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1. INTRODUCTION 

 

The complex function of proteins is largely determined by the post-translational modifications, 

such as the covalent attachment of a sugar chain to the polypeptide backbone called 

glycosylation. Nearly all membrane and secreted human proteins are glycosylated1. The 

attached sugar chains are referred to as glycans and glycoconjugate formed by sugars attached 

to the polypeptide backbone is called glycoprotein.  

One such glycoprotein is immunoglobulin G (IgG), the most abundant immunoglobulin in the 

human serum accounting for 75% of all immunoglobulins and 10-20% of the total human 

plasma proteome2. IgG is involved in several humoral immune system pathways including 

antigen neutralization, target opsonization for phagocytosis, complement activation, antibody-

dependent cell-mediated cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC) 

and hypersensitivity reactions. Given its importance in multiple immune processes, IgG is 

being actively studied.  

IgG is composed of four polypeptide chains, two identical heavy chains and two identical light 

chains linked by inter-chain disulfide bonds. The structure of IgG can also be divided into two 

regions based on the functional properties, Fc (constant region) and Fab (antibody binding 

region). The Fc portion of the IgG molecule contains a conserved N-glycosylation site on the 

Asn-297 on each heavy chain3. The attached glycans modulate effector functions of IgG via 

fine-tuning the Fc conformation4. 

 

All N-glycans that can be found on IgG have a conserved core structure containing two N-

acetylglucosamine (GlcNAc) and three mannose units which branch into two antennae, 

commonly expanded by two GlcNAc residues [135]. The core structure is further expanded by 

the addition of bisecting GlcNAc, core fucose, galactose, and lastly N-acetylneuraminic (sialic) 

acid. High-throughput methods for the analysis of N-glycans attached to IgG using ultra-

performance liquid chromatography (UPLC) and liquid chromatography coupled with mass 

spectrometry (LC-MS) were developed, thereby enabling analysis of large cohorts containing 

thousands of samples5. The availability of IgG N-glycan data facilitated epidemiological 

studies exploring the association of IgG N-glycan changes with a range of pathological and 

physiological states6, as well as genome-wide association studies (GWAS) which test for the 

association of glycans and SNPs across the human genome to identify genetic factors involved 
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in the process of IgG N-glycosylation. A total of 29 genomic regions has been implicated in 

GWAS of IgG N-glycome7–10. Among the discovered genomic loci, there are four containing 

glycosyltransferase genes, B4GALT1, ST6GAL1, FUT8, and MGAT3, genes encoding enzymes 

that catalyse the addition of galactose, sialic acid, core fucose and bisecting GlcNAc residues 

to the glycan chain, respectively. The remaining loci harbour genes encoding transcription 

factors, co-factors, transport proteins, as well as additional genes with no apparent role in IgG 

glycosylation. The identified loci were also shown to be pleiotropic with inflammatory diseases 

including rheumatoid arthritis (RA), inflammatory bowel disease (IBD), ulcerative colitis 

(UC), Crohn’s disease (CD),  asthma, primary biliary cirrhosis (PBC) and Parkinson’s disease 

(PD)10. The expansion of the number of loci associated with IgG N-glycosylation would allow 

for assessment of biomarker potential of IgG for mentioned but also other diseases and 

understanding its possible role in the disease pathophysiology. 

 

When aiming to functionally test the findings of the GWA study, careful inspection of the 

genomic regions must be undertaken to prioritize and choose the genes with strong evidence 

for a role in the biological pathway. Therefore, prioritization includes a set of in silico methods 

such as exploring the functional consequences of identified variants, the pleiotropy with gene 

expression, the effect of the variants on distant genes via chromatin interaction and gene-based 

association analysis. Once candidate genes are chosen, the hypothesis can be set and functional 

follow-up can be performed in the appropriate biological system. 

 

GWAS is a hypothesis-free approach and is mainly used to generate knowledge that will enable 

the setting of new hypotheses. Previous GWA studies of the human IgG N-glycome provided 

a list of candidate genes that have a potential role in IgG glycosylation. In this study, we 

increase the number of samples and increase the power to detect novel genomic loci. Therefore, 

we set the hypothesis for this research as follows:  

- Increased sample size in genome-wide association meta-analysis of the human IgG N-

glycome increases statistical power to detect novel candidate genes associated with IgG 

N-glycosylation and allows setting of hypotheses that are testable in the functional 

study.  
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The main aim of the thesis is to provide a deeper understanding of the genes involved in the 

process of IgG N-glycosylation by means of GWAS conducted in a large number of 

participants. The workflow can be broken down into four objectives: 

1. Find an appropriate pre-processing and harmonization method of IgG N-glycan 

values measured by UPLC and LC-MS to enable joint analysis  

2. Perform GWAS and meta-analysis of GWAS summary statistics  

3. Prioritize genes in discovered genomic loci  

4. Set hypothesis for functional studies based on the results of post-GWAS in silico 

methods 
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2. LITERATURE REVIEW 

2.1 Glycosylation 

There is a common assumption that the function of the protein is defined by the structure 

encoded by the corresponding gene. However, the biologically complex functions of the 

proteins are largely defined by the post-translational modifications including the covalent 

attachment of sugars or sugar chains called glycosylation. Nearly all membrane and secreted 

proteins are glycosylated1. The attached sugar molecules are referred to as glycans. When 

present on the cell surface, glycans play a role in various events, such as cell-cell, cell-matrix, 

or cell-molecule interactions important for the development and function of multicellular 

organisms. Glycans can also be specifically bound to a protein where they can serve as 

regulators of protein functions, play a role in signalling, transport, and protein-protein 

interactions11.  

Glycoconjugate formed by the protein and sugars attached to its polypeptide backbone is called 

glycoprotein. The common classification of glycans is defined by the linkage to the protein, 

either N- or O-linkage. In this work, we focus on N-glycans attached to the human IgG. N-

linked glycan or N-glycan is a sugar chain covalently attached to an Asn residue of polypeptide 

chain which usually involves a GlcNAc (N-acetylglucosamine) residue and a peptide sequence 

as Asn-X-Ser/Thr, where X is any amino acid except Pro. 

As opposed to protein sequences which are directly encoded in genes, glycan structures are not 

primary gene products but rather the secondary gene product. There are hundreds of genes in 

the human genome that code for enzymes and transporters involved in glycan synthesis12. 

Glycan represents numerous combinatorial possibilities, as determined by many competing 

acting enzymes and the assembling process in the Golgi apparatus (GA) and endoplasmic 

reticulum (ER) of eukaryotic cells. In the case of N-glycans, the partial assembly occurs on the 

cytoplasmic side of ER follow by the flip across the membrane where the assembly is continued 

and transferred to the target protein. The oligosaccharide is further trimmed and the addition 

of monosaccharides occurs as protein travels through ER and GA13. The synthesis of sugar 

donors from the precursors occurs in cytosolic or nuclear compartments followed by the 

transport across membrane bilayer into ER lumen and GA.  The addition of monosaccharides 

to the growing glycan chain is catalyzed by enzymes called glycosyltransferases11.  
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The complex regulatory network behind protein glycosylation comprises hundreds of 

components including enzymes, transcription factors, transporters and other proteins. The 

synchronized action of these components in glycan biosynthesis and attachment is highly 

dependent on the genetic sequence but also regulatory mechanisms controlling the expression 

of involved genes. Nonetheless, evidence suggests that complex interaction between 

environment and genetic sequence has a vast impact on glycan biosynthesis resulting in 

immediate glycan change or creating lasting modifications that are maintained through 

epigenetic mechanisms14. 

The effects of altered glycosylation can range from being undetectable to a complete loss of 

function. The defects in N-glycan biosynthesis result in disorders that can manifest across 

multiple systems, including visual, hepatic, nervous and immune systems. The complete loss 

of N-glycans is lethal, thus making the congenital disorders of glycosylation (CDG) rare [22]. 

Many other nonmendelian human diseases can be caused by acquired changes in glycan 

biosynthesis and signalling including immune, nervous, cardiovascular, gastroenterological, 

haematological, and nervous system disorders, as well as cancers and infectious diseases11.  

2.2 Immunoglobulin G  

Antibodies also called immunoglobulins are part of the defense mechanism our body uses to 

fight infection by pathogens like viruses and bacteria. The binding of immunoglobulins to the 

pathogens activates the complement, a system of white blood cells and blood proteins, which 

then act together to inactivate and remove the invaders. Immunoglobulins are synthesized by 

B cells and all immunoglobulins produced by the same cell contain the same antigen-specific 

binding site. Naïve B cells produce immunoglobulins and express them on their surface, while 

the antibody-secreting plasma B cells produce and secrete immunoglobulins without presenting 

any on the surface. There are five immunoglobulin classes produced in humans: IgA, IgG, IgM, 

IgE and IgD, each having a specific function in the downstream immune response. The focus 

of this study is IgG15. 

IgG is a complex protein with an essential role in the humoral immune response in humans. 

IgG is highly abundant in human blood accounting for 10-20% of the plasma proteins, and one 

of the most studied glycoproteins. IgG is further subdivided into four classes: IgG1, IgG2, IgG3 

and IgG416. IgG subclasses are 90% identical in the amino acid sequence, however, each of the 
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subclasses has unique properties related to their function, such as antigen binding, complement 

activation, effector cells activation, placental transport and formation of immune complexes17.  

IgG comprises of two identical heavy chains and two identical light chains linked by inter-

sulfide bonds (Figure 1). Each heavy chain contains N-terminal variable domain (VH) and 

three constant domains (CH1, CH2, CH3), and a hinge region between CH1 and CH2. The 

light chains are composed of one N-terminal variable domain (VL) and one constant domain 

(CL). The light chain is linked to VH and CH1 domains, thereby forming a fragment antigen-

binding or Fab region. Lower hinge region and CH2-CH3 domains together form Fc or 

fragment crystalline17.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Structure of human IgG with examples of glycan structures that can be attached to Fc region. 

 

2.3 N-glycosylation of immunoglobulin G 

Each CH2 domain of the Fc region on IgG carries a single covalently bound N-glycan at the 

conserved Asn-297 residue. Additionally, around 15-25% of Fab regions have N-glycosylation 
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site18. The core structure of IgG N-glycans is composed of GlcNAc and mannose residues 

which can further be expanded by the addition of galactose, sialic acid, core-fucose, and 

bisecting GlcNAc units. When comparing Fab and Fc glycans, the differences are commonly 

observed in higher levels of bisecting GlcNAc, galactose and sialic acids in Fab glycans and 

lower levels of fucose. The noted differences can partially be explained by the restricted access 

for the glycosyltransferases and glycosidases to the Fc region as compared to the Fab region.  

The change in the composition of the attached N-glycans on IgG can modulate the structural 

conformation, thus resulting in changes in the effector function of IgG. One of such changes is 

the addition of fucose residue to the core of the glycan structure, often referred to as core-

fucose. This modification results in a change of conformation of the Fc region, thereby 

reducing the ability of IgG to bind FcγRIIIa19,20,21, an activating Fc receptor expressed in 

natural killer (NK) cells. The core-fucose is present in over 95% of the circulating IgGs where 

it acts as a safety switch to reduce the initiation of antibody-dependent cellular cytotoxicity 

(ADCC) which results in the destruction of the targeted cells22.  

Changes in bisection levels of IgG were observed in antigen-specific responses of IgG23,24, 

however, they are hard to distinguish from the effects of altered fucosylation levels due to the 

reciprocal manner that the fucosylation and bisection occur in25,26.  

In the case of galactosylation, decreased levels have been observed in multiple autoimmune 

diseases27, with the initial discovery in rheumatoid arthritis (RA) where decreased levels of 

galactosylated structures were observed28. Lack of galactose residues facilitates the activation 

of complement via mannose-binding proteins29. Recent findings have also indicated the 

changes in galactosylation with aging30, however, the underlying mechanism and function are 

still unknown.  

The addition of sialic acid to the end of IgG N-glycans has been shown to have the most 

prominent effect on the Fc region as it closes the binding site for Fc receptors31  and in parallel, 

opens the binding sites for DC-SIGN in the CH2-CH3 region32. The resulting change in 

conformation converts the IgG from proinflammatory to anti-inflammatory agent33. The 

sialylation of IgG has been used for the preparation of intravenous immunoglobulin (IVIG) 

which is utilized in therapy for numerous autoimmune diseases. 
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2.4 High-throughput measurement of IgG N-glycans 

The set of glycan structures that are expressed in a specific cell type or organism is referred to 

as glycome. Glycomics represents the systematic characterization of glycome of a given cell, 

organism or protein, usually consisting of the release of glycans from the given entity and their 

characterization using mass spectrometry. The bottleneck for any large-scale epidemiological 

study of IgG N-glycome has been the isolation of the protein from the large set of samples, 

therefore, the development of a high-throughput quantification method based on ultra-

performance liquid chromatography (UPLC) enabled such studies. The method includes 

isolation of IgG from serum or plasma sample using protein G plates, the enzymatic release of 

the N-glycans from its surface and their quantification5. The resulting profile consists of 24 

peaks, each representing at least one glycan structure which can be either released from Fc or 

Fab region on IgG. Another high-throughput approach based on liquid chromatography 

coupled with mass spectrometry consists of the enzymatic digestion of IgG protein to obtain 

subclass-specific Fc glycopeptide species which are separated by liquid chromatography and 

submitted to quantification by mass spectrometry34. The main difference between the two 

approaches lies in the subclass-specific measurements obtained by LC-MS as opposed to total 

IgG measurements by UPLC. Additionally, UPLC data includes Fab glycans, while LC-MS 

data is limited to the glycans from the Fc portion of IgG.  

2.5 Genome-wide association studies 

2.5.1 Single nucleotide polymorphisms 

The primary goal of human genetics is to identify genetic factors underlying common and rare 

diseases in the population, as well as indicate the main genetic players involved in specific 

processes in the human body. One of the widely used approaches is the genome-wide 

association study or GWAS which aims to identify the common genetic variations associated 

with the phenotype of interest35. GWAS relies on the measured genetic variation across the 

human genome, such as single nucleotide polymorphisms (SNPs). SNPs represent a single 

nucleotide change in the DNA which occurs in high frequency in the genome, and as such 

represent the most frequent type of the genetic variation36. Being the common type of genetic 

variation, most of the SNPs are present in a large proportion of the population37. Commonly, 

the frequency of a SNP is denoted by the minor allele frequency (MAF), the allele which is 

less common in the studied population. Many SNPs simply represent the marker for the 

genomic region and are found in the noncoding region of the gene or between the genes. As 
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such, they don’t have a clear impact on the encoded protein and downstream biological 

pathways. However, some of the SNPs can be found in the regulatory regions where they affect 

the expression of the gene or they can cause a change in the amino acid sequence, thus having 

significant functional consequences38.   

2.5.2 Genotyping 

Large-scale genotyping utilizing the chip-based microarrays made GWAS possible as this 

technology enables assays of more than one million SNPs. The two competing platforms 

commonly used are Affymetrix (Santa Clara, CA) and Illumina (San Diego, CA).   

The Affymetrix microarray enables the selection of variants to be genotyped from their 

database, followed by the printing of the DNA probes on the chip which recognize the allele at 

the specific genomic position. The allele in the sample DNA is identified by the match or 

mismatch with the probes for the targeted variant39.   

On the other hand, Illumina genotyping platform is based on the bead array technology which 

can genotype around 4 million variants per sample. The silica beads are placed in microwells 

coated with probes, each representing a specific genomic locus that ends just before the position 

of interest. The elongation of the DNA fragments with fluorescently labeled nucleotides 

enables the detection of the allele at the specific position40. 

2.5.3 Linkage disequilibrium 

SNPs are non-randomly distributed across the human genome and are often correlated with the 

nearby SNPs representing the phenomenon called linkage disequilibrium (LD). During the 

meiosis process, the SNPs in high LD are inherited together. LD in humans is present in the 

regions on the same chromosome which have a low recombination rate35. LD measures can be 

expressed as D, D′ and r2 which represent the difference between the observed frequency if two 

alleles co-occur in the population and the expected frequency if the two markers are 

independent. D’ is a measure related to recombination events between markers and it is scaled 

between 0 and 1, where D’=0 indicates complete linkage equilibrium and D’=1 indicates 

complete linkage disequilibrium, meaning that there are no recombination events between the 

two markers in the population. For genetic analysis, r2 measure is used to report LD between 

two SNPs and it is a measure of correlation where high r2 values indicate that two SNPs carry 
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similar information in a way that one allele of the first SNPs is frequently observed with one 

allele of the second SNP within the population35.   

Tag SNPs represent SNPs that are selected to capture the variation of the SNPs in the 

surrounding stretch of LD. It is important to note that the LD patterns are population-specific 

due to multiple factors including the size of the population, number of founding populations, 

and number of generations, which all contribute to the LD decay. The tag SNPs are used to 

minimize the redundant information produced by genotyping the SNPs41. According to the data 

from the HapMap project42, more than 80% of common SNPs in European populations are 

captured by genotyping the subset of 500 thousand to one million SNPs. 

2.5.4 Genotype Imputation 

Genotyping arrays cover only the limited number of SNPs across the whole genome. Genotype 

imputation is a procedure used to call the variants which remain ungenotyped to maximize the 

SNP number tested in the GWAS but also provide the same coverage for the study groups 

which were originally genotyped using different arrays43. Imputation is performed by utilizing 

the LD pattern of the SNPs in the haplotype block in the reference population. Commonly used 

software for genotype imputation includes SHAPEIT244, IMPUTE245, MACH46 and 

Minimac347. For the studies involving participants of European descent, there are several 

reference panels used for the imputation including 1000 Genomes48, HapMap consortium49 and 

Haplotype Reference Consortium (HRC)50, the latter being the panel used for imputation of 

genotypes for participants in this study.  The imputation quality measure (0-1) is derived by 

each software and it is later used to filter out the low imputation-quality variants 43,51. 

2.5.5 SNP-phenotype association testing 

GWAS is a hypothesis-free approach and is mainly used to generate knowledge that will enable 

hypothesis generation. It represents a series of tests that test each of the SNPs independently 

for the association with the phenotype of the interest. In the case of quantitative traits, linear 

regression is used for testing usually under the additive genetic model assumption for the SNPs 

where genotype is converted to the number of the reference alleles (0, 1 or 2)52. Additionally, 

statistical tests are adjusted for the factors known to influence the phenotype to reduce bias in 

the results. Spurious associations can also result from population stratification due to the 

presence of population substructure. Prior to the statistical testing, the presence of population 

stratification is examined and corrected for in the subsequent analysis53,54.   
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2.5.6 Meta-analysis of genome-wide association studies 

GWAS studies conducted in separate study groups can be meta-analysed to increase the sample 

size and improve power to detect significant associations. Meta-analysis allows the pooling of 

multiple studies without requiring the transfer of genotype data and protected clinical 

information of the study participants55. Importantly, the participating studies need to be 

independent, similar in their design and follow the same procedure with consistent SNPs, 

covariate adjustments, phenotype measurement and phenotype definition. Quality control of 

the individual-study summary statistics is performed to harmonize the participating study data 

and ensure that the results provided by each cohort are based on the same genomic build and 

reference allele to avoid false results and nullifying them in case of opposite allele reporting56. 

The measure of heterogeneity is derived to quantify the degree to which the studies differ57. I2 

index is one of the commonly derived coefficients representing the proportion of variability in 

coefficient resulting from meta-analysis which is attributed to the heterogeneity58. Once the 

quality control is done, the meta-analysis can be conducted using different approaches with 

fixed effects meta-analysis being the most widely used. Fixed-effects meta-analysis is 

performed under the assumption of the same magnitude of the risk allele effect across all 

studies59. A commonly used model for fixed-effects meta-analysis is inverse variance 

weighting where the inverse of the squared standard error is used as the weight for each study60. 

Afterwards, the significant results are usually defined as the associations with P-value < 5 x10-

8 which corresponds to Bonferroni correction of the 5% type I error rate for one million 

independent comparisons for common variants in the human genome61. 

2.5.7 Replication analysis 

Following the discovery GWA meta-analysis, a replication study is conducted in an 

independent sample which is drawn from the same population with aim of confirming the 

GWAS results62. Replication study needs to be well powered to detect the same SNP-

phenotype association and will largely depend on the phenotype definition and overall study 

design which should be similar to the design of the discovery study. Replication is considered 

successful if the similar effect for GWAS-identified SNPs or SNPs which are in high LD with 

GWAS-identified SNP is detected63. LD calculation is done in a reference population sample 

of the same descent as GWAS cohorts with the majority of the studies using 1000 Genomes 

project data48 or UK Biobank reference sample64.  
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2.5.8 Post-GWAS analysis 

In GWAS, both direct and indirect associations are possible. Direct association indicates a SNP 

that is directly genotyped or imputed, tested in the study, and is found to be statistically 

significant for the phenotype of interest and directly influences it. On the other hand, indirect 

associations are present when the causal SNP is not genotyped but the SNP in high LD is found 

to be statistically associated with the phenotype of interest. For this reason, in majority of cases 

the associated SNPs cannot be assumed to be causal but rather be used to map the influential 

SNP35.  

Since SNPs in high LD with the associated SNP cannot be excluded, genomic risk regions are 

defined as they cover all the potentially causal SNPs (candidate SNPs) rather than just one 

SNP. Also, the majority of GWAS-identified SNPs are commonly located in non-coding parts 

of the human genome with an equal proportion of intergenic and intronic regions65.  

In some cases, the genomic region can cover dozens of genes and further prioritization has to 

be performed. The efforts to identify the causal gene in the region include determining the 

effect of the candidate SNPs on gene expression and potential deleterious effect on the protein’s 

structure and function.  

To investigate the potential functional effects of the candidate variants, the existing databases 

and algorithms can be used, such as Variant Effect Predictor (VEP) by Ensembl which uses 

SIFT66 and Polyphen267 algorithms. The effect of the SNP on gene expression can be 

determined by colocalization analysis of the GWAS and gene expression summary statistics. 

A similar regional association pattern is considered as positive colocalization with a high 

probability of SNP having a pleiotropic effect, meaning that it affects both the phenotype of 

interest and expression of the gene68. The pleiotropy of the trait of interest and gene expression 

in relevant tissues provides powerful indications for setting hypotheses about the genes and 

pathways through which the associated variants might mediate their effects. 

Determining which genes are influenced by the GWAS-identified SNPs is important for 

pinpointing the biological pathways which underlie the phenotype of interest69. Once 

potentially causal genes are identified, the protein-protein interaction network can be 

constructed, either based on the existing knowledge about their interactions from the 

databases70 or the summary statistics from the conducted GWAS by exploring the SNP-SNP 

effects and their correlation10. 
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2.6 Previous GWAS of IgG N-glycosylation 

GWA studies of IgG N-glycosylation have previously been used to identify main 

glycosyltransferases, transcription factors, co-factors, as well as additional genes with no 

apparent role in IgG glycosylation7–10.  

The first-ever GWAS of IgG N-glycome was conducted by Lauc et al.7 on 77 IgG N-glycome 

traits based on UPLC measurement, including both directly measured and derived traits, in four 

cohorts (n=2247) of European descent. Association testing resulted in nine genomic loci that 

passed the genome-wide significance level (P-value < 5x10-8), four of which contain genes 

encoding glycosyltransferases- enzymes catalyzing the transfer of sugar molecules to the N-

glycan chain. B4GALT1, ST6GAL1, MGAT3 and FUT8 genes encode enzymes that catalyze 

the addition of galactose, sialic acid, bisecting GlcNAc and core-fucose units to the N-glycan 

chain, respectively71.  

Five additional loci were discovered containing the following genes: IKZF1, IL6ST-ANKRD55, 

SUV420H1, SMARCB1-DERL3 and ABCF2-SMARCD3, however, these genes currently do not 

have an apparent role in the IgG N-glycosylation process. The conducted study provided proof 

that the GWAS approach could not only identify the genes with a relevant and known role in 

glycosylation but also implicate the novel genomic loci containing genes with potential but still 

unknown function in the process. The conducted study focused mainly on pre-existing 

knowledge on functions of the genes in discovered loci to make inference about the most 

plausible candidate genes associated with IgG glycosylation. However, additional evidence for 

the prioritization of certain genes in discovered loci was obtained in GWA studies that 

followed.  

The next attempt to discover additional genomic loci associated with IgG glycosylation 

consisted of a set of multivariate GWA studies of 23 phenotypes derived from the UPLC 

measurements of IgG glycans in the Orkney Complex Disease Study (ORCADES) cohort 

(n=1960)8. A multivariate approach was applied to address the correlation structure among 

omics traits that might be partially genetically regulated and, therefore, cannot be ignored72. In 

multivariate analysis, the association of multiple phenotypes with a genetic variant is tested, 

providing more power to detect new associations as opposed to univariate approach72. Directly 

measured glycan traits were grouped into nine groups defined by the structural and chemical 

glycan properties (e.g. fucosylation, galactosylation, bisection), as well as one group which 

contained all 23 IgG N-glycans denoted simply as N-glycosylation. In this study, five 
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previously identified IgG N-glycosylation loci7 were replicated and five novel loci were 

detected harbouring IGH, ELL2, FUT6-FUT3, HLA-B-C,+ and AZI1 genes. Four of the newly 

discovered loci were not detectable by univariate analysis, thereby confirming the need for 

multivariate approaches in the genetic analysis for complex traits.   

GWAS by Wahl et al.9 was conducted using the IgG N-glycome measurements obtained by 

LC-MS in the KORA F4 cohort (n=1836). As LC-MS glycoprofiling provides glycan 

measurements specific for IgG subtypes (IgG1, IgG2/3 and IgG4), the study found the 

difference in bisection and fucosylation regulation between N-glycomes in different IgG 

subclasses. Besides that, the study replicated six of the known and discovered one novel 

association on chromosome 1 containing RUNX3 gene. 

The findings from the performed GWA studies implicate the polygenic nature of the genetic 

regulation of IgG N-glycosylation. Considering that, the aim of the subsequent GWAS study 

by Klarić et al.10 was to increase the number of samples and improve power to detect additional 

genomic loci which affect IgG N-glycans. The tested phenotypes included 23 UPLC-measured 

glycan traits and additional 54 derived traits. Meta-analysis of summary statistics from four 

cohorts of European descent was performed with a total sample size of 8090. Thirteen 

previously known loci were replicated and fourteen novel loci were identified. Moreover, the 

study helped refine the list of IgG glycosylation-related genes by applying several gene 

prioritization strategies including exploration of variant effects, pleiotropy with gene 

expression, and obtaining evidence of a gene being functionally similar to genes from the gene-

set representing relevant biological pathways73.  The genes prioritized in each replicated 

genomic region are shown in Figure 2. The gene-set enrichment analysis showed that the genes 

were overrepresented in sets associated with processes such as glycosylation, immune system 

and transcription. Based on the constructed functional network, the study explored the potential 

regulation of FUT8 by IKZF1, a gene that encodes a transcription factor involved in the 

regulation of gene expression in B cells. They show that IKZF1 regulates the gene expression 

of FUT8 by binding to the regulatory regions of FUT8 gene, while the IKZF1 knockdown 

increases the levels of fucosylation through an increase in FUT8 expression.  

Additionally, the pleiotropic effects of the identified variants on the IgG glycosylation and 

inflammatory diseases were observed including CD, UC, RA, PBC, cholesterol, asthma, 

Parkinson’s disease and HDL. 
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The latest GWAS of IgG N-glycome74 was also conducted on the same set of samples as the 

previous study10 but using the multivariate approach as described in the study by Shen et al8. 

The study replicated 26 of the associations from Klarić et al. study while one locus (rs12341905 

near SPINK4) remained unreplicated.  With additional three novel associations (TNFRSF13B, 

OVOL1/AP5B1, RNF168), the study increased the number of genomic loci associated with IgG 

N-glycome to 29.    

 

 

 

 

 

 

 

 

Figure 2:Chromosomal location of associations with IgG glycosylation across the human genome from Klarić et 

al. study; only loci passing the significance threshold in replication analysis are shown. The gene prioritization 

was based on the evidence denoted by coloured dots: nearest to the strongest association in the region (orange), 

biological pathway enrichment (purple), pleiotropy with gene expression in peripheral blood or CD19 B-cells 

(light blue) and missense mutation (dark blue). Image adapted from Pezer et al.75 

 

 

 

 



13 

 

3. METHODS 

3.1 Studied cohorts 

Recruitment of participants, sample collection, genotyping and phenotyping in the cohorts used 

in the study was performed by staff members at the King's College London, United Kingdom, 

German Institute of Human Nutrition, Germany, University of Zagreb, Croatia, University of 

Split Medical School, Croatia, University of Edinburgh, United Kingdom, Leiden University 

Medical Centre. Netherlands, Helmholtz Zentrum München – German Research Center for 

Environmental Health, Germany, Institute of Genetic Epidemiology, Freiburg University 

Medical Center, Germany and University of Tartu, Estonia. 

IgG N-glycan quantification was performed by Genos Glycoscience Research Laboratory, 

Croatia and Leiden University Medical Centre, Netherlands. 

TwinsUK 

TwinsUK is a national registry of 12,000 volunteer twins in the United Kingdom. The cohort 

mostly consists of female subjects (83%) with an almost equal number of monozygotic (51%) 

and dizygotic (49%) twin pairs. With the primary goal to study the genetic background of 

healthy ageing and complex diseases, a subset of 7,000 twins was assessed for a wide range of 

clinical, biochemical, socioeconomic and behavioural characteristics. Furthermore, several 

omics' datasets are available including genome-wide SNP data which is being used in genome-

wide association studies. The participants signed informed consent forms and ethical approval 

was obtained for academic and commercial use of the study76. A subset consisting of 4477 

twins was used in this genome-wide association study of IgG N-glycome. 

The European Prospective Investigation into Cancer and Nutrition Study 

The European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam is a 

prospective cohort study that includes 27,548 participants who were recruited from the general 

population of Potsdam and surrounding area in the period between 1994 and 199877. The age 

of participants at recruitment ranges between 35 and 65, and the number of female and male 

subjects is 16,644 and 10,904, respectively. The initial assessment consisted of anthropometric 

measurements and blood sample collection used for omics' data derivation. Questionnaires and 

face-to-face interviews were used for assessing the sociodemographic characteristics, lifestyle 

and current health status. Follow-up assessments were carried out by telephone and via 

questionnaires which were sent out every 2-3 years78. Ethical approval was obtained by the 
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ethics committee in Germany and all participants gave informed consent77. Based on the 

availability of both genetic and glycomic data, a subset of 2,406 subjects was used in this study. 

CROATIA Vis, CROATIA-Split and CROATIA-Korcula 

“10001 Dalmatians” is a study of Croatian island isolates which includes participants from six 

Adriatic islands (Korčula, Vis, Lastovo, Mljet, Susak, Rab) and the city of Split. The study 

aims to investigate genetic and environmental determinants in health and disease by using the 

advantage of genetically isolated populations. In this study, CROATIA-Vis, CROATIA-

Korcula and CROATIA-Split sample groups were used. A total of 1008 participants aged 19-

93 was recruited for CROATIA-Vis cohort in villages of Vis and Komiža during 2003 and 

2004. Besides completing health, dietary and health questionnaire, participants were assessed 

for the number of anthropometric and physiological measurements, and they also donated 

overnight fasting blood samples which were used for DNA analysis, biochemical 

measurements and molecular marker assessment including glycomics, which is used in this 

study79. Data on CROATIA-Korcula subjects was collected from the island of Korčula, 

specifically from the town of Korčula and three villages including Lumbarda, Zrnovo and 

Račišće. The participants were aged 18-98 at the time of recruitment and the data was collected 

in the same way as for CROATIA-Vis cohort. CROATIA-Split cohort comprises 1,012 

subjects aged 18-85 who were recruited in 2009-2010 in the city of Split. The data collection 

was carried out following the same protocol as in the other CROATIA cohorts. Ethical approval 

was obtained for each cohort from ethics committees in Croatia and Scotland. All participants 

provided signed informed consent.  

The Orkney Complex Disease Study  

The Orkney Complex Disease Study (ORCADES) is a family-based cohort collected with aim 

of identifying genetic risk factors for complex diseases in an isolated population of the Orkney 

Island in northern Scotland. The recruitment was initiated in 2005 and it lasted for 6 years 

during which data on 2080 subjects were collected. The subjects were recruited if they had at 

least two Orcadian grandparents. The initial visit included cardiovascular measurements and 

fasting blood sample collection, followed by additional visits for assessment of cognitive 

function, eye measurements and DEXA scans. The study was approved by ethics committees 

in Scotland and signed informed consent was obtained from all participants 80. A subset of 

1,720 subjects was used in this study. 
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Leiden Longevity Study 

Leiden Longevity Study (LLS) is a family-based cohort from the Dutch population designed 

to study longevity. Nonagenarian siblings, individuals having a sibling older than 89 years for 

men and 91 years for women, and their offspring and offspring's spouses were recruited for the 

study if they were of European descent. Initial data collection started in 2002 and ended in 

2006 during which blood samples were obtained for assessment of plasma parameters and 

DNA and RNA extraction. A total of 3,359 subjects was included: 944 long-lived proband 

siblings, 1,671 offspring and 744 controls (offspring spouses). The study was approved by the 

Ethical Committee of Leiden University Medical Centre. Written informed consent was 

obtained from all participants81. A subset of 1,190 participants including only offspring and 

their spouses was used in this study.  

The Cooperative Health Research in The Augsburg Region F4 

The Cooperative Health Research in The Augsburg Region (KORA) F4 is a population-based 

study conducted in 2006-2008 as a follow-up of the KORA S4 study which was conducted 

during 1999-200182. Participants were individuals randomly selected from the population 

registry in the Augsburg region and two neighbouring counties. The data collection included 

standard medical and physical examinations. A total of 3,080 participants (1,594 females and 

1,486 males) aged 32-86 years were included in the F4 follow-up83 of whom 1,167 were used 

IgG N-glycome GWAS. Ethical approval was obtained from the Ethics committee of Bavarian 

Chamber of Physicians, Germany. All participants gave informed consent prior to entering the 

study. 

The Viking Health Study - Shetland  

The Viking Health Study - Shetland (VIKING) is an epidemiologic study aiming to discover 

the genetic basis for factors influencing risk for complex diseases including cardiovascular, 

chronic kidney and lung diseases, as well as glaucoma, diabetes and stroke. VIKING cohort 

consists of individuals from an isolated population of Shetland in the north of Scotland and the 

main criteria for participation was having at least two grandparents from Shetland. A group of 

2,105 participants was recruited between 2013 and 2015. A large number of distant relatives 

makes the cohort suitable for the identification of rare genetic variants which influence disease 

risk84. Data on health-related phenotypes and environmental parameters was collected and 

participants donated a fasting blood sample. A total of 1,082 subjects was selected for IgG 

glycoprofiling and a subset of 1,071 was used in this study. 



16 

 

The Estonian Genome Center of the University of Tartu Biobank 

The Estonian Genome Center of the University of Tartu (EGCUT) Biobank is a volunteer-

based cohort of 52,000 adult subjects from the Estonian population (aged ≥ 18).  The 

recruitment of the subjects was performed throughout the country via general practitioners and 

medical personnel in the period between 2002 and 2012. The participants donated blood 

samples and completed a questionnaire on topics such as lifestyle, diet and clinical diagnostics. 

The cohort was used in studies investigating over 200 traits including anthropometric traits, 

blood biochemistry, common and rare diseases, as well as lifestyle and personality traits. The 

data is being continuously updated through follow-up health checks using national electronic 

health registries and re-examinations85. A total of 1,108 subjects has data on IgG N-glycome 

but a subset of 483 was used in this study. 

German Chronic Kidney Disease Study 

German Chronic Kidney Disease (GCKD) study is an ongoing prospective observational study 

of kidney disease patients who are under the regular care of nephrologists in Germany86. The 

current sample size of 5,217 makes it the largest CKD cohort worldwide. The mean age of 

participants is 60 with 60% of the participants being male. The enrolment took place between 

March 2010 and March 2012 and was conducted by certified study members associated with 

the nephrologist practice or by outpatient units throughout different regions. Besides collecting 

information on sociodemographic factors, medical and family history, the participants donated 

blood samples which were later processed and shipped to the central laboratory for 

measurement of the core clinical parameters and samples were stored for any future analyses. 

IgG N-glycans for the cohort were measured in around 5,000 samples using UPLC and 4,933 

were used in the current genome-wide association study. 

3.2 Genetic analysis 

Genotyping and Quality control 

Genotyping in the cohorts used in the study was performed by staff members at the King's 

College London, United Kingdom, German Institute of Human Nutrition, Germany, University 

of Zagreb, Croatia, University of Split Medical School, Croatia, University of Edinburgh, 

United Kingdom, Leiden University Medical Centre, Netherlands, Helmholtz Zentrum 

München-German Research Center for Environmental Health, Germany and University of 

Tartu, Estonia. 
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Genotyping was performed using commercially available SNP genotyping arrays (listed in 

Table 1), followed by genotype calling in Illumina and Genome Browser software. Quality 

control (QC) was performed to exclude SNPs and samples with low genotyping quality. 

Quality control of SNPs removed 1) SNPs with low call rate, 2) SNPs violating the assumptions 

of Hardy-Weinberg Equilibrium (HWE) and 3) SNPs with low minor allele frequency (MAF) 

< 1%. Depending on the cohort, samples with call rates < 95%, < 97% or < 98% were removed.   

Genotype imputation 

Imputation of SNPs was performed to increase the number of SNPs tested in the association 

analysis, as well as increase the number of overlapping SNPs between cohorts due to different 

genotyping arrays. The overview of genotyping arrays, genotype quality control and imputation 

software is shown in Table 1. HRC87 panel was used as a reference for imputation. All 

genotypes were mapped to Genome Reference Consortium GRCh37 (hg19). 

Table 1: Overview of genotyping arrays and imputation 

Cohort Genotyping platform(s) 
ID call 

rate 

SNP 

call rate 

HWE  

p 
MAF 

N SNPs 

postQC  
Imputation Tool 

TwinsUK 
Illumina HumanHap300; 

Illumina HumanHap610Q 
>95% 

> 97% 

(MAF ≥ 

5%); 

> 99% 

(1% ≤ 

MAF < 

5%)  

10-6 ≥1% NA 

MACH 

(Michigan 

Imputation 

Server v1.0.2) 

EPIC-

Potsdam 

Human660W-Quad_v1_A88  
>97% 

>99% 
>95% 10-3 NA NA 

Eagle2/minimac 

3 

HumanCoreExome-12v1-

0_B88 
>98% >95% NA NA NA 

Eagle2/minimac 

3 

Illumina 

InfiniumOmniExpressExome-

8v1-3_A DNA Analysis 

BeadChip89 

>98% >95% NA 

zCall 

threshol

d=7 

NA 
Eagle2/minimac 

3 

LLS 
Illumina660 W; Illumina 

OmniExpress 
>95% >95% 10-4 ≥1% 296,619 IMPUTE2 

CROATIA-

Korcula 

1,2,3 

Illumina HumanHap 

s370CNV DUO/QUAD Phase 

1(1); Illumina 

HumanOmniExpress Exome 

(2 & 3) 

>97% >98% 10-6 ≥1% 
305,354 

606,438 

SHAPEIT2/San

ger 

CROATIA-

Split 

Illumina HumanHap 370CNV 

QUAD Phase I; Illumina 

HumanOmniExpress Exome  

≥97% >98% 10-6 ≥1% 321,456 
SHAPEIT2/San

ger 

CROATIA-

Vis 

Illumina HumanHap300v1 

BeadChip 
>97% >98% 10-6 ≥1% 272,930 

SHAPEIT2/San

ger 

VIKING 
Illumina HumanOmniExpress 

Exome 
>97% >98% 10-6 

≥1% 

omni 

markers; 

≥0.01% 

611,836 
SHAPEIT2/San

ger 
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exome 

markers 

EGCUT 
Illumina GSAv1.0, GSAv2.0, 

GSAv2.0_EST 
>95% >95% 10-4 ≥1% NA 

Beagle 

v.28Sep18.793 

KORA F4 Affymetrix Axiom >97% >98% 5x10-6 ≥1% 508,532 
SHAPEIT/IMP

UTE 

ORCADES HumanHap300v2 Phase 1 >97% >98% 10-6 ≥1% 278,618 
SHAPEIT2/San

ger 

GCKD 
Illumina Omni2.5Exome 

BeadChip 
>97% >96% 10-5 >1% 2,337,794 Eagle/minimac3 

 

3.3 IgG N-glycome analysis 

IgG N-glycome measurements were obtained using UPLC and LC-MS. The analysis of IgG 

N-glycome was performed in Genos Glycoscience Research Laboratory, Croatia for all cohorts 

except for LLS cohort for which the glycoprofiling was performed by the Centre for Proteomics 

and Metabolomics at the Leiden University Medical Centre, Netherlands. An overview of 

cohorts and corresponding platform used for IgG N-glycome measurement, as well as literature 

where the analysis was described in more detail, is shown in Table 2.  

Table 2: Overview of platforms used for quantification of IgG N-glycans 

Cohort Platform Reference 

TwinsUK UPLC Menni et al. 90 

EPIC UPLC Not published  

LLS LC-MS Wahl et al.9 

CROATIA-Korcula UPLC and LC-MS Pučić et al.5  

CROATIA-Split LC-MS Not published 

CROATIA-Vis LC-MS Pučić et al.5  

VIKING UPLC Landini et al.91 

EGCUT UPLC Trbojević-Akmačić et al.92 

KORA F4 LC-MS Wahl et al.9 

ORCADES UPLC Krištić et al. 93 

GCKD UPLC Not published 

 

Glycan Quantification by Ultra-Performance Liquid Chromatography  

Ultra-performance liquid chromatography is used for quantification of glycan structures 

attached to both Fc and Fab portions of IgG without the possibility to differentiate them. The 

detailed protocol for UPLC analysis is published elsewhere5. Briefly, IgG was isolated from 

blood plasma samples using Protein G plates (BIA Separations, Ajdovščina, Slovenia). After 

filtration, plates were extensively washed to remove unwanted proteins and IgG was released 
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from protein G monoliths using 0.1 M formic acid. Eluates were collected in a 96-well plate 

and neutralized with neutralization buffer (1 M ammonium bicarbonate) to pH 7.0 to maintain 

the stability of IgG. IgG samples were dried and denatured using SDS detergent and incubated 

at 65°C for 10 minutes. N-glycans from IgG were released using recombinant N-glycosidase F 

(ProZyme, Hayward, CA), followed by fluorescent labelling with 2-aminobenzamide dye. 

Hydrophilic interaction liquid chromatography (HILIC) based solid-phase extraction (SPE) 

was used to remove excess protein, reagents and fluorescent label, followed by clean-up with 

acetonitrile (ACN). Fluorescently labelled N-glycans were separated hydrophilic 

interaction UPLC on Waters Aquity UPLC H-class instrument (Waters, Milford, MA) with 

Waters bridged ethylene hybrid (BEH) glycan chromatography column. A linear gradient of 

75 to 62% ACN in a 20-min analytical run was used to separate different glycan structures. 

The retention times for individual glycans were converted to glucose units based on hydrolysed 

and 2-AB labelled glucose oligomers which were used as external standards for calibration of 

the system. 

Data processing was done in two ways depending on the cohort, 1) using Empower 3 software 

with an automated processing method with traditional integration algorithm, followed by 

manual correction of each chromatogram to maintain the same integration intervals in all 

samples or 2) automatic integration as described in Agakova et al.94. The resulting 

chromatograms were separated into 24 peaks where the amount of glycans was expressed as % 

of the total integrated area in the corresponding peak (GP1-GP24). Total separation of each 

glycan structure is not possible using the described method, thus resulting in multiple glycan 

structures being found under a peak. Ten of the 24 peaks contain more than one structure 

(shown in Figure 3). The output of UPLC measurement is represented by 24 values which are 

referred to as directly measured glycan traits. Glycan structures in each peak and percentages 

of the area in each peak are listed in Supplementary Table  1.  
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Figure 3: Chromatogram of UPLC N-glycan measurement of the human IgG. Image from Lauc et al.7 

 

Glycan Quantification by Liquid Chromatography coupled with Mass Spectrometry 

Liquid chromatography coupled with mass spectrometry enables quantification of glycan 

structures attached to the Fc portion of each of the IgG subclasses (IgG1, IgG2/3, IgG4). The 

full name of the method is reverse-phase nano-liquid-chromatography-sheath-flow-

electrospray-mass spectrometry (LC-ESI-MS) but in this work, we refer to it as LC-MS. The 

detailed protocol for analysis of IgG N-glycans using LC-MS is described in Selman et al.95. 

Briefly, IgG was isolated by affinity chromatography binding to protein G 96-well plates (BIA 

Separation, Ajdovščina, Slovenia) and treated with trypsin overnight at 37ºC which allowed 

cleavage of IgG at specific amino acid sites. The cleavage by trypsin resulted in different 

glycopeptides due to the difference of amino acid sequence in different IgG subclasses, thereby 

enabling subclass-specific glycan measurements.  

IgG subclass separation was performed using the Ultimate 3000 HPLC system (Dionex 

Corporation, Sunnyvale, CA). The SPE trap column was conditioned with mobile phase A and 

samples were loaded and separated on Ascentis Express C18 nano-LC column (Supelco, 

Bellefonte, USA) conditioned with mobile phase A and 95% ACN. For detection of separated 

subclass-specific glycopeptides, the HPLC system was coupled to a Dionex Ultimate UV 

detector and interfaced to a quadrupole-TOF-MS mass spectrometer (Bruker Daltonics, 

Bremen, Germany) with a standard ESI source (Bruker Daltonics, Bremen, Germany) and a 
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sheath-flow ESI sprayer (Agilent Technologies, Santa Clara, USA). The mass spectra were 

recorded in a range between 300 and 2000 m/z with two averages at a frequency of 1Hz. The 

analysis time for one sample was 16 minutes.  

The calibration of LCMS datasets was done internally using a list of known glycopeptides and 

datasets were exported to the open mzXML format by Bruker DataAnalysis 4.0 software, 

followed by alignment to a master dataset of a typical sample. In-house software “Xtractor2D” 

was used to extract pre-defined features such as peak maximum or peak area in specific 

retention time and mass windows. Relative intensities of subclass-specific glycopeptides were 

obtained by integrating and summing three isotopic peaks. The obtained intensities were then 

normalized to the total IgG subclass-specific glycopeptide intensities. IgG2 and IgG3 

subclasses have the same tryptic glycopeptide moieties, thus not enabling the separation of the 

subclass-specific glycopeptides. Here, obtained measurements are simply referred to as 

IgG2/3. LC-MS quantification results in 50 values which refer to 20 glycans measured on IgG1, 

20 glycans on IgG2/3 and 10 glycans on IgG4. All glycans measured on IgG4 are fucosylated 

structures since the nonfucosylated glycans are hard to distinguish from the glycans found on 

IgG196. The list of glycans measured by LC-MS and their description is listed in Supplementary 

Table  3. 

3.4 Data harmonization 

Previously, there were no GWA meta-analyses of the human IgG N-glycome using GWAS of 

both UPLC and LC-MS IgG N-glycome measurements, therefore making it necessary to first 

test how the two types of data correlate and what methods should be applied in pre-processing 

to make them comparable. For this, we used the CROATIA-Vis cohort (n=661) for which both 

UPLC and LC-MS glycan data were available for the same samples. 

One important factor for comparing UPLC and LC-MS data is the definition of the traits which 

will ultimately be compared. Original glycan traits measured by the platforms are not directly 

comparable as they are based on different technologies and differ in the information they 

output. LC-MS output shows the abundance of glycan structures per each IgG subclass: IgG1, 

IgG2/3 and IgG4. UPLC gives output based on the total glycome regardless of the IgG subclass. 

We aimed to combine IgG subclass information from LC-MS in an appropriate manner to get 

information corresponding to whole IgG glycome values measured by UPLC.  
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Pre-processing of IgG glycome data consists of normalization of the data and batch correction 

to remove the effects of experimental variation. The term normalization describes the division 

of each data row by a normalization factor. The normalization procedure allows for the 

comparison of the samples by removing the unwanted variation between the 

samples97.  Several types of normalization methods can be applied to glycan data and the 

following three were tested: total area normalization, largest peak normalization and median 

quotient normalization. 

Total area normalization represents the normalization of each peak by the total area of the 

chromatogram. The normalization factor for each sample is calculated by summing all the 

features in the corresponding sample row. The total area normalization is applied under the 

assumption that the total concentration of the analyte remains unchanged across all samples. 

Analytes present in high concentrations will contribute to the normalization factor more than 

the low-concentration analytes. In case when the peak intensity of analyte with high 

concentration significantly changes, the normalization factor will be affected. Total 

normalization scales each sample in such a way that the sum of each row (sum of all glycans) 

is equal to 1, resulting in so-called compositional data98. Total area normalization is applied 

by using tanorm() function in “glycanr”99 package in R. 

The largest peak normalization represents the normalization of each peak with the highest peak 

of the chromatogram. The normalization factor for a sample is calculated by choosing the 

highest value in the corresponding sample row. The largest peak normalization can be applied 

by using refpeaknorm() function in “glycanr” package in R. 

Median quotient normalization assumes that the signal intensity is a function of dilution only 

and uses the median as an estimator of the most probable quotient, a quantity that is used as a 

normalization factor. The normalization factor is computed as the most probable quotient 

between the corresponding spectrum and reference spectrum and it substitutes the total integral 

as a marker of sample concentration. The reference spectrum is calculated as the median 

spectrum based on all spectra in the study100. Median quotient normalization is applied by using 

medianquotientnorm() function in “glycanr” package in R. 

Given that LC-MS measurement gives information per IgG subclass, we applied normalization 

both across the whole glycome and per IgG subclass. 
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Batch correction 

Due to varying laboratory conditions during the experiment, it is necessary to perform batch 

correction to remove variation introduced by them. All procedure steps are performed using 

ComBat function in R package “sva”101. ComBat function implements empirical Bayes method 

for batch correction102 which assumes a normal distribution of the data. The glycan data is 

mostly left-skewed making it necessary to first log-transform the data. Another reason for log 

transformation is the multiplicative nature of batch effects which will become normally 

distributed after the transformation and the model will be additive. The steps in batch correction 

are as follows: log transformation, batch correction with ComBat() and 

exponential transformation of the values to the original scale.  

Derived trait calculation 

We calculated derived traits from the initial traits to enable a more straightforward 

interpretation of the GWAS results so that the discovered genomic loci can be directly linked 

to the addition of one of the four sugar units which are found in IgG N-glycome: galactose, 

fucose, sialic acid and bisecting GlcNAc. The derived traits were calculated as the percentage 

of all structures from the measured glycans which contain a certain sugar unit(s) and the 

additional three traits representing a ratio of structures. The list of traits and formulas used to 

calculate them from UPLC and LC-MS data are listed in Supplementary Table 4.  

Response factor 

Given the nature of the LC-MS experimental procedure, we also incorporated an approximation 

of the IgG glycan subclass response factor to represent the true IgG subclass concentration 

relative to other subclasses. Previous experiments allowed for approximation of subclass 

response factors (RF): IgG1 with RF of 1, IgG2/IgG3 with RF of 2 and IgG4 with RF of 1 (not 

published). We incorporated the response factor by multiplying raw data values of the IgG 

subclass with the corresponding response factor.  Response factors for each IgG subclass and 

relative concentrations of IgG subclasses were considered in the normalization, as well as in 

the calculation of the trait.  

Relative concentrations of IgG subclasses 

IgG subclasses are present in different abundances in human serum, so we attempted to 

maximize the correlation of LC-MS with UPLC data by incorporating relative concentrations 

of each subclass in the calculation of derived traits. We used the following relative 

measurements that have been previously indicated in the literature: 66% for IgG1, 30% for 
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IgG2/IgG3 and 4% for IgG4 17. The subclass-specific glycan measurements were weighted by 

the corresponding concentration prior to trait calculation. 

3.5 Statistical analysis 

3.5.1 Pre-processing of glycan data 

Prior to genetic analysis, glycan measurements were normalized and batch corrected to reduce 

the impact of experimental variation on the downstream analysis. In the previous section, data 

harmonization was described where different normalization methods for glycan data were 

tested.  The glycan data was pre-processed centrally in Genos in all cohorts except the LLS 

cohort for which the glycan data was pre-processed by a colleague from Leiden University 

Medical Centre. Also, glycan data for the CROATIA-Korcula cohort was obtained in three 

instances (2010, 2013 and 2017) and each dataset was separately pre-processed and treated as 

an individual cohort in downstream genetic analysis. TwinsUK cohort was analysed in four 

separate batches. Due to differences in methodology of sample collection, batches 1 and 2 were 

considered as one dataset and batches 3 and 4 were considered as the second dataset. The initial 

(raw) measurements of glycans represent the area under the peaks in the chromatogram. 

Extreme values in data were removed and considered as technical outliers if the values were in 

the 99.9th percentile. Next, based on the results of the previous test, for harmonization of the 

data, median quotient normalization was applied on both UPLC and LC-MS glycan data across 

24 and 50 glycan values, respectively. Log transformation was applied to reduce the skewness 

of the data followed by batch correcting using empirical Bayes method102 implemented in 

ComBat function in “sva” 103 package in statistical software R104. Each batch was represented 

as a 96-well plate on which samples were analysed. After batch correction, the values were 

exponentiated to the original scale followed by the calculation of the derived traits. Derived 

traits represent values to describe the group of glycans that contain certain sugar unit in their 

structure. For example, monosialylation represents the percentage of glycan structures in the 

total glycome which contain one sialic acid and is calculated by summing glycans which 

contain one sialic acid unit and dividing by the sum of all glycans. A total of eleven matching 

traits was defined in UPLC and LCMS to enable an integrative analysis of different datasets. 

Derived traits and formulas for their calculation are listed in Supplementary Table 4. Prior to 

the genetic association test, glycan data in all cohorts was transformed using rank-based inverse 

normal transformation (mean=0, standard deviation=1) which is commonly used in genetic 

studies, thereby ensuring that the phenotype values in all cohorts are on the same scale.  
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3.5.2 Genome-wide association study 

To perform GWAS, an analyst for each cohort received the pre-processed glycan data and 

analysis plan explaining GWAS methodology. The list of analysts for each cohort is available 

in Supplementary Table  6 and a detailed analysis plan can be found in Supplementary Material. 

Different analysts used different software for association tests, but the same association method 

was applied for all cohorts. The list of cohorts and number of analysed samples is listed in 

Table 3. GWAS was performed on HRC imputed genotypes assuming an additive linear model 

of association. Derived trait values were adjusted for age, sex and cohort-specific covariates 

before fitting linear mixed models which also consider genomic kinship while testing the 

association between SNPs and phenotype. GWAS pipeline developed by the Wilson group 

from the University of Edinburgh was used to perform GWAS in ORCADES, CROATIA-

Korcula (three datasets; one UPLC and two LC-MS datasets), CROATIA-Vis, CROATIA-

Split and VIKING cohorts because the genetic data was directly available on the University of 

Edinburgh’s High Performance Computing Server. The GWAS pipeline implements linear 

mixed modelling in three steps, 1) fits covariates (except genetic kinship) in a fixed effects 

linear model, 2) passes the residuals from the fixed effects linear model and the genetic kinship 

matrix to polygenic() from GenABEL package105 in R and fits the linear mixed model, with 

kinship fitted as a random effect and 3) passes the residuals generated by polygenic() to 

REGSCAN106 for the genome-wide association. Genome-wide association test in TwinsUK 

cohort (two datasets) was performed accounting for batch effects due to four different instances 

over the years in which glycan measurements in samples were obtained. Also, important to 

note is that GWAS for the EPIC cohort was run in four parts due to four available sample 

subgroups.  The GWAS summary statistics files for each cohort were stored in text format 

containing SNP identifier, chromosome, base position, assessed allele, other allele, beta, 

standard error, number of samples analysed and imputation quality information. The results 

from collaborators were transferred via a secured site on the Lobsang server, University of 

Zagreb, where the subsequent analyses were performed. 
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Table 3: Cohorts included in the IgG N-glycome GWAS. 

Cohort 
N (glycans 

available) 
N female N male median age N in GWAS  

TwinsUK 4624 4282 342 54  4477 

EPIC 3601 NA NA NA 2406 

CROATIA-Korcula 2478 1148 1330 57  2436 

CROATIA-Split 973 383 590 52  920 

CROATIA-Vis 683 394 289 57  675 

VIKING 1080 644 436 52 1071 

ORCADES 1786 1082 704 54  1720 

LLS 1841 974 867 59  1190 

KORA F4 1823 935 888 62  1167 

EGCUT 1108 516 592 69  483 

GCKD 4933 ~1970 ~2960 63  4933 

3.5.3 Quality control of genome-wide association study 

To increase the statistical power of genome-wide association studies, the summary statistics 

for multiple cohorts are pooled in a meta-analysis107. To ensure the maximum increase in power 

and avoid false positives, the summary statistics from individual cohorts need to be checked 

and variants with low quality need to be removed. The centrally performed pre-processing of 

phenotypes (except for the LLS cohort) was one of the ways to avoid discordance in data 

preparation which might lead to loss of power in meta-analysis. The analyst for the LLS cohort 

received a detailed plan for data preparation, thereby ensuring that the same phenotype 

preparation protocol was applied for all cohorts.  Furthermore, a detailed analysis plan for 

GWAS was provided to all analysts in partner institutions who participated in the study. The 

analysis plan was based on the previous GWAS protocol used in Klarić et al.10. In this way, 

there was reassurance that the same phenotype transformation, statistical modelling, covariate 

adjustment and reference panel for imputation were applied for all individual studies and results 

were received in the same format which facilitated the follow-up meta-analysis. However, 

additional quality control (QC) steps were necessary before pooling the results from individual 

studies.  

File-level QC  

QC of GWAS summary statistics for individual cohorts (file-level QC) was done using EasyQC 

package in R as described in Winkler et al.108. The first part of the protocol checks for data 

format inconsistencies and allows the definition of uniform column names in all files. In cases 

where columns were missing, the study analyst was contacted and data was provided again. 
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Next, monomorphic SNPs (allele frequency =1 or =0), SNPs with missing alleles, P-value, 

effect estimate, standard error, allele frequency or sample size were excluded. SNPs with 

nonsense values were removed, such as SNPs with alleles other than ‘A’, ‘C’, ‘G’ or ‘T’, P-

values < 0 or > 1, negative or infinite standard errors and infinite effect estimates or allele 

frequencies < 0 or >1. Additionally, SNPs with a low sample size (N < 30), low minor allele 

count (MAC ≤ 6), and low imputation quality were removed. Harmonization of allele coding 

and variant names was done. Allele frequencies from the HRC reference dataset were plotted 

against the allele frequencies provided by study partners to check for outlying SNPs and 

mismatches. In cases of deviation from the identity line, the study analyst was contacted and 

the source of the problem was clarified. 

Meta-level QC 

As suggested by Winkler et al.108,  meta-level QC was performed to check for any analytical 

issues in the genome-wide association scan in the individual cohorts. First, the SE/N plot was 

generated to check for issues with trait transformation, sample size or file-naming. The median 

standard error (SE) and maximum sample size (N) were used to generate a plot of c/median(SE) 

versus sqrt(max(N)), where c is a constant of proportionality and depends on the imputation 

panel. In cases of deviation from the identity line which might indicate unaccounted relatedness 

in the sample, the study analyst was contacted. Additional analytical issues were checked by 

producing the P-Z scatter plot. P-Z plot shows problems with effect estimates, standard errors 

and P-values, by plotting P-values calculated from a Z-statistic (Z = effect/SE(effect)) versus 

the P-values provided by the partners. To check for the presence of population stratification, 

the genomic control inflation factor (λGC) was calculated for each study and was plotted against 

the sample size. The plots were checked for high λGC and study files were considered for GC 

correction in meta-analysis. 

3.5.4 Genome-wide Association Meta-analysis (Discovery) 

GWAS summary statistics for seven studies (ORCADES, CROATIA-Korcula, CROATIA-

Vis, TwinsUK, EPIC, CROATIA-Split, CROATIA-Vis and VIKING) were pooled using the 

inverse-variance weighted method in fixed-effect model implemented in METAL software109. 

The inverse variance-weighted meta-analysis approach summarizes effect sizes from multiple 

studies by deriving the weighted mean of the effect sizes using inverse variance to weight the 

effects from individual studies110. METAL software also allowed for the estimation of genomic 
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control to correct test statistics to account for relatedness or population stratification in the 

studies used in meta-analysis. The between-study heterogeneity was also estimated. 

Genome-wide significance threshold 

P-value is the measure of the probability of an observation being due to the chance or not. The 

widely used significance threshold for the statistical test is 0.05, meaning that 1 out of 20 tests 

will result in rejecting the null hypothesis when it is true. However, the threshold of 0.05 must 

be further corrected for the number of tests that are performed, otherwise, 1 out of every 20 

tests will result in rejection of null hypothesis where it is true111. For GWAS, the suggested 

significance threshold is 5 x 10-8 which is calculated by dividing the traditional P-value 

threshold of 0.05 by one million tests112. The threshold of 5 x 10-8 is considered as conservative 

as less than 1 million SNPs are required to recover all tested common variants in the genome113. 

However, 5 x 10-8 is a widely accepted genome-wide significance threshold which is further 

corrected for the number of traits that are tested in the study. In the current study, eleven glycan 

traits were tested, thus requiring further correction of the significance threshold. Due to the 

high correlation between tested traits, principal components analysis was used to derive the 

number of principal components that explain 99% of the variance among eleven traits. The 

number of principal components was five further resulting in the p-value threshold > 1 x 10-8 

(5 x 10-8/5). The analysis was done using prcomp() function in R using glycan data from 

ORCADES, CROATIA-Korcula, CROATIA-Vis and CROATIA-Split cohorts.  

Genomic loci definition 

Definition of genomic loci associated with IgG N-glycome was performed using FUMA v. 

1.3.669. FUMA stands for Functional Mapping and Annotation of Genome-Wide Association 

Studies and is an online platform that is used for annotation, prioritization and visualization of 

association results based on GWAS summary statistics.  

SNP2GENE function in FUMA first identifies significant SNPs at the genome-wide 

significance level (p-value < 1 × 10−8) which are independent of each other (r2 < 0.6). LD 

estimates were inferred from 1000G Phase 3 reference genome for European population48. 

Lead SNPs were selected from independent significant SNPs based on the pairwise LD (r2 < 

0.1). The maximum distance for merging LD blocks into a single genomic locus was 250 kb. 

Due to the merging of LD blocks, the defined genomic loci can contain multiple independent 

or lead SNPs. SNPs that are in LD with independent SNPs within 250kb distance were all 

selected as candidate SNPs and considered in further analysis. 
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Replication of discovered genomic loci 

After the discovery GWAS, the validation of the results was necessary in an independent study 

by means of replication meta-analysis. The sample size for replication analysis was estimated 

based on the effect sizes and MAF for the top SNPs from the regions which should be replicated 

using the power of 80%. Quanto114 software v. 1.2 was used for power calculations. Four 

independent cohorts of European descent were used: GCKD, KORA F4, LLS and EGCUT, 

with a total sample size up to 7,775. For the glycan traits, glycan measurements for KORA F4 

and LLS cohorts were obtained on LC-MS, while GCKD and EGCUT glycan measurements 

were obtained on UPLC. The glycan-SNP pair of the strongest association in significant 

genomic loci were meta-analysed using the fixed-effect inverse variance method. The 

significance threshold was set to p < 0.05/13 = 0.0038, where 13 is the number of novel 

associations which we aimed to replicate. In cases where the top SNP association does not pass 

the significance threshold, we further explore the SNPs which are in high LD (r2 > 0.6) with 

the top SNP, as well as the effect direction across cohorts.  

Replication of genomic loci from previous GWAS of IgG N-glycome 

The published GWAS on IgG N-glycome7,8,9,10,74 were all conducted on a subset of 

participating cohorts so the replication of their finding is not considered as true replication. 

One of the main differences lies in the phenotypes used in the studies because previous studies 

were conducted either on LC-MS or UPLC IgG glycan measurements, both directly measured 

and derived traits that were different from the derived traits used in the current study. For 

instance, univariate association analysis in Lauc et al.7 and Klarić et al.10 studies were 

performed on 77 glycan values which include 23 directly measured glycan structures by UPLC 

and additional 54 derived traits, and Wahl et al.9 conducted univariate GWAS on LC-MS-

measured glycan data. On the other hand, Shen et al.8 and Shadrina et al.74 performed a 

multivariate association analysis which is based on the grouping of the directly measured 

glycan traits.  

Additionally, meta-analysis in this study includes GWAS done on both UPLC and LC-MS-

measured data. But given that all these studies aim to identify as many genomic regions 

involved in IgG N-glycosylation as possible, the overlap of the previously identified regions 

and the regions discovered here was checked by assessing the top SNP or SNP in high LD 

across all eleven glycan traits. The main focus was on the replication of 27 loci from Klarić et 

al. and novel loci from Shadrina et al. Additionally, three loci from previous studies which 
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were not replicated in Klarić et al. were assessed. One of the loci which was discovered by 

Shen et al. but not replicated in subsequent studies is located in the MHC region and the top 

SNP is rs116108880. However, this variant is not present in the tested SNPs nor does it have 

any SNPs in high LD.  

3.5.5 Conditional analysis  

The single-SNP model assumes that the maximum phenotypic variance in the region is 

captured by the strongest association which is in LD with an unobserved variant. Other 

significant associations are observed in the same region due to their correlation with the top 

variant. However, these assumptions may not be true for two reasons, 1) there is the possibility 

that a single SNP (genotyped or imputed) can capture all the phenotypic variance explained by 

the locus115,116, 2) there may be more than one causal variant, hence, a single SNP may not be 

able to account for the LD between the unknown causal variant and tested SNPs (genotyped or 

imputed). Alternatively, conditional analysis can be used to identify secondary associations in 

the region117,118 by performing association analysis while conditioning on the strongest 

association in the region. However, this approach is not feasible when individual-level 

genotype data is not available. Therefore, we use an approximate method called Conditional 

and joint analysis (COJO)119 implemented in Genome-wide Complex Trait Analysis (GCTA) 

software120 which uses GWAS summary statistics data as input and LD estimates from the 

reference sample to test for secondary associations. An iterative procedure is employed where 

association analysis is repeated while conditioning on the strongest association from the 

previous iteration and is continued until no significant associations are left. After, the GCTA-

joint method is employed to estimate the joint effects of the independent variants. LD estimates 

were derived from the 10,000 randomly selected unrelated participants from the UK Biobank 

cohort64 and a collinearity cut-off value of 0.9 was used. The analysis was performed by 

Arianna Landini from the Wilson group, University of Edinburgh. The GCTA version 1.91.4 

was used.  

3.5.6 Phenotypic variance explained 

To calculate the variance in the eleven glycan traits explained by each independently associated 

SNP, the following formula was used:  

𝜎𝑖 = 2 ∗ 𝑝𝑖 ∗  𝑞𝑖  ∗  𝛽𝑖
2 , 
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where pi and qi are minor and major allele frequencies, respectively, and βi is the effect estimate 

for the genetic variant in the meta-analysis for the given glycan trait. The total univariate 

explained variance in one glycan trait was calculated as the sum of variance explained for all 

independent genetic variants associated with the trait.  

The total joint variance explained by all independently associated genetic variants for the 

glycan trait was calculated as the sum of the variance explained by each of the variants which 

was computed using the following formula:  

𝜎𝑖
𝐽 = 2 ∗ 𝑝𝑖 ∗ 𝑞𝑖  ∗  𝛽𝑖

𝑈 ∗ 𝛽𝑖
𝐽
 , 

where βi
U  is the effect estimate for the variant from the univariate model and βi

J
 is the effect 

estimate derived from the joint analysis.  

The linkage disequilibrium score regression (LDSC) is an approach used to determine whether 

the observed inflation in GWAS summary statistics is due to population stratification or 

polygenicity121 but it can also be employed to estimate SNP-based heritability and genetic 

correlation with other complex traits122. The LD score is obtained by summing the Pearson 

correlation coefficients between index SNP and surrounding SNPs. The resulting LD scores 

are further regressed against the chi-square statistic obtained in GWAS and the SNP-based 

heritability is defined as the slope of the regression line. The intercept of the regression is used 

to distinguish between population stratification and polygenicity as potential causes of 

observed inflation in summary statistics. LDSC is also used to determine the genetic correlation 

between two complex traits.  

In this study, we use LDSC primarily to assess the SNP-based heritability for the eleven glycan 

traits. A subset of precomputed LD scores from 1000 Genomes EUR for HapMap3 SNPs 

(n=1,201,551) was used to estimate SNP-based heritability in LDSC software v. 1.0.0. 

integrated in LDHub123. SNP-based heritability is calculated as the ratio of variation in the 

observed additive effect of the SNPs to the total phenotypic variance. We compared the SNP-

based heritability obtained by LDSC and phenotypic variance explained which was calculated 

using the abovementioned formula. 

3.6 Previous associations of discovered glycosylation-associated loci 

Phenoscanner124 is a curated database of genotype-phenotype associations resulting from large-

scale genome-wide association studies. The database facilitates “phenome scans” which enable 
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cross-referencing genetic associations across different phenotypes, including diseases and 

intermediate traits, thereby helping understand the potential biological mechanism behind a 

certain disease. Phenoscanner integrates NHGRI-EBI GWAS catalog125, dbGaP126 and NHLBI 

GRASP127 catalogues of associations. In this study, we used Phenoscanner to look for shared 

genetic variants across IgG glycan traits and diseases and traits for which the GWAS results 

were available in the Phenoscanner database. Individual significant SNPs from GWAS for all 

eleven glycan traits as obtained by COJO and their proxies at r2 > 0.8 were queried using 

phenoscanner() in phenoscanner v1.0 R package. Only phenoscanner GWAS association 

results at significance level 5 x 10-8 were retained. 

3.7 Gene mapping 

Genes in the significantly associated genomic loci were mapped using three approaches: 

positional mapping, eQTL (expression quantitative trait loci) mapping and 3D chromatin 

interaction mapping. Genes were positionally mapped based on ANNOVAR128 annotations and 

the maximum distance between SNPs and genes (< 10 kb). The eQTL mapping was based on 

the eQTL datasets including B cell eQTL data from Database of Immune Cell Expression 

(DICE)129 and eQTL catalogue datasets, Fairfax et al.130,131 and CEDAR132. Only significant 

eQTL signals at false discovery rate (FDR) < 0.05 were used in the mapping of the SNPs to 

genes. Chromatin interaction mapping was performed using the Hi-C data derived from B cell 

line (GM12878)133 and a suggested value of FDR < 1 x 10-6 was used134.  

3.8 Functional consequences of candidate SNPs from coding regions 

The Combined Annotation-Dependent Depletion (CADD) score is the score of the 

deleteriousness of SNPs derived by integrating 63 functional annotations135. Deleteriousness 

refers to property that correlates with pathogenicity and molecular functionality. The CADD 

scores of 15 and higher scores were considered more deleterious because 15 is the median 

value for all non-synonymous variants and canonical splice sites in the first version of the 

CADD database. For the derivation of CADD scores, the integrated functionality in FUMA 

SNP2GENE was used. The CADD scores are derived for independent significant SNPs and 

SNPs that are in LD (r2 > 0.6) with independent SNPs. 

To further assess functional consequences of SNPs in the genomic regions significantly 

associated with IgG N-glycome traits, SIFT66 and Polyphen-267 algorithms were used as 

implemented in Variant Effect Predictor (VEP) v97 by Ensembl136. SIFT uses the homology 
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of the sequence to predict if amino acid substitution will affect protein structure, hence its 

function and ultimately affect the phenotype of interest137,138. SIFT computes the probability 

that an amino acid at a specific position in the alignment is tolerated while conditioning on the 

most frequent amino acid at that position being tolerated. The substitutions with probability 

values of 0.05 and less are predicted to be deleterious. PolyPhen-2 predicts the damaging 

mutations by using three structure-based and eight sequence-based features. PolyPhen-2 

computes the naive Bayes posterior probability of the given SNP being damaging and also 

outputs estimates of false positive and true positive rates. It also evaluates the SNP as being 

either benign (0.0-0.15), possibly damaging (0.15-0.85) and probably damaging (0.85-1.0). 

SIFT and Polyphen-2 scores were derived for independent significant SNPs and SNPs in LD 

(r2 > 0.6) with independent SNPs. 

3.9 Enrichment in cell-type-specific regulatory regions 

We used FORGE2 to investigate cell-type-specific enrichment within DNase I-hypersensitive 

sites (DHS) as determined in  ENCODE and 15 chromatin states as determined in the 

Epigenomics Roadmap Project139. Top SNPs in 42 loci along with additional independently 

associated SNPs as determined by COJO for each trait (n=84). FORGE2 assesses the overlap 

of GWAS SNPs with functional elements for each cell type sample as determined by ENCODE 

or Roadmap Epigenomics Project while counting the number of overlaps. Background sets of 

SNPs are obtained by picking the sets with the same number of SNPs as the input SNP set 

based on MAF, distance of the SNP to transcription start site (TSS) and GC content.  Once 

matched background sets are obtained (default n=1000), they are overlapped with functional 

elements and the background distribution is derived. Then the -log10(p-value) of the test 

overlap count and background distribution is calculated. The enrichments at FDR < 0.05 are 

considered significant.  

3.10 Pleiotropy with gene expression 

One approach in prioritization of genes in genomic loci was determining whether there is 

shared pleiotropy between IgG N-glycosylation and expression of genes in discovered genomic 

regions. This approach is used to explore whether GWAS signals from gene expression (eQTL 

analysis) colocalize with GWAS signals in the disease or trait of interest, thereby indicating a 

potential molecular mechanism through which the disease or trait is regulated140. The 

colocalization test is applied under the assumption of a single causal variant in the region. If 
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the test is positive, the two traits are described as colocalized traits and there is a high 

probability that the traits share the same underlying causal variant141,142.  

The colocalization of IgG N-glycosylation GWAS signals and gene expression was estimated 

using Approximate Bayes Factor (ABF) method143 as implemented in coloc package68 in R 

which uses summary-level GWAS data as input. The method outputs 5 posterior probabilities 

(PP0, PP1, PP2, PP3, PP4), one for each of the five hypotheses: H0) no association with either 

of the two traits, H1) association with trait 1, but not with trait 2, H2) association with trait 2, 

but not with trait 1, H3) association with both trait 1 and trait 2, but two independent genetic 

variants and H4) association with both trait 1 and trait 2 and one shared genetic variant. The 

gene expression data was obtained from the publicly available eQTLgen144 dataset 

(https://www.eqtlgen.org/cis-eqtls.html) which was derived from whole blood samples from 

31,684 individuals across 37 cohorts. The posterior probabilities were computed for each of 

the genes found in IgG N-glycan GWAS loci and which has statistically significant cis-eQTLs 

in the gene expression data using the default values for prior probabilities as p1 = 1 x 10-4, 

p2 = 1 x 10-4 and p12 = 1 x 10-5. The method uses SNP p-values and MAF to derive the posterior 

probabilities. The threshold of 75% for PP4 (probability of the same shared variant for two 

traits) was used for positive colocalization and strong support for prioritization of the gene in 

the given genomic locus. Association patterns in the given loci were visualized using 

“locuscomparer” R package. 

3.11 Pleiotropy with complex diseases and traits 

To explore pleiotropy between IgG N-glycosylation and complex disease and traits, 

colocalization by ABF was also applied to IgG N-glycan trait GWAS and GWAS for multiple 

autoimmune diseases and traits for which there is previous evidence for the presence of 

aberrant IgG N-glycosylation6 or if there is shared genetic variant as shown in the results from 

Phenoscanner. The GWAS summary statistics for diseases and traits derived from individuals 

of European descent were downloaded via GWAS Catalog. The details of each study and 

download links are listed in Supplementary Table 9. The input for IgG N-glycan GWAS was 

restricted to the summary statistics for the trait with the lowest p-value of association in the 

given locus. The default values for prior probabilities were used: p1 = 1 x 10-4, p2 = 1 x 10-4 

and p12 = 1 x 10-5.  The posterior probabilities by ABF were computed using beta and standard 

error values if available in the dataset, otherwise, SNP p-values and MAF were used. The 

threshold of 75% for PP4 (probability of the same shared variant for two traits) was used for 
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positive colocalization and evidence of high confidence for pleiotropy between IgG 

glycosylation and disease. The suggestive threshold of 50% was also used to assess the 

potential case of pleiotropy.  

3.12 Genome-wide gene-based association test  

FUMA implements Multi-marker Analysis of GenoMic Annotation (MAGMA)145, a tool used 

for gene and gene-set analysis of GWAS data. The gene analysis is based on a multiple linear 

principal components regression model which is used to derive P-value for the gene146. The 

SNP matrix for a gene is projected onto its principal components (PCs) and PCs with small 

eigenvalues are pruned away while the remaining PCs are used as predictors in the linear 

regression. However, this requires genotype-level data, but MAGMA implements a method 

that can use summary statistics to perform gene analysis in a SNP-wise model. A gene test 

statistic is computed by combining the P-values of the individual SNPs in a gene. LD estimates 

from a reference dataset with similar ancestry are used to account for LD between SNPs. 

MAGMA v1.07 implements SNP-wise mean model which derives a mean χ2 statistic and a p-

value is obtained by using a known approximation of sampling distribution147,148. 1000G Phase 

348 was used as a reference panel for the estimation of LD. The P-value threshold used for 

MAGMA results was 5.28 x 10-7 (0.05/18,934 tested genes/5 PCs which explain 99% of the 

variance in glycan traits). 

3.13 Gene-set enrichment analysis 

Gene-set enrichment analysis was performed by the GENE2FUNC tool in FUMA69. The list 

of prioritized genes was submitted as input. The tool performs hypergeometric tests to test 

whether prioritized genes are overrepresented in the previously defined gene sets. The 

GENE2FUNC analysis was based on Molecular Signature Database v7.0 (MSigDB) 149. “All” 

was set as the option for background genes used in the enrichment tests with a total of 57,241 

background genes used. To correct for the multiple testing in each category (canonical 

pathways, GO processes), Benjamini-Hochberg false discovery rate (FDR) procedure was 

used. The gene-sets were reported if at least two genes belonged to the gene set and the adjusted 

P-value for the gene set was < 0.05. To identify gene sets describing the higher-level biological 

pathways, a set of keywords for each pathway was used to filter the results of the gene-set 

enrichment analysis.  
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3.14 Network analysis 

To construct a potential regulatory network of genes for IgG N-glycosylation, the GWAS 

summary statistics for top associated SNPs in each region across all eleven IgG N-glycan traits 

were used as described in Klarić et al.10. The effect sizes for all SNPs across the glycan traits 

were transformed into Z-scores, thereby accounting for uncertainty in effect size estimates. The 

Z-scores were calculated as Z-score= beta/SE, where beta corresponds to the effect of a SNP 

on a given glycan trait and SE is the standard error of the SNP effect. The resulting 11 vectors 

each consisting of 42 Z-score values were used to obtain a pairwise correlation matrix using 

Pearson’s correlation. The correlation matrix was pruned for correlation values that had P-

value > 5.80 x 10-5 (p-value > 0.05/861, where 861 is the number of unique pair-wise 

correlation tests (42x41/2)). The network was visualized using Cytoscape software150 (v 3.7.2), 

where the nodes were represented by the prioritized genes in the region of top SNPs and edges 

were added based on the presence of significant correlation between the top SNPs. The colour 

of the edge corresponded to the squared Pearson’s correlation coefficient (to account for 

directionality) between the two top SNPs. 

The STRING protein-protein interaction (PPI) database (v. 11.0)70 was used to construct a PPI 

network using the list of prioritized genes as input. The network nodes were represented by the 

proteins coded by the genes and edges were constructed if there is evidence for the functional 

association of the two proteins from 1) curated databases, 2) experimental evidence, 3) protein 

homology, and 4) co-expression of the two proteins. Only protein-protein associations with 

significant enrichment (FDR < 0.05) within each evidence category were constructed. 
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4. RESULTS 

4.1 Harmonization of UPLC and LCMS data 

Previously, there were no GWA meta-analyses of the human IgG N-glycome using GWAS of 

both UPLC and LCMS IgG N-glycome measurements, therefore making it necessary to first 

test how the two types of data correlate and what methods should be applied in pre-processing 

to make them comparable. For this purpose, the CROATIA-Vis cohort (n=661) was used since 

both UPLC and LC-MS glycan data were available in the same samples. The correlation values 

of corresponding traits defined in UPLC and LC-MS data after different normalization and 

subclass weighting approaches are shown in Table 4. The different weighting approaches for 

IgG subclass measurements are shown in total area normalized data since there are negligible 

differences between median quotient, total area and largest peak normalizations.  

Table 4: Pearson's correlation coefficients for UPLC and LC-MS derived glycan values after applying different 

normalization types and weighting of the subclass-specific values in LC-MS measurements. Combination of 

normalization types as applied in UPLC- and LC- MS-derived data is shown on the top. 

UPLC 
Total 

area  

Largest 

peak 

Median 

quotient  

Total 

area  

Total 

area  

Total 

area  

Total 

area  

Total 

area  
Total area  

Total 

area  

LCMS 
Total 

area 

Largest 

peak  

Median 

quotient  

Total 

area 

with 

trait 

subclass 

average  

Total 

area 

with 

weighted 

subclass 

average  

Total 

area per 

subclass 

with 

weighted 

average 

Total 

area per 

subclass 

Total 

area per 

subclass 

with 

trait 

average   

Total area 

with subclass 

concentration 

applied to 

raw values 

Total 

area 

with 

response 

factor 

applied 

to raw 

values 

Fucosylation 0.43 0.43 0.43 0.45 0.46 0.40 0.39 0.39 0.39 0.35 

G1 0.78 0.77 0.78 0.75 0.80 0.79 0.75 0.75 0.79 0.73 

G2 0.91 0.91 0.91 0.91 0.91 0.91 0.90 0.90 0.91 0.90 

Galactosylation 0.96 0.96 0.96 0.95 0.97 0.97 0.95 0.95 0.97 0.95 

Monosialylation 0.83 0.83 0.83 0.84 0.84 0.83 0.83 0.83 0.83 0.81 

Bisecting 0.85 0.84 0.85 0.83 0.85 0.85 0.84 0.84 0.85 0.83 

Monosialylation 

without 

bisecting 

GlcNAc 

0.85 0.85 0.84 0.85 0.87 0.86 0.84 0.84 0.85 0.82 

 

The highest correlation values between UPLC and LC-MS traits were obtained in 

galactosylation traits (G1, G2, total galactosylation). The traits are denoted by capital letters 

but are also written in small letters (g1, g2) throughout the text. For example, when applying 

median quotient normalization the values range from 0.78 for G1 to 0.96 for total 
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galactosylation. The lowest correlation was observed in the fucosylation trait where Pearson's 

correlation coefficient ranged from 0.35 to 0.46.  

Including response factor values and concentrations of the IgG subclasses did not improve the 

correlation. The additional validation was done by comparing the GWAS output obtained by 

different harmonization approaches. For the sake of generalization and easier interpretation, 

we decided to use median quotient normalization (across whole IgG N-glycome in both UPLC 

and LC-MS) for our purposes. In Supplementary Table 5, the descriptive statistics for the 

derived glycan traits are shown across all cohorts used in the genome-wide association meta-

analysis. 

4.2 Quality control of genome-wide association studies 

Discovery meta-analysis of IgG N-glycome was performed in seven cohorts of European 

descent (ORCADES, TwinsUK, CROATIA-Korcula, CROATIA-Vis, CROATIA-Split, 

VIKING, EPIC) in a total of 13,705 samples. Prior to meta-analysis, the individual GWAS 

summary statistics were checked for potential issues with the quality of the tested SNPs or 

analytical issues. Number of SNPs excluded due to nonsense values for beta and standard error, 

monomorphic state, low minor allele count (MAC ≤ 6), low imputation quality, allele mismatch 

and allele frequency outliers, are listed in Supplemetary Table 7. The largest number of SNPs 

excluded due to invalid beta and SE values and monomorphic state was in the TwinsUK cohort 

since no QC was applied to the HRC imputed data prior to the genome-wide association scan. 

The number of SNPs that passed QC ranged between 7,021,984 in EPIC (sample subset 4) and 

14,255,310 in TwinsUK (batch 3&4). The allele frequencies were checked against 1000G 

Phase 3 EUR reference panel and outliers were removed (Supplementary Figure 2). The 

reported allele in the LLS cohort was opposite of the allele in the reference panel and other 

cohorts. The corresponding analyst was contacted and GWAS summary statistics with the 

appropriate allele was provided.  

The inflation factor λGC ranged between 0.98 and 1.03 which indicated no inflation in summary 

statistics for individual cohorts due to population stratification (Supplementary Figure 1). The 

SE-N plots, PZ plots and QQ plots were checked for potential analytical problems due to trait 

transformation, samples size or fitted statistical model. A slight departure from the identity line 

in SE-N plots was noted (Supplementary Figure 3), thereby indicating potential analytical 
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issues. The cleaned GWAS summary statistics for all cohorts were included in the meta-

analysis for eleven glycan traits. 

4.3 Genome-wide significant genomic loci (Discovery) 

The correction of genome-wide significance threshold P-value < 5 x 10-8 was applied due to 

the testing of eleven glycan traits. Given the high correlation between the tested traits, principal 

components analysis was used to derive the number of principal components that explain 99% 

of the variance among tested traits. Glycan data from ORCADES, CROATIA-Korcula and 

CROATIA-Vis cohorts was used. The number of principal components that explain 99% of 

the variance in the tested traits was five (Figure 4), thus the applied genome-wide significance 

threshold was 1 x 10-8 (5 x 10-8/5).  

 

Figure 4: Number of principal components explaining 99% of the variance in eleven IgG N-glycan traits in 

ORCADES, CROATIA-Korcula and CROATIA-Vis samples. 

 

The GWAS summary statistics of meta-analysis for eleven glycan traits were merged to create 

input for FUMA SNP2GENE69 function. Additionally, FUMA SNP2GENE output was created 

for each trait separately using the same parameters. First, the significant SNPs were identified 

using a genome-wide significance threshold of 1 x 10-8 and 1000G Phase3 reference panel for 

the European population. SNPs with LD r2 < 0.6 were considered as independent SNPs 

(n=444), furthermore, independent significant SNPs with r2 < 0.1 were identified as lead SNPs 

(n=128). Start and end positions for genomic risk loci were defined by merging lead SNPs if 

they were found in the 250kb window. For the downstream analysis, all SNPs in LD (r2 ≥ 0.6) 



40 

 

with one of the independent significant SNPs were considered as candidate SNPs (n=12,348). 

A total of 42 genomic loci across nineteen chromosomes were identified.  

Seventeen genomic regions were associated with one glycan trait only, eight regions with two 

traits, two regions with three traits, four regions with four traits,  three regions with five traits, 

and the remaining eight regions were associated with six to ten glycan traits. 

The strongest association is the association between s1_g2 (ratio of monosialylation and 

digalactosylation) trait and genetic variant (rs11710456; beta=-0.536, SE=0.012, p-value=1.44 

x 10-444) in region on chromosome 3 which harbours the ST6GAL1 gene.  

4.4 Replication of genomic loci from previous GWAS of IgG N-glycome  

The previous GWAS of IgG N-glycome were performed either on LC-MS or UPLC derived 

glycan phenotypes and in univariate or multivariate association analysis. However, given that 

all IgG N-glycome GWA studies aim to identify as many genomic regions involved in IgG N-

glycosylation as possible, the overlap of the previously identified regions and the regions 

discovered here was checked by assessing the top SNP or SNP in high LD across all eleven 

glycan traits. 

There are 27 genomic loci identified by Klarić et al.10, 25 of which are replicated in the current 

meta-analysis (Table 5). One of the regions which were not significantly associated 

(rs11748193; min P-value =8.97 x 10-5; fuc) with any of the glycan traits in the current analysis 

was previously associated with only one of the glycan traits, IGP2, the percentage of A2 glycan 

in total IgG glycans. As such, IGP2 glycan structure is not captured by any of the derived traits 

used in this study, thus explaining why the association was not replicated. Also, nonreplicated 

locus (P-value= 0.03612) on chromosome 19 (lead SNP rs874232) harbours FUT6 gene which 

codes for the fucosyltransferases enzyme involved in antennary fucosylation which was not 

tested in the current study. It is important to note that the two loci on chromosome 9 (top SNPs 

rs10813951 and rs12341905) are merged into one locus in the new study as they overlap due 

to high LD. 
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Table 5: Comparison of p-values for lead SNPs from Klarić et al. and the new meta-analysis.  

Variant name Chr:pos (hg19) 
Prioritized 

gene(s) 

Klarić et 

al.  

glycan 

trait  

Klarić et al. 

P-value 
New P-value New glycan trait 

rs10903118 1:25294878 RUNX3 IGP74 5.14E-13 9.52E-14 bisecting 

rs7621161 3:186727170 ST6GAL1 IGP29 4.65E-276 1.63E-435 s1_g2 

rs7700895 5:95273410 ELL2 IGP35 1.20E-14 4.60E-08 s1_gal_total 

rs11748193* 5:131725329 
IRF1; IL3, 

SLC22A4 
IGP2 4.31E-10 8.97E-05 fuc 

rs3099844 6:31448976 HLA region IGP15 1.12E-13 2.94E-09 s1_no_bis 

rs9385856 6:139625074 TXLNB IGP70 5.05E-19 2.27E-34 bisecting 

rs7758383 6:143169723 HIVEP2 IGP13 9.61E-14 8.42E-25 s1_g2 

rs6964421 7:6520676 DAGLB IGP14 5.31E-11 7.84E-13 bisecting 

rs6421315 7:50355207 IKZF1 IGP62 4.70E-27 3.64E-34 fuc 

rs7812088 7:150919829 ABCF2 IGP2 2.06E-22 5.38E-20 s1_no_bis 

rs10096810 8:103545436 ODF1 IGP77 9.52E-11 2.43E-10 g0 

rs10813951 9:33128021 B4GALT1 IGP17 8.84E-34 1.41E-59 s1_g1 

rs12341905 9:33205136 SPINK4 IGP53 1.46E-09 4.52E-21 g2 

rs481080 11:114442265 
NXPE1; 

NXPE4 
IGP29 1.05E-16 3.87E-16 s1_g2 

rs11847263 14:65775695 FUT8 IGP42 1.13E-58 1.05E-120 fuc 

rs4074453 14:105998544 TMEM121 IGP48 3.82E-29 2.30E-20 s1_g2 

rs250555 16:23444268 
GGA2; 

COG7 
IGP26 6.76E-10 5.20E-12 s1_gal_total 

rs7216389 17:38069949 

ORMDL3; 

GSDMB; 

IKZF3; 

ZPBP2 

IGP59 1.17E-15 1.39E-24 fuc 

rs199456 17:44797919 

CRHR1; 

SPPL2C; 

MAPT; 

ARHGAP27 

IGP14 6.76E-14 4.23E-16 s1_g2 

rs11651000 17:45835278 TBX21 IGP59 2.66E-12 3.59E-11 fuc 

rs2725391 17:79192430 

SLC38A10; 

CEP131; 

TEPSIN 

IGP24 9.91E-16 6.18E-29 s1_gal_total 

rs874232* 19:5843609 FUT6 IGP12 7.85E-13 0.03612 fuc 

rs7257072 19:19267990 RFXANK IGP9 1.59E-13 3.44E-10 bisecting 

rs2745851 20:17829280 MGME1 IGP38 4.61E-13 1.67E-10 s1_g2 

rs7281587 21:36565278 RUNX1 IGP45 1.13E-13 6.78E-21 bisecting 

rs17630758 22:24136542 

SMARCB1; 

CHCHD10; 

VPREB3 

IGP66 1.20E-41 5.71E-71 bisecting 

rs5750830 22:39840828 MGAT3 IGP40 7.74E-69 1.21E-86 bisecting 

*not replicated in the new meta-analysis 
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In the comparison of the P-values for the two loci in Lauc et al.7 which were not replicated in 

any of the subsequent GWAS of IgG N-glycome, it is shown that the genome-wide significance 

is not reached in the current study (Table 6). A genetic variant in the IL6ST-ANKRD55 locus 

on chromosome 5 was also identified in the current GWAS but was not in high LD with  

rs17348299, a genetic variant from the same locus reported in Lauc et al. (LD r2 < 0.001). 

Table 6: Comparison of p-values for previously nonreplicated loci from Lauc et al. and the new meta-analysis 

Variant name 
Chr:pos 

(hg19) 

Prioritized 

gene(s) 

Lauc et al. 

glycan 

Lauc et al. 

P-value 
New P-value New trait 

rs17348299* 5:55322895 
IL6ST-

ANKRD55 
IGP53 6.88E-11 3.93E-05 g2 

rs4930561* 11:67931761 SUV420H1 IGP41 8.88E-10 0.01078 g0 

*not replicated in the new meta-analysis 

 

Three out of six novel loci (rs4561508 and rs11895615) in Shadrina et al.74 multivariate GWAS 

are replicated in the current study, with the current lead variant in the locus on chromosome 11 

being in high LD (r2= 0.92) with Shadrina et al. variant from the same locus (Table 7).. 

Table 7: Comparison of p-values for novel loci from Shadrina et al. and the new meta-analysis  

Variant 

name 

Chr:pos 

(hg19) 

Prioritized 

gene(s) 
Shadrina et al. trait 

Shadrina et al. 

P-value 

New P-

value 

new 

trait 

rs479844** 11:65551957 OVOL1 N-glycosylation 1.97E-13 2.68E-06 g1 

rs12049042* 1:246288812 SMYD3 Galactosylation 1.20E-09 0.126 
bisectin

g 

rs4561508 17:16848750 TNFRSF13B N-glycosylation 1.38E-10 1.26E-16 g1 

rs11895615 2:26113120 ASXL2 Bisecting GlcNAc 5.69E-10 2.29E-09 g1 

rs1372288* 3:142901537 
CHST2; 

SLC9A9 
N-glycosylation 8.73E-11 0.0812 g2 

rs12635457* 3:196203979 RNF168 N-glycosylation 1.61E-13 0.0001952 fuc 

*not replicated in the new meta-analysis; **in high LD with lead SNP in current GWAS (rs10896045; P-value= 
2.61E-09)  
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Table 8: List of genome-wide significant loci in IgG N-glycome GWAS. Top SNP position- Position of the SNP with the strongest association with the glycan trait denoted by 

chromosome: base pair coordinate in GRCh37 (hg19) build; rsID- rsID identifier for the top SNP; Strongest associated trait- trait with the lowest p-value in association with 

the top SNP in the genomic locus; Chr-chromosome; Start- starting position for the genomic locus; End- end position for the genomic locus; EA- effect allele for which the 

effect is reported; OA- non-effect allele; P-value- lowest P-value for the top SNP in the locus; Beta- effect estimate for the effect allele in the top SNP; SE- standard error of 

the effect estimate; Associated traits- all traits that are significantly associated with the genomic locus; Repl- Beta, SE and P-value for replication analysis; Effect, SE and P-

value for replication analysis reported for a SNP in LD with top SNP in the region are shown in italic. 

Top SNP 

position 
rsID 

Strongest 

associated 

trait 

Chr Start End 
E

A 

O

A 
EAF P-value Beta SE Associated traits 

Repl 

Beta 

Repl 

SE 

Repl  

P-value 

1:25291697 
rs18846817

4 
bisecting 1 23526335 25903455 T C 0.012 

1.42E-

134 
1.419 0.058 

bisecting;g0;g1;g2

;gal_total;s1_g1;s

1_gal_total;s1;s1_

no_bis 

1.325 0.079 7.15E-63 

1:39302020 rs7548054 fuc 1 39302020 39380385 T C 0.337 9.26E-10 0.079 0.013 fuc 0.027 0.017 1.14E-01 

1:233723112 rs6689354 s1_g2 1 233715572 233740757 A G 0.481 5.43E-09 -0.068 0.012 s1_g2 -0.016 0.015 2.77E-01 

2:26139430 
rs11191963

0 
g0 2 26109539 26149988 T C 0.336 3.80E-10 -0.062 0.01 g0;g1;gal_total -0.049 0.015 1.03E-03 

2:101991907 rs10186962 s1_g1 2 101930890 101991907 A G 0.600 2.38E-09 0.066 0.011 s1_g1 -0.006 0.016 7.29E-01 

2:158469050 rs77539041 fuc 2 158413902 158477773 C G 0.055 1.25E-09 0.166 0.027 fuc 0.140 0.036 1.19E-04 

3:186725887 rs11710456 s1_g2 3 186607935 186819448 A G 0.282 
1.44E-

444 
-0.536 0.012 

s1_g1;s1_g2;s1_g

al_total;s1;s1_no_

bis 

-0.483 0.016 2.92E-196 

4:103519487 rs3774964 g2 4 103390496 103554821 A G 0.625 1.56E-11 -0.065 0.01 
g0;g2;gal_total;s1;

s1_no_bis 
0.061 0.015 4.93E-05 

5:55438851 rs10065637 s1_g2 5 55436851 55444683 T C 0.216 2.74E-10 -0.09 0.014 s1_g2 -0.094 0.019 1.36E-06 

5:95240996 rs11741563 s1_no_bis 5 95217242 95324375 T C 0.263 1.87E-09 -0.067 0.011 
s1_gal_total;s1;s1

_no_bis 
-0.090 0.017 4.80E-08 

6:22053674 
rs11355782

7 
g2 6 22053674 22053674 A G 0.988 5.77E-10 0.633 0.102 g2;s1_no_bis 0.050 0.153 7.46E-01 

6:31351764 rs2442752 s1_gal_total 6 30798697 32879471 T C 0.624 4.05E-12 0.083 0.012 

bisecting;fuc;g0;g

2;gal_total; 

s1_g1;s1_g2;s1_g

al_total;s1;s1_no_

bis 

0.095 0.018 1.11E-07 

6:74230859 rs3822960 s1_g1 6 74168723 74285118 T C 0.668 2.17E-10 0.073 0.012 g2;s1_g1 0.039 0.017 2.15E-02 
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6:139629524 rs4543384 bisecting 6 139617590 139636003 T C 0.422 2.93E-37 -0.146 0.011 bisecting -0.139 0.015 5.30E-20 

6:143169723 rs7758383 s1_g2 6 143088071 143206826 A G 0.502 8.42E-25 -0.119 0.012 
g0;g1;g2;gal_total

;s1_g1;s1_g2 
-0.152 0.015 3.43E-24 

7:6531268 rs7786067 bisecting 7 6497501 6550403 T C 0.322 6.77E-13 0.086 0.012 bisecting;s1_g2 0.063 0.016 9.05E-05 

7:50352695 rs7789913 fuc 7 50325563 50362999 T C 0.389 1.69E-34 0.153 0.013 bisecting;fuc 0.188 0.016 1.20E-31 

7:150942349 
rs11374507

4 
s1_no_bis 7 150902419 150969535 T C 0.887 6.98E-22 -0.153 0.016 

bisecting;fuc;g0;g

2;gal_total; 

s1_g1;s1_gal_total

;s1;s1_no_bis 

-0.142 0.022 1.81E-10 

8:103545983 rs13250010 g0 8 103542538 103550211 T G 0.358 7.71E-11 0.063 0.01 g0;gal_total 0.062 0.015 3.47E-05 

9:33124872 rs12342831 s1_g1 9 32932194 33385427 T C 0.744 1.26E-59 0.197 0.012 

g0;g1;g2;gal_total

;s1_g1; 

s1_g2;s1_gal_total

;s1;s1_no_bis 

0.230 0.018 4.96E-39 

10:94446635 rs10786052 fuc 10 94336963 94495241 T C 0.481 3.43E-09 -0.072 0.012 fuc -0.109 0.017 5.28E-11 

11:65555524 rs10896045 g1 11 65555524 65555524 A G 0.289 2.61E-09 0.079 0.013 g1 0.079 0.017 2.42E-06 

11:114381448 rs1671819 s1_g2 11 114298893 114450529 A G 0.471 1.03E-16 -0.096 0.012 s1_g2;s1_gal_total -0.081 0.015 6.08E-08 

12:121202664 rs9431 s1_gal_total 12 121188641 121351934 A C 0.484 2.93E-11 0.077 0.012 
s1_g1;s1_gal_total

;s1;s1_no_bis 
0.072 0.016 8.05E-06 

14:65775695 rs11847263 fuc 14 64709913 66303683 T G 0.632 
1.05E-

120 
0.288 0.012 fuc 0.280 0.017 1.92E-59 

14:106113281 rs10444775 s1_g2 14 105877057 106270813 C G 0.452 1.08E-36 0.216 0.017 s1_g2 0.230 0.024 2.06E-21 

16:23412310 rs30017 s1_gal_total 16 23397113 23613191 A G 0.206 2.24E-13 0.108 0.015 
s1_g1;s1_gal_total

;s1;s1_no_bis 
0.063 0.019 6.48E-04 

17:16842991 rs34562254 g1 17 16820099 16875636 A G 0.118 1.48E-18 0.166 0.019 g1 0.092 0.024 9.95E-05 

17:38072727 rs2872516 fuc 17 37579383 38215117 T C 0.554 9.34E-27 0.131 0.012 fuc 0.086 0.016 3.98E-08 

17:44331214 
rs55489984

2 
s1_g2 17 43463493 44865603 T C 0.808 4.82E-18 0.137 0.016 s1_g2;gal_total 0.126 0.020 3.90E-10 

17:45809822 rs11650451 fuc 17 45766846 45874272 A G 0.162 6.57E-12 -0.114 0.017 fuc;g2 -0.076 0.021 3.36E-04 

17:56410041 rs2526377 s1_no_bis 17 56398006 56417002 A G 0.565 2.64E-11 0.067 0.01 
g2;s1_g1;s1_gal_t

otal;s1;s1_no_bis 
0.068 0.015 4.33E-06 

17:79218714 rs2659005 s1_gal_total 17 79140505 79275406 T C 0.451 1.57E-39 0.153 0.012 

g0;g2;gal_total;s1

_g1;s1_g2; 

s1_gal_total;s1;s1

_no_bis 

0.135 0.017 2.70E-15 
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19:1657741 rs72989754 bisecting 19 1576098 1658699 T G 0.148 4.44E-15 -0.136 0.017 bisecting -0.118 0.025 1.58E-06 

19:19294091 rs68147405 s1_g2 19 19260586 19298099 T C 0.550 9.93E-12 0.079 0.012 bisecting;s1_g2 0.058 0.015 1.01E-04 

20:4115720 rs56260553 bisecting 20 4115720 4115975 T C 0.214 3.60E-12 -0.098 0.014 bisecting -0.045 0.019 1.84E-02 

20:17831618 rs2618590 bisecting 20 17820309 17833534 T C 0.582 6.31E-11 0.076 0.012 
bisecting;s1_g2;s1

_gal_total 
0.062 0.015 5.28E-05 

20:50077482 rs4809845 fuc 20 50054190 50077482 T C 0.760 4.03E-09 0.085 0.015 fuc 0.083 0.019 1.21E-05 

20:61598731 rs7271712 s1_no_bis 20 61573062 61639750 T C 0.026 1.54E-11 -0.222 0.033 
s1_g1;s1_gal_total

;s1;s1_no_bis 
-0.211 0.050 2.63E-05 

21:36564553 rs8129053 bisecting 21 36524140 36787961 T C 0.750 6.20E-22 0.126 0.013 

bisecting;g0;g2; 

gal_total;s1;s1_no

_bis 

0.121 0.018 6.90E-12 

22:24179922 rs3177243 bisecting 22 23951753 24193924 C G 0.154 4.43E-76 -0.284 0.015 bisecting -0.304 0.020 1.02E-50 

22:39845898 rs1005522 bisecting 22 39590915 39973151 A C 0.743 1.16E-91 -0.261 0.013 bisecting -0.327 0.018 3.77E-78 
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4.5 Replication analysis 

Replication analysis of the genome-wide significant SNPs was performed on derived glycans 

traits which were calculated from UPLC or LC-MS measured glycans from four European 

cohorts: GCKD, EGCUT, KORA F4 and LLS. When looking into the same glycan-SNP 

association as in discovery analysis, 34 genome-wide loci were replicated at the significance 

threshold of 0.001 (P ≤ 0.05/42) (Table 1). Additional two associations were replicated when 

considering SNPs which are found in the defined genomic region:  rs9266231 in 

chr6:30798697-32879471 region (fuc; P-value = 1.11x 10-7) and rs11097786 in 

chr4:103519487-103390496 (g2, P-value = 4.93x10-5)   

Given that the replication study was underpowered compared to the discovery analysis (two 

times smaller sample size) directional consistency of the effect estimates between the two 

analyses was compared. The additional two non-replicated loci (rs56260553 and rs3822960) 

were significant at nominal significance threshold < 0.05 and the direction of the effects was 

the same as in the corresponding discovery SNP, thus we expect them to replicate in a larger 

sample size. For rs7548054 and rs6689354, the P-value was > 0.05, however, the effect 

direction was consistent with the direction in the discovery cohort, so we expect it might 

replicate in a larger sample as well. 

4.6 Trait specific associations 

Given that GWAS was performed for eleven glycan traits which enable a more straightforward 

interpretation of the results, trait-specific associations are further shown. Structures with 

bisecting GlcNAc and core fucose are each represented by only one traits. The glycan structures 

with galactose are represented by g0, g1, g2 and gal_total traits and monosialylation phenotype 

is described by s1, s1_no_bis, s1_g1, s1_g2 and s1_gal_total traits.  

Bisecting GlcNAc 

There are thirteen genomic regions associated with the trait describing the addition of bisecting 

GlcNAc to N-glycans on IgG (Figure 5). The strongest association is present on chromosome 

1 (rs188468174; p-value=1.42 x 10-134) in the region where RUNX3 gene is located. The second 

strongest association (rs1005522; 1.16 x 10-91) is found in the region on chromosome 22 which 

harbours MGAT5 gene. Five of the associated regions are specific to the bisecting trait: 

chr6:139617590-139636003 (rs4543384; p-value=2.93 x 10-37), chr:19-1576098-1658699 

(rs72989754, 4.44 x 10-15), chr20:4115720-4115975 (rs56260553; p-value=3.6 x 10-12), 
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chr22:23951753-24193924 (rs3177243; 4.43 x 10-76) and chr22:39590915-39973151 

(rs1005522, 1.16 x 10-91). 

Figure 5: Manhattan plot for the bisecting trait. Plot shows -log10(P-values) of association on y-axis and SNPs 

ordered by chromosomal location on x-axis. Red line indicates the genome-wide significance threshold (1x10-8). 

Fucosylation 

A total of ten genomic regions were associated with fucosylation trait, six of which are specific 

for fucosylation: chr1:39302020-39380385 (rs7548054; P-value=9.26 x 10-10), 

chr2:158413902-158477773 (rs77539041; P-value=1.25 x 10-9), chr10:94336963-94495241 

(rs10786052; P-value=3.43 x 10-9), chr14:64709913-66303683 (rs11847263, P-value=1.05 x 

10-120), chr17:37579383-38215117 (rs2872516; P-value=9.34 x 10-27) and chr20:50054190-

50077482 (rs4809845; P-value=4.03 x 10-9). The strongest association (rs11847263; P-

value=1.05 x 10-120) is present on chromosome 14 in the region which harbours FUT8 gene 

(Figure 6).  

Figure 6: Manhattan plot for fuc trait. Plot shows -log10(P-values) of association on y-axis and SNPs ordered by 

chromosomal location on x-axis. Red line indicates the genome-wide significance threshold (1x10-8). 

rs       
rs       

rs        

rs       

rs         

rs       

rs       

rs        



48 

 

Galactosylation 

To capture the genetic variation associated with the addition of galactose unit to the IgG  

N-glycans, four traits were derived and tested including: agalactosylation (g0), 

monogalactosylation (g1), digalactosylation (g2) and total galactosylation (gal_total). The g0 

and gal_total are corresponding traits given that, by definition, their sum equals 1. A single 

associated region (chr8:103542538-103550211; rs13250010; 7.71 x 10-11) is specific to g0 

and gal_total traits (Figure 7). Monogalactosylation (g1) is the phenotype with the least number 

of genome-wide significant associations (n=6; Figure 8) among which is an association on 

chromosome 11 (rs10896045; 2.61 x 10-9) which is specific for this trait. A total of twelve 

genomic regions are associated with digalactosylation (Figure 9). The lack of galactosylation-

specific associations is explained by the fact that the presence of galactose is the prerequisite 

for sialylation to occur, hence, the same associations are captured by sialylation phenotypes.  

Figure 7: Manhattan plot for total galactosylation. Plot shows -log10(P-values) of association on y-axis and SNPs 

ordered by chromosomal location on x-axis. Red line indicates the genome-wide significance threshold (1x10-8). 

 

The strongest association for galactosylation traits, except gal_total, is on chromosome 9 in the 

B4GALT1 locus. However, two different SNPs in B4GALT1 locus are shown to be top SNPs 

for galactosylation traits: rs3780490 (P-value=7.66 x 10-52) for g1 trait and rs13297246 for 

gal_total (P-value=1.08 x 10-36) and g2 (P-value=4.20 x 10-55) traits. Based on the 1000G Phase 

3 reference panel for European population, LD r2 value for rs3780490 and rs13297246 is 

0.1056.   

 

rs       
rs      
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Figure 8: Manhattan plot for g1 trait. Plot shows -log10(P-values) of association on y-axis and SNPs ordered by 

chromosomal location on x-axis. Red line indicates the genome-wide significance threshold (1x10-8). 

 

Figure 9: Manhattan plot for g2 trait. Plot shows -log10(P-values) of association on y-axis and SNPs ordered by 

chromosomal location on x-axis. Red line indicates the genome-wide significance threshold (1x10-8). 

 

Sialylation 

To link the addition of sialic acid to the genomic regions, five glycan traits were defined: 

monosialylation (s1), monosialylation without bisecting GlcNAc (s1_no_bis), the ratio of 

monosialylation and monogalactosylation (s1_g1), the ratio of monosialylation and 

digalactosylation (s1_g2) and the ratio of monosialylation and total galactosylation 

(s1_gal_total). Due to the use of LC-MS measured glycan data and thus, lack of measurements 
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for glycan structures that contain two sialic acids, the GWAS of the sialylation process is 

limited to the traits describing monosialylation.  

The strongest association of sialylation phenotypes is with ST6GAL1 locus on chromosome 3 

with association p-value = 1.44 x 10-444 for s1_g2 trait. Ten of the 42 genomic regions are 

associated specifically with one or more of the sialylation phenotypes. Since sialylation is 

conditioned on the presence of galactose units on IgG N-glycans, traits including s1_g1, s1_g2 

and s1_gal_total were derived to isolate the sialylation specific signals. The trait s1_g1 (ratio 

of monosialylated and monogalactosylated structures) was associated with thirteen regions, 

however, the signals on sialylation-specific loci did not become stronger. This could be 

explained by the very low number of both monogalactosylated and monosialylated structures 

in the IgG N-glycome, therefore, the s1_g1 trait is not able to capture the monosialylation-

specific variation. However, there was one association on chromosome 2 (rs10186962; p-

value=2.38 x 10-9) specific for the s1_g1 trait.  On the other hand, s1_g2 (ratio of 

monosialylated and digalactosylated IgG N-glycan structures) was associated with 13 regions 

(Figure 10), three of which were trait-specific: chr1:233715572-233740757 (rs6689354; p-

value=5.43 x 10-9), chr5:55436851-55444683 (rs10065637; p-value=2.74 x 10-10) and 

chr14:105877057-106270813 (rs10444775; p-value= 1.08 x 10-36). The s1_gal_total trait is 

associated with thirteen genomic regions all of which are discovered in the remainder of the 

monosialylation phenotypes. 

Figure 10: Manhattan plot for s1_g2 trait. Plot shows -log10(P-values) of association on y-axis and SNPs ordered 

by chromosomal location on x-axis. Red line indicates the genome-wide significance threshold (1x10-8). For 

simplicity, the y axis is trimmed at -log10(P-value)=100. 

rs            .                 
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4.7 Conditional analysis and variance explained 

The strongest association (1.44 x 10-444) was found between rs11710456 in ST6GAL1 locus on 

chromosome 3 (chr3:186607935-186819448) and s1_g2 trait representing the ratio between 

monosialylated and digalactosylated structures in total IgG N-glycome. Klarić et al.10 indicated 

a different SNP (rs7621161) with strongest association in this locus, however, the two SNPs 

are in high LD (r2=0.99). Monosialylation trait (s1) had the strongest association with 

rs6764279 (P-value=1.1 x 10-81) also in ST6GAL1 locus and this SNP is in high LD with 

rs11710456 (r2= 1). Rs6764279 had slightly higher P-value than rs11710456 for s1_g2 trait 

(p=8.6 x 10-444), hence rs11710456 was picked by the software as the strongest. Other 

sialylation phenotypes including s1_g1, s1_gal_total and s1_no_bis, had the strongest 

association with rs6764279 with P-values of association being 3.34 x 10-71, 4.08 x 10-216 and 

6.74 x 10-89, respectively. Fucosylation trait (fuc) had the strongest association with 

rs11847263 (P-value=1.05 x 10-120) in genomic region on chromosome 14 (chr14:64709913-

66303683) where FUT8 gene is located. A genetic variant located in region on chromosome 1 

(chr1:23526335-25903455) had a stronger association with bisecting GlcNAc trait 

(rs188468174; P-value= 1.42 x 10-134) in comparison to MGAT3 locus (rs1005522; P-value= 

1.16 x 10-91) encoding glycosyltransferase which acts in addition of bisecting GlcNAc to the 

glycan structure.   

Digalactosylation trait (g2) had the strongest association (P-value=4.2 x 10-55) with genetic 

variant rs13297246 in B4GALT1 (chr9:32932194-33385427) locus, while the 

monogalactosylation (g1) had the strongest association with variant rs3780490 (P-value=7.66 

x 10-52) in the same locus. The two variants are not in a strong LD (r2=0.1) indicating potentially 

distinct causal variants for the two galactosylation phenotypes. Considering B4GALT1 locus, 

total galactosylation (gal_total) had the strongest association with rs13297246 (P-value=1.08 

x 10-36). However, the strongest association among all regions and gal_total was with 

rs188468174 (P-value=2.1 x 10-47) located in RUNX3 locus on chromosome 1. Only 

considering the marginal effects of the top associated variants in all loci for each trait, the 

phenotypic variance explained ranged from 3.4% for g0 to 18.06% for s1_g2.  

The SNP-heritability estimates were derived using LDSC which calculates SNP-based 

heritability as the proportion in phenotypic variation in the population which is explained by 

additive effects of the SNPs. The estimates for glycan traits ranged from 0.093 (±0.032) for 

monogalactosylation (g1) trait to 0.222 (±0.10) for fucosylation trait (Figure 11). Glycan traits 
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describing the galactosylation phenotypes (g0, g1, g2 and gal_total) have the lowest heritability 

estimates, while the fucosylation trait has the highest heritability estimate h2g=0.2225 but with 

high standard error (SE=0.1007). 

 

 

Figure 11: SNP-based heritability values (h2
snp) for 11 IgG glycan traits. Error bars denote ±SE values for the h2

snp 

estimate 
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Figure 12: Joint analysis of the secondary signals. Colours represent the joint effect direction of each independent 

SNP; the effect is represented by the Z score which is calculated by dividing the effect estimate in the joint analysis 

by the standard error of the effect estimated in the joint analysis (Z score values range from -36 to 24)
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COJO analysis was conducted to detect independent secondary signals associated with glycan 

traits and estimate their joint effects. The approximate method was applied to GWA meta-

analysis summary statistics for each trait and LD for the SNPs was estimated using a subsample 

of unrelated UK Biobank participants. Ten out of eleven traits had the secondary signal 

detected in at least one associated genomic region. A total of five regions contained secondary 

signals with two to six independent variants being associated with a single trait. 

In total, sixteen loci contain more than one variant associated with glycan traits. Different 

glycan traits were in stronger association with different variants in the same locus but some of 

the variants are in high LD.  

Largest number of independent associations (n=6) in a single locus was identified in GWAS 

for fucosylation trait in region harbouring FUT8 gene (chr14:64709913-66303683). The 

direction of the effect was negative for two of the SNPs (rs11847263, rs8003811) as opposed 

to positive effect direction for four remaining SNPs (rs113548275, rs117397384, rs55975167 

and rs76594196). The ST6GAL1 locus contained varying number of independent associations 

across different traits: s1_g2 (n=5), s1_gal_total (n=3), s1 (n=2), s1_g1 (n=2) and s1_no_bis 

(n=2). Locus on chromosome 9 which harbours B4GALT1 gene had the highest number of trait 

associations with multiple independent associated SNPs: s1_g1 (n=5), s1_no_bis (n=5), g2 

(n=4), s1 (n=4), s1_gal_total (n=4), g0 (n=3) and gal_total (n=3). Additional two regions 

contained multiple independent associations: chr14:105877057-106270813 (s1_g2; 

rs10444775 and rs11624007) and chr21:36524140-36787961 (bisecting; rs8129053 and 

rs9979383).  

The observed difference in the joint analysis was due to the overestimation and underestimation 

of SNP effects in the single-SNP analysis. FUT8 locus contains six independent SNPs which 

are associated with the fucosylation trait. The joint estimates for these six SNPs can be seen in 

Table 9. Upon jointly modelling the effects of all six SNPs,  there was an increase in power for 

rs76594196 (psingle-SNP =1.83×10−6 to pjoint =1.71×10−15) and only a slight increase for 

rs113548275 (psingle-SNP=5.13×10−17 to pjoint=1.34×10−17), while the effects of other SNPs in the 

region were overestimated in the single-SNP analysis including the lead SNP rs11847263 

where psingle-SNP=2.2 x 10-118 decreased to pjoint=7.33 x 10-47. 
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Table 9: Joint analysis of SNPs in FUT8 locus and fucosylation trait. 

SNP EA freq b se p bJ bJ_se pJ LD_r 

rs113548275 T 0.9640 -0.3003 0.0354 5.13E-17 -0.3197 0.0370 1.34E-17 0.2041 

rs11847263 T 0.6318 0.2879 0.0123 2.20E-118 0.2060 0.0142 7.33E-47 -0.2193 

rs55975167 T 0.0347 -0.6445 0.0361 1.13E-69 -0.5881 0.0382 2.33E-52 -0.0319 

rs76594196 A 0.0204 -0.2443 0.0506 1.83E-06 -0.4112 0.0510 1.71E-15 -0.0178 

rs117397384 T 0.0308 -0.4880 0.0436 1.93E-28 -0.3264 0.0444 3.70E-13 -0.1479 

rs8003811 T 0.6031 0.2407 0.0122 1.14E-84 0.1846 0.0136 6.51E-41 0.0000 

SNP-variant rsID; EA-effect allele; freq-frequency of effect allele in the discovery single-SNP meta-analysis; b-

effect estimate in the discovery single-SNP meta-analysis; se- standard error of the effect estimate in the meta-

analysis; p- P-value of the single-SNP analysis; bJ, bj_se and pJ- effect, standard error and P-value in the joint 

analysis; LD_r-correlation of the SNP with the SNP in the next row. 

 

For ST6GAL1 locus (Table 10), there were 3 glycan traits (s1, s1_g1 and s1_no_bis) with the 

same two independent SNP associations: rs6764279 and rs7635748. In all three cases, there 

was an overestimation of the SNP effects in the single-SNP analysis. The glycan trait 

describing the ratio of monosialylated and galactosylated structures, s1_gal_total, has three 

independent associations in ST6GAL1 locus, while the s1_g2 trait has five independent SNP 

associations. The only SNP with underestimated effect in the single-SNP analysis was 

rs75502178 where the negative effect estimate increased from -0.4697 to -0.6228, hence the P-

value decreased from psingle-SNP= 1.44 x 10-38 to pjoint=1.59 x 10-62.  

Table 10: Joint analysis of SNPs in ST6GAL1 locus and fucosylation trait. SNP-variant rsID; EA-effect allele; 

freq-frequency of effect allele in the discovery single-SNP meta-analysis; b-effect estimate in the discovery single-

SNP meta-analysis; se- standard error of the effect estimate in the meta-analysis; p- P-value of the single-SNP 

analysis; bJ, bj_se and pJ- effect, standard error and P-value in the joint analysis; LD_r-correlation of the SNP 

with the SNP in the next row. 

trait SNP EA freq b se p bJ bJ_se pJ LD_r 

s1 
rs7635748 A 0.0694 -0.1711 0.0229 1.47E-13 -0.1455 0.0230 3.89E-10 0.0703 

rs6764279 A 0.2790 -0.2106 0.0110 5.81E-80 -0.2064 0.0111 6.28E-75 0.0000 

s1_g1 
rs7635748 A 0.0703 -0.1699 0.0243 3.83E-12 -0.1445 0.0244 4.00E-09 0.0703 

rs6764279 A 0.2823 -0.2091 0.0117 1.80E-70 -0.2049 0.0118 3.35E-66 0.0000 

s1_g2 

rs35397933 A 0.0953 -0.1435 0.0212 1.83E-11 0.1442 0.0224 1.70E-10 -0.0481 

rs75502178 T 0.0357 -0.4697 0.0359 1.44E-38 -0.6228 0.0370 1.59E-62 -0.0521 

rs11710456 A 0.2823 -0.5365 0.0119 1.44E-444 -0.5085 0.0141 7.38E-281 -0.3399 

rs4686828 T 0.2219 0.3461 0.0135 7.31E-143 0.2021 0.0152 5.14E-40 -0.1807 

rs115727200 A 0.9864 -0.5662 0.0551 1.98E-24 -0.3398 0.0562 1.97E-09 0.0000 

s1_gal_total 

rs7635748 A 0.0703 -0.3145 0.0261 7.18E-33 -0.2959 0.0265 1.80E-28 0.0703 

rs6764279 A 0.2817 -0.3873 0.0123 9.11E-214 -0.3375 0.0135 3.39E-135 -0.3390 

rs12633034 C 0.2218 0.2437 0.0137 1.49E-69 0.1340 0.0148 2.82E-19 0.0000 

s1_no_bis 
rs7635748 A 0.0694 -0.1782 0.0227 7.63E-15 -0.1517 0.0228 4.39E-11 0.0703 

rs6764279 A 0.2789 -0.2178 0.0109 3.88E-87 -0.2134 0.0111 1.88E-81 0.0000 
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Region on chromosome 9 which harbours B4GALT1 gene has the highest number of multi-

SNP associations (n=7) with additional two single-SNP associations with g1 and s1_g2 traits. 

The power gain in joint analysis for three SNPs associated with g0 and gal_total increased in 

joint analysis, thus decreasing the P-values. Four-SNP association was identified for g2, s1 and 

s1_gal_total traits, however, the SNP sets differed between the traits. Five-SNP associations 

were detected with monosialylation phenotypes, s1_no_bis and s1_g1, with a differing set of 

SNPs that are not in high LD. Low LD values (derived from 1000G EUR reference data) might 

indicate differing causal variants for monosialylation (s1, s1_gal_total, s1_no_bis), 

monogalactosylation and digalactosylation phenotypes as different genetic variation might be 

causal for changes in IgG glycosylation pathway: addition of single galactose, the addition of 

second galactose unit or addition of two galactose units as a prerequisite for monosialylation. 

Both overestimation and underestimation of SNP effects in the single-SNP analysis as opposed 

to joint analysis can be seen in Table 11. 

Table 11: Joint analysis of SNPs in B4GALT1 locus and fucosylation trait. SNP-variant rsID; EA-effect allele; 

freq-frequency of effect allele in the discovery single-SNP meta-analysis; b-effect estimate in the discovery single-

SNP meta-analysis; se- standard error of the effect estimate in the meta-analysis; p- P-value of the single-SNP 

analysis; freq_J- frequency of the effect allele in the reference sample; bJ, bj_se and pJ- effect, standard error and 

P-value in the joint analysis; LD_r-correlation of the SNP with the SNP in the next row. 

trait SNP EA freq b se p bJ bJ_se pJ LD_r 

s1_no_bis 

rs10116966 A 0.3061 -0.1498 0.0107 1.06E-43 -0.0885 0.0127 5.11E-12 -0.2008 

rs3780494 T 0.9824 -0.3148 0.0409 2.50E-14 -0.4314 0.0417 1.29E-24 0.0502 

rs13297246 A 0.1646 0.2007 0.0134 9.17E-50 0.1936 0.0153 3.40E-36 0.2422 

rs112548980 A 0.7581 -0.1035 0.0127 7.03E-16 -0.1104 0.0146 5.98E-14 0.1100 

rs61016869 A 0.1091 -0.1353 0.0163 2.04E-16 -0.0975 0.0165 4.90E-09 0.0000 

s1_gal_total 

rs28645680 A 0.8574 -0.1701 0.0171 6.33E-23 -0.1935 0.0177 3.14E-27 0.1039 

rs10971414 T 0.0702 0.1757 0.0226 1.31E-14 0.1806 0.0238 5.32E-14 -0.1813 

rs10116966 A 0.3073 -0.1806 0.0124 3.18E-47 -0.1247 0.0138 3.09E-19 0.3646 

rs112548980 A 0.7587 -0.1132 0.0148 3.46E-14 -0.1060 0.0164 1.67E-10 0.0000 

s1_g2 rs869 A 0.4072 -0.0746 0.012 6.79E-10 -0.0746 0.0120 7.13E-10 0.0000 

s1_g1 

rs10813951 A 0.7442 0.1974 0.0121 4.99E-59 0.1022 0.0137 1.24E-13 0.2655 

rs13297246 A 0.1663 0.2216 0.0144 1.01E-52 0.2204 0.0160 1.56E-42 -0.0492 

rs10121006 T 0.0173 0.2691 0.0444 1.76E-09 0.3092 0.0449 8.25E-12 0.0660 

rs112548980 A 0.7598 -0.1259 0.0137 7.11E-20 -0.1371 0.0153 7.28E-19 0.1100 

rs61016869 A 0.1077 -0.1543 0.0177 4.85E-18 -0.1052 0.0179 5.70E-09 0.0000 

s1 

rs3780494 T 0.9824 -0.315 0.0413 4.58E-14 -0.3809 0.0416 1.25E-19 0.0502 

rs13297246 A 0.1646 0.1924 0.0135 4.04E-45 0.2255 0.0140 7.97E-57 0.2422 

rs112548980 A 0.7579 -0.0962 0.0128 1.06E-13 -0.1433 0.0133 1.67E-26 -0.1133 

rs494104 A 0.8889 0.1345 0.0161 1.43E-16 0.0965 0.0163 4.93E-09 0.0000 

gal_total 

rs3780494 T 0.9825 -0.4146 0.0381 2.56E-27 -0.4660 0.0384 1.58E-33 0.0502 

rs13297246 A 0.1645 0.1582 0.0125 2.33E-36 0.1917 0.0129 2.04E-49 0.2417 

rs28389469 A 0.7627 -0.0642 0.012 1.02E-07 -0.1143 0.0124 3.42E-20 0.0000 
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g2 

rs3780494 T 0.9824 -0.3595 0.0382 1.21E-20 -0.4294 0.0385 2.31E-28 0.0502 

rs13297246 A 0.1645 0.1954 0.0125 5.18E-54 0.2316 0.0130 1.77E-69 0.2417 

rs28389469 A 0.7624 -0.1092 0.012 2.10E-19 -0.1584 0.0125 3.12E-36 0.1135 

rs62546669 A 0.1105 -0.1422 0.0149 3.48E-21 -0.1020 0.0151 2.35E-11 0.0000 

g1 rs7036812 T 0.6923 -0.1955 0.0129 2.17E-51 -0.1955 0.0130 1.06E-50 0.0000 

g0 

rs3780494 T 0.9825 0.4139 0.0382 4.27E-27 0.4654 0.0385 2.81E-33 0.0502 

rs13297246 A 0.1645 -0.1578 0.0125 3.50E-36 -0.1912 0.0129 3.31E-49 0.2417 

rs28389469 A 0.7627 0.0644 0.012 9.32E-08 0.1144 0.0124 3.18E-20 0.0000 

 

Additional two genomic regions chr14:105877057-106270813 and chr21:36524140-36787961 

had two-SNP associations with s1_g2 and bisecting traits, respectively. For both SNPs in 

region chr21:36524140-36787961, rs8129053 and rs9979383, the effects were slightly 

overestimated in single-SNP analysis (rs8129053; psingle-SNP= 1.62 x 10-21; pjoint= 2.28 x 10-19; 

rs9979383; psingle-SNP= 3.67 x 10-13; pjoint=4.49 x 10-11). Same trend in power loss was observed 

for the two SNPs in chr14:105877057-106270813 region: rs11624007 (psingle-SNP=3.56 x 10-20; 

pjoint= 1.85 x 10-9) and rs10444775 (psingle-SNP= 3.96E-36; pjoint= 7.44 x 10-25). Subsequently, the 

additional independent SNPs associated with glycan traits were considered in the calculation 

of joint phenotypic variance explained which ranged from 3.9% for g1 to 22.11% for s1_g2 

trait (Figure 13). In ten traits the phenotypic variance explained in joint analysis increased, 

while in g1 trait it did not change in comparison to the estimation of variance explained from 

the marginal effects of top SNPs only in single-SNP analysis. The biggest increase is observed 

for the fucosylation trait from 8.18% to 13.77%, while the smallest increase is seen for the 

bisecting trait, from 13.79% to 14.08%. 

 

 

 

 

 

 

 

 

 

Figure 13: Phenotypic variance explained in the glycan traits by top independent SNPs in the univariate and joint 

analysis.  
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4.8 Gene mapping  

The list of candidate SNPs derived by FUMA was further used to map genes in the defined 

genomic loci using three approaches, 1) positional mapping, 2) eQTL mapping and 3) 

chromatin interaction mapping. Positional mapping is used to map candidate SNPs based on 

their proximitiy to genes in a 10kb window. A total of 173 genes were found in 10kb windows 

around candidate SNPs. eQTL mapping is based on significant cis-eQTL associations (FDR < 

0.05) for the candidate SNPs. Significant cis-eQTL association is present if the variation in the 

SNP is associated with the expression of a particular gene within 1 Mb window. A total of 82 

genes were mapped based on significant eQTL association in eQTL data from DICE129, 

CEDAR132 and Fairfax131 datasets, including data for B cells, CD4+ T cells, CD8+ T cells, 

neutrophils and monocytes. A subset of 37 genes was mapped using only B cell-specific eQTL 

data. Chromatin mapping or 3D chromatin interaction mapping is used to map SNPs to genes 

when there is a significant association of the SNPs in GWAS regions and nearby or distant 

genes via chromatin interaction. Hi-C data from the human lymphoblastoid cell line 

(GM12787) was used and 204 genes were mapped. The number of genes per mapping strategy 

is shown in Figure 14.  The number of genes mapped per genomic region is shown in Figure 

15 with the largest number of genes mapped in the region on chromosome 1 (chr1:23526335-

25903455), followed by region on chromosome 17 (chr17:37579383-38215117) which is 

associated with the fucosylation trait.   

 

 

Figure 14: Number of genes mapped per mapping strategy 
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Figure 15: The histogram displays the size of genomic risk loci, the number of candidate SNPs, the number of 

prioritized genes and the number of genes physically located within the genomic locus. 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Positional annotation of candidate SNPs as assigned by ANNOVAR. Asterisk denotes a significant 

enrichment of the SNPs (P-value<0.05) and color of the bar denotes the log2(enrichment) relative to all SNPs in 

the 1000G Phase 3 EUR reference panel.    
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4.9 Previous genotype-phenotype associations of top independent candidate SNPs 

Potential pleiotropic effects of the 42 associated loci were assessed with Phenoscanner to 

explore variants that were associated both with IgG N-glycosylation and other traits and 

diseases. The results from Phenoscanner were used to acquire a list of diseases and traits which 

were further tested in colocalization analysis. SNPs in 21 loci were significantly associated in 

previous studies (p ≤ 5 x10-8) with at least one trait in the PhenoScanner database. Given that 

the majority of the regions with pleiotropic effects are already discussed in previous IgG N-

glycome GWAS study10, the Phenoscanner results from four novel genomic regions (annotated 

by reference SNP) are listed in Supplementary Table 11. 

4.10 Gene prioritization 

Prioritization of the potential candidate genes was the next step following the identification of 

the genomic regions associated with IgG N-glycome. Most of the associated SNPs are found 

in the non-coding regions as shown in Figure 16 and cannot be directly linked to the 

positionally closest gene as gene regulation can be complex and both cis and trans effects are 

possible. Therefore, multiple gene prioritization approaches were applied: 1) genes in which 

glycosylation-associated SNP affected the amino-acid sequence of the resulting protein, 2) 

pleiotropy with gene expression in the whole blood, 3) pleiotropy with gene expression in 

immune cells, 4) genes in genome-wide gene-based association analysis (MAGMA) and 

ultimately, 5) positional mapped genes. Additionally, previous prioritization efforts by Klarić 

et al.10 were considered, as well as the literature/known biology-based evidence for loci that 

code for genes with known roles in glycosylation processes, such as glycosyltransferases genes.  

4.10.1 Functional consequences of candidate genetic variants 

Variant effect predictor (VEP) was used to assess the functional consequences of candidate 

variants on genes, transcripts, protein sequence and regulatory regions using SIFT and 

Polyphen-2 algorithms. Besides listing the gene and transcript influenced by the variant, VEP 

annotated the variant by listing their location and MAF and type of consequence on the protein 

such as stop-gained, stop lost, missense or frameshift. The genetic variants with probability 

values < 0.05 were considered deleterious. Polyphen-2 predicts the damaging effect of a 

mutation by using eight sequence-based and three structure-based features with scores ranging 

from 0 (benign) to 1 (probably damaging).  
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A total of 12,348 candidate genetic variants were assessed. The predictions with severe coding 

consequences were considered including missense (n=86) and stop-lost (n=1) variants. 

Additionally,  splice donor (n=2) and splice acceptor variants (n=1) were taken into account. 

A total of 77 variants were predicted as synonymous. Forty-six genes that are spread across 

fifteen genomic regions were predicted to be affected by the protein-coding mutations.  SIFT 

and Polyphen2 scores were assigned to a subset of 45 variants in 30 genes which are found in 

ten genomic regions (Supplementary Table  8). The predicted functional consequences of the 

candidate variants were considered in the subsequent gene prioritization, excluding the variants 

from the MHC region (chr6:30798697-32879471). 

Besides VEP, candidate SNPs (excluding SNPs in the MHC region) were also checked for their 

CADD scores via FUMA SNP2GENE tool. CADD score is a deleteriousness score based on 

63 functional annotations and it was used as additional evidence for SNP functional 

consequence (Figure 17). At the cut-off > 15, there were 159 SNPs located across 39 genes 

with three SNPs with CADD score > 30. 

 

 

 

 

 

 

Figure 17: Distribution of CADD scores for candidate SNPs (excluding MHC region) 

4.10.2 Pleiotropy with gene expression in whole blood 

The summary statistics for cis-eQTLs in whole blood from the eQTLgen dataset were used to 

investigate whether the identified variants affect the expression of a nearby gene, thereby 

potentially affecting the N-glycosylation. The eQTLgen dataset was chosen as it is one of the 

biggest eQTL datasets to date derived on 31,684 blood samples, thus increasing the power to 

detect eQTL signals. The suggested threshold PP4 ≥ 75%68 was used to support of eQTL/N-

glycosylation colocalization hypothesis. In total, eQTLs for 21 genes in 18 genomic regions 

colocalized with variants from regions identified in IgG N-glycosylation GWAS. A subset of 

the associations was previously found in GWAS by Klarić et al.10 but here all associations are 
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listed as the glycan phenotypes between the studies are different. Given the more 

straightforward derivation of traits in this study, it was possible to link the gene expression and 

addition of a specific sugar unit in a process of IgG N-glycosylation. 

Fucosylation 

On chromosome 1, there is a positive colocalization for the expression of MYCBP gene and 

fucosylation trait (PP4 = 99.4%). The associated region (chr1:39302020-39380385) is 

fucosylation-specific. The comparison between the regional association pattern for 

fucosylation and expression of MYCBP gene is shown in Figure 18. 

Region on chromosome 2 (chr2:158413902-158477773) harbours ACVR1C gene for which 

eQTL signal colocalizes (PP4=92.8%) with association signals in the region for fucosylation 

trait. The SNP.PP.H4 value is the posterior probability of the variant being causal for the 

colocalized signal when the colocalization hypothesis (H4) is true. In this case, SNP with 

highest PP.H4 (rs10164853; 0.996) value is different than lead SNP in fucosylation GWAS 

(rs77539041). 

 

Figure 18: Regional plot of association in chr1:39302020-39380385 region with fucosylation trait (top right) and 

regional plot for MYCBP expression in whole blood in the same region (bottom right). Scatter plot of -log10(p-

values) of SNPs in fucosylation GWAS and MYCBP expression (left). 

 

Fucosylation GWAS signals also colocalize with eQTL signals for KIF11 gene (PP4=99%) 

which is located on chromosome 10 (chr10:94336963-94495241) and ORMDL3 gene 

(PP4=78.7%) in region on chromosome 17 (chr17:37579383-38215117) (Figure 19). 
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Figure 19: Regional plot of association in chr10:94336963-94495241 region with fucosylation trait (top right) and 

regional plot for KIF11 expression in whole blood in the same region (bottom right). Scatter plot of -log10(p-

values) of SNPs in fucosylation GWAS and KIF11 expression (left). 

 

Bisecting GlcNAc 

There is a high posterior probability for colocalization between eQTL signals for TCF3 gene 

(Figure 20) and GWAS association signals for the bisecting trait (PP4=96.2%) in a genomic 

region on chromosome 19 (chr19:1576098-1658699) and eQTL for KDELR2 gene on 

chromosome 7 (chr7:6497501-6550403). 

 

Figure 20: Regional plot of association in region chr19:1576098-1658699 with the bisecting trait (top right) and 

regional plot for TCF3 expression in whole blood in the same region (bottom right). Scatter plot of -log10(p-

values) of SNPs in bisecting GWAS and TCF3 expression (left). 

Positive colocalization is found for bisecting trait and expression of MGAT3 gene (PP4 = 

96.0%) pointing to a potential mechanism of control of the addition of bisecting GlcNAc to 
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IgG N-glycans as the same variant is potentially affecting the level of IgG N-glycan structures 

with bisecting GlcNAc and levels of MGAT3 gene expression in whole blood (Figure 21). 

 

 

 

 

 

 

 

 

 

Figure 21: Regional plot of association in MGAT3 locus with the bisecting trait (top right) and regional plot for 

MGAT3 expression (eQTLs) in whole blood in the same region (bottom right). Scatter plot of -log10(p-values) of 

SNPs in bisecting GWAS and MGAT3 expression (left). 

 

Sialylation and galactosylation 

Given that sialylation is conditioned on the presence of galactose on the IgG N-glycan 

structure, multiple regions were associated with both galactosylation and sialylation, thus there 

was a high posterior probability for colocalization for both traits with eQTLs in whole blood. 

Three genes had high PP4 including, EEF1A1 (s1_g1; PP4=96.5%), MTO1 (s1_g1; PP4=96%), 

and NFKB1 (s1_no_bis; PP4=93%). Both EEF1A1 and MTO1 genes are found in the same 

region on chromosome 6 (chr6:74168723-74285118). 

A total of six genes contain eQTLs in whole blood which colocalize with GWAS signals for 

sialylation-specific traits, including ANKRD55 (s1_g2; PP4=97.5%), COG7 (s1_no_bis; 

PP4=78.9%; Figure 22), DCTN5 (s1_g1; PP4=84.4%), ELL2 (s1_no_bis; PP4=93.2%; Figure 

23), IGHG2 (s1_g2; PP4=98.3%), MEF2B (s1_g2; PP4=97.3%) and IL6ST (s1_g2; 

PP4=95.7%), where trait names denote traits with highest PP4. The region chr16:23397113-

23613191 harbours two of the colocalized signals, eQTLs for DCTN5 and COG7, as well as 

the region on chromosome 5 (chr5:55436851-55444683) which harbours IL6ST and ANKRD55 

genes. The only galactosylation-specific region (chr2:26109539-26149988) with positive 

colocalization signal contains KIF3C gene with PP4=90% (g1). Additionally, eQTL signals for 

hsa-mir-142 micro RNA colocalized with association signals for digalactosylation and 

monosialylation phenotypes with PP4=99.8% in locus on chromosome 17.  
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Figure 22: Regional plot of association in chr16:23397113-23613191 region with s1_no_bis trait (top right) and 

regional plot for COG7 expression (eQTLs) in whole blood in the same region (bottom right). Scatter plot of -

log10(p-values) of SNPs in s1_no_bis GWAS and COG7 expression (left). 

 

In the genomic regions where other glycosyltransferase genes (FUT8, ST6GAL1 and 

B4GALT1) are found, the conditional analysis indicated more than one causal variant in the 

region, thus not meeting the single causal variant assumption to compute the posterior 

probability for colocalization of signals (PP4). Low PP4, in that case, would not indicate a lack 

of colocalization as the algorithm considers only the strongest association and the rest of the 

independent signals are not considered. Also, according to the conditional analysis, the region 

which harbours IGHG2 gene harbours multiple independent associations, hence, the positive 

colocalization test does not exclude other candidate genes from the region. The positive 

colocalization was not taken as exclusive evidence for prioritization of the gene since it was 

performed using eQTL data for whole blood, instead, it was taken as one of the criteria to 

prioritize a gene.  
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Figure 23: Regional plot of association in chr5:95217242-95324375 region with s1_no_bis trait (top right) and 

regional plot for ELL2 expression (eQTLs) in whole blood in the same region (bottom right). Scatter plot of -

log10(p-values) of SNPs in s1_no_bis GWAS and ELL2 expression (left). 

 

In total, 83 genes were prioritized across 42 genomic regions (Supplementary Table  8). The 

genes are shown in Figure 24 with evidence for prioritization besides each gene symbol. A 

subset of 22 regions have only one prioritized gene, 9 regions contain two prioritized genes, 5 

regions contain three and the remaining regions have four or more candidate genes.  In genomic 

regions containing glycosyltransferases genes -ST6GAL1, B4GALT1, FUT8, MGAT3- the prior 

knowledge of their function is taken as the main evidence for the prioritization of these genes, 

as well as the prioritization efforts by the previous GWA studies which were further supported 

by the evidence in the current study.  
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Figure 24: Manhattan plot of genome-wide significant associations in IgG N-glycome GWAS with prioritized 

genes in each locus. Plot shows -log10(P-value) of association on y-axis and SNPs ordered by chromosomal 

location on x-axis. Red line indicates the genome-wide significance threshold (1 x 10-8). For simplicity, the y axis 

is trimmed at -log10(P-value)=60. Orange gene names indicate novel loci associated with IgG N-glycosylation. 

4.11 Gene-set enrichment analysis 

A gene-set enrichment test was performed using FUMA GENE2FUNC69 option to test for 

overrepresentation of the 83 prioritized genes from IgG N-glycome GWAS in gene sets 

obtained from MSigDB c5149 using hypergeometric tests. The candidate genes were tested 

against Canonical pathways and Gene Ontology (GO) terms. A total of 123 gene sets with an 

FDR < 0.05 were identified (Supplementary Figure 5). The results were further filtered based 

on keywords to identify gene sets that describe higher-level biological processes. Among the 

identified 108 GO sets, six gene sets were related to glycosylation process, three gene sets to 

ER-Golgi transport, 26 were related to B and T cell activation and proliferation, nine to immune 

response in general and seven were related to transcription and gene expression.  

Fifteen gene sets were enriched in Canonical pathways, four of which were glycosylation-

related, six were related to ER-Golgi transport, one to T cell development and one gene set was 

related to transcriptional regulation. 
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4.12 Functional network of IgG N-glycome associated loci 

The functional network of genomic loci identified in the IgG N-glycome GWAS was 

constructed based on the summary statistics for the top SNPs across all 42 genomic regions 

and their correlation. The nodes represent the top SNP but are denoted by one of the prioritized 

genes in the locus, while the edges represent the squared Spearman’s correlation of their effects 

on glycan traits (Z-scores). Only the correlations which passed the corrected p-value threshold 

(0.05/((42*41)/2)= 5.8 x 10-5) were taken into account when constructing the network. The sign 

of the correlation between SNP effects depends on the tested reference allele, therefore here it 

is not considered informative. Given the strict significance threshold, only 28 nodes and 26 

edges were constructed in the network which is shown in Figure 25. 

There are seven separate clusters in the network formed which can partially be explained by 

the low number of traits or Z-score values which enter the correlation analysis (n=11) thereby 

obtaining non-significant correlation even when the Spearman’s correlation coefficient is high. 

There are two two-loci clusters: KIF3C-OVOL1/AP5B1 and HLA region-RRBP1. Two three-

loci clusters are comprised of TCF3-TMEM121/IGHlocus/CRIP1-TXLNB and MEF2B/MAU2-

NXPE1/NXPE4-ST6GAL1. 

The significant correlation values ranged from 0.927 to 0.981. The strongest correlation 

(Spearman’s ρ=0.981; p=8.4 x 10-8) of SNP effects was observed for SNPs found in RUNX3 

(rs188468174; chr1:23526335-25903455) and RUNX1 (rs8129053; chr21:36524140-

36787961) loci. The RUNX3 and RUNX1 loci are associated with all trait categories except 

fucosylation. Among four glycosyltransferases, only ST6GAL1 and B4GALT1 were included 

in the network. The lead SNP in ST6GAL1 locus, rs11710456, had a strong correlation 

(Spearman’s ρ=0.927; p=3.97 x 10-5) with effects of lead SNP in NXPE1-NXPE4 locus, 

rs1671819. The lead SNP in B4GALT1 locus, rs12342831, was strongly correlated 

(Spearman’s ρ=0.927; p=3.97 x 10-5) with top SNP in SLC38A10-AZI1-ENTHD2 locus, 

rs2659005.  It is important to note that majority of the nodes included are limited to 

monosialylation- and galactosylation-specific loci because there were multiple traits defined 

for both trait categories, thereby causing inflation in the correlation values as opposed to 

fucosylation and bisecting phenotypes which were limited to one derived trait. 
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Figure 25: Functional network of the genomic loci identified in IgG N-glycome GWAS as represented by one of 

the genes prioritized in the locus. Purple nodes represent novel loci identified in the GWAS. The color of the edge 

represents the squared correlation value of the top SNP effects (Z-scores) across glycan traits which ranges from 

0.85 to 0.96. 

4.13 STRING protein-protein interaction network   

String-PPI151 database was used to construct a network based on the 83 prioritized genes 

(Figure 26). To obtain the score for each interaction, evidence was limited to experimentally 

determined evidence, evidence from curated databases, co-expression and protein homology. 

The scores range from 0 to 1, where 1 represents strong evidence. In total, 27 significant 

interactions (FDR < 0.05) are present between the proteins which form seven clusters in the 

network with average node degree=0.692 and PPI enrichment p-value=7.24 x 10-6 

(Supplementary Table  10). The glycosyltransferases (MGAT3, B4GALT1, ST6GAL1, FUT8) 

form a separate cluster together with MANBA (Beta mannosidase) enzyme which is known 

for its role in glycosylation processes. The functional association between glycosyltransferases 

is supported by information obtained from curated databases (combined score=0.9) while the 

association between B4GALT1 and MANBA is further supported by the evidence for their co-

expression (combined score=0.902). One of the clusters contains proteins which are mainly 

involved in the transport of proteins from ER to Golgi and normal function of Golgi complex 

(KIF11, KIF3C, KDELR2, DCTN5, NSF, COG7), with a combined score for interaction 

ranging from 0.9 to 0.904 as obtained from curated databases, co-expression and protein 

homology. The biggest cluster in the network consists of eight proteins (MEF2B, NFATC2, 
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SMARCB1, SMARCD3, RUNX1, RUNX3, TBX21 and TCF3) functionally enriched in 

processes such as chromatin remodelling, transcriptional activation and regulation, and B cell 

activation and proliferation. The associations between the proteins in the cluster are all 

supported by the data from curated databases and 7 out of 9 interactions were experimentally 

determined and three interactions were due to the co-expression of the proteins (RUNX1 and 

RUNX3; RUNX3 and TBX21; SMARCB1 and SMARCD3; NFATC2 and RUNX1). The 

combined score in the cluster ranged from 0.6 to 0.992. The remaining four clusters are each 

formed by two proteins: NXPE1 and NXPE4 (score=0.555), IKZF3 and IKZF1 (score=0.802), 

ELL2 and SUPT4H1 (score=0.9) and UBR5 and EEF1A1 (score=0.425). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Interaction network of candidate genes obtained from STRING protein-protein interaction database. 

Nodes represent a protein encoded by the gene and edges are derived based on the evidence from various sources 

(See the grey box).    

4.14 Pleiotropy with complex diseases and traits 

Based on the results of Phenoscanner and indicated a potential role of IgG N-glycosylation in 

diseases, the colocalization analysis was performed to test the overlap in the regional 

association patterns between disease and IgG N-glycosylation, where the positive 

colocalization would suggest that the two traits share the same underlying causal variant. The 

Experimentally determined 

From curated databases 

Protein homology 

Co-expression 
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results are based on a colocalization test between disease and glycan trait which had the 

strongest association in the given locus (Supplementary Table 12).   

The positive colocalization of glycan traits and disease with high confidence (PP4 > 75%) was 

found in 10 genomic regions where SNPs meet the suggestive significance threshold in the 

disease or trait GWAS (p < 1 x 10-5).  Colocalized signal was obtained for the following 

diseases: RA, juvenile idiopathic arthritis (JIA), asthma, osteoarthritis, allergy, type 2 diabetes 

(T2D), adult-onset asthma (AOA), SLE, UC, IBD, schizophrenia, CD, PBC, Alzheimer’s 

disease, breast cancer, as well as, a trait describing the percentage of lymphocytes in white 

blood cells (WBC). Additional 4 genomic regions had the positive colocalization result (PP4 > 

75%), but it is important to note that the SNPs used in the analysis did not reach the suggestive 

significance threshold (1 x 10-5) in disease GWAS. The list of loci with pleiotropic effect on 

glycosylation and disease or trait is illustrated in Figure 27. 

Positive colocalization with lower confidence (50% < PP4 < 75%) was observed in 5 genomic 

regions associated with glycan traits and diseases including SLE, asthma, osteoarthritis, 

allergy, schizophrenia, breast cancer, as well as the percentage of lymphocytes in WBC. 

Additionally, 14 genomic regions had the posterior probability for colocalization > 50%, 

however, the suggestive significance threshold in GWAS for the disease was not reached.  

 

Figure 27: Chromosomal positions of positive colocalizations (PP4 > 50%) with IgG N-glycan traits where SNPs 

were significantly associated in both IgG N-glycome and disease GWAS (1 x 10-5). Orange lines on chromosomes 

denote chromosomal region; dots indicate the level of probability for colocalization: gray 50% < PP4 < 75%, light 

blue 75% < PP4 < 95% and dark blue PP4 > 95%.  



72 

 

4.15 Enrichment in cell-type-specific regulatory regions 

FORGE2 was used to investigate cell type-specific enrichment of top SNPs for overlap in 

DNase I hypersensitivity sites as derived by ENCODE and Roadmap Epigenomics Projects. 

Additionally, enrichment in 15 cell-type-specific chromatin states from Roadmap Epigenomics 

Project was assessed. Using ENCODE data, the strongest enrichment (q>0.01) was found 

across 16 immune cell types originating from blood tissue including: GM12865 (B 

lymphocytes; q= 5.7 x 10-8), GM12864 (B lymphocytes; q=3.47 x 10-6), Th1 (T helper type 1; 

q=1.73 x 10-5), CD14+ cells (q=2.01 x 10-4), GM06990 (B lymphocytes; q=2.01 x 10-4) and 

GM12878 (B lymphocytes; q= 2.01 x 10-4). These results were concordant with the results 

obtained using Roadmap Epigenomics Project data, where the significant enrichment (q < 0.05) 

was found for Primary T cells from cord blood, primary B cells, monocytes and natural killer 

cells from peripheral blood, while the strongest enrichment was found in fetal thymus cells (q 

< 0.006) (Figure 29). In addition, significant enrichment for 15 chromatin states in a wide range 

of cell types was identified, including strong enrichment for enhancers in B cells from the cord 

and peripheral blood, as well as weak transcription in T helper cells and natural killer cells. 

The snapshot of blood cell type-specific enrichment for chromatin states is shown in Figure 28.   

 

Figure 28: Blood cell-specific enrichment for regulatory elements (15 chromatin states) 
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Figure 29: Enrichment of IgG N-glycome GWAS SNPs in DNase I hypersensitivity sites (DHS) across different cell types. A)  ENCODE derived DHS data is used as 

background B) Roadmap Epigenomics Project derived DHS data is used as background



74 

 

5. DISCUSSION 

 

Here we conduct the largest GWAS of IgG N-glycome focusing on the glycan phenotypes 

describing the percentage of specific sugar units in the total IgG N-glycome. The main 

motivation lies in a more straightforward interpretation of the findings as it enables a link 

between genes and variable levels of four sugars, galactose, sialic acid, fucose and bisecting 

GlcNAc, all of which specifically alter the affinity of IgG for Fc receptors found on innate 

immune cells154.  

Meta-analysis of summary statistics from GWAS of IgG N-glycome in seven cohorts of 

European descent resulted in 42 genome-wide significant loci (p < 1 x 10-8) associated with the 

tested IgG N-glycome phenotypes.  

The detected heterogeneity among effect estimates in the studied cohorts ranged from none to 

moderate. The reasons for heterogeneity can stem from the differences in genetic architecture 

among the studied cohorts or differences in the phenotypes due to quantification discrepancies 

between the cohorts. Here we also meta-analyse summary statistics from cohorts where glycan 

quantification was carried out using UPLC or LC-MS, which also introduces heterogeneity due 

to differences in trait derivation. The correlation values of traits derived from UPLC- and LC-

MS-measured glycan values indicate differences in phenotypes, especially in fucosylation 

traits where the Pearson’s correlation value has the maximum value of 0.45. However, the 

heterogeneity remained at a moderate level allowing the meta-analysis of GWA summary 

statistics for these cohorts. The heterogeneity sourced in the genetic structure might also be 

present since cohorts such as ORCADES82, CROATIA-Vis81, CROATIA-Korcula81 and 

VIKING86 are considered genetic isolates, thus causing inflated frequency for some rare alleles.  

Thirteen of the observed associations are novel, meaning that they were not previously 

discovered in GWAS of IgG N-glycome. The traits which were tested in the previous GWAS 

by Klarić et al.10 were either directly measured glycan traits or a set of 54 derived traits as 

defined in the function for calculation of derived traits igg.uplc.derived.traits.2014() in glycanr 

package101. These traits differ from the traits in this GWAS as they describe various 

characteristics of IgG N-glycome but do not describe the overall percentages of structures with 

certain sugar units as the traits in the current GWAS. Now, we can associate genomic loci with 
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the addition reaction of the specific sugar unit to the glycan chain in a more straightforward 

manner.  

In addition, the derived trait definition allowed for meta-analysis of the higher number of 

cohorts, thereby increasing the sample number and power to detect novel loci. The derived 

traits were comparable between platforms used for measurement of IgG N-glycans, even if the 

original measurements are not. The used genome-wide significance threshold of 1x10-8 is the 

threshold corrected for five principal components which describe 99% of the variation in the 

tested traits. This allowed for less stringent multiple testing correction given that the tested 

traits are highly correlated and correction directly on the number of traits would result in an 

overly conservative significance threshold and a possibility to omit true positives.  

The previous GWAS of IgG N-glycome7,8,71,76 were all performed on the subset of samples 

from the current GWAS, thus cannot be considered as a true replication of the findings. 

However, the replication of genomic loci indicates the robustness of the GWAS findings given 

that the phenotype definition differs between studies.  

Among 42 discovered loci, 25 can be associated with only one phenotype group describing the 

addition of a specific sugar unit to the glycan chain- galactosylation (n=4), fucosylation (n=6), 

monosialylation (n=10) and bisection (n=5). The remaining fourteen loci are associated with 

more than one trait while two loci were associated with at least one trait from each phenotype 

set indicating the overall effect on the glycosylation process. Monosialylation and 

galactosylation phenotypes are interconnected as galactosylation is the prerequisite for the 

sialylation to occur and 7 loci are associated with these two phenotype sets. The indication for 

association with the specific reaction in the process enables the setup of functional analysis as 

the hypothesis can be set to investigate the effect of the locus on specific glycosylation traits.  

The locus containing IKZF1 gene was associated with bisection and fucosylation phenotypes, 

which are known to be partially mutually excluding as N-glycan with a bisecting GlcNAc 

cannot be a substrate for some glycosyltransferases including FUT8155, so the addition of 

bisecting GlcNAc suppresses the further processing and elongation of N-glycans. A positive 

effect of the effect allele is observed for both traits indicating that the gene might not be 

involved in the suppression of the fucosyltransferases activity based on the presence of 

bisecting GlcNAc but rather a regulation independent of the substrate.  
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In comparison with the discovered loci from Klarić et al., the lack of replication is observed in 

two loci, one of which is IRF1-IL3-SLC22A4 locus associated with IGP2, the percentage of A2 

glycan in the total IgG N-glycome. This glycan property is not captured by any of the derived 

traits in the current study, thus providing a valid reason for the lack of replication. In FUT6 

locus, previously there was an association with GP20, a structure that remained uncharacterized 

at the time of the analysis, therefore was not included in the study. In the later study156, the 

structure was characterized as an antennary fucosylated glycan, thus explaining the association 

with FUT6, a gene encoding a fucosyltransferase that catalyses the addition of antennary fucose 

to the IgG molecule155. Non-significant association in this locus is expected as we did not 

investigate the genome-wide associations with antennary fucosylation in IgG N-glycome. 

We also fail to replicate three out of six novel loci from the latest multivariate GWAS of IgG 

N-glycome76, which could be due to the lower power of the univariate analysis as opposed to 

the multivariate approach and differences in glycan structures which are included in each of 

the defined traits. Interestingly, we rediscover the association with IL6ST-ANKRD55 locus 

from Lauc et al. study7 which was not identified in the subsequent GWAS of IgG N-glycome 

potentially due to the increase of power as we include the highest number of samples in the 

discovery analysis.  

Replication analysis was conducted on LLS, KORA F4, EGCUT and GCKD cohorts which 

represent an admixture of studies collected for various purposes, including population-based 

studies but also disease-specific cohorts such as GCKD. Replication analysis in such a sample 

might be challenging but also represents evidence for the robustness of the results. When 

looking into the same glycan-SNP association as in discovery analysis, 34 genome-wide loci 

were replicated at the significance threshold of 0.001. Given that the replication study was 

underpowered compared to the discovery analysis, we take into account SNPs that are in LD 

with top SNPs as they are all considered replication candidates63. When looking into these 

SNPs and SNPs with the same effect direction as in discovery analysis, additional 6 loci are 

considered as replicated. However, the remaining two loci are not replicated but given the 

restricted sample size and the nature of the cohorts used, as well as the potential heterogeneity 

introduced by differences in phenotype measures, we cannot argue whether they are false 

positives. 

We estimate SNP-heritability based on more than 1 million SNPs using LDSC and observe the 

highest heritability estimates among sialylation traits, while the lowest is for galactosylation 
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traits. The SNP heritability estimate for fuc trait was 0.22 but also had a high SE of 0.1 

indicating the low power for estimation of heritability using the current GWAS data. These 

findings indicate the need for additional samples for GWAS of IgG N-glycome to capture the 

SNP-based heritability.  

Secondary associations were detected in five loci, among which three are loci harbouring 

glycosyltransferases, enzymes responsible for the addition of sugar units to the growing glycan 

chain. The multiple independent associations in three glycosyltransferases loci were observed 

in Klarić et al.71 study with the same number of independent SNPs in FUT8 locus (n=6). As 

expected, FUT8 locus is associated solely with the fucosylation phenotype.  

ST6GAL1 locus is associated exclusively with phenotypes describing monosialylation (s1, 

s1_g1, s1_g2, s1_no_bis, s1_gal_total) but with differing numbers of independent associations. 

The s1_g2 trait has the largest number of independent associations (n=5), where the strongest 

association is in high LD with a variant that is also associated with all other traits. The s1_g2 

trait is the ratio of monosialylated and digalactosylated structures and as such mostly represents 

the trait that describes the monosialylation by itself rather than monosialylation with 

galactosylation as captured by other monosialylation traits.  

B4GALT1 locus was significantly associated with all traits from galactosylation and 

monosialylation phenotype sets as expected since galactosylated glycans are the substrate for 

ST6GAL1 enzyme which adds sialic acid. The number of independent associations across the 

9 traits ranged from one to five, where g1 and s1_g2 traits had one, and s1_g1 and s1_no_bis 

had 5 independent associations. RUNX1 locus on chromosome 21 harbours two independently 

associated SNPs for bisection trait, while galactosylation (g0, g2 and gal_total) and 

monosialylation (s1 and s1_no_bis) phenotypes had a single associated SNP in the same region. 

The differing number of independent associations in the same region among traits could be 

either the lack of statistical power or that traits do have a different number of causal SNPs. The 

uncertainty in estimation might stem from the experimental error between different glycans. 

The glycans containing sialic acids carry a negative charge making them more prone to 

experimental error. Therefore, this might potentially explain the differences in the number of 

independent associations in galactosylation and sialylation phenotypes in RUNX1 and 

B4GALT1 loci.  

On chromosome 14, s1_g2 trait was associated with two independent variants, rs11624007 and 

rs10444775. This region harbours genes coding for heavy chains of immunoglobulins but also 
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TMEM121 gene. Previous GWAS by Klarić et al.71 also found an association with a variant in 

TMEM121 gene, while no evidence was found for association with the IGH locus. However, 

multivariate GWAS of IgG N-glycome by Shen et al.8 found the association with IGH locus. 

Previously, differences in glycosylation profiles of wild-type IgG and IgG proteins with single 

amino acid substitutions in heavy chains were observed with the assumption that interaction of 

glycan and protein might be reduced, thereby increasing the accessibility to glycosylation 

enzymes157. However, given the independent association with TMEM121, its potential role in 

IgG glycosylation cannot be excluded.  

 

After conditional analysis, the percentage of variance explained could be derived to avoid over 

or underestimation of the variant effect in the single-SNP analysis. The variance explained 

increased due to multiple loci having secondary associations which contributed to more 

variance explained in all traits except g1. The variance explained for monosialylation was 22% 

which is also the percentage reported by Klarić et al. for IGP29, the degree of monosialylation 

of fucosylated digalactosylated structures without bisecting GlcNAc. The limitation of this 

study in discovering loci associated with sialylation phenotypes is the lack of traits describing 

disialylation which is not measured by LC-MS and therefore is omitted from the analysis. 

Given the rank transformation of glycan traits before the genome-wide association test, the 

variance explained must be interpreted accordingly.   

 

Using positional, eQTL and 3D chromatin mapping, 336 genes in total were mapped across 42 

genomic regions, making it difficult to discuss the possible roles of those genes in the process 

of IgG glycosylation. Therefore, multiple gene prioritization approaches were applied to 

narrow down the list of the candidate genes, such as identifying 1) genes coding for proteins 

that are functionally affected by the genetic variants 2) pleiotropy with gene expression in the 

whole blood 3) pleiotropy with gene expression in immune cells, 4) genes in gene analysis 

based on SNP-wise model (MAGMA) and ultimately, 5) positionally mapped genes. More than 

90% of the candidate variants are located in the noncoding regions of the genome, intronic and 

intergenic regions, and the same is observed in the majority of the GWAS studies of complex 

diseases and traits65,158,159. A low percentage (<5%) of the variants is found in the gene coding 

regions where they could have a direct impact on the encoded protein by altering its structure. 

The human genome contains protein-altering mutations but only a small number are considered 

deleterious as they can introduce premature stop codons or disrupt normal splicing of 
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mRNA160. A missense variant changes the encoded amino acid and consequently affects 

protein stability161, protein-protein interactions162, activity163 and protein folding164, hence 

making it likely that the gene which is affected by the candidate SNPs resulting in missense 

mutation, is the causal gene. Given the extensive LD structure in the IgG N-glycome-associated 

loci, the number of considered candidate SNPs is relatively high. Several loci contain more 

than one gene that could be affected by candidate variants, making it impossible to prioritize 

one of the genes. 

Gene expression measurements with RNA sequencing165 or microarrays166 have been utilized 

in the GWAS setting as outcome traits. Such studies are called expression quantitative trait 

locus or eQTL analysis. We used colocalization analysis as one of the ways to prioritize genes 

from the genomic regions because the evidence for shared association pattern between gene 

expression and IgG glycosylation could indicate the same underlying mechanism for pathway 

control and thus prioritize the given gene over other genes in the region. Colocalization also 

contributes to the understanding of the biological basis for association with IgG N-

glycosylation as altered gene expression might be the intermediate phenotype68. eQTLgen146 

dataset represents the biggest resource for eQTL data from human whole blood samples. A 

total of 31,684 samples was used in the generation of eQTL associations, thereby increasing 

the power to detect them. The eQTLgen dataset offers high SNP coverage across the whole 

genome which makes it suitable for use in colocalization analysis by coloc which requires up 

to a few hundreds of SNPs as input. The individuals included in eQTL analysis in eQTLgen 

are of European descent making it appropriate for our analysis as the method used assumes that 

samples in two GWAS analyses where we are undertaking the colocalization test are drawn 

from the same population, meaning that the allele frequencies and pattern of linkage 

disequilibrium (LD) match in both populations. 

The advantage of the approximate Bayes factor method used in colocalization analysis is that 

it enables quick computation of posterior probabilities by use of p-values and MAFs only, or 

estimated allelic effect and standard error. However, there is a requirement for the availability 

of the same SNPs in both primary and secondary GWAS, but many studies are conducted using 

different imputation panels or the quality of imputation is low, resulting in a low overlap 

between SNPs and detection of pleiotropy becomes less powered. So the posterior probabilities 

should be interpreted with caution as a low posterior probability for shared variant (PP4) might 
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not indicate the lack of pleiotropy when PP3 is low, but rather the limited power when PP0, 

PP1, and PP2 are high. 

Our knowledge of the regulation of IgG N-glycosylation remains limited and so does the 

involvement of various cell types and gene regulation in the specific cells and its effect on the 

N-glycosylation process. Also, there can be several eQTLs showing the matching pattern with 

a trait of interest, thus colocalization analysis generates high PP4 for multiple genes, but only 

one of the genes is biologically relevant, thereby illustrating the principle of PP4 being the 

measure of correlation and not causality. Additionally, in the case of multiple independent 

associations in the region of interest, the drawback of the algorithm is that it considers the 

strongest of the associations. But it is important to note that high PP4 indicates “at least one 

causal variant” and that low PP4 means that the two phenotypes do not share all of the causal 

variants and not that the two phenotypes cannot share one.  

Immunoglobulin G is produced by mature B cells or plasma cells where the addition of N-

glycan to IgG occurs as it travels through the ER and GA where glycosyltransferases and 

glycosidases act to form the N-glycan. It is reasonable to hypothesize that the levels of N-

glycans that contain a certain sugar unit are mainly controlled by the levels of 

glycosyltransferase in a plasma cell. But also, IgG glycome is controlled by the T cell and B 

cell activation and IgG production167,168. Multiple molecules which are involved in immune 

activation can stimulate the B cells to produce different glycoforms of IgG169 in addition to 

environmental signals which can modulate gene expression via epigenetic mechanisms in B 

cells, as well as other relevant cell lines92,170. Therefore, restricting the analysis to the gene 

regulation in B cells where IgG N-glycosylation occurs is not optimal as the external signals 

by other cells of the immune system could be driving the changes in glycosylation pattern. 

Moreover, in the case of sialylation phenotype, there is a study suggesting that IgG sialylation 

occurs in the circulation and not within B-cells171. The available single-cell eQTL datasets are 

not well powered and the overlap between SNPs in these studies with SNPs in the IgG N-

glycome GWAS is low to allow for reliable and well-powered colocalization test and therefore 

we concentrate our colocalization efforts on to whole blood eQTL dataset, eQTLgen. However, 

we do look into the overlap of immune cell type-specific eQTLs and IgG N-glycome associated 

variants via the FUMA platform but we do not perform colocalization analysis. 
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Among four glycosyltransferases genes, only variants in MGAT3 locus show the same pattern 

of association with IgG glycosylation and gene expression in whole blood. MGAT3 gene 

encodes the N-acetylglucosaminyltransferase III enzyme which catalyses the addition of 

GlcNAc to the core β-mannose unit of N-glycans72. Since the association pattern in the MGAT3 

locus matches the pattern of eQTL associations for this gene, it implies that the variants regulate 

the expression of MGAT3 gene and subsequently influence the levels of structures with 

bisecting GlcNAc in the IgG N-glycome.  

Since glycosyltransferases are functioning in the constricted area in the cell, Golgi apparatus, 

the levels of enzymes are low so in turn, their gene expression might be hard to detect in the 

expression level measurements in whole blood samples. For ST6GAL1, B4GALT1 and FUT8, 

the colocalization analysis showed high posterior probability for support for hypothesis 3 

(PP3=1; both traits have associations in the region, but different causal variants), however, 

since conditional analysis has shown evidence for multiple independent associations in these 

loci, this might disrupt the colocalization test as it considers only the strongest association. 

B4GALT1 gene is located on chromosome 9 and it codes for beta-1,4-galactosyltransferase 1, 

an enzyme catalysing the transfer of galactose unit to the GlcNAc residue in the non-reducing 

end of N-linked glycans155. In the study by Klarić et al., it was shown that the variants in 

B4GALT1 were pleiotropic with the expression of this gene in B cells, thus indicating the 

regulation of the B4GALT1 expression as the mechanisms for the control of IgG 

galactosylation10. However, the pleiotropy was implicated for expression of B4GALT1 in CD4 

and CD19 cells and IGP8 glycan, while there was a lack of evidence for pleiotropy for other 

glycans due to multiple associations in the region, further confirming the restrictions of the 

colocalization tests in case of multiple independent associations in the locus.  

It is important to note that in colocalization analysis, we take into account genes from the 

defined region around the top SNP, thus making it possible that we fail to see the effect of the 

variant on a gene that is positioned further away on the chromosome.  

Given the prior knowledge and direct involvement of glycosyltransferases enzymes in the IgG 

glycosylation process, we prioritize these genes in their corresponding loci even if the 

additional genes are mapped in the same region. Locus on chromosome 3 (chr3:186607935-

186819448) harbours ST6GAL1, a gene encoding β-galactoside-α-2,6-sialyltransferase 1, an 

enzyme responsible for the addition of α2,6-linked sialic acid units to terminal galactose 

structures in N-linked glycans72. The associated region on chromosome 14 contains FUT8 
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gene, gene encoding fucosyltransferase 8, an enzyme involved in the transfer of fucose residue 

to the inner GlcNAc residue of N-linked glycans, referred to as core fucose72.  

 

The chromatin interaction mapping resulted in the highest number of mapped genes; however, 

the chromatin interaction mapping was not primarily considered in the prioritization of the 

genes. We restrict the chromatin interaction mapping to GM12878, a B cell-derived cell line, 

but also must consider that chromatin interactions are time and cell population dependent172, 

thus representing a limitation in this approach. The gene prioritization by chromatin interaction 

data was applied for chr8:103542538-103550211 locus where UBR5, RRM2B and ODF1 genes 

were not positionally mapped in the defined region but shown to interact with the variants in 

the region with the 3D conformation of the chromatin in GM12878 cells. In ten of the 

remaining 38 loci, we prioritize the same genes as Klarić et al., while in nine overlapping loci 

we widen the list of the candidate genes and in one locus we change the prioritized gene. 

 

Chromosome 1 harbours 3 genomic regions associated with IgG N-glycome, one of which 

contains previously identified71,74,76 and prioritized runt-related transcription factor 3 

(RUNX3) gene which encodes a transcription factor with a role in the maturation of B cells173 

and differentiation of T cells174,175. Wahl et al.74 suggested that RUNX3 could affect the 

glycosylation of IgG through mechanisms of T cell differentiation which was shown to 

stimulate B cells and thus influence IgG1 glycosylation. In addition, RUNX3 is known to 

interact with RUNX1176, a runt-related transcription factor 1,  encoded by a gene located on 

IgG glycome-associated locus on chromosome 21. RUNX1 has a role in tumorigenesis, 

embryonic development, haematopoiesis and inflammatory response177,178. Given the strong 

association of these two loci in the functional network, we can speculate that the mutual action 

of these two genes is involved in the regulation of gene expression in IgG glycosylation. 

 

Another locus on chromosome 1 is associated with fucosylation phenotype and we prioritize 

two genes, MYC binding protein (MYCBP) and Ras-related GTP binding C (RRAGC). The 

association pattern in this locus matches the eQTL pattern for MYCBP gene which has a role 

in transcriptional activation by MYC and its aberrant expression was observed in multiple 

cancers179,180. RRAGC gene encodes a RagC GTPase, an activator of mTORC1 upon sensing 

of cellular nutrients, which is shown to be mutated in follicular lymphoma where it enhances 

B cell activation and accelerates lymphomagenesis181. As such, none of the two genes were 
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associated with N-glycosylation processes, however, we should consider the role of RRAGC in 

B cell activation and proliferation which might have an indirect impact on IgG glycoprofile.   

Locus on chromosome 4 associated with galactosylation and monosialylation phenotypes, 

harbours two genes, NFKB1 and MANBA. NFKB1 gene encodes a subunit of the nuclear factor 

of kappa light polypeptide gene enhancer in B-cells (NF-κB) TF family, known for its critical 

role in cell survival and inflammation182,183. The Nfkb1−/− mice display increased levels of 

inflammation and DNA damage which could lead to cancer, as well as rapid ageing 

phenotype184–186. On the other hand, MANBA encodes beta mannosidase which is an 

exoglycosidase enzyme cleaving beta-mannose residues from the non-reducing end of N-

linked glycans187. How this function might be linked to IgG galactosylation and 

monosialylation phenotypes is still unknown, hence both NFKB1 and MANBA represent 

credible candidate genes in the region. 

In locus on chromosome 7, we prioritize both diacylglycerol lipase beta (DAGLB) and KDEL 

endoplasmic reticulum protein retention receptor 2 (KDELR2) genes, while Klarić et al. 

prioritize only DAGLB, a gene which encodes a serine hydrolase with a role in proinflammatory 

signalling in neuroinflammation188. KDELR2 gene codes for a member of the KDEL receptor 

family which has a function in recycling ER-resident proteins from the GA back to ER189, while 

also being essential for Golgi-to-plasma protein trafficking190. Both genes contain eQTLs in 

this associated region influencing their expression in both B and T cells and their functions 

indicate importance in immune response and protein transport, however, their functions have 

not been described in the context of glycosylation, which makes it hard to speculate on 

prioritization of one of the genes. 

Kinesin Family Member 11 (KIF11) and Hematopoietically Expressed Homeobox (HHEX) 

genes are found on chromosome 10 in a region associated with IgG fucosylation phenotype. 

KIF11 encodes a member of the kinesin protein family with a role in the formation of a bipolar 

spindle during mitosis191, but also protein secretions from the Golgi to the cell surface192. As 

such, the encoded protein could potentially play a role in the secretory pathway which upon 

addition of glycan chains to IgG in Golgi. On the other hand, HHEX encodes a transcription 

factor involved in the regulation of memory B cell differentiation193 which differentiate and 

proliferate as antigen-secreting cells upon antigen encounter194. Although distinct, the 

functions of both proteins might be relevant in the process of IgG glycosylation. 
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A locus harboring TNF receptor superfamily member 13B (TNFRSF13B) gene was newly 

identified in the recent multivariate GWAS of IgG N-glycome76 and in the current work, we 

find the association with monogalactosylation phenotype. TNFRSF13B encodes a 

transmembrane activator calcium modulator and cyclophilin ligand interactor (TACI) protein, 

a lymphocyte-specific member of the tumor necrosis factor (TNF) receptor superfamily, which 

is involved in the signalling pathway leading to B cell differentiation and antibody 

production195,196. The described roles might indicate its importance in the production and 

secretion of antibodies with specific glycoprofile. 

It is important to mention one locus on chromosome 20 which we replicate from the previous 

study71 but we prioritize a different gene. Initially, MGME1 gene was prioritized based on its 

proximity to the associated variants, however, we prioritize RRBP1, ribosome binding protein 

1, but solely based on the presence of B cell eQTLs in the bisection-associated locus even 

though the gene is not physically positioned in the defined region. RRBP1 encodes a ribosome-

binding protein found on the ER membrane and as such is implicated in the transport and 

secretion of intracellular proteins in the mammalian cells197.  

A newly discovered locus on chromosome 20 harbours nuclear factor of activated T 

cells (NFATC2) gene, one of the calcium-regulated members of the NFAT family of TFs with 

a role in gene expression regulation in the immune response to antigen198. Together with other 

members of NFAT family, NFATC2 plays a crucial role in T cell activation, differentiation and 

proliferation, and cytokine balance maintanance199 but also B cell homeostasis, as the 

NFATC2-deficient cells were shown to exhibit hyperactivation and increased immunoglobulin 

secretion. The described function indicates a potential role of NFATC2 in IgG glycosylation 

via control of B cell activation and IgG secretion.   

We omit the MHC region (chr6:30798697-32879471) from the prioritization efforts due to the 

complexity of the region and extensive LD structure200 which makes it challenging to pinpoint 

single or only a few genes which might be causal.    

Besides the expected enrichment in glycosylation-related gene sets, results of the gene-set 

enrichment test indicate a potential role of transport of substrates and enzymes and their 

availability for the N-glycosylation process to occur. Additionally, activation of B and T cells 

also points to mechanisms of glycosylation control via control of cell proliferation and 

development rather than solely control of expression of glycosyltransferases genes which are 

directly involved in the process. The question remains whether the specific changes in IgG N-
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glycome are due to the proliferation of specific B cell clones which contain IgG with certain 

glycosylation as the gene-sets we observe do point to the importance of T cells and potential 

interplay with B cells to define IgG glycoprofile.  

The idea of functional network construction was based on the work by Klarić et al.10 where 

SNP glycome-wide effects were used to detect correlations between effects of different 

genomic regions on glycans and their potential involvement in the same biological pathway. 

This approach allows for hypothesis generation as it can indicate the effect of one gene on 

another, such as transcription factors influencing the expression of a gene.  

In the current work, we replicate edges between RUNX1 and RUNX3 genes which were 

previously associated with bisection trait; however, we observe positive associations with all 

trait sets except fucosylation. Klarić et al.10 hypothesize that RUNX1 and RUNX3 together 

with the chromatin remodelling protein SMARCB1, regulate the expression of MGAT3, 

resulting in an increased incidence of IGP40 (bisecting GlcNAc in all fucosylated disialylated 

structures of IgG). RUNX1 and RUNX3 were shown to be expressed in B cells, where RUNX3 

binds near the transcription start site to inhibit RUNX1 transcription, thereby decreasing the 

proliferation ability of the lymphoblastoid cells201. Furthermore, RUNX proteins regulate 

multiple B-cell-specific genes throughput various developmental stages of B cells202. In 

addition, components of the network cluster such as NFKB1, TBX21 and RUNX genes were 

previously shown to be involved in T cell development186,203,204, indicating the potential role 

of B and T cell interaction or clonal selection on immunoglobulin glycosylation patterns. 

In the subnetwork containing ST6GAL1 gene, we observe correlations between ST6GAL1 and 

NXPE1/NXPE4 and between NXPE1/NXPE4 and MEF2B/MAU2 locus. This is the replication 

of the subnetwork generated by Klarić et al., but the difference lies in the prioritized gene in 

the locus on chromosome 19, where Klarić et al. prioritized RFXANK and we prioritize MEF2B 

and MAU2 genes. Given the fact that the functions of NXPE1/NXPE4 and MEF2B/MAU2 

genes were not described in the immune system context and the lack of literature evidence of 

their connection to ST6GAL1, further speculations are currently not possible. 

The variants in TXLNB and TCF3 loci exhibit glycome-wide effect correlation as well as 

variants in TXLNB and TMEM121/IGH loci. TXLNB encodes beta taxilin, a component of 

intracellular vesicle transport. TCF3 is a transcription factor associated with expression of 

genes during B lymphocyte development205,206, but also shown to bind enhancer in IGH locus 

encoding heavy chain portion of immunoglobulin in humans207, thus their mutual correlation 
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could be explained by the differences in immunoglobulin heavy chains which might affect 

glycosylation of IgG as we discussed earlier. 

B4GALT1, COG7/GGA2 and SLC38A10 clustered together previously71 but now we observe a 

correlation of COG7/GGA2 and SLC38A10 with the novel SPPL3 gene. SPPL3 is known to 

affect N-glycosylation by the release of active site-containing ectodomains of 

glycosyltransferases within the Golgi compartment, thereby reducing the levels of active 

enzymes including B4GALT1208. Further, COG complex has a function in the recycling of 

glycosyltransferases localized in Golgi apparatus such as B4GALT1 and ST6GAL1209,210. 

Recently, it was suggested that besides its role in amino acid transport, SLC38A10 has a 

signalling role in the Golgi membrane for sustaining of protein synthesis and modifications211. 

The observed SNP glycome-wide correlations between these loci implicate the importance of 

levels of active glycosyltransferases enzymes in Golgi apparatus for the creation of specific 

glycosylation patterns especially for galactosylation and subsequently sialylation of IgG.  

FUT8 and MGAT3 were not observed among the network nodes due to the lack of significant 

edges with other loci since most of the fucosylation and bisection-related genomic regions are 

trait-specific, hence resulting in lower correlation values of SNP effects across traits. The 

intermediate phenotypes for glycosylation patterns are needed to increase the connectivity of 

trait-specific loci to other loci just as shown in the network constructed by Klarić et al. 

StringPPI relies on existing knowledge about protein-protein interactions mainly relying on 

public resources to construct the patterns of interactions between proteins153. The main 

drawback of this approach is the overrepresentation of well-studied pathways and less evidence 

for understudied processes, including glycosylation. We deliberately omit the edge 

construction based on text mining as this is considered less supportive of the interaction than 

other approaches which include knowledge of interaction from the curated databases, 

experimental evidence, protein homology and co-expression of the two proteins. However, 

these are also biased towards more studied traits and therefore, we observe a cluster of 

glycosyltransferases with only one additional protein (MANBA) as further interactions have 

not been explored yet.  

We fail to replicate the majority of edges from the inference-based network mainly due to the 

lack of existing knowledge about glycosylation-specific protein interactions in StringPPI but 

also the lack of correlations among loci in the inference-based network where many of the loci 

are isolated and lack significant connections with other genes due to phenotype definition in 
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GWAS. However, both networks can be used for different purposes, such as setting hypotheses 

about transcriptional regulation or co-dependence of genes in the same subnetwork when 

interpreting the network based on SNP glycome-wide effects. On the other hand, the StringPPI 

network can give us an overview of the involvement of the genes in the same pathways or 

having similar molecular functions without necessarily exploiting their direct interaction.  

Along with the first genome-wide association study of IgG N-glycome7, it was shown that the 

discovered regions overlap with risk loci for numerous autoimmune and inflammatory 

conditions including SLE, RA, UC, CD, T1D, MS, celiac disease, Graves’ disease, nodular 

sclerosis and haematological cancers. But even long before that, the differences in IgG N-

glycome profile were observed in RA patients28 where they occur years before the disease 

manifests, with further studies212–214 implying that IgG glycans can reflect a predisposition or 

act as effectors in the disease pathogenesis.  

In an overview of existing associations with IgG N-glycome loci, we observe significant 

associations in 21 genomic loci with at least one trait or disease, among which novel loci were 

associated with immune-system related diseases and traits such as allergic disease, WBC count, 

T2D and PBC. However, we cannot make any inference about changes in IgG N-glycosylation 

and diseases sharing the same underlying genetic mechanism as the pattern of association and 

causal genes or variants can differ between phenotypes.  

Klarić et al.71 investigated regional association patterns to see whether the same causal variants 

rather than just genes are shared between IgG glycosylation and diseases. Given the increased 

number of novel genomic loci, we also applied the Approximate Bayesian method for 

colocalization test to investigate the sharing of the same causal variants between IgG N-

glycosylation and range of autoimmune and inflammatory diseases. We retrieve positive tests 

for colocalization for fifteen different diseases and traits across ten genomic regions and six 

glycan traits. In the region on chromosome 17 (chr17:37579383-38215117) which is a 

fucosylation-specific locus, we observe pleiotropy with UC, CD, IBD, PBC and RA, all of 

which were previously observed in Klarić et al. study. In the current study pleiotropic effects 

with asthma, allergy, HDL and SLE were not observed as all the tests for these traits have 

shown higher posterior probability for hypothesis 3 which states that both traits are associated 

with the genomic region, but the causal variant is not shared. The difference could lie in the 

glycan traits for which the pleiotropy was tested as the previous study observed significant 

associations with traits describing agalactosylated and monogalactosylated structures which 
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could potentially be associated with the different causal variants as opposed to differential 

levels of fucosylation. This locus contains at least 3 genes with a potential role in glycosylation: 

IKZF3, ORMDL3 and GSDMB, all of which are also indicated as candidate genes in higher 

risk for asthma215–217. 

Another locus on chromosome 17 (chr17:43463493-44865603) displays pleiotropic effect for 

IgG monosialylation and SLE, PBC, schizophrenia, breast cancer, as well as a trait describing 

the percentage of WBC. Unravelling the exact mechanism through which this locus affects IgG 

glycans and the mentioned complex diseases might be a laborious task as this region spans at 

least eight candidate genes.  

 

One of the loci on chromosome 5 which was initially discovered in the first GWAS of IgG N-

glycome7 but not replicated in GWAS by Klarić et al. was shown to be pleiotropic for 

monosialylation (s1_g2) and JIA and RA. Previously, a study of changes in IgG glycosylation 

in JIA cases and controls demonstrated that JIA cases exhibit lower levels of IgG 

galactosylation and sialylation218.  Furthermore, in rheumatoid arthritis, the levels of 

galactosylation and sialylation were lower in healthy cases and controls219, and these changes 

appear to be relatively stable and present years before the RA diagnosis213. The locus exhibits 

pleiotropy for the expression of interleukin 6 cytokine family signal transducer (IL6ST) and 

ankyrin repeat domain 55 (ANKRD55) in whole blood. ANKRD55 gene is located in a region 

on chromosome 5 associated with one of the monosialylation phenotypes, s1_g2. The variants 

in ANKRD55 gene were associated with a range of diseases including multiple sclerosis220, 

rheumatoid arthritis221, diabetes222,223, celiac disease224, Crohn’s disease225 and Alzheimer’s 

disease226. Except containing the ankyrin repeats which are important for protein-protein 

interactions, the exact function of the encoded protein is not yet clear. Ankyrin repeat proteins 

are known to be involved in the correct placement and orientation of membrane proteins to 

compartments in the ER and plasma membrane227. However, eQTL colocalization analysis has 

shown that the variants in this locus are associated with the expression of IL6ST thus it cannot 

be excluded as a candidate gene. IL6ST encodes a signalling receptor subunit which is shared 

by several cytokines such as interleukin 6 (IL6), ciliary neurotrophic factor (CNTF), leukaemia 

inhibitory factor (LIF) and oncostatin M (OSM) and variants in IL6ST locus were previously 

associated with risk for rheumatoid arthritis and multiple myeloma228. Lower levels of 

sialylation are constantly observed changes in autoimmune diseases including RA and JIA and 
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the colocalization with IgG glycosylation loci could bring new evidence and potential role of 

the genes in this locus to understand the underlying mechanism of these changes. 

The colocalization of schizophrenia and monosialylation signals was observed in locus 

harbouring SPPL3 gene. SPPL3 gene encodes an enzyme that sheds the activated domains from 

the glycosyltransferases to control the levels of active enzymes in GA and its role has been 

recognized in overall glycosylation208. The pleiotropy of the locus for schizophrenia and 

monosialylation can indicate the inflammatory context of the disease229 or just the common 

function of SPPL3 in both IgG glycosylation and post-translational modifications of the 

proteins in schizophrenia230 through the same underlying genetic mechanism.  

 

In OVOL1/AP5B1 locus we observe a potential pleiotropic effect on the risk for asthma, SLE 

and allergy. Pleiotropy for asthma was also previously shown in multivariate GWAS76 where 

OVOL1/AP5B1 locus was initially discovered. HHEX-KIF11 locus on chromosome 10 

colocalizes with risk loci for T2D, AOA, asthma and percentage of lymphocytes. The locus is 

fucosylation-specific, potentially indicating the importance of core fucosylation levels for the 

mentioned diseases. KIF11 gene encodes a transporter protein which is part of the complex 

required for transport of protein from Golgi complex to the cell surface192, while HHEX 

encodes a hematopoietic transcription factor important for lymphopoiesis and pancreatic 

development231. A study of IgG N-glycan patterns in T2D has shown that T2D is associated 

with decreased fucosylation in glycan structures without bisecting GlcNAc and increased 

fucosylation in glycan structures with bisecting GlcNAc, thus indicating a higher ADCC 

potential of IgG in T2D232. 

 

Locus on chromosome 17 (chr17:43463493-44865603) associated with monosialylation and 

total galactosylation was shown to be potentially pleiotropic for IgG glycosylation and breast 

cancer. Previous studies of IgG N-glycans across different cancers have shown that there is no 

unique pattern of change in IgG glycans in cancer patients, although, a substantial number of 

cancers display a decrease in the level of IgG galactosylation when compared to healthy 

controls, such as non-small cell lung cancer, gastric cancer, breast cancer, ovarian cancer, 

prostate cancer, lung cancer, colorectal cancer and multiple myeloma233. The decrease in 

galactosylation of IgG might reflect the host’s defensive immune response, but also potential 

activation of acute-phase response pathways in cancer progression or decreased binding of IgG 
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Fc portion to complement component subsequently affecting the depletion of complement-

dependent cytotoxicity and cancer cell escape4.  

 

The enrichment analysis of cell-type-specific regulatory regions indicated the enrichment 

across immune cell types in blood, such as B and T cells, monocytes, and NK cells. These 

findings are an indication of the functional relevance of discovered variants for the regulation 

of gene expression in cells relevant for the immune system. This also provides evidence for the 

notion that IgG glycosylation patterns are greatly defined by the change in expression of 

glycosyltransferases and other genes involved in this process and is not mainly dependent on 

changes in protein structures to diminish or lessen their function.  
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6. CONCLUSIONS  

 

This is the largest genome-wide association study of the human IgG N-glycome to date, 

involving a total of 13,705 samples in the discovery analysis and 7,775 in the replication 

analysis. The increase in the number of samples was enabled through the use of derived IgG 

N-glycan traits which were harmonized across UPLC and LC-MS-measured samples. The 

increase in sample size led to the discovery of 13 novel loci associated with IgG N-

glycosylation.  

Approximate conditional analysis for multiple independent associations resulted in multiple 

independently associated SNPs in the glycosyltransferases loci, FUT8, ST6GAL1, B4GALT1, 

just as in the previous work by Klarić et al. Additional locus on chromosome 14 also contained 

two associations in TMEM121 gene and IGH genes, pointing to different causal variants and 

genes which might independently affect monosialylation levels of IgG.  

We narrow down the mapped genes to a set of 83 candidate genes either through the pleiotropy 

with their expression in whole blood, variant association with gene expression in immune cells 

(especially B-cells), damaging effect of the variants on the protein structure, and in cases where 

we lack the mentioned evidence, the genes were suggested by gene-based analysis or positional 

mapping.  

The gene-set enrichment analysis has shown that besides the enrichment in the N-glycosylation 

pathway, there was a significant enrichment in B- and T-cell development pointing to the 

potential mechanisms of regulation via clone development and proliferation. Additionally, 

candidate genes were enriched in cellular transport gene-sets indicating the importance of 

substrate availability and transport across the cellular membrane, as well as intracellular 

transport in the regulation of IgG N-glycosylation.  

With functional network which was constructed based on the approach described by Klarić et 

al., we were able to form a hypothesis of how genes in the genomic loci could be regulating 

the process of IgG N-glycosylation. We found significant edges between TXLNB, TCF3 and 

TMEM121/IGH loci which might reflect the IGH gene expression regulation by TCF3 and, 

hence, the glycosylation regulation based on the difference in immunoglobulin heavy chain 

composition.  



92 

 

Pleiotropic effects of the variants for IgG N-glycosylation and a range of autoimmune and 

inflammatory diseases exist. This is indicative of previous assumptions that the IgG N-

glycosylation is either changing with the course of the disease and appears as the consequence 

or the changes in IgG N-glycans can be indicative of disease development in the future.  

The function of the prioritized genes in IgG N-glycome GWAS can be confirmed in the suitable 

model system which secretes IgG in high concentrations to allow for glycoprofiling, such as 

the Freestyle HEK293 cell line transfected with a vector coding for IgG light and heavy chains 

from the Zoldoš group at the University of Zagreb.  
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8. SUPPLEMENTARY MATERIAL 

8.1 Abbreviations 

ABF - approximate Bayes factor 

ADCC - antibody-dependent cell-mediated cytotoxicity  

AOA - adult-onset asthma 

Asn - Asparagine  

AUC - Area Under the Curve  

bp - base pair  

CADD - Combined Annotation Dependent Depletion 

ACN - acetonitrile 

CD - Crohn's disease  

CDG - congenital disorder of glycosylation 

COJO - conditional and joint analysis 

DHS - DNase I hypersensitive sites 

DICE - database od immune cell eQTLs 

EA - effect allele  

EAF - effect allele frequency  

EGCUT - Estonian's Genome Center of the University of Tartu  

ENCODE - Encylopedia of DNA elements  

EPIC - European Prospective Investigation into Cancer and Nutrition 

eQTL - expression quantitative trait loci  

ER - endoplasmic reticulum  

F - core fucose  
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Fab - fragment antigen-binding  

Fc - fragment crystallizable 

FDR - False Discovery Rate  

G - galactose  

GA - Golgi Apparatus  

GC - genomic control 

GlcNAc - N-acetylglucosamine  

GWAS - genome-wide association study 

HDL - high-density lipoprotein  

HILIC-SPE - hydrophilic interaction liquid chromatography solid phase extraction 

HRC - Haplotype Reference Consortium 

HWE - Hardy-Weinberg equilibrium 

IBD - inflammatory bowel disease  

IgG - Immunoglobulin G  

IVIG - Intravenous immunoglobulin  

JIA - juvenile idiopathic arthritis 

KORA - Kooperative Gesundheitsforschung in der Region Augsburg 

LD - linkage disequilibrium  

LDSC – linkage disequilibrium score regression 

LLS - Leiden Longevity Study   

MAC - minor allele count 

MAF - minor allele frequency 

MAGMA - Multi-marker Analysis of GenoMic Annotation 
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MHC - major histocompatibility complex  

MS - mass spectrometry  

N - bisecting N-acetylglucosamine  

NK - natural killer cells 

ORCADES - The Orkney Complex Disease study  

PBC - primary biliary cirrhosis 

PPI - protein-protein interaction  

Pro - Proline 

QC - quality control  

RA - rheumatoid arthritis  

RF - response factor 

SE - standard error  

SE - standard error 

SLE - systemic lupus erythematosus  

SNP - single nucleotide polymorphism  

T1DM - Type 1 diabetes mellitus  

T2D - type 2 diabetes 

TF - transcription factor  

Thr - Threonine  

UC - Ulcerative colitis  

UPLC - Ultra-performance liquid chromatography  

VEP - Variant Effect Predictor 

WBC - white blood cell 
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8.2 Supplementary tables 

Supplementary Table  1: IgG N-glycome composition measured by Ultra performance liquid chromatography. 

Table from Pučić et al5 
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Supplementary Table  2: Glycan names and description of the most abundant glycan structure in each peak.   

Glycan name Description 

GP1 FA1 glycan  

GP2 A2 glycan  

GP4 FA2 glycan  

GP5 M5 glycan 

GP6 FA2B glycan  

GP7 A2G1 glycan 

GP8 FA2[6]G1 glycan 

GP9 FA2[3]G1 glycan 

GP10 FA2[6]BG1 glycan  

GP11 FA2[3]BG1 glycan  

GP12 A2G2 glycan  

GP13 A2BG2 glycan 

GP14 FA2G2 glycan  

GP15 FA2BG2 glycan  

GP16 FA2G1S1 glycan 

GP17 A2G2S1 glycan 

GP18 FA2G2S1 glycan 

GP19 FA2BG2S1 glycan 

GP20 Structure not determined 

GP21 A2G2S2 glycan 

GP22 A2BG2S2 glycan 

GP23 FA2G2S2 glycan 

GP24 FA2BG2S2 glycan 

 

Supplementary Table  3: List of glycan structures quantified with LC-MS. 

  Glycan name Glycan trait Description 

IgG1 subclass glycans 

LC_IGP1 IgG1_G0F FA2 glycan 

LC_IGP2 IgG1_G1F FA2G1 glycan 

LC_IGP3 IgG1_G2F FA2G2 glycan 

LC_IGP4 IgG1_G0FN FA2B glycan 

LC_IGP5 IgG1_G1FN FA2BG1 glycan 

LC_IGP6 IgG1_G2FN FA2BG2 

LC_IGP7 IgG1_G1FS1 FA2G1S1 glycan  

LC_IGP8 IgG1_G2FS1 FA2G2S1 glycan 

LC_IGP9 IgG1_G1FNS1 FA2BG1S1 glycan   

LC_IGP10 IgG1_G2FNS1 FA2BG2S1 glycan   

LC_IGP11 IgG1_G0 A2 glycan   

LC_IGP12 IgG1_G1 A2G1 glycan   

LC_IGP13 IgG1_G2 A2G2 glycan   
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LC_IGP14 IgG1_G0N A2B glycan   

LC_IGP15 IgG1_G1N A2BG1 glycan   

LC_IGP16 IgG1_G2N A2BG2 glycan   

LC_IGP17 IgG1_G1S1 A2G1S1 glycan   

LC_IGP18 IgG1_G2S1 A2G2S1 glycan   

LC_IGP19 IgG1_G1NS1 A2BG1S1 glycan   

LC_IGP20 IgG1_G2NS1 A2BG2S1 glycan   

IgG2/3 subclass glycans 

LC_IGP87 IgG23_G0F FA2 glycan   

LC_IGP88 IgG23_G1F FA2G1 glycan   

LC_IGP89 IgG23_G2F FA2G2 glycan   

LC_IGP90 IgG23_G0FN FA2B glycan   

LC_IGP91 IgG23_G1FN FA2BG1 glycan   

LC_IGP92 IgG23_G2FN FA2BG2 glycan   

LC_IGP93 IgG23_G1FS1 FA2G1S1 glycan   

LC_IGP94 IgG23_G2FS1 FA2G2S1 glycan   

LC_IGP95 IgG23_G1FNS1 FA2BG1S1 glycan   

LC_IGP96 IgG23_G2FNS1 FA2GG2S1 glycan   

LC_IGP97 IgG23_G0 A2 glycan   

LC_IGP98 IgG23_G1 A2G1 glycan   

LC_IGP99 IgG23_G2 A2G2 glycan   

LC_IGP100 IgG23_G0N A2B glycan   

LC_IGP101 IgG23_G1N A2BG1 glycan   

LC_IGP102 IgG23_G2N A2BG2 glycan   

LC_IGP103 IgG23_G1S1 A2G1S1 glycan   

LC_IGP104 IgG23_G2S1 A2G2S1 glycan   

LC_IGP105 IgG23_G1NS1 A2BG1S1 glycan   

LC_IGP106 IgG23_G2NS1 A2BG2S1 glycan   

IgG4 subclass glycans 

LC_IGP173 IgG4_G0F FA2 glycan   

LC_IGP174 IgG4_G1F FA2G1 glycan   

LC_IGP175 IgG4_G2F FA2G2 glycan   

LC_IGP176 IgG4_G0FN FA2B glycan   

LC_IGP177 IgG4_G1FN FA2BG1 glycan   

LC_IGP178 IgG4_G2FN FA2BG2 glycan   

LC_IGP179 IgG4_G1FS1 FA2G1S1 glycan   

LC_IGP180 IgG4_G2FS1 FA2G2S1 glycan   

LC_IGP181 IgG4_G1FNS1 FA2BG1S1 glycan   

LC_IGP182 IgG4_G2FNS1 FA2BG2S1 glycan   
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Supplementary Table  4: Trait list and formulas used for calculation of derived glycan traits 

IgG N-glycan 

trait 
Description LCMS formula UPLC formula 

g0 

Percentage of 

agalactosylated 

structures in total IgG 

N-glycome 

(LC_IGP1+LC_IGP4+LC_IGP11+LC_IGP14+LC

_IGP87+LC_IGP90+LC_IGP97+LC_IGP100+ 

LC_IGP173+LC_IGP176)/SUM(ALL)*100 

SUM(GP1:GP6)/SUM(G

P1:GP24)*100 

g1 

Percentage of 

monogalactosylated 

structures in total IgG 

N-glycome 

(LC_IGP2+LC_IGP5+LC_IGP7+LC_IGP9+LC_I

GP12 + LC_IGP15 + LC_IGP17 + 

LC_IGP19+LC_IGP88 + LC_IGP91 + 

LC_IGP93+LC_IGP95 + LC_IGP98+ 

LC_IGP101+LC_IGP103+LC_IGP105+LC_IGP17

4+LC_IGP177+LC_IGP179+LC_IGP181)/SUM(A

LL)*100 

(GP7+GP8+GP9+GP10+

GP11+GP16)/SUM(GP1

:GP24)*100 

g2 

Percentage of 

digalactosylated 

structures in total IgG 

N-glycome 

(LC_IGP3+LC_IGP6+LC_IGP8+LC_IGP10+LC_I

GP13+LC_IGP16+LC_IGP18+LC_IGP20+LC_IG

P89+LC_IGP92+LC_IGP94+LC_IGP99+LC_IGP1

02+LC_IGP104+LC_IGP106+LC_IGP175+LC_IG

P178+LC_IGP180+LC_IGP182)/SUM(ALL)*100 

(GP12+GP13+GP14+GP

15+GP17+GP18+GP19+

GP21+GP22+GP23+GP

24)/SUM(GP1:GP24)*10

0 

gal_total 

Percentage of mono- 

and digalactosylated 

structures in total IgG 

N-glycome 

(LC_IGP2+LC_IGP3+LC_IGP5:LC_IGP10+LC_I

GP12+LC_IGP13+LC_IGP15:LC_IGP20)+SUM(L

C_IGP88+LC_IGP89+LC_IGP91:LC_IGP96+LC_

IGP98+LC_IGP99+LC_IGP101+LC_IGP106)+SU

M(LC_IGP174+LC_IGP175+LC_IGP177:LC_IGP

182)/SUM(ALL)*100 

(SUM(GP7:GP19)+ 

SUM(GP21:24))/SUM(G

P1:GP24)*100 

s1 

Percentage of 

monosialylated 

structures in total IgG 

N-glycome 

(SUM(LC_IGP7:LC_IGP10) + 

SUM(LC_IGP17:LC_IGP20)+SUM(LC_IGP93:L

C_IGP96)+SUM(LC_IGP103:LC_IGP106)+SUM(

LC_IGP179:LC_IGP182))/SUM(ALL)*100 

SUM(GP16:GP19)/SUM

(GP1:GP24)*100 

s1_no_bis 

Percentage of 

monosialylated 

structures without 

bisecting GlcNAc in 

total IgG N-glycome 

(LC_IGP7+LC_IGP8+LC_IGP17+LC_IGP18+LC

_IGP93+LC_IGP94+LC_IGP103+LC_IGP104+LC

_IGP179+LC_IGP180)/SUM(ALL)*100 

SUM(GP16:GP18)/SUM

(GP1:GP24)*100 

s1_g1 

Ratio of 

monosialylated and 

monogalactosylated 

structures in IgG N-

glycans 

(SUM(LC_IGP7:LC_IGP10) + 

SUM(LC_IGP17:LC_IGP20)+SUM(LC_IGP93:L

C_IGP96)+SUM(LC_IGP103:LC_IGP106)+SUM(

LC_IGP179:LC_IGP182))/ 

(LC_IGP2+LC_IGP5+LC_IGP7+LC_IGP9+LC_I

GP12 + LC_IGP15 + LC_IGP17 + 

LC_IGP19+LC_IGP88 + LC_IGP91 + 

LC_IGP93+LC_IGP95 + LC_IGP98+ 

LC_IGP101+LC_IGP103+LC_IGP105+LC_IGP17

4+LC_IGP177+LC_IGP179+LC_IGP181)*100 

(SUM(GP16:GP19)/(GP

7+GP8+GP9+GP10+GP

11+GP16)*100 

s1_g2 

Ratio  of 

monosialylated and 

digalactosylated 

structures in IgG N-

glycans 

(SUM(LC_IGP7:LC_IGP10) + 

SUM(LC_IGP17:LC_IGP20)+SUM(LC_IGP93:L

C_IGP96)+SUM(LC_IGP103:LC_IGP106)+SUM(

LC_IGP179:LC_IGP182))/(LC_IGP3+LC_IGP6+L

C_IGP8+LC_IGP10+LC_IGP13+LC_IGP16+LC_I

GP18+LC_IGP20+LC_IGP89+LC_IGP92+LC_IG

P94+LC_IGP99+LC_IGP102+LC_IGP104+LC_IG

P106+LC_IGP175+LC_IGP178+LC_IGP180+LC_

IGP182) *100 

SUM(GP16:GP19)/(GP1

2+GP13+GP14+GP15+

GP17+GP18+GP19+GP

21+GP22+GP23+GP24)

*100 
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s1_gal_total 

Ratio of 

monosialylated 

structures and 

galactosylated IgG N-

glycans 

(SUM(LC_IGP7:LC_IGP10) + 

SUM(LC_IGP17:LC_IGP20)+SUM(LC_IGP93:L

C_IGP96)+SUM(LC_IGP103:LC_IGP106)+SUM(

LC_IGP179:LC_IGP182))/(LC_IGP2+LC_IGP3+L

C_IGP5:LC_IGP10+LC_IGP12+LC_IGP13+LC_I

GP15:LC_IGP20)+SUM(LC_IGP88+LC_IGP89+L

C_IGP91:LC_IGP96+LC_IGP98+LC_IGP99+LC_

IGP101+LC_IGP106)+SUM(LC_IGP174+LC_IGP

175+LC_IGP177:LC_IGP182)*100 

SUM(GP16:GP19)/(SU

M(GP7:GP19)+ 

SUM(GP21:GP24))*100 

bisecting 

Percentage of 

structures with 

bisecting GlcNAc in 

IgG N-glycome 

(LC_IGP4+LC_IGP5+LC_IGP6+LC_IGP9+LC_I

GP10+LC_IGP14+LC_IGP15+LC_IGP16+LC_IG

P19+LC_IGP20+LC_IGP90+LC_IGP91+LC_IGP9

2+LC_IGP95+LC_IGP96+LC_IGP100+LC_IGP10

1+LC_IGP102+LC_IGP105+LC_IGP106+LC_IGP

176+LC_IGP177+LC_IGP178+LC_IGP181+LC_I

GP182)/SUM(ALL)*100 

(GP3+GP6+GP10+GP11

+GP13+GP15+GP19+G

P22+GP24)/SUM(GP1:

GP24)*100 

fuc 

Percentage of 

fucosylated structures 

in total IgG N-glycome 

(SUM(LC_IGP1:LC_IGP10)+SUM(LC_IGP87:LC

_IGP96)+SUM(LC_IGP173:LC_IGP182))/SUM(A

LL)*100 

(GP1+GP4+GP6+GP8+

GP9+GP10+GP11+GP1

4+GP15+GP16+GP18+

GP19+GP23+GP24)/SU

M(GP1:GP24)*100 

 

Supplementary Table  5: Descriptive statistics for derived glycans traits; median (minimum value-maximum 

value) 
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96.01 

(85.11-

98.17) 

95.57 

(81.89-

97.74) 

94.63 

(85.72-

97) 

95.25 

(82.95-

97.77) 

95.81 

(90.11-

98.05) 

96.58 

(84.13-

98.33) 

96.06 

(90.23-

98.88) 

95.04 

(81.57-

98.27) 

95.06 

(82.17-

98.3) 

95.24 

(86.26-

98.41) 

93.39 

(80.91-

97.79) 

95.53 

(85.64-

98.07) 

g
0
 

 

27.99 

(9.36-

60.9) 

23.74 

(8.73-

60.23) 

26.4 

(8.73-

53.9) 

24.63 

(7.14-

61.22) 

30.05 

(9.58-

60.8) 

27.26 

(9.55-

59.82) 

36.47 

(11.27-

71.72) 

35.21 

(13.03-

60.88) 

35 

(17.31-

58.18) 

32.9 

(16.4-

60.2) 

41.83 

(19.22-

65.82) 

35.87 

(15.32-

65.72) 

g
1
 

 

38.19 

(25.73-

45.72) 

38.78 

(25.98-

51.96) 

40.09 

(28.1-

49.61) 

38.9 

(27.11-

48.21) 

37.54 

(25.24-

47.89) 

38.97 

(25.71-

46.22) 

37.32 

(19.79-

46.12) 

40.02 

(29.4-

49.4) 

40.56 

(29.06-

46.44) 

41.25 

(29.18-

46.15) 

40.5 

(24.27-

47.56) 

39.95 

(23.09-

47.43) 

g
2
 

 

32.88 

(13.22-

58.1) 

36.17 

(13.58-

58.51) 

32.25 

(14.36-

57.26) 

34.91 

(7.29-

63.08) 

31.18 

(13.65-

56.42) 

32.53 

(14.28-

59.39) 

25.85 

(8.31-

46.62) 

23.97 

(8.7-

51.73) 

23.75 

(10.33-

45.54) 

25.22 

(10.5-

45.09) 

17.35 

(7.3-

38.93) 

23.78 

(8.86-

48.59) 

g
a

l_
to

ta
l 

 

71.78 

(38.96-

90.37) 

75.9 

(39.56-

90.83) 

73.08 

(45.81-

90.66) 

75 

(38.7-

91.7) 

69.71 

(38.98-

89.84) 

72.54 

(40.06-

90.07) 

63.24 

(28.09-

88.54) 

64.79 

(39.12-

86.97) 

65 

(41.82-

82.69) 

67.1 

(39.8-

83.6) 

58.17 

(34.18-

80.78) 

64.13 

(34.28-

84.68) 

s1
 

 

14.38 

(7.22-

27.36) 

17.2 

(7.72-

30.1) 

15.24 

(8.37-

26.98) 

15.88 

(2.89-

43.79) 

14.35 

(5.88-

29.47) 

14.9 

(6.09-

25.97) 

12.68 

(4.68-

22.2) 

17.24 

(7.4-

33.54) 

14.51 

(7.22-

27.13) 

14.9 

(7.63-

25.24) 

10.6 

(4.76-

22.21) 

17.24 

(6.66-

34.91) 
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s1
_

g
1
 

 

37.3 

(22.13-

89.12) 

43.64 

(23.5-

91.77) 

37.56 

(19.3-

80.77) 

40.2 

(9.2-

82.98) 

37.95 

(12.29-

73.68) 

37.75 

(14.28-

84.62) 

34.11 

(12.69-

70.67) 

42.89 

(21.84-

69.56) 

35.64 

(18.39-

73.01) 

35.98 

(20.36-

65.39) 

26.33 

(12.22-

52.73) 

43.28 

(23.01-

88.23) 

s1
_

g
2
 

 

44.02 

(33.13-

62.98) 

48.06 

(29.28-

68.44) 

47.9 

(24.14-

62.81) 

45.67 

(20.09-

74.17) 

46.23 

(29.55-

92.78) 

46.1 

(31.64-

65.18) 

49.14 

(29.73-

83.32) 

71.13 

(44.28-

94.78) 

61.48 

(46.32-

82.65) 

59.12 

(44.15-

78.99) 

61.58 

(32.06-

91.9) 

72.68 

(50.25-

94.45) 

s1
_

g
a

l_
to

t

a
l 

 

20.29 

(14.72-

32.63) 

22.93 

(14.32-

33.96) 

21.07 

(10.92-

30.06) 

21.4 

(7.46-

48.18) 

20.91 

(9.08-

39.48) 

20.82 

(9.84-

29.39) 

20.18 

(8.89-

30.25) 

26.73 

(16.22-

40.67) 

22.54 

(13.83-

32.8) 

22.27 

(14.6-

31.56) 

18.41 

(8.95-

29.2) 

27.12 

(16.69-

42.79) 

s1
_

n
o

_
b

is
  

12.41 

(5.87-

25.64) 

15.06 

(6.61-

28.3) 

13.32 

(7.02-

25.05) 

14.08 

(2.54-

39.14) 

12.56 

(5.62-

27.22) 

13.17 

(3.4-

24.28) 

10.92 

(4.53-

21.45) 

16.37 

(6.8-

32.21) 

13.5 

(6.61-

25.81) 

13.95 

(6.96-

24.14) 

9.15 

(3.48-

19.82) 

16.37 

(6.1-

33.45) 

b
is

e
c
ti

n
g

  

16.87 

(10.13-

30.66) 

16.47 

(8.65-

28.28) 

18.97 

(9.57-

27.59) 

16.65 

(8.6-

30.27) 

17.65 

(5.17-

44.15) 

15.24 

(8.23-

29.31) 

18.22 

(6.11-

29.89) 

17.78 

(10.16-

29.48) 

20.69 

(11.33-

32.77) 

19.73 

(11.09-

32.14) 

18.18 

(9.9-

31.72) 

17.65 

(10.51-

33.42) 

 

Supplementary Table  6: List of participating studies with names of PIs and analysts who performed GWAS  

Cohort Principal investigator Analyst 

TwinsUK Tim Spector Massimo Mangino 

EPIC Mathias Schulze Rafael Cuadrat 

CROATIA-Korcula Caroline Hayward, Veronique Vitart Azra Frkatović 

CROATIA-Split Caroline Hayward, Veronique Vitart Azra Frkatović 

CROATIA-Vis Caroline Hayward, Veronique Vitart Azra Frkatović 

VIKING Jim Wilson Azra Frkatović 

ORCADES Jim Wilson Azra Frkatović 

LLS Eline Slagboom Erik van der Akker 

KORA F4 Christian Gieger Sapna Sharma 

EGCUT Andres Metspalu Toomas Haller 

 

Supplementary Table  7: Summary of file-level QC in participating studies. SNPs In- number of SNPs prior to 

QC; SNPs out- number of SNPs after QC; Invalid SE- number of SNPs excluded due to invalid standard error 

value; Invalid BETA- number of SNPs excluded due to invalid effect value; Monomorph SNPs- number of SNPs 

excluded due to EAF=0 or EAF=1, MAC ≤ 6- number of SNPs excluded because minor allele count ≤ 6; Low 

Info- number of SNPs excluded due to low imputation quality; AF outliers- number of SNPs excluded due to 

outlying SNPs in comparison to the reference dataset; Λ GC- genomic control inflation factor 

Cohort SNPs In SNPs Out Invalid SE 
Invalid 

BETA 

Monomorp

h SNPs 

MAC ≤ 

6 

Low 

Info 

Allele 

mismatc

h 

AF 

outliers 

λ 

GC 

TwinsUK 

(batch1&2) 
34483137 9411938 17251726 161060 1986173 5592342 35703 20326 11 

1.0

0 

LLS 39117105 4835454 6465465 0 0 1726588 0 12441 539834 
1.0

1 
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TwinsUK 

(batch3&4) 
38446170 14255310 13355020 324888 10246305 0 183555 26697 8 

1.0

1 

EGCUT 10538731 7154563 7249 2985 0 2954049 417176 16570 79 
1.0

3 

CROATIA

-Korcula 1 
11615984 9420199 4464 659 0 2185707 4615 19199 174 

1.0

0 

CROATIA

-Korcula 2 
11603767 8881758 123791 11649 0 2571515 14812 18220 154 

1.0

0 

CROATIA

-Korcula 3 
11744080 9253093 100460 13712 0 2350131 26308 18911 411 

1.0

1 

ORCADES 12455327 10443725 51891 5211 17929 1934850 590 21016 90 
1.0

0 

CROATIA

-Split 
11347869 9233198 4757 401 0 2101184 882 20151 38 

1.0

0 

VIKING 13502001 9904718 194658 23634 44 3369300 9069 18845 129 
1.0

0 

CROATIA

-Vis 
12345343 9130580 44956 6218 0 3144107 19187 18299 19 

0.9

8 

EPIC 

(subset 1) 
39131578 7993934 0 0 0 2475531 34805 12353 26 

1.0

1 

EPIC 

(subset 2) 
39127678 10250017 0 0 0 3566700 82760 15349 66 

1.0

1 

EPIC 

(subset 3) 
39127678 8372849 0 0 0 2476641 79048 12774 4 

0.9

9 

EPIC 

(subset 4) 
39127678 7021984 0 0 0 2062457 42103 10953 2 

0.9

9 

KORA F4 20023742 9739164 0 0 0 3352462 240487 0 
105880

5 

1.0

0 
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Supplementary Table  8: Gene table with evidence for prioritization listed. No- order of genomic locus; Top SNP position- position of the SNP with the lowest p-value for the 

association in the defined region; PosMap- yes or no for positional mapping; eQTL mapping based on CEDAR and Fairfax datasets; Coloc PP4- posterior probability for shared 

causal variant between glycan trait and expression in whole blood eQTL dataset eQTLgen; VEP- score for functional consequences as obtained by SIFT and Polyphen 

algorithms; CADD score- score for deleteriousness by CADD; MAGMA- p-value obtained by genomewide gene-based association test; other- any other evidence taken into 

account when prioritizing genes. Prioritized genes are depicted in bold. 

no Top SNP 

position 

Gene Pos

Map 

eQTL mapping (FDR< 0.05)  Coloc 

 PP4 

 VEP (chr:pos:A1:A2 (aa change); 

SIFT score; Polyphen score) 

CADD score MAGMA 

(p-value)  

other 

1 1:25291697 RUNX3 yes     1:25291010:A:T (N/I) 1:25291010:A:T (25.2) 5.90E-14 previous _studies 

2 1:39302020 RRAGC yes         2.26E-09   

    MYCBP yes   0.994     4.22E-07   

    GJA9 yes             

    RHBDL2 yes             

3 1:233723112 KCNK1 yes             

4 2:26139430 ASXL2 yes             

    KIF3C yes   0.900         

5 2:101991907 RNF149 yes Fairfax_B_cells; Fairfax_monocytes; 

Fairfax_naive_monocytes;  

          

    CREG2 yes             

    RFX8 no         2.10E-07   

6 2:158469050 ACVR1C yes   0.928   2:158415564:A:G (15.29) 8.41E-11   

7 3:186727170 ST6GAL1 yes CEDAR_T_cells;Fairfax_B_cells; 

Fairfax_monocytes; 

Fairfax_naive_monocytes 

      5.45E-158   

8 4:103519487 NFKB1 yes CEDAR_neutrophils; 

Fairfax_monocytes 

0.930 4:103423326:T:G (splice donor) 4:103422504:C:G (19.81) 1.43E-13   

    MANBA yes CEDAR_B_cells; CEDAR_monocytes; 

CEDAR_T_cells; Fairfax_monocytes 

      2.31E-07   

    CISD2 no Fairfax_B_cells           

9 5:55438851 ANKRD55 yes CEDAR_T_cells 0.975         

    IL6ST no   0.957         

10 5:95240996 ELL2 yes   0.932 5:95236459:T:C (A/T) 

(SIFT=0.66; Polyphen=0.017) 

5:95245384:C:T (18.39) 3.20E-12   

11 6:22053674 CASC15 yes             

12 6:31351764 HLA 

region 

              

13 6:74230859 MB21D1 yes Fairfax_naive_monocytes           

    MTO1 yes CEDAR_monocytes;CEDAR_T_cells; 

Fairfax_monocytes; 

Fairfax_naive_monocytes 

0.960     5.68E-09   
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    EEF1A1 yes CEDAR_B_cells;Fairfax_B_cells 

CEDAR_monocytes;CEDAR_T_cells; 

Fairfax_monocytes; 

Fairfax_naive_monocytes 

0.966   6:74230859:C:T (15.74) 1.18E-10   

14 6:139629524 TXLNB yes DICE_B_cell_naive       2.65E-08   

15 6:143169723 HIVEP2 yes       6:143193344:C:T (19.67) 1.30E-19   

16 7:6531268 DAGLB yes CEDAR_T_cells; Fairfax_B_cells       1.67E-07   

    KDELR2 yes CEDAR_B_cells;CEDAR_neutrophils; 

CEDAR_monocytes;CEDAR_T_cells; 

Fairfax_B_cells;Fairfax_monocytes; 

Fairfax_naive_monocytes 

0.970     1.38E-11   

    FLJ20306 yes         5.68E-12   

    GRID2IP yes         7.61E-08   

17 7:50352695 IKZF1 yes        7:50333960:C:T (21.1) 2.43E-27   

18 7:150942349 ABCF2 yes         4.59E-13   

    CHPF2 yes         8.03E-11   

    SMARCD

3 

yes         1.86E-16   

19 8:103545983 KB-

1980E6.3 

yes         6.35E-12   

    UBR5 no           3D chromatin 

mapping 

    RRM2B no           3D chromatin 

mapping 

    ODF1 no           3D chromatin 

mapping; previous 

studies 

20 9:33124872 B4GALT1 yes DICE_B_cell_naive     9:33164527:A:T (15.41) 1.36E-81   

    DNAJA1 yes       9:33039024:A:T (19.57)     

21 10:94446635 IDE yes             

    KIF11 yes   0.990         

    HHEX yes Fairfax_monocytes           

22 11:65555524 AP5B1 yes             

    BANF1 no Fairfax_naive           

    OVOL1 yes             

23 11:114381448 REXO2 yes Fairfax_B_cells       1.17E-09   

    NXPE1 yes     11:114401611:A:G (S/L) 
 

1.08E-13   

    NXPE4 yes     11:114442103:A:G (H/Y) 11:114442103:A:G (15.1) 1.10E-14   

24 12:121202664 SPPL3 yes       12:121202362:C:T (18.48) 3.06E-12   
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25 14:65775695 FUT8 yes CEDAR_monocytes; 

Fairfax_monocytes 

  14:66082793:A:C (Q/K); 

14:66136163:A:C (T/K) 

(SIFT=0.02; Polyphen=0.517) 

14:66082793:A:C (22.3) 8.33E-98   

    PTBP1 no   0.985         

    ESR2 yes       
 

    

26 14:106113281 TEX22 yes         2.14E-08   

    MTA1 yes         1.26E-09   

    CRIP2 yes             

    CRIP1 yes     14:105954705:T:C (A/V)       

    TMEM121 yes       14:105996049:T:TGCC 

(18.72) 

2.06E-14   

    IGHG2 no   0.983 14:106110914:T:G (P/T) 

(SIFT=0.06;Polyphen=0.577); 

14:106110137:T:C (V/M) 

(SIFT=0.08;Polyphen=0.329) 

      

    IGHA1 no     14:106174261:C:G (D/E) 

(Polyphen=0.508) 

      

    IGHG1 no     14:106208086:A:C (E/D); 

14:106208082:G:T (M/L); 

14:106209119:T:C (R/K) 

      

    IGHG3 no     14:106235767:T:C (S/N) 

(SIFT=1; Polyphen=0); 

14:106236128:T:A (F/Y); 

14:106236143:A:G (P/L) 

(SIFT=0.12; Polyphen=0.031) 

      

27 16:23412310 SCNN1B yes             

    COG7 yes   0.789   16:23422672:C:G (17.17) 1.74E-14   

    GGA2 yes CEDAR_T_cells;Fairfax_monocytes; 

DICE_B_cell_naive 

  16:23489711:C:G (P/A) 16:23521643:C:G (15.33) 4.36E-12   

    EARS2 yes     16:23536684:T:C (G/S)   3.93E-10   

    UBFD1 yes Fairfax_monocytes           

    NDUFAB1 yes         3.66E-08   

    PALB2 yes             

    DCTN5 no CEDAR_B_cells;Fairfax_B_cells; 

CEDAR_neutrophils;CEDAR_T_cells; 

Fairfax_monocytes; 

Fairfax_naive_monocytes 

0.845         

28 17:16842991 TNFRSF1

3B 

yes     17:16842991:A:G(P/L)(SIFT=0.2

3;PolyPhen=0.476) 

  1.30E-12   

29 17:38072727 GSDMB yes CEDAR_B_cells; Fairfax_B_cells   17:38062217:T:C(G/R)(SIFT=0;

PolyPhen=0.999);17:38062196:A

  8.09E-26 previous _studies 
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:G (P/S); 17:38064469:T:C (splice 

variant) 

    ORMDL3 yes CEDAR_B_cells; CEDAR_T_cells 0.787   17:38082807:C:T (20.7) 6.10E-18 previous _studies 

    IKZF3 yes CEDAR_T_cells; Fairfax_B_cells     17:37922259:A:G (19.78)   previous _studies 

    ZPBP2 yes Fairfax_B_cells   17:38028634:T:G 

(S/I)(SIFT=0.08;PolyPhen=0.26) 

17:38029120:C:G (18.2) 2.84E-24 previous _studies 

    PGAP3 yes CEDAR_B_cells;CEDAR_T_cells; 

Fairfax_B_cells 

    17:37831297:C:CCCCA 

(17.97) 

9.46E-13   

    STARD3 yes Fairfax_monocytes   17:37814080:A:G (R/Q) 

(SIFT=0.11;PolyPhen=0.637) 

17:37814080:A:G (23.1)     

    LRRC3C yes             

    GSDMA yes CEDAR_T_cells   17:38121993:A:G (R/Q) 

(SIFT=0.14; Polyphen=0.01); 

17:38122686:A:G (E/K) 

(SIFT=0.64; Polyphen=0.062); 

17:38131187:A:C (T/N) 

(SIFT=0.1; Polyphen=0.637) 

17:38121993:A:G (21.9) 1.62E-17   

    MED24 yes       17:38179492:A:G (18.11)     

    PPP1R1B yes             

    CDK12 yes CEDAR_monocyte; CEDAR_T_cells           

    ERBB2 yes     17:37884037:C:G (A/P) 17:37884037:C:G (23.5) 3.62E-15   

30 17:44331214 ARHGAP2

7 

yes Fairfax_naive_monocytes   17:43507297:T:C (A/T) 

(SIFT=0.51; Polyphen=0.167 

17:43507649:A:G (18.95) 1.67E-13   

    PLEKHM1 yes Fairfax_monocytes       4.28E-14   

    CRHR1 yes     17:43902861:A:C (P/T) 

(SIFT=0.17;PolyPhen=0); 

17:43910507:T:C (A/V) 

(SIFT=0); 17:43912159:C:G 

(E/Q) (Polyphen=0.003) 

17:43902505:C:T (19.39) 7.46E-16   

    SPPL2C yes     17:43923654:C:G (R/P) 

(SIFT=0.01;PolyPhen=0.442); 

17:43923266:A:G (A/T) 

(SIFT=0.54; Polyphen=0.036) 

  4.03E-14   

    MAPT yes     17:44061278:T:C (R/W) 

(SIFT=0;PolyPhen=0.903); 

17:44055647:A:T(stop_codon_lo

st) */K 

17:44061278:C:T (26.8) 5.37E-15   

    STH yes     17:44076665:A:G (R/Q)   6.08E-17   

    KANSL1 yes Fairfax_monocytes   17:44248837:T:C (D/N); 

17:44117119:A:G (P/S) 

17:44249199:G:T (26.4) 1.51E-16   

    ARL17B yes Fairfax_B_cells       6.41E-17   
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    LRRC37A yes Fairfax_B_cells; CEDAR_neutrophils   17:44408004:C:A (S/R) 

(SIFT=0.04;PolyPhen=0.019) 

      

    LRRC37A2 yes DICE_B_cell_naive   17:44625866:C:A (S/R) 

(SIFT=0.04;PolyPhen=0.018) 

      

    ARL17A yes CEDAR_monocytes; Fairfax_B_cells           

    ARL17B no Fairfax_B_cells           

    NSF yes CEDAR_B_cells; CEDAR_monocytes; 

CEDAR_neutrophils; CEDAR_T_cells; 

Fairfax_monocytes; 

Fairfax_naive_monocytes 

    17:44793503:A:G (17.18) 1.66E-17   

    WNT3 yes Fairfax_B_cells     17:44856641:C:G (16.08) 8.33E-26   

31 17:45809822 KPNB1 yes             

    TBKBP1 yes Fairfax_B_cells;CEDAR_monocyte; 

CEDAR_neutrophil;CEDAR_T_cells; 

Fairfax_monocytes; 

Fairfax_naive_monocytes 

    17:45772447:A:G (18.46)     

    TBX21 yes       17:45809822:A:G (16.69) 1.87E-12   

    ITGB3 no         6.06E-09   

    ITGB3 no         6.06E-09   

32 17:56410041 BZRAP1 yes         2.90E-07   

    SUPT4H1 yes Fairfax_B_cells; 

Fairfax_naive_monocytes 

          

    MPO no Fairfax_monocytes; 

Fairfax_naive_monocytes 

          

    hsa-mir-

142 

no   0.999         

    RAD51C no CEDAR_monocyte;Fairfax_B_cells; 

Fairfax_monocytes; 

Fairfax_naive_monocytes 

          

33 17:79218714 AATK yes         3.52E-08   

    AZI1 yes       17:79170576:C:T (15.28) 5.81E-30   

    ENTHD2 yes CEDAR_neutrophil; 

Fairfax_monocytes; 

Fairfax_naive_monocytes 

      1.18E-29   

    C17orf89 yes         2.69E-21   

    SLC38A10 yes CEDAR_monocyte; 

CEDAR_neutrophils; 

Fairfax_monocytes; 

Fairfax_naive_monocytes 

  17:79220224:C:G (A/G) 

(SIFT=0.06;PolyPhen=0.825) 

  7.24E-27   

    TMEM105 yes             

    GPS1 no CEDAR_T_cells           
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34 19:1657741 MEX3D yes             

    MBD3 yes             

    UQCR11 yes             

    UQCR11 yes             

    TCF3 yes   0.962     1.42E-14   

35 19:19294091 MEF2B yes   0.973     6.98E-13   

    MEF2BNB yes         9.87E-13   

    RFXANK yes             

    MAU2 no Fairfax_B_cells; Fairfax_monocytes           

36 20:4115720 SMOX yes             

37 20:17831618 RRBP1 no Fairfax_B_cells           

38 20:50077482 NFATC2 yes       20:50064221:A:G (16.53) 6.59E-06   

39 20:61598731 DIDO1 yes             

    GID8 yes             

    SLC17A9 yes     20:61598731:C:T(T/M) 

(SIFT=0.01;PolyPhen=0.788) 

20:61598731:C:T (24.2)     

    BHLHE23 yes             

    TCFL5 no Fairfax_naive_monocytes; 

Fairfax_monocytes 

          

40 21:36564553 RUNX1 yes       21:36561598:G:T (20.7) 6.58E-26   

41 22:24179922 DERL3 yes Fairfax_B_cells   22:24179922:C:G (F/L) 

(SIFT=0.04;PolyPhen=0.246) 

22:24179922:C:G (24.9) 3.26E-14   

    RGL4 yes             

    ZNF70 yes             

    VPREB3 yes Fairfax_B_cells       5.36E-16   

    SLC2A11 yes             

    CHCHD10 yes Fairfax_naive_monocytes       1.11E-23   

    MMP11 yes             

    SMARCB1 yes CEDAR_monocytes;Fairfax_naive_mon

ocytes;Fairfax_monocytes 

      1.16E-15   

42 22:39845898 MGAT3 yes CEDAR_B_cells; Fairfax_B_cells 0.960     2.48E-89   

    SYNGR1 yes Fairfax_B_cells;Fairfax_monocytes; 

Fairfax_naive_monocytes; 

CEDAR_monocytes 

  22:39770597:A:G (A/T) 22:39777822:C:CCAA 

(16.86) 

2.05E-64   

    ATF4 yes CEDAR_T_cells; Fairfax_monocytes   22:39917515:A:C (Q/P) 

(SIFT=0.25;PolyPhen=0.001) 

22:39916626:T:TC (21.2)     

    RPL3 yes       22:39712981:A:G (22) 1.12E-12   



 

126 

 

Supplementary Table  9: List of traits and diseases used in colocalization analysis. Trait- tested trait or disease; 

#1 author- first author of the publication describing the GWAS of the trait or disease; Accession No- accession 

number in GWAS Catalog; N total- total number of subjects in the study; cases- number of case subjects in the 

study; controls- number of control subjects in the study; Download link- link for download of the GWAS summary 

statistics for the given trait or disease 

Trait #1 author Accession No N total Cases 
Contro

ls 
Download link 

Adult-onset 

asthma 

Ferreira MAR 

et al 
GCST007799 327253 26582 300671 

ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary

_statistics/FerreiraMAR_30929738_GCST0077

99 

Primary billiary 

cirrhosis 
Cordell HJ GCST003129 13239 2764 10475 

ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary

_statistics/CordellHJ_26394269_GCST003129/

harmonised/26394269-GCST003129-

EFO_1001486-Build37.f.tsv.gz 

Asthma Han Y GCST010042 303859 64538 239321 

http://ftp.ebi.ac.uk/pub/databases/gwas/summary

_statistics/GCST010001-

GCST011000/GCST010042/ 

Systemic Lupus 

Erythematosus 
Julia A GCST005831 16966 4943 8483 

ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary

_statistics/JuliaA_29848360_GCST005831 

Type I diabetes Forgetta V GCST010681 24840  9266  15574 
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary

_statistics/ForgettaV_32005708_GCST010681 

IgG level Scepanovic P GCST006357 1000 - - 

ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary

_statistics/ScepanovicP_30053915_GCST00635

7 

Schizophrenia Pardinas AF GCST006803 105318 40675  64643  
https://walters.psycm.cf.ac.uk/clozuk_pgc2.meta

.sumstats.txt.gz  

Rheumatoid 

arthritis 
Eyre S GCST005569 47580 13838 33742  

ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary

_statistics/EyreS_23143596_GCST005569 

Type II diabetes Mahajan A GCST007518 298957 48286 250671 

ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary

_statistics/MahajanA_29632382_GCST007518/

T2D_European.BMIadjusted.txt 

Allergic 

Disease 
Ferreira  GCST005038 360838 180129 180709 

ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary

_statistics/FerreiraMA_29083406_GCST005038 

Alzheimer's 

disease 
Kunkle NA 63926 21982 41944 https://www.niagads.org/datasets/ng00075 

Lymphocyte 

percentage of 

WBC 

Astle WJ GCST004632 171748 - - 
ftp://ftp.ebi.ac.uk/pub/databases/gwas/summary

_statistics/AstleWJ_27863252_GCST004632 

Total 

cholesterol 
Willer CJ GCST002221 94595 - - 

http://ftp.ebi.ac.uk/pub/databases/gwas/summary

_statistics/GCST002001-

GCST003000/GCST002221/harmonised/24097

068-GCST002221-EFO_0004574-

build37.f.tsv.gz 

Crohn's disease Liu JZ GCST003044 20883 5956 14927 http://www.ibdgenetics.org/downloads.html 

Ulcerative 

colitis 
Liu JZ GCST003045 27432 6968 20464 http://www.ibdgenetics.org/downloads.html 

Inflammatory 

bowel disease 
Liu JZ GCST003043 34652 12882 21770 http://www.ibdgenetics.org/downloads.html 

HDL 

cholesterol 
Willer CJ GCST002223 94595 - - 

http://ftp.ebi.ac.uk/pub/databases/gwas/summary

_statistics/GCST002001-

GCST003000/GCST002223/harmonised/24097

068-GCST002223-EFO_0004612-

build37.f.tsv.gz 

LDL cholesterol Willer CJ GCST002222 94595 - - 

http://ftp.ebi.ac.uk/pub/databases/gwas/summary

_statistics/GCST002001-

GCST003000/GCST002222/harmonised/24097

068-GCST002222-EFO_0004611-

build37.f.tsv.gz 
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Juvenile 

idiopathic 

arthritis 

Hinks A GCST005528 15872 2816 13056 

http://ftp.ebi.ac.uk/pub/databases/gwas/summary

_statistics/GCST005001-

GCST006000/GCST005528/harmonised/23603

761-GCST005528-EFO_1001999-

Build37.f.tsv.gz 

Osteoarthritis Tachmazidou I GCST007092 417596 39427 378169 

http://ftp.ebi.ac.uk/pub/databases/gwas/summary

_statistics/GCST007001-

GCST008000/GCST007092/harmonised/30664

745-GCST007092-EFO_0002506-

build37.f.tsv.gz 

Chronic kidney 

disease 
Wuttke M GCST008065 625219 64164 561055 

http://ftp.ebi.ac.uk/pub/databases/gwas/summary

_statistics/GCST008001-

GCST009000/GCST008065/CKD_overall_EA_

JW_20180223_nstud23.dbgap.txt.gz 

Hypertension Zhu Z GCST007610 458554 144793 
313761

  

http://ftp.ebi.ac.uk/pub/databases/gwas/summary

_statistics/GCST007001-

GCST008000/GCST007610/ZhuZ_30940143_u

kbb.bolt_460K_selfRepWhite.doctor_highblood

pressure.assoc.gz 

Thyroid cancer Zhou W GCST008371 407757 358 407399 

http://ftp.ebi.ac.uk/pub/databases/gwas/summary

_statistics/GCST008001-

GCST009000/GCST008371/PheCode_193_SAI

GE_MACge20.txt.vcf.gz 

Lung cancer Rashkin SR 
GCST900118

12 
412835 2485 410350 

http://ftp.ebi.ac.uk/pub/databases/gwas/summary

_statistics/GCST90011001-

GCST90012000/GCST90011812/harmonised/3

2887889-GCST90011812-EFO_0001071-

Build37.f.tsv.gz 

Ovarian cancer Rashkin SR 
GCST900118

21 
411609 1259 410350 

http://ftp.ebi.ac.uk/pub/databases/gwas/summary

_statistics/GCST90011001-

GCST90012000/GCST90011821/harmonised/3

2887889-GCST90011821-EFO_0001075-

Build37.f.tsv.gz 

Colorectal 

cancer 
Zhou W GCST008372 387318 4562  382756 

http://ftp.ebi.ac.uk/pub/databases/gwas/summary

_statistics/GCST008001-

GCST009000/GCST008372/PheCode_153_SAI

GE_MACge20.txt.vcf.gz 

Breast cancer Rashkin SR 
GCST900118

04 
428231 17881  410350 

http://ftp.ebi.ac.uk/pub/databases/gwas/summary

_statistics/GCST90011001-

GCST90012000/GCST90011804/harmonised/3

2887889-GCST90011804-EFO_0000305-

Build37.f.tsv.gz 

 

Supplementary Table  10: String PPI output network interactions. Node 1 and Node2- proteins involved in the 

interaction; Homology- score based on the homology evidence; Coexpression- score based on the evidence for 

the coexpression of the proteins; Experimentally determined- score based on the experimental evidence for the 

interaction of the two proteins; Database annotated- score for interaction based on the curated databases; combined 

score- final score for the interaction of two proteins as combined from all four evidence types 

Node 1 Node 2 Homology Coexpression 
Experimentally 

determined  

Database 

annotated 

Combined 

score 

B4GALT1 ST6GAL1 0 0 0 0.9 0.9 

B4GALT1 MANBA 0 0.061 0 0.9 0.902 

B4GALT1 FUT8 0 0 0 0.9 0.9 

COG7 KDELR2 0 0 0 0.9 0.9 

COG7 DCTN5 0 0.087 0 0.9 0.904 

COG7 NSF 0 0.068 0 0.9 0.902 

DCTN5 KDELR2 0 0.055 0 0.9 0.901 

DCTN5 KIF11 0 0 0 0.9 0.9 

DCTN5 KIF3C 0 0 0 0.9 0.9 

EEF1A1 UBR5 0 0.047 0.421 0 0.425 
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ELL2 SUPT4H1 0 0 0 0.9 0.9 

FUT8 MGAT3 0 0 0 0.9 0.9 

IKZF1 IKZF3 0.941 0.31 0.725 0 0.802 

KDELR2 KIF3C 0 0 0 0.9 0.9 

KDELR2 NSF 0 0.061 0 0.9 0.902 

KDELR2 KIF11 0 0.065 0 0.9 0.902 

KIF11 KIF3C 0.736 0 0 0.9 0.9 

MEF2B NFATC2 0 0 0 0.6 0.6 

NFATC2 RUNX1 0 0.065 0.135 0.9 0.912 

NXPE1 NXPE4 0.969 0.555 0 0 0.555 

RUNX1 TBX21 0 0 0.299 0.8 0.853 

RUNX1 SMARCD3 0 0 0.109 0.9 0.907 

RUNX1 TCF3 0 0 0.361 0.9 0.933 

RUNX1 SMARCB1 0 0 0.308 0.9 0.927 

RUNX1 RUNX3 0.956 0.065 0 0.9 0.902 

RUNX3 TBX21 0 0.152 0.127 0.8 0.839 

SMARCB1 SMARCD3 0 0.129 0.926 0.9 0.992 

 

Supplementary Table  11: Phenoscanner output in novel genomic regions discovered in the GWAS. 

Ref_hg19_coord- chromosomal location of the reference SNP, ref_rsid- rsID for the reference SNP; trait- trait 

with the previously known association in the region; study- First author in the study describing the association. 

ref_hg19_coord ref_rsid trait study 

chr11:65555524 rs10896045 Eosinophil count Astle W 

chr11:65555524 rs10896045 Sum eosinophil basophil counts Astle W 

chr11:65555524 rs10896045 Atopic dermatitis EAGLE 

chr11:65555524 rs10896045 Hayfever: allergic rhinitis or eczema Neale B 

chr11:65555524 rs10896045 
No blood clot: bronchitis: emphysema: asthma: rhinitis: eczema or 

allergy diagnosed by the doctor 
Neale B 

chr11:65555524 rs10896045 Self-reported asthma Neale B 

chr10:94446635 rs10786052 Eosinophil count Astle W 

chr10:94446635 rs10786052 Eosinophil percentage of granulocytes Astle W 

chr10:94446635 rs10786052 Eosinophil percentage of white cells Astle W 

chr10:94446635 rs10786052 Neutrophil percentage of granulocytes Astle W 

chr10:94446635 rs10786052 Sum eosinophil basophil counts Astle W 

chr10:94446635 rs10786052 Type II diabetes DIAGRAM 

chr10:94446635 rs10786052 Type II diabetes adjusted for BMI DIAGRAM 

chr10:94446635 rs10786052 Birth weight Neale B 

chr10:94446635 rs10786052 Diabetes diagnosed by doctor Neale B 

chr10:94446635 rs10786052 Self-reported diabetes Neale B 

chr10:94446635 rs10786052 Inflammatory bowel disease IBDGC 

chr4:103403494 rs28882677 Lymphocyte count Astle W 

chr4:103403494 rs28882677 Lymphocyte percentage of white cells Astle W 

chr4:103403494 rs28882677 Monocyte percentage of white cells Astle W 
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chr4:103403494 rs28882677 Hayfever: allergic rhinitis or eczema Neale B 

chr4:103407428 rs11097788 Lymphocyte count Astle W 

chr4:103407428 rs11097788 Lymphocyte percentage of white cells Astle W 

chr4:103407428 rs11097788 Neutrophil percentage of white cells Astle W 

chr4:103407428 rs11097788 Allergic disease Ferreira M 

chr4:103407428 rs11097788 Hayfever: allergic rhinitis or eczema Neale B 

chr4:103407428 rs11097788 log eGFR creatinine in non diabetics CKDGen 

chr4:103407428 rs11097788 log eGFR creatinine CKDGen 

chr4:103407428 rs11097788 Primary biliary cholangitis Qiu F 

chr4:103519487 rs3774964 Lymphocyte count Astle W 

chr4:103519487 rs3774964 Lymphocyte percentage of white cells Astle W 

chr4:103519487 rs3774964 Hayfever: allergic rhinitis or eczema Neale B 

chr4:103519487 rs3774964 Monocyte percentage of white cells Astle W 

chr4:103519487 rs3774964 Neutrophil percentage of white cells Astle W 

chr12:121202664 rs9431 Allergic disease Ferreira M 

 

Supplementary Table  12: Colocalization with diseases and traits. Genomic region- genomic locus which is 

significantly associated with at least one of the traits; N SNPs-number of SNPs in the region which is used in 

colocalization test; Trait-glycan trait with the strongest association in the genomic region; PP.H3 - posterior 

probability for H3- both traits are associated with the region but have different causal variants. PP.H4 posterior 

probability for H4- both traits are associated with the regions and have the same causal variant 

Genomic region N SNPs 
Glycan 

trait 
Disease/Trait PP.H3 PP.H4 

chr10:94336963-94495241 24 fuc Type 2 Diabetes 0.001 0.998 

chr17:56398006-56417002 1128 s1_no_bis Alzheimers 0.004 0.996 

chr10:94336963-94495241 1327 fuc Adult-onset Asthma 0.005 0.995 

chr17:56398006-56417002 938 s1_no_bis Adult-onset Asthma 0.007 0.993 

chr5:55436851-55444683 77 s1_g2 Juvenile Idiopathic Arthritis 0.001 0.993 

chr10:94336963-94495241 1353 fuc Asthma 0.016 0.984 

chr21:36524140-36787961 34 bisecting Juvenile Idiopathic Arthritis 0.002 0.958 

chr5:55436851-55444683 1635 s1_g2 Rheumatoid Arthritis 0.043 0.957 

chr17:37579383-38215117 1284 fuc Ulcerative Colitis 0.052 0.948 

chr17:37579383-38215117 1325 fuc Inflammatory Bowel Disease 0.053 0.947 

chr17:37579383-38215117 1243 fuc Crohn's Disease 0.057 0.943 

chr11:114298893-114450529 1561 s1_g2 Inflammatory Bowel Disease 0.053 0.943 

chr17:37579383-38215117 1157 fuc Rheumatoid Arthritis 0.059 0.941 

chr7:50325563-50362999 1460 fuc Asthma 0.048 0.929 

chr11:114298893-114450529 1531 s1_g2 Ulcerative Colitis 0.094 0.906 

chr17:43463493-44865603 225 s1_g2 Primary Biliary Cirrhosis 0.121 0.876 

chr12:121188641-121351934 1526 s1_gal_total Schizophrenia 0.119 0.862 

chr17:37579383-38215117 272 fuc Primary Biliary Cirrhosis 0.16 0.84 

chr11:65555524-65555524 999 g1 Systemic Lupus Erythematosus 0.182 0.817 

chr7:50325563-50362999 1624 fuc Rheumatoid Arthritis 0.086 0.784 

chr12:121188641-121351934 457 s1_gal_total Primary Biliary Cirrhosis 0.021 0.776 
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chr21:36524140-36787961 1451 bisecting Systemic Lupus Erythematosus 0.072 0.774 

chr5:95217242-95324375 1322 s1_no_bis Type 1 Diabetes 0.097 0.744 

chr4:103390496-103554821 1381 g2 Ulcerative Colitis 0.129 0.725 

chr14:105877057-106270813 358 s1_g2 Systemic Lupus Erythematosus 0.035 0.71 

chr5:55436851-55444683 1278 s1_g2 Systemic Lupus Erythematosus 0.043 0.71 

chr1:23526335-25903455 1520 bisecting Crohn's Disease 0.033 0.701 

chr1:39302020-39380385 2305 fuc Type 1 Diabetes 0.06 0.665 

chr5:95217242-95324375 1304 s1_no_bis Inflammatory Bowel Disease 0.101 0.661 

chr10:94336963-94495241 1593 fuc Inflammatory Bowel Disease 0.139 0.657 

chr12:121188641-121351934 1554 s1_gal_total Adult-onset Asthma 0.355 0.645 

chr17:16820099-16875636 1710 g1 IgG Level 0.1 0.632 

chr14:105877057-106270813 313 s1_g2 IgG Level 0.077 0.62 

chr17:43463493-44865603 814 s1_g2 Systemic Lupus Erythematosus 0.389 0.609 

chr10:94336963-94495241 2168 fuc Lymphocytes 0.382 0.584 

chr17:43463493-44865603 908 s1_g2 Breast cancer 0.421 0.579 

chr17:43463493-44865603 1265 s1_g2 Lymphocytes 0.428 0.572 

chr5:55436851-55444683 1686 s1_g2 Crohn's Disease 0.053 0.571 

chr7:6497501-6550403 2117 bisecting Inflammatory Bowel Disease 0.15 0.57 

chr12:121188641-121351934 1589 s1_gal_total Asthma 0.438 0.562 

chr11:65555524-65555524 1009 g1 Allergy 0.438 0.561 

chr11:65555524-65555524 1029 g1 Asthma 0.438 0.56 

chr17:43463493-44865603 669 s1_g2 Schizophrenia 0.374 0.552 

chr7:6497501-6550403 1893 bisecting Osteoarthritis 0.336 0.547 

chr7:6497501-6550403 3169 bisecting Lymphocytes 0.471 0.529 

chr17:43463493-44865603 1044 s1_g2 Crohn's Disease 0.375 0.509 

 

Supplementary Table  13: List of prioritized genes and their full names. Gene name- HGNC symbol of the gene, 

symbol in parentheses denote alias and formerly used name; Ensembl ID- gene ID used in Ensembl database; 

Entrez ID- gene ID used by NCBI database; Full name- full name for the gene 

Gene name Ensembl ID 
Entrez 

ID 
Full name 

ABCF2 ENSG00000033050 10061 ATP binding cassette subfamily F member 2  

ACVR1C ENSG00000123612 130399 activin A receptor type 1C  

ANKRD55 ENSG00000164512 79722 ankyrin repeat domain 55  

AP5B1 ENSG00000254470 91056 adaptor related protein complex 5 subunit beta 1  

ARHGAP27 ENSG00000159314 201176 Rho GTPase activating protein 27  

CEP131(AZI1)  ENSG00000141577 22994 Centrosomal Protein 131 

B4GALT1 ENSG00000086062 2683 beta-1 4-galactosyltransferase 1  

TSPOAP1 

(BZRAP1) 
ENSG00000005379 9256 Benzodiazepine receptor (peripheral) associated protein 1 

CASC15 ENSG00000272168 401237 cancer susceptibility 15  

CHCHD10 ENSG00000250479 400916 coiled-coil-helix-coiled-coil-helix domain containing 10  

CHPF2 ENSG00000033100 54480 chondroitin polymerizing factor 2  

COG7 ENSG00000168434 91949 component of oligomeric golgi complex 7  

CRHR1 ENSG00000120088 1394 corticotropin releasing hormone receptor 1  
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CRIP1 ENSG00000213145 1396 cysteine rich protein 1  

DAGLB ENSG00000164535 221955 diacylglycerol lipase beta  

DCTN5 ENSG00000166847 84516 dynactin subunit 5  

DERL3 ENSG00000099958 91319 derlin 3  

EARS2 ENSG00000103356 124454 glutamyl-tRNA synthetase 2  mitochondrial  

EEF1A1 ENSG00000156508 1915 eukaryotic translation elongation factor 1 alpha 1  

ELL2 ENSG00000118985 22936 elongation factor for RNA polymerase II 2  

ENTHD2 ENSG00000167302 146705 TEPSIN Adaptor Related Protein Complex 4 Accessory Protein 

FUT8 ENSG00000033170 2530 fucosyltransferase 8  

GGA2 ENSG00000103365 23062 
Golgi associated  gamma adaptin ear containing  ARF binding 

protein 2  

GSDMB ENSG00000073605 55876 gasdermin B  

HHEX ENSG00000152804 3087 hematopoietically expressed homeobox  

HIVEP2 ENSG00000010818 3097 HIVEP zinc finger 2  

IGHA1 ENSG00000211895 3493 immunoglobulin heavy constant alpha 1  

IGHG1 ENSG00000211896 3500 immunoglobulin heavy constant gamma 1 (G1m marker)  

IGHG2 ENSG00000211893 3501 immunoglobulin heavy constant gamma 2 (G2m marker)  

IGHG3 ENSG00000211897 3502 immunoglobulin heavy constant gamma 3 (G3m marker)  

IKZF1 ENSG00000185811 10320 IKAROS family zinc finger 1  

IKZF3 ENSG00000161405 22806 IKAROS family zinc finger 3  

IL6ST ENSG00000134352 3572 interleukin 6 signal transducer  

KANSL1 ENSG00000120071 284058 KAT8 regulatory NSL complex subunit 1  

KCNK1 ENSG00000135750 3775 potassium two pore domain channel subfamily K member 1  

KDELR2 ENSG00000136240 11014 KDEL endoplasmic reticulum protein retention receptor 2  

KIF11 ENSG00000138160 3832 kinesin family member 11  

KIF3C ENSG00000084731 3797 kinesin family member 3C  

LRRC37A ENSG00000176681 9884 leucine rich repeat containing 37A  

MANBA ENSG00000109323 4126 mannosidase beta  

MAPT ENSG00000186868 4137 microtubule-associated protein tau  

MAU2 ENSG00000129933 23383 MAU2 sister chromatid cohesion factor  

MEF2B ENSG00000213999 1E+08 myocyte enhancer factor 2B  

MGAT3 ENSG00000128268 4248 
beta-1 4-mannosyl-glycoprotein 4-beta-N-

acetylglucosaminyltransferase  

MTO1 ENSG00000135297 25821 mitochondrial tRNA translation optimization 1  

MYCBP ENSG00000214114 26292 MYC binding protein  

NDUFAB1 ENSG00000004779 4706 NADH:ubiquinone oxidoreductase subunit AB1  

NFATC2 ENSG00000101096 4773 nuclear factor of activated T cells 2  

NFKB1 ENSG00000109320 4790 nuclear factor kappa B subunit 1  

NSF ENSG00000073969 4905 N-ethylmaleimide sensitive factor  vesicle fusing ATPase  

NXPE1 ENSG00000095110 120400 neurexophilin and PC-esterase domain family member 1  

NXPE4 ENSG00000137634 54827 neurexophilin and PC-esterase domain family member 4  

ODF1 ENSG00000155087 4956 outer dense fiber of sperm tails 1  

ORMDL3 ENSG00000172057 94103 ORMDL sphingolipid biosynthesis regulator 3  

OVOL1 ENSG00000172818 5017 ovo like transcriptional repressor 1  

RAD51C ENSG00000108384 5889 RAD51 paralog C  
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REXO2 ENSG00000076043 25996 RNA exonuclease 2  

RNF149 ENSG00000163162 284996 ring finger protein 149  

RRAGC ENSG00000116954 64121 Ras related GTP binding C  

RRBP1 ENSG00000125844 6238 ribosome binding protein 1  

RRM2B ENSG00000048392 50484 ribonucleotide reductase regulatory TP53 inducible subunit M2B  

RUNX1 ENSG00000159216 861 RUNX family transcription factor 1  

RUNX3 ENSG00000020633 864 RUNX family transcription factor 3  

SLC17A9 ENSG00000101194 63910 solute carrier family 17 member 9  

SLC38A10 ENSG00000157637 124565 solute carrier family 38 member 10  

SMARCB1 ENSG00000099956 6598 
SWI/SNF related  matrix associated actin-dependent regulator of 

chromatin,  subfamily b  member 1  

SMARCD3 ENSG00000082014 6604 
SWI/SNF related  matrix associated  actin-dependent regulator of 

chromatin  subfamily d  member 3  

SMOX ENSG00000088826 54498 spermine oxidase  

SPPL2C ENSG00000185294 162540 signal peptide peptidase like 2C  

SPPL3 ENSG00000157837 121665 signal peptide peptidase like 3  

ST6GAL1 ENSG00000073849 6480 ST6 beta-galactoside alpha-2 6-sialyltransferase 1  

SUPT4H1 ENSG00000213246 6827 SPT4 homolog  DSIF elongation factor subunit  

TBKBP1 ENSG00000198933 9755 TBK1 binding protein 1  

TBX21 ENSG00000073861 30009 T-box transcription factor 21  

TCF3 ENSG00000071564 6929 transcription factor 3  

TMEM121 ENSG00000184986 80757 transmembrane protein 121  

TNFRSF13B ENSG00000240505 23495 TNF receptor superfamily member 13B  

TXLNB ENSG00000164440 167838 taxilin beta  

UBFD1 ENSG00000103353 56061 ubiquitin family domain containing 1  

UBR5 ENSG00000104517 51366 ubiquitin protein ligase E3 component n-recognin 5  

VPREB3 ENSG00000128218 29802 V-set pre-B cell surrogate light chain 3  

WNT3 ENSG00000108379 7473 Wnt family member 3  

ZPBP2 ENSG00000186075 124626 zona pellucida binding protein 2  
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8.3 Supplementary figures 

 

Supplementary Figure 1: Lambda-N plot to reveal issues with population stratification 

 

 

Supplementary Figure 2: Plots showing allele frequencies in the cohort in comparison to 1000G reference panel 

in meta-level QC for cohorts that are included in the meta-analysis. Red dots denote outliers that are removed 

prior to meta-analysis. 



 

134 

 

 

Supplementary Figure 3: SE-N plots to reveal issues with trait transformations. The data for the monosialylation 

trait is shown 

 

Supplementary Figure 4: Correlation values of the top SNP effects (Z scores )on glycan traits. Significant 

correlations (p < 5.8x10-5)are denoted by asterisks sign * 
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D) 

 

Supplementary Figure 5: Gene-set enrichment test results. Gene sets with adjusted P-value < 0.05 in each category are shown. A) GO Molecular functions B) GO Cellular 

components C) GO Biological pathways D) Canonical Pathways 
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8.4 Other Supplementary Material 

Analysis plan for IgG N-glycome GWAS as provided to every cohort analyst 

AIM: The discovery GWAS has been performed looking at IgG N-glycosylation traits. The 

aim is to increase the sample size by combining cohorts analysed both by UPLC and LCMS, 

thereby increasing the power to detect loci involved in the process of IgG N-glycosylation.  

SAMPLES: Men and women ≥ 18 years of age 

TRAITS of INTEREST: IgG N-glycans are measured either by UPLC or LCMS, depending 

on the cohort. Analysed traits include derived IgG N-glycosylation traits representing the 

overall percentage of presence of certain sugar on the IgG N-glycan. See the end of the 

document for a complete list of the traits.  

GENOTYPES:  HRC imputed SNPs 

DATA EXCHANGE & TIMELINE FOR ANALYSIS:  We aim to be flexible but also need 

to know when to expect data. Please contact Azra also when you are ready to upload and she 

will pass on details for data upload.  

CONTACT FOR QUESTIONS:  Azra Frkatovic (afrkatovic@genos.hr) 

GWAS ANALYSIS 

Note: For all phenotypes, we use rank-based inverse normal transformation. Standardization 

and analysis are the same for all traits. Please use the batch-corrected, normalised and 

transformed data received from Azra (Genos). 

MODEL of ASSOCIATION: Additive model. Account for family relatedness and population 

substructure where needed. 

COVARIATES: age (years), sex (0=females, 1=males) and cohort specific covariates (if 

applicable) 

Adjust for covariates: trait ~ age + sex + other covariates (if applicable) 

Model: residuals ~ SNP 

Transformation: We already performed rank-based inverse normal transformation of the 

phenotype. No need to additionally transform the data, it is ready to be used as-is. 

mailto:afrkatovic@genos.hr
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RESULTS FORMAT 

Please provide association results in tab-delimited plain text files, including a single header line 

with all columns in the order listed below: 

rsid – The RSID of the marker analyzed  

snpid – SNP identifier in form of chr:pos  

chr –  The chromosome of the marker analyzed 

pos – The position of the marker analyzed (hg19, build 37) 

other_allele – a single upper-case character "A" "C" "G" or "T"- Indicating the other (non-

effect) allele 

effect_allele – a single upper-case character "A" "C" "G" or "T"- The allele associated with 

phenotypic traits (corresponding to change in betas) 

n –  The effective number of subjects analyzed 

EAF – Effect allele frequency (range 0-1) 

beta – Effect size of allele on phenotype for the marker analyzed  

se –  Standard error of the effect size of the marker analyzed 

p –  p-value of the effect size of the marker analyzed 

strand – Strand on which the alleles are reported 

info –  A value (range 0-1) corresponding to the information content output  from the 

association testing (according to the data type specified in the "info_type" column above); 

info_type  - Code indicating the type of data in the “info” column: 

 1 if the following column contains “r2_Hat” from MACH2DAT/MACH2QTL; 

 2 if the following column contains “proper_info” from SNPTEST; 

 3 if the following column contains “INFO” from PLINK. 
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NOTES: 

- Please keep at least 6 digits after the decimal place for all statistics (the use of more 

precision is encouraged). 

- No row indices column or any other extra columns should be provided. 

- Columns should be in the order specified above.  No specified column should be 

excluded. 

- Please code missing values in any column as “NA” 

- Please provide the results of each of the analyses in a separate file, named as described 

under ‘File naming scheme’ below. Following the requested format and naming scheme 

for your results will greatly assist us in collecting and processing the data from many 

different groups while minimizing errors. 

- Please do not do any filtering of SNPs based on MAF, imputation quality, etc as this 

will be done centrally. 

FILE NAMING SCHEME 

Please use the following file naming scheme: 

STUDY.PHENOTYPE.DATE.txt 

STUDY is a short identifier for the population studied. If you have a case-control study and 

will be providing data separately for cases and controls, please use the suffix ".CASE" or 

".CONTROL" after a short identifier for your case-control study name to identify case and 

control populations. 

PHENOTYPE: „fuc_ta“,“g0_ta“, „gal_total_mq“, „g1_mq“, etc. 

DATE is the date on which the file was prepared, in the format “YYYYMMDD” 

example:  CROATIA.fuc.20190131.txt 

List of traits: 

fuc_mq 

g0_mq  

g1_mq  

g2_mq  

gal_total_mq  

s1_mq  
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bisecting_mq  

s1_no_bis_mq  

s1_g1_mq  

s1_g2_mq  

s1_gal_total_m
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