = Cu ²⁺ , Mn ²⁺ , X ⁻ = Cl ⁻ , Br ⁻) mehanokemijskom sintezom18Priprava metilamonijevih tetraklorometalata(II), (MA) ₂ [MCl ₄] i tetrabromometalata(II), (MA) ₂ [MBr ₄] (M ²⁺ = Cu ²⁺ , Mn ²⁺)18Priprava metilamonijevih tetraklorometalata(II), (MA) ₂ [MCl ₄] i tetrabromometalata(II), (MA) ₂ [MBr ₄] (M ²⁺ = Cu ²⁺ , Mn ²⁺)19Priprava miješanih metilamonijevih halogenometalata(II), (MA) ₂ [MCl _x Br _(4-x)] (M ²⁺ = Cu ²⁺ , Mn ²⁺)19Priprava miješanih metilamonijevih tetraklorometalata(II), (MA) ₂ [Cu _x Mn _(1-x) Cl ₄] i tetrabromometalata(II), (MA) ₂ [Cu _x Mn _(1-x) Cl ₄] i tetrabromometalata(II), (MA) ₂ [Cu _x Mn _(1-x) Cl ₄] i tetrabromometalata(II), (MA) ₂ [Cu _x Mn _(1-x) Cl ₄] i tetrabromometalata(II), (MA) ₂ [Cu _x Mn _(1-x) Cl ₄] i tetrabromometalata(II), (MA) ₂ [Cu _x Mn _(1-x) Cl ₄] i tetrabromometalata(II), (MA) ₂ [Cu _x Mn _(1-x) Cl ₄] i tetrabromometalata(II), (MA) ₂ [Cu _x Mn _(1-x) Cl ₄] i tetrabromometalata(II), (MA) ₂ [Cu _x Mn _(1-x) Cl ₄] i tetrabromometalata(II), (MA) ₂ [Cu _x Mn _(1-x) Cl ₄] i tetrabromometalata(II), (MA) ₂ [Cu _x Mn _(1-x) Cl ₄] i tetrabromometalata(II), (MA) ₂ [Cu _x Mn _(1-x) Cl ₄] i tetrabromometalata(II), (MA) ₂ [Cu _x Mn _{1-x} Cl ₄] i tetrabromometal
 3.4. 3.4.1. 3.4.2. 3.4.3. 3.5. 3.5.1. 3.5.2. 3.5.3. 3.6. 3.7. § 4. 	Priprava odabranih metilamonijevih halogenometalata(II), (MA)2[MX4], (M2+ = Cu2+, Mn2+, X ⁻ = Cl ⁻ , Br ⁻) otopinskom sintezom15Priprava odabranih metilamonijevih tetraklorometalata(II), (MA)2[MCl4] i tetrabromometalata(II), (MA)2[MBr4] (M2+ = Cu2+, Mn2+)15Priprava miješanih metilamonijevih halogenokuprata(II), (MA)2[CuClxBr(4.x)]16Priprava miješanih metilamonijevih tetraklorometalata(II), (MA)2[CuxBr(4.x)]16Priprava miješanih metilamonijevih tetraklorometalata(II), (MA)2[CuxBr(4.x)]18Priprava odabranih metilamonijevih halogenometalata(II), (MA)2[MX4], (M2+ = Cu2+, Mn2+, X ⁻ = Cl ⁻ , Br ⁻) mehanokemijskom sintezom18Priprava metilamonijevih tetraklorometalata(II), (MA)2[MCl4] i tetrabromometalata(II), (MA)2[MBr4] (M2+ = Cu2+, Mn2+)18Priprava metilamonijevih tetraklorometalata(II), (MA)2[MCl4] i tetrabromometalata(II), (MA)2[MBr4] (M2+ = Cu2+, Mn2+)18Priprava miješanih metilamonijevih halogenometalata(II), (MA)2[MCl4] i tetrabromometalata(II), (MA)2[MBr4] (M2+ = Cu2+, Mn2+)19Priprava miješanih metilamonijevih halogenometalata(II), (MA)2[MClxBr(4.x)] (M2+ = Cu2+,

4.1.	Pripravljeni spojevi	23
4.2.	Karakterizacija spojeva	25
4.2.1.	Infracrvena spektroskopija	25
4.2.2.	Difrakcija rendgenskih zraka na praškastom uzorku	37
4.2.3.	Difrakcija rendgenskih zraka na jediničnom kristalu	38
4.2.4.	Spektrometrija masa uz induktivno spregnutu plazmu	45
4.2.5.	Određivanje ukupnih halogenida Fajansovom metodom	47
§ 5.	ZAKLJUČAK	49
§ 6.	POPIS OZNAKA, KRATICA I SIMBOLA (PREMA POTREBI)	51
§ 7.	LITERATURNI IZVORI	53
§ 8.	DODATAK	XV
§ 9.	ŽIVOTOPIS	XXXIII

Sveučilište u Zagrebu Prirodoslovno-matematički fakultet **Kemijski odsjek**

SAŽETAK

PRIPRAVA I KARAKTERIZACIJA MIJEŠANIH METILAMONIJEVIH HALOGENOMETALATA(II)

Petra Ferenčić

U okviru ovog diplomskog rada pripravljeni su metilamonijevi halogenometalatati(II) opće formule $(MA)_{2}[MX_{4}], (M^{2+} = Cu^{2+}, Mn^{2+}, X^{-} = Cl^{-}, Br^{-})$ te miješani derivati $(MA)_{2}[MCl_{x}Br_{(4-x)}] (M^{2+} = Cu^{2+}, Mn^{2+}, X^{-} = Cl^{-}, Br^{-})$ te miješani derivati $(MA)_{2}[MCl_{x}Br_{(4-x)}] (M^{2+} = Cu^{2+}, Mn^{2+}, X^{-} = Cl^{-}, Br^{-})$ Mn²⁺), (MA)₂[Cu_xMn_(1-x)Cl₄] i (MA)₂[Cu_xMn_(1-x)Br₄]. Otopinskom sintezom polazeći od metilamina i halogenidnih soli bakra(II) i mangana(II), uz dodatak HCl ili HBr pripravljeni su metilamonijevi tetraklorokuprati(II), tetrakloromanganati(II) i tetrabromokuprati(II). Reakcijom CuO i metilamina uz različite omjere HCl i HBr pripravljena je serija miješanih metilamonijevih halogenokuprata(II) (s najvećim množinskim udjelom Br⁻ od 0,6). Mehanokemijskom sintezom iz CH₃NH₃Br i CuBr₂ odnosno MnBr₂ pripravljeni su (MA)₂[CuBr₄] te (MA)₂[MnBr₄]. Mehanokemijskom sintezom iz CH₃NH₃Cl i CuCl₂ (CuCl₂×2H₂O) i MnCl₂ (MnCl₂×4H₂O) pripravljeni su (MA)₂[CuCl₄] i (MA)₂[MnCl₄]. Mehanokemijskom sintezom pripravljeni su miješani metilamonijevi halogenokuprati(II) i halogenomanganati(II) niz kao i miješanih metilamonijevih tetraklorometalata(II) i tetrabromometalata(II). Karakterizacija pripravljenih spojeva provedena je uz infracrvenu (IR) spektroskopiju, difrakciju rendgenskih zraka na jediničnom kristalu i praškastim uzorcima. Maseni udjeli Mn i Cu određeni su spektrometrijom masa uz induktivno spregnutu plazmu ICP-MS, dok su udjeli ukupnih halogenida određeni titracijom prema Fajansu.

(86 stranica, 52 slika, 17 tablica, 20 literaturnih navoda, jezik izvornika: hrvatski) Rad je pohranjen u Središnjoj kemijskoj knjižnici Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu, Horvatovac 102a, Zagreb i Repozitoriju Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu

Ključne riječi:IR spektroskopija, slojeviti hibridni organsko-anorganski halogenometalati(II), spektrometrija masa uz induktivno spregnutu plazmu, titracija prema Fajansu

Mentori: prof. dr. sc. Mirta Rubčić i prof. dr. sc. Sanda Rončević Neposredni voditelj: Edi Topić, mag. chem. Ocjenitelji:

1. prof. dr. sc. Mirta Rubčić

- 2. prof. dr. sc. Iva Juranović Cindrić
- 3. doc. dr. sc. Đani Škalamera

Zamjena: doc. dr. sc. Tomislav Jednačak

Datum diplomskog ispita: 28. rujna 2022.

Diplomski rad

University of Zagreb Faculty of Science **Department of Chemistry**

ABSTRACT

SYNTHESIS AND CHARACTERIZATION OF MIXED METHYLAMMONIUM HALOMETALATES(II)

Petra Ferenčić

As a part of this diploma thesis, methylammonium halometalates(II) of the general formula $(MA)_{2}[MX_{4}], (M^{2+} = Cu^{2+}, Mn^{2+}, X^{-} = Cl^{-}, Br^{-})$ and mixed derivates $(MA)_{2}[MCl_{x}Br_{(4-x)}] (M^{2+} = Cu^{2+}, Mr^{2+}, X^{-} = Cl^{-}, Br^{-})$ $(MA)_{2}[Cu_{x}Mn_{(1-x)}Cl_{4}]$ i $(MA)_{2}[Cu_{x}Mn_{(1-x)}Br_{4}]$ Mn^{2+}). were prepared. Methylammonium tetrachlorocuprates(II), tetrachloromanganates(II) and tetrabromocuprates(II) were prepared by solution synthesis starting from methylamine and halide salts of copper(II) and manganese(II), with the addition of HCl or HBr. A series of mixed methylammonium (with the highest mass fraction of Br⁻ of 0.6) was prepared by the reaction of CuO and methylamine with different ratios of HCl and HBr. (MA)₂[CuBr₄] and (MA)₂[MnBr₄] were prepared by mechanochemical synthesis from CH₃NH₃Br and CuBr₂ respectively MnBr₂. (MA)₂[CuCl₄] and (MA)₂[MnCl₄] were prepared from CH₃NH₃Cl and CuCl₂ (CuCl₂·2H₂O) and MnCl₂ (MnCl₂·4H₂O). Mixed methylammonium halocuprates(II) and halomanganates(II) as well as a series of mixed methylammonium tetrachlorometalates(II) and tetrabromometalates(II) were prepared by mechanochemical synthesis. The identification of the prepared compounds was carried out with infrared (IR) spectroscopy, X-ray diffraction on a single crystal and powder samples. The mass fractions of Mn and Cu were determined by mass spectrometry with inductively coupled plasma ICP-MS, while the fractions of total halides were determined by Fajans method of precipitation titration.

(86 pages, 52 figures, 17 tables, 20 references, original in Croatian)

Thesis deposited in Central Chemical Library, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia and in Repository of the Faculty of Science, University of Zagreb

Keywords: Fajans method of precipitation titration IR spectroscopy, layered hybrid organicinorganic halometalates(II), mass spectrometry with inductively coupled plasma

Mentor: Dr. Mirta Rubčić, Full Professor and Dr. Sanda Rončević, Full Professor Assistant mentor: Edi Topić, mag. chem. Reviewers:

1. Dr. Mirta Rubčić, Full Professor

- 2. Dr. Iva Juranović Cindrić, Full Professor
- 3. Dr. Đani Škalamera, Assistant Professor
- Substitute: Dr. Tomislav Jednačak, Assistant Professor

Date of exam: September 28th, 2022.

Diploma Thesis

§ 1. UVOD

Bakar i mangan su prijelazni elementi, sveprisutni u prirodnim i sintetičkim spojevima, te s raširenom primjenom. Oba metala esencijalna su za sve žive vrste. Bakar i mangan imaju značajno drukčija svojstva. Primjerice, stabilnih oksidacijskih stanja mangana ima znatno više (od +II pa sve do +VII) nego oksidacijskih stanja bakra (+I i +II).¹ Raznolikost oksidacijskih stanja mangana objašnjava njegova elektronska konfiguracija [Ar]3d⁵4s² s pet nesparenih elektrona u d-orbitali. Elektronska konfiguracija iona Mn²⁺ je [Ar]3d⁵. U kompleksnim spojevima manganovi(II) ioni mogu imati koordinacijske brojeve 4, 6, 7 i 8.² Mangan je kemijski najsličniji željezu zbog toga često nalazimo slične rude poput onih željezovih, a najveću primjenu nalazi upravo kao aditiv u čeliku. Mangan je u svom elementarnom stanju čelično sivo-bijele boje i tvrd metal.³

Bakar je nakon srebra najbolji vodič topline i elektriciteta, koji duljim stajanjem potamni zbog stvaranja bakrovog(II) oksida. Bakar se u prirodi najčešće dolazi u obliku spojeva, a vrlo rijetko u elementarnom stanju. U spojevima je gotovo uvijek jednovalentan ili dvovalentan.³ Elektronska konfiguracija iona Cu²⁺ je [Ar]3d⁹. Ion Cu²⁺ je jaka Lewisova kiselina što znači da je akceptor elektronskog para zbog kojeg dolazi do jakih veze s donorima elektrona. Bakrovi(II) ioni u koordinacijskim spojevima mogu imati koordinacijske brojeve 4, 5 i 6. Spojevi u kojima bakar(II) ostvaruje koordinacijski broj 6 su (često deformirane) oktaedarske geometrije, a oni s koordinacijskim brojem 4 mogu biti geometrije od tetraedarske do kvadratno planarne.²

Dvodimenzijski perovskiti kao podvrsta hibridnih organsko-anorganskih halogenometalata (HOAH) su spojevi sa sljedećom općom formulom: $A'_mA_{(n-1)}B_nX_{(3n+1)}$, gdje A' označava velike organske katione koji se nalaze između aniona perovskitnih slojeva, A je mali organski ili anorganski kation, B dvovalentni kation (npr. Pb²⁺, Ge²⁺, Sn²⁺, Cu²⁺) i X halogenidni anion (Cl⁻, Br⁻ ili I⁻).^{4,5} Opća formula trodimenzijskih perovskita glasi ABX₃, čiji se građevni blokovi A, B i X mogu jednostavno zamjenjivati što omogućuje jednostavno ugađanje svojstva ovih spojeva.⁶ Jedan od najistraživanijih spojeva ove klase je metilamonijev olovov(II) jodid, CH₃NH₃PbI₃ (MAPbI₃), koji je pokazao izuzetna fotonaponska svojstva.^{5,7} nekim od drugih dvovalentnih elemenata (npr. Cu²⁺, Mn²⁺, Sn²⁺, Ge²⁺), kako bi dobili materijal sličnih ili boljih svojstava s manjom toksičnošću.

Slojeviti hibridni organsko-anorganski halogenometalati(II) koji u svom sastavu imaju bakar(II) i mangan(II) dijelom su opisani u literaturi,^{8,9,10,11,12} a ovaj rad je nastavak istraživanja takvih materijala. Cilj je ovog rada bio ispitati načine miješanih metilamonijevih halogenometalata(II), utvrditi prednosti i nedostatke otopinske odnosno mehanokemijske sinteze spomenutih spojeva, te detaljno istražiti njihove strukturne značajke i svojstva. Utvrđivanje kemijske čistoće sintetiziranih materijala provedeno je primjenom kvantitativne analitičke metode spektrometrije masa uz induktivno spregnutu plazmu ICP-MS, dok je udio halogenida utvrđen titracijom prema Fajansovoj metodi. Difrakcijom rendgenskih zraka na jediničnom kristalu određivane su strukturne značajke spojeva. Usporedba miješanih metilamonijevih halogenometalata(II) među kojima su (MA)₂[MCl_xBr_(4-x)] (M²⁺ = Cu²⁺, Mn²⁺), (MA)₂[Cu_xMn_(1-x)Cl₄] i (MA)₂[Cu_xMn_(1-x)Br₄] s metilamonijevim tetraklorometalatima(II) i tetrabromometalatima(II) (M²⁺ = Cu²⁺, Mn²⁺) provedeno je na temelju podataka infracrvene spektroskopije te difrakcije rendgenskog zračenja na praškastim uzorcima.

§ 2. LITERATURNI PREGLED

2.1. Perovskiti

Prvo otkriće karakteristične strukture perovskita datira od 1839. godine, a radi se o strukturi pronađenoj u rudi kalcijevog titanata (CaTiO₃; slika 1), koja je ime dobila po ruskom mineralogu grofu Levu Aleksejeviču von Perovskiju. Materijali slične strukture nazivaju se perovskitnim materijalima.⁷

Slika 1. Kristalna struktura perovskita, kalcijeva titanata (CaTiO₃). U sredini oktaedara nalaze se Ti⁴⁺, na vrhovima oktaedara O^{2–}, između oktaedara Ca²⁺ ioni.⁴

Opća formula 3D perovskita glasi ABX₃, a ion B ima dvostruko veći naboj od iona A i X. U spomenutoj općoj strukturi X najčešće označava anione (halogenidne ili halkogenidne) koji oktaedarski koordiniraju kation B, dok A označava kation koji zauzima oktaedarske šupljine. Na svakom opisanom mjestu A, B i X mogu biti jedna ili više vrsti, što omogućuje nastanak perovskita različitih svojstava, pri čemu se različite strukture odlikuju i različitom stabilnošću.⁶ Materijali perovskitne strukture koji imaju na mjestu A organski kation (najčešće manji organski kation), a na mjestu B metalni kation odnosno halogenidni anion na mjestu X nazivaju se hibridni organsko–anorganski halogenometalati (HOAH), ili hibridni perovskiti.⁶ Budući da stabilnost HOAH odnosno njihov životni vijek uvelike ovisi o sastavu, često je ograničavajući faktor priroda kationa A koji gradi takvu 3D strukturu. Jedno od mogućih rješenje za stabilizaciju metastabilnih spojeva ove vrste jest smanjenje dimenzionalnosti strukture, odnosno priprava dvodimenzijskih (2D) hibridnih perovskita.¹³

Sastav dvodimenzijskih perovskita moguće je prikazati sljedećom općom formulom: A'_mA_(n-1)B_nX_(3n+1) gdje A' označava velike organske katione koji mogu interkalirati između anionskih 2D perovskitnih slojeva (za monokatione, m = 2; za dikatione, m = 1), A je mali organski ili anorganski kation, B dvovalentni kation (npr. Pb²⁺, Ge²⁺, Sn²⁺, Cu²⁺) i X halogenidni anion (Cl⁻, Br⁻ ili l⁻).^{4,5} Općenito kada je n = 1 radi se o čistom dvodimenzijskom hibridnom perovskitu, dok n = ∞ označava trodimenzijsku strukturu, a svaki cijeli broj između te dvije granice odgovara takozvanom kvazi–2D hibridnom perovskitu.⁶

Među prvim otkrivenim i pomno istraženim trodimenzijskim spojevima sličnih strukturnih značajki mineralu CaTiO₃ bio je metilamonijev olovov(II) jodid, CH₃NH₃PbI₃ (MAPbI₃).^{5,7} Nakon njega provedena su mnoga druga istraživanja na halogenidnim perovskitima u čiji sastav ulazi olovo(II) zbog njihovih odličnih fotonaponskih svojstava. Ta su svojstva velikim dijelom rezultat jedinstvene elektronske konfiguracije iona olova(II), odnosno rezultat sudjelovanjem elektrona Pb²⁺ u formiranju valentnih i vodljivih vrpci u perovskitu. Nažalost, ovi spojevi su otrovni i podložni razlaganju pod utjecajem atmosferilija. Posljednjih nekoliko godina istraživanja su okrenuta zamijeni toksičnog olova u hibridnim perovskitima s drugim dvovalentnim elementima kao što su primjerice Sn²⁺, Ge²⁺, Mg²⁺, Ca²⁺, Cu²⁺, Mn²⁺, čime se pokušavaju riješiti prethodno navedeni problemi. Dokazano je da veličina iona B kao i njegova oksidacijska svojstva znatno utječu na stabilnost ovih materijala.⁷

Struktura dvodimenzijskih perovskita može se izvesti "rezanjem" strukture odgovarajućeg trodimenzijskog perovskita duž specifične (hkl) ravnine. Uzimajući to u obzir, 2D perovskiti se mogu podjeliti u tri kategorije s obzirom na tri različite orijentacije: (100), (110) i (111) orijentirani perovskiti.^{6,7,14}

Dvodimenzionlni perovskiti (110) orijentacije su jako deformirani, a prisutne su i poteškoće u stabilizaciji takvih slojeva odnosno postoji vrlo mali broj kationa koji ih mogu stabilizirati zbog čega su relativno slabo istraženi. Strukture (111) orijentacije mogu se formirati jedino pomoću trovalentnih iona (npr. Bi³⁺, Sb³⁺, As³⁺). Daleko su brojniji i značajno više istraženi (100) orijentirani 2D perovskiti. Slojevi (100)–orijentacije dopuštaju ugradnju velikog broja različitih kationa za razliku od onih (110) i (111) orijentacije.^{6,13}

Perovskiti (100) orijentacije mogu se podijeliti na Ruddlesden-Popperove (RP) faze, Dion-Jacobsonove (DJ) faze i faze s izmjeničnim kationima u prostoru između slojeva (ACI, engl. *Alternating cations in the interlayer space*) (slika 2).

Kod faze RP može se vidjeti da su anorganski slojevi pomaknuti za proizvoljni pomak duž ab ravnine paralelne ravnini sloja. Za razliku od faze RP, u fazi DJ ne nalazimo pomak, to jest anorganski slojevi su složeni točno jedan iznad drugoga (zapisano kao (0,0) pomak). Struktura faze s izmjeničnim kationima u prostoru između slojeva (ACI) se po spomenutim karakteristikama nalazi između faza RP i DJ pokazujući (x, 0) pomak. Faze se razlikuju i po razmaku između slojeva. Činjenica da se u sklopu faze RP u prostoru između slojeva nalazi dvosloj organskih kationa (dvosloj jednovalentnih kationa, RNH₃⁺) omogućuje dobro odvajanje anorganskih slojeva (izolacijska barijera), te je na taj način interakcija među njima neznatna. Konkretna udaljenost između anorganskih slojeva varira zbog razlike u geometriji organskih kationa te jačini Van der Waalsovih interakcija među njima (od 1,5 duljine kationa do većih razmaka). Suprotno tome, u fazama ACI i DJ međuslojni razmaci su manji, organski se kationi bolje uklapaju u perovskitne slojeve i tako uzrokuju njihove jače međusobne interakcije. U fazi DJ je organski kation dvovalentan i on je vodikovim vezama povezan s anorganskim perovskitnim slojevima na oba kraja. Faza ACI je relativno rijedak tip strukture koji postoji samo u halogenidnim perovskitima, kao što je spomenuto on kombinira karakteristike faza RP i DJ, odlikuje ga smještanje različitih kationa u međusloju.^{6,7,13}

a) b) c) Slika 2. Podjela (100) orijentiranih perovskita na (slijeva-nadesno) a) Ruddlesden-Popperovu fazu (RP), (BA)₂(MA)₂Pb₃I₁₀, b) Dion-Jacobsonovu fazu (DJ) (3AMP)(MA)₂Pb₃I₁₀, i c) fazu ACI (engl. *Alternating cations in the interlayer space*), (GUA)(MA)₃Pb₃I₁₀.

Mnoge organske katione moguće je uspješno ugraditi između slojeva 2D perovskita. Na slikama 3 i 4 prikazani su neki od organskih kationa koji se ugrađuju u perovskite faze RP i DJ. Prikladnost pojedinog kationa za tvorbu 2D perovskitnih struktura ovisi o njegovim svojstvima.

Slika 3. Strukture nekih kationa amina koje se mogu naći u slojevitim 2D perovskitnim strukturama (faza RP)

Među najvažnijim svojstvima su: 1.) sposobnost popunjavanja prostora (linearni kationi > razgranati nepravilni kationi); 2.) neto pozitivan naboj i stupanj supstitucije amina (primarni amin, RNH_3^+ > sekundarni amin, $R_2NH_2^+$ > tercijarni amin, R_3NH^+ > kvaterni amin, R_4N^+); 3.) sposobnost stvaranja vodikovih veza; 4.) konformacijska fleksibilnost (alifatski ugljikovodici (fleksibilni) > aromatski ugljikovodici (kruti)).^{6,13} Velik je broj kationa koji zadovoljavaju ova četiri uvjeta, te mogu stabilizirati strukturu 2D halogenometalatnih perovskita s anorganskim slojem u kojem se halogenometalatne jedinke oktaedarske građe povezuju preko vrhova.

Slika 4.Strukture nekih kationa diamina koji se mogu naći u slojevitim 2D perovskitnim strukturama (faza DJ)

Upravo je taj način povezivanja oktaedara najčešći, no pri određenim uvjetima moguće je postići stabilizaciju 2D perovskitne strukture i uz povezivanje oktaedarskih jedinki preko bridova ili stranica (slika 5). Budući da povezivanje oktaedarskih jedinki preko bridova ili stranica nužno smanjuje dimenzionalnost anorganske okosnice, takva se udruživanja u 2D perovskitima pojavljuju isključivo u kombinaciji s onim preko vrhova.¹³

c) Dijeljenje stranica

Slika 5. Načini povezivanja jedinki oktaedarske građe u slojevitim 2D perovskitnim strukturama:

a) dijeljenjem bridova,¹⁵ b) dijeljenjem vrhova¹⁶ i c) dijeljenjem stranica.¹⁷

S obzirom na mnoštvo organskih kationa koji se mogu naći u sastavu HOAH, na njihove geometrijske značajke, konformacijsku fleksibilnost, ali i na interakcija do kojih može doći, nije uvijek moguće egzaktno predvidjeti tip faze (RP, DJ, ACI) koji će nastati. Deformacije unutar slojeva anorganskih oktaedara povezana su s različitim svojstvima materijala.⁵ Stoga je mogućnost predviđanja geometrije, kao i kvantifikacija geometrijskih distorzija u realnim perovskitima, kao i povezivanje istih sa svojstvima materijala, predmetom brojnih istraživanja.¹⁴

Već na temelju danog kratkog pregleda o različitim strukturama perovskita da se zaključiti da se takva strukturna raznolikost može iskoristiti za prilagodbu različitih svojstava hibridnih perovskita za potrebe ciljane primjene.⁵ Uz sve što je spomenuto, miješanjem više metala ili halogenida mogu se značajno promijeniti elektronska svojstva perovskita. Iako su u 3D materijalima takve modifikacije sastava i struktureprilično istražene, u 2D perovskitima su takva istraživanja tek započela.¹³

2.2. Spektrometrija masa uz induktivno spregnutu plazmu

Spektrometrija masa uz induktivno spregnutu plazmu je metoda kojom je na moguće kvantitativno odrediti sadržaj elemenata u različitim uzorcima. Izotopi istog elementa razlikuju se u broju subatomskih čestica neutrona koji znatno utječu na masu samog atoma, tako da je spektrometrijom masa moguće i određivanje različitih izotopa istog elementa.¹⁹

U spektrometar masa ulaze ioni elemenata i na temelju omjera mase (atomske mase elementa) i naboja tog iona (m/z) detektira se pojedini element. Prethodno je ionizacijom uklonjen elektron iz neutralnog atoma primjenom vanjskog izvora energije (npr. visokotemperaturnom plazmom) i nastaje pozitivan ion, z = 1. Budući da nastali pozitivni ion ima istu atomsku masu kao i element iz kojeg je nastao (masa elektrona je zanemariva u odnosu na masu protona; $m_e = 9,109 \times 10^{-31}$ kg, $m_p = 1,672 \times 10^{-27}$ kg) detekcija iona može se koristiti u elementnoj analizi. Važna karakteristika spektrometra masa je njegova rezolucija, tj. sposobnost odvajanja iona koji imaju slične omjere m/z.¹⁹

Proces analize u spektrometriji masa sastoji se od ionizacije, odvajanja iona na temelju različitih omjera m/z i detekcije. U sustavu ICP-MS plazma ima veliku ulogu u nastajanju iona koji se kasnije odvajaju i detektiraju. Općenito, plazma je stanje ionizirane plinovite tvari koja sadrži neutralne atome i molekule, te jednak broj pozitivnih iona i slobodnih elektrona pa je sveukupan električni naboj nula. Ono što plazmu razlikuje od plinova je to da pod utjecajem jakog magnetskog polja može oblikovati filamente, električne izboje i paralelne slojeve suprotnog električnog naboja. Tvar u stanju plazme emitira zračenje, što se postiže zagrijavanjem plina na visoke temperature ili pomoću jakih električnih polja. Za razliku od plamena, ovdje je potrebna vanjska energija u obliku električnog polja kako bi se ionizirao plin i formirala plazma koja će dio te energije prenijeti uzorku zbog čega će doći do njegove atomizacije, ionizacije i pobuđenog stanja. Plazme se dijele prema vrsti električnog polja koje

10

se koristi za stvaranje i održavanje plazme: plazma istosmjerne struje (engl. *Direct current* plasma; DCP), mikrovalno inducirana plazma (engl. *Microwave induced plasma;* MIP) i induktivno spregnuta plazma (engl. *Inductively Coupled Plasma*; ICP). Plin koji se koristi za stvaranje plazme je plementi plin (helij, argon) kojeg karakterizira visoka energija ionizacije (npr. $E_i(Ar) = 15,76 \text{ eV}$), inertnost i to što je monoatomski element. Jako su važne činjenice da plemeniti plin emitira jednostavan spektar za razliku od npr. plamena, zatim ima sposobnost pobuditi i ionizirati većinu elemenata peridnog sustava elemenata te ne radi stabilne spojeve s analitom. Visokofrekventno polje koje proizvodi generator ubrzava elektrone koji će ionizirati tzv. plazma plin (argon, helij). Zatim dolazi do radijacijske rekombinacije, ioni plemenitog plina se rekombniraju s elektronima i dovođe do pobuđivanja atoma plina. Temperature plazme su jako visoke, oko 7000 - 10000 K.

Povezivanje plazma izvora s spektrometrom masa prvi je put objavljeno 1980. godine, a do danas je primjena ICP-MS postala rutinskom. Brza analiza uzorka s visokim stupnjem osjetljivosti razlog je zbog kojeg se ICP-MS često koristi kao sustav za anorgansku spektrometriju masa. Nakon 2000. godine ova tehnika razvila se u glavnu analitičku metodu za elementnu analizu. U sam sustav ICP-MS uzorak se unosi putem pneumatskog raspršivača odnosno komore za raspršivanje. Nakon što se formiraju ioni, spektrometar masa na njih djeluje kao filter te propušta ione s određenim omjerom mase i naboja (m/z). Propušteni se ioni zatim detektiraju. Postoji više vrsta analizatora masa: analizatori s magnetnim sektorom, kvadrupolni analizatori mase, kvadrupolna "stupica za ione", analizator vremena leta i Fourier transformirana MS, "stupica za ione". Analizator s magnetnim sektorom pomoću magneta savija putanje iona. Preteški ioni potom imaju premalo svinutu putanju, a prelagani ioni imaju previše svinutu putanju, te na taj način samo ioni određene mase dosegnu detektor. Kvadrupolni analizator mase sastoji se od četiri ravne paralelne metalne šipke (dvije su negativno nabijene, dvije pozitivno nabijene). Primjenom radiofrekventnog električnog polja i istosmjerne struje duž zajedničke osi šipki kvadrupola moguće je filtrirati ione ovisno o vrijednosti omjera mase i naboja (m/z). Kontinuiranom promjenom radiofrekventnog električnog polja moguće je analizirati željeni raspon masa. Kvadrupol se često koristi zbog brzine skeniranja. Glavni nedostatak kavdrupola je manja rezolucija nego kod ostalih analizatora. Kvadrupolna stupica za ione temelji se na hvatanju iona u "stupicu", zatim njihovo izbacivanje iz "stupice" i detektiranje. Izvedba je slična kvadrupolu, no bolja je rezolucija i osjetljivost. Analizator vremena leta podrazumijeva ubrzavanje iona električnim pulsevima, nakon čega ubrzani ioni prolaze kroz cijev bez utjecaja magnetnog polja. Ubrzani ioni imaju jednake kinetičke energije, ali različite mase iona zbog čega lakši ioni putuju brže do detektora. Analizator je slabe rezolucije, no pogodan je za velike mase. Fourier transformirana MS "stupica za ione" je analizator mase u kojem su ioni uhvaćeni u kružno gibanje u magnetskom polju pobuđeni jakim radiofrekventni pulsom. Signal nastaje u vremenskoj domeni te se Fourierovom transformacijom prevodi u spektar mase. Visoke je osjetljivosti i rezolucije te je pogodan za analizu velikih masa.¹⁹

Detektora u spektrometriji masa također ima više vrsta, no kontinuirani diodni elektronski multiplikator najčešće se koristi. Princip rada ovog detektora sličan je onom kod fotomultiplikatorske cijevi . Uređaj se sastoji od otvorene cijevi s širokim ulaznim konusom, a unutarnja strana cijevi je obložena poluvodičkim materijalom olovnim oksidom. Svi dolazni, pozitivni ioni privučeni su negativnim potencijalom u cijevi, pa udaraju u unutarnje stijenke cijevi i tako uzrokuju izbacivanje sekundarnih elektrona. Sekundarni elektroni također mogu udariti u stijenku cijevi i na taj se način izbacuju daljnji elektroni. Upravo je opisan sustav za umnožavanje elektrona. Takav se detektor zbog svoje osjetljivosti može koristiti kao detektor instrumenta ICP-MS. Potrebno je spomenuti da su prilikom analize moguće i interferencije koje u grubo možemo klasificirati prema njihovom podrijetlu: spektralne i nespektralne. Spektralne interferencije mogu nastati kao posljedica preklapanja atomskih masa različitih elemenata, a nespektralne interferencije najčešće su to interferencije same matrice koje rezultiraju pojačanjem ili smanjenjem signala u odnosu na atomsku masu. Do spektralnih interferencija može doći zbog prisutnosti kiseline koja je korištena za pripremu uzoraka, ali je i moguća tvorba oksida, hidroksida i dvostruko nabijenih vrsta koje imaju masu istu kao analit.²⁰

2.3. Analitičke metode u čvrstom stanju

U ovom radu priređeni spojevi okarakterizirani su i u čvrstom stanju, poglavito u svrhu identifikacije i kvantifikacije strukturnih promjena u miješanim spojevima. Produkti su analizirani infracrvenom spektroskopijom te tehnikama rendgenske difrakcije.

Infracrvena spektroskopija je instrumentalna metoda za detekciju i identifikaciju funkcionalnih skupina, a IR spektar se bilježi kao ovisnost apsorbiranog zračenja o valnoj duljini, odnosno valnom broju. Frekvencija zračenja koje se apsorbira podudara se s frekvencijom vibracija određene veze u molekuli (jedino takvim podudaranjem dolazi do interakcije). Spektri u infracrvenom području elektromagnetskog zračenja mogu se prikupiti u

bliskom (NIR; engl. *Near-infrared*), srednjem (MIR; engl. *Mid-infrared*) ili dalekom (FIR; engl. *Far*-infrared) infracrvenom području.

Metoda difrakcije rendgenskih zraka na praškastom (polikristalnom) uzorku koristi se za kvalitativnu i kvantitativnu analizu uzorka, za određivanje parametara jedinične ćelije, određivanje molekulske i kristalne strukture, za određivanje prosječne veličine kristalita i za određivanje preferirane orijentacije kristalita. Kada nije moguće prirediti jedinični kristal određene tvari, zadovoljavajuće kvalitete i veličine koristi se rendgenska strukturna analiza na polikristalnom uzorku. Svakom kemijskom spoju pripada njegov jedinstveni difraktogram koji sadrži difrakcijske maksimume na specifičnim difrakcijskim kutevima. Uspoređujući difraktograme praha dva dobivena spoja, može se zaključiti radi li se o istom spoju ukoliko se položaji difrakcijskih maksimuma poklapaju. Usporedbom difraktograma praha eksperimentalno dobivenog spoja sa simuliranim difraktogramom, koji je izračunat na temelju kristalne strukture spoja, može se potvrditi identitet dobivenog produkta.

Metodom difrakcije rendgenskih zraka na jediničnom kristalu (monokristalu) može se odrediti molekulska i kristalna struktura uzorka. Za difrakciju rendgenskih zraka na monokristalu koristi se jedan kristalić mikrometarskih dimenzija, za razliku od difrakcije na polikristalnom uzorku gdje je više sitnih kristalića. Pomoću ove metode dobivaju se informacije o strukturi kristala, a to su parametri jedinične ćelije, položaji atoma unutar jedinične ćelije, duljine veza između određenih atoma, kutevi između veza i međumolekulske interakcije (npr. vodikove veze)

§ 3. EKSPERIMENTALNI DIO

3.1. Materijali

Kemikalije korištene u ovom radu uključujući one koje su upotrebljene u samoj sintezi i one koje su korištene u svrhu analize sintetiziranih spojeva navedene su u tablici 1.

Naziv	Čistoća	Proizvođač
Bakrov(II) klorid dihidrat	p.a.	Kemika
Bakrov(II) klorid	-	*
Manganov(II) klorid tetrahidrat	p.a.	Kemika
Manganov(II) klorid	-	*
Bakrov(II) bromid	p.a.	Fluorochem
Manganov(II) bromid	p.a.	Fluorochem
Metilamin (EtOH)	33%	Kemika
Bakrov(II) oksid	p.a.	Kemika
Manganov(II) karbonat	p.a.	TCI
Metilamonijev klorid	min. 98%	Fluka Chemie AG
Bromovodična kiselina	p.a.	Kemika
Klorovodična kiselina	p.a.	Kemika
Dušična kiselina	67 - 69%	Fisher Chemical
Multielementna otopina "Standard IV-ICPMS-	3%	Inorganic
71A" (HNO ₃)	370	Ventures
Standardna otopina AgNO ₃	<i>c</i> = 0,05077	Sigma Aldrich
	mol/dm ³	
Otopina diklorfluoresceina (u 70%-tnom etanolu)	0,2%	Sigma Aldrich

Tablica 1. Kemikalije korištene u ovom radu

*Priređeni dehidratacijom hidrata reakcijom s tionil-kloridom.

3.2. Metode

3.2.1. Mehanokemijska sinteza

U svrhu provedbe mehanokemijske sinteze korišten je vibracijski mlin Retsch MM 400. Frekvencija mljevenja iznosila je 25 Hz. Volumen reakcijskih posudica bio je 12,5 mL, korištene su posudice od poli(tetrafluoroetilena), te kuglice od cirkonijevog oksida kao medij za mljevenje. Svaki je eksperiment mljevenja trajao 30 minuta.

3.2.2. Infracrvena spekroskopija

Spektri su snimljeni metodom prigušene totalne refleksije (engl. *Attenuated Total Reflectance*; ATR) uz četiri snimke po spektru pomoću spektrometra Spectrum Two proizvođača PerkinElmer. Razdjelnik zrake i prozori su izrađeni su od kalijeva bromida. Spektri su prikupljani u spektralnom području od 4000 cm⁻¹ do 400 cm⁻¹, uz razlučenje od 2 cm⁻¹. Spektri su obrađeni programom Perkin Elmer Spectrum. Prije snimanja prvog IR spektra, snimljen je pozadinski spektar te je napravljena korekcija. Prije snimanja uzorak je .postavljen na dijamantni nosač ATR postava i pritisnut čeličnim nastavkom.

3.2.3. Difrakcija rendgenskih zraka na praškastom uzorku

Za eksperiment difrakcije rendgenskih zraka na praškastim uzorcima korišten je difraktometar proizvođača MalvernPanalytical, model Aeris, u Bragg-Brentanovoj geometriji. Usitnjeni uzorak je nanesen u tankom sloju na jedinični kristal silicija. Intenziteti difraktiranog zračenja prikupljani su u kutnom području 2θ od 5° do 50°, uz korak od 0,02° koristeći bakrovo K α zračenje. Za prikaz i usporedbu difraktograma upotrijebljen je program DiffractWD.

3.2.4. Difrakcija rendgenskih zraka na jediničnom kristalu

Kristal odgovarajuće kvalitete namješten je u najlonsku omčicu pomoću silikonske masti. Podaci su prikupljeni pri 170 K na difraktometru Rigaku XtaLAB Synergy opremljenim s četverokružnim *kappa* goniometrom i HyPix detektorom koristeći molibdenovo Kα zračenje. Za indeksaciju i redukciju podataka korišten je program CrysAlis. Rješavanje i utočnjavanje strukture izvedeno je pomoću SHELXTL programa u programskom sučelju Olex2.

3.2.5. Spektrometrija masa uz induktivno spregnutu plazmu

Odabrani uzorci analizirani su tehnikom spektrometrije mase uz induktivno spregnutu plazmu na instrumentu Agilent 7900 ICP-MS (Agilent Technologies, Singapur) koji je opremljen standardnim Ni konusima, pneumatskim raspršivačem, kvarcnom komorom i plamenikom promjera 2.5 mm. Debljina uzorka koji se analizira je 10 mm. Mod ORS (engl. *The Agilent Octopole Reaction System*) je bez plina ili s plinom helijem. Protok plina za raspršivanje je 1,09 L/min. Napon na konusu prve leće iznosio je 0 V, a na drugoj leći –190 V. Snaga radiofrekvencijskog generatora ugođena je na 1550 W. Način detekcije je spektralni. Vrijeme integracije iznosilo je 0,1 s, uz tri ponavljanja.

3.3. Priprava bromidne soli metilamina

U jednu Erlenmeyerovu tikvicu otpipetirano je 8 mL 33%-tne otopine HBr u octenoj kiselini ($c(\text{HBr}) = 5 \text{ mol } \text{dm}^{-3}$), a u drugu 5 mL otopine metilamina u tetrahidrofuranu (THF) ($c(\text{metilamin}) = 8 \text{ mol } \text{dm}^{-3}$). Obje se otopine stave hladiti u ledenu kupelj. Lagano, uz stalno miješanje dokapava se otopina HBr u otopinu CH₃NH₂ (između dva obročna dodatka HBr, obje tikvice poklopljene su satnim stakalcima). Prilikom miješanja otopina dolazi do taloženja bijele kristalne krutine. Dobiveni produkt se profiltrira preko Hirschovog lijevka uz sniženi tlak, pa se stavi sušiti u eksikator iznad magnezijevog sulfata. Ovim postupkom dobiveno je 2,544 g produkta (CH₃NH₃Br) uz iskorištenje od 57 %. Identitet produkta potvrđen je IR spektroskopijom.

3.4. Priprava odabranih metilamonijevih halogenometalata(II), (MA)₂[MX₄], (M²⁺ = Cu²⁺, Mn²⁺, X⁻ = Cl⁻, Br⁻) otopinskom sintezom

3.4.1. Priprava odabranih metilamonijevih tetraklorometalata(II), $(MA)_2[MCl_4]$ i tetrabromometalata(II), $(MA)_2[MBr_4]$ $(M^{2+} = Cu^{2+}, Mn^{2+})$

Odgovarajuća se masa soli (CuCl₂·2H₂O, MnCl₂·4H₂O, CuBr₂, MnBr₂) izvaže u staklene posudice te joj se doda 2 mL HCl ($c = 2 \mod \text{dm}^{-3}$, u posudice s kloridnim solima) odnosno 2 mL HBr ($c = 2 \mod \text{dm}^{-3}$, u posudice s bromidnim solima). Zatim se u svaku posudicu doda

odgovarajući volumen metilamina (w = 33%, EtOH). Reakcijske posudice ostavljene su na sobnoj temperaturi.

Vrijeme potrebno da metilamonijevi tetraklorometalati(II) i tetrabromometalati(II) iskristaliziraju različito je, kao i izgled samih kristala (tablica 2.). Dobivenim produktima snimljen je IR spektar.

Tablica 2. Podaci relevantni za provedene sinteze metilamonijevih halogenometalata(II), $(MA)_2[MX_4], (M^{2+} = Cu^{2+}, Mn^{2+}, X^- = Cl^-, Br^-)$ otopinskom sintezom

Bromidna/kloridna sol	<i>m</i> (sol) / mg	V (MA) / μL	Vrijeme potrebno da produkt iskristalizira	Izgled	Očekivani produkt
CuCl ₂ ·2H ₂ O	17,0	25	~ 12 dana	Kristali zlatne boje	$(MA)_2[CuCl_4]$
MnCl ₂ ·4H ₂ O	19,8	25	~ 15 dana	Smjesa: Bijeli i blago ružičasti kristali	(MA) ₂ [MnCl ₄]
CuBr ₂	22,3	25	~ 34 dana	Tamnoljubičasti kristali	(MA) ₂ [CuBr ₄]
MnBr ₂	21,5	25	/	/	$(MA)_2[MnBr_4]$

3.4.2. Priprava miješanih metilamonijevih halogenokuprata(II), $(MA)_2[CuCl_xBr_{(4-x)}]$

Izvaže se 200 mg (2,5 mmol) bakrova(II) oksida (CuO) te se mikropipetom doda određeni volumen koncentrirane otopine HCl i koncentrirane otopine HBr (ukupna množina dodanog halogenida iznosi 20 mmol). Množinski udjeli dodanog kloridnog iona odnosno bromidnog iona dani su u tablici 3. Na reakcijsku smjesu potom je pažljivo dodano 1,5 mL vode, pa na to 2,5 mL (5 mmol) metilamina (MA) u THF-u (voda i metilamin dodaju se mikropipetom). Staklene su posudice zatvorene čepom i ostavljene na sobnoj temperaturi.

Nakon dva tjedna u otopinama 1, 2 i 3 bili su vidljivi iskristalizirani produkti, koji su profiltrirani preko Hirschovog lijevka uz sniženi tlak i osušeni na zraku. Nakon još tri dana izolirani su kristali iz otopina 4, 5, 6 i 7 na isti način kao i prethodni (profiltrirani preko Hirschovog lijevka uz sniženi tlak i osušeni na zraku). Matičnice 3 – 7 ostavljene su na sobnoj temperaturi, te su naknadno iz njih izolirani novonastali kristali. Iz otopina 8 – 11 nisu iskristalizirali produkti. Svi produkti dobiveni u ovom pokusu (uključujući kristale iz

matičnica) podvrgnuti su analizama: IR spektroskopija, difrakcija rendgenskog zračenja na jediničnom kristalu, spektrometrija masa uz induktivno spregnutu plazmu.

Zamijećen je nastanak veće količine produkta iz otopina 1, 2 i 3 nego iz otopina 4 – 7. Boja kristala kreće se od zlatnožute (1), ljubičastocrvene (2, 3), ljubičaste (4, 5) i tamnoljubičaste (6, 7). Opažanja su sukladna različitoj raspodjeli množinskih udjela halogenida u svakoj pojedinoj otopini.

Otonino	n(Cl ⁻) /	<i>n</i> (Br ⁻) /	<i>V</i> (HCl) /	<i>V</i> (HBr) /	Izalad produkto
Otopina	mmol	mmol	mL	mL	izgled produkta
1	20	0	1,67	0,00	Zlatnožuti kristali
2	18	n	1 50	0.22	Ljubičastocrveni
2	10	2	1,50	0,22	kristali
2	16	Λ	1 22	0.45	Ljubičastocrveni
5	10	4	1,55	0,43	kristali
4	14	6	1,17	0,67	Ljubičasti kristali
5	12	8	1,00	0,90	Ljubičasti kristali
6	10	10	0.83	1 12	Tamnoljubičasti
0	10	10	0,05	1,12	kristali
7	8	12	0.67	1 35	Tamnoljubičasti
/	0	12	0,07	1,55	kristali
8	6	14	0,50	1,57	/
9	4	16	0,33	1,80	/
10	2	18	0,17	2,02	/
11	0	20	0,00	2,25	/

Tablica 3. Množine halogenida, volumeni kiselina dodanih u otopinskoj sintezi miješanih metilamonijevih halogenokuprata(II), (MA)₂[CuCl_xBr_(4-x)] i karakterizacija nastalog produkta

3.4.3. Priprava miješanih metilamonijevih tetraklorometalata(II), (MA)₂[Cu_xMn_(1-x)Cl₄]

U šest staklenih posudica izvagana je određena masa manganova(II) karbonata (MnCO₃) i bakrova(II) oksida (CuO). Ukupna množina (MnCO₃ i CuO zajedno) iznosi 2,5 mmol, točne vrijednosti mase zapisane su u tablici 4.

Tablica 4. Množine i mase manganova(II) karbonata i bakrova(II) oksida upotrebljene u otopinskoj sintezi metilamonijevih klorometalata(II), (MA)₂[Cu_xMn_(1-x)Cl₄]

Otonina	<i>n</i> (MnCO ₃) /	<i>m</i> (MnCO ₃) /	n(CuO) /	<i>m</i> (CuO) /	V(HCl) /
Otopina	mmol	mg	mmol	mg	mL
1	2,5	287	0,0	0	1,67
2	2,0	230	0,5	40	1,67
3	1,5	172	1,0	80	1,67
4	1,0	115	1,5	120	1,67
5	0,5	57	2,0	160	1,67
6	0,0	0	2,5	200	1,67

U svaku je posudicu zatim mikropipetom dodano 1,67 mL koncentrirane otopine HCl što je izazivalo burnu reakciju. Najburnija je reakcija kod dodatka u posudicu sa samim MnCO₃, a smanjuje se kako je veći udio CuO u smjesi. Na reakcijsku smjesu se potom je dodano 1,5 mL vode, te nakon toga 2,5 mL metilamina u THF-u. Uslijed dodatka metilamina dolazi do zagrijavanja reakcijske smjese. Staklene su posudice potom zatvorene i ostavljene na sobnoj temperaturi.

Iz prethodno opisanih otopina dobiveni su kristali različitih sastava unutar iste otopine, što se lako zaključuje već po različitim bojama kristala. Dobiveni produkti analizirani su uz pomoć IR spektroskopije, difrakcije rendgenskog zračenja na prahu i jediničnom kristalu.

3.5. Priprava odabranih metilamonijevih halogenometalata(II), (MA)₂[MX₄], (M²⁺ = Cu²⁺, Mn²⁺, X⁻ = Cl⁻, Br⁻) mehanokemijskom sintezom

3.5.1. Priprava metilamonijevih tetraklorometalata(II), $(MA)_2[MCl_4]$ i tetrabromometalata(II), $(MA)_2[MBr_4]$ $(M^{2+} = Cu^{2+}, Mn^{2+})$

Odgovarajuća količina metilamonijevog klorida (za pripravu tetraklorometalata(II)) izvagana je i prebačena u teflonsku posudicu za mljevenje. Nakon toga je izvagana odgovarajuća količina soli bakra (CuCl₂·2H₂O, CuCl₂) za pripremu metilamonijevih tetraklorokuprata(II), odnosno

soli mangana (MnCl₂·4H₂O, MnCl₂) za pripremu metilamonijevih tetrakloromanganata(II). Odnos množina soli metilamina i bakrove ili manganove soli bio je 2:1. Isto vrijedi kod priprave tetrabromometalata(II), odvagan je metilamonijev bromid i prebačen u teflonsku posudicu, a zatim izvagana odgovarajuća količina soli bakra (CuBr₂) za pipremu (MA)₂[CuBr₄] i soli mangana (MnBr₂) za pripremu (MA)₂[MnBr₄]. U ovom eksperimentu prilagođene su količine dodanih tvari tako da okvirna masa smjese u teflonskoj posudici bude oko 150 mg. Zatim je u posudicu stavljena kuglica od cirkonijeva(IV) oksida (ZrO₂), posudica je zatvorena i dodatno učvršćena parafilmom. Mljevenje je trajalo 30 min.

Produkt je izoliran na način da se inertnom plastičnom žličicom (ili spatulicom) sastrugalo s cirkonijeve kuglice i unutrašnjosti teflonskih posudica. Dobivenim produktima snimljen je IR spektar, te difraktogram praha.

3.5.2. Priprava miješanih metilamonijevih halogenometalata(II), $(MA)_2[MCl_xBr_{(4-x)}]$ $(M^{2+} = Cu^{2+}, Mn^{2+})$

Analogno prethodno opisanoj izvedbi mehanokemijske sinteze (poglavlje 3.7.) pripravljeni su miješani metilamonijevi halogenometalati(II) (MA)₂[MCl_xBr_(4-x)] pri čemu M²⁺ označava Cu²⁺ ili Mn²⁺. Jedina razlika je što je u teflonsku posudicu izvagan metilamonijev klorid sa bromidnim solima bakra(II) (CuBr₂) i mangana(II) (MnBr₂), a metilamonijev bromid s kloridnim solima bakra(II) (CuCl₂·2H₂O, CuCl₂) i mangana(II) (MnCl₂·4H₂O, MnCl₂). Množine soli metilamina i bakrovih(II) odnosno manganovih(II) odnose se 2:1. Izoliranim su produktima prikupljeni IR spektari, kao i difraktogrami praškastih uzoraka.

3.5.3. Priprava miješanih metilamonijevih tetraklorometalata(II), (MA)₂[Cu_xMn_(1-x)Cl₄] i tetrabromometalata(II), (MA)₂[Cu_xMn_(1-x)Br₄]

Za pripremu miješanih metilamonijevih tetraklorometalata(II) izvagano je 135,04 mg (2 mmol) CH₃NH₃Cl i prebačeno u teflonsku posudicu za mljevenje. Zatim je izvagana određena količina MnCl₂ i CuCl₂. Postupak je ponovljen šest puta, odnosno pripremljeno je šest reakcijskih smjesa za mljevenje koje se razlikuju u množinskom udjelu bakrova(II) klorida i manganova(II) klorida. Točne količine polaznih krutina korištenih za sintezu iskazane su u tablici 5.

Tablica 5. Množine i mase manganova(II)	klorida i bakrova(II) klorida upotrebljene u
mehanokemijskoj sintezi miješanih metilamo	nijevih tetraklorometalata(II), (MA) ₂ [Cu _x Mn ₍₁₋
_{x)} Cl ₄]	

Smjesa	n(MnCl ₂) / mmol	$m(MnCl_2) / mg$	n(CuCl ₂) / mmol	<i>m</i> (CuCl ₂) / mg
1	1	126	0	0
2	0,8	101	0,2	26,89
3	0,6	76	0,4	53,78
4	0,4	50	0,6	80,67
5	0,2	25	0,8	107,56
6	0	0	1	134,45

Za sintezu miješanih metilamonijevih tetrabromometalata(II) izvagano je 111,97 mg (1 mmol) CH₃NH₃Cl i prebačeno u posudicu od teflona namjenjenu za mljevenje. Potom je izvagana određena količina MnBr₂ i CuBr₂. Postupak je analogno onom za pripremu miješanih metilamonijevih tetraklorometalata(II) ponovljen šest puta. Količine manganova(II) bromida i bakrova(II) bromida dane su u tablici 6.

Tablica 6. Množine i mase manganova(II) bromida i bakrova(II) bromida upotrebljene u mehanokemijskoj sintezi miješanih metilamonijevih tetrabromometalata(II),

Smjesa	<i>n</i> (MnBr ₂) / mmol	$m(MnBr_2) / mg$	<i>n</i> (CuBr ₂) / mmol	<i>m</i> (CuBr ₂) / mg
1	0,5	107	0	0
2	0,4	86	0,1	22,34
3	0,3	64	0,2	44,67
4	0,2	43	0,3	67,01
5	0,1	21	0,4	89,34
6	0	0	0,5	111,68

$(MA)_2[Cu_xMn_{(1-x)}Cu_xMn_$	[]4]
--	------

Sve reakcije su provedene na jednak način. U teflonske posudice su izvagane količine reaktanata dane u tablicama 5 i 6 te je ubačena kuglica od cirkonijeva (IV) oksida. Potom su posudice zatvorene, dodatno pričvršćene parafilmom te postavljene na vibracijski mlin. Program mljevenja postavljen je na 30 min, nakon čega su produkti sastrugani pomoću plastične

žličice sa stijenka teflonske posudice i kuglice. Prikupljeni su IR spektri i difraktogrami praha svih dobivenih produkata.

3.6. Analiza odabranih produkata pomoću spektrometrije masa uz induktivno spregnutu plazmu

Popis odabranih produkata koji su analizirani pomoću spektrometrije masa uz induktivno spregnutu plazmu nalazi se u tablici 7. Odvagano je 1 do 2 mg uzorka u plastičnu odmjernu bočicu od 50,00 mL. Uzorak je zatim otopljen u manjoj količini 1 %-tne vodene otopine HNO₃ (prethodno je pripravljeno 500 mL 1 %-tne HNO₃; za pripremu je korištena ishodna otopina HNO₃ (67-69%)). Nakon što je uzorak otopljen, plastična odmjerna tikvica nadopunjena je 1 %-tnom HNO₃ do oznake 50 mL. Pripravljena se otopina uzorka dobro promućka.

Otpipetirano je 100 μ L pripravljene otopine u novu odmjernu plastičnu bočicu od 50,00 mL i nadopunjeno 1 %-tnom vodenom otopinom HNO₃ do oznake 50 mL. Otopina je promućkana. Opisani postupak ponovljen je za svih četrnaest uzoraka.

Tablica 7. Produkti odgovarajućih sinteza (metilamonijev bromokuprat(II), (MA)₂[CuBr₄], metilamonijevi halogenokuprati(II) (MA)₂[CuCl_xBr_(4-x)], metilamonijev klorometalat(II) (MA)₂[Cu_xMn_(1-x)Cl₄]) u analizi spektrometrijom masa uz induktivno spregnutu plazmu; mase odvaga korištene u ovoj analizi

Uzorak	Očekivani produkt (sinteza)	<i>m</i> / mg
1	(MA) ₂ [CuBr ₄] (sinteza 3.4.1.)	1,730
2	$(MA)_2[CuCl_xBr_{(4-x)}]$ (sinteza 3.4.2., otopina 1)	1,770
3	$(MA)_2[CuCl_xBr_{(4-x)}]$ (sinteza 3.4.2., otopina 2)	1,855
4	$(MA)_2[CuCl_xBr_{(4-x)}]$ (sinteza 3.4.2., otopina 3)	1,950
5	$(MA)_2[CuCl_xBr_{(4-x)}]$ (sinteza 3.4.2., otopina 3, matičnica)	1,940
6	$(MA)_2[CuCl_xBr_{(4-x)}]$ (sinteza 3.4.2., otopina 4)	1,495
7	(MA) ₂ [CuCl _x Br _(4-x)] (sinteza 3.4.2., otopina 4, matičnica)	1,450
8	$(MA)_2[CuCl_xBr_{(4-x)}]$ (sinteza 3.4.2., otopina 5)	1,200
9	$(MA)_2[CuCl_xBr_{(4-x)}]$ (sinteza 3.4.2., otopina 5, matičnica)	1,495
10	$(MA)_2[CuCl_xBr_{(4-x)}]$ (sinteza 3.4.2., otopina 6)	1,420
11	$(MA)_2[CuCl_xBr_{(4-x)}]$ (sinteza 3.4.2., otopina 6, matičnica)	1,975
12	$(MA)_2[CuCl_xBr_{(4-x)}]$ (sinteza 3.4.2., otopina 7)	1,895
13	(MA) ₂ [CuCl _x Br _(4-x)] (sinteza 3.4.2., otopina 7, matičnica)	1,640
14	$(MA)_2[Cu_xMn_{(1-x)}Cl_4]$ (sinteza 3.4.3., otopina 2)	1,550

Pripremljene razrijeđene otopine uzoraka, prethodno opisane, analizirane su pomoću spektrometra mase uz induktivno spregnutu plazmu. Za potrebe točne analize sastava metala u

uzorku, korišten je standard "Standard IV-ICPMS-71A" koji sadrži poznate količine elemenata. Na temelju dobivenih rezultata izračunat je maseni udio metala (Cu, Mn) u uzorcima.

Precizna detekcija metala u uzorcima tehnikom ICP-MS omogućena je korištenjem destilirane deionizirane vode i vodene otopine HNO₃ (67-69%).

3.7. Određivanje ukupnih halogenida u odabranim spojevima prema Fajansovoj metodi

Popis spojeva u kojima su određivani ukupni halogenidi prema Fajansovoj metodi jednak je onom koji je analiziran tehnikom ICP-MS (izuzev uzorka 12 koji u potpunosti potrošen tijekom prethodno provedenih analiza). Mase uzoraka koje su otopljene u vodi nalaze se u tablici 8.

Odvagano je oko 15 mg uzorka (na 0,01 mg točnosti) u Erlenmeyerovu tikvicu od 250 mL, te se potom uzorak otopljen u 25 mL destilirane vode. Pripremljenoj otopini dodane su 3 kapi etanolne otopine diklorfluoresceina, te je zatim otopina uzorka titrirana standardnom otopinom AgNO₃ ($c = 0,05077 \text{ mol/dm}^3$) uz snažno mućkanje. Završetak titracije označava pojava ružičastog taloga.

Tablica 8. Mase	e odvaga produk	ata odgovarajućih sin	teza (metilamonijev b	romokuprat(II),
$(MA)_2[CuBr_4],$	metilamonijevi	halogenokuprati(II)	$(MA)_2[CuCl_xBr_{(4-x)}],$	metilamonijev
klorometalat(II)	$(MA)_2[Cu_xMn_{(1-x)}]$	_(x) Cl4]) u svrhu određiv	vanja ukupnih halogeni	da Fajansovom
metodom				

Uzorak	Očekivani produkt (sinteza)	<i>m</i> / mg
1	(MA) ₂ [CuBr ₄] (sinteza 3.4.1.)	18,14
2	$(MA)_2[CuCl_xBr_{(4-x)}]$ (sinteza 3.4.2., otopina 1)	15,00
3	$(MA)_2[CuCl_xBr_{(4-x)}]$ (sinteza 3.4.2., otopina 2)	15,00
4	$(MA)_2[CuCl_xBr_{(4-x)}]$ (sinteza 3.4.2., otopina 3)	15,10
5	$(MA)_2[CuCl_xBr_{(4-x)}]$ (sinteza 3.4.2., otopina 3, matičnica)	15,20
6	$(MA)_2[CuCl_xBr_{(4-x)}]$ (sinteza 3.4.2., otopina 4)	14,60
7	$(MA)_2[CuCl_xBr_{(4-x)}]$ (sinteza 3.4.2., otopina 4, matičnica)	15,80
8	$(MA)_2[CuCl_xBr_{(4-x)}]$ (sinteza 3.4.2., otopina 5)	14,96
9	$(MA)_2[CuCl_xBr_{(4-x)}]$ (sinteza 3.4.2., otopina 5, matičnica)	16,10
10	$(MA)_2[CuCl_xBr_{(4-x)}]$ (sinteza 3.4.2., otopina 6)	14,90
11	$(MA)_2[CuCl_xBr_{(4-x)}]$ (sinteza 3.4.2., otopina 6, matičnica)	15,45
12	$(MA)_2[CuCl_xBr_{(4-x)}]$ (sinteza 3.4.2., otopina 7)	/
13	$(MA)_2[CuCl_xBr_{(4-x)}]$ (sinteza 3.4.2., otopina 7, matičnica)	14,96
14	$(MA)_2[Cu_xMn_{(1-x)}Cl_4]$ (sinteza 3.4.3., otopina 2)	14,60
§ 4. REZULTATI I RASPRAVA

4.1. Pripravljeni spojevi

U okviru ovog rada pripravljeni su klorokuprati(II) i kloromanganati(II), bromokuprati(II) i bromomanganati(II), te miješani sustavi otopinskom i mehanokemijskom sintezom. Otopinska sinteza spojeva provedena je uz vodu kao otapalo, dok su mehanokemijske sinteze provedene bez prisutnosti otapala (NG; engl. *Neat grinding*). Pregled pripravljenih spojeva u okviru ovog rada navedeni su u tablici 9. Svi su pripravljeni spojevi okarakterizirani IR spektroskopijom i difrakcijom rendgenskih zraka na polikristalnom (praškastom) uzorku, dok je nad miješanim sustavima provedena analiza spektrometrijom masa uz induktivno spregnutu plazmu, kako bi im se precizno utvrdio sastav, te difrakcijom rendgenskih zraka na jediničnom kristalu.

Spoj	Način sinteze	Izgled
CH ₃ NH ₃ Br	Otopinska (octena kiselina, THF)	Pahuljasti, bijele boje
$(MA)_2[CuCl_4]$	Otopinska (voda)	Kristali zlatne boje
(MA) ₂ [MnCl ₄]	Otopinska (voda)	Smjesa bijelih kristala i kristala blago ružičaste boje
$(MA)_2[CuBr_4]$	Otopinska (voda)	Kristali tamnoljubičaste boje
$(MA)_2[CuCl_xBr_{(4-x)}]$ $(1 \le X \le 4)$	Otopinska (voda)	Kristali zlatno-žute boje (x=4); Kristali ljubičastocrvene, ljubičaste, tamnoljubičaste boje (s opadanjem vrijednosti x)
$(MA)_2[Cu_xMn_{(1-x)}Cl_4]$ $(0\leq X\leq 1)$	Otopinska (voda)	Kristali različitog sastava iz iste otopine
(MA) ₂ [CuCl ₄] (reaktant: CuCl ₂ ×2H ₂ O)	Mehanokemijska	Praškasti, žute boje
(MA) ₂ [CuCl ₄] (reaktant: CuCl ₂ bezvodni)	Mehanokemijska	Praškasti (suši nego onaj dobiven reakcijom CuCl ₂ ×2H ₂ O), žute boje

Tablica 9. Popis svih tipova sintetiziranih spojeva u sklopu diplomskog rada, njihov opis i način sinteze

(MA) ₂ [MnCl ₄] (reaktant: MnCl ₂ ×4H ₂ O)	Mehanokemijska	Praškasti, svijetloružičaste boje		
(MA) ₂ [MnCl ₄] (reaktant: MnCl ₂ bezvodni)	Mehanokemijska	Praškasti (suši nego onaj dobiven reakcijom MnCl ₂ ×4H ₂ O), svijetloružičaste boje		
(MA) ₂ [CuBr ₄]	Mehanokemijska	Praškasti, tamnoljubičaste boje		
(MA) ₂ [MnBr ₄]	Mehanokemijska	Razmaziva krutina svijetloružičaste boje		
(MA) ₂ [CuCl _x Br _(4-x)] (reaktanti: CH ₃ NH ₃ Br, CuCl ₂ bezvodni i CuCl ₂ ×2H ₂ O)	Mehanokemijska	Praškasti, smeđe boje		
(MA) ₂ [CuCl _x Br _(4-x)] (reaktanti: CH ₃ NH ₃ Cl, CuBr ₂)	Mehanokemijska	Praškasti, smeđe boje		
(MA) ₂ [MnCl _x Br _(4-x)] (reaktanti: CH ₃ NH ₃ Br, MnCl ₂ bezvodni i MnCl ₂ ×4H ₂ O)	Mehankemijska	Praškasti, svijetloružičaste boje (suši onaj dobiven reakcijom bezvodnog MnCl ₂)		
(MA) ₂ [MnCl _x Br _(4-x)] (reaktanti: CH ₃ NH ₃ Cl, MnBr ₂)	Mehanokemijska	Razmaziva krutina svijetloružičaste boje		
$(MA)_2[Cu_xMn_{(1-x)}Cl_4]$ $(0 \le X \le 1)$	Mehanokemijska	Praškasti, s porastom vrijednosti X boja se mijenja od blago ružičaste boje (X=0) preko smeđe boje koja postepeno svijetli do žute boje (X=1)		
$(MA)_2[Cu_xMn_{(1-x)}Br_4]$ $(0 \le X \le 1)$	Mehanokemijska	Razmaziva krutina blago ružičaste boje (X=0); praškasti, crne boje s zelenim odsjajem (razlike u boji gotovo nisu vidljive; 0 <x≤1)< td=""></x≤1)<>		

Otopinskom sintezom iz CH₃NH₃Br i MnBr₂ uz dodatak HBr nije dobiven očekivani produkt (MA)₂[MnBr₄] (poglavlje 3.4.1.). Budući da je riječ o pripravi spomenutog spoja u vodenoj otopini (dodana HBr nije koncentrirana) moguće je da zbog relativno velike topljivosti spoj nije iskristalizirao niti nakon duljeg vremena. Prilikom priprave miješanih metilamonijevih halogenokuprata(II), (MA)₂[CuCl_xBr_(4-x)] (poglavlje 3.4.2.), iz otopina koje su sadržavale veći množinski udio dodanih bromidnih iona u odnosu na dodane kloridne ione (iz otopina 8, 9, 10

i 11) nisu iskristalizirali produkti. Pretpostavlja se da bi razlog mogao biti izrazita topljivost bromometalatnih soli. Otopinska sinteza miješanih metilamonijevih tetraklorometalata(II), $(MA)_2[Cu_xMn_{(1-x)}Cl_4]$, (poglavlje 3.4.3.) rezultirala je kristalima različitih sastava iz iste otopine, što se može objasniti različitim topljivostima, zbog čega dolazi do postepene kristalizacije prvo manje topljivih, pa više topljivih faza.

Iz otopine br. 2 uzet je homogeni uzorak tamnocrvene boje koji je analiziran metodom ICP-MS. Sve mehanokemijske sinteze uspješno su provedene.

4.2. Karakterizacija spojeva

4.2.1. Infracrvena spektroskopija

Dobivenim, prethodno opisanim spojevima (poglavlje 4.1. Pripravljeni spojevi) snimljeni su IR spektri u svrhu spektroskopske karakterizacije materijala. Produkti ovog eksperimentalnog rada snimljeni su u MIR području (2,5 - 50 μ m; 4000 – 400 cm⁻¹) ATR tehnikom (engl. *Attenuated total reflection*). Dobiveni MIR-FTIR spektri najviše doprinose identifikaciji organskih kationa u strukturi, no značajni su i u razlikovanju aniona koji čine anorgansku okosnicu slojevitih 2D HOAH.

Valni broj / cm ⁻¹	Opis vibracije
3020,9	v _s (N–H)
2965,6	v _s (C–H)(CH ₃)
1614,9	$\delta_{ m sc}(m NH_2)$
1569,7	$\delta_{\rm as}(-N-H)$
1494,4	$\delta_{\rm s}(-{ m N-H})$
1404	$\delta_{ m sc}(m CH_2)$
1253,4	$\delta_{ m tw}(m NH_2)$
1002,3	v(C–N)
917	$\delta_{ m rc}(m CH_2)$

Tablica 10. Odabrane vrpce IR spektra metilamonijeva bromida, CH₃NH₃Br

Asignirane vrpce IR spektra metilamonijevog bromida nalaze se u tablici 10 (IR spektar u poglavlju 8. Dodatak , slika D1). Opisane su karakteristične vrpce poput one široke za simetrične istezne vibracije N–H veze (oko 3020 cm⁻¹), zatim na nešto nižem valnom broju oštra vrpca simetrične istezne vibracije C–H veze metilenske skupine (2965,6 cm⁻¹). Više je karakterističnih vrpci deformacijskih vibracija N–H veze i same NH₂ skupine (1615 – 1490 cm⁻¹). Na spektru je potom pozicionirana vrpca deformacijske vibracije metilenske skupine (1404 cm⁻¹), te samostalna vrpca deformacije amino skupine (1253,4 cm⁻¹). Vrpca velikog intenziteta ispod 1000 cm⁻¹ rezultat je deformacije CH₂ skupine.

Spektri dobiveni infracrvenom spektroskopijom ostalih početnih kemikalija u ovom eksperimentu (ostalih reaktanata) prikazani su na slikama D2-D9 (poglavlje 8. Dodatak).

Infracrveni spektri metilamonijevih halogenometalata(II) dobivenih otopinskom sintezom (poglavlje 3.4.1.) prikazani su na slikama D10-D12 (poglavlje 8. Dodatak). Uspoređujući spektar (MA)₂[CuCl₄] (slika D10) sa spektrom metilamina korištenog u sintezi tog spoja (slika D3) mogu se primjetiti slične vrpce koje polaze od istih vibracija (tablica 11), no međusobno su pomaknute zbog različitog okruženja i interakcija. Vrpce simetričnih i asimetričnih istezanja N-H veza metilamina (3373,9 - 3306,9 cm⁻¹) preklapaju se u spektru spoja (MA)₂[CuCl₄] (3106,2 cm⁻¹) i pomaknute su prema manjim valnim brojevima odnosno većim valnim duljinama. Takvo ponašanje je u skladu s očekivanjima zbog različitih interakcija i vodikovih veza unutar spoja. Istezanja C-H veze unutar metilne skupine uzrokuju vrpce (2964,3 i 2897,4 cm⁻¹) koje su nešto većeg intenziteta u odnosu na vrpce IR spektra metilamina i s malim pomakom (2975,1 i 2878,7 cm⁻¹). Područje od 2800 do 1700 cm⁻¹ kod metilamina je jednolično, bez karakterističnih vrpci, dok su na IR spektru proučavanog spoja vidljive vrpce slabog intenziteta što je i razumljivo budući da je u pitanju složeniji sastav s većim brojem različitih interakcija. S druge strane, doprinos vibracija od strane CuCl₂·2H₂O (slika D4) su najvjerojatnije vrpce istezanja OH skupine što je uzrokovalo dodatno proširenje vrpce pri 3106,2 cm⁻¹, te utjecaj vrpce deformacije striženja OH₂ (CuCl₂·2H₂O; 1577,9 cm⁻¹) na vrpcu spoja (MA)₂[CuCl₄] pri 1572,5 cm⁻¹ (nije moguće u potpunosti ukloniti vodu). Vrpca slabog intenziteta koja odgovara deformaciji uvijanja NH2 skupine kod metilamina (1272.7 cm⁻¹) pomiče se prema manjim valnim brojevima (1256,7 cm⁻¹), uz pojačanje intenziteta. Vrpca srednjeg intenziteta pri 1002,4 cm⁻¹ rezultat je istezne vibracije primarnog amina (metilamin; 1088 cm⁻¹). Susjedna vrpca jačeg intenziteta (927,45 cm⁻¹) je rezultat sprege vibracije istezanja C-N veze i vibracije istezanja C-H veze (metilamin; 1047,9 cm⁻¹).

Valni broj / cm ⁻¹	Opis vibracije
3106,2	v(N–H)
2964,3	<i>v</i> _{as} (C–H)(CH ₃)
2897,4	<i>v</i> _s (C–H)(CH ₃)
1572,5	$\delta_{ m sc}(m OH_2)$
1497,6	$\delta_{ m sc}(m NH_2)$
1414,6	$\delta_{ m sc}(m CH_2)$
1256,7	$\delta_{ m tw}(m NH_2)$
1002,4	v(C–N)
927,45	$v(C-N)$ u sprezi s $v(C-H)(CH_3)$

Tablica 11. Odabrane vrpce IR spektra spoja (MA)₂[CuCl₄] (produkt otopinske sinteze)

Očekivani produkt otopinske sinteze metilamina i MnCl₄·2H₂O je (MA)₂[MnCl₄]. Iz spomenute kristalizacijske posudice iskristalizirali su blago ružičasti kristali i bijeli kristali. Spektri bijelih kristala, blago ružičastih kristala i smjese prikazani su na slici D11. Spektar smjese kristala gotovo se podudara s spektrom bijelih kristala, dok je spektar blago ružičastih kristala nešto drugačiji. Budući da je kasnijom mehanokemijskom sintezom (metilamonijev klorid i MnCl₄·4H₂O) dobiven čisti svijetlo ružičasti produkt pretpostavlja se da je i u otopinskoj sintezi očekivani (MA)₂[MnCl₄] upravo ružičasti produkt (asigniran je njegov spektar; tablica 12, a spektar bijelih kristala samo komentiran

Valni broj / cm ⁻¹	Opis vibracije
3170,4	v _{as} (N–H)
3127,6	v _s (N–H)
2956,3	<i>v</i> _{as} (C–H)(CH ₃)
2777,0-2750,2	<i>v</i> _s (C–H)(CH ₃)
1578,6	$\delta_{ m sc}(m OH_2)$
1497,9	$\delta_{ m sc}(m NH_2)$
1417,2	$\delta_{ m sc}(m CH_2)$
1261,2	$\delta_{ m tw}(m NH_2)$
997,48	v(C–N)
927,52	v(C–N) u sprezi s v(C–H)(CH ₃)

Tablica 12. Odabrane vrpce IR spektra spoja (MA)₂[MnCl₄] (produkt otopinske sinteze)

Vrpce asimetričnih i simetričnih vibracija istezanja N–H veze (3170,4 i 3127,6 cm⁻¹) jasnije su vidljive, većeg intenziteta i pomaknute prema manjim valnim duljinama u odnosu na one u spektru metilamina (slika D3). Većeg su intenziteta i vrpce vibracije istezanja veze C–H (2956,3 cm⁻¹ i 2777,0 – 2750,2 cm⁻¹). Pozicija vrpce pri 2956,3 cm⁻¹ gotovo se poklapa se vrpcom u spektru metilamina, ali i u spektrima bijelih kristala. Između 2700 i 1800 cm⁻¹ nalaze vrpce manjeg intenziteta najčešće kao rezultat sprega različitih vibracija. Sljedeća vrpca jakog intenziteta (1578,6 cm⁻¹) kao i kod spoja (MA)₂[CuCl₄] dolazi od deformacijske vibracije striženja OH₂ skupine, koja ukazuje da se u strukturi nalazi zaostala voda. Striženje amino skupine uzrokuje vrpcu pri 1497,9 cm⁻¹. Deformacijska vibracija CH₂ skupine (striženje; 1417,2 cm⁻¹), uvijanje amino skupine (1261,2 cm⁻¹), istezanje C–N veze samostalno (997,48 cm⁻¹) i u sprezi s istezanjem C–H skupine (927,52 cm⁻¹) uzrokuju oštre vrpce jakih intenziteta. Primijetimo da se vrpce ne razlikuje znatno od položaja vrpca istoimenih vibracija metilamonijevog klorokuprata (II) (tablica 11; slika D10).

Otopinska sinteza iz metilamina i manganova(II) bromida nije rezultirala nastankom kristala očekivanih metilamonijevih tetrabromomanganata(II). Stajanjem na sobnoj temperaturi, u otvorenoj staklenoj reakcijskoj posudici nalazi se sve gušća otopina, bez traga kristalima. Metilamonijev tetrabromokuprat(II) sintetiziran je i snimljen je njegov IR spektar prikazan na slici D12 (poglavlje 8. Dodatak).

28

Valni broj / cm ⁻¹	Opis vibracije
3298,9 - 2972,4	v(N–H)
2961,7	vas(C–H)(CH ₃)
2736,8	<i>v</i> _s (C–H)(CH ₃)
1572,5	$\delta_{ m sc}(m OH_2)$
1487,3	$\delta_{ m sc}(m NH_2)$
1416	$\delta_{\rm sc}({ m CH_2})$
1257,7	$\delta_{ m tw}(m NH_2)$
991,08	v(C–N)
922,45	v(C–N) u sprezi s v(C–H)(CH ₃)

Tablica 13. Odabrane vrpce IR spektra spoja (MA)₂[CuBr₄] (produkt otopinske sinteze)

Za razliku od spektara dva prethodno opisana metilamonijeva tetraklorometalata(II), na IR spektru spoja (MA)₂[CuBr₄] može se vidjeti široka vrpca na području od oko 3650 - 3300 cm⁻¹. Budući da se vrpce vibracija istezanja N–H veze nalaze kao i kod (MA)₂[MnCl₄] (slika D11) i (MA)₂[CuCl₄] (slika D10) na području ispod 3200 cm⁻¹, može se naslutiti da je široka vrpca na većim valnim brojevima rezultat vibracije istezanja O–H skupine. Prisutnost vode u uzorku potkrijepljuje činjenica da se kristalni produkt nakon stajanja na sobnoj temperaturi neko vrijeme pretvorio u tekućinu. Najznačajnije su vrpce spektra asignirane u tablici 13.

Spektri metilamonijevih tetrahalogenometalata(II) u većoj se mjeri preklapaju, te je i opis vrpca odgovarajućih vibracija gotovo jednak, uz mali pomak.

Iz sedam reakcijskih smjesa od ukupno jedanaest koje se razlikuju u množinskom udjelu kloridnih odnosno bromidnih iona dobiveni su kristali od zlatnožute boje, preko ljubičastocrvenih do tamnoljubičastih (kako raste udio dodanih bromidnih iona u smjesi). Iz otopina pod rednim brojem 8, 9, 10 i 11, u kojima je bio najveći udio bromida, nisu dobiveni kristali.

Iz otopina 1 i 2 (najveći udio klorida) najbrže dolazi do kristalizacije, iz tih otopina je izolirano najviše produkata. Otopine pod rednim brojevima od 3 do 7 profiltrirane su prilikom pojave prvih kristala, te su njihove matičnice sačuvane i dalje praćene. Dobivenim produktima, uključujući i kasnije nastale kristale iz matičnica 3 do 7 snimljen je IR spektar.

Slika 6. Infracrveni spektri miješanih metilamonijevih halogenokuprata(II), (MA)₂[CuCl_xBr_(4-x)], izoliranih iz otopina 1–7 (različitih množinskih udjela halogenida)

Na slici 6 prikazani su spektri miješanih metilamonijevih halogenokuprata(II) izoliranih iz otopina 1–7. Položaji vrpci poklapaju se kod svih sedam produkata. Najznačajnija razlika u spektrima je izgled široke vrpce koja je rezultat simetričnog i asimetričnog istezanja N–H veze. Položaji vrpca spektra produkta iz otopine 1 podudaraju se s položajem vrpca spektra (MA)₂[CuCl₄] dobivenog otopinskom sintezom iz metilamina i CuCl₂·2H₂O (slika 7).

Slika 7. Usporedba IR spektra metilamonijevog tetraklorokuprata(II), (MA)₂[CuCl₄] dobivenog sintezom 3.4.1. (iz metilamina i CuCl₂·2H₂O; plavo) i sintezom 3.4.2. (otopina 1 (x(Cl)=1); žuto)

Na slici D13 (poglavlje 8. Dodatak) prikazani su IR spektri miješanih metilamonijevih halogenokuprata(II) izoliranih iz matičnica 3–7. Poput slučaja s produktima izoliranih iz otopina 1–7 (slika 6), spektri se podudaraju u položajima vrpca. Usporedbom spektara izoliranih produkata iz otopina 3–7 s onima izoliranim iz matičnica 3–7 (slike D14–D18) može se primijetiti gotovo izvrsno poklapanje spektara na slici D14 (spektar produkta iz otopine i matičnice 3; x(Cl)=0,8), D16 (spektar produkta iz otopine i matičnice 5; x(Cl)=0,6) i D17 (spektar produkta iz otopine i matičnice 6; x(Cl)=0,5). Spektri iz otopina i matičnica 4, 5 i 7 razlikuju se u intenzitetima vrpca uz minimalne (gotovo neprimjetljive) međusobne pomake (slike D15 i D18).

Sinteza miješanih metilamonijevih tetraklorometalata(II), (MA)₂[Cu_xMn_(1-x)Cl₄] provedena je iz manganova(II) karbonata i bakrova(II) oksida uz dodatak koncentrirane klorovodične kiseline. Otopine 1–6 razlikuju se u množinskom udjelu mangana i bakra odnosno početnog manganova(II) karbonata i bakrova(II) oksida. Iz postavljenih kristalizacija dobiveni su kristalni produkti različitih boja iz iste otopine. Boje dobivenih kristala kretale su se od žute, preko crvene do tamnocrvene ovisno o otopini. Iz otopine 2 izolirani su najtamnije crveni kristali i dalje analizirani. Snimljeni IR spektar spomenutog kristala nalazi se na slici D19. Usporedbom njegovog IR spektra sa spektrima metilamonijevog tetraklorokuprata(II) i metilamonijevog tetrakloromanganata(II) (dobivenih otopinskom sintezom) (slika 8.)

Slika 8. Usporedba IR spektra miješanog metilamonijevog tetraklorometalata(II), (MA)₂[Cu_xMn_(1-x)Cl₄] (plavo) sa spektrima metilamonijevog tetraklorokuprata(II), (MA)₂[CuCl₄] (narančasto) i metilamonijevog tetrakloromanganata(II), (MA)₂[MnCl₄] (crveno) Iako se vrpce spojeva (MA)₂[CuCl₄] i (MA)₂[MnCl₄] dobivenih otopinskom sintezom ne razlikuju bitno, ipak su vidljive posebnosti svakog. Jedna od tih posebnosti su vrpce između 3200 i 3000 cm⁻¹ koje su rezultat asimetričnog i simetričnog istezanja N–H veze. U spektru spoja (MA)₂[CuCl₄] spomenute se vrpce istezanja preklapaju i ne mogu se jasno odvojiti (rezultat sprege vibracija istezanja), dok se u spektru miješanog metilamonijevog tetraklorometalata(II), (MA)₂[Cu_xMn_(1-x)Cl₄] baš kao i u spekru (MA)₂[MnCl₄] jasno vide vrhovi vrpca. Istovrsne vrpce razlikuju se u intenzitetu. Vrpca asimetričnog istezanja C–H veze metilne skupine odgovara relativnom intenzitetu (u odnosu na intenzitet drugih vrpca u spektru) onom u spektru spoja (MA)₂[MnCl₄].

Mehanokemijskom sintezom pripravljeni su metilamonijevi halogenometalati(II), $(MA)_2[MCl_4]$ i $(MA)_2[MBr_4]$ $(M^{2+}=Cu^{2+}$ i $Mn^{2+})$. U sintezi je korišten odgovarajući metilamonijev halogenid (CH₃NH₃Br ili CH₃NH₃Cl) i bromidna ili kloridna sol bakra(II) odnosno mangana(II). Spektri spoja $(MA)_2[CuCl_4]$ priređenog iz CuCl₂ i CuCl₂·2H₂O, kao i onog dobivenog otopinskom sintezom prikazani su na slici D20. U skladu s očekivanjima položaji vrpca spektra mehanokemijskih produkata se poklapaju. Usporedbom IR spektara $(MA)_2[CuCl_4]$ dobivenih mehanokemijskim reakcijama i onog dobivenog otopinskom sintezom, na spektru produkta otopinske sinteze zapažen je veći broj vrpca u području od 2800 do 1800 cm⁻¹ nego kod spektara produkata mehanokemijske sinteze. Pokraj vrpce deformacijske vibracije uvijanja (oko 1250 cm⁻¹), u spektrima produkata mehanokemijske sinteza ispod 700 cm⁻¹ nalaze se vrpce za razliku od spektra produkta otopinske sinteze.

Uspoređeni spektri spoja (MA)₂[MnCl₄] dobivenog mehanokemijskom sintezom iz MnCl₂ i MnCl₂·4H₂O, te istog spoja dobivenog otopinskom sintezom nalaze se na slici D21. I ovdje imamo sličnu situaciju kao i u prošlom primjeru.

Spektar spoja (MA)₂[CuBr₄] dobivenog mehanokemijskom sintezom, kao i spektar tog spoja dobivenog otopinskom sintezom prikazani su na slici D22. Šire vrpce i veći intenziteti odlikuju spektar produkta otopinske sinteze. Najveća razlika je široka vrpca (oko 3400 cm⁻¹) u spektru produkta otopinske sinteze koja je već prethodno opisana. U spektru mehanokemijski dobivenog (MA)₂[CuBr₄] nalazi se vrpca pri 1153,1 cm⁻¹ za koju se pretpostavlja da je rezultat deformacijske vibracije amino skupine.

Za razliku od neuspjele priprave spoja (MA)₂[MnBr₄] otopinskom sintezom, spoj je uspješno sintetiziran mehanokemijski. Infracrveni spektar (MA)₂[MnBr₄] prikazan je na slici D23, a opis karakterističnih vrpci nalazi se u tablici 13. Široka vrpca (3359,6 cm⁻¹) pripada istezanju O–H veze, odnosno signalizira prisustvo vode. Skup vrpca od 3220 do 2800 cm⁻¹ rezultat je simetričnih i asimetričnih vibracija istezanja N–H veze, uz moguću spregu s asimetričnim istezanjem C–H veze. Vrpca slabog intenziteta pri 2835,2 cm⁻¹ dolazi od simetrične vibracije C–H veze metilne skupine. Deformacijska vibracija striženja skupine OH₂ (1612,1 cm⁻¹) u sprezi je s deformacijskom vibracijom NH₂ (1585,6 cm⁻¹). Vrpce okarakterizirane kao rezultat simetričnih i asimetričnih deformacijskih vibracija amino skupine (1487,4 i 1418,4 cm⁻¹) nisu samostalne već su u sprezi s drugim vibracijama susjednih skupina. Pri nižim valnim brojevima nalaze se vrpce isteznih vibracija C–N veze (1216,8 cm⁻¹) i u sprezi s isteznom vibracijom C–H veze (927,58 cm⁻¹).

Valni broj / cm ⁻¹	Opis vibracije
3359,6	<i>v</i> (О–Н)
3220-2800	v(N–H) u sprezi s v _{as} (C–H)(CH ₃)
2835,2	<i>v</i> _s (C–H)(CH ₃)
1612,1	$\delta_{ m sc}(m OH_2)$
1585,6	$\delta_{ m sc}(m NH_2)$
1487,4	$\delta_{\mathrm{as}}(\mathrm{NH}_2)$
1418,4	$\delta_{ m s}(m NH_2)$
1216,8	v(C–N)
993,91	$\delta_{ m wg}(m NH_2)$
927,58	v(C–N) u sprezi s v(C–H)(CH ₃)
516,33	δ (-C-N)

Tablica	14.	Odabrane vr	oce IR s	pektra spoja	$(MA)_2[MnBr_4]$	(produkt mehan	okemijske sinteze)
				p	· (-··/2[-·· /]	\r	······································

Mehanokemijskom sintezom pripravljeni su miješani metilamonijevi halogenometalati(II), $(MA)_2[MCl_xBr_{(4-x)}]$ ($M^{2+} = Cu^{2+}$, Mn^{2+}). Na slici 9. prikazani su spektri spojeva dobivenih reakcijom metilamonijevog klorida i bromidne soli bakra(II) odnosno mangana(II). Izuzev područja oko 1150 cm⁻¹ i ispod 800 cm⁻¹, vrpce IR spektra oba spoja se gotovo poklapaju.

Spektar produkta reakcije CH₃NH₃Cl i CuBr₂ za razliku od spektra drugog spoja ima vrpcu pri 1156,8 cm⁻¹ i nekoliko vrpca ispod 800 cm⁻¹.

Infracrveni spektri produkata dobivenih sintezom CH₃NH₃Br i bakrovih(II) klorida (bezvodni i dihidrat) prikazani su na slici D24, a produkata dobivenih sintezom iste metilamonijeve soli i manganovih(II) klorida (bezvodni i tetrahidrat) na slici D25. Razlike između spektara spojeva koji potječu od hidrata kloridnih soli u odnosu na one koji potječu od bezvodnih kloridnih soli ne postoje ili su vrlo malo vidljive.

Slika 9. Infracrveni spektri miješanih metilamonijevih halogenometalata(II), $(MA)_2[MCl_xBr_{(4-x)}] (M^{2+} = Cu^{2+}, Mn^{2+}).$ Produkt mehanokemijske reakcije CH₃NH₃Cl i: a) CuBr₂ (plavo), b) MnBr₂ (narančasto)

Slika 10. Infracrveni pektri miješanih metilamonijevih halogenometalata(II), $(MA)_2[MCl_xBr_{(4-x)}]$ (M²⁺ = Cu²⁺, Mn²⁺). Produkt mehanokemijske reakcije CH₃NH₃Br i: a) CuCl₂ (plavo), b) MnCl₂ (narančasto).

Infracrveni spektri miješanih metilamonijevih halogenometalata(II) sintetiziranih polazeći od CH₃NH₃Br i CuCl₂ odnosno MnCl₂ nalaze se na slici 10. Očite razlike između dva spektra su široka vrpca slabog intenziteta (oko 3400 cm⁻¹) na spektru b), vrpca slabog intenziteta (1736,1 cm⁻¹) i uska vrpca slabog intenziteta (1154,2 cm⁻¹) na spektru a). Uska vrpca slabog intenziteta (1154,2 cm⁻¹) na spektru a). Uska vrpca slabog intenziteta (1154,2 cm⁻¹) na spektru a) predstavljaju ponovljenu situaciju sa slike 9. na spektru a), odnosno u spojevima koji u svom sastavu sadrže Cu²⁺.

Slika 11. Infracrveni spektri miješanih metilamonijevih klorometalata(II), [Cu_xMn_(1-x)Cl₄]. Produkti mehanokemijske reakcije CH₃NH₃Cl s različitim udjelima CuCl₂ i MnCl₂

Na slici 11. prikazani su spektri produkata šest mehanokemijskih sinteza s različitim udjelima $MnCl_2$ i $CuCl_2$ zajedno s CH_3NH_3Cl . Vidljivo je smanjenje intenziteta široke vrpce (oko 3400 cm⁻¹) s povećanjem udjela bakrova(II) klorida. Spektar koji nije u skladu sa prethodnim opažanjem je spektar produkta reakcijske smjese u kojoj je $MnCl_2 : CuCl_2 = 4 : 1$. Nadalje, vidi se razlika u izgledu široke vrpce velikog intenziteta (oko 3100 cm⁻¹). Skup vrpca na spektru ispod 800 cm⁻¹ postaje sve oštriji, tj. jasnije se vide vrpce tog područja kako se povećava udio bakrova(II) klorida u smjesi.

Spektri u infracrvenom području, produkata šest mehanokemijskih sinteza s različitim udjelima MnBr₂ i CuBr₂ zajedno s CH₃NH₃Br prikazani su na slici 12. Razlike između prikazanih spektara su u intenzitetima široke vrpce (oko 3350 cm⁻¹), izgledu vrpce velikog intenziteta (oko 3100 cm⁻¹) i izgledu skupa vrpca ispod 700 cm⁻¹. Intenziteti vrpca (oko 3350 cm⁻¹ i ispod 700 cm⁻¹) smanjuju se kako se povećava udio CuBr₂ u reackcijskoj smjesi.

Slika 12. Infracrveni spektri miješanih metilamonijevih bromometalata(II), (MA)₂[Cu_xMn_(1- x)Br₄]. Produkti mehanokemijske reakcije CH₃NH₃Br s različitim udjelima CuBr₂ i MnBr₂

4.2.2. Difrakcija rendgenskih zraka na praškastom uzorku

Produktima mehanokemijskih sinteza prikupljeni su difraktogrami praha koji su prikazani na slikama D26 – D32 (poglavlje 8. Dodatak). Difraktogrami D26 i D27 pokazuju spojeve (MA)₂[CuCl₄] i (MA)₂[MnCl₄] polazeći od bezvodnih odnosno hidratnih soli. Budući da se difraktogrami gotovo savršeno preklapaju može ih se smatrati izostrukturnim. Na difraktogramima D26 i D27 može se uočiti difrakcijski maksimum velikog intenziteta pri 2θ oko 10°, nakon kojeg se u pravilnim razmacima od okvirno 10° ponavljaju maksimumi koji su najintenzivniji u svojoj grupi. Takav raspored difrakcijskih maksimuma – jaka preferirana orijentacija kristalita - upućuje da se radi o slojevitoj strukturi. Na difraktogramu D28, spoja (MA)₂[CuBr₄], može se također vidjeti intenzivan difrakcijiski maksimum pri 2θ oko 10°, no ostali maksimumi nisu pravilno raspoređeni kao kod prethodna dva difraktograma. Difraktogram spoja (MA)₂[MnBr₄] (slika D29) je znatno kompliciraniji difraktogram i nema najintezivniji difrakcijski maksimum pri 2θ oko 10°, već oko 28°.

Usporedbom difraktograma praha uzoraka $(MA)_2[CuCl_xBr_{(4-x)}]$ dobivenih mehanokemijskom sintezom CH_3NH_3Br i bakrovih(II) klorida s difraktogramima praha produkta CH_3NH_3Cl i $CuBr_2$ može se vidjeti da se radi o jednakim strukturama (slika D30). Difraktogrami praškastih uzoraka dobivenih mehanokemijskom sintezom CH_3NH_3Br i $MnCl_2$

odnosno MnCl₂·4H₂O ne poklapaju se u potpunosti, što znači da se spojevi u manjoj mjeri razlikuju (slika D31). Isto tako, spomenuti se difraktogrami razlikuju od difraktograma produkta CH3NH3Cl i MnBr₂ što također upućuje da među spomenutim strukturama postoje razlike.

Na slici D32. prikazani su difraktogrami praškastih uzoraka (MA)₂[Cu_xMn_(1-x)Cl₄] dobivenih mehanokemijskom sintezom CH₃NH₃Cl s MnCl₂ i CuCl₂ u različitim omjerima. Difrakcijski se maksimumi poklapaju, te s povećanjem udjela CuCl₂ intenziteti tih difrakcijskih maksimuma raste, izuzev za omjer $MnCl_2$: $CuCl_2 = 1 : 4$, gdje su najniži intenziteti, te difraktogram uzorka s najvišim udjelom bakrova(II) klorida, odnosno bez manganova(II) klorida ima najintenzivnije maksimume. Na slici D33 prikazani su difraktogrami praškastih uzoraka (MA)₂[Cu_xMn_(1-x)Br₄] dobivenih mehanokemijskom sintezom CH₃NH₃Br s MnBr₂ i difraktogramima različitim omjerima. Analogno CuBr₂ u praškastih uzoraka (MA)₂[Cu_xMn_(1-x)Cl₄] difrakcijski maksimumi se poklapaju, no s povećanjem udjela CuBr₂ intenziteti tih makimuma se smanjuju. Sam izgled difraktograma praha za množinski omjer $MnBr_2: CuBr_2 = 4:1$ doima se kao da dolazi od strukture koja nije toliko uređena u usporedbi s ostalim uzorcima miješanih (MA)₂[Cu_xMn_(1-x)Br₄] spojeva. U oba slučaja (slika D32 i D33) vidi se periodničnost u pojavi difrakcijskih maksimuma najvećih intenziteta što upućuje da se radi o slojevitoj strukturi.

4.2.3. Difrakcija rendgenskih zraka na jediničnom kristalu

Otopinskom sintezom pripravljeni su miješani metilamonijevi halogenokuprati(II), $(MA)_2[CuCl_xBr_{(4-x)}]$ te potom analizirani metodom difrakcije rendgenskih zraka na jediničnom kristalu. Iz utočnjavanja strukturnih parametara dobivenih metodom difrakcije rendgenskih zraka na jediničnom kristalu određivana je vrijednost x, odnosno okupancija Cl⁻ ili Br⁻ u analiziranom kristalu. Izmjereni podaci prikazani su u tablici 15.

Tablica 15. Stehiometrijski koeficijenti pojedinih halogenida u strukturi (x) prema množinama reaktanata (teorijski) te koeficijenti određeni putem podataka difrakcije rendgenskih zraka na jediničnom kristalu za niz miješanih metilamonijevih halogenokuprata(II), $(MA)_2[CuCl_xBr_{(4-x)}]$ dobivenih otopinskom sintezom

Pokus	<i>n</i> (HCl)/ mmol	<i>n</i> (HBr)/ mmol	x (teorijski)	(4–x) teorijski	V(jed.ćelije)/ Å ³	x (eksp.)	(4–x) eksp.	Razlika (teorijski vs eksp.)
1	20,04	0,00	4,00	0,00	494,32	4	0	0,00
2	18,00	1,74	3,65	0,35	496,31	3,792	0,208	-0,04
3	15,96	3,56	3,27	0,73	502,71	3,247	0,753	0,01
mat.3	15,96	3,56	3,27	0,73	505,63	2,68	1,32	0,22
4	14,04	5,29	2,90	1,10	509,22	2,44	1,56	0,19
mat.4	14,04	5,29	2,90	1,10	509,17	2,492	1,508	0,17
5	12,00	7,11	2,51	1,49	511,18	2,352	1,648	0,07
mat.5	12,00	7,11	2,51	1,49	512,74	2,08	1,92	0,21
6	9,96	8,85	2,12	1,88	512,39	2,01	1,99	0,06
mat.6	9,96	8,85	2,12	1,88	513,5	1,78	2,22	0,19
7	8,04	10,67	1,72	2,28	513,94	1,76	2,23	-0,02
mat.7	8,04	10,67	1,72	2,28	518,68	1,44	2,46	0,19

Proučavajući dobivene rezultate, može se uočiti da se eksperimentalno dobivene vrijednosti ne razlikuju znatno od onih očekivanih. Na temelju eksperimentalno dobivenih vrijednosti, okupancija kloridnih iona, odnosno vrijednost x može se staviti u odnos s volumenom jedinične ćelije. Ovisnost volumena jedinične ćelije o promijeni vrijednosti x pravilna je linearna ovisnost, uz manja odstupanja (slika 13). Linearnost dobivene funkcije rezultat je povećanja volumena jedinične ćelije uslijed povećane zamjene manjih kloridnih atoma s većim atomima broma. Izračunate su razlike između teorijskih vrijednosti x (očekivanih vrijednosti s obzirom na množinu Cl⁻ u početnoj otopini) i eksperimentalno dobivenih (tablica 15). Na slici 15 prikazana je izračunata razlika u odnosu na pojedini pokus.

Slika 14. Ovisnost volumena jedinične ćelije (Å³) o promijeni vrijednosti x (okupancija kloridnih iona) unutar niza miješanih metilamonijevih halogenokuprata(II), (MA)₂[CuCl_xBr_(4-x)] dobivenih otopinskom sintezom (otapalo je voda).

Iz prikazanih rezultata može se zaključiti da se eksperimentalno dobivene vrijednosti sastava razlikuju kod kristala dobivenih iz matičnica i onih iz prvotne izolacije. Kristali dobiveni iz matičnica imaju manji udio kloridnih iona. Zbog niže topljivosti miješanih spojeva s većim udjelom klorida, kristali s većim udjelom klorida prvi izlaze iz otopine.

§ 4. Rezultati i rasprava

Strukture sintetiziranih miješanih metilamonijevih halogenokuprata(II) pripravljenih u sklopu ovog diplomskog rada prikazane su slikama 16, 17 i 18 (opisana sinteza u poglavlju 3.4.2.; slika 16-mat.4; slika 17-otopina 5; slika 18-mat.6).

b)

Slika 16. Prikaz strukture miješanog metilamonijevog halogenokuprata(II) (MA)₂[CuCl_xBr_(4-x)] (matičnica otopine 4; udio klorida jednak je 2,49/4): a) duž a, b) duž b-osi

b)

Slika 17. Prikaz strukture miješanog metilamonijevog halogenokuprata(II) (MA)₂[CuCl_xBr_(4-x)] (otopina 5; udio klorida jednak je 2,35/4): a) duž a, b) duž b-osi

b)

Slika 18. Prikaz strukture miješanog metilamonijevog halogenokuprata(II) (MA)₂[CuCl_xBr_(4-x)] (otopina 6; udio klorida jednak je 1,78/4): a) duž a, b) duž b-osi

Iz određenih kristalnih struktura može se zaključiti da s povećanjem udjela bromida u miješanim kristalima, bromidi prvo zaokupljaju aksijalne položaje (okomito na ravninu sloja). Daljnjim povećanjem udjela bromida, oni zauzimaju i ekvatorijalne položaje (unutar ravnine sloja).

Na slici 19. prikazana je slojevita struktura miješanog metilamonijevog tetraklorometalata(II) $(MA)_2[Cu_xMn_{(1-x)}Cl_4]$ duž a i b osi (opis priprave spoja poglavlje 3.4.3.; otopina 2). Struktura je modelirana tako da ioni bakra i mangana zauzimaju isti položaj, pa je raspored slučajan (statistički), a utočnjavanjem je dobivena vrijednost okupancije bakrovih iona od 0,1, te manganovih 0,9.

b)
 Slika 19. Prikaz slojevite strukture struktura miješanog metilamonijevog tetraklorometalata(II) (MA)₂[Cu_{0,1}Mn_{0,9}Cl₄]; a) duž a, b) duž b-osi.

4.2.4. Spektrometrija masa uz induktivno spregnutu plazmu

Odabrani produkti otopinskih sinteza pripravljeni u sklopu ovog diplomskog rada analizirani spektrometrijom masa uz induktivno spregnutu plazmu. Metilamonijev SU tetrabromokuprat(II), (MA)₂[CuBr₄] (otopina 1), miješani metilamonijevi halogenokuprati(II) (otopine 2-13) i miješani $(MA)_2[CuCl_xBr_{(4-x)}]$ metilamonijev klorometalat(II) (MA)2[Cu_xMn_(1-x)Cl₄] (otopina 14) su analizirani ICP–MS–om u svrhu određivanja masenog udjela metala u spoju. U analizi su korištene razrijeđene otopine (detaljan opis u poglavlju 3.6.). Dobivene masene koncentracije metala u uzorcima, kao i na temelju njih izračunate vrijednosti masenih udjela nalaze se u tablici 16.

Tablica 16. Masene koncentracije dobivene kao rezultat analize spektrometrijom masa uz induktivno spregnutu plazmu, te na temelju njih izračunate vrijednosti masenih udjela bakra odnosno mangana u uzorcima.

Otopina	Uzorak	<i>m</i> / g	γ (Cu) / ppb	w (Cu, uzorak) / %	γ (Mn) / ppb	w (Mn, uzorak)/ %
1	$(MA)_2[CuBr_4]$	0,001730	6,574	9,50	<0,000	/
2	3	0,001950	22,994	29,48	<0,000	/
3	4	0,001495	19,132	31,99	<0,000	/
4	5	0,001200	13,863	28,88	<0,000	/
5	6	0,001420	20,134	35,45	0,04	/
6	7	0,001895	21,08	27,81	0,04	/
7	1	0,001770	21,062	29,75	0,014	/
8	2	0,001855	22,909	30,87	0,034	/
9	mat. 3	0,001940	28,187	36,32	0,015	/
10	mat. 4	0,001450	17,98	31,00	0,609	/
11	mat. 5	0,001495	17,15	28,68	<0,000	/
12	mat. 6	0,001975	19,53	24,72	0,019	/
13	mat. 7	0,001640	14,737	22,46	<0,000	/
14	$(MA)_2[Cu_xMn_{(1-x)}Cl_4]$	0,001550	2,037	3,29	22,729	36,66

U skladu s razrjeđenjem koje je opisano (poglavlje 3.6) i masom odvage uzorka za izračun masenih udjela Cu i Mn u uzorcima korištena je sljedeća formulu:

$$W(Cu, Mn) = \frac{\left[\frac{\gamma(Cu, Mn)}{ppb}\right] \times 25}{\left[\frac{m(uzorak)}{g}\right] \times 10000}$$

Teorijske vrijednosti masenih udjela bakra u spojevima (MA)₂[CuBr₄] (14,20 %) i (MA)₂[CuCl₄] (23,50 %) zapravo su granice između kojih su očekivani maseni udjeli bakra analiziranih spojeva. Usporedbom teorijski izračunate vrijednosti masenog udjela bakra za uzorak u otopini 1 (metilamonijev tetrabromokuprat(II)) koja iznosi 14,20 % i eksperimentalno dobivene vrijednosti koja iznosi 9,50 % vidimo da se te dvije vrijednosti ne razlikuju u velikoj mjeri. Otopina 7 (uzorak 1 pripravljen otopinskom sintezom 3.4.2.) spoj je bez dodanih bromidnih iona, odnosno očekivan spoj je (MA)₂[CuCl₄]. Eksperimentalno dobivena vrijednost masenog udjela bakra u tom uzorku 29,75 % što premašuje teorijsku (23,50 %). Za otopinu 14 (miješani metilamonijev klorometalat(II)) eksperimentalno je dobiveno da je w(Cu) = 3,29 %, a w(Mn) = 36,66 %. Teorijski, ako je riječ o spoju (MA)₂[CuCl₄], maseni udio bakra iznosi 23,58 %, a ako je riječ o spoju (MA)₂[MnCl₄] teorijski maseni udio mangana u tom spoju iznosi 21,06 %. Maseni udio bakra u miješanom metilamonijevom klorometalatu(II), dobiven kao rezultat analize ICP-MS iznosi 3,29 % što je unutar očekivanja, no maseni udio mangana iznosi 36,66 % što premašuje onu graničnu teorijsku vrijednost. Kako je metoda spektrometrije masa uz induktivno spregnutu plazmu zaista točna metoda, moguće da se teorijska i eksperimentalna razlikuju zbog eventualnog unosa nečistoća, prisutnost analiziranih metala (kod vrijednosti većih od teorijske) ili drugih metala (kod vrijednosti manjih od teorijske) u otopini koja ne dolaze iz uzorka, manja odudaranja od očekivane strukture i slično. Zapravo moguće je da su prisutne spektralne interferencije (povećane vrijednosti), ili nespektralne

Također, potrebno je spomenuti da je u otopini uzorka tehnikom ICP-MS dokazano prisustvo i drugih metala koji se ne nalaze u strukturi analita. Zabilježene su značajnije količine ⁵⁶Fe (otopina 10; 11,058 ppb), ⁷²Ge (otopina 8; 80,104 ppb), ¹⁰³Rh (otopina 12; 21,438 ppb), ²⁸Si (sve otopine osim otopina 3, 5 i 7; > 200 ppb), ³⁹K (otopine 2,6 i 14; > 10 ppb), ⁴⁴Ca (otopina 5; 10,434 ppb), ¹¹⁸Sn (sve otopine osim 3, 5 i 7; > 9 ppb), ¹²³Sb (većina otopina; < 60 ppb), ²⁰¹Hg (otopina 6; 58,581 ppb) i ²⁰²Hg (otopina 7; 12,156 ppb).

4.2.5. Određivanje ukupnih halogenida Fajansovom metodom

Ioni srebra reagiraju s ionima Br⁻ i Cl⁻ iz vodene otopine uzorka. Budući da se radi o jednovalentnim ionima (halogenidni kao i srebrovi ioni su jednovalentni) množina utrošene standardne otopine AgNO₃ odgovara ukupnoj množini halogenidnih iona. Volumeni utrošene standardne otopine AgNO₃ za titraciju pojedine otopine uzorka nalaze se u tablici 17. Uz volumene AgNO₃ u tablici 17 nalazi se izračunata ukupna množina halogenida prisutnih u otopini uzorka i maseni udjeli ukupnih halogenida na temelju teorijskih predviđanja. Množina pojedinog halogenida u uzorku izračuna se na temelju množinskog udjela klorida, odnosno bromida u početnoj smjesi prilikom sinteze uzoraka (detaljan opis svakog uzorka u poglavlju 3.7.).

Tablica	17. Utrošeni	volumeni s	tandardne of	topine Agl	$NO_3 (c = 0)$	0,0507′	7 mol dm	$^{-3}$) na titraci	iju
uzoraka	(Fajansova	metoda), te	izračunate	množine	i maseni	udjeli	ukupnih	halogenida	u
uzorku									

Otopina	Uzorak	m(uzorak) / g	V(AgNO ₃) / mL	<i>n</i> (ukupni halogenidi) / mmol	w (ukupni halogenidi, uzorak) / %
1	$(MA)_2[CuBr_4]$	0,01814	2,25	0,11423	50,32
2	3	0,01500	1,55	0,00787	23,26
3	4	0,01500	1,60	0,08123	26,42
4	5	0,01510	2,00	0,10154	35,79
5	6	0,01520	2,55	0,12946	49,12
6	7	0,01460	3,05	0,15485	65,88
7	1	0,01580	4,55	0,23100	51,83
8	2	0,01496	2,00	0,10154	27,08
9	mat. 3	0,01610	3,35	0,17008	46,84
10	mat. 4	0,01490	2,90	0,14723	48,21
11	mat. 5	0,01545	2,45	0,12438	42,85
12	mat. 6	/	/	/	/
13	mat. 7	0,01496	2,60	0,13200	54,81
14	$(MA)_2[Cu_xMn_{(1-x)}Cl_4]$	0,01460	2,20	0,11169	27,12

Teorijski izračunati maseni udio klora u (MA)₂[CuCl₄] iznosi 52,62 %. Maseni udio ukupnih halogenida (klora i broma zajedno) u spoju u (MA)₂[CuCl₂Br₂] iznosi 64,00 %. I posljednja granica je spoj (MA)₂[CuBr₄] u kojem je maseni udio broma jednak 71,45 %. Ovim izračunom dobivamo raspon masenih udjela unutar kojeg bi trebali biti izračunati maseni udjeli ukupnih halogenida na temelju utrošene količine standardne otopine AgNO₃. Izračunati maseni udjeli

nisu u potpunosti u tom rasponu. Svi izračunati maseni udjeli su manji od teorijskih (vrijedi prvenstveno za granične vrijednosti, jer se teorijske vrijednosti masenih udjela u miješanim metilamonijevim halogenokupratima(II) ne mogu odrediti unutar ovog diplomskog rada). Maseni udio kloridnih iona u otopini 7 (uzorak 1 pripravljen otopinskom sintezom 3.4.2.) iznosi 51,83 % što je vrlo blizu teorijske vrijednosti (52,62 %). Već prvim dodatkom bromidnih iona tj. otopina 8 (uzorak 2 pripravljen otopinskom sintezom 3.4.2.) ukupni maseni udio halogenidnih iona opada. Od otopine 3 (uzorak 4 priravljen otopinskom sintezom 3.4.2.) maseni udio ukupnih halogenida raste. U kristalima izoliranim iz matičnica znatno su veći maseni udijeli ukupnih halogenida (izuzev uzorka 7 i matičnice 7). Otopina 1 (očekivani spoj (MA)₂[CuBr₄]) ima znatno manji maseni udio broma (50,32 %) od onog predviđenog (71,45 %). Maseni udio klorida u miješanom metilamonijevom kloromatalatu(II) (otopina 14) iznosi 27,12 %. Ako teorijski maseni udio klora u spoju (MA)₂[CuCl₄] iznosi kao što je već spomenuto 52,62 % , a u spoju (MA)₂[MnCl₄] 54,36 % tada bi miješani metilamonijev klorometalat(II) trebao sadržavati klor u rasponu od 52,62 % do 54,36 %. Eksperimentalna vrijednost od 27,12 % gotovo je dvostruko niža od očekivane.

§ 5. ZAKLJUČAK

U okviru ovog diplomskog rada pripravljeni su otopinskim i/ili mehanokemijskim postupcima metilamonijevi halogenometalatati(II) opće formule (MA)₂[MX₄], ($M^{2+} = Cu^{2+}$, Mn^{2+} , $X^- = Cu^{2+}$, Mn^{2+} , $X^- = Cu^{2+}$, Mn^{2+} , $X^- = Cu^{2+}$, Mn^{2+} , Mn^{2+} , $X^- = Cu^{2+}$, Mn^{2+} $Cl^{-}, Br^{-})$ te miješani derivati (MA)₂[MCl_xBr_(4-x)] (M²⁺ = Cu²⁺, Mn²⁺), (MA)₂[Cu_xMn_(1-x)Cl₄] i (MA)₂[Cu_xMn_(1-x)Br₄]. Na temelju provedenih sinteza može se zaključiti kako su metilamonijevi bromometalati(II), (MA)₂[CuBr₄] i (MA)₂[MnBr₄] znatno topljiviji u vodi u donosu na odgovarajuće klorometalate(II). Za razliku od spoja (MA)₂[CuBr₄], spoj (MA)₂[MnBr₄] nije pripravljen. Zbog te činjenice, nije iznenađujuće što tijekom otopinske sinteze miješanih metilamonijevih halogenokuprata(II), oni s većim udjelom broma nisu izolirani. Osim miješanih metilamonijevih halogenokuprata(II), provedene su i priprave miješanih metilamonijevih klorometalata(II). Činjenica da su iste reakcijske davale kristalne produkte različitih boja, dalo je naslutiti kako otopinska sinteza nije najpogodniji način priprave ove klase spojeva. Mehanokemijska se sinteza u za pripravu ovih mateijala pokazala boljom alternativom te su tim postupkom u svim slučajevima uspješno pripravljeni metilamonijevi tetrabromometalati(II) ((MA)₂[MBr₄], $M^{2+} = Cu^{2+}$, Mn^{2+}) i tetraklorometalati(II), $((MA)_2[MCl_4], M^{2+} = Cu^{2+}, Mn^{2+})$ kao i miješani metilamonijevi halogenometalati(II), $((MA)_2[MCl_xBr_{(4-x)}], M^{2+} = Cu^{2+}, Mn^{2+})$. Mehanokemijskom sintezom pripravljeni su, također, i miješani metilamonijevi klorometalati(II), ((MA)₂[Cu_xMn_(1-x)Cl₄]) i bromometalati(II), $((MA)_2[Cu_xMn_{(1-x)}Br_4]).$

Analizom odabranih uzoraka ICP-MS tehnikom, titracijom uzoraka prema Fajansovoj metodi te analizom IR spektara, potvrđeno je kako su matičnice i primarne otopine istih reakcijskih smjesa dale miješane metilamonijeve halogenokuprate(II) različitih sastava. Eksperimentalo dobiveni maseni udjeli ukupnih halogenida u produktima spomenute sinteze opadaju s porastom u početku dodanog bromida. Konačno, rezultati ovog rada jasno pokazuju kako može se zaključiti da se demonstrirala mogućnost priprave i analize miješanih metilamonijevih tetrahalogenometalata(II), te da je predstavljeni rad dobar temelj za daljnje razvijanje analitičkih i sintetskih postupaka kod miješanih hibridnih perovskita.

§ 6. POPIS OZNAKA, KRATICA I SIMBOLA (prema potrebi)

- HOAH hibridni organsko-anorganski halogenometalati
- MA⁺ metilamonijev kation
- THF-tetrahidrofuran
- BA⁺ butilamonijev kation
- 3AMP⁺ 3-(aminoetil)piridinijev kation
- GUA⁺ gvanidinijev kation
- ppb parts per billion dijelovi u milijardi
- v istezna vibracija
- v_s simetrična istezna vibracija
- vas asimetrična istezna vibracija
- δ deformacijska vibracija
- $\delta_{\rm s}$ simetrična deformacijska vibracija
- $\delta_{\rm as}$ asimetrična deformacijska vibracija
- $\delta_{\rm sc}$ deformacijska vibracija striženja
- $\delta_{\rm wg}-$ deformacijska vibracija klaćenja
- $\delta_{\rm rc}$ deformacijska vibracija zibanja
- $\delta_{\rm oop}-$ deformacijska vibracija izvan ravnine
- $\delta_{
 m ip}$ deformacijska vibracija unutar ravnine
- δ_{tw} deformacijska vibracija uvijanja

§ 7. LITERATURNI IZVORI

- 1. Lj. Kovačević, I. Žugaj, Kemijski elementi. Leksikonski priručnik (Mangan), Zagreb, 1996
- C.E.Housecroft, A.G.Sharpe, Inorganic Chemistry, Forth Edition, Pearson, New York, 2012, str. 634-639
- 3. Lj. Kovačević, I. Žugaj, Kemijski elementi. Leksikonski priručnik (Bakar), Zagreb, 1996
- 4. Z. Wang, A. M. Ganose, C. Niu, D. O. Scanlon, J. Mater. Chem. C. 7 (2019) 5139 5144
- 5. R. H. Buttner, E. N. Maslen Acta Cryst. B48 (1992) 644-649
- M.-H. Tremblay, J. Bacsa, B. Zhao, F. Pulvirenti, S. Barlow, S. R. Marder, *Chem. Mater.* 31 (2019) 6145–6153
- F. Zhang, H. Lu, J. Tong, J. J. Berry, M. C. Beard, K. Zhu, *Energy environ. Sci.* 13 (2020) 1154–1186
- 8. G. Chapuis, G. Brunisholz, C. Javet, R. Roulet, Inorg. Chem. 22 (1983), 455–458
- 9. W. Depmeier, J. Felsche, G. Wildermuth, J. Solid State Chem. 21 (1977) 57-65
- 10. W. Depmeier, J. Solid State Chem. 29 (1979) 15-26
- 11. I. Mikhail, Acta Cryst. B33 (1977) 1317-1321
- 12. I. Pabst, H. Fuess, J. W. Bats, Acta Cryst. C43 (1987) 413-416
- J. Wang, J. Dong, F. Lu, C. Sun, Q. Zhang, N. Wang, J. Mater. Chem. A. 7 (2019) 23563– 23576
- 14. L. Mao, C. C. Stoumpos, M. G. Kanatzidis, J. Am. Chem. Soc. 141 (2019) 1171-1190
- E. I. Marchenko, V. V. Korolev, A. Mitrofanov, S. A. Fateev, E. A. Goodilin, A. B. Tarasov, *Chem. Mater.* 33 (2021) 1213-1217
- A. Liang, K. Wang, Y. Gao, B. P. Finekenauer, C. Zhu, L. Jin, L. Huang, L. Dou, *Angew. Chemie*, **15** (2021) 8337-8343
- 17. D. Wang, S.-C. Chen, Q. Zheng, J. Meter. Chem. A 9 (2021) 11778-11786
- Y. Yin, Z. Chen, R.-H. Li, C. Yuan, T.-Y. Shao, K. Wang, H. Tan, Y. Sun, *Inorg. Chem.* 60 (2021) 9387-9393
- J. R. Dean, Practical Inductively Coupled Plasma Spectroscopy, John Wiley & Sons, Newcastle, 2005, str. 90-103
- 20. S. J.Hill, *Inductively Coupled Plasma Spectrometer and its Applications*, Blackwell Publishing, Plymouth, 2007, str. 27-30

53

§8. DODATAK

Slika D1. Infracrveni spektar metilamonijevog bromida, CH₃NH₃Br. Spoj je dobiven otopinskom sintezom (otapala su octena kiselina i THF)

Slika D2. Infracrveni spektar metilamonijevog klorida, CH3NH3Cl

Slika D3. Infracrveni spektar metilamina, CH₃NH₂

Slika D4. Infracrveni spektar spoja $CuCl_2\cdot 2H_2O$

Slika D5. Infracrveni spektar spoja CuCl2 (bezvodni)

Slika D6. Infracrveni spektar spoja $MnCl_2 \times 4H_2O$

Slika D7. Infracrveni spektar spoja MnCl2 (bezvodni)

Slika D8. Infracrveni spektar spoja CuBr₂

Slika D9. Infracrveni spektar spoja MnBr₂

Slika D10. Infracrveni spektar (MA)₂[CuCl₄]. Spoj je dobiven otopinskom sintezom (otapalo je voda)

Slika D11. Infracrveni spektar (MA)₂[MnCl₄] (bijeli i rozi kristali, smjesa kristala). Spojevi su dobiveni otopinskom sintezom (otapalo je voda)

Slika D12. Infracrveni spektar (MA)₂[CuBr₄]. Spoj je dobiven otopinskom sintezom (otapalo je voda)

Slika D13. Infracrveni spektri miješanih metilamonijevih halogenokuprata(II), (MA)₂[CuCl_xBr_(4-x)] izoliranih iz matičnica otopina 3–7 (različitih množinskih udjela halogenida)

Slika D14. Usporedba IR spektra miješanog metilamonijevog halogenokuprata(II), (MA)₂[CuCl_xBr_(4-x)] dobivenog sintezom 3.4.2. (izoliranog iz otopine 3; plavo) i (izoliranog iz matičnice 3; žuto)

Slika D15. Usporedba IR spektra miješanog metilamonijevog halogenokuprata(II), (MA)₂[CuCl_xBr_(4-x)] dobivenog sintezom 3.4.2. izoliranog iz otopine 4 (plavo) i izoliranog iz matičnice 4 (žuto)

Slika D16. Usporedba IR spektra miješanog metilamonijevog halogenokuprata(II), (MA)₂[CuCl_xBr_(4-x)] dobivenog sintezom 3.4.2. izoliranog iz otopine 5 (plavo) i izoliranog iz matičnice 5 (žuto)

Slika D17. Usporedba IR spektra miješanog metilamonijevog halogenokuprata(II), (MA)₂[CuCl_xBr_(4-x)] dobivenog sintezom 3.4.2. izoliranog iz otopine 6 (plavo) i izoliranog iz matičnice 6 (žuto)

Slika D18. Usporedba IR spektra miješanog metilamonijevog halogenokuprata(II), (MA)₂[CuCl_xBr_(4-x)] dobivenog sintezom 3.4.2. izoliranog iz otopine 7 (plavo) i izoliranog iz matičnice 7 (žuto)

Slika D19. Infracrveni spektar miješanog metilamonijevog tetraklorometalata(II), (MA)₂[Cu_xMn_(1-x)Cl₄]. Spoj je izoliran iz otopine 2 (otopinska sinteza opisana u poglavlju 3.4.1.; otapalo je voda)

Slika D20. Infracrveni spektar metilamonijevog tetraklorokuprata(II), (MA)₂[CuCl₄] dobivenog mehanokemijskom sintezom CuCl₂ (narančasto), CuCl₂×2H₂O (plavo) i dobivenog otopinskom sintezom (otapalo je voda; crveno)

Slika D21. Infracrveni spektar metilamonijevog tetrakloromanganata(II), (MA)₂[CuCl₄] dobivenog mehanokemijskom sintezom MnCl₂ (plavo), MnCl₂×4H₂O (narančasto) i dobivenog otopinskom sintezom (otapalo je voda; crveno)

Slika D22. Infracrveni spektar metilamonijevog tetrabromokuprata(II), (MA)₂[CuBr₄] dobivenog mehanokemijskom sintezom (plavo) i dobivenog otopinskom sintezom (otapalo je voda; narančasto)

Slika D23. Infracrveni spektar metilamonijevog tetrabromomanganata(II), (MA)₂[MnBr₄] dobivenog mehanokemijskom sintezom

Slika D24. Infracrveni spektri miješanih metilamonijevih halogenokuprata(II), (MA)₂[CuCl_xBr_(4-x)]. Produkt reakcije CH₃NH₃Br i: a) CuCl₂ (plavo), b) CuCl₂×2H₂O (narančasto).

Slika D25. Infracrveni spektri miješanih metilamonijevih halogenomanganata(II), (MA)₂[MnCl_xBr_(4-x)]. Produkt reakcije CH₃NH₃Br i: a) MnCl₂ (plavo), b) MnCl₂×4H₂O (narančasto).

Slika D26. Difraktogrami praškastih uzoraka (MA)₂[CuCl₄] dobivenih mehanokemijskom sintezom CH₃NH₃Cl i: a) CuCl₂ (crveno), b) CuCl₂×2H₂O (crno)

Slika D28. Difraktogram praškastog uzoraka (MA)₂[CuBr₄] dobivenog mehanokemijskom sintezom CH₃NH₃CBr i CuBr₂

Slika D29. Difraktogram praškastog uzoraka (MA)₂[MnBr₄] dobivenog mehanokemijskom sintezom CH₃NH₃CBr i MnBr₂

Slika D32. Difraktogrami praškastih uzoraka (MA)₂[Cu_xMn_(1-x)Cl₄] dobivenih mehanokemijskom sintezom CH₃NH₃Cl s MnCl₂ i CuCl₂ u omjerima: a) 5:0 (crno), b) 4:1 (crveno), c) 3:2 (plavo), d) 2:3 (zeleno), e) 1:4 (narančasto), f) 0:5 (smeđe)

Slika D33. Difraktogrami praškastih uzoraka (MA)₂[Cu_xMn_(1-x)Br₄] dobivenih mehanokemijskom sintezom CH₃NH₃Br s MnBr₂ i CuBr₂ u omjerima: a) 4:1 (crno), b) 3:2 (zeleno), c) 2:3 (plavo), d) 1:4 (žuto), e) 0:5 (crveno)

§ 9. ŽIVOTOPIS

Osobni podatci

Ime i prezime: Petra Ferenčić Datum rođenja: 09. ožujka 1997. Mjesto rođenja: Grad Zagreb

Obrazovanje

20042012.	Osnovna škola Ivana Granđe, Soblinec		
2012.–2016.	Srednja škola Prirodoslovna škola Vladimira Preloga: Prirodoslovna		
	gimnazija, Grad Zagreb		
20162020.	Preddiplomski studij kemije, Prirodoslovno-matematiči	ki fakultet	
	Sveučilište u Zagrebu, Grad Zagreb		

Sudjelovanja u popularizaciji znanosti

2018.	Otvoreni dan Kemijskog odsjeka na Prirodoslovno-matematičkom
	fakultetu
2019.	Otvoreni dan Kemijskog odsjeka na Prirodoslovno-matematičkom
	fakultetu