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Statistical analysis of the tail behaviour

of dependent sequences

DOCTORAL DISSERTATION

Zagreb, 2022.



FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS

Darko Brborović
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SUMMARY

In this thesis we analyse the tail behaviour of bivariate random sequences, including the

stationary M-dependent sequences, M ∈ N. Statistical analysis of the asymptotic tail be-

haviour of random sequences is often done within the theory of point processes. However,

if a larger number of tail events is available it is possible to obtain convergence results to-

wards normal distribution, which we do in this thesis.

Motivated by the recent results of DiCiccio and Romano [8] on permutation tests

for correlation between random variables, we present and analyse the permutation test

of tail dependence for independent and identically distributed bivariate random vectors.

Additionally, we present the permutation test of independence for stationary M-dependent

random sequences.
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SAŽETAK

U ovom radu predstavljamo analizu repnog ponašanja slučajnih nizova dvodimenzion-

alnih vektora, što uključuje i slučaj stacionarnih M-zavisnih nizova, M ∈ N. Često se

asimptotska analiza repnog ponašanja slučajnih nizova obavlja u okviru teorije točkovnih

procesa. Ipak, ukoliko je dostupan veÂci broj repnih dogadaja moguÂce je postiÂci konver-

genciju prema normalnoj distribuciji, kao što je to slučaj u ovom radu.

Motivirani relativno novim rezultatima o permutacijskim testovima za korelaciju izme-

du dvije slučajne varijable, objavljenima u DiCiccio and Romano [8], u ovom radu pred-

stavljamo i analiziramo test repne zavisnosti za nezavisne i jednako distribuirane dvodi-

menzinalne slučajne vektore. Dodatno, predstavljamo i permutacijski test nezavisnosti za

stacionarne M-zavisne slučajne nizove.
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INTRODUCTION

In this thesis we develop permutation tests concerning the joint tail behaviour of some

random sequences. Motivation for the analysis of the tail behaviour of random sequences

stems from the author’s interest in and experience on the financial markets where it is

often the case that some measures of central dependence, for example correlations, are

insufficient to describe the dependence structure of various assets co-movements. It has

been empirically observed that the effect of diversification may diminish in times of cri-

sis as tail events start to dominate the central dependencies’ structure (see for example

Embrechts et al. [10], Mainik et al. [28], Malevergne and Sornette [29] and references

therein). Therefore, it seems desirable to have a simple test for a possible tail dependence

between two series of observations. For that purpose we have chosen a permutation test

that is straightforward to use and has some desirable properties, such as exactness on fi-

nite samples and performing relatively well on small data sizes (see for instance Janssen

and Pauls [23] or Chapter 15 in [27]).

Permutation tests are well known and considerable literature exists demonstrating

various applications of them. The standard reference is the book by Lehmann and Ro-

mano [27]. We present some basic results on the permutation tests in Chapter 1, together

with some other results needed in the other two chapters, where we present two permu-

tation tests. In Chapter 2 we present the test for tail dependence of the sequence (Yi,Zi),

i = 1,2, . . . of independent and identically distributed (iid) bivariate random vectors. To

formulate the test, we use the model introduced in Ledford and Tawn [26] (see relation

2.2). Of course, the permutation test we develop in Chapter 2 is valid when Yi and Zi are

independent. In Chapter 3 we formulate the permutation test of independence when Yi

and Zi are stationary and M-dependent.

Several results that we use in this thesis can be already found in [8]. Their approach,
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Introduction

however, does not allow for increasing thresholds (see relation (2.1)). Therefore, the main

ideas of the proofs in [8] need to be altered in a nontrivial way to arrive at the main the-

oretical results we present. In most of the proofs we present, we use some elementary

tools like the Chebyshev inequality and the Borel-Cantelli lemma. Despite that, or be-

cause of that, some of the proofs are quite lengthy, especially when we treat M-dependent

processes in Chapter 3. There we use an idea that is well known in the bootstrap lit-

erature, namely, we ªeraseº from the given sequences blocks of the length M to leave

resulting blocks of data that are independent. Note that the main asymptotic results (The-

orems 2.1.2 and 3.1.1) in both Chapter 2 and Chapter 3 rely on the Combinatorial Central

Limit Theorem proved in Hoeffding [20]. Finally, note that in this thesis we assume that

marginal distributions of the bivariate vectors (Yi,Zi) are known, that is to say we do not

incorporate into our analysis the estimation of their distributions.
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1. PREREQUISITES

In this chapter we present results that will be used in later chapters. Besides short overview

of the permutation tests (Section 1.1) and the Combinatorial Central Limit Theorem (Sec-

tion 1.2) we present some measures of dependence that are frequently used in extreme

value analysis (Section 1.4). We also recap results on conditional convergence that are

needed to formulate our main asymptotic results in Chapters 2 and 3 (Section 1.3).

1.1. PERMUTATION TESTS

For some theoretical examples and an introduction to the background theory of permuta-

tion tests, we refer to Lehmann and Romano [27]. Below we give the short overview of

some basic facts about permutation tests.

Let Xi = (Yi,Zi), i = 1,2, . . . be a sequence of iid bivariate random vectors with joint

distribution P. Assume Y and Z have marginal distributions PY and PZ , respectively. De-

fine Xn =(X1, . . . ,Xn), Y n =(Y1, . . . ,Yn) and Zn =(Z1, . . . ,Zn), n∈N. Pn is the distribution

of the random vector Xn. Suppose we want to test the null hypothesis H0 that P belongs

to a certain family of distributions.

Denote the finite group of permutations of the set {1,2, . . . ,n} by Gn. Next introduce

the group action of Gn on (R2)n = R
2n by defining the action of an element π ∈Gn as

π((y1,z1) . . . ,(yn,zn)) = ((y1,zπ(1)), . . . ,(yn,zπ(n))), (1.1)

where ((y1,z1) . . . ,(yn,zn)) ∈ R
2n.

We say that the randomization hypothesis holds if the distribution of Xn and πXn are

the same for all π ∈Gn. Note, if Gn is a random element with uniform distribution on the

permutation group Gn independent of Xn, then the randomization hypothesis implies that

3



Prerequisites Permutation tests

GnXn and Xn have the same distribution.

Let Tn(Y
n,Zn) be a test statistic and α ∈ (0,1) the level of the permutation test. Define

the permutation distribution of the statistic Tn as

R̂n(t) =
1

n!
∑

π∈Gn

I{Tn(Y n,Zn
π )≤t}, t ∈ R, (1.2)

where Zn
π = (Zπ(1), . . . ,Zπ(n)). Its (1−α) quantile is defined as

r̂(1−α) = R̂−1
n (1−α) = inf{t : R̂n(t)≥ 1−α}.

The permutation test rejects the null hypothesis if the value of the statistic Tn is greater

than r̂(1−α). The proof of consistency of quantiles r̂(1−α) follows from Lemma 11.2.1.

in [27]. For the convenience of the reader we restate the lemma below.

Lemma 1.1.1. Let α ∈ (0,1). The following convergences of quantiles holds:

(i) Let {Fn} be a sequence of distribution functions on the real line converging weakly

to a distribution function F . Assume F is continuous and strictly increasing at

y = F−1(1−α). Then,

F−1
n (1−α)→ F−1(1−α),

where F−1(y) = inf{x ∈ R | F(x)≥ y}.

(ii) Let {F̂n} be a sequence of random distribution functions satisfying

F̂n(x)
P−→ F(x)

at all x which are continuity points of some fixed distribution function F . Assume

F is continuous and strictly increasing at y = F−1(1−α). Then,

F̂−1
n (1−α)

P−→ F−1(1−α). (1.3)

It is a general goal in the construction of a permutation test to prove

R̂n(t)
P−→ R(t). (1.4)

The only limiting distribution function R that appears in this thesis is the standard normal

cumulative distribution function Φ. In that case and under (1.4) we can use Lemma 1.1.1

4



Prerequisites Permutation tests

(ii) (the randomization hypothesis is not needed here) to conclude that r̂(1−α) converges

in probability to the (1−α) quantile of the normal distribution Φ−1(1−α). Convergence

of the (1−α) quantile of the statistic Tn to Φ−1(1−α) quantile of normal distribution

also follows if the conditions of Lemma 1.1.1 (i) are satisfied.

To perform finite sample permutation testing, let k := n!−⌊n!α⌋, where ⌊x⌋ denotes

the largest integer number smaller than x ∈ R (floor). For a given Xn = x ∈ R
2n compute

all n! values of Tn(πx) for different permutations π to get the ordered values

T
(1)

n (x)≤ T
(2)

n (x)≤ ·· · ≤ T
(n!)

n (x).

Denote by M+(x) the number of T
(i)

n (x) that are greater than T
(k)

n (x) and by M0(x) the

number of T
(i)

n (x) that are equal to T
(k)

n (x), i ∈ {1,2 . . . ,n!}. Then the permutation test

(function) φ is given by

φ(x) =



























0, Tn(x)< T
(k)

n (x)

α(x), Tn(x) = T
(k)

n (x)

1, Tn(x)> T
(k)

n (x),

where α(x) = (α n!−M+(x))/M0(x). Suppose that the randomization hypothesis holds.

Then the resulting permutation test is exact level α (see Theorem 15.2.1. in [27]), or more

precisely

EP[φ(X
n)] = α,

for all probabilities P from the null hypothesis parameter space. Note, T
(k)

n (x) are the

same as the quantiles r̂(1−α), for realizations x of Xn. Thus, the permutation test rejects

the null hypothesis if the value of the statistic is greater than T
(k)

n (x), and rejects with the

probability α(x) if the value of the statistic is equal to T
(k)

n (x). Observe the randomization

in φ when the test statistic is equal to T
(k)

n (x).

Note that the permutation distribution of the general test statistic Tn is a distribution

conditional on the set of observations (see, for example, Romano [34] or Janssen and

Pauls [23]). It has been known since Hoeffding [21] that it is possible to give sufficient

condition for the convergence in (1.4) in the form of unconditional convergence in dis-

tribution, but it turns out it is also the necessary condition. That is the content of the

following theorem. For the convenience of the reader, we are restating it as it is presented
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Prerequisites Permutation tests

in [11] (Theorem 5.1 in [11]). Xn in the theorem denotes a general sample space in [11].

In this thesis we will use Xn of the form R
n.

Theorem 1.1.2. Suppose that Xn has distribution Pn in Xn, and Gn is a finite group of

transformations from Xn to Xn. Let R̂n(·) denote the permutation distribution of a statis-

tic Tn. Let Gn and G′n be independent and uniformly distributed over Gn (and independent

of Xn). Suppose, under Pn

(

Tn(GnXn),Tn(G
′
nXn)

) d−→ (T,T ′), (1.5)

where T and T ′ are independent, each with common c.d.f. R(·). Then, for all continuity

points t of R(·),
R̂n(t)

P−→ R(t). (1.6)

Conversely, if (1.6) holds for some limiting c.d.f R(·) whenever t is a continuity point,

then (1.5) holds.

We give a few notions before we end this short overview of permutation tests. When

applying permutation test procedures, generating all the permutations of a given data set

is typically computationally prohibitive. However, this can be avoided by using iid sample

of random permutations (see Problem 5.15. in [27]). A similar notion is true for the p-

values of a permutation test. Namely, an approximation of the p-value of a permutation

test with the permutation group Gn can be given as

p̃ =
1

B

(

1+
B−1

∑
i=1

I{T (πiX)≥T (X)}
)

, (1.7)

where T is the test statistic, B ∈ N and π1, . . .πB−1 are iid and uniformly distributed per-

mutations from Gn. Under the null hypothesis P(p̃ ≤ u) ≤ u, 0 ≤ u ≤ 1, so a test that

rejects when p̃≤ α is level α . As B grows approximation p̃ gets asymptotically close in

probability to the p-value of the test (for details see [27], section 15.2.1).

If the test statistics’ values concentrate on a small number of points, the approximation

of the p-value given in (1.7) is actually an upper bound. That is because the number of

instances of πi, such that T (πiX) = T (X), is frequently larger than 1. As suggested in

Hemerik and Goeman [19], section 3.4., a randomization of the p-values helps in that

case. The authors define the so-called randomized p-value there as

p′ =
1

B

( B

∑
i=1

I{T (πiX)>T (X)}+u ·
B

∑
i=1

I{T (πiX)=T (X)}
)

, (1.8)

6



Prerequisites Permutation tests

where u is U(0,1) distributed and independent of X . The randomized p-value p′ has

the property that p′ ≤ α if and only if the corresponding permutation test rejects. This

property, in particular, implies that p′ is uniformly distributed on [0,1] (for details, see

[19]).

7



Prerequisites The Combinatorial Central Limit Theorem

1.2. THE COMBINATORIAL CENTRAL LIMIT

THEOREM

To derive the asymptotic behaviour of the permutation distribution, we will rely on the

Combinatorial Central Limit Theorem proved in [20]. Below we give a short overview of

that result and its context.

The set up of the problem analyzed in [20] is the following: assume that for each n∈N
we are given 2n real numbers an(i),bn(i), i = 1,2, . . . ,n, such that neither all instances

of an(i) nor those of bn(i) are equal. Denote by Gn = (Gn(1), . . . ,Gn(n)) a uniformly

distributed random element on Gn. Let us define the sum

Sn =
n

∑
i=1

an(i)bn(Gn(i)). (1.9)

The following theorem gives sufficient conditions for the asymptotic normality of Sn (The-

orem 4 in [20]).

Theorem 1.2.1. The distribution of Sn as in (1.9) is asymptotically normal, meaning

lim
n→∞

P(Sn−ESn ≤ x
√

Var Sn) =
1√
2π

∫ x

−∞
e−

1
2 y2

dy = Φ(x), x ∈ R, (1.10)

if

lim
n→∞

n
1
2 r−1 ∑

n
i=1(an(i)− Åan)

r

(

∑
n
i=1(an(i)− Åan)2

)r/2

∑
n
i=1(bn(i)− Åbn)

r

(

∑
n
i=1(bn(i)− Åbn)2

)r/2
= 0, r = 3,4, . . . , (1.11)

where

Åan =
1

n

n

∑
i=1

an(i), Åbn =
1

n

n

∑
i=1

bn(i).

Condition (1.11) is satisfied if

lim
n→∞

n
max1≤i≤n(an(i)− Åan)

2

∑
n
i=1(an(i)− Åan)2

max1≤i≤n(bn(i)− Åbn)
2

∑
n
i=1(bn(i)− Åbn)2

= 0. (1.12)

The mean and variance of Sn can be expressed explicitly as is shown in Theorem 2

in [20] to get:

ESn =
1

n

n

∑
i=1

n

∑
j=1

an(i)bn( j), (1.13)

8



Prerequisites The Combinatorial Central Limit Theorem

Var(Sn) =
1

n−1

n

∑
i=1

n

∑
j=1

d2
n(i, j), (1.14)

where

dn(i, j) = an(i)bn( j)− 1

n

n

∑
g=1

an(g)bn( j)− 1

n

n

∑
h=1

an(i)bn(h)+
1

n2

n

∑
g=1

n

∑
h=1

an(g)bn(h).

(1.15)

Remark 1.2.2. Theorem 1.2.1 is referring to asymptotic behaviour of sequences of per-

muted numbers. Therefore, the only source of randomness is the one from random per-

mutations, i.e. from random elements Gn. Taking into account the structure of probability

spaces where Gn, n ∈ N, are defined we can write probability in relation (1.10) as

lim
n→∞

1

n!
∑

π∈Gn

I{(Sπ
n−ESn)/

√
Var Sn≤x} = Φ(x), (1.16)

where

Sπ
n =

n

∑
i=1

an(i)bn(π(i)), π ∈Gn.

More formally, for n ∈ N, let Ωn = Gn. Define σ -algebra Fn = P(Gn) on Gn and

probability Pn that gives equal mass to all permutations form Gn, i.e.

Pn(π) =
1

n!
, π ∈Gn.

In such a manner we get the discrete probability space (Ωn,Fn,Pn) on which Gn is de-

fined as identity. With obvious notation for expectation and variance on (Ωn,Fn,Pn) we

calculate

Pn((Sn−En(Sn))/
√

Var n(Sn)≤ t) = En(I{Sn−En(Sn))/
√

Varn(Sn)≤t})

=
∫

Gn

I{Sn−En(Sn))/
√

Var n(Sn)≤t}dPn

= Gn is disjoint union of single permutations

=
1

n!
∑

π∈Gn

I{Sπ
n−En(Sn))/

√
Varn(Sn)≤t}.

Extension to probability space that supports all random elements Gn then follows by the

Kolmogorov Theorem on Existence of Processes (see Theorem 1 and Remark 2, Section

2.9. in [37]). □

9



Prerequisites The Combinatorial Central Limit Theorem

We further note that Hoeffding in [20] actually proves a more general version of its

Combinatorial c.l.t. where he looks at numbers of the form cn(i, j). In that case dn(i, j)

are defined as

dn(i, j) = cn(i, j)− 1

n

n

∑
g=1

cn(g, j)− 1

n

n

∑
h=1

cn(i,h)+
1

n2

n

∑
g=1

n

∑
h=1

cn(g,h). (1.17)

and one considers the asymptotic behavior of the sum

Sn =
n

∑
i=1

cn(i,Gn(i)). (1.18)

As we can see, the only source of randomness is again random permutation Gn, but now

we work with doubly indexed set of numbers cn(i, j). According to Theorem 2 in [20],

the mean and the variance of Sn are

ESn =
1

n

n

∑
i=1

n

∑
j=1

cn(i, j), (1.19)

Var(Sn) =
1

n−1

n

∑
i=1

n

∑
j=1

d2
n(i, j). (1.20)

The following theorem describes the asymptotic behavior of the sum Sn (Theorem 3 in

[20]). We additionally assume that dn(i, j) ̸= 0 for some pair (i, j) so that Var(Sn)> 0.

Theorem 1.2.3. The distribution of Sn as in (1.18) is asymptotically normal if

lim
n→∞

1
n

max1≤i, j≤n dr
n(i, j)

(

1
n ∑

n
i=1 ∑

n
j=1 d2

n(i, j)
)r/2

= 0, r = 3,4, . . . (1.21)

Condition (1.21) is satisfied if

lim
n→∞

n
max1≤i, j≤n d2

n(i, j)

∑
n
i=1 ∑

n
j=1 d2

n(i, j)
= 0. (1.22)

10



Prerequisites Convergence of conditional distributions

1.3. CONVERGENCE OF CONDITIONAL

DISTRIBUTIONS

Permutation tests, more precisely permutation distributions (see (1.2)), can be analysed in

the context of conditional expectations. In this Section we recap some results regarding

conditional distributions. We use the books of Kallenberg [25] and Shiryaev [37] as our

main references.

Let ξ and η be random elements on a probability space (Ω,F ,P) with values in

two measurable spaces (S,S ) and (T,T ) respectively. Suppose that the conditional

expectation E(ξ | η) = E(ξ | σ(η)) exists, which is the case if E|ξ |< ∞.

Let F ∈F and let G ⊆F be a σ -algebra. The conditional probability of the event F ,

with respect to G , is the random variable P(F | G ) = E(IF | G ). From the general prop-

erties of conditional expectations we conclude that P(F | G ) = P(F) iff F is independent

of G , and P(F | G ) = IF iff F = G (a.s), for G ∈ G . It is also clear that 0≤ P(F | G )≤ 1

(a.s.) and by the monotone convergence theorem for conditional expectation it follows

that for the disjoint sets F1,F2, . . . ∈F we have

P(
⋃

i

Fi | G ) = ∑
i

P(Fi | G ) (a.s). (1.23)

Despite the validity of the relation (1.23) conditional probability is not in general a mea-

sure. The problem is that the equation in (1.23) is satisfied only (a.s.) and exceptional sets

on which it does not hold may accumulate to form a set of non-zero P-measure (see Sec-

tion 2.7. in [37]). The usual remedy for that problem is introduction of regular conditional

distributions. We first define a probability kernel (see Chapter 1 in [25]).

Definition 1.3.1. A mapping µ : T ×S→ ÅR+ is the probability kernel from T to S if

i) for t ∈ T fixed, B 7→ µ(t,B), B ∈S , is a probability measure on (S,S ) and

ii) for B ∈S fixed, t 7→ µ(t,B), t ∈ T , is a T -measurable function.

The definition of regular conditional distribution is given next (see Chapter 6 in [25]).

Definition 1.3.2. Let ξ and η be random elements on a probability space (Ω,F ,P) with

values in measurable spaces (S,S ) and (T,T ), respectively. The regular conditional

11



Prerequisites Convergence of conditional distributions

distribution of ξ , given η , is the function µ : T × S→ R+ such that µ is a probability

kernel from T to S and

µ(η(ω),B) = P(ξ ∈ B | η)(ω), ω ∈Ω, B ∈S (a.s.) (1.24)

It is clear from the definition of the probability kernel that Definition 1.3.2 states that

i) for each ω ∈ Ω the function B→ µ(η(ω),B), B ∈S is a probability measure on

(S,S ) and

ii) For each B ∈S the function ω→ µ(η(ω),B) is a version of the conditional prob-

ability P(ξ ∈ B | η), i.e. (1.24) holds.

Note that the regular conditional distribution of ξ , given η , is a random measure on

(S,S ). If ξ is σ(η)-measurable, then the regular version of P(ξ ∈ B | η) is I{ξ∈B} and if

ξ is independent of σ(η) the regular version of P(ξ ∈ B | η) is P(ξ ∈ B). Observe that

Definition 1.3.2 includes the definition of the regular conditional distribution of ξ , given

G , as it is a special case when η is the identity map from (Ω,F ) to (Ω,G ).

The existence of the regular conditional distribution is guaranteed if (S,S ) is a Borel

space (See Theorem 6.3 in [25] or Theorem 5, Section 2.7. in [37]). The measurable

spaces (S,S ) and (T,T ) are Borel isomorphic if there exists a bijection f : S → T

such that both f and f−1 are measurable. (S,S ) is a Borel space if it is Borel iso-

morphic to a Borel subset of R (see Definition 9, Section 7 in [37]). Note that every

Borel space is countably generated, meaning that its σ -algebra is countably generated.

Clearly, the prime example of Borel space is (R,B(R)), but also (Rn,B(Rn)), n ∈ N,

and (R∞,B(R∞)). Consequently, for random elements with values in all of those spaces

regular conditional distributions exist.

Conditional distributions (we always use regular versions for which (1.24) holds) are

useful for calculations of both conditional and unconditional expectations. The next the-

orem shows how to do that in a fairly general setting (Theorem 6.4. in [25]). It is often

referred to as a disintegration theorem as it shows how to disintegrate measures on product

space into their one-dimensional components.

Theorem 1.3.3. Let (S,S ) and (T,T ) be two measurable spaces, G ⊆F σ -subalgebra

of F and ξ a random element in S such that P(ξ ∈ · | G ) has a regular version ν . Further

12
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consider an G -measurable random element η in T and a measurable function f on S×T

with E| f (ξ ,η)|< ∞. Then

E( f (ξ ,η) | G ) =
∫

f (s,η)ν(ds) (a.s.). (1.25)

If we apply the previous Theorem on the case where G = σ(η) and µ is a regular

conditional distribution on T ×S such that P(ξ ∈ · | η) = µ(η , ·) then from (1.25) follows

E( f (ξ ,η) | η) =
∫

f (s,η)µ(η ,ds) (a.s.). (1.26)

Integration of the last equality yields

E f (ξ ,η) = E

∫

f (s,η)µ(η ,ds). (1.27)

Note, if ξ and η are independent, then µ(η , ·) = Pξ (·). In that case (1.26) becomes

E( f (ξ ,η) | η) =
∫

f (s,η)Pξ (ds) (a.s.). (1.28)

The right hand side of (1.28) is also equal (a.s.) to Eξ ( f (ξ ,η)), where we denote with Eξ

the expectation in respect of the probability measure Pξ defined on S. Note that the only

random element on the right-hand side of (1.28) is η .

Next we give the definition of conditional independence (see Chapter 6 in [25]).

Definition 1.3.4. Let F1,F2, . . . and G be σ -subalgebras of F . Then (Fi)
∞
i=1 are con-

ditionally independent, given G , if

P
(

k
⋂

j=1

Bi j
| G

)

=
k

∏
j=1

P
(

Bi j
| G

)

(a.s.), for all Bi j
∈Fi j

,

for j = 1, . . . ,k, for all k ∈ N and all k-subsets {i j : 1 ≤ j ≤ k} of N. We use the symbol

|= G to denote (pairwise) conditional independence, given G .

The random elements (ξi)
∞
i=1 are conditionally independent if induced σ -algebras

σ(ξi), i ∈ N, are conditionally independent.

Note, if ξi in the previous definition are random variables with values in R then the

definition of the conditional independence, given an σ -algebra G , reduces to

P
(

n
⋂

i=1

{ξi < xi} | G
)

=
n

∏
i=1

P
(

ξi < xi | G
)

(a.s.), (1.29)

13



Prerequisites Convergence of conditional distributions

for all (x1, . . . ,xn) ∈Rn (see Theorem 1 and Corollary 1, Section 7.3 in Chow and Teicher

[4]).

Further note that any random elements ξi that are G -measurable are also conditionally

independent, given G . If the ξi are independent of G then their conditional indepen-

dence, given G , is equivalent to ordinary independence. By using regular conditional

distributions some statements from unconditional independence may be translated to the

conditional case. Thus, from Lemma 3.8 in [25] it follows that σ -algebras F1,F2, . . .

(contained in F ) are conditionally independent, given G , iff

(F1, . . . ,Fn) |= G Fn+1,

for all n ∈ N. On the other hand, random variables that are independent can lose their

independence under conditioning, but also random variables that are not independent may

become independent under conditioning (see Section 7.3. in [4]).

Suppose that (Xn), n ∈N, and X are random variables on (Ω,F ,P). By Theorem 6.3.

from [25] we conclude that there exists a sequence µn, n∈N, and µ of regular conditional

distributions of Xn, n ∈ N, and X , respectively, given G . Therefore, for ω ∈ Ω, µn(ω, ·),
n ∈ N, and µ(ω, ·) are probability measures on (R,B(R)) and for B ∈B(R) we have

µn(ω,B) = P(Xn ∈ B | G )(ω), n ∈ N (a.s.) (1.30)

and

µ(ω,B) = P(X ∈ B | G )(ω) (a.s.). (1.31)

Convergence of the sequence of probability measures µn(ω, ·), n ∈ N, to µ(ω, ·) holds

if for all µ-continuity Borel sets B, µn(ω,B)→ µ(ω,B) (see Definition 3, Section 3.1.

in [37]). Taking into account (1.30) and (1.31) and the fact that Borel σ -algebra is gen-

erated by rectangles of the form (−∞,x], x ∈ R, we may say that (regular) conditional

distributions of Xn converge to the (regular) conditional distribution of X if P(Xn ≤ x |
G )(ω)→ P(X ≤ x | G )(ω) (a.s.), as n→ ∞ for all x ∈ R that are continuity points of FX .

For the purpose of easier referencing we will refer to such convergence of conditional dis-

tributions as conditional convergence in distribution with respect to G . This is the content

of the next definition.

14
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Definition 1.3.5. Let X and (Xn)
∞
n=1 be random variables on a probability space (Ω,F ,P)

and G σ -subalgebra of F . The sequence (Xn) converges G -conditionally in distribution

to the random variable X if for all continuity points x of the distribution function F of X

E(I{Xn≤x} | G )→ E(I{X≤x} | G ) (a.s.), n→ ∞.

We write in that case Xn
G−d−−−→ X . If G = σ(Y ), for some random element Y on Ω, we

write Xn|Y d−→ X |Y .

It is easy to verify that conditional convergence in distribution implies unconditional

convergence in distribution. Namely, if Fn are distribution functions of Xn, n ∈ N, for x a

continuity point of F we have, by the dominated convergence theorem,

lim
n→∞

Fn(x) = lim
n→∞

E(I{Xn≤x}) = lim
n→∞

E(E(I{Xn≤x} | G ))

= E( lim
n→∞

E(I{Xn≤x} | G )) = E(E(I{X≤x} | G )) = F(x).

For some details on this topic see also Nowak and Zieba [31]. The next two examples

show how to put together objects and concepts introduced in this section.

Example 1.3.6. Let X1,X2, . . . be a sequence of independent normal random variables,

Xi ∼ N(0,1), i ∈ N, and let Y be a random variable with values in [0,∞) defined on the

same probability space and independent of (Xi). Define the new sequence of random vari-

ables Vi =Y Xi, i ∈N. By the central limit theorem for i.i.d random variables (Theorem 3,

Section 3.3. in [37]) we know that ∑i Xi/
√

n converges in distribution to a random variable

with the normal cumulative distribution function Φ. We would like to conclude the same

for the ∑iVi/
√

n but, since Vi are clearly not independent, we can not use unconditional

central limit theorems involving independent random variables.

Although Vi are not independent they are conditionally independent with respect to

σ -algebra σ(Y ). To show that we will use the characterization (1.29) and relation (1.28)

with ξ = (X1, . . . ,Xn) and η = Y . For n ∈ N and (x1, . . . ,xn) ∈ R
n we have

P
(

n
⋂

i=1

{Vi < xi} | Y
)

= E
(

I⋂n
i=1{Y Xi<xi} | Y

)

=
∫

Rn

n

∏
i=1

I{siY< xi}Pξ (d(s1, . . . ,sn)) (a.s.).

By the Fubini theorem and (1.28) the last integral above is (a.s.) equal to

n

∏
i=1

∫

R

I{sY<xi}PXi
(ds) =

n

∏
i=1

P
(

Vi < xi | Y
)

.

15
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Hence, Vi are conditionally independent with respect to σ -algebra σ(Y ) and identically

distributed with Vi|Y ∼ N(0,Y 2).

Next we show ∑iVi/
√

n converges σ(Y )-conditionally in distribution (see Definition

1.3.5.). Let n ∈ N and x ∈ R be a continuity point of the distribution function of Y . Use

again (1.28) to get

E
(

I{∑n
i=1 Y Xi/

√
n≤ x} | Y

)

=
∫

Rn
I{Y ∑

n
i=1 si/

√
n≤ x}Pξ (d(s1, . . . ,sn)) (a.s.). (1.32)

Note that the only random object on the right hand side of (1.32) is Y (ω), ω ∈ Ω. Take

ω ∈Ω such that Y (ω)> 0. For such ω the integral in (1.32) is equal to

∫

Rn
I{∑n

i=1 si/
√

n≤ x/Y (ω)}Pξ (d(s1, . . . ,sn))

= Pξ

(

{(x1, . . . ,xn) ∈ R
n :

n

∑
i=1

xi/
√

n ∈ (−∞, x/Y (ω))}
)

. (1.33)

Let Z be a normal random variable, Z ∼N(0,1), such that ∑i Xi/
√

n
d−→ Z. Choose Z such

that it is defined on the same probability space as (Xi) and Y and Z is independent of Y .

Then the expression in (1.33) is converging to

Φ

( x

Y (ω)

)

= PZ((−∞, x/Y (ω))),

as n→ ∞. Use again (1.28) to get

PZ((−∞, x/Y (ω))) =
∫

R

I{s≤ x/Y (ω)}PZ(ds) = E
(

I{ZY≤x} | Y
)

(ω), (1.34)

for almost all ω such that Y (ω) > 0. For ω ∈ Ω such that Y (ω) = 0 from (1.32) we

conclude that the integral on the right-hand side is converging to δ0, and the probability

measure with all mass concentrated in 0. But then use again (1.28) to get

δ0 = PZ(0≤ x) =
∫

R

I{0≤x}PZ(ds) = E
(

I{ZY≤x} | Y
)

(1.35)

for almost all ω such that Y (ω) = 0. From (1.32) - (1.35) we conclude that

E
(

I{∑n
i=1 Y Xi/

√
n≤x}

)

→ E
(

I{ZY≤x} | Y
)

(a.s.)

which means

∑iY Xi√
n
|Y d−→ ZY |Y.

From the obtained conditional convergence in distribution with respect to Y we conclude

that unconditional convergence in distribution of ∑iY Xi/
√

n to Y Z also holds. □
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Example 1.3.7. Let Y be a positive random variable such that Y ≤ M (a.s.), M > 0.

Further, let Xn, n ∈ N, be a binomial random variable defined conditionally with respect

to σ(Y ), such that Xn|Y ∼ B(n, pn), pn :=Y/n. We will determine σ(Y )-conditional limit

in distribution of (Xn) (in the sense of Definition 1.3.5).

Note first that we can choose n ∈N, such that pn ≤ 1 (a.s.) and then we determine the

conditional limit, from that point on, of the sequence (Xn). Alternatively, we can define

pn = min{Y/n,1} to have a proper situation for the definition of binomial random vari-

ables, but we will omit the minimum from the definition of pn to keep notation simpler.

Let Un ∼ U(0,1), n ∈ N, be a sequence of independent uniform random variables

defined on the same probability space as Y and independent of Y . We define

Xn =
n

∑
i=1

I(Ui ≤ pn)

and then show Xn|Y ∼ B(n, pn). We denoted by I(Ui ≤ pn) indicator of the set {Ui ≤ pn}
so I(Ui ≤ pn) = I{Ui≤pn}. First, note that I(Ui ≤ pn) are Bernoulli random variables,

conditionally on Y . For n ∈ N and i ∈ {1,2, . . . ,n} we use the relation (1.28) to get

P(I(Ui ≤ pn) = 0 | Y ) = E
(

I(I(Ui ≤ pn) = 0) | Y
)

=
∫

[0,1]
I(I(u≤ Y (ω)/n) = 0)PUi

(du) (a.s.). (1.36)

Similar to the situation in Example 1.3.6, the only random object in the last integral of

(1.36) is Y . Therefore (1.36) is equal to

∫ 1

0
I(I(u≤ Y (ω)/n) = 0)du =

∫ Y (ω)

0
du = pn = Y/n (a.s.).

In the same way we show P(I(Ui ≤ pn) = 1 | Y ) = 1− pn (a.s.).

Next we show that for n ∈ N the random variables I(U1 ≤ pn), . . . , I(Un ≤ pn) are

σ(Y )-conditionally independent (see Definition 1.3.4). We will do that by showing that

for all (x1, . . . ,xn) ∈ {0,1}n it holds that

P
(

n
⋂

i=1

{I(Ui ≤ pn) = xi} | Y
)

=
n

∏
i=1

P
(

I(Ui ≤ pn) = xi | Y
)

(a.s.). (1.37)

Let (x1, . . . ,xn) ∈ {0,1}n. Then we have by (1.28), the independence of Ui, and Fubini
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theorem

P
(

n
⋂

i=1

{I(Ui ≤ pn) = xi} | Y
)

= E
(

I(
n
⋂

i=1

{I(Ui ≤ pn) = xi}) | Y
)

=
∫

[0,1]n

n

∏
i=1

I(I(ui ≤ Y/n) = xi)P(U1,...,Un)(d(u1, . . . ,un)) (a.s.)

=
n

∏
i=1

∫

[0,1]
I(I(ui ≤ Y/n) = xi)dui (a.s.),

which proves (1.37).

Finally, we show Xn|Y ∼ B(n, pn) by proving that for n ∈ N and i, j ∈ {1, . . . ,n} the

random variable I(Ui ≤Y/n)+ I(U j ≤Y/n) is binomial, conditionally on Y . The general

case then follows by induction. Let k ∈ {0,1,2}. Then we have

P
(

I(Ui ≤ Y/n)+ I(U j ≤ Y/n) = k | Y
)

= E
(

I(I(Ui ≤ Y/n)+ I(U j ≤ Y/n) = k) | Y
)

=
∫

[0,1]2
I(I(u1 ≤ Y/n)+ I(u2 ≤ Y/n) = k)PU1,U2

(d(u1,u2)) (a.s.)

=
∫ 1

0

∫ 1

0
I(I(u1 ≤ Y/n)+ I(u2 ≤ Y/n) = k)du1du2 (a.s.). (1.38)

For k = 0 the last integral in (1.38) is equal to

∫ 1

0

∫ 1

0
I(I(u1 ≤ Y/n) = 0, I(u2 ≤ Y/n) = 0)du1du2

=
∫ Y (ω)/n

0

∫ Y (ω)/n

0
du1du2 =

(Y (ω)

n

)2

= (pn)
2 (a.s.).

For k = 1 we have two possibilities. The first one is

∫ 1

0

∫ 1

0
I(I(u1 ≤ Y/n) = 1, I(u2 ≤ Y/n) = 0)du1du2

=
∫ 1

Y (ω)/n

∫ Y (ω)/n

0
du1du2 = (pn)(1− pn) (a.s.)

and the second one with I(u1 ≤ Y/n) = 0 and I(u2 ≤ Y/n) = 1 we treat similarly. Hence

P
(

I(Ui ≤ Y/n)+ I(U j ≤ Y/n) = 1 | Y
)

= 2pn(1− pn) (a.s.).

It is clear that for k = 2 the last integral in (1.38) is (a.s.) equal to (1− pn)
2.

We conclude that for n ∈ N and k ∈ {1,2, . . . ,n} we have

P
(

Xn = k | Y
)

(ω) =

Ç

n

k

å

(Y (ω)

n

)k(

1− Y (ω)

n

)n−k

(1.39)
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for all ω ∈ A, P(A) = 1. We can choose A such that Y (ω) < M, for ω ∈ A. Note that

Y (ω) = λω ∈ (0, ∞) and npn(ω)→ λω , n→ ∞, for ω ∈ A. By the Poisson theorem (see

Section 1.6. in [37]) it follows that for ω ∈ A

Ç

n

k

å

(Y (ω)

n

)k(

1− Y (ω)

n

)n−k

→ Y (ω)k

k!
e−Y (ω), n→ ∞,

for all k = 0,1,2, . . .. We conclude Xn|Y d−→ P|Y , where P is a (discrete) Poisson random

variable with parameter Y . □

Let us now turn our attention back to the permutation distribution R̂n(t) defined in

(1.2). Recall, Gn is the group of permutations of the set {1,2, . . . ,n}. Our aim is to frame

the permutation distribution within the concept of conditional distributions.

Note, for n ∈ N, (Gn,P(Gn)) is the Borel space (Gn is a finite set). Let η = Xn

be a random vector with values in R
n, n ∈ N, and ξ = Gn a uniform random variable

(discrete) on Gn, independent of (Xn). Theorem 6.3. in [25] implies that then there

exists regular conditional distribution of Gn, given Xn. Let xn = (x1, . . . ,xn) ∈ R
n and

π = (πn(1), . . . ,πn(n)) ∈Gn. Suppose that the action of permutation πn on xn is given by

πnxn = (xπn(1), . . . ,xπn(n)). Finally, let Tn be a real statistic defined on R
n.

Define function ft : Rn×Gn→ R, t ∈ R, by

ft(πn,x
n) = I{Tn(πnxn)≤t}

Then, because of the independence between (Xn) and Gn, by (1.28) we get

P(Tn(GnXn)≤ t | Xn) = E(I{Tn(GnXn)≤ t} | Xn) =
∫

Gn

I{Tn(gXn)≤ t}PGn
(dg) (a.s.).

PGn
is a discrete probability measure on Gn such that PGn

(π) = 1/n!, for π ∈ Gn. Note,

Gn is a disjoint union of individual permutations π ∈Gn. Therefore

P(Tn(GnXn)≤ t | Xn) =
1

n!
∑

π∈Gn

I{Tn(πXn)≤ t} (a.s.). (1.40)

We conclude that the permutation distribution R̂n(t) may be regarded as a conditional

distribution of a given statistic with respect to σ(Xn). If we can prove, as we will do in

the next chapter, that

P(Tn(GnXn)≤ t | Xn)→Φ(t) (a.s.),

19



Prerequisites Convergence of conditional distributions

we will get σ(Xn)-conditional convergence in distribution of (Tn) towards Φ, in the sense

of Definition 1.3.5. As already noted, convergence in distribution then follows, and be-

cause the limit is deterministic we can conclude that R̂n(t)
P−→ Φ(t). The obtained con-

vergence in probability implies the convergence of the quantiles r̂(1−α) of R̂n(t) toward

Φ−1(1−α) (see Lemma 1.1.1 (ii)). Note that stated σ(Xn)-conditional convergence in

distribution is not exactly the same as defined in Definition 1.3.5. because of indexation

of G by n. The difference is notational as we have

E(I{Tn(GnXn)≤ t} | Xn) = E(I{Tn(GnXn)≤ t} | σ(X)),

because of iid assumption on (Xn). σ(X) is the σ -algebra generated by the whole process

(X1,X2, . . .).

The above considerations show that the permutation distribution R̂n(t) of the statistic

Tn can be regarded as a conditional distribution of the permuted statistic with respect to

σ -algebra σ(Xn) and the obtained convergence results may be interpreted in the condi-

tional settings. This point of view is quite common in the literature on permutation tests.

For example, Romano in [35] shows that the main difference between permutation tests

and some bootstrap procedures is in the character of critical values of the related tests.

Namely, in the case of bootstrap tests critical values relate to unconditional distributions,

whereas in the case of permutation tests critical values relates to conditional distributions.

More general treatment of this point of view can be found in Janssen and Pauls [23].

Among other things, the authors there prove the equivalence of the conditional and un-

conditional tests, that is to say the corresponding critical values, under the condition of

convergence of the conditional distribution of the permuted (resampled) statistic towards

the distribution of the given statistic (see Lemma 1 in [23]). Note also that conditional

interpretation of the permutation distribution shows that Theorem 1.1.2 gives characteri-

zation of the conditional convergence in probability in terms of the unconditional (bivari-

ate) convergence in distribution. Similar results were obtained recently by BÈucher and

Kojadinovic [1] in the bootstrap context.
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1.4. TAIL INDEPENDENCE

Let (Xi,Yi), i = 1,2, . . ., be a sequence of i.i.d. bivariate random vectors with the joint

distribution F and the same marginal distributions FX = FY . The (upper) tail dependence

coefficient is defined as

χ = lim
u→u∗

P(X1 > u | Y1 > u)

where

u∗ = sup{x | FX(x)< 1}

is the upper limit of the support of F . Sequences (Xi) and (Yi) are tail independent if

χ = 0 and otherwise they are tail dependent. Obviously, tail independence follows from

the assumption of independence between X1 and Y1.

For the general random vector (X ,Y ) with marginals FX and FY (not necessarily equal)

let F←X (t) = inf{x : FX(x)≥ t} and F←Y (t) = inf{x : FY (x)≥ t}, t ∈ (0,1). The upper tail

dependence coefficient is defined as

χ = lim
t→1−

P(X > F←X (t) | Y > F←Y (t)) ,

whenever this limit exists (see Frahm et al. [13] or Embrechts et al. [10]).

The notions of tail independence and the tail dependence coefficient are often studied

within the framework of extremal dependence (see for example Coles et al. [7] or Frahm

et al. [13]). In that context it is often the case that further investigations and examples

are done within the framework of copulas. Standard references for copula functions are

Nelsen [30] and Joe [24].

Following the exposition from [7] for the random vector (X ,Y ) with the distribution

function F and continuous marginal distributions FX and FY we can define uniform ran-

dom variables U = FX(X) = F(X ,∞) and V = FY (Y ) = F(∞,Y ) and conclude that there

exists the unique copula function C such that

F(x,y) =C(FX(x),FY (y)). (1.41)

Recall, the copula is a cumulative distribution function C : [0,1]× [0,1]→ [0,1] whose

margins are uniformly distributed on [0,1]. For continuous FX and FY , the related copula
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function is unique (Sklar’s theorem). Copula function contains information on mutual

dependence between X and Y and it is invariant to monotone transformations of their

marginal distributions. We can use the copula representation to define tail dependence

coefficient after simple calculation. Namely, for u ∈ [0,1]

P(V > u |U > u) =
P(V > u,U > u)

P(U > u)
=

1−2u+C(u,u)

1−u

= 2− 1−C(u,u)

1−u
∼ 2− logC(u,u)

logu
, (1.42)

as u→ 1. Therefore, for u ∈ [0,1] we can define function χ(u) as

χ(u) = 2− logP(U ≤ u,V ≤ u)

logP(U ≤ u)

and the tail dependence coefficient as

χ = lim
u→1

χ(u).

The function χ(u) can be regarded as a quantile-dependent measure of dependence. The

next example, taken from [7], provides a basic insight into the value of the tail dependence

coefficient as a measure of dependence in two extreme situations.

Example 1.4.1. Let us first suppose that X and Y are independent. Then we know that

F(x,y) = FX(x)FY (y) and so C(u,v) = uv on [0,1]× [0,1]. In this case we know that

χ = 0, but we note that χ(u) = 0, for all u ∈ [0,1].

Next, let us suppose that X and Y are perfectly dependent i.e. Y = X P-(a.s.). Then we

have C(u,v) = min{u,v}. In this case χ(u) = 1 for all u ∈ [0,1] and so χ = 1. □

To gain further insight into the characteristics of the dependence function χ(u) we present

some more examples. It turns out that extreme-value copulas offer an interesting class of

examples in that regard. We follow discussion from Gudendorf and Segers [15] (similar

details can be found in [7]).

Let Xi = (Xi1, . . . ,Xid), i ∈ {1, . . . ,n}, be a sample of d-dimensional i.i.d. random

vectors with the distribution function F , marginal distribution functions F1, . . . ,Fd and

copula CF . Suppose F is continuous. We consider vector of componentwise maxima

Mn = (Mn1, . . . ,Mnd), where Mn j = max{X1 j, . . .Xn j}, j ∈ {1, . . . ,d}.
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Then the copula Cn of Mn is given by

Cn(u1, . . . ,ud) =CF(u
1/n

1 , . . . ,u
1/n

d )n, (u1, . . . ,ud) ∈ [0,1]d.

We say that the copula C is an extreme-value copula if there exists a copula CF such that

CF(u
1/n

1 , . . . ,u
1/n

d )n→C(u1, . . . ,ud), n→ ∞,

for all (u1, . . . ,ud) ∈ [0,1]d (Definition 2.1 in [15]). Closely related to extreme-value

copulas are max-stable copulas (Definition 2.2. in [15]): a d-variate copula C is max-

stable if

C(u1, . . . ,ud) =C(u
1/m

1 , . . . ,u
1/m

d )m

for every integer m > 0 and all (u1, . . . ,ud) ∈ [0,1]d . We can state the following theorem

(Theorem 2.1. in [15]).

Theorem 1.4.2. A copula is an extreme-value copula if and only if it is max-stable.

The family of extreme-value copulas coincides with the set of copulas of extreme value

distributions (for details see [15]). Recall, the d-dimensional probability distribution func-

tion G is an extreme value distribution if there exists a sequence of constants an,i > 0 and

bn,i ∈ R, n ∈ N, i ∈ {1,2, . . . ,d}, such that G is a limit with non-degenerated margins of

the sequence

(
Mn,1−bn,1

an,1
, . . . ,

Mn,d−bn,d

an,d
).

It is known what the possible extreme value distributions are. We have the following

theorem (Theorem 1.1.3. in de Haan and Ferreira [16]) for d = 1.

Theorem 1.4.3. The class of extreme value distributions is Gγ(ax+ b), x ∈ R, a > 0,

b ∈ R, where

Gγ(x) = exp
(

− (1+ γx)−1/γ
)

,

with γ ∈ R and where for γ = 0 the right-hand side is interpreted as exp(−e−x).

Note that the case γ = 0 yields a Gumbel distribution (or double exponential).

We present the following examples from [7].
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Figure 1.1: Results of 20.000 simulations of the Gumbel-Hougaard copula. On the left:

copula with parameter 1.1; on the right: copula with parameter 2.
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Example 1.4.4. Let us look at the bivariate logistic extreme-value copula or the Gumbel-

Hougaard copula defined as

C(u,v) = exp{−[(− logu)δ +(− logv)δ ]1/δ}, δ ∈ [1,∞).

The parameter δ determines the strength of dependence. For δ = 1 we get independence,

while perfect dependence is attained for δ → ∞. After an easy calculation we see that

χ(u) = 2−21/δ , which means that the dependence function χ(u) does not depend on u. It

turns out that the dependence function χ(u) does not depend on u for any other bivariate

extreme-value copula (see Section 4.3. in [7] or Section 4 in [15]). Obviously, if the

dependence structure is described by the Gumbel-Hougaard copula the tail dependence

coefficient χ is equal to 2− 2α . In Figure 1.1 we show simulations of the Gumbel-

Hougaard copula.

Another example of dependence structure is given by the Gaussian dependence model.

Let random vector (X ,Y ) have bivariate normal distribution with the correlation coeffi-

cient ρ . Then marginal distributions of X and Y are also normal and the copula function

is given by

C(u,v) =
∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

(1−ρ2)
exp{− 1

2(1−ρ2)
(s2−2ρst + t2)}dsdt.

In Figure 1.2 we show realizations of the Normal (Gaussian) copula.

We note that for ρ < 1 random variables X and Y are tail independent, while for ρ = 1

they are dependent (see [7]). This copula offers various level of dependence structure

within the class of tail independent variables. From the definition of tail independence we
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Figure 1.2: Results of 20.000 simulations of the Normal copula. On the left: correlation

parameter 0.25; on the right: correlation parameter 0.5.
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can conclude that the tail dependence coefficient χ is equal to zero, for all ρ < 1. How-

ever, as it is shown in [7], the dependence function χ(u) has strictly positive values for

positive ρ up to the neighbourhoods very close to u = 1. If the tail dependence coefficient

is the only measure of tail dependence, the above-mentioned behaviour of the dependence

function χ(u) for the Gaussian dependence structure may be a problem as any estimate

of tail dependence coefficient will be derived from observation for which u < 1. □

The rich structure of dependence within tail independence models shows that the tail

dependence coefficient χ is unable to provide information on the strength of that de-

pendence. To overcome that problem the authors in [7] introduce new measure of tail

dependence Åχ . By analogy with the definition of dependence function χ(u) we first de-

fine

Åχ(u) =
2logP(U > u)

logP(U > u,V > u)
−1 =

2log(1−u)

log ÅC(u,u)
−1, u ∈ [0,1]

and then the dependence coefficient Åχ as

Åχ = lim
u→1

Åχ(u)

for which −1 < Åχ ≤ 1. We denoted by ÅC the tail copula function. It is related to the

copula function by the relation

ÅC(u,v) = 1−u− v+C(u,v).

Note that Åχ = 1 for all tail dependent random variables, i.e. copulas that describe their

dependence structure. That is the content of the next lemma.
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Lemma 1.4.5. Let X and Y be continuous random variables and C the copula associated

with them. If X and Y are tail dependent then their tail dependence coefficient Åχ is equal

to 1.

Proof. As already discussed, after transforming the marginal distributions of X and Y to

uniform distribution the tail dependence coefficient χ is then defined as

χ = lim
u↑1

ÅC(u,u)

1−u
. (1.43)

Suppose χ > 0. We know that (1.43) is equivalent to the fact that for every ε > 0 there

exists δ > 0 such that 1− u < δ implies | ÅC(u,u)/(1− u)− χ| < ε , u ∈ (0,1). Take

ε = χ/2. Then exists δχ > 0 such that for u satisfying 1−u < δχ holds

−χ

2
<

ÅC(u,u)

1−u
−χ <

χ

2

i.e.

χ

2
<

ÅC(u,u)

1−u
<

3χ

2
. (1.44)

Note, for u ∈ (0,1)

log ÅC(u,u) = log
(

ÅC(u,u)
1−u

1−u

)

= log
ÅC(u,u)

1−u
+ log(1−u).

Use the right inequality in (1.44) to conclude that for u ∈ (1−δχ ,1) we have

log ÅC(u,u)< log
3χ

2
+ log(1−u).

By the definition of the tail coefficient Åχ then we have

Åχ ≥ lim
u↑1

2log(1−u)

K + log(1−u)
−1, (1.45)

where K = log(3χ/2) is a constant. As the limit in (1.45) is undetermined use the

L’Hospital rule to conclude Åχ ≥ 1. Similarly, by using the left inequality in (1.43) we

conclude Åχ ≤ 1. Hence Åχ = 1. ■

Example 1.4.6. Let us calculate the value of the coefficient Åχ for the dependencies we

already analysed in the above examples.

If X and Y are perfectly dependent then ÅC(u,v) = 1−u− v+min{u,v}. Therefore,

Åχ(u) =
2log(1−u)

log(1−u)
−1 = 1
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and so Åχ = 1 in this case. When X and Y are independent ÅC(u,v) = 1− u− v+ uv =

(1−u)(1− v) and so Åχ = 0.

The tail dependence is obtained for the Gumbel-Hougaard copula when the parameter

δ > 1. By Lemma 1.4.5 we conclude that Åχ = 1 for such δ . Clearly, Åχ = 0 for δ = 1.

Finally, for the Gaussian copula C with the correlation coefficient ρ we have

ÅC(u,v) =
∫ ∞

Φ−1(u)

∫ ∞

Φ−1(v)

1

2π
√

(1−ρ2)
exp{− 1

2(1−ρ2)
(s2−2ρst + t2)}dsdt.

It turns out that in this case Åχ = ρ (see [7]). Thus, the Gaussian copula offers an example

of a parametric model that covers a wide range of dependencies within the class of tail

independent models. □

To summarize, the tail dependence coefficient χ is equal to zero in the case of tail in-

dependence, while it is in (0,1] in the tail dependence case. Therefore, the tail dependence

coefficient χ is useful for detecting tail independence. However, the measure of depen-

dence Åχ recovers the strength of dependence in the tail independence case as Åχ ∈ (−1,1)

in that case. In the words of the authors in [7]: ª{χ > 0, Åχ = 1} signifies tail dependence,

in which case the value of χ determines a measure of the strength of dependence within

the class; alternatively, {χ = 0, Åχ < 1} signifies tail independence, in which case the value

of Åχ determines the strength of dependence within this classº.

Tail independence can be analysed in some other frameworks besides the one pre-

sented above. Instead of the transformation of continuous marginals to the uniform dis-

tribution one can define, for a random vector (X ,Y ) with the distribution function F , new

random variables Z =−1/ logFX(X) and W =−1/ logFY (Y ). In that case Z and W have

unit FrÂechet distribution, meaning that P(Z ≤ z) = exp(−1/z), z ∈ (0,∞). For tails of Z

and W we have the asymptotic estimate P(Z > z) = P(W > z)∼ 1/z, for z→ ∞. Ledford

and Tawn in [26] consider the model of tail dependence described by

P(Z > z,W > z)∼ z−1/ηL(z)

for z→ ∞, η ∈ [1/2,1] the tail dependence coefficient and L a slowly varying function

at infinity (L(tz)/L(z)→ 1, as z→ ∞, and t > 0 fixed). Subsequently, the authors in

Peng [32] and Draisma et al. [9] provided a theoretical background for the model using a

variant of the second order condition imposed on the copula survivor function of Y and Z.
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The model describes tail dependence by the parameter η ∈ (0,1] such that

P(Y > u,Z > u)∼ L(u)P(Z > u)1/η , (1.46)

for u→ ∞, where L is a slowly varying function at infinity. Observe, for χ > 0, one

necessarily has η = 1. For η = 1/2, Y and Z are sometimes called near independent

(see [26], or Charpentier and Segers [2] in a slightly different context).

Links with coefficients χ and Åχ are given by (see Heffernan [17])

Åχ = 2η−1

and

χ =



























c, Åχ = 1, and L(t)→ c, as t→ ∞

0, Åχ = 1, and L(t)→ 0, as t→ ∞

0, Åχ < 1,

where c > 0. Calculation of those parameters for various copula functions can be found

in Heffernan [17]. A similar list of examples in a slightly different context can be found

in [2]. Below we give few examples from that paper.

Example 1.4.7. A copula C is Archimedean if it is of the form

C(u1, . . . ,ud) = φ−1(φ(u1)+ · · ·+φ(ud)), (u1, . . . ,ud) ∈ [0,1]d,

where the Archimedean generator φ : [0,1]→ [0,∞] is convex, decreasing function with

φ(0) = 0 and φ−1 denotes the generalized inverse of φ (see [2]). By using this para-

metric representation of Archimedean copulas the authors in [2] define slightly different

dependence measures. Define the coefficient θ1 as

θ1 =− lim
s↓0

sφ ′(1− s)

φ(1− s)

when this limit exists. Then, if θ1 > 1, the upper tail exhibits tail dependence, while if

θ1 = 1, the upper tail exhibits tail independence. The tail independence is further analysed

dependent on the value of −φ ′(1) (for details and connections with other tail dependence

measures see [2]).

The Archimedean generator of the Gumbel-Hougaard copula is given by φ(t)= (− log t)θ ,

θ ∈ [1,∞). The tail independent case is attained for θ = 1, which confirms the value of
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−φ ′(1), which is equal to 1 in this case. It is worth noting that the Gumbel-Hougaard

copula is the only extreme-value copula that is also an Archimedean copula.

Another example of an Archimedean copula is the Joe copula (no. 6 in Table 1 in [2])

with the generator φ(t) = − log(1− (1− t)θ ), θ ∈ [1,∞). The Joe copula shares tail

independence characteristics with the Gumbel-Hougaard copula.

A slightly more delicate member of the Archimedean family of copulas is, for exam-

ple, the one defined by the Archimedean generator function φ(t) = − log(θ t +(1−θ)),

θ ∈ (0,1] (no. 7 in Table 1 in [2]). In this case we get near independence (see section 4

in [2]). □

The theory of estimation of tail dependence is very wide and there are many non-

parametric estimators of tail dependence (see for example Schmidt and StadtmÈuler [36]).

Within that theory the diagnostics of tail independence are interesting in their own right.

Falk and Michel in [12] argue that testing for tail independence (i.e. tail dependence) is

important in data analysis of extreme events. Note, for bivariate extreme-value copulas

the marginal random variables are either independent or tail dependent (see the definition

of the coefficient of upper tail dependence in [15]).
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2. THE PERMUTATION TEST OF TAIL

DEPENDENCE - I.I.D. DATA

In this chapter we present a permutation test of tail dependence. The underlying idea is to

analyse a natural nonparametric estimator of the parameter χ , which can be constructed

based on the number of joint upcrossings of the random variables Yi and Zi over a high

threshold, that is
n

∑
i=1

I{Yi>u′n,Zi>v′n} (2.1)

for some suitable increasing sequences (u′n) and (v′n). A similar idea was considered by

Schmidt and StadtmÈuller in [36] in the case of tail dependence. They show asymptotic

normality and strong consistency not only for the estimator of χ but for the whole tail

copula under a technical (and often used) second order condition. In Draisma et al. [9]

the authors give an estimator of the coefficient η introduced in Ledford and Tawn [26]

and construct a test of asymptotic dependence (η = 1). We refer to [7] for an overview

of different measures of tail dependence. Falk and Michel [12] discussed a test for tail

independence within a framework of extreme value distributions. HÈusler and Li [22] give

a nonparametric test for the asymptotic independence of bivariate random vectors whose

distribution function lies in the domain of attraction of an extreme value distribution.

All asymptotic results in this chapter hold under fairly general assumptions. However,

to formulate the test for positive tail dependence we will use the model introduced in [26],

where the tail dependence is described by a parameter η ∈ (0,1] such that

P(Y > u,Z > u)∼ L(u)P(Z > u)1/η , (2.2)

for u→ ∞, where L is a slowly varying function at infinity. Observe, for χ > 0, one nec-

essarily has η = 1, but for all η > 1/2 one should expect to observe more joint extremes
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of Y and Z than if they were independent. However, a similar effect should appear even

with η = 1/2, provided that liminfx→∞ L(x) is larger than 1. Therefore, we hope that a

test which detects η > 1/2 can also spot such a subtler form of positive tail association.

In the next section we show that there exist threshold sequences (un), (vn) and a

centring and (nondeterministic) scaling, which make the statistic T̂n given in (2.14), and

based on the expression (2.1), asymptotically normal. To justify the application of the

permutation test we show that the permutation distribution of the test statistic T̂n is also

asymptotically normal. To formulate the permutation test of tail dependence we suppose

the marginal distributions of Y and Z to be continuous while the joint threshold upcross-

ings of Y and Z follow the model based on (2.2). The null hypothesis then consists of

distributions for which η < 1/2 and some distributions with η = 1/2, but with the func-

tion L not exceeding 1, roughly speaking. See (2.21) in the following section for precise

formulation. This allows us to construct a permutation test, which uses the permutation

distribution as the null distribution. To perform the test, we

i) calculate the test statistic T̂n for multiple permutations of the vector (Z1, . . . ,Zn) and

then

ii) reject the null hypothesis whenever the original test statistic exceeds a predeter-

mined quantile of the empirical permutation distribution.

In the next section, we present our main theoretical results supporting the construc-

tion of the permutation test for tail dependence. Section 2.2 presents a simulation study

concerning the suggested test’s power and an application of the test on financial data.

Section 2.3 is dedicated to proofs of the theoretical results from Section 2.1.

2.1. MAIN RESULTS

Let Xi = (Yi,Zi), i = 1,2, . . . be a sequence of iid bivariate random vectors defined on the

probability space (Ω,F ,P). Let Xn = (X1, . . . ,Xn), Y n = (Y1, . . . ,Yn), Zn = (Z1, . . . ,Zn),

n ∈ N. To simplify the notation, for a generic member of an identically distributed se-

quence, say (Xi), (Yi,Zi), we write X , (Y,Z) . Denote by FY and FZ the distribution func-

tions of Y and Z, respectively, and suppose they are known. Let (mn)n∈N be an interme-
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diate sequence of integers such that mn→ ∞, for n→ ∞, and

mn = O
(

n2/3−τ
)

, (2.3)

for some τ > 0. Suppose that there exist two sequences (un) and (vn) of positive real

numbers such that un→ sup{x : FY (x)< 1}, vn→ sup{x : FZ(x)< 1} and

nP(Y > un)→ 1, nP(Z > vn)→ 1, n→ ∞. (2.4)

Note that the existence of such sequences (un) and (vn) is immediate for continuous ran-

dom variables.

Remark 2.1.1. Assumption (2.4) is very natural one in the context of regularly varying

random variables. Recall that (nonnegative) random variable Y with distribution function

FY is regularly varying with index α , α > 0, if ÅF = 1−F is regularly varying function

with index −α meaning limt→∞
ÅF(tx)/ ÅF(t) = x−α , for x > 0. Then the existence of a

sequence (un) as in (2.4) follows from Theorem 3.6. in [33]. □

Let IY,i = I{Yi>u√mn} and IZ,i = I{Zi>v√mn}. Consider the following auxiliary statistic

Sn(X
n) =

mn

n

n

∑
i=1

I{Yi>u√mn}I{Zi>v√mn} =
mn

n

n

∑
i=1

IY,iIZ,i.

The unusual choice of thresholds in Sn is motivated by the fact that in the case of inde-

pendent components of the random vector (Y,Z) we have

mnP(Y > u√mn
,Z > v√mn

)→ 1, n→ ∞,

because of (2.4).

Let Gn be a random element on Ω with uniform distribution on the permutation group

Gn on the set {1,2, . . . ,n}. The random element Gn pairs the values Y1, . . .Yn with a

permutation of Z1, . . . ,Zn (see (1.1) for the definition). Define the sum SGn
n as

SGn
n = Sn(GnXn) :=

mn

n

n

∑
i=1

I{Yi>u√mn}I{ZGn(i)>v√mn}=
mn

n

n

∑
i=1

IY,iIZ,Gn(i).

We assume that Gn and Xn are independent in the rest of the text.

Let h : Gn×R
2n→ [0,∞) be a function defined as

h(π,xn) =
mn

n

n

∑
i=1

Iy,iIz,π(i),
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where xn = ((y1,z1), . . . ,(yn,zn)), π ∈Gn. Clearly, h(Gn,X
n) = SGn

n and, because of (2.3),

we have E|h(Gn,X
n)| ≤ mn/n < ∞. Let PGn

be the probability on Gn induced by random

element Gn. Clearly PGn
(π) = 1/n!, for π ∈ Gn. Because of the independence between

Xn and Gn by (1.28) we have

E(SGn
n | Xn) =

∫

Gn

mn

n

n

∑
i=1

IY,iIZ,π(i)PGn
(dπ) (a.s.)

=
1

n!
∑

π∈Gn

mn

n

n

∑
i=1

IY,iIZ,π(i) (a.s.) (2.5)

From (2.5) we derive

E(SGn
n | Xn) = mn

ÅIY ÅIZ (a.s.) (2.6)

and

Var(SGn
n | Xn) =

1

n−1

m2
n

n2

n

∑
i=1

n

∑
j=1

(

IY,i− ÅIY

)2(

IZ, j− ÅIZ

)2

(a.s.), (2.7)

where

ÅIY =
1

n

n

∑
i=1

IY,i and ÅIZ =
1

n

n

∑
i=1

IZ,i.

Details are given in Section 2.3 after the proof of Theorem 2.1.2.

Similarly, by using (1.28), we conclude that almost surely

P

(

SGn
n −E(SGn

n |Xn)≤ t

»

Var(SGn
n |Xn) |Xn

)

=
∫

Gn

I{mn
n ∑

n
i=1 IY,iIZ,π(i)−E(SGn

n |Xn)≤ t
√

Var(SGn
n |Xn)}PGn

(dπ)

=
1

n!
∑

π∈Gn

I{mn
n ∑

n
i=1 IY,iIZ,π(i)−E(SGn

n |Xn)≤ t
√

Var(SGn
n |Xn)}, t ∈ R. (2.8)

The main asymptotic result of this chapter is summarized in the following theorem.

Theorem 2.1.2. Let (Yi,Zi), i ∈ N, be a sequence of iid bivariate random vectors. Sup-

pose that (2.3) and (2.4) hold. Then for t ∈ R

lim
n→∞

P
(

SGn
n −E(SGn

n |Xn)≤ t

»

Var(SGn
n |Xn) | Xn

)

= Φ(t), (a.s.), (2.9)

where Φ is the standard normal cumulative distribution function.

Remark 2.1.3. Denote by PX the distribution of the sequence (Xi). Then (2.9) can be

restated (compare (1.16) and (2.8)), using the expressions in (2.6) and (2.7), as

PGn

(

SGn
n −E(SGn

n |Xn)≤ t

»

Var(SGn
n |Xn)

)

→Φ(t), t ∈ R, PX-a.s. (2.10)
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Note that the expression on the left-hand side of (2.9) is still random and dependent on

Xn. □

Define the statistic Tn as

Tn(X
n) :=

√
n−1

∑
n
i=1 IY,iIZ,i−n ÅIY ÅIZ

»

∑
n
i=1

(

IY,i− ÅIY
)2
√

∑
n
j=1

(

IZ, j− ÅIZ

)2
. (2.11)

Then we have

Tn(GnXn) =
√

n−1
∑

n
i=1 IY,iIZ,Gn(i)−n ÅIY ÅIZ

»

∑
n
i=1

(

IY,i− ÅIY
)2
√

∑
n
j=1

(

IZ, j− ÅIZ

)2
.

Use the expressions in (2.6) and (2.7) and rearrange slightly the terms of (SGn
n −E(SGn

n |
Xn))/

»

Var(SGn
n |Xn) to see that

Tn(GnXn) =
SGn

n −E(SGn
n |Xn)

»

Var(SGn
n |Xn)

. (2.12)

Recall the definition of the permutation distribution R̂n(t) of the statistic Tn (see (1.2)).

From (2.12) we conclude that Theorem 2.1.2 states that the permutation distribution R̂n(t)

of the statistic Tn converges almost surely to the standard normal distribution function Φ.

So, for n→ ∞ we have

R̂n(t)→Φ(t), t ∈ R, (a.s.) (2.13)

Remark 2.1.4. Assume that Y and Z are independent, with distributions PY and PZ .

Consider the test statistic Tn. Then PXn = (PY ×PZ)
n, and one can easily check that the

randomization hypothesis holds. From the definition of the permutation distribution given

in (1.2) we conclude that E(R̂n(t)) = P(Tn ≤ t), for t ∈ R. Take the expectation in (2.13)

and use the dominated convergence theorem to get

E
(

lim
n→∞

R̂n(t)
)

= lim
n→∞

E(R̂n(t)) = lim
n→∞

P(Tn(Yn,Zn)≤ t) = Φ(t).

We conclude that the distribution of the test statistic Tn also converges to the standard nor-

mal distribution. Hence, the permutation distribution R̂n(t) asymptotically approximates

the true sampling distribution of statistic Tn, enabling us to construct the permutation test.

□
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In general, when the randomization hypothesis does not hold, one can not conclude

from the convergence of the permutation distribution, as in the previous remark, that the

same is true for the test statistic. As shown in [8] and Chung and Romano [5], it is helpful

to consider the studentization of the test statistic in this context. Define the studentization

factor τ̂n as

τ̂n = τ̂n(Y
n,Zn) :=

»

1
n ∑

n
i=1

(

IY,i− ÅIY
)2(

IZ,i− ÅIZ

)2

»

1
n ∑

n
i=1

(

IY,i− ÅIY
)2
√

1
n ∑

n
i= j

(

IZ, j− ÅIZ

)2
.

and slightly rearrange the test statistic Tn a little to get

Tn(Y
n,Zn) =

1√
n ∑

n
i=1

(

IY,i− ÅIY
)(

IZ,i− ÅIZ

)

»

1
n ∑

n
i=1

(

IY,i− ÅIY
)2
√

1
n ∑

n
j=1

(

IZ, j− ÅIZ

)2
.

We replace the factor
√

n−1 by
√

n in (2.11) for easier notation, making no difference in

asymptotic terms. Divide Tn by τ̂n to get a new statistic

T̂n(Y
n,Zn) :=

Tn

τ̂n
=

∑
n
i=1

(

IY,i− ÅIY
)(

IZ,i− ÅIZ

)

»

∑
n
i=1

(

IY,i− ÅIY
)2(

IZ,i− ÅIZ

)2
. (2.14)

Denote by p11 = p11(n), pY = pY (n) and pZ = pZ(n) the probabilities P(Y > u√mn
,Z >

v√mn
), P(Y > u√mn

) and P(Z > v√mn
), respectively. Note that by (2.4), it holds that pY ∼

pZ ∼ 1/
√

mn as n→∞. The following proposition describes the asymptotic behaviour of

the statistic T̂n.

Proposition 2.1.5. Let (Yi,Zi), i ∈ N, be a sequence of iid bivariate random vectors for

which (2.3) and (2.4) hold. Then

∑
n
i=1

(

IY,i− ÅIY
)(

IZ,i− ÅIZ

)

−n(p11− pY pZ)
»

∑
n
i=1

(

IY,i− ÅIY
)2(

IZ,i− ÅIZ

)2

d−→ N(0,1), n→ ∞. (2.15)

We show next that the corresponding permutation distribution R̂τ
n of T̂n converges to

the standard normal distribution in probability. To do that we adapt the idea of the proof

of Theorem 2.3. in [8].

From (2.13) follows R̂n(t)→ Φ(t) in probability as n→ ∞ and for all t ∈ R. The

necessity part of Theorem 1.1.2 implies that for Gn and G′n independent and uniformly

distributed over Gn it holds that

(

Tn(GnXn),Tn(G
′
nXn)

) d−→ N(0, I2), n→ ∞, (2.16)

where I2 is a 2×2 unit matrix. The following lemma turns out to be useful in the sequel.
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Lemma 2.1.6. With the same assumptions as in Proposition 2.1.5 for Gn uniformly dis-

tributed over Gn

τ̂n(GnXn)
P−→ 1, n→ ∞.

By Lemma 2.1.6 and Slutsky’s theorem, from (2.16) we obtain

(

Tn(GnXn)/τ̂n(GnXn),Tn(G
′
nXn)/τ̂n(G

′
nXn)

) d−→ N(0, I2), n→ ∞.

Now we can apply the sufficiency part of Theorem 1.1.2 to get

R̂τ
n(t) :=

1

n!
∑

π∈Gn

I{Tn(Y n,Zn
π )/τ̂n(Y n,Zn

π )≤t}
P−→Φ(t), n→ ∞, t ∈ R. (2.17)

That is, the permutation distribution of T̂n converges towards the standard normal

distribution. By Proposition 2.1.5, the centred statistic T̂n has the same limiting law. This

allows one to detect positive tail dependence between Y and Z. To describe the test, we

assume that FY and FZ are continuous and known. In particular, we transform the marginal

distributions of Y and Z to the unit Pareto distribution, i.e. we suppose that

P(Y > u) = P(Z > u) =
1

u
, u≥ 1, (2.18)

and we suppose that there exists η ∈ (0,1] such that

P(Y > u,Z > u) = L(u)P(Z > u)1/η , u≥ 1, (2.19)

where L is a slowly varying function at infinity. The assumption (2.19) is essentially the

model of joint threshold upcrossings given in (2.2) and introduced in [26]. Note that the

independence corresponds to the case η = 1/2 and L(x) = 1. On the other hand, positive

tail dependence is clearly present if liminfx→∞ L(x) is larger than 1, even with η = 1/2.

Observe that the centring term on the left hand side of (2.15) is asymptotically equiv-

alent to

cn :=
√

n
p11− p2

Y√
p11

(2.20)

when p11 converges to zero more slowly than m
−3/2
n , which is the consequence of asymp-

totic equivalence between ∑
n
i=1

(

IY,i− ÅIY
)2(

IZ,i− ÅIZ

)2
and np11 (see proof of Proposition

2.1.5 for details). Note that stated asymptotic behavior of cn always holds for η = 1/2,

because of (2.19). Thus, in that case, the conclusion of Proposition 2.1.5 is equivalent to

T̂n− cn
d−→ N(0,1), n→ ∞.
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Suppose there exists d > 1/2 such that

limsup
u→∞

ud L(u)−1
√

L(u)
< ∞. (2.21)

Note that in the case of unit Pareto random variables, one can take un = n in (2.4). Because

of assumptions (2.18) and (2.19), for η = 1/2 we have

cn =

√
n√

mn

L(
√

mn)−1
√

L(
√

mn)
, n ∈ N. (2.22)

It turns out, see Remark 2.1.7, that under (2.21), for η = 1/2 and (mn) satisfying (2.3)

and n1/(d+1) = o(mn) we have

limsup
n→∞

cn ≤ 0.

The theoretical considerations above allow one to detect whether χ > 0, or more gen-

erally whether η > 1/2. To ensure an asymptotically correct level of the test, under the

null hypothesis one can include the case η < 1/2 (i.e. negative tail dependence), as well

as the case η = 1/2 but under an additional assumption on L in (2.21). Finally, one rejects

the null hypothesis when the value of the statistic T̂n exceeds the corresponding quantile

of the permutation distribution R̂τ
n(t) and randomizes when they are equal (see the defi-

nition of test φ in Section 1.1). Denote by r̂n(1−α) the 1−α quantile of R̂τ
n(t). From

(2.17), we conclude (see Section 1.1 for details) that

r̂n(1−α)
P−→Φ−1(1−α), (2.23)

where Φ−1(1−α) is a 1−α quantile of the standard normal distribution Φ. In particular,

the convergence of 1−α quantiles of the statistic T̂n to Φ−1(1−α) holds if η = 1/2 and

the condition in (2.21) is satisfied.

Remark 2.1.7. Note, for η = 1/2 and d > 1/2 we have

cn =

√
n√

mn

1
√

mn
d

√
mn

d L(
√

mn)−1
√

L(
√

mn)
, n ∈ N.

Suppose (2.21) holds. Then limsupn→∞ cn ≤ 0 if

( n

md+1
n

)1/2

→ 0, n→ ∞,

i.e. if n1/(d+1) = o(mn). □
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Remark 2.1.8. As we already noted,the test statistic in Proposition 2.1.5 has the follow-

ing asymptotically equivalent form

Tn−dn

τ̂n
≈ Tn

τ̂n
− cn

where dn = n(p11− pY pZ). Therefore, for zα ∈ R the upper α±quantile of the standard

normal distribution we have

limsup
n

P

Å

Tn

τ̂n
> zα

ã

= limsup
n

P

Å

Tn

τ̂n
− cn > zα − cn

ã

If limsupn cn ≤ 0, the right hand side is bounded by limn P(Tn/τ̂n− cn ≥ zα) which by

Proposition 2 equals 1−Φ(zα) = α . Similar argument shows that for cn→ ∞, the power

of the test grows to 1.

If we take specifically that the joint behaviour of Y and Z is described by the Morgen-

stern copula (see Section 2.2.4 for definition), then η = 1/2 and L = 1+ α̃ , α̃ ∈ [−1,1]

(see Table 1 in [18]). In that case p11 = (1+ α̃)m−1
n and

cn =

√
n√

mn

α̃√
1+ α̃

.

Therefore, for α̃ ↓ 0 the power of the test converges to the level of the test α . See also the

simulation study and the graph on Figure 2.3. □

Remark 2.1.9. Our assumption on the known marginal distributions of Y and Z allows

us to determine the threshold sequences (u√mn
) and (v√mn

). It is hard to justify such

an assumption in practical applications. Instead, one would typically use high empirical

quantiles. However, the simulation study presented in Section 2.2 indicates that the size

and power of the test proposed here are not overly sensitive to the choice of the thresholds,

possibly making such a test applicable with a range of possible thresholds. Of course, it

would be interesting to incorporate the estimate of marginal distributions into the testing

procedure we propose, but that is left for some future research. □
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2.2. SIMULATIONS AND APPLICATION

In this section, we investigate the behaviour of the test statistic T̂n defined in (2.14) in

a simulation study. We denote the simulated data by (Y1,Z1), . . . ,(Yn,Zn), n ∈ N. The

threshold levels used to calculate the value of the statistic T̂n are determined through

empirical upper quantiles of the given data. After the calculation of the value of T̂n, the

following permuted values of T̂n were calculated:

T̂n(Y
n,Zn

π) =
∑

n
i=1

(

IY,i− ÅIY
)(

IZ,π(i)− ÅIZ

)

√

∑
n
i=1

(

IY,i− ÅIY
)2(

IZ,π(i)− ÅIZ

)2
.

For the level of the test α the number k = n−⌊nα⌋ is calculated, and then the value of

the statistic is compared with the k-th largest value of the calculated permuted values of

the statistic T̂n. The permutation test rejects the null hypothesis when the value of the

statistic is larger than the k-th largest value of the permuted values of the statistic T̂n and

randomizes when they are equal. We repeated this procedure to get simulated rejection

probabilities, which we refer to as empirical rejection probabilities. We also calculated the

value of the test statistic T̂n with exact threshold levels for known marginal distributions

and then repeated the whole procedure. We refer to rejection probabilities obtained in

such a manner as theoretical rejection probabilities.

2.2.1. Completely independent samples

Consider two iid sequences (Yi) and (Zi) from the unit Pareto distribution. Although there

is no universal method to determine the threshold level for a given set of observations, one

can find some guidance in the assumptions of Theorem 2.1.2. Recall that we assumed that

√
mnP(Yi > u√mn

)→ 1 where mn is an intermediary sequence such that mn = O(n2/3−τ),

n→ ∞, τ > 0. Since the marginal distribution is known here, one can use it to select an

appropriate threshold (observe that the sequence un = n satisfies condition (2.4)). How-

ever, from a practical perspective, it seems more interesting to check how our test statistic

and corresponding permutation test behave when the threshold level varies, i.e. when we

look at different quantiles of data (like 10% or 5% of the most extreme data points).

In Figure 2.1, we present simulation results of the permutation test involving statistic
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Figure 2.1: On the left: empirical rejection probabilities (y-axis) depending on the thresh-

old level (expressed as the upper quantile) (x-axis) for the sample size n = 1000. On the

right: empirical rejection probabilities of the permutation test for various sample sizes

(x-axis) with the threshold level fixed at the upper 20% quantile. The level of the test is

set at 5%, while the number of permutations and repeats equals 5000 in both graphs.

T̂n for different thresholds and different sample sizes. The rejection probabilities seem

quite stable for different threshold levels. However, for very high thresholds (i.e. upper

quantiles), one can expect only a very small number of joint exceedances of processes Y

and Z. In such cases, the randomization procedure plays an important role in the testing

procedure.

Table 2.1 presents empirical rejection probabilities for a threshold level 20% (upper

quantile) and a different number of permutations and repeats with the level of the test

set at 5%. Similar results were obtained with the threshold level set at 10% and 5% or

the level of the test set at 10%. Overall, we have found that the test statistic T̂n produces

permutation tests that maintain the exactness property reasonably well under the null hy-

pothesis of tail independence between iid processes Y and Z and for various threshold

levels and sample sizes. Moreover, the results are virtually indistinguishable whether we

use empirical or theoretical thresholds, cf. columns 3 and 4 in Table 2.1.

2.2.2. Dependent Pareto-type random variables

Let Ui, Vi and Wi be three independent iid sequences of U(0,1) distributed random vari-

ables, i = 1,2, . . .. Define three sequences of Pareto-distributed random variables X1
i =

1/Ui, X2
i = 1/Vi and X3

i = 1/Wi. Finally let Yi = X1
i +aX2

i and Zi = aX2
i +X3

i , with a≥ 0.
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No. of sim. No. of perm. Emp. rp Theo. rp

500 500 0.0560 0.0580

1000 1000 0.0410 0.0410

2000 1000 0.0600 0.0650

1000 2000 0.0450 0.0435

2000 2000 0.0495 0.0590

5000 2000 0.0440 0.0445

2000 5000 0.0514 0.0566

5000 5000 0.0462 0.0488

10000 10000 0.0539 0.0505

Table 2.1: Results of a simulation study in the iid Pareto case for the different number

of simulations (column 1) and permutations (column 2). Empirical rejection probabilities

for the different number of permutations and number of repeats are shown in column 3

in cases when the threshold is determined using empirical quantiles. Column 4 contains

rejection probabilities in cases when the threshold is determined using the known marginal

distribution. The test statistic is T̂n, the sample size is 1000, the threshold level is fixed at

the upper 20% quantile, and the level of the test is 5%.

Due to the independence and regular variation as z→ ∞

P(Y > z) = P(Z > z) = P(a ·X2 +X3 > z)

∼ P(a ·X2 > z)+P(X3 > z)∼
( z

a

)−1

+(z)−1 .

Thus, the tails of Y and Z are both of the Pareto type and therefore regularly varying.

Obviously, those two random variables are independent if and only if a = 0. To measure

the level of their dependence, we use the upper tail dependence coefficient χ . For this

model, we have

χ = lim
z→∞

P(X1 +a ·X2 > z,a ·X2 +X3 > z)

P(a ·X2 +X3 > z)
.

Since

P(X1 +a ·X2 > z,a ·X2 +X3 > z)∼ P(aX2 > z)∼
( z

a

)−1

,
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one obtains χ = a/(a+1) in this setting. For a = 0, Y and Z are independent and hence

χ = 0. In Figure 2.2 (left), simulation results of the permutation test involving the statistic

T̂n are shown. We present corresponding empirical rejection probabilities, with increasing

values of the parameter χ (and a). The threshold level was set to 20%, but very similar

results were obtained for other thresholds.
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Figure 2.2: Empirical rejection probabilities (y-axis) for various values of the parameter

χ (x-axis) for the sample size n = 1000 using an upper empirical quantile at level 20%.

The test statistic is T̂n. On the left: data generated from the linear dependence model

between Y and Z described in subsection 2.2.2. On the right: data generated from the

Gumbel-Hougaard copula described in subsection 2.2.3. The level of the test is set at 5%,

while the number of permutations and repeats is equal to 2000 in both simulations.

2.2.3. Tail dependent samples

We presented the Gumber-Hougaard copula in Example 1.4.4. Figure 2.2 (right) shows

simulation results of the permutation test involving the statistic T̂n and data generated

from the Gumbel-Hougaard copula. The dependence of rejection probabilities on the cor-

responding tail dependence coefficient χ is shown. We present the results for a threshold

level 20%, but similar results were obtained for other thresholds as well. We confirm that

very similar overall results were attained when we generated data from some other copu-

las of a similar type, like the Joe copula (see Table 1 in [18]). As in subsection 2.2.1 the

results remain similar whether empirical or theoretical thresholds are used.
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Figure 2.3: Empirical rejection probabilities (y-axis) for various values of the corre-

sponding parameter of the copulas (x-axis): Morgenstern on the left and Gaussian on the

right. The test statistic is T̂n. The level of the test is set at 5%, the sample size is n = 2000,

while the number of permutations and repeats equal 4000. The threshold level varies from

20% through 10% and 5% down to 2.5%.

2.2.4. The Morgenstern and Gaussian copula

It is known that there exist bivariate models with the tail dependence index χ equal to 0

that exhibit considerable preasymptotic tail dependence. For such models, the tail depen-

dence coefficient η determines the strength of dependence within the class of tail inde-

pendent models. The often studied case of near independence corresponds to η = 1/2.

As we have seen in Section 2.1, that case is more subtle in our procedure as well.

The Morgenstern copula is an example of a copula that falls in the near-independence

class of models. It is given by

C(u,v) = uv
[

1+ α̃(1−u)(1− v)
]

, u,v ∈ [0,1], α̃ ∈ [−1,1].

Another example of a copula with a complex dependence structure is the Gaussian copula

described in Example 1.4.4. Exact independence is attained for ρ = 0 for the Gaussian

copula and for α̃ = 0 for the Morgenstern copula. Both copulas are tail independent

(see [18]). For the Gaussian copula the associated tail dependence coefficient η is given

by the relation η = (1+ρ)/2 (see Table 1 in [18]).

In Figure 2.3 we present the simulation results for the Morgenstern and the Gaus-

sian copulas with positive dependencies. The threshold level varies from 20% of upper
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quantile data down to 2.5%. In contrast to the case χ > 0, the choice of threshold levels

has greater influence on the empirical rejection probabilities. Unsurprisingly, for fixed

thresholds a larger data sample increases the power of the test.

2.2.5. Comparison of the permutation test with an asymptotic test

Convergence of the centred statistic T̂n towards the standard normal distribution (see

Proposition 2.1.5) allows for the construction of another test for tail dependence (apart

from the permutation test). It rejects the null hypothesis if the value of the statistic T̂n is

larger than the corresponding quantile of normal distribution. In this section we present

comparative results for the two tests, and compare them with a test based on the Hill

estimator η̂2 of the tail coefficient η suggested by Draisma et al. in [9] (with the null

hypothesis η ≤ 1/2).

We first consider two independent iid sequences (Yi) and (Zi) from the unit Pareto

distribution. In Table 2.2, we compare three tests for those independent samples. The

table shows rejection probabilities for different thresholds. For the test based on η̂2, the

parameter m indicates the number of upper order statistics used to calculate it, see [9]. As

can be seen from Table 2.2, the permutation test controls Type 1 error significantly better

than the other two tests.

Thresholds

Tests 2.5% 5% 10% 20% 30%

Permutation test 0.052 0.050 0.052 0.050 0.052

Asymptotic test 0.003 0.011 0.032 0.049 0.043

Parameter m 25 50 100 200 300

Test based on η̂2 0.024 0.039 0.062 0.078 0.102

Table 2.2: Empirical rejection probabilities for independent samples from the unit Pareto

distribution and for different thresholds. For the test based on η̂2 different thresholds

correspond to different values of m. The sample size is 1000, the level of the test is 0.05,

and the number of permutations and repeats is 5000.

44



The Permutation test of tail dependence - i.i.d. data Simulations and application

Next, we compare the performance of the tests on simulated tail dependent data. For

that purpose, we use three different copulas and a fixed threshold level of 5%. We first

present empirical rejection probabilities for the Gumbel-Hougaard copula with different

values of the dependence parameter χ . The permutation test and the test based on η̂2

exhibit larger power than the test based on the asymptotic normality of the test statistic

T̂n.

Tail coefficient χ

Gumbel-Hougaard copula 0 0.04 0.08 0.12 0.16

Permutation test 0.052 0.305 0.655 0.869 0.967

Asymptotic test 0.011 0.131 0.431 0.725 0.910

Test based on η̂2 0.039 0.304 0.639 0.848 0.941

Correlation ρ

Gaussian copula 0.0 0.1 0.2 0.3 0.4

Permutation test 0.048 0.184 0.484 0.779 0.948

Asymptotic test 0.051 0.062 0.263 0.585 0.872

Test based on η̂2 0.038 0.123 0.296 0.526 0.730

Parameter α̃

Morgenstern copula 0 0.2 0.4 0.6 0.8

Permutation test 0.048 0.089 0.1428 0.221 0.292

Asymptotic test 0.009 0.022 0.043 0.078 0.125

Test based on η̂2 0.038 0.052 0.066 0.080 0.094

Table 2.3: Comparison of empirical rejection probabilities for simulated data from the

Gumbel-Hougaard, Gaussian and Morgenstern copula. The level of the test is set at 0.05,

and the threshold level of the permutation test is fixed at 5% (m = 50 for the test based on

η̂2). The sample size is 1000 and the number of permutations and repeats is 5000.

Further, we compare the three tests on data generated from the Gaussian copula (see

subsection 2.2.4) with different vales of the correlation parameter ρ , and the Morgenstern
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copula (see subsection 2.2.4) with different values of the parameter α̃ . The simulation

results obtained are presented in Table 2.3. Observe that the test based on η̂2 in [9] was

not designed for the purpose of testing dependence exhibited by the Morgenstern copula

(η = 1/2 here). The simulation results obtained are presented in Table 2.3. It appears

that the permutation test has better power than the other two in both of these two cases.

Simulations with other thresholds confirm that.

2.2.6. Discussion of the simulation study

Overall, the simulation results (some of which are not presented) indicate that the per-

mutation test performs better than the other two test, especially for small data sizes. The

advantage over the test based on the asymptotic normality is consistent with general ob-

servations on permutation tests, see for instance Janssen and Pauls [23] or Chapter 15

in [27]. The simulation studies above show that permutation test has approximately cor-

rect test rejection probabilities at different thresholds and with different sample sizes when

Y and Z are independent. They also appear to demonstrate the test’s considerable power,

especially for larger data sets. The test does not seem overly sensitive to the choice of

thresholds except when data are very close to independence.

All the simulations and analysis were done in R using the publicly available packages

permute, gumbel, fMultivar and copula.

2.2.7. Application to financial data

In this subsection we present an application of the permutation test to stock returns. It

is known that in certain cases the sample correlation does not indicate significant depen-

dence between two stocks (some assets) but the price movements become very correlated

in periods of crisis and rising volatility. Therefore it seems desirable to have a more sensi-

tive test of dependence based, for instance, on the tail behaviour of returns. Additionally,

from the diversification perspective, it is useful to test for positive dependence between

asset returns, as negatively dependent (or independent) assets may lower the riskiness of

a portfolio of assets. The permutation test presented in this article may serve that purpose,

if the model of joint threshold exceedances from (2.19) is assumed.
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We consider two European stocks, namely SociÂetÂe GÂenÂerale (the French bank) and

Beiersdorf (the German personal care producer). The analysis period includes daily return

data for stocks of both between 1 January 2017 and 31 December 2019. Data were taken

from the Yahoo Finance platform. To perform tail analysis, we focus on negative returns

of the two stocks in order to detect whether they are positively tail dependent. We use the

permutation test with our test statistic T̂n given in (2.14), and we compare the results of

that test to the permutation test of independence based on sample correlation (see [8]). In

Figure 2.4 are shown plots of daily returns of SociÂetÂe GÂenÂerale and Beiersdorf stocks (left)

and their negative returns only (right). Of course, we have to suppose iid daily returns in

order to apply either test.
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Figure 2.4: On the left side is shown a scatterplot of daily returns of Beiersdorf and

SociÂetÂe GÂenÂerale. On the right side are shown only negative daily returns of those two

stocks (more precisely, we looked at max{0,−rB}, where rB, are returns on Beiersdorf

stock, and performed the same for daily returns of SociÂetÂe GÂenÂerale).

We first apply the permutation test of independence based on the sample correlation

test statistic
√

nρ̂ from [8] with the level of the test set to q= 5% and 20,000 permutations.

In that case, we cannot reject the independence hypothesis as we obtain a test statistic

value equal to 0.0231, while the q-th percentile of permuted values of the statistic is equal

to 1.6414. The same conclusion is supported by the estimate of the p-value, which is

equal to 0.4913. We also apply the studentized version of the correlation permutation

test with the statistic Sn from [8] but the conclusion is the same (the estimated p-value is

0.4889, the value of the statistic is 0.5069, while the q-th percentile of permuted values

of the the studentized statistic is equal to 44.746).
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Next, we apply the permutation test for tail dependence based on the test statistic T̂n

with the level of the test equal to 5% and with 20,000 permutations, having looked at

negative values of daily returns for both stocks. We first choose a fixed threshold level

of 5% of available data, and in that case the test statistic T̂n is equal to 1.79, while the

q-th percentile of test statistic permuted values is equal to 1.09. Therefore the test rejects

independence of daily returns of those two stocks, with the estimated p-value of the test

equal to 0.0017. Similarly, for the threshold level 2.5% the test statistic is equal to 1.5 and

the q-th percentile of test statistic permuted values is equal to 1.1 (the estimated p-value is

equal to 0.0009). So, in this case the null hypothesis for stocks of Beiersdorf and SociÂetÂe

GÂenÂerale is rejected as well. We report that very similar results were obtained when we

used statistics Tn from (2.11) instead of T̂n.

The permutation independence test based on sample correlation and our test based on

tail behaviour provide, in many cases, the same conclusion. For example, if we look at

the same time interval, the same quantile q = 5% and the number of permutations set to

20,000 but choose stocks of Beiersdorf and Siemens (the German industrial conglom-

erate), then both tests reject the corresponding null hypothesis. More precisely, in the

case of the permutation test of independence based on sample correlation we obtain a test

statistic value equal to 7.8155, while the q-th percentile of test statistic permuted values

is equal to 1.6357. When we apply the permutation test for tail dependence based on the

test statistic T̂n with a threshold level set to 5% we obtain a test statistic value equal to

2.79, while the q-th percentile of test statistic permuted values is equal to 1.1.
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2.3. PROOFS

In this Section, we present proofs of the results stated above and some auxiliary results

used in their proofs. We begin with a lemma that is an immediate consequence of as-

sumptions (2.3) and (2.4).

Lemma 2.3.1. Suppose (2.3) and (2.4) hold. As n→ ∞,

√
mn

n

n

∑
i=1

(IY,i− pY )→ 0,

almost surely, where pY = P(Y > u√mn
). An analogous statement holds for sequences

(Zn) and (vn).

Proof of Lemma 2.3.1. Recall, IY,i = I{Yi>u√mn}. Let us take ε > 0 arbitrarily chosen. By

the Markov inequality we have

P

(

√
mn

n

∣

∣

∣

n

∑
i=1

(IY,i− pY )
∣

∣

∣> ε
)

≤ m2
n

n4ε4
E

( n

∑
i=1

(IY,i− pY )
)4

. (2.24)

When we take into account that for i ̸= j the random variables IY,i and IY, j are independent

we see that E(∑n
i=1(IY,i− pY ))

4 is equal to

n

∑
i=1

E

(

IY,i− pY

)4

+4
n

∑
i=1

n

∑
j=1

i ̸= j

E

(

IY,i− pY

)3

E

(

IY, j− pY

)

+3
n

∑
i=1

n

∑
j=1

i̸= j

E

(

IY,i− pY

)2

E

(

IY,i− pY

)2

+6
n

∑
i=1

n

∑
j=1

n

∑
k=1

i̸= j ̸=k

E

(

IY,i− pY

)2

E

(

IY, j− pY

)

E

(

IY,k− pY

)

+
n

∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

i̸= j ̸=k ̸=l

E

(

IY,i− pY

)

E

(

IY, j− pY

)

E

(

IY,k− pY

)

E

(

IY,l− pY

)

.

The second, fourth and fifth sum in the previous expression are all equal to zero because

E(IY,i− pY ) = 0, for all i ∈ {1,2, . . . ,n}. Furthermore, as IY,i and pY are bounded by 1 it

follows |IY,i− pY | ≤ 1 almost surely. Therefore

n

∑
i=1

E

(

IY,i− pY

)4

≤ n.
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As E(IY,i− pY )
2 = pY − (pY )

2 we have

3
n

∑
i=1

n

∑
j=1

i ̸= j

E

(

IY,i− pY

)2

E

(

IY, j− pY

)2

≤ 3n2(pY )
2(1−2pY +(pY )

2).

Going back to (2.24) and noting that pY ∼ 1/
√

mn, we see that its right-hand side is then

bounded (up to a constant) by the following asymptotically dominant term

m2
n

n4ε4
n2(pY )

2 ∼ m2
n

n2ε4

1

mn
=

1

ε4

mn

n

1

n
.

Because of assumption (2.3), in (2.24) we have the inequality

P

(

√
mn

n

∣

∣

∣

n

∑
i=1

(IY,i− pY )
∣

∣

∣
> ε

)

≤ C

n1+τε4
,

for n large enough, where τ > 0 and C > 0 are constant. As the last inequality holds for

all ε > 0 we can use the Borel-Cantelli Lemma to conclude

√
mn

n

n

∑
i=1

(IY,i− pY )→ 0

almost surely for n→ ∞, as we have claimed. ■

Proof of Theorem 2.1.2. Following the notation used in Section 1.2 we define two trian-

gular arrays of random variables an(i) and bn(i), i ∈ {1, . . . ,n}, as

an(i) =

…

mn

n
IY,i and bn(i) =

…

mn

n
IZ,i.

Next, we define

Åan :=
1

n

n

∑
i=1

an(i) =

…

mn

n

1

n

n

∑
i=1

IY,i

and

Åbn :=
1

n

n

∑
i=1

bn(i) =

…

mn

n

1

n

n

∑
i=1

IZ,i.

By Theorem 1.2.1 we need to verify

lim
n→∞

n
max1≤i≤n(an(i)− Åan)

2

∑
n
i=1(an(i)− Åan)2

max1≤i≤n(bn(i)− Åbn)
2

∑
n
i=1(bn(i)− Åbn)2

= 0. (2.25)

As an(i) and bn(i) are random variables, we need almost sure convergence in the above

expression to hold. For simplicity, we focus separately on the numerator and the denomi-

nator of the expression in (2.25).
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Taking into account previous notation, the numerator in (2.25) is equal to

n max
1≤i≤n

(

…

mn

n
IY,i−

…

mn

n

1

n

n

∑
j=1

IY, j

)2

max
1≤i≤n

(

…

mn

n
IZ,i−

…

mn

n

1

n

n

∑
j=1

IZ, j

)2

.

After a short calculation, we see that we can write it in the form

m2
n

n
max

1≤i≤n

(

IY,i− ÅIY

)2

max
1≤i≤n

(

IZ,i− ÅIZ

)2

.

Both maxima in the numerator are almost surely bounded by 1 as it is true for each IY,i and

IZ,i. Therefore, the numerator is almost surely bounded by m2
n/n. For reasons that will

soon become clear, we will bring the factor m2
n/n to the denominator. Then the expression

under the limit in (2.25) is almost surely bounded by

1
n

m2
n

∑
n
i=1(an(i)− Åan)2 ∑

n
i=1(bn(i)− Åbn)2

. (2.26)

Therefore, we are left with the conclusion that this expression will almost surely converge

to zero if the denominator tends to +∞ almost surely. Both sums in the denominator of

(2.26) can be treated analogously, so we focus on the first sum. We have:

n

∑
i=1

(an(i)− Åan)
2 =

n

∑
i=1

(

…

mn

n
IY,i−

1

n

n

∑
j=1

…

mn

n
IY, j

)2

=
mn

n

n

∑
i=1

I2
Y,i−2

mn

n

n

∑
i=1

IY,i
1

n

n

∑
j=1

IY, j +
mn

n

n

∑
i=1

(1

n

n

∑
j=1

IY, j

)2

=
mn

n

n

∑
i=1

IY,i−mn

(1

n

n

∑
j=1

IY, j

)2

= mn
ÅIY (1− ÅIY )

and analogously
n

∑
i=1

(bn(i)− Åbn)
2 = mn

ÅIZ(1− ÅIZ).

So, the denominator in (2.26) can be written as

√
n√

mn

√
mn

ÅIY (1− ÅIY )

√
n√

mn

√
mn

ÅIZ(1− ÅIZ).

We will analyze the asymptotic behaviour of
√

mn
ÅIY (1− ÅIY ) and then the conclusion

for the behaviour of
√

mn
ÅIZ(1− ÅIZ) follows by analogy. Consider first the term

√
mn

ÅIY .

We have

√
mn

ÅIY =

√
mn

n

n

∑
i=1

(IY,i− pY + pY ) =

√
mn

n

n

∑
i=1

(IY,i− pY )+
√

mn pY ,
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We know, by the assumption (2.4), that
√

mn pY → 1, for n→ ∞. By using Lemma 2.3.1

we conclude that
√

mn
ÅIY converges to 1 almost surely. Therefore ÅIY → 0 almost surely

and the same is then true for
√

mn
ÅIY ÅIY . So,

√
mn

ÅIY (1− ÅIY )→ 1 almost surely, n→ ∞.

We conclude that both
√

mn
ÅIY (1− ÅIY ) and

√
mn

ÅIZ(1− ÅIZ) almost surely converge to

1. Then the whole expression in (2.26) converges to zero because of the term
√

n/
√

mn

in the denominator, which tends to infinity (recall (2.3)). Then (2.9) follows by Theorem

1.2.1 (compare relations (2.8) and (1.16)). ■

To prove (2.6) and (2.7) let Sn be the sum ∑
n
i=1 an(i)bn(Gn(i)) and note it is a sum as

in (1.9) from Section 1.2 (clearly, dependent on ω). On the right-hand side of (2.5) we

recognize the expectation of Sn, relative to the probability measure PGn
. From (1.13) we

conclude that E(SGn
n | Xn) is almost surely equal to

1

n

n

∑
i=1

n

∑
j=1

an(i)bn( j) =
1

n

mn

n

n

∑
i=1

n

∑
j=1

IY,iIZ, j

and so (2.6) follows. To prove (2.7) first observe that by relation (1.15) we have

dn(i, j) =
mn

n
IY,iIZ, j−

1

n

mn

n

n

∑
k=1

IY,kIZ, j

− 1

n

mn

n

n

∑
l=1

IY,iIZ,l +
1

n2

mn

n

n

∑
k=1

n

∑
l=1

IY,kIZ,l

=
mn

n
IZ, j

(

IY,i−
1

n

n

∑
k=1

IY,k

)

− mn

n

1

n

n

∑
l=1

IZ,l

(

IY,i−
1

n

n

∑
k=1

IY,k

)

=
mn

n

(

IY,i− ÅIY

)(

IZ, j− ÅIZ

)

.

Then from (1.14) follows (2.7).

Before we give the proof of Proposition 2.1.5 we state and prove two lemmas that will

be needed for it.

Lemma 2.3.2. With the same assumptions as in Proposition 2.1.5

1
n ∑

n
i=1

(

IY,i− ÅIY
)2(

IZ,i− ÅIZ

)2

E(IY,1− pY )2(IZ,1− pZ)2

P−→ 1, n→ ∞.

Proof. We will show that

∣

∣

∣

∣

∣

1
n ∑

n
i=1

(

IY,i− ÅIY
)2(

IZ,i− ÅIZ

)2

E(IY,1− pY )2(IZ,1− pZ)2
−1

∣

∣

∣

∣

∣

P−→ 0, for n→ ∞. (2.27)
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Let us first calculate the expression in the denominator. We have

E(IY,1− pY )
2(IZ,1− pZ)

2 = E(IY,1−2IY,1 pY +(pY )
2)(IZ,1−2IZ,1 pZ +(pZ)

2)

= E

(

IY,1IZ,1−2IY,1IZ,1 pZ + IY,1(pZ)
2

−2IY,1IZ,1 pY +4IY,1IZ,1 pY pZ−2IY,1 pY (pZ)
2

+ IZ,1(pY )
2−2IZ,1(pY )

2 pZ +(pY )
2(pZ)

2
)

= p11−2p11 pZ−2p11 pY +4p11 pY pZ

+ pY (pZ)
2 + pZ(pY )

2−3(pY )
2(pZ)

2

∼ p11−4p11 pY +4p11(pY )
2 +2(pY )

3−3(pY )
4. (2.28)

In the last row of the above expression we used the fact that pY and pZ have the same

asymptotic behaviour (see (2.4)). Furthermore, from (2.4) follows (pY )
3 ∼ m

−3/2
n . In a

similar vein, we see that the numerator of the fraction in (2.27) is equal to

1

n

n

∑
i=1

(

IY,i−2IY,i ÅIY + ÅI2
Y

)(

IZ,i−2IZ,i ÅIZ + ÅI2
Z

)

=
1

n

n

∑
i=1

(

IY,iIZ,i−2IY,iIZ,i ÅIZ + IY,i ÅI2
Z−2IY,iIZ,i ÅIY +4IY,iIZ,i ÅIY ÅIZ

−2IY,i ÅIY ÅI2
Z + IZ,i ÅI2

Y −2IZ,i ÅI2
Y

ÅIZ + ÅI2
Y

ÅI2
Z

)

=
1

n

n

∑
i=1

IY,iIZ,i−2 ÅIZ
1

n

n

∑
i=1

IY,iIZ,i + ÅIY ÅI2
Z−2 ÅIY

1

n

n

∑
i=1

IY,iIZ,i

+4 ÅIY ÅIZ
1

n

n

∑
i=1

IY,iIZ,i + ÅI2
Y

ÅIZ−3 ÅI2
Y

ÅI2
Z

So, in the numerator under the absolute value signs, we get the expression

1

n

n

∑
i=1

IY,iIZ,i−2 ÅIZ
1

n

n

∑
i=1

IY,iIZ,i−2 ÅIY
1

n

n

∑
i=1

IY,iIZ,i +4 ÅIY ÅIZ
1

n

n

∑
i=1

IY,iIZ,i

+ ÅIY ÅI2
Z + ÅI2

Y
ÅIZ−3 ÅI2

Y
ÅI2
Z− p11 +2p11 pZ +2p11 pY −4p11 pY pZ

− pY (pZ)
2− pZ(pY )

2 +3(pY )
2(pZ)

2, (2.29)

while in the denominator we have the expression from (2.28). If p11 converges to zero

more slowly than m
−3/2
n , n→ ∞, then p11 is an asymptotically dominant term in (2.28).

Otherwise the asymptotically dominant term in (2.28) is p3
Y . Proof of the lemma is slightly

different in those two cases and we present them separately for clarity.
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Suppose first that p11m
3/2
n → ∞, i.e. p11 converges to zero more slowly than m

−3/2
n ,

n→ ∞. Although the expression in (2.29) looks worrisome, there are some notions that

will prove helpful. First of all, let us recall from the proof of Theorem 2.1.2 that both

√
mn

ÅIY and
√

mn
ÅIZ almost surely converge to 1. So, we know ÅIY , ÅIZ ∼ 1/

√
mn and there-

fore ÅIY ÅI2
Z, ÅI2

Y
ÅIZ ∼ 1/m

3/2
n . As we work under the assumption p11m

3/2
n →∞, n→∞, we can

conclude that the terms

ÅIY ÅI2
Z, ÅI2

Y
ÅIZ,3 ÅI2

Y
ÅI2
Z,2p11 pZ,2p11 pY ,4p11 pY pZ, pY (pZ)

2, pZ(pY )
2,3(pY )

2(pZ)
2

divided by the denominator (2.28) all converge to zero (even almost surely). Next, group

together the terms 1/n∑
n
i=1 IY,iIZ,i and p11 to get

1

n

n

∑
i=1

(IY,iIZ,i− p11).

We want to show that the above sum converges to zero in probability when we divide it

with the denominator (2.28).

For arbitrary ε > 0, by using Chebyshev’s inequality, we get

P

( 1

np11

∣

∣

∣

n

∑
i=1

(IY,iIZ,i− p11)
∣

∣

∣
> ε

)

≤ 1

ε2n2 p2
11

E

( n

∑
i=1

(IY,iIZ,i− p11)
)2

. (2.30)

The expectation on the right-hand side in (2.30) is equal to

n

∑
i=1

E(IY,iIZ,i− p11)
2 +

n

∑
i=1

n

∑
j=1

i ̸= j

E(IY,iIZ,i− p11)(IY, jIZ, j− p11).

The first sum above is equal to n(p11− p2
11) and the second sum is equal to zero, as IY,iIZ,i

and IY, jIZ, j are independent for i ̸= j. So, we get

P

( 1

np11

∣

∣

∣

n

∑
i=1

(IY,iIZ,i− p11)
∣

∣

∣
> ε

)

≤ 1

ε2

1

np2
11

(p11− p2
11)∼

1

ε2

1

np11
→ 0,

under the assumptions (2.3) and p11m
3/2
n → ∞, n→ ∞. Therefore, we get

1
n ∑

n
i=1(IY,iIZ,i− p11)

E(IY,1− pY )2(IZ,1− pZ)2

P−→ 0,n→ ∞.

We are now almost done as we can similarly see that

ÅIZ
1

n

n

∑
i=1

IY,iI,Zi = ÅIZ
1

n

n

∑
i=1

(IY,iIZ,i− p11)+ ÅIZ p11.
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The second term, divided by the denominator (2.28), converges trivially to zero (almost

surely) because ÅIZ→ 0 almost surely, for n→∞. For the first term, we conclude from the

above considerations that, after dividing it with the denominator (2.28), it also converges

to zero almost surely. We use similar reasoning to conclude that the terms

2 ÅIY
1

n

n

∑
i=1

IY,iIZ,i,4 ÅIY ÅIZ
1

n

n

∑
i=1

IY,iIZ,i

divided by the denominator (2.28) also converge to zero almost surely.

Suppose now that p11 converges to zero faster than m
−3/2
n and so p3

Y is an asymptot-

ically dominant term in (2.28). As before, group together the terms 1/n∑
n
i=1 IY,iIZ,i and

p11 and use the Chebyshev inequality to get

P

( 1

np3
Y

∣

∣

∣

n

∑
i=1

(IY,iIZ,i− p11)
∣

∣

∣> ε
)

≤ 1

ε2n2 p6
Y

E

( n

∑
i=1

(IY,iIZ,i− p11)
)2

. (2.31)

Because of the independence of IY,iIZ,i and IY, jIZ, j, for i ̸= j, the sum on the right hand

side of (2.31) is bounded by

1

ε2

1

np6
Y

(p11− p2
11)∼

1

ε2

m
3/2
n

n
m

3/2
n p11.

Because of the assumption (2.3) m
3/2
n /n converges to zero, and because p11 converges to

zero faster than m
−3/2
n the same is true for m

3/2
n p11. Therefore, the term

1

n

n

∑
i=1

(IY,iIZ,i− p11)

divided by the expression in (2.28) converges to zero in probability. By the same argument

as before we conclude the same is true for the terms

2 ÅIZ
1

n

n

∑
i=1

IY,iI,Zi, 2 ÅIY
1

n

n

∑
i=1

IY,iIZ,i, 4 ÅIY ÅIZ
1

n

n

∑
i=1

IY,iIZ,i.

It is also straightforward to conclude that the terms 3 ÅI2
Y

ÅI2
Z , 2p11 pZ , 2p11 pY , 4p11 pY pZ and

3(pY )
2(pZ)

2 divided by the denominator (2.28) all converge to zero. Therefore, we only

need to show the same for ÅIY ÅI2
Z− pY (pZ)

2 and ÅI2
Y

ÅIZ− pZ(pY )
2. To do that, first note that

ÅIY ÅI2
Z− pY (pZ)

2 = ( ÅIY − pY ) ÅI2
Z + pY ( ÅI2

Z− p2
Z) = K1 +K2.

Divide K1 by p3
Y to get

K1

p3
Y

=
ÅI2
Z

1
n ∑

n
i=1(IY,i− pY )

p3
Y

=
ÅI2
Z

p2
Y

1
n ∑

n
i=1(IY,i− pY )

pY
.
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As already noted ÅI2
Z/p2

Y → 1 almost surely, while by Lemma 2.3.1 we have

1
n ∑

n
i=1(IY,i− pY )

pY
∼
√

mn

n

n

∑
i=1

(IY,i− pY )→ 0,n→ ∞ (a.s.)

In a similar manner we first write

K2

p3
Y

=
pY ( ÅI2

Z− p2
Z)

p3
Y

∼ ( ÅI2
Z− p2

Z)

p2
Z

=
( ÅIZ− pZ)

pZ

( ÅIZ + pZ)

pZ
,

and then use Lemma 2.3.1 again to conclude that K2/p3
Y → 0, for n→ ∞.

By using the triangle inequality in both the cases we treated, we conclude that (2.27)

is true and therefore the lemma. ■

Lemma 2.3.3. With the same assumptions as in Proposition 2.1.5

√
n
(

ÅIY − pY

)(

ÅIZ− pZ

)

»

E(IY,1− pY )2(IZ,1− pZ)2

P−→ 0, n→ ∞. (2.32)

Proof. In the proof of Lemma 2.3.2 we have already seen that

»

E(IY,1− pY )2(IZ,1− pZ)2 ∼√p11 or
»

E(IY,1− pY )2(IZ,1− pZ)2 ∼
»

p3
Y ,

depending on the asymptotic behaviour of p11. Let us look more closely at the numerator

in (2.32). We have

√
n
(

ÅIY − pY

)(

ÅIZ− pZ

)

=
√

n
1

n

n

∑
i=1

(IY,i− pY )
1

n

n

∑
i=1

(IZ,i− pZ)

=
1

n3/2

n

∑
i=1

n

∑
j=1

(IY,i− pY )(IZ, j− pZ).

To make later analysis easier, let us first look at the case i = j in the above expression.

We will first show that

1

n3/2 ∑
n
i=1(IY,i− pY )(IZ,i− pZ)

√
p11

P−→ 0, n→ ∞ (2.33)

if p11 converges to zero more slowly than p3
Y , i.e. if p11m

3/2
n → ∞, for n→ ∞. Let ε > 0

be arbitrarily chosen. By using the Markov inequality we get

P

( 1

n3/2√p11

∣

∣

∣

n

∑
i=1

(IY,i− pY )(IZ,i− pZ)
∣

∣

∣> ε
)

≤ 1

ε2n3 p11
E

( n

∑
i=1

(IY,i− pY )(IZ,i− pZ)
)2

. (2.34)
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Use the fact that (Yi,Zi) and (Yk,Zk) are independent for i ̸= k. Then the expectation on

the right-hand side of (2.34) can be estimated:

n

∑
i=1

E(IY,i− pY )
2(IZ,i− pZ)

2

+
n

∑
i=1

n

∑
k=1

i ̸=k

E(IY,i− pY )(IZ,i− pZ)E(IY,k− pY )(IZ,k− pZ)

≤ n+n2(p11− pY pZ)
2.

Going back to (2.34) we conclude that (2.33) is true. When p11 converges to zero faster

than p3
Y we use the analogous estimates to conclude that

1

n3/2 ∑
n
i=1(IY,i− pY )(IZ,i− pZ)

»

p3
Y

P−→ 0, n→ ∞.

We are left to show that

1√
p11

1

n3/2

n

∑
i=1

n

∑
j=1

i ̸= j

(IY,i− pY )(IZ, j− pZ)
P−→ 0, n→ ∞, (2.35)

when p11 converges to zero more slowly than p3
Y and to show the analogous statement

with
√

p11 replaced by
»

p3
Y , when p11 converges to zero faster than p3

Y . Use the Cheby-

shev inequality again, applied on the expression in (2.35). On its right-hand side we get

the expression

1

ε2n3 p11

n

∑
i=1

n

∑
j=1

i ̸= j

E(IY,i− pY )
2(IZ, j− pZ)

2

+
1

ε2n3 p11

n

∑
i=1

n

∑
j=1

i ̸= j

n

∑
k=1

n

∑
l=1

k ̸=l,k ̸=i

E(IY,i− pY )(IZ, j− pZ)(IY,k− pY )(IZ,l− pZ)

+
1

ε2n3 p11

n

∑
i=1

n

∑
j=1

i ̸= j

n

∑
k=1

n

∑
l=1

k ̸=l,l ̸= j

E(IY,i− pY )(IZ, j− pZ)(IY,k− pY )(IZ,l− pZ)

= J1 + J2 + J3.

Note that we have omitted the cases in which k = i or l = j because those two cases boil

down to an estimate similar to the estimate of J1. For J1 note that (IY,i− pY )
2 ≤ 1 and

(IZ, j− pZ)
2 ≤ 1 almost surely so J1 is bounded by

1

ε2n3 p11
n2 =

1

ε2np11
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and that expression converges to zero as we have already seen in the proof of Lemma

2.3.2. It is clear that the same conclusion holds when p11 converges to zero faster than

p3
Y , because of the assumption (2.3).

As J2 and J3 are symmetric, we will only analyze J2. Let us first note that for the

sums in which l ̸= i random variables IY,i are independent of all other IZ, j, IY,k and IZ,l and

therefore expectation under those sums is equal to zero. So, we can write

J2 =
1

ε2n3 p11

n

∑
i=1

n

∑
j=1

i ̸= j

n

∑
k=1
k ̸=i

E(IY,i− pY )(IZ,i− pZ)(IZ, j− pZ)(IY,k− pY ).

With similar reasoning we conclude that the sums in which k ̸= j also disappear, so we

get

J2 =
1

ε2n3 p11

n

∑
i=1

n

∑
j=1

i ̸= j

E(IY,i− pY )(IZ,i− pZ)(IZ, j− pZ)(IY, j− pY ).

Because (Yi,Zi) and (Yj,Z j) are independent for i ̸= j we get

J2 ≤
1

ε2n3 p11
n2(p11− pY pZ)

2 =
1

ε2np11
(p11− pY pZ)

2

and the expression on the right-hand side converges to zero, for n→∞. We conclude that

(2.35) is valid. When p11 converges to zero faster than p3
Y in a similar manner we get the

estimate for J2 (when we replace
√

p11 by
»

p3
Y )

J2 ≤
1

ε2np3
Y

(p11− pY pZ)
2,

and we again conclude that the expression on the right-hand side converges to zero, for

n→ ∞, because of the assumption (2.3). Therefore, the statement of the Lemma holds.

■

Proof of Proposition 2.1.5. Multiply

∑
n
i=1

(

IY,i− ÅIY
)(

IZ,i− ÅIZ

)

−n(p11− pY pZ)
»

∑
n
i=1

(

IY,i− ÅIY
)2(

IZ,i− ÅIZ

)2

by
»

E(IY,1− pY )2(IZ,1− pZ)2

»

E(IY,1− pY )2(IZ,1− pZ)2
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to get

1√
n

[

∑
n
i=1

(

IY,i− ÅIY
)(

IZ,i− ÅIZ

)

−n(p11−pY pZ)
]

»

E(IY,1− pY )2(IZ,1− pZ)2

»

E(IY,1− pY )2(IZ,1− pZ)2

1√
n

»

∑
n
i=1

(

IY,i− ÅIY
)2(

IZ,i− ÅIZ

)2
.

Use Lemma 2.3.2 to conclude that we are left to show

1√
n

[

∑
n
i=1

(

IY,i− ÅIY
)(

IZ,i− ÅIZ

)

−n(p11− pY pZ)
]

»

E(IY,1− pY )2(IZ,1− pZ)2

d−→ N(0,1).

We can rewrite the numerator slightly in the above fraction to get

1√
n

n

∑
i=1

(

IY,i− pY − ( ÅIY − pY )
)(

IZ,i− pZ− ( ÅIZ− pZ)
)

=
1√
n

[ n

∑
i=1

(IY,i− pY )(IZ,i− pZ)− ( ÅIZ− pZ)
n

∑
i=1

(IY,i− pY )

− ( ÅIY − pY )
n

∑
i=1

(IZ,i− pZ)+n( ÅIY − pY )( ÅIZ− pZ)
]

=
1√
n

n

∑
i=1

(IY,i− pY )(IZ,i− pZ)−
√

n( ÅIY − pY )( ÅIZ− pZ).

By Lemma 2.3.3 we conclude
√

n( ÅIY − pY )( ÅIZ− pZ)
»

E(IY,1− pY )2(IZ,1− pZ)2

P−→ 0, n→ ∞.

Therefore, we only need to prove

1√
n ∑

n
i=1(IY,i− pY )(IZ,i− pZ)−

√
n(p11− pY pZ)

»

E(IY,1− pY )2(IZ,1− pZ)2

d−→ N(0,1) (2.36)

to finish the proof of this proposition. We will do that by using the Lindeberg-Feller

central limit theorem. Let us define a triangular array (with independent rows)

Uni = (IY,i− pY )(IZ,i− pZ), i = 1, . . . ,n.

We see that |Uni| ≤ 1 (a.s.) and E(Uni) = (p11− pY pZ). As in the proof of Lemma 2.3.2

we calculate

E(Uni)
2 = (p11−2p11 pZ−2p11 pY +4p11 pY pZ + pY (pZ)

2 + pZ(pY)
2−3(pY)

2(pZ)
2)

and so

Var(Uni) = (p11− p2
11−2p11 pZ−2p11 pY +6p11 pY pZ

+ pY (pZ)
2 + pZ(pY )

2−4(pY )
2(pZ)

2)
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Note that the asymptotically dominant term in Var(Uni) depends on the asymptotic be-

haviour of p11 (see the proof of Lemma 2.3.2). Suppose first that p11 converges to zero

more slowly than p3
Y . As Var(Uni) does not depend on i in that case we get

s2
n =

n

∑
i=1

Var(Uni) = nVar(Un1)∼ np11.

To apply the Lindeberg-Feller central limit theorem, we need to check the Lindeberg

condition

Ln :=
n

∑
i=1

1

s2
n

E
(

(Uni−EUni)
2I{|Uni−EUni|>εsn}

)

→ 0,

for any ε > 0 and n→ ∞. Now we use the fact that (Uni−EUni)
2 ≤ 1 (a.s.) and the

Chebyshev inequality to get

Ln ∼
1

np11

n

∑
i=1

E
(

(Uni−EUni)
2I{|Uni−EUni|>εsn}

)

≤ 1

np11

n

∑
i=1

E
(

I{|Uni−EUni|>εsn}
)

=
1

np11
nP(|Un1−EUn1|> εsn)

≤ 1

p11

1

ε2

1

s2
n

Var(Un1)

∼ 1

p11

1

ε2

1

np11
p11 =

1

ε2

1

np11
→ 0

for n→ ∞, under the assumption (2.3). The same conclusion follows if p11 converges

to zero faster than p3
Y (in that case s2

n ∼ np3
Y ∼ nm

−3/2
n ). So, the Lindeberg condition is

satisfied in both cases and we can conclude

∑
n
i=1Uni−∑

n
i=1 EUni

sn

d−→ N(0,1).

We are now over with the proof, as (∑n
i=1Uni−∑

n
i=1 EUni)/sn is equal to

1√
n ∑

n
i=1(IY,i− pY )(IZ,i− pZ)−

√
n(p11− p2

Y )
»

E(IY,1− pY )2(IZ,1− pZ)2− (p2
11−2p11 pY pZ +(pY )2(pZ)2)

.

We can overcome the slight difference in the denominator of the above expression by

noting that

E(IY,1− pY )
2(IZ,1− pZ)

2− (p2
11−2p11 pY pZ +(pY )

2(pZ)
2)

E(IY,1− pY )2(IZ,1− pZ)2
→ 1, n→ ∞
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because of the expansion in (2.28). Note that for n large enough we have

∑
n
i=1 EUni

sn
∼
√

n(p11− p2
Y )√

p11
∼
√

n(p11−1/mn)√
p11

when p11 converges to zero more slowly than p3
Y , and

∑
n
i=1 EUni

sn
∼
√

n(p11− p2
Y )

»

p3
Y

∼
√

n m
3/4
n (p11−1/mn)∼−

√
nm
−1/4
n ,

when p11 converges to zero faster than p3
Y . ■

Proof of Lemma 2.1.6. Multiply τ̂n(GnXn)2 by

E(IY,1− pY )
2E(IZ,1− pZ)

2

E(IY,1− pY )2E(IZ,1− pZ)2
.

Then first observe

1
n ∑

n
i=1

(

IY,i− ÅIY
)2 1

n ∑
n
j=1

(

IZ,i− ÅIZ

)2

E(IY,1− pY )2E(IZ,1− pZ)2
→ 1 (a.s.). (2.37)

To prove (2.37) it is enough to show

∣

∣

∣

∣

∣

1
n ∑

n
i=1

(

IY,i− ÅIY
)2

E(IY,1− pY )2
−1

∣

∣

∣

∣

∣

→ 0 (a.s.).

After a small calculation, we see that the above expression can be bounded

| ÅIY − ÅI2
Y − pY +(pY )

2|
pY − (pY )2

≤ | ÅIY − pY |
pY − (pY )2

+
| ÅI2

Y − (pY )
2|

pY − (pY )2
.

For the first term on the right-hand side of the above inequality recall (2.4) and then we

get

| ÅIY − pY |
pY − (pY )2

=

∣

∣

1
n ∑

n
i=1(IY,i− pY )

∣

∣

pY − (pY )2
∼
∣

∣

∣

√
mn

n

n

∑
i=1

(IY,i− pY )
∣

∣

∣→ 0 (a.s.),

as we have already shown in Lemma 2.3.1. For the second term, we can use a similar

procedure to get

| ÅI2
Y − (pY )

2|
pY − (pY )2

=
|( ÅIY − pY )| · |( ÅIY + pY )|

pY − (pY )2

≤ 2

∣

∣

1
n ∑

n
i=1(IY,i− pY )

∣

∣

pY − (pY )2
∼
∣

∣

∣

√
mn

n

n

∑
i=1

(IY,i− pY )
∣

∣

∣→ 0 (a.s.)

and that proves the almost sure convergence stated.
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To finish the proof of the lemma, all that remains is to show

1
n ∑

n
i=1

(

IY,i− ÅIY
)2(

IZ,Gn(i)− ÅIZ

)2

E(IY,1− pY )2E(IZ,1− pZ)2

P−→ 1. (2.38)

Note first that in the denominator in (2.38) we have the expression

pY pZ− pZ(pY )
2− pY (pZ)

2 +(pY )
2(pZ)

2

and pY pZ is the asymptotically dominant term (∼ 1/mn). So, we need to prove that

∣

∣

∣

∣

∣

1
n ∑

n
i=1

(

IY,i− ÅIY
)2(

IZ,Gn(i)− ÅIZ

)2

pY pZ
−1

∣

∣

∣

∣

∣

P−→ 0. (2.39)

Next we calculate the expression in the numerator under the absolute sign to get

1

n

n

∑
i=1

IY,iIZ,Gn(i)−2 ÅIZ
1

n

n

∑
i=1

IY,iIZ,Gn(i)−2 ÅIY
1

n

n

∑
i=1

IY,iIZ,Gn(i)

+4 ÅIY ÅIZ
1

n

n

∑
i=1

IY,iIZ,Gn(i)−3 ÅI2
Y

ÅI2
Z + ÅIY ÅI2

Z + ÅI2
Y

ÅIZ− pY pZ.

We will show that the above-written expression divided by pY pZ converges to zero in

probability. First, we note that

1

n

n

∑
i=1

IY,iIZ,Gn(i)− pY pZ =
1

n

n

∑
i=1

(IY,iIZ,Gn(i)− pY pZ).

Then we use the Markov inequality to get, for arbitrary ε > 0,

P

( 1

npY pZ

∣

∣

∣

n

∑
i=1

(IY,iIZ,Gn(i)− pY pZ)
∣

∣

∣> ε
)

≤ 1

ε2n2(pY )2(pZ)2
E

( n

∑
i=1

(IY,iIZ,Gn(i)− pY pZ)
)2

. (2.40)

The expectation on the right-hand side of (2.40) is equal to

n

∑
i=1

E(IY,iIZ,Gn(i)− pY pZ)
2

+
n

∑
i=1

n

∑
j=1

i ̸= j

E

(

(IY,iIZ,Gn(i)− pY pZ)(IY, jIZ,Gn( j)− pY pZ)
)

= J1 + J2.

Let h : Gn×R
2n→ [0,∞) be a function defined as

h(π,xn) =
n

∑
i=1

(Iy,iIz,π(i)− pY pZ)
2.
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Similar to the calculation in (2.5) we get

E(h(Gn,X
n) | Xn) =

1

n!
∑

π∈Gn

n

∑
i=1

(IY,iIZ,π(i)− pY pZ)
2 (a.s.)

Take the expectation in the last equation to get

J1 =
n

∑
i=1

1

n!
∑

π∈Gn

E(IY,iIZ,π(i)− pY pZ)
2.

Fix i ∈ {1,2, . . . ,n} and define An = An(i) := {π ∈ Gn | π(i) = i} and Bn = Ac
n. An has

(n−1)! elements. Then we have

1

n!
∑

π∈Gn

E(IY,iIZ,π(i)− pY pZ)
2 =

1

n!
∑

π∈An

E(IY,iIZ,π(i)− pY pZ)
2

+
1

n!
∑

π∈Bn

E(IY,iIZ,π(i)− pY pZ)
2 = J11 + J12.

By the definition of An we have

J11 =
1

n
(p11−2p11 pY pZ +(pY )

2(pZ)
2)

and similarly

J12 =
n−1

n
(pY pZ− (pY )

2(pZ)
2).

Note that J11 converges to zero at least as fast as 1/(n
√

mn) (p11 ∼ 1/
√

mn for Y = Z).

As pY pZ ∼ 1/mn we conclude that J1 can be estimated as

n

( 1

n
√

mn
+

n−1

n
pY pZ

)

∼ 1√
mn

+
n

mn
∼ n

mn

and its contribution in (2.40) is then asymptotically bounded by

m2
n

ε2n2

n

mn
∼ mn

ε2n
.

The last fraction above converges to zero because of the assumption (2.3).

To estimate J2 we use reasoning similar to that above to get

J2 =
n

∑
i=1

n

∑
j=1

i ̸= j

1

n!
∑

π∈Gn

E(IY,iIZ,π(i)− pY pZ)(IY, jIZ,π( j)− pY pZ).

Now fix i, j∈{1,2, . . . ,n}, i ̸= j. Let An be a set of permutations π ∈Gn such that π(i) ̸= i,

π(i) ̸= j, π( j) ̸= i and π( j) ̸= j. Let Bn = Ac
n. For the permutations π ∈ An we have

E(IY,iIZ,π(i)− pY pZ)(IY, jIZ,π( j)− pY pZ) = 0,
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because IY,iIZ,π(i) and IY, jIZ,π( j) are independent, but also IY,i and IZ,π(i) are independent

as well as IY, j and IZ,π( j). For π ∈ Bn we have π(i) = i or π(i) = j or π( j) = i or π( j) = j

and in each of these four cases there are (n−1)! permutations (some of them are counted

more than once). Therefore, the number of permutations in Bn is less than 4(n−1)!. On

the other hand, for the permutation π ∈ Bn we have various possibilities for the values of

E(IY,iIZ,π(i)− pY pZ)(IY, jIZ,π( j)− pY pZ),

but in all cases, the asymptotically dominant terms are p2
11 or p11 pY pZ . As p11 converges

to zero at least at the rate 1/
√

mn, J2 is asymptotically bounded by

n2 4

n

1

mn
.

Going back to the relation (2.40) we see that the contribution of J2 is then asymptotically

bounded by

1

ε2n(pY )2(pZ)2

4n

mn
∼ mn

ε2n
,

for any ε > 0. The last expression converges to zero because of the assumption (2.3).

We conclude hat the right-hand side in (2.40) converges to zero and therefore

1
n ∑

n
i=1(IY,iIZ,Gn(i)− pY pZ)

pY pZ

P−→ 0.

Now we can finish the proof of this lemma similarly as we have done in the proof of

Lemma 2.3.2. For example, we can write

2 ÅIZ
1

n

n

∑
i=1

IY,iIZ,Gn(i) = 2 ÅIZ
1

n

n

∑
i=1

(IY,iIZ,Gn(i)− pY pZ)+2pY pZ
ÅIZ.

The first term on the right-hand side of the above equality, divided by pY pZ , converges to

zero, as we have just shown that for the term

1

n

n

∑
i=1

(IY,iIZ,π(i)− pY pZ).

Recall that ÅIZ ∼ 1/
√

mn (a.s.). The second term, divided by pY pZ , also converges to zero

almost surely. We can use similar reasoning for the other terms under the absolute sign in

(2.39), which finishes the proof of this lemma.

■
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3. THE PERMUTATION TEST OF

INDEPENDENCE FOR M-DEPENDENT

DATA

In this chapter we formulate the permutation test of independence when Yi and Zi are

stationary and M-dependent. To prove the results needed we use the idea that is quite

common in the bootstrap literature: we remove blocks of length M from the original

sequences to leave independent blocks of resulting data. Otherwise, the ideas we use are

similar to those presented and used in Chapter 2.

3.1. ASYMPTOTIC RESULTS

Let Yi,Zi, i = 1,2, . . . be two strictly stationary M-dependent processes defined on the

probability space (Ω,F ,P). Recall, the process {Yi, i ∈N} is M-dependent, M ∈N, if for

all j ∈ N, the vector (Y1, . . . ,Yj) is independent of (Yj+k,Yj+k+1 . . .) whenever k > M and

it is strictly stationary if the joint distributions of (Yi1 , . . . ,Yik) and (Yi1+h, . . . ,Yik+h) are the

same for all positive integers i1, . . . , ik, k and h. Note, the strict stationarity is equivalent

to the statement that the distributions of (Y1, . . . ,Yk) and (Y1+h, . . . ,Yk+h) are the same for

all positive integers k and h. If {Yi, i∈N} is strictly stationary, it immediately follows that

all Yi, i ∈ N, have the same distribution.

As in the previous section we choose an intermediate sequence of integers mn such

that mn→ ∞, for n→ ∞, but here we will need the stronger assumption

mn = O
(

n1/4−τ
)

, (3.1)
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for some τ > 0. Suppose that there exist two sequences (un) and (vn) of positive real

numbers such that un→ sup{x : FY (x)< 1}, vn→ sup{x : FZ(x)< 1} and

nP(Y > un)→ 1, nP(Z > vn)→ 1, n→ ∞. (3.2)

Note, as before, for the generic member Yi, Zi of the processes {Yi, i ∈ N} and {Zi, i ∈ N}
we write Y , Z. This is justified by the stationarity of those processes.

Let us fix n ∈ N. We will suppose that n = mn ·Nn +M ·Nn, where N = Nn depends

on n. That assumption makes no difference in asymptotic terms, but it will make our

calculations and notation easier. With that assumption in mind we can divide both se-

quences of random variables Y1, . . . ,Yn and Z1, . . . ,Zn into Nn blocks of mn subsequent

random variables and separated by M blocks of them. In other words we are considering

the sequences

Y1, . . . ,Ym,Ym+M+1, . . . ,Y2m+M,Y2m+2M+1, . . . ,Y3m+2M, . . . ,Yn

and

Z1, . . . ,Zm,Zm+M+1, . . . ,Z2m+M,Z2m+2M+1, . . . ,Z3m+2M, . . . ,Zn

and we form the random vectors Y 1, . . .Y N and Z1, . . .ZN out of them. Y 1, . . .Y N are

independent as well as Z1, . . .ZN because we assumed {Yi, i ∈ N} and {Zi, i ∈ N} are

M-dependent processes. Additionally, because of stationarity assumption, Y 1, . . .Y N are

equally distributed. The same is true for Z1, . . .ZN . Note, although mn and Nn depend on

n we sometimes write them without the subscript n to ease notation.

We will use the hypothesis testing setup we have previously described. For that pur-

pose we form the new sequence of vectors X i where X i = (Y i,Zi), for i ∈ {1, . . . ,Nn}.
Let X̂N = (X1, . . . ,XN). As Y i and Zi are R

m-valued vectors, the vector X i has values in

R
2m. In terms of components we see that, for example, X1 = (Y1, . . . ,Ym,Z1, . . . ,Zm). We

immediately conclude that X1, . . . ,XN are independent as in each vector X i are only the

random variables Yj and Zk from blocks Y i and Zi and those are independent of the other

blocks of original data, i = 1, . . . ,Nn. Also, all X1, . . . ,XN have the same distribution, and

we can denote it with PX , as it is true for the random vectors Y i and Zi.

Denote the finite group of permutations of the set {1,2, . . . ,N} by GN . The group

action of GN on (R2m)N = R
2mN is defined by the action of the element π ∈GN as

π((y1,z1), . . .(yN ,zN)) = ((y1,zπ(1)), . . .(yN ,zπ(N))), (3.3)
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where ((y1,z1), . . .(yN ,zN)) ∈ R
2mN . Let GN be a random element on Ω with uniform

distribution on the permutation group GN . We assume that GN and X̂N are independent in

the rest of this chapter.

We will use several abbreviations in the sequel to make notation easier. As before, let

pY = pY (n) := P(Y1 > u√mn
) and pZ = pZ(n) := P(Z1 > u√mn

) and

pY
kl = P(Yk > u√mn

,Yl > u√mn
) and pZ

kl = P(Zk > v√mn
,Zl >V√mn

),

where k, l ∈ {1,2, . . . ,mn}. Next, let

IY,ik := I{Y(i−1)(mn+M)+k>u√mn} and IZ, jk := I{Z( j−1)(mn+M)+k>u√mn
}, (3.4)

where i, j ∈ {1, . . . ,Nn} and k ∈ {1, . . . ,mn}. For i ̸= j IY,ik and IY, jk are independent as

well as IY,ik and IY,il , for k− l > M, k, l ∈ {1, . . . ,mn}. Finally, let

ÅIY
n,k :=

1

Nn

Nn

∑
g=1

I{Y(g−1)(mn+M)+k>u√mn} and ÅIZ
n,k :=

1

Nn

Nn

∑
h=1

I{Z(h−1)(mn+M)+k>u√mn}.

Both { ÅIY
n,k}

mn

k=1 and { ÅIZ
n,k}

mn

k=1 are triangular arrays of bounded random variables because

| ÅIY
n,k| ≤

1

Nn

Nn

∑
g=1

|I{Y(g−1)(mn+M)+k>u√mn}| ≤
1

Nn
Nn = 1,

with the obvious analogy for ÅIZ
n,k. Because of the stationarity of the processes Y and Z

mean of both triangular arrays does not depend on k, as we have

E( ÅIY
n,k) = pY = pY (n) and E( ÅIZ

n,k) = pZ = pZ(n).

Note that for different k, l ∈ {1, . . . ,mn} sums ÅIY
n,k and ÅIY

n,l contain members of the process

{Yi} that are in a different block of the size mn and separated by k− l indices. Therefore,

for k− l > M, ÅIY
n,k and ÅIY

n,l are independent, meaning that { ÅIY
n,k}

mn

1 is an M-dependent

triangular array. Obviously, the same applies to { ÅIZ
n,k}

mn

1 .

On several occasions in rest of the chapter we will use the following asymptotic result.

m3
n

Nn
=

m3
n(mn +M)

Nn(mn +M)
∼ m4

n

n
→ 0, n→ ∞. (3.5)

In (3.5) we used the assumption (3.1) and the fact that, as n grows, M becomes negligible

compared to both n and mn.
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Consider now the following auxiliary statistic

Sn = Sn(X̂
N) :=

mn

n

Nn

∑
i=1

mn

∑
k=1

I{Y(i−1)(mn+M)+k>u√mn}I{Z(i−1)(mn+M)+k>u√mn} =
mn

n

Nn

∑
i=1

mn

∑
k=1

IY,ikIZ,ik.

Define the sum S
GN
n as

Sn(GNX̂N) :=
mn

n

Nn

∑
i=1

mn

∑
k=1

IY,ikIZ,GN(i)k.

Let n ∈ N such that n = 2(mn +M)Nn, where M,mn,Nn ∈ N have the same interpre-

tation as before. Let y1, . . . ,yn, z1, . . . ,zn ∈R and let x̂n = ((y1,z1), . . . ,(yN ,zN))∈R2mnNn ,

where yi =(y(i−1)(mn+M)+1, . . . ,y(i−1)(mn+M)+mn
), zi =(z(i−1)(mn+M)+1, . . . ,z(i−1)(mn+M)+mn

)∈
R

mn , i = 1, . . . ,Nn. Next, define the function h : GNn
×R

2mnNn → [0,∞) by

h(π, x̂n) =
mn

n

Nn

∑
i=1

mn

∑
k=1

Iy,ikIz,π(i)k,

Clearly, h(GNn
, X̂Nn) = S

GNn
n and, because of (3.1), we have E|h(GNn

, X̂Nn)| ≤ mn/n < ∞

(a.s.). Let PGN
be the probability on GNn

induced by the random element GNn
. Clearly

PGN
(π) = 1/Nn!, for π ∈ GNn

. Because of the independence between X̂Nn and GNn
by

(1.28) we have

E(S
GNn
n | X̂Nn) =

∫

GNn

mn

n

Nn

∑
i=1

mn

∑
k=1

IY,ikIZ,π(i)kPGN
(dπ) (a.s.)

=
1

Nn!
∑

π∈GNn

mn

n

Nn

∑
i=1

mn

∑
k=1

IY,ikIZ,π(i)k (a.s.) (3.6)

From (3.6) we derive

E(S
GNn
n | X̂Nn) =

mn

mn +M

mn

∑
k=1

ÅIY
nk

ÅIZ
nk (a.s.) (3.7)

and

Var(S
GNn
n | X̂Nn) =

1

Nn−1

m2
n

n2

Nn

∑
i=1

Nn

∑
j=1

( mn

∑
k=1

(IY,ik− ÅIY
n,k)(IZ, jk− ÅIZ

n,k)
)2

(a.s.), (3.8)

To see how, observe that in the notation of Section 1.2, and using (1.19), we get

E(S
GNn
n | X̂Nn) =

1

Nn

Nn

∑
i=1

Nn

∑
j=1

cNn
(i, j),
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where

cNn
(i, j) =

mn

n

mn

∑
k=1

IY,ikIZ, jk, i, j = 1, . . . ,Nn. (3.9)

Then, E(S
GNn
n | X̂Nn) is equal to

mn

mn +M

1

Nn

Nn

∑
i=1

1

Nn

Nn

∑
j=1

mn

∑
k=1

IY,ikIZ, jk =
mn

mn +M

mn

∑
k=1

ÅIY
nk

ÅIZ
nk.

Similarly, by (1.20) and Lemma 3.3.1 we get (3.8).

Furthermore, by using (1.28), we conclude that almost surely

P

(

S
GNn
n −E(S

GNn
n | X̂Nn)≤ t

»

Var(S
GNn
n | X̂Nn) | X̂Nn

)

=
∫

GNn

I
{mn

n ∑
Nn
i=1 ∑

mn
k=1 IY,ikIZ,π(i)k−E(S

GNn
n |X̂Nn)≤ t

√

Var(S
GNn
n |X̂Nn)}

PGNn
(dπ)

=
1

Nn!
∑

π∈GNn

I
{mn

n ∑
Nn
i=1 ∑

mn
k=1 IY,ikIZ,π(i)k−E(S

GNn
n |X̂Nn)≤ t

√

Var(S
GNn
n |X̂Nn)}

, t ∈ R. (3.10)

We will again use the context of the Hoeffding Central Limit Theorem, specifically The-

orem 1.2.3, to prove the asymptotic result needed to formulate the permutation test of

independence for M-dependent processes. Below we give the analogue of Theorem 2.1.2

applied to the present case of M-dependent processes (Yi) and (Zi).

Theorem 3.1.1. Let (Yi)
∞
i=1 and (Zi)

∞
i=1 be two stationary and M-dependent sequences of

random variables. Suppose they are mutually independent and conditions (3.1) and (3.2)

hold. Then for t ∈ R

lim
n→∞

P

(

S
GNn
n −E(S

GNn
n | X̂Nn)≤ t

»

Var(S
GNn
n | X̂Nn) | X̂Nn

)

= Φ(t) (a.s.) (3.11)

Convergence in (3.11) is the same as in the conclusion of Theorem 2.1.2.

The proof of Theorem 3.1.1 is given in Section 3.3.

Define the statistic Tn as

Tn(X̂
N) =

√

Nn−1
∑

Nn

i=1 ∑
mn

k=1 IY,ikIZ,ik−Nn ∑
mn

k=1
ÅIY
nk

ÅIY
nk

…

∑
Nn

i=1 ∑
Nn

j=1

(

∑
mn

k=1(IY,ik− ÅIY
n,k)(IZ, jk− ÅIZ

n,k)
)2

. (3.12)

Then

Tn(GNX̂N) =
√

Nn−1
∑

Nn

i=1 ∑
mn

k=1 IY,ikIZ,GN(i)k−Nn ∑
mn

k=1
ÅIY
nk

ÅIY
nk

…

∑
Nn

i=1 ∑
Nn

j=1

(

∑
mn

k=1(IY,ik− ÅIY
n,k)(IZ, jk− ÅIZ

n,k)
)2

. (3.13)
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Use (3.7) and (3.8) to conclude

Tn(GNX̂N) =
S

GN
n −E(SGN

n | X̂N)
»

Var(SGN
n | X̂N)

(3.14)

Suppose the null hypothesis, that H0 : (Yi) and (Zi) are independent, holds. Then,

because X1, . . . ,XN are independent and equally distributed, we have

PX̂N = PX1 . . .PXN = (PY 1×PZ1)N .

Therefore, the randomization hypothesis holds. Let

R̂Nn
(t) =

1

Nn!
∑

π∈GNn

I{Tn(GNn X̂Nn)≤t}, t ∈ R. (3.15)

Theorem 3.1.1 implies that the permutation distribution R̂Nn
(t) of Tn converges towards

a standard normal random variable almost surely and therefore in probability too. Then,

as in Remark 2.1.8, it follows that the test statistic Tn converges in distribution towards a

standard normal random variable. Hence, we can perform the permutation test of the in-

dependence of the M-dependent processes (Yi) and (Zi) by using the test statistic Tn(X̂
N).

Remark 3.1.2. We supposed that Yi,Zi, i = 1,2, . . . are M-dependent, with the same

M ∈ N. The proof of Theorem 3.1.1 shows that its conclusion remains the same, if (Yi) is

M1-dependent and (Zi) is M2-dependent, for M = max{M1,M2} .
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3.2. SIMULATIONS

In this section, we investigate the behaviour of the test statistic Tn defined in (3.12) in

a simulation study. We denote the simulated data by (Y1,Z1), . . . ,(Yn,Zn), n ∈ N. The

threshold levels used to calculate the value of the statistic Tn are determined through

empirical upper quantiles of the given data.

Unlike the case described in Chapter 2, here the test statistic depends on n through

Nn and mn which makes the testing procedure more complex. Additionally, there may be

different dependencies contained in the class of M-dependent process. Therefore, we will

test the behaviour of the test statistic for different values of N and m.

3.2.1. Independent iid samples

Consider two iid sequences (Yi) and (Zi) from the unit Pareto distribution. In Table 3.1

we present empirical rejection probabilities of the test for various combinations of N and

m.

N m Thresh. 0.2 Thresh. 0.1 Thresh 0.05

25 25 0.045 0.040 0.047

10 50 0.055 0.044 0.058

10 100 0.048 0.048 0.053

50 25 0.049 0.054 0.054

100 25 0.049 0.049 0.043

Table 3.1: Results of a simulation study in the iid Pareto case for various values of N

(column 1) and m (column 2). Empirical rejection probabilities for the different threshold

levels are shown in columns 3-5. The level of the test is set at 5%, while the number of

permutations and repeats is equal to 2000 in all simulations.

Although our asymptotic results indicate that N should be, at least asymptotically,

much larger than m, simulation results on independent iid samples indicate that perfor-

mance of the permutation test is not so sensitive to the choice of N and m. Simulations
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have been performed for various choices of M, but the same conclusion holds. That is not

surprising, as we are dealing here with iid sequences. Also, it appears that the suggested

permutation test retains approximate exactness for various choices of the threshold level.

3.2.2. Dependent iid samples

In this subsection we present the simulation results for three copulas we have already

encountered in Chapter 2: the Gumbel-Hougaard, the Morgenstern and the Gaussian cop-

ula. Here the choice of N and m matter more for the power of the test as somewhat better

results are achieved when N is larger or equal to m. Therefore, we present only the simula-

tion results for such choices of N and m. As in the case of independent iid data, the choice

of M does not influence the simulation results and therefore we do not report simulations

for the different values of M.

The results presented in this section were simulated with the values of N equal to 31,

50, 100 and 200 and the values of m equal to 31, 20, 10 and 5, respectively. In Figure

3.1 we present the empirical rejection probabilities for various values of the parameter

χ with N = 100 and m = 10. Very similar results were obtained for the combination

N = 200 and m = 5. As can be seen, the obtained results are very similar to the results
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Figure 3.1: Empirical rejection probabilities (y-axis) for various values of the parameter

χ (x-axis) for the sample size n = 1000, with N = 100 and m = 10, using an upper empir-

ical quantile at a level of 20%. Data were generated from the Gumbel-Hougaard copula.

The level of the test is set at 5%, while the number of permutations and repeats is equal

to 2000.
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presented in Section 2.2.3. The power of the test was quite stable for various empirical

quantiles (thresholds). Also, the test is not overly sensitive to various combinations of N

and m as can be seen from Table 3.2, where we present empirical rejection probabilities

for χ = 0.06. Note that approximately on that level the differences are the largest.

N 31 50 100 200

m 31 20 10 5

Empirical rejection probabilities

Threshold 20% 0.0505 0.0502 0.0523 0.0528

Threshold 10% 0.0477 0.0506 0.0528 0.0542

Table 3.2: Empirical rejection probabilities for data generated from the Gumbel-Hougaard

copula with the parameter χ = 0.06, for various combinations of the vales of N and m and

for different thresholds. The level of the test is 0.05, and the number of permutations and

repeats is 2000.
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Figure 3.2: Empirical rejection probabilities (y-axis) for various values of the corre-

sponding parameter of the copulas (x-axis): Morgenstern on the left and Gaussian on the

right. The level of the test is set at 5%, the sample size is n = 1000, with N = 100 and

m = 10, while the number of permutations and repeats equal 2000. The threshold level

varies from 20% through 10% down to 5%.

Next we present simulation results for the data generated from the Morgenstern and

the Gaussian copula. In Figure 3.2 we present empirical rejection probabilities with N =
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100 and m = 10. Similar to the results from Section 2.2.4, the power of the test for

the data generated from those two copulas depends on the choice of the threshold level.

On the other hand, the differences between empirical rejection probabilities for various

choices of of N and m are even smaller than those observed for the data generated from

the Gumbel-Hougaard copula.

3.2.3. Samples of M-dependent data that are mutually independent

Let X1
i and X2

i , i = 1,2, . . ., be two independent sequences of Pareto distributed random

variables. Define the new independent sequences Yi = X1
i +X1

i+1 and Zi = X2
i +X2

i+1, i =

1,2, . . .. Clearly, (Yi) and (Zi) are 1-dependent sequences. We simulated the sequences Yi

and Zi and tested for independence with the testing statistic Tn for different combinations

of N, m and M. In Table 3.3 we present some of the results obtained.

Threshold 10% M = 0 M = 1 M = 2

N = 50, m = 20 0.0430 0.0495 0.0595

N = 100, m = 10 0.0520 0.0575 0.0570

N = 200, m = 5 0.0540 0.0450 0.0515

Threshold 5% M = 0 M = 1 M = 2

N = 50, m = 20 0.0470 0.0510 0.0565

N = 100, m = 10 0.0585 0.0485 0.0520

N = 200, m = 5 0.0540 0.0410 0.0500

Table 3.3: Empirical rejection probabilities for data generated from two 1-dependent se-

quences Yi and Zi, for various combinations of the vales of N and m and for different

thresholds. The level of the test is 0.05, and the number of permutations and repeats is

2000.

The results of the simulations seem to indicate that approximate exactness is achieved

for various values of M. To confirm that, we defined new 2-dependent sequences Y ′i =

X1
i + X1

i+1 + X1
i+2 and Z′i = X2

i + X2
i+1 + X2

i+2, i = 1,2, . . ., and repeated the simulation
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procedure. We also expanded the number of permutations and repeats to 4000. Some of

the obtained results are presented in Table 3.4

Threshold 10% M = 0 M = 1 M = 2 M = 3

N = 45, m = 45 0.0555 0.0565 0.0518 0.0480

N = 100, m = 20 0.0473 0.0525 0.0473 0.0500

N = 200, m = 10 0.0568 0.0435 0.0550 0.0493

N = 400, m = 5 0.0598 0.0515 0.0518 0.0500

Threshold 5% M = 0 M = 1 M = 2 M = 3

N = 45, m = 45 0.0500 0.0508 0.0473 0.0550

N = 100, m = 20 0.0533 0.0493 0.0510 0.0455

N = 200, m = 10 0.0495 0.0500 0.0538 0.0545

N = 400, m = 5 0.0593 0.0483 0.0555 0.0555

Table 3.4: Empirical rejection probabilities for data generated from two 2-dependent se-

quences Y ′i and Z′i , for various combinations of the vales of N and m and for different

thresholds. The level of the test is 0.05, and the number of permutations and repeats is

4000.

The simulation results again do not distinguish between any particular choice of M,

although visual inspection of qq-plots of the test statistic Tn seems to indicate that better

stability is achieved for M = 2. Overall, we conclude that the presented permutation test

achieves approximate exactness for various combinations of N, m and M.

3.2.4. Samples of M-dependent data that are mutually dependent

Let X1
i and X2

i , i = 1,2, . . ., be two independent sequences of Pareto distributed random

variables and define new 2-dependent sequences Y ′i = X1
i +a ·X1

i+1 +X1
i+2 and Z′i = X2

i +

a ·X1
i+1 +X2

i+2, i = 1,2, . . ., where a≥ 0. Sequences Yi and Zi are now dependent and the

parameter a determines the strength of dependence. We simulated the sequences Yi and

Zi and applied our permutation to test the hypothesis of independence for various values

of parameter a.
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Figure 3.3: Empirical rejection probabilities (y-axis) for various values of the parameter

a (x-axis) for for N = 100, m = 20 and M = 2, using an upper empirical quantile at a level

of 10%. Data were generated from the sequences Yi and Zi defined in this subsection. The

level of the test is set at 5%, while the number of permutations and repeats is equal to

4000.

a = 0.07 M = 0 M = 1 M = 2

N = 45, m = 45 0.3113 0.3313 0.3175

N = 100, m = 20 0.3303 0.3220 0.3280

N = 200, m = 10 0.3335 0.3305 0.3338

N = 400, m = 5 0.3555 0.3518 0.3435

a = 0.14 M = 0 M = 1 M = 2

N = 45, m = 45 0.7165 0.7183 0.7048

N = 100, m = 20 0.7123 0.7108 0.7163

N = 200, m = 10 0.7223 0.7150 0.7310

N = 400, m = 5 0.7358 0.7445 0.7465

Table 3.5: Empirical rejection probabilities for data generated from two 2-dependent se-

quences Y ′i and Z′i , for various combinations of the vales of N and m and for different

thresholds. The level of the test is 0.05, and the number of permutations and repeats is

4000.
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Simulation results are presented in Figure 3.3 for data generated by Yi and Zi. We

show simulation results for N = 200, m = 10 and M = 2 as the permutation test shows the

best power for the larger values of N (similar results were obtained for N = 400, m = 5

and M = 2). The power of the test was weaker for other combinations of N and m (for

example, N = 65 and m = 30 or N = 100 and m = 20). In Table 3.5 we present some

results of the simulations for various values of M. We note that the simulation results

indicate that the test shows the largest power when M = 2, although the simulation results

do not show clear trend of increased power related to larger value of M.

Overall, we conclude that the permutation test we present shows somewhat better

performance for combinations of N and m in which N is larger.
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3.3. PROOFS

Before we give the proof of Theorem 3.1.1 we will state and prove four lemmas. The

proofs of the last three are quite technical and lengthy, but otherwise elementary as they

rely on the Markov/Chebyshev inequality and the Borel-Cantelli lemma.

Lemma 3.3.1. With the same assumptions as in Theorem 3.1.1 let

cNn
(i, j) :=

mn

n

mn

∑
k=1

IY,ikIZ, jk.

Then for dNn
(i, j) (see (1.17) for the definition) we have

dNn
(i, j) =

mn

n

mn

∑
k=1

(IZ, jk− ÅIZ
n,k)(IY,ik− ÅIY

n,k). (3.16)

Proof. Recall that

dNn
(i, j) = cNn

(i, j)− 1

Nn

Nn

∑
g=1

cNn
(g, j)− 1

Nn

Nn

∑
h=1

cNn
(i,h)+

1

N2
n

Nn

∑
g=1

Nn

∑
h=1

cNn
(g,h). (3.17)

where i, j ∈ {1, . . . ,Nn}. The sum of the first and the third addend in (3.17) is equal to

mn

n

mn

∑
k=1

IY,ikIZ, jk−
1

Nn

Nn

∑
h=1

mn

n

mn

∑
k=1

IY,ikIZ,hk =
mn

n

mn

∑
k=1

IY,ik
(

IZ, jk− ÅIZ
n,k

)

. (3.18)

In the same vein we calculate the sum of the second and the fourth addend in (3.17):

− 1

Nn

Nn

∑
g=1

mn

n

mn

∑
k=1

IY,gkIZ, jk +
1

N2
n

Nn

∑
g=1

Nn

∑
h=1

mn

n

mn

∑
k=1

IY,gkIZ,hk

=−mn

n

mn

∑
k=1

1

Nn

Nn

∑
g=1

IY,gkIZ, jk +
mn

n

mn

∑
k=1

1

Nn

Nn

∑
g=1

IY,gk

1

Nn

Nn

∑
h=1

IZ,hk

=−mn

n

mn

∑
k=1

1

Nn

Nn

∑
g=1

IY,gk

(

IZ, jk− ÅIZ
n,k

)

(3.19)

From (3.18) and (3.19) we get (3.16). ■

Lemma 3.3.2. With same assumptions as in Theorem 3.1.1 we have:

a)

1

Nn

mn

∑
k=1

Nn

∑
j=1

(IZ, jk− pZ)→ 0, n→ ∞ (a.s.)
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b)

1

N2
n

mn

∑
k=1

Nn

∑
i=1

Nn

∑
j=1

(IY,ik− pY )(IZ, jk− pZ)→ 0, n→ ∞ (a.s.)

c)

1

N2
n

mn

∑
k=1

Nn

∑
i=1

Nn

∑
j=1

(IZ,ik− pZ)(IZ, jk− pZ)→ 0, n→ ∞ (a.s.)

d)

1

N3
n

mn

∑
k=1

Nn

∑
i=1

Nn

∑
j=1

Nn

∑
q=1

(IY,ik− pY )(IZ, jk− pZ)(IZ,qk− pZ)→ 0, n→ ∞ (a.s.).

Because of the symmetry between Y and Z we also have

a’)

1

Nn

mn

∑
k=1

Nn

∑
i=1

(IY,ik− pY )→ 0, n→ ∞ (a.s.)

c’)

1

N2
n

mn

∑
k=1

Nn

∑
i=1

Nn

∑
j=1

i ̸= j

(IY,ik− pY )(IY, jk− pY )→ 0, n→ ∞ (a.s.).

Proof of Lemma 3.3.2. For the proof of all given almost sure convergences we will use

the Markov inequality and the Borell-Cantelli lemma. The main idea of the proofs is

to use the fact that we centred random variables IY,ik and IZ, jk and, because of the few

independence arguments, many multiple sums we will encounter will just vanish.

a’) Let us take ε > 0. Then we have by Markov inequality

P

( 1

Nn

∣

∣

∣

mn

∑
k=1

Nn

∑
i=1

(IY,ik− pY )
∣

∣

∣
> ε

)

≤ 1

ε4N4
n

E

( Nn

∑
i=1

mn

∑
k=1

(IY,ik− pY )
)4

. (3.20)
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The expectation on the right hand side of the previous inequality is equal to

Nn

∑
i=1

E

( mn

∑
k=1

(IY,ik− pY )
)4

+4
Nn

∑
i=1

Nn

∑
j=1

i ̸= j

E

(

(

mn

∑
k=1

(IY,ik− pY )
)3(

mn

∑
k=1

(IY, jk− pY )
)

)

+3
Nn

∑
i=1

Nn

∑
j=1

i ̸= j

E

(

(

mn

∑
k=1

(IY,ik− pY )
)2(

mn

∑
k=1

(IY, jk− pY )
)2
)

+6
Nn

∑
i=1

Nn

∑
j=1

Nn

∑
p=1

i̸= j ̸=p

E

(

(

mn

∑
k=1

(IY,ik− pY )
)2(

mn

∑
k=1

(IY, jk− pY )
)(

mn

∑
k=1

(IY pk− pY )
)

)

+
Nn

∑
i=1

Nn

∑
j=1

Nn

∑
p=1

Nn

∑
q=1

i̸= j ̸=p̸=q

E

( mn

∑
k=1

(IY,ik− pY )
mn

∑
k=1

(IY, jk− pY )
mn

∑
k=1

(IY pk− pY )
mn

∑
k=1

(IY qk− pY )
)

.

For different i and j sums ∑
mn

k=1(IY,ik− pY ) and ∑
mn

k=1(IY, jk− pY ) are independent (they

contain random variables from different blocks separated by M places) and so the second,

the fourth and the fifth sum in the above expression vanish. Therefore we get

E

( Nn

∑
i=1

mn

∑
k=1

(IY,ik− pY )
)4

=
Nn

∑
i=1

E

( mn

∑
k=1

(IY,ik− pY )
)4

+3
Nn

∑
i=1

Nn

∑
j=1

i̸= j

E

(

(

mn

∑
k=1

(IY,ik− pY )
)2(

mn

∑
k=1

(IY, jk− pY )
)2
)

. (3.21)

By using a similar decomposition for the fourth power of a sum as we used above, we see

that the asymptotically dominant term of the first sum in (3.21) is

Nn

∑
i=1

mn

∑
k=1

mn

∑
l=1

mn

∑
r=1

mn

∑
s=1

k ̸=l ̸=r ̸=s

E
(

(IY,ik− pY )(IY,il− pY )(IY,ir− pY )(IY,is− pY )
)

. (3.22)

Note that IY,ik and IY,il are independent for |k− l| > M and the same observation holds

for indices r and s. Therefore, for s ∈ {1, . . . ,mn} such that |s− k| > M, |s− l| > M and

|s− r|> M the sum in (3.22) is equal to zero as E(IY,is− pY ) = 0. If that is not true for at

least one index, let say |s−r| ≤M, then we can not conclude that the sum in (3.22) is equal

to zero, but then it can be bounded by the asymptotically dominant term 2MNnm3
n pY , i.e.

we get
Nn

∑
i=1

E

( mn

∑
k=1

(IY,ik− pY )
)4

≤CNnm3
n pY .
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For the second sum in (3.21) we first note that, as i ̸= j, we have

E

(

(

mn

∑
k=1

(IY,ik− pY )
)2(

mn

∑
k=1

(IY, jk− pY )
)2
)

= E
(

mn

∑
k=1

(IY,ik− pY )
)2

E
(

mn

∑
k=1

(IY, jk− pY )
)2

Next, we get estimate

E
(

mn

∑
k=1

(IY,ik− pY )
)2

=
mn

∑
k=1

E(IY,ik− pY )
2 +

mn

∑
k=1

mn

∑
l=1

k ̸=l

E(IY,ik− pY )(IY,il− pY )

=
mn

∑
k=1

(

E(IY,ik)− (pY )
2
)

+
mn

∑
k=1

mn

∑
l=1

|k−l|≤M

E(IY,ik− pY )E(IY,il− pY )

≤ mn pY +2Mmn pY =Cmn pY .

To estimate the second sum above we used the same reasoning we employed to estimate

the sum in (3.22). Also, since 0≤ IY,ik, IZ, jk ≤ 1, for i, j ∈ {1, . . . ,Nn}, k, l ∈ {1, . . . ,mn},
we have the estimate E(IY,ikIY,il)≤ E(IY,ik) = pY . Hence, we get estimate

3
Nn

∑
i=1

Nn

∑
j=1

i̸= j

E

(

(

mn

∑
k=1

(IY,ik− pY )
)2(

mn

∑
k=1

(IY, jk− pY )
)2
)

≤CN2
n m2

n(pY )
2.

Taking into account obtained estimates we conclude from (3.21) that

E

( Nn

∑
i=1

mn

∑
k=1

(IY,ik− pY )
)4

≤CNnm3
n pY +CN2

n m2
n(pY )

2,

where C > 0 is a constant. Finally, use the assumption (3.1) to conclude

CNnm3
n

N4
n

=Cpy
m3

n

N3
n

· (mn +M)3

(mn +M)3
∼ pY

m6
n

n3
∼ m3

n

n

m
5/2
n

n

1

n
<

1

n1+η

and

N2
n m2

n pY pZ

N4
n

=
pY pZm2

n

N2
n

m2
n

m2
n

∼ (mn pY pZ)
m3

n

n2
∼ 1 · m

3
n

n

1

n
<

1

n1+η
,

where η > 0. Going back into (3.20) we see that we have the estimate

P

( 1

Nn

∣

∣

∣

mn

∑
k=1

Nn

∑
i=1

(IY,ik− pY )
∣

∣

∣> ε
)

≤ 1

ε4n1+η

and then we use the Borel-Cantelli lemma to conclude that almost surely

1

Nn

mn

∑
k=1

Nn

∑
i=1

(IY,ik− pY )→ 0, n→ ∞.
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That prove parts a) and a′) of the lemma.

b) We would like to show that

Bn =
1

N2
n

mn

∑
k=1

Nn

∑
i=1

Nn

∑
j=1

(IY,ik− pY )(IZ, jk− pZ)

is converging to zero almost surely. Let ε > 0 be arbitrarily chosen. Then by the Cheby-

shev inequality we have

P(|Bn|> ε)≤ 1

N4
n ε2

E

( mn

∑
k=1

Nn

∑
i=1

Nn

∑
j=1

(IY,ik− pY )(IZ, jk− pZ)
)2

. (3.23)

Expectation on the right hand side of (3.23) is equal to

Nn

∑
i=1

E

( Nn

∑
j=1

mn

∑
k=1

(IY,ik− pY )(IZ, jk− pZ)
)2

+
Nn

∑
i=1

Nn

∑
p=1

p ̸=i

Nn

∑
j=1

Nn

∑
q=1

mn

∑
k=1

mn

∑
l=1

E

(

(IY,ik− pY )(IZ, jk− pZ) · (IY,pl− pY )(IZ,ql− pZ)
)

= B1 +B2.

Recall that (Yi) and (Zi) are independent, as well as IY,ik and IY,pl , because i ̸= p. Therefore

B2 =
Nn

∑
i=1

Nn

∑
p=1

p̸=i

Nn

∑
j=1

Nn

∑
q=1

mn

∑
k=1

mn

∑
l=1

E(IY,ik− pY )E(IY,pl− pY )E
(

(IZ, jk− pZ)(IZ,ql− pZ)
)

= 0.

Using the similar reasoning we get

B1 =
Nn

∑
i=1

Nn

∑
j=1

E

( mn

∑
k=1

(IY,ik− pY )(IZ, jk− pZ)
)2

+
Nn

∑
i=1

Nn

∑
j=1

Nn

∑
q=1

j ̸=q

mn

∑
k=1

mn

∑
l=1

E
(

(IY,ik− pY )(IY,il− pY )(IZ, jk− pZ)(IZ,ql− pZ)
)

= B11 +B12.

Because Y and Z are independent and j ̸= q we see that the expectation in B12 is equal to

E
(

(IY,ik− pY )(IY,il− pY )
)

E(IZ, jk− pZ)E(IZ,ql− pZ) = 0

and so B12 = 0. Finally,

B11 =
Nn

∑
i=1

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

E
(

(IY,ik− pY )(IY,il− pY )
)

E
(

(IZ, jk− pZ)(IZ, jl− pZ)
)
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The asymptotically dominant term in B11 is

Nn

∑
i=1

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

E(IY,ikIY,il)E(IZ, jkIZ, jl)

and it can be bounded by m2
nN2

n pY pZ . We used estimates E(IY,ikIY,il)≤ pY and E(IZ,ikIZ,il)≤
pZ . Note that other terms in B12 contain multiple appearances of pY and pZ that converges

to zero by rate 1/
√

mn according to the assumption (3.1). Going back to (3.23) we con-

clude that

P(|Bn|> ε)≤ pY pZm2
nN2

n

N4
n ε2

=
1

ε2

(mn pY pZ)mn

N2
n

∼ 1

ε2

mn

N2
n

· m
2
n

m2
n

∼ 1

ε2

m3
n

n2
.

Because of the assumption (3.1) we conclude

P(|Bn|> ε)<
1

ε2

1

n1+η
,

for some η > 0. Use the Borel-Cantelli lemma to conclude that Bn converges to zero

almost surely. That proves b) part of the lemma.

c) Note first that for i = j we have

∣

∣

∣

1

N2
n

Nn

∑
i=1

mn

∑
k=1

(IZ,ik− pZ)(IZ,ik− pZ)
∣

∣

∣≤ mnNn

N2
n

=
mn

Nn
→ 0, n→ ∞ (a.s.)

Therefore, we need to prove

Cn =
1

N2
n

mn

∑
k=1

Nn

∑
i=1

Nn

∑
j=1

i ̸= j

(IZ,ik− pZ)(IZ, jk− pZ)

is converging to zero almost surely. We will use very similar arguments as we have used

in proving b) part of this lemma. Choose ε > 0 arbitrarily. Then by the Chebyshev

inequality we have

P(|Cn|> ε)≤ 1

N4
n ε2

E

(

(

Nn

∑
i=1

Nn

∑
j=1

i ̸= j

mn

∑
k=1

(IZ,ik− pZ)(IZ, jk− pZ)
)

)2

. (3.24)

The expectation on the right hand side of (3.24) is equal to

Nn

∑
i=1

E

( Nn

∑
j=1

j ̸=i

mn

∑
k=1

(IZ,ik− pZ)(IZ, jk− pZ)
)2

+
Nn

∑
i=1

Nn

∑
p=1

p̸=i

Nn

∑
j=1

j ̸=i

Nn

∑
q=1

q̸= j

mn

∑
k=1

mn

∑
l=1

E(IZ,ik− pZ)(IZ,pl− pZ)(IZ, jk− pZ)(IZ,ql− pZ)

=C1 +C2.
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For sums in C2 for which q ̸= i we get i ̸= p, i ̸= j and i ̸= q and in those cases the

expectation in C2 is equal to

E(IZ,ik− pZ)E(IZ,pl− pZ)(IZ, jk− pZ)(IZ,ql− pZ) = 0

and so C2 = 0. So, we can suppose q = i and then

C2 =
Nn

∑
i=1

Nn

∑
p=1

p̸=i

Nn

∑
j=1

j ̸=i

mn

∑
k=1

mn

∑
l=1

E(IZ,ik− pZ)(IZ,il− pZ)E(IZ,pl− pZ)(IZ, jk− pZ),

because p ̸= i and j ̸= i. For the sums in which p ̸= j we again conclude C2 = 0. Therefore,

we can suppose p = j to get

C2 =
Nn

∑
i=1

Nn

∑
j=1

j ̸=i

mn

∑
k=1

mn

∑
l=1

E(IZ,ik− pZ)(IZ,il− pZ)E(IZ, jl− pZ)(IZ, jk− pZ).

Now note that for k, l ∈ {1,2, . . . ,mn} such that |k− l| > M, indicators IZ,ik and IZ,il are

independent and therefore E(IZ,ik− pZ)(IZ,il− pZ) =E(IZ,ik− pZ)E(IZ,il− pZ) = 0, which

again leads to conclusion C2 = 0. Finally, we conclude that

C2 =
Nn

∑
i=1

Nn

∑
j=1

j ̸=i

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

E(IZ,ik− pZ)(IZ,il− pZ)E(IZ, jl− pZ)(IZ, jk− pZ).

The asymptotically dominant term in C2 is

Nn

∑
i=1

Nn

∑
j=1

j ̸=i

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

E(IZ,ikIZ,il)E(IZ, jlIZ, jk)

and it can be bounded by 2MmnN2
n p2

Z .

By using similar arguments we see that

C1 =
Nn

∑
i=1

Nn

∑
j=1

j ̸=i

E

( mn

∑
k=1

(IZ,ik− pZ)(IZ, jk− pZ)
)2

+
Nn

∑
i=1

Nn

∑
j=1

j ̸=i

Nn

∑
q=1

q̸= j,q̸=i

mn

∑
k=1

mn

∑
l=1

E(IZ,ik− pZ)(IZ,il− pZ)(IZ, jk− pZ)(IZ,ql− pZ)

=C11 +C12.

84



The Permutation test of independence for M-dependent data Proofs

As q ̸= j and q ̸= i we conclude that C12 = 0 because IZ,ql is independent to all IZ,ik, IZ,il

and IZ, jk. On the other hand,

C11 =
Nn

∑
i=1

Nn

∑
j=1

j ̸=i

mn

∑
k=1

mn

∑
l=1

E(IZ,ik− pZ)(IZ,il− pZ)E(IZ, jk− pZ)(IZ, jl− pZ).

Note, again, that for |k− l|> M C11 = 0 and so

C11 =
Nn

∑
i=1

Nn

∑
j=1

j ̸=i

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

E(IZ,ik− pZ)(IZ,il− pZ)E(IZ, jk− pZ)(IZ, jl− pZ).

The asymptotically dominant term in C11 is the same as in C2. Therefore, C1 is asymptot-

ically bounded by 2MmnN2
n p2

Z . We plug that estimate into (3.24) and then we get

P(|Cn|> ε)≤ 2MmnN2
n p2

Z

N4
n ε2

∼ 1

ε2N2
n

. (3.25)

Using the same arguments as in the proofs of the a) and b) parts of this lemma, we

conclude that Cn→ 0 almost surely, for n→ ∞. By the same argument c′) holds.

d) Using the similar ideas as in the proofs of b) and c) parts of this lemma we will show

that

Dn =
1

N3
n

Nn

∑
i=1

Nn

∑
j=1

Nn

∑
q=1

j ̸=q

mn

∑
k=1

(IY,ik− pY )(IZ, jk− pZ)(IZ,qk− pZ)

is converging to zero almost surely, as n→ ∞. Choose ε > 0. Then by the Chebyshev

inequality we have

P(|Dn|> ε)≤ 1

N6
n ε2

E

( Nn

∑
i=1

Nn

∑
j=1

Nn

∑
q=1

j ̸=q

mn

∑
k=1

(IY,ik− pY )(IZ, jk− pZ)(IZ,qk− pZ)
)2

. (3.26)

Expectation on the right hand side of (3.26) is equal to

Nn

∑
i=1

E

( Nn

∑
j=1

Nn

∑
q=1

q̸= j

mn

∑
k=1

(IY,ik− pY )(IZ, jk− pZ)(IZ,qk− pZ)
)2

+
Nn

∑
i=1

Nn

∑
p=1

i ̸=p

Nn

∑
j=1

Nn

∑
q=1

j ̸=q

Nn

∑
r=1

Nn

∑
s=1

r ̸=s

mn

∑
k=1

mn

∑
l=1

E

(

(IY,ik− pY )(IZ, jk− pZ)(IZ,qk− pZ)

· (IY,pl− pY )(IZ,rl− pZ)(IZ,sl− pZ)
)

= D1 +D2.
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Although the term D2 looks quite complex at first, we note that IY,ik and IY pl are indepen-

dent, for i ̸= p, and both are independent to process (Zi). Therefore, the expectation under

those sums in D2 is equal to

E(IY,ik− pY )E(IY,pl− pY )E(IZ, jk− pZ)(IZ,qk− pZ)(IZ,rl− pZ)(IZ,sl− pZ)

which is equal to zero and so, D2 is equal to zero. We continue in the same spirit with the

calculation of D1. We get

D1 =
Nn

∑
i=1

Nn

∑
j=1

E

( Nn

∑
q=1

q ̸= j

(

mn

∑
k=1

(IY,ik− pY )(IZ, jk− pZ)(IZ,qk− pZ)
)

)2

+
Nn

∑
i=1

Nn

∑
j=1

Nn

∑
r=1

r ̸= j

Nn

∑
q=1

q ̸= j

Nn

∑
s=1
s̸=r

mn

∑
k=1

mn

∑
l=1

E(IY,ik− pY )(IY,il− pY )

·E(IZ, jk− pZ)(IZ,qk− pZ)(IZ,rl− pZ)(IZ,sl− pZ)

= D3 +D4.

If we look at D4 we see that r ̸= j and q ̸= j. If we additionally suppose that s ̸= j IZ, jk

will be independent with all IZ,qk, IZ,rl and IZ,sl . In that case D4 will be just zero. So, we

can suppose that s = j and in that case D4 is equal to

Nn

∑
i=1

Nn

∑
j=1

Nn

∑
r=1

r ̸= j

Nn

∑
q=1

q̸= j

mn

∑
k=1

mn

∑
l=1

E(IY,ik− pY )(IY,il− pY )

·E(IZ, jk− pZ)(IZ, jl− pZ)(IZ,qk− pZ)(IZ,rl− pZ).

Applying similar arguments we see that for r ̸= q the whole sum is equal to zero. For

r = q we get

D4 =
Nn

∑
i=1

Nn

∑
j=1

Nn

∑
q=1

q̸= j

mn

∑
k=1

mn

∑
l=1

E(IY,ik− pY )(IY,il− pY )

·E(IZ, jk− pZ)(IZ, jl− pZ)E(IZ,qk− pZ)(IZ,ql− pZ).

The asymptotically dominant terms in the above expression is

Nn

∑
i=1

Nn

∑
j=1

Nn

∑
q=1

q̸= j

mn

∑
k=1

mn

∑
l=1

E(IY,ikIY,il)E(IZ, jkIZ, jl)E(IZ,qkIZ,ql),
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and it is bounded by m2
nN3

n pY p2
Z . For the sum D3 and apply the same idea to get

D3 =
Nn

∑
i=1

Nn

∑
j=1

Nn

∑
q=1

q̸= j

E

(

(

mn

∑
k=1

(IY,ik− pY )(IZ, jk− pZ)(IZqk− pZ)
)

)2

+
Nn

∑
i=1

Nn

∑
j=1

Nn

∑
q=1

q̸= j

Nn

∑
r=1

r ̸= j,r ̸=q

mn

∑
k=1

mn

∑
l=1

E(IY,ik− pY )(IY,il− pY )

·E(IZ, jk− pZ)(IZ, jl− pZ)(IZ,qk− pZ)(IZ,rl− pZ).

In the second sum the term IZ,rl is independent to all IZ, jk, IZ, jl and IZ,qk. Hence, the whole

sum is equal to zero. Therefore, we have

D3 =
Nn

∑
i=1

Nn

∑
j=1

Nn

∑
q=1

q̸= j

mn

∑
k=1

mn

∑
l=1

E(IY,ik− pY )(IY,il− pY )

·E(IZ, jk− pZ)(IZ, jl− pZ)E(IZ,qk− pZ)(IZ,ql− pZ)

The asymptotically dominant term in the sum D3 is the same for the sum D4. We conclude

that the whole expression on the right hand side of (3.26) is asymptotically dominated by

√
mn/(ε

2N3
n ) and then we easily apply the Borel-Cantelli lemma to prove Dn converges

to zero almost surely, for n→ ∞. That proves part d) of the lemma. ■

Lemma 3.3.3. With same assumptions as in Theorem 3.1.1 we have:

a)

1

N3
n

Nn

∑
i=1

Nn

∑
p=1

p̸=i

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

(IY,ik− pY )(IY,pl− pY )(IZ, jkIZ, jl− pZ
kl)→ 0, n→ ∞ (a.s.)

b)

1

N2
n

Nn

∑
i=1

Nn

∑
p=1

p̸=i

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

(IY,ik− pY )(IY,pl− pY )pZ
kl → 0, n→ ∞ (a.s.)

c)

1

N2
n

Nn

∑
i=1

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

pY (IY,ik− pY )(IZ, jkIZ, jl− pZ
kl)→ 0, n→ ∞ (a.s.)
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d)

1

Nn

Nn

∑
i=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

pY pZ
kl(IY,ik− pY )→ 0, n→ ∞ (a.s.).

e)

1

Nn

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

p2
Y (IZ, jkIZ, jl− pZ

kl)→ 0, n→ ∞ (a.s.).

Proof of Lemma 3.3.3. a) We will show that

K1 =
1

N3
n

Nn

∑
i=1

Nn

∑
p=1

p̸=i

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

(IY,ik− pY )(IY,pl− pY )(IZ, jkIZ, jl− pZ
kl)

is converging to zero almost surely. Let ε > 0 be arbitrarily chosen. Then by the Cheby-

shev inequality we have

P(|K1|> ε)≤ 1

N6
n ε2

E

( Nn

∑
i=1

Nn

∑
p=1

p̸=i

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

(IY,ik− pY )(IY,pl− pY )(IZ, jkIZ, jl− pZ
kl)

)2

.

(3.27)

Expectation on the right hand side of (3.27) is equal to

Nn

∑
i=1

E

( Nn

∑
p=1

p̸=i

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

(IY,ik− pY )(IY,pl− pY )(IZ, jkIZ, jl− pZ
kl)

)2

+
Nn

∑
i=1

Nn

∑
t=1
t ̸=i

Nn

∑
p=1

p ̸=i

Nn

∑
u=1
u̸=t

Nn

∑
j=1

Nn

∑
q=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

mn

∑
r=1

mn

∑
s=1

|r−s|≤M

E(IY,ik− pY )(IY,tr− pY )(IY,pl− pY )(IY,us− pZ)

·E(IZ, jkIZ, jl− pZ
kl)(IZ,qrIZ,qs− pZ

rs)

= K12 +K13.

Recall that (Yi) and (Zi) are independent. Note first that for q ̸= j

E(IZ, jkIZ, jl− pZ
kl)(IZ,qrIZ,qs− pZ

rs) = E(IZ, jkIZ, jl− pZ
kl)E(IZ,qrIZ,qs− pZ

rs) = 0

and then K13 = 0. Therefore

K13 =
Nn

∑
i=1

Nn

∑
t=1
t ̸=i

Nn

∑
p=1

p̸=i

Nn

∑
u=1
u ̸=t

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

mn

∑
r=1

mn

∑
s=1

|r−s|≤M

E(IY,ik− pY )(IY,tk− pY )(IY,pl− pY )(IY,ul− pZ)

·E(IZ, jkIZ, jl− pZ
kl)(IZ, jrIZ, js− pZ

rs).
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Next, note that i ̸= t and i ̸= p. If additionally i ̸= u we conclude that IY,ik is independent

to all IY,tk, IY,pl and IY,ul . Hence, E(IY,ik− pY )(IY,tr− pY )(IY,pl− pY )(IY,us− pZ) = 0 and

the whole K13 is equal to zero. Let u = i. Then

K13 =
Nn

∑
i=1

Nn

∑
t=1
t ̸=i

Nn

∑
p=1

p ̸=i

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

mn

∑
r=1

mn

∑
s=1

|r−s|≤M

E(IY,ik− pY )(IY,ul− pZ)E(IY,tk− pY )(IY,pl− pY )

·E(IZ, jkIZ, jl− pZ
kl)(IZ, jrIZ, js− pZ

rs).

For p ̸= t we again conclude K13 = 0. Therefore,

K13 =
Nn

∑
i=1

Nn

∑
p=1

p̸=i

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

mn

∑
r=1

mn

∑
s=1

|r−s|≤M

E(IY,ik− pY )(IY,ul− pZ)E(IY,pk− pY )(IY,pl− pY )

·E(IZ, jkIZ, jl− pZ
kl)(IZ, jrIZ, js− pZ

rs).

The asymptotically dominant term in K13 is

Nn

∑
i=1

Nn

∑
p=1

p̸=i

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

mn

∑
r=1

mn

∑
s=1

|r−s|≤M

E(IY,ikIY,ul)E(IY,pkIY,pl)E(IZ, jkIZ, jlIZ, jrIZ, js)

and it can be bounded by N3
n 4M2m2

n pY 2pZ .

In the same vein we calculate

K12 =
Nn

∑
i=1

Nn

∑
j=1

E

( Nn

∑
p=1

p̸=i

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

(IY,ik− pY )(IY,pl− pY )(IZ, jkIZ, jl− pZ
kl)

)2

+
Nn

∑
i=1

Nn

∑
j=1

Nn

∑
q=1

q̸= j

Nn

∑
p=1

p̸=i

Nn

∑
u=1
u̸=i

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

mn

∑
r=1

mn

∑
s=1

|r−s|≤M

E(IY,ik− pY )(IY,ir− pY )(IY,pl− pY )(IY,us− pZ)

·E(IZ, jkIZ, jl− pZ
kl)(IZ,qrIZ,qs− pZ

rs)

= K14 +K15.

As now q ̸= j we conclude

E(IZ, jkIZ, jl− pZ
kl)(IZ,qrIZ,qs− pZ

rs) = E(IZ, jkIZ, jl− pZ
kl)E(IZ,qrIZ,qs− pZ

rs) = 0
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and so K15 = 0. For K14 we have

K14 =
Nn

∑
i=1

Nn

∑
j=1

Nn

∑
p=1

p ̸=i

E

( mn

∑
k=1

mn

∑
l=1

|k−l|≤M

(IY,ik− pY )(IY,pl− pY )(IZ, jkIZ, jl− pZ
kl)

)2

+
Nn

∑
i=1

Nn

∑
j=1

Nn

∑
p=1

p̸=i

Nn

∑
u=1

u̸=i,u ̸=p

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

mn

∑
r=1

mn

∑
s=1

|r−s|≤M

E(IY,ik− pY )(IY,ir− pY )(IY,pl− pY )(IY,us− pZ)

·E(IZ, jkIZ, jl− pZ
kl)(IZ, jrIZ, js− pZ

rs)

= K15 +K16.

We can again conclude that K16 = 0, because IY,us is independent to all IY,ik, IY,ir and IY,pl .

On the other hand K15 is bounded by N3
n 4M2m2

n pY 2pZ (note the same bound as for the

sum K13). Because of (3.27), we have

P(|K1|> ε)≤ N3
n 4M2m2

n p2
Y pZ

ε2N6
n

∼ m
1/2
n

N3
n

· m
2
n

m2
n

∼ 1

ε2

m
5/2
n

n2
<

1

ε2n1+η
, n→ ∞,

for some η > 0. By the Borel-Cantelli lemma then follows a).

b) We will show that

K2 =
1

N2
n

Nn

∑
i=1

Nn

∑
p=1

p ̸=i

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

(IY,ik− pY )(IY,pl− pY )pZ
kl,

is converging to zero almost surely. Choose ε > 0 arbitrarily. Then by the Chebyshev

inequality we have

P(|K2|> ε)≤ 1

N4
n ε2

E

( Nn

∑
i=1

Nn

∑
p=1

p̸=i

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

(IY,ik− pY )(IY,pl− pY )pZ
kl

)2

. (3.28)

Expectation on the right hand side of (3.28) is equal to

Nn

∑
i=1

E

( Nn

∑
p=1

p̸=i

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

(IY,ik− pY )(IY,pl− pY )pZ
kl

)2

+
Nn

∑
i=1

Nn

∑
t=1
t ̸=i

Nn

∑
p=1

p̸=i

Nn

∑
u=1
u̸=t

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

mn

∑
r=1

mn

∑
s=1

|r−s|≤M

E(IY,ik− pY )(IY,tr− pY )(IY,pl− pY )(IY,us− pZ)pZ
kl pZ

rs

= K22 +K23.
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For sums in K23 for which u ̸= i we have i ̸= t, i ̸= p and i ̸= u and then we conclude

that IY,ik is independent to all IY,tk, IY,pl and IY,ul . Hence, E(IY,ik− pY )(IY,tr− pY )(IY,pl−
pY )(IY,us− pZ) = 0 and the whole K23 is equal to zero. For u = i we get

K23 =
Nn

∑
i=1

Nn

∑
t=1
t ̸=i

Nn

∑
p=1

p̸=i

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

mn

∑
r=1

mn

∑
s=1

|r−s|≤M

E(IY,ik− pY )(IY,is− pZ)E(IY,tr− pY )(IY,pl− pY )pZ
kl pZ

rs.

If t ̸= p we again get K23 = 0. Therefore,

K23 =
Nn

∑
i=1

Nn

∑
p=1

p̸=i

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

mn

∑
r=1

mn

∑
s=1

|r−s|≤M

E(IY,ik− pY )(IY,is− pZ)E(IY,pr− pY )(IY,pl− pY )pZ
kl pZ

rs.

The asymptotically dominant term in K23 is then

Nn

∑
i=1

Nn

∑
p=1

p̸=i

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

mn

∑
r=1

mn

∑
s=1

|r−s|≤M

E(IY,ikIY,is)E(IY,prIY,pl)pZ
kl pZ

rs

and it can be bounded by N2
n 4M2m2

n p2
Y p2

Z .

Let us calculate K22 further. We get

K22=
Nn

∑
i=1

Nn

∑
p=1

p ̸=i

E

( mn

∑
k=1

mn

∑
l=1

|k−l|≤M

(IY,ik− pY )(IY,pl− pY )pZ
kl

)2

+
Nn

∑
i=1

Nn

∑
p=1

p̸=i

Nn

∑
u=1

u ̸=i,u̸=p

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

mn

∑
r=1

mn

∑
s=1

|r−s|≤M

E(IY,ik− pY )(IY,ir− pY )(IY,pl− pY )(IY,us− pZ)pZ
kl pZ

rs

= K24 +K25.

We use the fact that IY,us is independent to all IY,ik, IY,ir and IY,pl to conclude that K25 = 0.

For K24 we get the same bound as for K23. Plug that bound back to (3.28) to get

P(|K2|> ε)≤ N2
n 4M2m2

n p2
Z p2

Y

ε2N4
n

∼ 1

ε2N2
n

· m
2
n

m2
n

∼ 1

ε2

m2
n

n2
<

1

ε2n1+η
, n→ ∞,

for some η > 0. By the Borel-Cantelli lemma we prove b) part of this lemma. In the same

way we can prove c) part of the lemma so we skip that proof. Also, proofs of d) and e)

parts of the lemma are almost the same so we only present the proof for the d) part.

d) We will show that

K3 =
1

Nn

Nn

∑
i=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

pY pZ
kl(IY,ik− pY )
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is converging to zero almost surely. Choose ε > 0 arbitrarily. Then by the Chebyshev

inequality we have

P(|K3|> ε)≤ 1

N2
n ε2

E

( Nn

∑
i=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

(IY,ik− pY )pY pZ
kl

)2

. (3.29)

Expectation on the right hand side of (3.29) is equal to

Nn

∑
i=1

E

( mn

∑
k=1

mn

∑
l=1

|k−l|≤M

(IY,ik− pY )pY pZ
kl

)2

+
Nn

∑
i=1

Nn

∑
p=1

p̸=i

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

mn

∑
r=1

mn

∑
s=1

|r−s|≤M

E(IY,ik− pY )(IY,pr− pY )p2
Y pZ

kl pZ
rs

= K32 +K33.

Clearly, K33 = 0 because IY,ik and IY,pr are independent. Then

K32 = p2
Y

Nn

∑
i=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

mn

∑
r=1

mn

∑
s=1

|r−s|≤M

E(IY,ik− pY )(IY,ir− pY )pZ
kl pZ

rs.

For k and r such that |k− r| > M we conclude that IY,ik and IY,ir are independent and

therefore K32 = 0. So, we may write

K32 = p2
Y

Nn

∑
i=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

mn

∑
r=1

mn

∑
s=1

|r−s|≤M

|k−r|≤M

E(IY,ik− pY )(IY,ir− pY )pZ
kl pZ

rs.

Note that all indices l, r and s depend on k. Therefore, we have at most 16M3mn members

of the sums over k, l, r and s (for each i). Furthermore, the asymptotically dominant terms

of K32 are E(IY,ikIY,ir) and they can be bounded by pY . Hence, we may asymptotically

bound the whole K32 by Nn16M3mn p3
Y p2

Z . Consequently, in (3.29) we get the inequality

P(|K3|> ε)≤ Nn16M3mn p3
Y p2

Z

N2
n ε2

∼ pY p2
Z

ε2Nn
∼ 1

ε2

1

Nnmn

1√
mn
∼ 1

ε2

1

n

1√
mn

<
1

ε2n1+η
,

for some η > 0, n→ ∞. Use again the Borel-Cantelli lemma to conclude that part d) of

the lemma holds. ■

Lemma 3.3.4. With the same assumptions as in the Theorem 3.1.1 we have:
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a)

1

N2
n

Nn

∑
i=1

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|>M

(

IY,ikIY,il− p2
Y

)(

IZ, jkIZ, jl− p2
Z

)

→ 0, n→ ∞ (a.s.)

b)

1

N3
n

Nn

∑
i=1

Nn

∑
j=1

Nn

∑
q=1

j ̸=q

mn

∑
k=1

mn

∑
l=1

|k−l|>M

(

IY,ikIY,il− p2
Y

)(

IZ, jkIZ,ql− p2
Z

)

→ 0, n→ ∞ (a.s.)

c)

1

N3
n

Nn

∑
i=1

Nn

∑
p=1

i ̸=p

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|>M

(

IY,ikIY,pl− p2
Y

)(

IZ, jkIZ, jl− p2
Z

)

→ 0, n→ ∞ (a.s.)

d)

1

N4
n

Nn

∑
i=1

Nn

∑
p=1

i̸=p

Nn

∑
j=1

Nn

∑
q=1

j ̸=q

mn

∑
k=1

mn

∑
l=1

|k−l|>M

(

IY,ikIY,pl− p2
Y

)(

IZ, jkIZ,ql− p2
Z

)

→ 0, n→ ∞ (a.s.).

Proof of Lemma 3.3.4. Proof is similar to the proof of previous two lemmas. We will

use the Chebyshev inequality and the Borel-Cantelli lemma to validate stated almost sure

convergences.

a) Choose ε > 0 arbitrarily. Let

L1 =
1

N2
n

Nn

∑
i=1

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|>M

(

IY,ikIY,il− p2
Y

)(

IZ, jkIZ, jl− p2
Z

)

Than we have, by the Chebyshev inequality,

P

(

∣

∣L1

∣

∣> ε
)

≤ 1

ε2N4
n

E

( 1

N2
n

Nn

∑
i=1

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|>M

(

IY,ikIY,il− p2
Y

)(

IZ, jkIZ, jl− p2
Z

)

)2

(3.30)

The expectation on the right hand side of (3.30) is equal to

Nn

∑
i=1

E

( Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|>M

(

IY,ikIY,il− p2
Y

)(

IZ, jkIZ, jl− p2
Z

)

)2

+
Nn

∑
i=1

Nn

∑
p=1

p ̸=i

Nn

∑
j=1

Nn

∑
q=1

mn

∑
k=1

mn

∑
l=1

|k−l|>M

mn

∑
r=1

mn

∑
s=1

|r−s|>M

E
(

IY,ikIY,il− p2
Y

)(

IY,prIY,ps− p2
Y

)

·E
(

IZ, jkIZ, jl− p2
Z

)(

IZ,qrIZ,qs− p2
Z

)

= L12 +L13.
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We note that (Yi) and (Zi) are independent by assumption and for i ̸= p IY,ikIY,il and

IY,prIY,ps are independent too. Therefore, L13 = 0 We continue calculations with L12 to

see it is equal to

Nn

∑
i=1

Nn

∑
j=1

E

( mn

∑
k=1

mn

∑
l=1

|k−l|>M

(

IY,ikIY,il− p2
Y

)(

IZ, jkIZ, jl− p2
Z

)

)2

+
Nn

∑
i=1

Nn

∑
j=1

Nn

∑
q=1

q ̸= j

mn

∑
k=1

mn

∑
l=1

|k−l|>M

mn

∑
r=1

mn

∑
s=1

|r−s|>M

E
(

IY,ikIY,il− p2
Y

)(

IY,irIY,is− p2
Y

)

·E
(

IZ, jkIZ, jl− p2
Z

)(

IZ,qrIZ,qs− p2
Z

)

= L14 +L15.

As q ̸= j in L15, we conclude that L15 = 0. Finally,

L14 =
Nn

∑
i=1

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|>M

mn

∑
r=1

mn

∑
s=1

|r−s|>M

E
(

IY,ikIY,il− p2
Y

)(

IY,irIY,is− p2
Y

)

·E
(

IZ, jkIZ, jl− p2
Z

)(

IZ, jrIZ, js− p2
Z

)

(3.31)

Observe, if |k− r| > M , |k− s| > M, |l − r| > M and |l − s| > M, then IY,ikIY,il and

IY,irIY,is are independent and therefore L14 = 0. Otherwise, without loss of generality, let

us suppose |k− r| ≤M. Then

L14 =
Nn

∑
i=1

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|>M

mn

∑
r=1

mn

∑
s=1

|r−s|>M

|k−r|≤M

E
(

IY,ikIY,il− p2
Y

)(

IY,irIY,is− p2
Y

)

·E
(

IZ, jkIZ, jl− p2
Z

)(

IZ, jrIZ, js− p2
Z

)

(3.32)

The asymptotically dominant term in (3.32) is

Nn

∑
i=1

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|>M

mn

∑
r=1

mn

∑
s=1

|r−s|>M

|k−r|≤M

E
(

IY,ikIY,ilIY,irIY,is
)

E
(

IZ, jkIZ, jlIZ, jrIZ, js

)

. (3.33)

The other terms contain factors of the form p2
Y or p2

Z that make convergence of those other

terms to zero faster than the term in (3.33). We use only modest estimates

E
(

IY,ikIY,ilIY,irIY,is
)

≤ pY and E
(

IZ, jkIZ, jlIZ, jrIZ, js

)

≤ pZ

94



The Permutation test of independence for M-dependent data Proofs

to conclude that L14 may be asymptotically bounded by 2MN2
n m3

n pY pZ . Apply that bound

in (3.30) to get the asymptotic bound for the sum on the right hand side of (3.30):

2MN2
n m3

n pY pZ

ε2N4
n

∼ m2
n

ε2N2
n

· m
2
n

m2
n

∼ 1

ε2

m4
n

n
· 1

n
<

1

ε2

1

n1+η
,

for some η > 0, because of the assumption (3.1). Together with Borel-Cantelli lemma

that proves part a) of the lemma.

d) Choose ε > 0 arbitrarily. Let

L4 =
1

N4
n

Nn

∑
i=1

Nn

∑
p=1

i̸=p

Nn

∑
j=1

Nn

∑
q=1

j ̸=q

mn

∑
k=1

mn

∑
l=1

|k−l|>M

(

IY,ikIY,pl− p2
Y

)(

IZ, jkIZ,ql− p2
Z

)

.

By the Chebyshev inequality we have

P

(

∣

∣L4

∣

∣> ε
)

≤ 1

ε2N8
n

E

( Nn

∑
i=1

Nn

∑
p=1

i ̸=p

Nn

∑
j=1

Nn

∑
q=1

j ̸=q

mn

∑
k=1

mn

∑
l=1

|k−l|>M

(

IY,ikIY,pl− p2
Y

)(

IZ, jkIZ,ql− p2
Z

)

)2

. (3.34)

The expectation on the right hand side of the above inequality is equal to

Nn

∑
i=1

E

( Nn

∑
p=1

p̸=i

Nn

∑
j=1

Nn

∑
q=1

j ̸=q

mn

∑
k=1

mn

∑
l=1

|k−l|>M

(

IY,ikIY,pl− p2
Y

)(

IZ, jkIZ,ql− p2
Z

)

)2

+
Nn

∑
i=1

Nn

∑
t=1
t ̸=i

Nn

∑
p=1

p ̸=i

Nn

∑
u=1
u̸=t

Nn

∑
j=1

Nn

∑
q=1

j ̸=q

Nn

∑
v=1

Nn

∑
w=1

w ̸=v

mn

∑
k=1

mn

∑
l=1

|k−l|>M

mn

∑
r=1

mn

∑
s=1

|r−s|>M

E(IYikIY pl− p2
Y )(IYtrIYus− p2

Y )

·E(IZ jkIZql− p2
Z)(IZvrIZws− p2

Z)

= L41 +L42.

Observe, for the sums in which t ̸= p, u ̸= i and u ̸= p, indicators IYikIY pl and IYtrIYus

are independent. In that case L42 = 0. Without loss of generality suppose t = p. If

additionally |k−r|> M , |k−s|> M, |l−r|> M and |l−s|> M, then IYikIY pl and IYtrIYus

are independent and so L42 = 0. Again, without loss of generality suppose |k− r| ≤ M.

Then

L42 =
Nn

∑
i=1

Nn

∑
p=1

p̸=i

Nn

∑
u=1
u̸=p

Nn

∑
j=1

Nn

∑
q=1

j ̸=q

Nn

∑
v=1

Nn

∑
w=1

w̸=v

mn

∑
k=1

mn

∑
l=1

|k−l|>M

mn

∑
r=1

mn

∑
s=1

|r−s|>M

|k−r|≤M

E(IYikIY pl− p2
Y )(IY prIYus− p2

Y )

·E(IZ jkIZql− p2
Z)(IZvrIZws− p2

Z).
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If, additionally, j ̸= v, j ̸= w, q ̸= v and q ̸= w, then IZ jkIZql and IZvrIZws are independent

and therefore L42 = 0. So, without loss of generality suppose w = q. Then,

L42 =
Nn

∑
i=1

Nn

∑
p=1

p̸=i

Nn

∑
u=1
u ̸=p

Nn

∑
j=1

Nn

∑
q=1

j ̸=q

Nn

∑
v=1
v ̸= j

mn

∑
k=1

mn

∑
l=1

|k−l|>M

mn

∑
r=1

mn

∑
s=1

|r−s|>M

|k−r|≤M

E(IYikIY pl− p2
Y )(IY prIYus− p2

Y )

·E(IZ jkIZql− p2
Z)(IZvrIZqs− p2

Z).

The asymptotically dominant term in L42 is

Nn

∑
i=1

Nn

∑
p=1

p̸=i

Nn

∑
u=1
u̸=p

Nn

∑
j=1

Nn

∑
q=1

j ̸=q

Nn

∑
v=1
v ̸= j

mn

∑
k=1

mn

∑
l=1

|k−l|>M

mn

∑
r=1

mn

∑
s=1

|r−s|>M

|k−r|≤M

E(IYikIY plIY prIYus)E(IZ jkIZqlIZvrIZqs).

We use estimates

E
(

IYikIY plIY prIYus

)

≤ p2
Y and E

(

IZ jkIZqlIZvrIZqs

)

≤ p2
Z

to conclude that L42 may be asymptotically bounded by 2Mm3
nN6

n p2
Y p2

Z .

Let us calculate L41 further. We get

L41 =
Nn

∑
i=1

Nn

∑
j=1

E

( Nn

∑
p=1

p̸=i

Nn

∑
q=1

j ̸=q

mn

∑
k=1

mn

∑
l=1

|k−l|>M

(

IY,ikIY,pl− p2
Y

)(

IZ, jkIZ,ql− p2
Z

)

)2

+
Nn

∑
i=1

Nn

∑
p=1

p̸=i

Nn

∑
u=1
u ̸=i

Nn

∑
j=1

Nn

∑
q=1

j ̸=q

Nn

∑
v=1
v̸= j

Nn

∑
w=1
w ̸=v

mn

∑
k=1

mn

∑
l=1

|k−l|>M

mn

∑
r=1

mn

∑
s=1

|r−s|>M

E(IYikIY pl− p2
Y )(IYirIYus− p2

Y )

·E(IZ jkIZql− p2
Z)(IZvrIZws− p2

Z)

= L43 +L44.

For j ̸= w, q ̸= v and q ̸= w, L44 = 0. Without loss of generality suppose v = q. Sim-

ilar reasoning employed in estimation of the asymptotic behavior of L42 allows for the

additional assumption, without loss of generality, |k− r| ≤M. Therefore,

L44 =
Nn

∑
i=1

Nn

∑
p=1

p̸=i

Nn

∑
u=1
u̸=i

Nn

∑
j=1

Nn

∑
q=1

j ̸=q

Nn

∑
w=1
w̸=q

mn

∑
k=1

mn

∑
l=1

|k−l|>M

mn

∑
r=1

mn

∑
s=1

|r−s|>M

E(IYikIY pl− p2
Y )(IYirIYus− p2

Y )

·E(IZ jkIZql− p2
Z)(IZvrIZws− p2

Z)
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We conclude that we can asymptotically bound sum L44 by the same bound we obtained

for L42. Note, if we continue the same procedure to calculate L43 we will get less and

less sums with the range of the indices between 1 and Nn. Such sums are asymptotically

inferior to sums L42 and L44. Therefore, we can asymptotically bound the sum on the

right hand side of (3.34) by 2Mm3
nN6

n p2
Y p2

Z , i.e. we get

P

(

∣

∣L4

∣

∣> ε
)

≤ 2Mm3
nN6

n p2
Y p2

Z

ε2N8
n

∼ mn

ε2N2
n

· m
2
n

m2
n

∼ 1

ε2

m3
n

n

1

n
<

1

ε2n1+η
, n→ ∞,

for some η > 0. By the Borel-Cantelli lemma we conclude part d) of the lemma holds.

Parts b) and c) of the lemma can be proven in a very similar way so we skip their

proofs. ■

Proof of Theorem 3.1.1. The proof is similar to the proof we gave in the i.i.d. case. Ad-

ditional complexity stems from the fact that we are now dealing with sums (over k) of

dependent random variables. Instead of previously defined an and bn from Theorem 2.1.2

in this case we define

cNn
(i, j) :=

mn

n

mn

∑
k=1

IY,ikIZ, jk, (3.35)

where i, j = 1, . . . ,Nn. We see that cNn
(i, j) counts joint up crossings of the Y and Z over

level u√mn
in blocks numbered by i and j. Recall the assumption n = Nn(mn +M) to see

cNn
depends on Nn. According to Theorem 1.2.3 we need to check the condition

Nn

max1≤i, j≤Nn
d2

Nn
(i, j)

∑
Nn

i=1 ∑
Nn

j=1 d2
Nn
(i, j)

→ 0 (a.s.) (3.36)

where dNn
(i, j) are defined in (1.17), and Nn → ∞. We will prove (3.36) for n→ ∞ in

which case both Nn and mn are growing to infinity. By Lemma 3.3.1 from Section 3.3 we

get

dNn
(i, j) =

mn

n

mn

∑
k=1

(IZ, jk− ÅIZ
n,k)(IY,ik− ÅIY

n,k).

As n = Nn(mn +M) and mn/(mn +M)≤ 1 we get

mn

n
≤ 1

Nn
. (3.37)

Because all IY,ik, IZ, jk, ÅIY
n,k and ÅIZ

n,k are almost surely less or equal to 1 the same is true for

|IZ, jk− ÅIZ
n,k| and |IY,ik− ÅIY

n,k|. Therefore,

|dNn
(i, j)| ≤ 1

Nn

mn

∑
k=1

|IZ, jk− ÅIZ
n,k| · |IY,ik− ÅIY

n,k| ≤
mn

Nn
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and so

d2
Nn
(i, j)≤ m2

n

N2
n

.

We conclude that the whole numerator in (3.36) is bounded by m2
n/Nn and that bound

is converging to zero as we show in (3.5). Summarizing the above considerations we

conclude that the numerator in (3.36) is converging to zero almost surely, for n→ ∞.

Let us look at the denominator in (3.36). Use Lemma 3.3.1 to conclude that the sum

∑
Nn

i=1 ∑
Nn

j=1 d2
Nn
(i, j) is equal to

m2
n

n2

Nn

∑
i=1

Nn

∑
j=1

( mn

∑
k=1

(IY,ik− ÅIY
n,k)(IZ, jk− ÅIZ

n,k)
)2

.

We use again the fact that mn/(mn +M)→ 1, as n→ ∞, to conclude that asymptotically

mn/n is actually behaving like 1/Nn. Therefore, we have asymptotic estimate for the sum

∑
Nn

i=1 ∑
Nn

j=1 d2
Nn
(i, j) in the form

1

N2
n

Nn

∑
i=1

Nn

∑
j=1

( mn

∑
k=1

(IY,ik− ÅIY
n,k)(IZ, jk− ÅIZ

n,k)
)2

. (3.38)

Formally, we can choose n large enough such that the denominator is arbitrarily close to

the last expression, whether that expression converges or diverges to ∞. For the reason

of simplicity we will analyse that expression in what follows instead of the expression

with the factor m2
n/n2. Let us look closer what happens when we square the sum over k

in (3.38). We get

( mn

∑
k=1

(IY,ik− ÅIY
n,k)(IZ, jk− ÅIZ

n,k)
)2

=
mn

∑
k=1

(IY,ik− ÅIY
n,k)

2(IZ, jk− ÅIZ
n,k)

2

+
mn

∑
k=1

mn

∑
l=1

k ̸=l

(IY,ik− ÅIY
n,k)(IZ, jk− ÅIZ

n,k)(IY,il− ÅIY
n,l)(IZ jl− ÅIZ

n,l).

Therefore, from (3.38) we see that ∑
Nn

i=1 ∑
Nn

j=1 d2
Nn
(i, j) is asymptotically behaving as

mn

∑
k=1

( 1

Nn

Nn

∑
i=1

(IY,ik− ÅIY
n,k)

2
)( 1

Nn

Nn

∑
j=1

(IZ, jk− ÅIZ
n,k)

2
)

+
mn

∑
k=1

mn

∑
l=1

k ̸=l

1

Nn

Nn

∑
i=1

(IY,ik− ÅIY
n,k)(IY,il− ÅIY

n,l)
1

Nn

Nn

∑
j=1

(IZ, jk− ÅIZ
n,k)(IZ jl− ÅIZ

n,l)

= I1 + I2. (3.39)
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We will show that I1→ 1 almost surely, for n→ ∞. For other terms we will either show

they are nonnegative or they converge to zero almost surely.

Let us turn our attention to the sum we denoted by I1. We use the following short

calculation

1

Nn

Nn

∑
i=1

(IY,ik− ÅIY
n,k)

2 =
1

Nn

Nn

∑
i=1

I2
Y,ik−2 ÅIY

n,k

1

Nn

Nn

∑
i=1

IY,ik +( ÅIY
n,k)

2

=
1

Nn

Nn

∑
i=1

IY,ik− ( ÅIY
n,k)

2

= ÅIY
n,k− ( ÅIY

n,k)
2

to see that

I1 =
mn

∑
k=1

ÅIY
n,k

ÅIZ
n,k(1− ÅIY

n,k)(1− ÅIZ
n,k). (3.40)

Although this expression is written in compact form we note that it contains multiple

sums that has range between 1 and Nn. Let us remind that Nn is the number of blocks we

divided our original sequences (Yi) and (Z j) and the length of each block is mn. Blocks

are separated by M elements from the original sequences. Because of the assumption of

M dependence it means that all random variables from different blocks are independent.

Moreover, ÅIY
n,k and ÅIY

n,l are also independent for |k− l|> M.

To analyse the asymptotic behavior of I1 note first that

mn

∑
k=1

ÅIY
n,k

ÅIZ
n,k =

1

Nn

mn

∑
k=1

Nn

∑
i=1

IY,ik ÅIZ
n,k

=
1

Nn

mn

∑
k=1

Nn

∑
i=1

(IY,ik− pY ) ÅIZ
n,k +

1

Nn

mn

∑
k=1

Nn

∑
i=1

pY
ÅIZ
n,k

= J1 + J2.

For J2 we see that it is equal to

pY

mn

∑
k=1

ÅIZ
n,k = pY

1

Nn

mn

∑
k=1

Nn

∑
j=1

(IZ, jk− pZ)+ pY
1

Nn

mn

∑
k=1

Nn

∑
j=1

pZ

= pY
1

Nn

mn

∑
k=1

Nn

∑
j=1

(IZ, jk− pZ)+mn pY pZ.

By the assumption (3.2) we conclude that mn pY pZ → 1, for n→ ∞. On the other hand,

by Lemma 3.3.2 a) and the fact that pY → 0, for n→ ∞, we conclude that

pY
1

Nn

mn

∑
k=1

Nn

∑
j=1

(IZ, jk− pZ)→ 0 (3.41)
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almost surely, as n→ ∞. Therefore, J2 converges to 1 almost surely. Let us turn our

attention to J1. It is equal to

1

N2
n

mn

∑
k=1

Nn

∑
i=1

Nn

∑
j=1

(IY,ik− pY )IZ, jk =
1

N2
n

mn

∑
k=1

Nn

∑
i=1

Nn

∑
j=1

(IY,ik− pY )(IZ, jk− pZ)

+ pZ
1

Nn

mn

∑
k=1

Nn

∑
i=1

(IY,ik− pY ).

First term in the above equation converges to zero almost surely by Lemma 3.3.2 b) and

the second term also converges to zero almost surely by a′) part of the same lemma.

Therefore
mn

∑
k=1

ÅIY
nk

ÅIZ
nk→ 1 (a.s.).

as n→ ∞.

Let us look now at ∑
mn

k=1
ÅIY
nk(

ÅIZ
nk)

2, with the notion that we can treat ∑
mn

k=1
ÅIZ
nk(

ÅIY
nk)

2 in

a similar manner. We would like to show that sum converges to zero almost surely. First

we note that

mn

∑
k=1

ÅIY
nk( ÅIZ

nk)
2 =

1

Nn

mn

∑
k=1

Nn

∑
i=1

(IY,ik− pY )( ÅIZ
nk)

2 +
1

Nn

mn

∑
k=1

Nn

∑
i=1

pY ( ÅIZ
nk)

2

=
1

N3
n

mn

∑
k=1

Nn

∑
i=1

Nn

∑
j=1

Nn

∑
q=1

(IY,ik− pY )IZ, jkIZ,qk + pY

mn

∑
k=1

( ÅIZ
nk)

2

= K1 +K2.

Let us turn our attention to K2 first. We have

K2 = pY
1

N2
n

mn

∑
k=1

Nn

∑
i=1

Nn

∑
j=1

IZikIZ, jk

= pY
1

N2
n

Nn

∑
i=1

Nn

∑
j=1

mn

∑
k=1

(IZ,ik− pZ)(IZ, jk− pZ)+ pY
1

N2
n

Nn

∑
i=1

Nn

∑
j=1

mn

∑
k=1

pZ(IZ,ik− pZ)

+ pY
1

N2
n

Nn

∑
i=1

Nn

∑
j=1

mn

∑
k=1

pZ(IZ, jk− pZ)− pY
1

N2
n

Nn

∑
i=1

Nn

∑
j=1

mn

∑
k=1

p2
Z.

The first sum above converges to zero almost surely by Lemma 3.3.2 c). For the second

sum note that

pY pZ
1

Nn

Nn

∑
i=1

mn

∑
k=1

(IZ,ik− pZ)→ 0, n→ ∞ (a.s.)

because of Lemma 3.3.2 a). The same conclusion holds for the third sum. Finally, the last

term in the expansion of K2 also converges to zero as it is equal to pY (
√

mn pZ)
2 ∼ pY .
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Clearly, pY → 0, because of the assumption (3.2), for n→∞. Hence, we have proved that

the whole term K2 converges to zero almost surely. We will prove the same is true for K1.

We have

K1 =
1

N3
n

mn

∑
k=1

Nn

∑
i=1

Nn

∑
j=1

Nn

∑
q=1

(IY,ik− pY )(IZ, jk− pZ)(IZ,qk− pZ)

+
1

N3
n

mn

∑
k=1

Nn

∑
i=1

Nn

∑
j=1

Nn

∑
q=1

(IY,ik− pY )(IZ,qk− pZ)pZ

+
1

N3
n

mn

∑
k=1

Nn

∑
i=1

Nn

∑
j=1

Nn

∑
q=1

(IY,ik− pY )(IZ, jk− pZ)pZ +
1

N3
n

mn

∑
k=1

Nn

∑
i=1

Nn

∑
j=1

Nn

∑
q=1

(IY,ik− pY )p2
Z

The first sum above converges to zero almost surely by Lemma 3.3.2 d) while the second

and the third sum converge to zero almost surely by Lemma 3.3.2 b), for n→ ∞. The last

sum is equal to

p2
Z

1

Nn

mn

∑
k=1

Nn

∑
i=1

(IY,ik− pY )

and it converges to zero by a′) part of Lemma 3.3.2. Therefore, we have shown that both

mn

∑
k=1

ÅIY
nk( ÅIZ

nk)
2 and

mn

∑
k=1

ÅIZ
nk( ÅIY

nk)
2

converge to zero almost surely. By noting that

mn

∑
k=1

( ÅIY
nk)

2( ÅIZ
nk)

2 ≤
mn

∑
k=1

ÅIY
nk( ÅIZ

nk)
2→ 0 (a.s.)

we see that we actually proved that I1 converges to 1 almost surely, as n→ ∞.

To get better insight into the asymptotic behavior of the sum I2 we will first calculate

its expectation. Let k, l ∈ {1,2, . . . ,mn}. Because (Yi) and (Zi) are independent we have

E(IY,ik− ÅIY
n,k)(IY,il− ÅIY

n,l)(IZ, jk− ÅIZ
n,k)(IZ, jl− ÅIZ

n,l)

= E(IY,ik− ÅIY
n,k)(IY,il− ÅIY

n,l)E(IZ, jk− ÅIZ
n,k)(IZ, jl− ÅIZ

n,l).

Next we calculate E(IY,ik− ÅIY
n,k)(IY,il− ÅIY

n,l). It is equal to

E

(

IY,ikIY,il−
1

Nn

Nn

∑
g=1

IY,ilIY,gk−
1

Nn

Nn

∑
h=1

IY,ikIY,hl +
1

N2
n

Nn

∑
g=1

Nn

∑
h=1

IY,gkIY,hl

)

(3.42)

and after few steps we see it is equal to

pY
kl− p2

Y −
1

Nn
(pY

kl− p2
Y ).
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Observe, for |k− l|> M that expression is equal to zero and so the whole expectation of I2

is equal to zero if k and l are separated by more than M places. Otherwise, the expectation

of I2 is equal to

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

(pY
kl− p2

Y −
1

Nn
(pY

kl− p2
Y ))(pZ

kl− p2
Z−

1

Nn
(pZ

kl− p2
Z)).

If Yk = Yl for some k and l, then pY
kl = pY (same for Z) and asymptotically dominant term

is p2
Y . Hence, the asymptotically dominant term in I2 may be mn pY pZ ∼ 1, for n→ ∞.

Because of the distinctly different behavior of the sum I2, depending on the distance

between k and l, we will divide the analysis of the asymptotic behavior of I2 on two cases.

Note that I2 may be written as

I2 =
mn

∑
k=1

mn

∑
l=1

k ̸=l

( 1

Nn

Nn

∑
i=1

(IY,ikIY,il)− ÅIY
n,k

ÅIY
n,l

)( 1

Nn

Nn

∑
j=1

(IZ, jkIZ, jl)− ÅIZ
n,k

ÅIZ
n,l

)

. (3.43)

Let us first consider the sum

I′2 =
mn

∑
k=1

mn

∑
l=1

|k−l|≤M

( 1

Nn

Nn

∑
i=1

(IY,ikIY,il)− ÅIY
n,k

ÅIY
n,l

)( 1

Nn

Nn

∑
j=1

(IZ, jkIZ, jl)− ÅIZ
n,k

ÅIZ
n,l

)

.

Multiplicate the terms in I′2 to get

I′2 =
1

N2
n

Nn

∑
i=1

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

IY,ikIY,ilIZ, jkIZ, jl−
1

N2
n

Nn

∑
i=1

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

IY,ikIY,il ÅIZ
n,k

ÅIZ
n,l

− 1

N2
n

Nn

∑
i=1

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

ÅIY
n,k

ÅIY
n,lIZ, jkIZ, jl +

1

N2
n

Nn

∑
i=1

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

ÅIY
n,k

ÅIY
n,l

ÅIZ
n,k

ÅIZ
n,l

= J1− J2− J3 + J4.

Note that J1 and J4 are almost surely nonnegative. As J2 and J3 are symmetric we will

only analyse the sum J3. Observe that

J3 =−
1

Nn

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

ÅIY
n,k

ÅIY
n,lIZ, jkIZ, jl =−

1

N3
n

Nn

∑
i=1

Nn

∑
p=1

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

IY,ikIY,plIZ, jkIZ, jl.

For i = p we conclude

∣

∣J3

∣

∣≤ 1

N3
n

Nn

∑
i=1

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

|IY,ikIY,ilIZ, jkIZ, jl| ≤
2Mmn

Nn
→ 0, n→ ∞ (a.s.)
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Let

J =
1

N3
n

Nn

∑
i=1

Nn

∑
p=1

p̸=i

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

IY,ikIY,plIZ, jkIZ, jl.

We will show that J converges to zero almost surely. Write J as

J=
1

N3
n

Nn

∑
i=1

Nn

∑
p=1

p̸=i

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

((IY,ik− pY )+pY )((IY,pl− pY )+pY )((IZ, jkIZ, jl− pZ
kl)+pZ

kl).

After multiplication we conclude

J = K1 +K2 +K3 +K4 +K5 +K6 +K7 +K8,

where

K1 =
1

N3
n

Nn

∑
i=1

Nn

∑
p=1

p ̸=i

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

(IY,ik− pY )(IY,pl− pY )(IZ, jkIZ, jl− pZ
kl),

K2 =
1

N2
n

Nn

∑
i=1

Nn

∑
p=1

p ̸=i

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

(IY,ik− pY )(IY,pl− pY )pZ
kl,

K3 =
1

N2
n

Nn

∑
i=1

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

pY (IY,ik− pY )(IZ, jkIZ, jl− pZ
kl),

K4 =
1

Nn

Nn

∑
i=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

pY pZ
kl(IY,ik− pY ),

K5 =
1

N2
n

Nn

∑
p=1

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

pY (IY,pk− pY )(IZ, jkIZ, jl− pZ
kl),

K6 =
1

Nn

Nn

∑
p=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

pY pZ
kl(IY,pk− pY ),

K7 =
1

Nn

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

p2
Y (IZ, jkIZ, jl− pZ

kl),

and

K8 = p2
Y

mn

∑
k=1

mn

∑
l=1

|k−l|≤M

pZ
kl.
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For the sum K8 we immediately get

K8 ≤ p2
Y 2Mmn pZ ∼ pZ → 0, n→ ∞.

Note the symmetry between sums K3 and K5 and between sums K4 and K6. Then by

Lemma 3.3.3 follows that the sum J converges to zero almost surely. We conclude that

I1 + I′2 converges to 1 almost surely.

Let us turn our attention on I′′2 = I2− I′2. By (3.43) we have

I′′2 =
mn

∑
k=1

mn

∑
l=1

|k−l|>M

( 1

Nn

Nn

∑
i=1

(IY,ikIY,il)− ÅIY
n,k

ÅIY
n,l

)( 1

Nn

Nn

∑
j=1

(IZ, jkIZ, jl)− ÅIZ
n,k

ÅIZ
n,l

)

.

We will use slightly different strategy to prove I′′2 → 0 almost surely, for n→ ∞. We first

rewrite the sum I′′2 slightly

I′′2 =
mn

∑
k=1

mn

∑
l=1

|k−l|>M

( 1

Nn

Nn

∑
i=1

(IY,ikIY,il)− p2
Y + p2

Y − ÅIY
n,k

ÅIY
n,l

)

·
( 1

Nn

Nn

∑
j=1

(IZ, jkIZ, jl)− p2
Z + p2

Z− ÅIZ
n,k

ÅIZ
n,l

)

.

After multiplication and some rearrangement we see that I′′2 can be written as the sum of

the following four sums:

L1 =
1

N2
n

Nn

∑
i=1

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|>M

(

IY,ikIY,il− p2
Y

)(

IZ, jkIZ jl− p2
Z

)

(3.44)

L2 =−
1

N3
n

Nn

∑
i=1

Nn

∑
j=1

Nn

∑
q=1

mn

∑
k=1

mn

∑
l=1

|k−l|>M

(

IY,ikIY,il− p2
Y

)(

IZ, jkIZql− p2
Z

)

(3.45)

L3 =−
1

N3
n

Nn

∑
i=1

Nn

∑
p=1

Nn

∑
j=1

mn

∑
k=1

mn

∑
l=1

|k−l|>M

(

IY,ikIY pl− p2
Y

)(

IZ, jkIZ jl− p2
Z

)

(3.46)

and

L4 =
1

N4
n

Nn

∑
i=1

Nn

∑
p=1

Nn

∑
j=1

Nn

∑
q=1

mn

∑
k=1

mn

∑
l=1

|k−l|>M

(

IY,ikIY pl− p2
Y

)(

IZ, jkIZql− p2
Z

)

. (3.47)

The sum L1 is converging to zero almost surely by Lemma 3.3.4 a). In the treatment

of the sum L2 we can separate our analysis on two cases. When j = q then we see that
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L2 =−L1/Nn and we proved that L1 is converging to zero almost surely. For i ̸= j we use

Lemma 3.3.4 b) to conclude that L2 is converging to zero almost surely. Because of the

symmetry between Y and Z we make same conclusion for L3 where we use Lemma 3.3.4

part c).

Finally, when we look at L4, note that for i = p we get that L4 = −L2/Nn. As we

proved that L2 is converging to zero almost surely we conclude that in this case L4 is

converging to zero almost surely. Similarly, when j = q we get L4 = −L3/Nn and we

make same conclusion. Finally when i ̸= p and j ̸= q we get

L4 =
1

N4
n

Nn

∑
i=1

Nn

∑
p=1

i ̸=p

Nn

∑
j=1

Nn

∑
q=1

j ̸=q

mn

∑
k=1

mn

∑
l=1

|k−l|>M

(

IY,ikIY pl− pY
kl

)(

IZ, jkIZql− pZ
kl

)

.

We apply Lemma 3.3.4 d) to conclude that L4 converges to zero almost surely. Therefore,

we proved that the whole I2 converges to zero almost surely. Taken all results together, we

proved that I1 + I2 converges to 1 almost surely, while the numerator in (3.36) converges

to zero. Hence, condition (3.36) holds and the theorem is proved. ■
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CONCLUSION

We present in this thesis two simple permutation tests. The first is used for testing tail

dependence in an iid bivariate sample and the second for testing the independence of two

stationary M-dependent sequences. The asymptotic analysis of the test for tail dependence

under the null hypothesis is derived using a studentization idea similar to those presented

in [8] and [5]. The simulation studies for both tests indicate the considerable power of the

tests to reject the null hypothesis when it is false.

Although our background assumption of known distributions seems hard to justify in

practical applications, our simulations indicate that the tests are quite robust if we employ

empirical quantiles instead.

For practical purposes, it would be very useful to see if one could adjust the testing

procedures above, especially the one for M-dependent sequences, for processes Y and Z,

which are merely stationary and weakly dependent. It is worth noting that the theoret-

ical justification of the analysis of such a procedure remains an open and, we believe,

practically very relevant problem.
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