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SUMMARY

The main objects of interest in this thesis are elliptic curves and the objects related to

them. We will mostly investigate the isogenies of elliptic curves over number fields of

small degree, but we will also give some interesting results about the torsion of rational

elliptic curves when the torsion is considered over some specific cyclotomic fields.

Let E/Q be an elliptic curve and p ≤ 11 a prime. We give a complete classification

of the possibilities for E(Q(ζp)) as well as for E(Q(ζ16)) and E(Q(ζ27)). Using the

previous result of GužviÂc and Krijan [41], we are able to give a complete classification

for E(Q(µp∞))tors. Here, the set µp∞ is the set of all complex numbers ω for which there

exists non-negative integer k such that ω pk
= 1.

Moving on to the isogenies, we can ask ourselves which cyclic isogeny degrees are

possible for a non-CM elliptic curve E/Q if the isogeny is defined over a low degree num-

ber field. Since the presence of a (cyclic) isogeny is invariant under quadratic twisting, we

actually determine which cyclic isogeny degrees are possible for a non-CM elliptic curve

defined over a quadratic field K, but which has a rational j-invariant.

Similarly, given a quadratic field K and an elliptic curve E/K, we can ask ourselves

which cyclic isogeny degrees are possible for E. We use the fact that the pairs (E/K,C),

where C is a cyclic subgroup of E defined over K, are parametrized by K-rational points on

the modular curve X0(n). Hence, we should look for quadratic points on curves X0(n). We

are able to determine all the quadratic points on all bielliptic curves X0(n) for which this

has not been done before. This covers the cases n = 60,62,69,79,83,89,92,94,95,101,

119,131. Our proof relies a lot on the relative symmetric Chabauty’s method developed

by Siksek [82] and used by Box [13] on a related problem. We also make some improve-

ments to the method, both from the computational and algebraic perspective.

The Magma [12] code which verifies our computations can be found on the links given
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at the beginning of each corresponding chapter.
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SAŽETAK

Glavni objekti kojim se bavimo u ovoj disertaciji su eliptičke krivulje i objekti povezani

s njima. VeÂcinom Âcemo proučavati izogenije eliptičkih krivulja nad poljima algebarskih

brojeva malog stupnja, ali Âcemo takoder dati i neke zanimljive rezultate vezane za torziju

racinalnih eliptičkih krivulja, pri čemu torziju promatramo nad nekim specifičnim ciklo-

tomskim poljima.

Neka je E/Q eliptička krivulja i p≤ 11 prost broj. Potpuno Âcemo klasificirati moguÂcnosti

za E(Q(ζp)) kao i za E(Q(ζ16)) i E(Q(ζ27)). KombinirajuÂci to s prethodnim rezul-

tatom GužviÂca i Krijana [41], možemo potpuno klasificirati moguÂcnosti za E(Q(µp∞))tors.

Pritom, skup µp∞ je skup svih kompleksnih brojeva ω za koje postoji nenegativan cijeli

broj k za koji je ω pk
= 1.

PrebacujuÂci se na izogenije, možemo se pitati koji stupnjevi cikličkih izogenija su

moguÂci za eliptičku krivulju bez kompleksnog množenja (non-CM) E/Q ako je ta izo-

genija definirana nad poljem algebarskih brojeva malog stupnja. Kako je prisustvo (cikličke)

izogenije invarijantno na kvadratni tvist, zapravo Âcemo odrediti koji stupnjevi cikličkih

izogenija su moguÂci za non-CM eliptičku krivulju definiranu nad kvadratnim poljem K s

racionalnom j-invarijantom.

Slično, za neko kvadratno polje K i eliptičku krivulju E/K, možemo se pitati koje

stupnjeve cikličkih izogenija može imati E. Koristimo činjenicu da su parovi (E/K,C),

gdje je C ciklička podgrupa od E definirana nad K, parametrizirani K-racionalnim točkama

na modularnoj krivulji X0(n). Dakle, trebamo tražiti kvadratne točke na krivulji X0(n).

Uspješno Âcemo odrediti sve kvadratne točke na svim bieliptičkim X0(n) za koje to nije

napravljeno ranije. To obuhvaÂca slučajeve n= 60,62,69,79,83,89,92,94,95,101, 119,131.

Naš dokaz se značajno oslanja na relativnu simetričnu Chabautyjevu metodu koju je

razvio Siksek [82], a koristio Box [13] na povezanom problemu. Takoder Âcemo napraviti

iv



Sažetak

neka poboljšanja te metode, gledano iz računske i algebarske perspektive.

Magma [12] kodovi koji provjeravaju naše izračune se mogu naÂci na poveznicama na

početku svakog pripadnog poglavlja.
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1. INTRODUCTION

In this chapter we will familiarize the reader with the basics of the theory of elliptic

curves as well as with some of the objects and results which will be used throughout this

dissertation.

1.1. ELLIPTIC CURVES

Definition 1.1.1. Let F be a field and let E be a smooth projective curve defined over F

of genus 1 which contains a specified F-rational point O. Then we say that E is an elliptic

curve over F .

One can use the Riemann-Roch theorem to get the following result which tells us

something about the model of an elliptic curve:

Proposition 1.1.2 ( [84, III.3., Proposition 3.1.]). Let F be a field and let E/F be an

elliptic curve over F . Then E has a model of the form:

E : y2 +a1xy+a3y = x3 +a2x2 +a4x+a6.

Notice that we will always be working with elliptic curves over number fields, which

have characteristic 0, so the following holds:

Proposition 1.1.3. Let F be a field whose characteristic is not 2 or 3 and let E/F be an

elliptic curve over F . Then E has a model of the form:

E : y2 = x3 +ax+b.

This model is called the short Weierstrass model of E.

1



Introduction Elliptic curves

Proof. The proof follows simply by completing a square on the left hand side and com-

pleting a cube on the right hand side of the model from Proposition 1.1.2. ■

Notice that one elliptic curve can be described by more than one short Weierstrass

model. One can look at [84, Proposition 3.1], which gives us the relation between Weier-

strass models of isomorphic elliptic curves. We state the result only for short Weierstrass

models:

Proposition 1.1.4 ( [84, III.3., Proposition 3.1]). Let K be a number field and E/K an

elliptic curve. Then any two short Weierstrass models of E are related by a change of

variables of the form:

x = u2x′, y = u3y′, u ∈ K∗.

Very often we will consider elliptic curves up to isomorphism over a certain field. The

above proposition tells us when are two elliptic curves defined over K actually isomorphic

over K. We now define the j-invariant of an elliptic curve.

Definition 1.1.5. Let F be a field and E/F an elliptic curve with the model:

E : y2 = x3 +ax+b.

The j-invariant of E is denoted by j(E) and we have j(E) = 1728 4a3

4a3+27b2 .

The number in the denominator is the discriminant of E (up to scalar −16):

Definition 1.1.6. Let F be a field and E/F an elliptic curve with the model:

E : y2 = x3 +ax+b.

The discriminant of E is denoted by ∆(E) and we have ∆(E) =−16(4a3 +27b2).

The discriminant of E can be used to check the smoothness of E since E is smooth if

and only if ∆(E) ̸= 0 (see, for example, [84, III.1., Proposition 1.4.]).

From now on we will be considering elliptic curves over number fields. Notice that if

K is a number field and j0 ∈ K, we can easily find an elliptic curve E/K with j(E) = j0.

If j0 /∈ {0,1728}, we can take:

E : y2 + xy = x3− 36

j0−1728
x− 1

j0−1728
.

2



Introduction Elliptic curves

If j0 = 0 we can take E : y2 + y = x3 and for j0 = 1728 we can take E : y2 = x3 + x.

The following well-known result tells us how j-invariant can be used to check whether

two elliptic curves are isomorphic over a certain field:

Proposition 1.1.7 ([84, III.1., Proposition 1.4.]). Let K be a number field and E1/K and

E2/K elliptic curves. Then j(E1) = j(E2) if and only if E1 and E2 are isomorphic over K.

Moreover, if j(E1) = j(E2) and j(E1) /∈ {0,1728}, then E1 and E2 are isomorphic over a

quadratic extension of K.

Now we will give some introductory results regarding points on elliptic curves. Let

K be a number field. The set of K-rational points, denoted by E(K), on some elliptic

curve E/K can be naturally equipped with a binary operation such that E(K) becomes an

abelian group. One of the most important results about the group structure of points on

elliptic curves is the Mordell-Weil theorem:

Theorem 1.1.8 (Mordell-Weil, [67], [96]). Let K be a number field and let E/K be an

elliptic curve. Then E(K) is a finitely generated abelian group.

Since we know how finitely generated abelian groups look like, we can conclude from

Theorem 1.1.8 that:

E(K)∼= E(K)tors⊕Zr.

The non-negative integer r is called the rank of E/K and E(K)tors is called the torsion

subgroup of E(K), that is, the group of K-rational points of E of finite order. It is natural

to ask ourselves what values can r and E(K)tors take as E varies or even as K varies. Even

when K =Q, it is not known whether r is bounded or not. In 2006, Elkies found an elliptic

curve E/Q with 28 independent points in E(Q), which is the current record (see [32]).

On the other hand, when K =Q, we have a complete classification of the possibilities for

E(Q)tors due to Mazur:

Theorem 1.1.9 (Mazur, [61]). Let E/Q be an elliptic curve. Then E(Q)tors is isomor-

phic to one of the following groups:

Z/mZ, m = 1,2, . . . ,10,12,

Z/2Z⊕Z/2mZ, m = 1,2,3,4.

3
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It is also worth mentioning that we have a complete classification of E(K)tors for

elliptic curves E/K when K runs through all quadratic fields due to Kamienny, Kenku

and Momose:

Theorem 1.1.10 (Kamienny, Kenku, Momose [48], [52]). Let K be a quadratic field and

E/K an elliptic curve. Then E(K)tors is isomorphic to one of the following groups:

Z/mZ, m = 1,2,3, . . . ,16,18,

Z/2Z⊕Z/2mZ, m = 1,2, . . . ,6,

Z/2Z⊕Z/3mZ, m = 1,2,

Z/4Z⊕Z/4Z.

Division polynomials are closely related to points of finite order on elliptic curves.

Definition 1.1.11. Let E/Q be an elliptic curve. Assume that E is given by a short

Weierstrass model:

E : y2 = x3 +ax+b.

Define the division polynomials ψE,m ∈Q[x,y] by:

ψE,0 = 0,

ψE,1 = 1,

ψE,2 = 2y,

ψE,3 = 3x4 +6ax2 +12bx−a2,

ψE,4 = 4y(x6 +5ax4 +20bx3−5a2x2−4abx−8b2−a3),

ψE,2m+1 = ψE,m+2ψ3
E,m−ψE,m−1ψ3

E,m+1, m≥ 2

ψE,2m = (2y)−1 ·ψE,m · (ψE,m+2ψ2
E,m−1−ψE,m−2ψ2

E,m+1), m≥ 3.

We now define the polynomials:

φE,m = xψ2
E,m−ψE,m+1ψE,m−1,

ωE,m = (4y)−1(ψE,m+2ψ2
E,m−1−ψE,m−2ψ2

E,m+1).

By replacing y2 with x3 + ax + b, one can show that ψE,m ∈ Q[x] for odd m and

y−1ψE,m ∈ Q[x] for even m, see [95, Lemma 3.3.]. Similarly, we also have φE,m ∈ Q[x],

4



Introduction Elliptic curves

see [95, Lemma 3.4.]. The following theorem connects points on E with division polyno-

mials:

Theorem 1.1.12 ([95, Theorem 3.6.]). Let P = (x,y) be a point on the elliptic curve

E : y2 = x3 +ax+b

and let n be a positive integer. Then:

nP =

(
φE,n(P)

ψ2
E,n(P)

,
ωE,n(P)

ψ3
E,n(P)

)
.

If n = p for prime p ≥ 3, then ψE,p ∈ Q[x] and the roots of ψE,p(x) are precisely the

x-coordinates of points in E[p]. This gives us an easy way to check whether some E/Q

has a point of order p defined over certain number field.

We will also be interested in the isogenies of the elliptic curves:

Definition 1.1.13. Let K be a number field and let E1/K and E2/K be elliptic curves.

An isogeny from E1 to E2 is a nonconstant surjective morphism φ : E1 7→ E2 satisfying

φ(O1) = O2, where O1,O2 are the neutral elements of E1,E2 respectively.

Definition 1.1.14. Let K be a number field and let E1/K and E2/K be elliptic curves.

We say that E1 and E2 are isogenous if there is an isogeny from E1 to E2.

It can be shown that being isogenous is an equivalence relation. Also, isogenies are

actually homomorphisms:

Theorem 1.1.15 ([84, Theorem 4.8.]). Let φ : E1 7→ E2 be an isogeny of elliptic curves.

Then φ(P+Q) = φ(P)+φ(Q) for all P,Q ∈ E1.

To each isogeny φ : E1 7→ E2 of elliptic curves we can associate its kernel ker(φ) =

φ−1(O1). We can also assign a number deg(φ) to an isogeny which we call the degree of

φ and deg(φ) = #ker(φ) holds. We call an isogeny φ cyclic if ker(φ) is cyclic.

Definition 1.1.16. Let φ : E1 7→ E2 be an isogeny of elliptic curves which is cyclic and

of degree n. Then we say that φ is a cyclic n-isogeny.

We now state an important result which gives the correspondence between the isoge-

nies and the subgroups of points of an elliptic curve:

5
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Proposition 1.1.17 ([84, Proposition 4.12.]). Let K be a number field and E/K an elliptic

curve. Let G be a finite subgroup of E. There exist a unique elliptic curve E ′ and an

isogeny φ : E 7→ E ′ such that ker(φ) = G.

It is also worth mentioning that φ and E ′ from the above proposition will be defined

over K if and only if the group Gal(K/K) acts on G.

Definition 1.1.18. Let K be a number field and E/K an elliptic curve. If End(E) is

strictly larger than Z, we say that E has complex multiplication (CM) and that E is an

elliptic curve with complex multiplication (CM curve).

Notice that we have Z⊆ End(E) since the map [m] : E 7→ E which multiplies a point

on E by m is an endomorphism for all m ∈ Z. Similar as with torsion, we have a result by

Mazur which tells us which cyclic isogeny degrees are possible for elliptic curves over Q:

Theorem 1.1.19 (Mazur, Kenku, [60], [51]). Let E/Q be an elliptic curve with a cyclic

n-isogeny defined over Q. Then n≤ 19 or n ∈ {21,25,27,37,43,67,163}. If E does not

have complex multiplication, then n≤ 18 with n ̸= 14 or n ∈ {21,25,37}.

Now we define quadratic twists of an elliptic curve:

Definition 1.1.20. Let K be a number field, d ∈ K which is not a square and E/K an

elliptic curve given by a short Weierstrass model:

E : y2 = x3 +ax+b.

The elliptic curve Ed given by a model:

Ed : dy2 = x3 +ax+b

is called the quadratic twist of E by d.

For an elliptic curve E/Q with j(E) /∈ {0,1728}, any elliptic curve E1/Q satisfying

j(E1) = j(E) is a quadratic twist of E (see [84, Section X.5.]). Now we can easily see

from the formulas that define division polynomials that the division polynomials of E

and E1 are identical up to scalar. More formally, for every positive integer n, we have

ψE,n = αψE1,n for some α ∈ Q. This means that just by knowing the j-invariant of an

elliptic curve, we can say a lot about its torsion points.
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Presence of a cyclic isogeny is invariant under quadratic twisting, unlike the presence

of torsion:

Proposition 1.1.21. [83, Corollary 5.2.] Let K be a number field, n ≥ 1 an integer and

E/K an elliptic curve. If E has a K-rational cyclic n-isogeny, then so does any quadratic

twist of E.

In some parts of this thesis, we will be mentioning Q-curves. For more details about

the theory of Q-curves, see [24, 31].

Definition 1.1.22. Let K be a number field and E/K an elliptic curve. We say that E is

a Q-curve if E is isogenous to Eσ for all σ ∈ Gal(Q/Q).

7
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1.2. GALOIS REPRESENTATIONS

We will now define Galois representations of elliptic curves and introduce some related

objects, as well as state some important results about them. We will work with elliptic

curves over Q here.

Definition 1.2.1. Let E/Q be an elliptic curve. For an integer n ≥ 1, we define the set

E[n] as

E[n] = ker[n] = {P ∈ E(Q) : nP = O}.

Proposition 1.2.2 ([84, Corollary 6.4.]). Let E/Q be an elliptic curve and n ≥ 1 an

integer. Then E[n]∼= Z/nZ⊕Z/nZ.

Because of the previous proposition, we can choose a basis {P,Q} for E[n] and then

consider the action of Gal(Q/Q) on P and Q. It is not hard to show that E[n] is a

Gal(Q/Q)-module, which means that Gal(Q/Q) acts on E[n]. Therefore, given σ ∈
Gal(Q/Q), we can find a,b,c,d ∈ Z/nZ such that:

Pσ = aP+bQ,

Qσ = cP+dQ.

Hence, we can assign a matrix


a c

b d


 to each σ ∈ Gal(Q/Q). Notice that such

matrices actually correspond to automorphisms of E[n]. Now we are ready to define the

mod n Galois representation of E.

Definition 1.2.3. Let E/Q be an elliptic curve. Let n ≥ 2 be an integer and {P,Q} a

basis for E[n]. Consider the map:

ρE,n : Gal(Q/Q) 7→ GL2(Z/nZ),

which satisfies ρE,n(σ) =


a c

b d


, where Pσ = aP+bQ and Qσ = cP+dQ. We call ρE,n

the mod n Galois representation of E.

It is easy to check that ρE,n is a homomorphism, see, for example [85, Section 6.3.].
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Definition 1.2.4. Let E/Q be an elliptic curve and let n ≥ 2 be an integer. Denote by

Q(E[n]) the smallest field containing all the coordinates of all points in E[n]. We call

Q(E[n]) the n-th division field of E.

Notice that ker(ρE,n) = Gal(Q/Q(E[n])). Hence, it is enough to consider the action

of Gal(Q(E[n])/Q) on E[n]. It is not hard to see that ρE,n is injective on Gal(Q(E[n])/Q),

which means that Im(ρE,n)∼= Gal(Q(E[n])/Q). This is also directly obtained through the

first isomorphism theorem. See [85, Theorem 6.7.] for a formal proof of this fact.

One of the main questions about Galois representations is classifying all the possible

images of ρE,n as E/Q varies. Notice that the image depends on the choice of basis for

E[n], so the image is always considered up to conjugation. To begin with, let’s define

several important specific subgroups of GL2(Z/pZ).

Definition 1.2.5. Let p be a prime and δ ∈ Z/pZ a quadratic non-residue. Consider

these subgroups of GL2(Z/pZ):

B(p) =

{
a b

0 c


 : a,b,c ∈ Z/pZ,ac ̸= 0

}
,

Cs(p) =

{
a 0

0 b


 : a,b ∈ Z/pZ,ab ̸= 0

}
,

Cns(p) =

{
a δb

b a


 : a,b ∈ Z/pZ,(a,b) ̸= (0,0)

}
,

Ns(p) =

{
a 0

0 b


 ,


0 a

b 0


 : a,b ∈ Z/pZ,ab ̸= 0

}
,

Nns(p) =

{
a δb

b a


 ,


 a δb

−b −a


 : a,b ∈ Z/pZ,(a,b) ̸= (0,0)

}
.

The group B(p) is called a Borel subgroup. The group Cs(p) is called a split Cartan

subgroup. The group Cns(p) is called a non-split Cartan subgroup. The group Ns(p) is

the normalizer of Cs(p). The group Nns(p) is the normalizer of Cns(p).

Clearly, both split and non-split Cartan subgroups have index 2 in their normalizer.

We now state Dickson’s classification of subgroups of GL2(Z/pZ):

9
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Theorem 1.2.6 (Dickson, [30]). Let G be a subgroup of GL2(Z/pZ) not containing

SL2(Z/pZ). Then G is conjugate to a subgroup of one of B(p), Ns(p), Nns(p) or the

image of G in PGL2(Z/pZ) is isomorphic to A4, S4 or A5.

This is important because it can be shown that if Im(ρE,p) contains SL2(Z/pZ), then

ρE,p is surjective. Hence, if ρE,p is not surjective, it is conjugate to a subgroup of one of

the groups in Theorem 1.2.6. Serre [80] proved that, given a fixed non-CM E/Q, ρE,p is

not surjective for only finitely many primes p. Serre [81, p. 399] also asked a question

whether a stronger variant of that theorem holds uniformly for all non-CM E/Q. The

following was formally conjectured by Zywina [98] and Sutherland [90]:

Conjecture 1.2.7 (Serre’s uniformity conjecture). Let E/Q be a non-CM elliptic curve

and p > 37 a prime. Then ρE,p is surjective.

To prove the above conjecture, the only remaining thing to prove is that for p > 37 the

image of ρE,p can never be conjugate to a subgroup of Nns(p). All other cases have been

handled. For small primes p, a lot is known about the possibilites for the image of ρE,p,

see, for example [4], [5], [98].

Notice that the Galois representation is connected to the presence of an isogeny or

a torsion point defined over certain field. For example, assume that E/Q has a rational

point P of order n≥ 2. Then we can choose a basis for E[n] which contains P. Since P is

fixed by all elements in Gal(Q/Q), we have:

ρE,n(σ) =


1 ∗

0 ∗


 ,∀σ ∈ Gal(Q/Q).

Clearly, this works both ways since if ρE,n(σ) is of the above form for all σ ∈Gal(Q/Q)

for some basis {P,Q} of E[n], then P is fixed by all σ ∈ Gal(Q/Q). Therefore, P is

rational.

Similar conclusions can be reached if E has cyclic n-isogeny φ defined over Q. Notice

that Gal(Q/Q) acts on ker(φ). Let P be the generator of ker(φ). Then we can choose a

basis for E[n] which contains P. We have that Pσ = aP for all σ ∈Gal(Q/Q). Therefore,

we have:

ρE,n(σ) =


∗ ∗

0 ∗


 ,∀σ ∈ Gal(Q/Q).
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Again, this works both ways since if ρE,n(σ) is of the above form for all σ ∈ Gal(Q/Q)

for some basis {P,Q} of E[n], then ⟨P⟩ is fixed by all σ ∈ Gal(Q/Q). Therefore, it is a

kernel of a cyclic rational n-isogeny by Theorem 1.1.17.

Notice that given a prime p, we can consider the representations ρE,pk for any integer

k ≥ 1. We can select bases for all E[pk] which are compatible with respect to the multi-

plication by p map. They form a basis for the Tate module of E, an object which we now

define:

Definition 1.2.8. Let E/Q be an elliptic curve and p a prime. Consider the inverse limit

Tp(E) = lim←−
n

E[pn] with respect to the map [p] (multiplication by p). The module Tp(E)

is called the Tate module of E.

Notice that Gal(Q/Q) acts naturally on Tp(E). Similarly to mod n Galois representa-

tion of E, we can define the p-adic Galois representation of E:

Definition 1.2.9. Let E/Q be an elliptic curve and p a prime. Consider the representa-

tion:

ρE,p∞ : Gal(Q/Q) 7→ GL2(Zp),

induced by the action of Gal(Q/Q) on Tp(E). The homomorphism ρE,p∞ is called the

p-adic Galois representation of E.

Naturally, as with mod p Galois representations, we can ask ourselves about the pos-

sible images of ρE,p∞ . For p = 2 the question was answered by Rouse and Zureick-

Brown [79] and some additional progress was made by Rouse, Sutherland and Zureick-

Brown [78]. Serre proved the following:

Theorem 1.2.10 (Serre’s open image theorem, [80]). Let E/Q be a non-CM elliptic

curve. Then ρE,p∞ is surjective for all but finitely many primes p. Additionally, ρE,p∞ is

of finite index in GL2(Zp) (it is open in the p-adic topology).
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1.3. MODULAR CURVES AND JACOBIANS

In this section we will give a brief overview of modular curves related to our research.

We will introduce some basic definitions and state the most important results which link

the points on some specific modular curves to elliptic curves with a desired property. We

will also mention Jacobians, a very important part of many of our methods.

1.3.1. The modular curves X0, X1, XH

The goal of this part is to define the well-known modular curves X0(n), X1(n) and XH . We

begin by defining some important subgroups of SL2(Z).

Definition 1.3.1. Let n be a positive integer. Consider the following subgroup of SL2(Z):

Γ(n) =

{
a b

c d


 ∈ SL2(Z) :


a b

c d


≡


1 0

0 1


 (mod n)

}
.

Group Γ(n) is called the main congruence subgroup of level n.

Definition 1.3.2. Let Γ be a subgroup of SL2(Z). We say that Γ is a congruence sub-

group if Γ(n)≤ Γ for some positive integer n.

Here are two important examples of congruence subgroups:

Γ0(n) =

{
a b

c d


 ∈ SL2(Z) :


a b

c d


≡


∗ ∗

0 ∗


 (mod n)

}
,

Γ1(n) =

{
a b

c d


 ∈ SL2(Z) :


a b

c d


≡


1 ∗

0 1


 (mod n)

}
.

Definition 1.3.3. Let H = {τ ∈ C : im(τ) > 0}. Let H∗ = H∪Q∪{∞}. We call H the

upper half-plane and H∗ the extended upper half-plane.

It is easy to check that SL2(Z) and, consequently, all its subgroups act on H and H∗

via the following action: 
a b

c d


(τ) = aτ +b

cτ +d
.

We can now give the definition of a modular curve.
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Definition 1.3.4. Let Γ be a congruence subgroup of SL2(Z). The modular curve corre-

sponding to Γ, denoted by Y (Γ), is the quotient space Y (Γ) = Γ\H= {Γτ : τ ∈H}.

Also set X(Γ) = Γ\H∗ = {Γτ : τ ∈H∗}.

Definition 1.3.5. Let Γ be a congruence subgroup of SL2(Z). The elements of the set

X(Γ)\Y (Γ) are called cusps or cuspidal points.

Theorem 1.3.6 ( [83, p. 13-14]). The modular curve X(SL2(Z)) is isomorphic to P1

and is denoted by X(1) and its non-cuspidal points correspond to isomorphism classes of

elliptic curves E/C.

Now we will consider what happens with Γ0(n) and Γ1(n). Set:

Y0(n) = Y (Γ0(n)), Y1(n) = Y (Γ1(n)),

X0(n) = X(Γ0(n)), X1(n) = X(Γ1(n)).

Theorem 1.3.7 ([83, p. 14-15]). All X0(n), X1(n), Y0(n), Y1(n) are algebraic curves with

models over Q.

• For a number field K, pairs (E/K,C), where E is an ellipic curve and C is a cyclic

subgroup of E order n defined over K, are parametrized by non-cuspidal points on

X0(n)(K), up to isomorphism over K.

• For a number field K, pairs (E/K,P), where E is an ellipic curve and P ∈ E(K)

is of order n, are parametrized by non-cuspidal points on X1(n)(K). This is up to

isomorphism over K.

Notice that, by Proposition 1.1.17, C is a kernel of an isogeny defined over K, so by

determining all the points on X0(n)(K) we can determine whether there exists an elliptic

curve E/K with a K-rational cyclic n-isogeny. Similarly, by determining all the points

on X1(n)(K) we can say something about the possibilities for E(K)tors. Also, for positive

integers m and n, one may consider the modular curves X1(m,mn) whose non-cuspidal

K-rational points parametrize triples (E,P,Q) where E/K is an elliptic curve and P and

Q are independent points of order m and mn on E(K) respectively, see [28, p. 2]. This

is important since there exist many different methods for determining points on modular
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curves, many of which we will use in this thesis. This enables us to translate the problem

of determining the possible torsion structures or cyclic isogeny degrees of elliptic curves

into the problem of determining K-rational points on specific modular curves. Notice that

we are only interested in non-cuspidal points so we will need some information about

cusps:

Theorem 1.3.8 ([29, Section 3.8.]). Let n be a positive integer. The number of cusps of

X0(n) is equal to the sum:

∑
d|n

ϕ(gcd(d,
n

d
)).

Theorem 1.3.9 ([74, Section 5.2.]). Let n be a positive integer. Assume d is the largest

number such that d2 | n. Then all cusps of X0(n) are defined over Q(ζd).

For all of the curves X1(n) and X1(m,mn) that we will consider, it will be easy to

determine whether certain points are cusps since there are simple equations which are

satisifed by cuspidal points and no other points, see [77]. Models for many X1(n) and

X1(m,mn) can also be found there and in [89]. For larger values of n, see [27, 91].

This construction can be generalized for many more congruence subgroups. One can

find a more detailed discussion in [83] and especially [29, Chapter 2]. Let n be a positive

integer and let H be a subgroup of GL2(Z/nZ). We can associate a congruence subgroup

to H. Let:

H0 = H ∩SL2(Z/nZ), ΓH = {M ∈ SL2(Z) : (M mod n) ∈ H0}.

One can easily see that ΓH is a congruence subgroup. We can define XH and YH as:

YH = ΓH\H, XH = ΓH\H∗.

Theorem 1.3.10 ([83, Theorem 21., Theorem 22.]). Both XH , and YH are algebraic

curves with models over Q when the set of determinants of H is (Z/nZ)×.

• For a number field K, elliptic curves E/K such that ρE,n(Gal(K/K)) ⊆ H (up to

conjugation) are parametrized by non-cuspidal points on XH(K), away from the

j-invariants 0 and 1728.

• If −I /∈ H, then the parametrization is up to K-isomorphism, otherwise it is up to

K-isomorphism.
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Notice that if we have a congruence subgroup ΓH ≤ SL2(Z), then we have a natural

surjective morphism:

ΓH\H∗→ SL2(Z)\H∗, ΓH · τ → SL2(Z) · τ.

This induces a non-constant morphism of curves j : XH 7→ X(1) defined over Q when the

set of determinants of H is (Z/nZ)∗, called the j-map (see [83, p. 17]). Poles of the

j-map are the cusps of XH :

Theorem 1.3.11 ( [83, p. 17]). Let H ≤ GL2(Z/nZ). The set of cusps of XH is the set

j−1(∞).

1.3.2. Modular forms

Now we will give a very basic overview of modular forms.

Definition 1.3.12. A modular form of weight k and level n for the group Γ0(n) is a

function f : H∗→ C satisfying these conditions:

• f is holomorphic on H.

• For any z ∈H and any


a b

c d


 ∈ Γ0(n) we have:

f

(az+b

cz+d

)
= (cz+d)k f (z).

• f is holomorphic at the cusps.

Definition 1.3.13. A cuspform of weight k and level n for the group Γ0(n) is a modular

form of weight k and level n for the group Γ0(n) which vanishes at the cusps.

Cuspforms of weight k and level n for the group Γ0(n) form a C-vector space which

we denote by Sk(n). For our purposes, the most important of them will be S2(n) since it is

crucial in determining the model for X0(n). Most methods for determining those models

are a variation of Galbraith’s method [34, Chapter 3]. The curve X0(n) admits some

specific automorphisms which are involutions. We now define Atkin-Lehner invlolutions.
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Definition 1.3.14. Let n be a positive integer and d a positive divisor of n satisfying

gcd(d, n
d
) = 1. Then there exist x,y,z, t ∈ Z for which the matrix Wd =


dx y

nz dt


 has

determinant d. The matrix Wd normalizes the group Γ0(n) and induces a linear operator

wd on the space of cuspforms Sk(n) which is an involution and is called the Atkin-Lehner

involution of Sk(n). In turn, it also induces an automorphism on X0(n) which is an invo-

lution also denoted by wd and called the Atkin-Lehner involution.

Definition 1.3.15. Let n be a positive integer. The degree 2 quotient curve X0(n)/⟨wn⟩
is denoted by X+

0 (n).

The modular interpretation of wd will be useful to us. If a point P ∈ X0(n)(K) repre-

sents an elliptic curve E/K with a K-rational cyclic n-isogeny, then wd(P) represents an

elliptic curve E ′/K with a K-rational cyclic n-isogeny which is also d-isogenous to E via

a cyclic d-isogeny. Therefore, the non-cuspidal points on X+
0 (n) represent the unordered

pairs {E,E ′} of elliptic curves which are n-isogenous (see [34, Section 7.2.]).

Definition 1.3.16. Let n be a positive integer. Let ρn : X0(n) 7→ X+
0 (n) be the degree 2

quotient map. We say that a point P ∈ X0(n) is a pullback of a rational point on X+
0 (n) if

we have ρn(P) ∈ X+
0 (n)(Q).

We now define Hecke operators.

Definition 1.3.17. Let Mm be the set of 2×2 integral matrices with determinant m≥ 1.

Given a modular form f of weight k, the m-th Hecke operator acts by the formula:

Tm f (z) = mk−1 · ∑Å
a b

c d

ã
∈Mm/SL2(Z)

(cz+d)−k f

(az+b

cz+d

)
.

One can see from the formula that Tm sends cuspforms to cuspforms (if the constant

coefficient of f is 0, then so is of Tm f ).

Definition 1.3.18. A cuspform f is called a Hecke eigenform if it is an eigenvector

for all Hecke operators Tm. We denote by K f the number field we get by adjoining the

eigenvalues λm to Q.

To each cuspform we can assign an L-function:
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Definition 1.3.19. The L-function of a cusp form f (z) = ∑
∞
n=1 anqn of weight k is the

complex function defined by the Dirichlet series:

L( f ,s) =
∞

∑
n=1

ann−s.

We can associate an abelian variety A f /Q to each eigenform f . Then we have the

equality of L-functions:

L(A f ,s) =
d

∏
i=1

L( fi,s),

where fi are conjugates of f (see [83, p. 27]).

The space of differentials on a curve will be needed for some important computations

later in the thesis so we give its definition here.

Definition 1.3.20. Let K be a number field and X/K a curve over K. The space of

differentials on X , denoted by ΩX , is the K-vector space generated by the symbols of the

form dx for x ∈ K(X) satisfying these relations:

• d(x+ y) = dx+dy for all x, y ∈ K(X).

• d(xy) = ydx+ xdy for all x, y ∈ K(X).

• da = 0 for all a ∈ K.

1.3.3. Jacobians

Even though we will not explicitly define the Jacobian, we will define the basic elements

and concepts needed for the work with Jacobians. We start by defining a divisor.

Definition 1.3.21. Let K be a number field and X/K a curve over K. A divisor D on X

is a formal linear combination:

D =
n

∑
i=1

aiPi, ai ∈ Z, Pi ∈ X(K).

The degree of the divisor D is the integer ∑
n
i=1 ai. We say that D is K-rational if it

is invariant under the action of Gal(K/K). We say that D is effective if we have ai ≥ 0

for all i and we write D≥ 0. Clearly, the K-rational divisors on X form an abelian group

called the divisor group and denoted by Div(X/K). The degree 0 subgroup of that group

is the subgroup:

Div0(X/K) = {D ∈ Div(X/K) : deg(D) = 0}.
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Definition 1.3.22. Let K be a number field and X/K a curve over K. Let K(X) be

the function field of X and let f ∈ K(X)∗. For P ∈ X(K) denote by vP( f ) the order of

vanishing of f at P. Set

div( f ) = ∑
P∈X(K)

vP( f )P.

A divisor of the form div( f ) is called a principal divisor.

Definition 1.3.23. Let K be a number field and X/K a curve over K and D a divisor on

X. We define the Riemann-Roch space of D as:

L(D) = { f ∈ K(C)∗ : div( f )+D≥ 0}∪{0}.

It is easy to show that L(D) is a K-vector space and we denote its dimension by l(D).

The group of principal divisors Princ(X/K) = {div( f ) : f ∈ K(X)∗} is a subgroup of

Div0(X/K) (see [83, Lemma 2.1. p. 24]). We define the Picard group of X/K as

Pic0(X/K) =
Div0(X/K)

Princ(X/K)
.

If we have D ∈ Div0(X/K), we write [D] for the corresponding class. Assume X/K is a

curve of genus g. Then there is a g-dimensional abelian variety J(X) such that we have an

embedding of X(K) into J(X)(K). The Mordell-Weil theorem also holds for J(X)(K) and

it is a finitely generated abelian group (see [83, Theorem 34.]). By studying the points on

J(X)(K) we can usually say a lot about the points on X(K). We also have the following

result:

Theorem 1.3.24 ([76, Section 3.]). Let K be a number field and X/K a curve over K

with X(K) ̸= /0. Then J(X)(K)∼= Pic0(X/K).

Proposition 1.3.25. Let K be a number field and X/K a curve of genus g ≥ 1. Let D1

be a K-rational divisor on X of degree 1. Then the map:

i : X(K) 7→ J(X)(K), i(P) = [P−D1]

is injective.

Proof. Assume that we have i(P) = i(Q), that is, [P−D1] = [Q−D1]. Hence, P−D1 +

div( f ) = Q−D2 so div( f ) = Q−P. But then f is a degree 1 morphism, meaning that X

is of genus 0, a contradiction. ■
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1.3.4. Hyperelliptic curves

Lastly, we give a short summary of some of the basic properties of hyperelliptic curves.

Definition 1.3.26. Let K be a number field and X/K a curve over K. We say that X is

hyperelliptic if there is a K-rational morphism φ : X → P1 of degree 2.

Definition 1.3.27. Let K be a number field and X/K a curve over K. We say that X is of

gonality d over K if there is a nonconstant K-rational morphism φ : X → P1 of degree d,

but not of any lower degree.

Proposition 1.3.28 ([21, Section 4.4.2.b]). Let K be a number field and X/K a hyperel-

liptic curve of genus g over K. Then X has a model of the form:

y2 = f (x) =
d

∏
i=1

(x− xi),

with f (x) ∈ K[x], xi ∈ K pairwise different and 2g+1≤ d ≤ 2g+2.

Clearly, given the above model, X has an involution mapping (x,y) to (x,−y). This

map is called the hyperelliptic involution. It gives rise to the morphism of degree 2 from

Definition 1.3.27 which maps X to P1. The hyperelliptic curve X/K has infinitely many

quadratic points since for any x ∈ K we have (x,
√

f (x)) ∈ X(K). Such points are of-

ten called obvious points. The elements of the Jacobian J(X) can be represented in a

convenient way via their Mumford representations:

Theorem 1.3.29 ([21, Theorem 4.145]). Let K be a number field and X/K a hyperelliptic

curve of genus g with the model y2 = f (x) with f ∈K[x] of degree 2g+1. Each nontrivial

element D ∈ J(X) can be represented via a unique pair of polynomials u,v ∈ K[x] where:

• u is monic,

• deg(v)< deg(u)≤ g,

• u | v2− f

Notice that this covers only the situations when deg( f ) = 2g+ 1, but the analogous

representation exists when deg( f ) = 2g+2, see Magma [12] documentation [11, p. 4157-

4158]. See also [93, p. 6-7] for a simple algorithm which is used to reconstruct the points

of X(K) from the Mumford representations of points on J(X)(K).
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We have the similar notion of quadratic twists as with elliptic curves:

Definition 1.3.30. Let K be a number field and X/K a hyperelliptic curve over K with

the model:

X : y2 = f (x), f (x) ∈ K[x].

The hyperelliptic curve Xd given by the model:

Xd : dy2 = f (x).

is called the quadratic twist of X by d.

Proposition 1.3.31. Let K be a number field and X/K a non-hyperelliptic curve over K.

Let D2 be a K-rational divisor on X of degree 2. Then the map:

i : X (2)(K) 7→ J(X)(K), i({P,Q}) = [P+Q−D2]

is injective.

Proof. Assume that we have i({P,Q}) = i({R,S}), that is, [P+Q−D2] = [R+ S−D2].

Hence, P+Q−D2 + div( f ) = R+ S−D2 so div( f ) = R+ S−P−Q. But then f is a

K-rational morphism of degree 2, contradicting the fact that X is non-hyperelliptic. ■

We will also work with the symmetric square of a curve several times in this thesis.

Definition 1.3.32. Let K be a number field and X/K a curve over K. Denote by X (2) the

algebraic variety whose points are unordered pairs Q = {Q1,Q2}, where Q1 and Q2 are

points on X . We say that X (2) is the symmetric square of X .

Definition 1.3.33. Let K be a number field and X/K a curve over K. We say that a point

Q = {Q1,Q2} of X (2) is K-rational if {Q1,Q2} = {Qσ
1 ,Q

σ
2 } for all σ ∈ Gal(K/K). We

denote the set of all K-rational points of X (2) with X (2)(K).

Definition 1.3.34. Let K be a number field and X/K a curve over K. Let P = {P1,P2}
and Q = {Q1,Q2} be two points of X (2)(K). We say that they lie in the same residue class

modulo prime p if P̃ = Q̃. Here, P̃ = {‹P1,‹P2} denotes reduction modulo p.
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2. KNOWN RESULTS

In this chapter we will give a brief overview of existing results related to our research as

well as formally state some of the results which will be used in the later chapters.

2.1. OVERVIEW

An important problem in the theory of elliptic curves over number fields is to understand

their possible torsion groups, parametrized by non-cuspidal points on the modular curves

X1(m,n), and isogenies, parametrized by non-cuspidal points on X0(n).

After Mazur [61] determined the possible torsion groups over Q, Kamienny, Kenku

and Momose [48, 52] determined the possible torsion groups over quadratic fields. Fol-

lowing a pause of almost 3 decades, recent years have seen a number of advances in

understanding torsion groups over number fields of degree d: Derickx, Etropolski, van

Hoeij, Morrow and Zureick-Brown [25] determined the possible torsion groups over cu-

bic fields and Derickx, Kamienny, Stein and Stoll [26] determined the primes dividing the

order of all the possible torsion groups over number fields of degree 4 ≤ d ≤ 7. Merel

proved that the set of all possible torsion groups over all number fields of degree d is

finite, for any positive integer d [63]. All the possible torsion groups over a fixed number

field K, for many fixed number fields of degree 2, 3 and 4 have also been determined,

see [16, 68, 93]. GužviÂc has completely classified the possibilities for E(K)tors, where K

is a number field of prime degree and E/K an elliptic curve with rational j-invariant [43].

A similar problem that has been considered is classifying the possibilities for E(K)tors

for an elliptic curve E/Q. This has been done for quadratic and cubic fields by Naj-

man [71], for quartic fields by Najman, GonzÂalez-JimÂenez and Chou [18, 36] and for

quintic fields by GonzÂalez-JimÂenez [38]. Complete classification for sextic fields, with
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the exception of the group Z/3Z⊕Z/18Z, has been done by GužviÂc [44]. Najman and

GonzÂalez-JimÂenez determined all the possibilities for [Q(P) : Q] for a point P of prime

order on an elliptic curve E/Q, as well as all the possibilities for E(K)tors, where K is a

number field of prime degree p ≥ 7 [36]. Torsion subgroups of elliptic curves E/Q over

some infinite extensions of Q have also been handled, see [18, 19].

Unfortunately, much less is known about possible degrees of isogenies of elliptic

curves over number fields. The only number field K over which the K-rational points

on X0(n) are known for all n is Q, by the results of Mazur [60] and Kenku (see [51] and

the references therein) and accordingly, the only positive integer d such that we know all

the possible n with Y0(n) having a rational point of degree d, is d = 1. Even the problem

of finding all n such that Y+
0 (n)(Q) contains points that are neither CM nor cusps (the

set of such n has been conjectured by Elkies [31] to be finite), which can be considered a

sub-problem of the case d = 2, is still open.

However, lately there has been a great deal of progress in our understanding of quadratic

points on Y0(n). Momose [65, Theorem B] proved that for any fixed quadratic field K

which is not imaginary of class number 1, X0(p)(K) has non-cuspidal points for only

finitely many p. Assuming the Generalized Riemann Hypothesis, Banwait [6] explicitly

found, for some specific fixed number fields K, all the primes p for which X0(p)(K) has

non-cuspidal points. The Generalized Riemann Hypothesis was needed to get an explicit

bound on Momose Type 2 primes (see [6, Proposition 5.3.] and [6, Chapter 1] for more

details). Najman [72] determined all the prime degree isogenies of non-CM elliptic curves

E with j(E) ∈ Q for number fields of degree d ≤ 7 (and conditionally on Serre’s unifor-

mity conjecture for all d). This has been extended to all d > 1.4×107 unconditionally by

Le Fourn and Lemos [56, Theorem 1.3].

Note that the quadratic points when Y0(n) has genus g < 2 are not interesting in a

sense. When Y0(n) has genus 0, the set Y0(n)(K) is infinite for any number field K,

while the modular curves Y0(n) with genus 1 have infinitely many quadratic points, and

moreover the points do not admit a nice geometric description.

On the other hand, for a hyperelliptic curve X of genus g≥ 2 with J(X) having rank 0

over Q and with the hyperelliptic map h : X → P1, all but finitely many quadratic points

on X are pullbacks h−1(P1(Q)) of rational points. Since in the case of X = X0(n), the hy-
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perelliptic involution is almost always an Atkin-Lehner involution wd for some d dividing

n, it follows that all the quadratic points in h−1(P1(Q)), and hence all but finitely many

quadratic points on X0(n) correspond to Q-curves of degree d. Using these observations,

Bruin and Najman [15] described all the quadratic points on the hyperelliptic curves X0(n)

such that J(X)(Q) is finite; of the 19 values of n such that X0(n) is hyperelliptic, all but

the peculiar case of n = 37 satisfy that J(X)(Q) is finite.

Since all the hyperelliptic X0(n) have genus ≤ 5, the next natural step is finding all

the (finitely many) quadratic points on the non-hyperelliptic modular curves X0(n) with

g(X0(n))≤ 5 and rk(J0(n)(Q)) = 0, of which there are 15. This has been done by Ozman

and Siksek [74] by using the fact that the Abel-Jacobi map ι : X (2)(Q)→ J(X)(Q) which

sends {P,Q} to [P+Q− 2P0], for some fixed P0 ∈ X(Q), is injective, and hence all the

quadratic points of X can be found by checking J(X)(Q), which is, by assumption, finite.

Box [13] completed the description of quadratic points on X0(n) of genus 2≤ g≤ 5 by

describing the quadratic points for the 8 values of n such that rk(J0(n)(Q))> 0, including

the hyperelliptic case of n = 37. Box, GajoviÂc and Goodman [14] also determined all the

cubic points on the modular curves X0(n) for n ∈ {53,57,61,65,67,73} as well as all the

quartic points on X0(65).

Similar computations were done with the curves X0(125) and X0(169) and all of the

finitely many quadratic points on them have been found by Banwait, Najman and Padu-

rariu [2]. Also, the authors completely classified all the possible cyclic isogeny degrees

for the quadratic field Q(
√

213) and several other quadratic fields, assuming the General-

ized Riemann Hypothesis (for the same reason as [6]).
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2.2. AUXILIARY RESULTS

In this section we will list some theorems and lemmas which are either well known or

which we will be using in various parts of our thesis. The results mentioned here are also

very useful to know outside of the scope of this thesis. First we will give some additional

known results about torsion subgroups of elliptic curves which we will use several times.

Very often, the question of whether an elliptic curve can have a certain torsion sub-

group over some number field can be reduced to the same question for a lower degree

number field. Hence, these results are very useful:

Theorem 2.2.1 ([71, Theorem 2]). Let E/Q be an elliptic curve and K a quadratic field.

Then E(K)tors is isomorphic to one of the following groups:

Z/mZ, m = 1, . . . ,10,12,15,16,

Z/2Z⊕Z/2mZ, m = 1, . . . ,6,

Z/3Z⊕Z/3mZ, m = 1,2,

Z/4Z⊕Z/4Z.

Z/15Z is the only group which appears in only finitely many cases, and only over the

extensions Q(
√

5) and Q(
√
−15).

Theorem 2.2.2 ( [71, Theorem 1]). Let E/Q be an elliptic curve and K a cubic field.

Then E(K)tors is isomorphic to one of the following groups:

Z/mZ, m = 1, . . . ,10,12,13,14,18,21,

Z/2Z⊕Z/2mZ, m = 1,2,3,4,7.

Z/21Z is the only group which appears in only finitely many cases, and only over the

extension Q(ζ9)
+.

Theorem 2.2.3 ([17, 36]). Let E/Q be an elliptic curve and K a quartic field. Then
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E(K)tors is isomorphic to one of the following groups:

Z/mZ, m = 1, . . . ,10,12,13,15,16,20,24,

Z/2Z⊕Z/2mZ, m = 1, . . . ,6,8,

Z/3Z⊕Z/3mZ, m = 1,2,

Z/4Z⊕Z/4mZ, m = 1,2,

Z/5Z⊕Z/5Z,

Z/6Z⊕Z/6Z.

We will also use the following result which considers possible torsion subgroups over

Qab, the maximal abelian extension of Q which can be realized by adjoining all roots of

unity to Q.

Theorem 2.2.4 ( [18, Theorem 1.2.]). Let E/Q be an elliptic curve. Then E(Qab)tors is

isomorphic to one of the following groups:

Z/mZ, m = 1,3,5,7,9,11,13,15,17,19,21,25,27,37,43,67,163,

Z/2Z⊕Z/2mZ, m = 1,2, . . . ,8,9,

Z/3Z⊕Z/3mZ, m = 1,3,

Z/4Z⊕Z/4mZ, m = 1,2,3,4,

Z/5Z⊕Z/5Z,

Z/6Z⊕Z/6Z,

Z/8Z⊕Z/8Z.

We have another very useful result connecting the torsion subgroups of elliptic curves

with the cyclotomic fields:

Theorem 2.2.5 ( [84, Corollary 8.1.1.]). Let K be a number field and E/K an elliptic

curve. Assume that E[n]⊆ E(K). Then Q(ζn)⊆ K.

The following results about the 2-torsion of an elliptic curve are also useful:

Proposition 2.2.6 ([83, p. 6]). Let K be a number field and E/K an elliptic curve given

in a short Weierstrass form. Let P = (x,y) be a point of E of order 2. Then y = 0 and

[K(P) : K] ∈ {1,2,3}.
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Proposition 2.2.7 ([83, p. 6]). Let K be a number field and E/K an elliptic curve. Then

[K(E[2]) : K]∈{1,2,3,6}. When [K(E[2]) : K] = 6, the Galois group of the corresponding

extension is isomorphic to S3, hence not commutative.

We will also be considering the torsion of certain Jacobians. For those computations,

this result will be crucial:

Theorem 2.2.8 ( [49, Appendix]). Let K be a number field and A/K an abelian variety.

Let p be a prime of good reduction for A. Let p be the rational prime below p and let

e(p/p) be the ramification degree. Suppose e(p/p)< p−1. Then the reduction map redp

is injective when restricted to the torsion subgroup A(K)tors .

Remark 2.2.9. Notice that the condition e(p/p)< p−1 reduces to p > 2 when K =Q.

Next we give some generally useful results about isogenies of elliptic curves. Some

of these results are well-known while others are useful lemmas which will be used in the

later chapters.

Lemma 2.2.10. Let K be a number field and E/K an elliptic curve with a cyclic n-

isogeny and a cyclic m-isogeny both defined over K with gcd(m,n) = 1. Then E also has

a cyclic mn isogeny defined over K.

Proof. Let ⟨P⟩ be the kernel of the n-isogeny and let ⟨Q⟩ be the kernel of the m-isogeny.

Consider the group C = ⟨P+Q⟩. Clearly, C has mn elements and we have C = {aP+bQ :

0 ≤ a < n,0 ≤ b < m}. Because Gal(K/K) acts on both ⟨P⟩ and ⟨Q⟩, it also acts on C.

Therefore, C is the kernel of a cyclic mn-isogeny defined over K by Theorem 1.1.17. ■

The following result of Najman says a lot about the isogenies of prime degree and is

the motivation for Chapter 4 of this thesis:

Theorem 2.2.11 ([72, Theorem 1.1.]). Let K be a number field of degree at most 7 and

E/Q a non-CM elliptic curve with a cyclic p-isogeny defined over K with p prime. Then

p ∈ {2,3,5,7,11,13,17,37}.

As we mentioned in Section 1.2, elliptic curves with a cyclic n-isogeny over Q have

only upper-triangular matrices in its image of ρE,n (up to conjugation). A more general

version of that fact holds:
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Lemma 2.2.12. Let E/Q be an elliptic curve and n ≥ 2 an integer. Assume that the

image of ρE,n contains a subgroup H ≤ B(n), up to conjugation and that [Im(ρE,n) : H] =

d. Then E has a cyclic n-isogeny defined over a field K such that [K : Q] = d.

Proof. Select a basis {P,Q} for E[n] such that H ≤ Im(ρE,n). Recall from Section 1.2 that

ρE,n is injective on Gal(Q(E[n])/Q). Hence, a subgroup S≤Gal(Q(E[n])/Q) of index d

is mapped to H via ρE,n. Because H ≤ B(n), we have that Pσ ∈ ⟨P⟩ for all σ ∈ S. Hence,

the absolute Galois group of the fixed field K of S acts on ⟨P⟩, so ⟨P⟩ is the kernel of a

cyclic isogeny defined over K by Theorem 1.1.17. By Galois theory, the field K satisfies

[K : Q] = d and the proof is complete. ■

Remark 2.2.13. Notice that in the proof of the Lemma 2.2.12, the field K contains the

smallest field over which the isogeny with kernel ⟨P⟩ is defined. By going through all

possible bases for E[n] and subgroups H of the image of ρE,n satisfying H ≤ B(n) (up to

conjugation), we can find the field with the smallest extension degree over which E has a

cyclic n-isogeny.

Let E/Q be an elliptic curve, n ≥ 2 an integer and {P,Q} a basis for E[n]. Then any

cyclic subgroup G≤ E[n] of order n can be written as G = ⟨R⟩ with R = kP+ lQ of order

n, where k, l ∈ Z/nZ. Hence, we can assign a column


k

l


 to G (and R). Notice that there

are φ(n) possibilities for the column since we have φ(n) options to select a generator

of a group isomorphic to Z/nZ, but let’s take any of them. Now we define the action

of Im(ρE,n) on the set of cyclic subgroups G ≤ E[n] of order n. For such G ≤ E[n], an

element Aσ ∈ Im(ρE,n) maps G to a subgroup GAσ represented by the column Aσ


k

l


.

We now must show that the action is well defined. First we will show that the subgroup

GAσ really is cyclic of order n. Set Aσ = ρE,n(σ) =


a c

b d


. That means that:

Pσ = aP+bQ,

Qσ = cP+dQ.

We have Aσ


k

l


 =


ak+ cl

bk+dl


. Notice that for R = kP+ lQ (a generator for G) we have

Rσ = (ak+ cl)P+(bk+dl)Q (a generator for GAσ ). Because σ preserves the order of a
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point, GAσ is cyclic of order n. It remains to prove that the action is not disrupted by using

a different generator of G. Assume we take another generator for G= ⟨R⟩, it is of the form

mR with m ∈ (Z/nZ)×. From the above computation, we see that GAσ is generated by

(mR)σ = mRσ . Clearly, we have ⟨mRσ ⟩= ⟨Rσ ⟩, so the action is well defined. Notice that

when n = p for a prime number p, this action can be viewed as the action of PGL2(Z/pZ)

on P1(Z/pZ).

We have now defined the action of Im(ρE,n) on the set of all cyclic subgroups of E[n]

of order n such that Aσ = ρE,n(σ) sends G to Gσ for each σ ∈ Gal(Q(E[n])/Q).

Lemma 2.2.14. Let E/Q be an elliptic curve and n ≥ 2 an integer. Let G ≤ E[n] be

cyclic of order n. Assume that the orbit length of G under the above action of Im(ρE,n) is

d. Then a cyclic n-isogeny with kernel G is defined over a degree d number field and not

over any number field of lower degree.

Proof. By the Orbit-Stabilizer theorem we have:

#Stab(G) =
#Im(ρE,n)

#Orb(G)
.

Hence, [Im(ρE,n) : Stab(G)] = d. Since all Aσ such that GAσ = Gσ = G form an index d

subgroup of Im(ρE,n), then all the corresponding σ ∈Gal(Q(E[n])/Q) satisfying Gσ = G

form an index d subgroup H of Gal(Q(E[n])/Q), due to Im(ρE,n) being injective on

Gal(Q(E[n])/Q). Let K be the fixed field of H. This shows that Gal(K/K) acts on G,

so the cyclic isogeny with kernel G is defined over K by Theorem 1.1.17. Notice that by

Galois theory we have [K : Q] = d. Also notice that this is the lowest possible field degree

since H contains all σ ∈ Gal(Q(E[n])/Q) which fix G. This completes the proof. ■

For an elliptic curve E/Q and a prime p, it will be useful for us to connect the image of

ρE,p with the degree of the field of definition of a point of order p. The following tables

2.1 and 2.2 give such correspondence. Groups labeled with pB correspond to various

subgroups of B(p). Groups labeled with pCs correspond to various subgroups of Cs(p).

Groups labeled with pCn correspond to various subgroups of Cns(p). Groups labeled

with pNs correspond to various subgroups of Ns(p). Groups labeled with pNn correspond

to various subgroups of Nns(p). The number dv gives the corresponding possibilities for

[Q(P) :Q], where P∈E[p]. The number d gives the corresponding value of [Q(E[p]) :Q].
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Note that Tables 2.1 and 2.2 are partially extracted from Table 3 of [90]. They can also be

found in [36].

Sutherland Zywina dv d

2Cs G1 1 1

2B G2 1 , 2 2

2Cn G3 3 3

3Cs.1.1 H1,1 1 , 2 2

3Cs G1 2 , 4 4

3B.1.1 H3,1 1 , 6 6

3B.1.2 H3,2 2 , 3 6

3Ns G2 4 8

3B G3 2 , 6 12

3Nn G4 8 16

5Cs.1.1 H1,1 1 , 4 4

5Cs.1.3 H1,2 2 , 4 4

Sutherland Zywina dv d

5Cs.4.1 G1 2 , 4 , 8 8

5Ns.2.1 G3 8 , 16 16

5Cs G2 4 , 4 16

5B.1.1 H6,1 1 , 20 20

5B.1.2 H5,1 4 , 5 20

5B.1.4 H6,2 2 , 20 20

5B.1.3 H5,2 4 , 10 20

5Ns G4 8 , 16 32

5B.4.1 G6 2 , 20 40

5B.4.2 G5 4 , 10 40

5Nn G7 24 48

5B G8 4 , 20 80

5S4 G9 24 96

Sutherland Zywina dv d

7Ns.2.1 H1,1 6 , 9 , 18 18

7Ns.3.1 G1 12 , 18 36

7B.1.1 H3,1 1 , 42 42

7B.1.3 H4,1 6 , 7 42

7B.1.2 H5,2 3 , 42 42

7B.1.5 H5,1 6 , 21 42

7B.1.6 H3,2 2 , 21 42

7B.1.4 H4,2 3 , 14 42

7Ns G2 12 , 36 72

7B.6.1 G3 2 , 42 84

7B.6.3 G4 6 , 14 84

7B.6.2 G5 6 , 42 84

Sutherland Zywina dv d

7Nn G6 48 96

7B.2.1 H7,2 3 , 42 126

7B.2.3 H7,1 6 , 21 126

7B G7 6 , 42 252

11B.1.4 H1,1 5 , 110 110

11B.1.5 H2,1 5 , 110 110

11B.1.6 H2,2 10 , 55 110

11B.1.7 H1,2 10 , 55 110

11B.10.4 G1 10 , 110 220

11B.10.5 G2 10 , 110 220

11Nn G3 120 240

Table 2.1: Possible images GE(p) ̸= GL2(Fp), for p ≤ 11, for non-CM elliptic curves

E/Q.

29



Known results Auxiliary results

Sutherland Zywina dv d

13S4 G7 72 , 96 288

13B.3.1 H5,1 3 , 156 468

13B.3.2 H4,1 12 , 39 468

13B.3.4 H5,2 6 , 156 468

13B.3.7 H4,2 12 , 78 468

13B.5.1 G2 4 , 156 624

13B.5.2 G1 12 , 52 624

13B.5.4 G3 12 , 156 624

Sutherland Zywina dv d

13B.4.1 G5 6 , 156 936

13B.4.2 G4 12 , 78 936

13B G6 12 , 156 1872

17B.4.2 G1 8 , 272 1088

17B.4.6 G2 16 , 136 1088

37B.8.1 G1 12 , 1332 15984

37B.8.2 G2 36 , 444 15984

Table 2.2: Known images GE(p) ̸= GL2(Fp), for p = 13,17 or 37, for non-CM elliptic

curves E/Q.
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CURVES OVER Q(µp∞)

In this chapter we will consider torsion subgroups of rational elliptic curves over some

specific cyclotomic fields and over some infinite extensions of Q. This work is also doc-

umented in the paper [42] written by T. GužviÂc and the author of this thesis. This work is

motivated by the work of M. Chou [18] where he determined all the possible torsion sub-

groups of rational elliptic curves over Qab, which is the maximal abelian extension of Q.

It is also related to the work of Chou, Daniels, Krijan and Najman [19] where they deter-

mined all the possible torsion subgroups of rational elliptic curves over the Zp-extensions

of Q.

Definition 3.0.1. Let p be a prime number. Denote with µp∞ the set of all complex

numbers ω for which there exists a non-negative integer k such that ω pk
= 1.

Notice that Q(µp∞) is the field Q extended with all pn-th primitive roots of unity.

In [41], the authors showed that the torsion subgroup of E/Q grows only over small

subfields of Q(µp∞) for a prime number p. This will enable us to quickly reduce the

problem from infinite to finite extensions. Recall that, by Mazur’s theorem, E(Q)tors is

isomorphic to one of the following groups:

Z/mZ, m = 1,2, . . . ,10,12,

Z/2Z⊕Z/2mZ, m = 1,2,3,4.

Our main results are the following:

Proposition 3.0.2. Let E/Q be an elliptic curve. Then E(Q(µ2∞))tors is isomorphic to

one of the groups from Mazur’s theorem or to one of the following groups, with examples
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of curves given by their LMFDB labels in the brackets:

Z/4Z⊕Z/4Z (15.a5),

Z/2Z⊕Z/10Z (2112.bd4).

Proposition 3.0.3. Let E/Q be an elliptic curve. Then E(Q(µ3∞))tors is isomorphic to

one of the groups from Mazur’s theorem or to one of the following groups, with examples

of curves given by their LMFDB labels in the brackets:

Z/21Z (162.b4),

Z/27Z (27.a2),

Z/3Z⊕Z/3Z (54.a3),

Z/3Z⊕Z/6Z (126.b6),

Z/3Z⊕Z/9Z (27.a3).

Proposition 3.0.4. Let E/Q be an elliptic curve. Then E(Q(µ5∞))tors is isomorphic to

one of the groups from Mazur’s theorem or to one of the following groups, with examples

of curves given by their LMFDB labels in the brackets:

Z/15Z (50.a2),

Z/16Z (15.a7),

Z/5Z⊕Z/5Z (550. j3).

Proposition 3.0.5. Let E/Q be an elliptic curve. Then E(Q(µ7∞))tors is isomorphic to

one of the groups from Mazur’s theorem or to one of the following groups, with examples

of curves given by their LMFDB labels in the brackets:

Z/13Z (147b1),

Z/14Z (49a4),

Z/18Z (14a6),

Z/2Z⊕Z/14Z (49a1),

Z/2Z⊕Z/18Z (14a4).
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Proposition 3.0.6. Let E/Q be an elliptic curve. Then E(Q(µ11∞))tors is isomorphic to

one of the groups from Mazur’s theorem or to one of the following groups, with examples

of curves given by their LMFDB labels in the brackets:

Z/11Z (121b2),

Z/25Z (11a3),

Z/2Z⊕Z/10Z (10230bg2).

The code that verifies all the computation related to this work can be found on:

https://github.com/brutalni-vux/TorsionCyclotomic.

3.1. AUXILIARY RESULTS

We begin by stating a theorem which will reduce the cases of infinite extensions to the

cases of finite ones.

Theorem 3.1.1 ( [41, Theorem 1.3.]). Let E/Q be an elliptic curve. Then for a prime

number p≥ 5 it holds that

E(Q(µp∞))tors = E(Q(ζp))tors.

Furthermore,

E(Q(µ3∞))tors = E(Q(ζ27))tors and E(Q(µ2∞))tors = E(Q(ζ16))tors.

Remark 3.1.2. This result is the best possible. For E with the LMFDB label 27.a2 we

have:

E(Q(ζ9))tors
∼= Z/9Z ⊊ Z/27Z∼= E(Q(ζ27))tors.

For E with the LMFDB label 32.a2 we have:

E(Q(ζ8))tors
∼= Z/2Z⊕Z/4Z ⊊ Z/2Z⊕Z/8Z∼= E(Q(ζ16))tors.

Because of Theorem 3.1.1, we only need to work with several specific cyclotomic

fields to prove our main results. Clearly, those are the fields Q(ζ16), Q(ζ27), Q(ζ5),

Q(ζ7) and Q(ζ11). It becomes natural to ask ourselves how the torsion group of E/Q
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grows when we consider the base change E/Q(ζp). This becomes much harder as p

grows because our methods sometimes rely on pure computation.

The following lemma is well-known:

Lemma 3.1.3 ( [37, Theorem 3., Corollary 4.]). Let E/Q be an elliptic curve and L/K

a quadratic extension of number fields with L = K(
√

d). Let E(K)(2′) be the group of

K-rational points of E of odd order. Then we have:

E(K(
√

d))(2′)
∼= E(K)(2′)⊕Ed(K)(2′).

The similar holds for hyperelliptic Jacobians and their ranks:

Lemma 3.1.4 ([55, Corollary 1.3.]). Let K be a number field, X/K a hyperelliptic curve

and L/K a quadratic extension of number fields with L = K(
√

d). Let J(X) be the Jaco-

bian of X and let Jd(X) be the Jacobian of the quadratic twist Xd . Then we have:

rk(J(X)(L)) = rk(J(X)(K))+ rk(Jd(X)(K)).

Since all cyclotomic extensions are Galois over Q, the following result imposes re-

strictions on the possibilities for the torsion subgroup of E/Q over cyclotomic fields.

Lemma 3.1.5. Let E/Q be an elliptic curve, m, n positive integers and K a finite Galois

extension of Q. Let E(K)[mn] ∼= Z/mZ⊕Z/mnZ and P ∈ E(K) a point of order mn.

Then we have:

[Q(mP) : Q] | gcd(ϕ(n), [K : Q]),

where ϕ is the Euler function.

Proof. Let P∈E(K) be a point of order mn. Then we can take Q∈E[mn] such that {P,Q}
is a basis for E[mn]. Consider the mod n Galois representation of E:

ρE,n : Gal(Q/Q)→ GL2(Z/nZ).

Take σ ∈ Gal(K/Q). Then we have Pσ = αP+βQ for some α,β ∈ Z/mnZ because the

action of σ preserves the order of a point. Now we have Pσ −αP = βQ, so βQ ∈ E(K).

Clearly, P and βQ are independent (except if βQ = O). Hence, they generate a subgroup

of E(K)[mn] of order mn · ord(βQ). Since we have E(K)[mn] ∼= Z/mZ⊕Z/mnZ, we
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can conclude that ord(βQ) | m. Therefore, mβ ≡ 0 (mod mn) since Q is of order mn.

Multiplying the equality Pσ−αP = βQ by m gives us (mP)σ = α(mP) so (mP)σ ∈ ⟨mP⟩
for all σ ∈ Gal(K/Q). We know that mP is of order n, so we have (mP)σ = g(mP) for

some g ∈ (Z/nZ)× since the action of σ preserves the order of a point.

Since by considering the restriction map we get Gal(K/Q) ∼= Gal(Q/Q)/Gal(Q/K)

from the first isomorphism theorem and Galois theory, we have (mP)σ ∈ ⟨mP⟩ for all

σ ∈ Gal(Q/Q). Therefore, if we choose mP to be one of the elements of the basis for

E[n], for all σ ∈ Gal(Q/Q) we have:

ρE,n(σ) =


φ(σ) τ(σ)

0 ψ(σ)


 .

Notice that we have the homomorphisms φ ,ψ : Gal(Q/Q)→ (Z/nZ)× and the map τ :

Gal(Q/Q)→ Z/nZ.

For a point R ∈ E(K)[mn], denote by Orb(R) the orbit of R under the action of

Gal(K/Q) on E(K)[mn]. Denote by Stab(R) the stabilizer of R under that same action.

We know that (mP)σ = g(mP)⇔ φ(σ) = g, for all σ ∈ Gal(Q/Q). Therefore, we have:

#Im(φ) = #{(mP)σ : σ ∈ Gal(K/Q)}= #Orb(mP).

It is clear that Stab(mP) = Gal(K/Q(mP)), so by Orbit-Stabilizer theorem we have:

#Im(φ) =
#Gal(K/Q)

#Gal(K/Q(mP))
= [Q(mP) : Q].

On the other hand, we have Im(φ)≤ (Z/nZ)×, so we have:

[Q(mP) : Q] | ϕ(n).

Since [Q(mP) : Q] | [K : Q] is obvious, the proof is complete. ■

The following useful lemma provides a connection between torsion and isogenies:

Lemma 3.1.6 ([18, Lemma 2.7.]). Let K be a Galois extension of Q and E/Q an elliptic

curve. If E(K)tors
∼= Z/mZ⊕Z/mnZ, then E has a cyclic n-isogeny over Q.

When dealing with points whose order is a power of a prime, the following will be

helpful:
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Lemma 3.1.7 ([36, Proposition 4.6.]). Let K be a number field and E/K an elliptic

curve. Let n be a positive integer, p a prime and P ∈ E(K) a point of order pn+1. Then

[K(P) : K(pP)] divides p2 or p(p−1).

One of the crucial results that we will use is the result of Chou mentioned in the

beginning of this chapter and already stated in this thesis (see Theorem 2.2.4) but we state

it again for easier reading:

Theorem 3.1.8 ( [18, Theorem 1.2.]). Let E/Q be an elliptic curve. Then E(Qab)tors is

isomorphic to one of the following groups:

Z/mZ, m = 1,3,5,7,9,11,13,15,17,19,21,25,27,37,43,67,163

Z/2Z⊕Z/2mZ, m = 1,2, . . . ,8,9

Z/3Z⊕Z/3mZ, m = 1,3

Z/4Z⊕Z/4mZ, m = 1,2,3,4

Z/5Z⊕Z/5Z,

Z/6Z⊕Z/6Z,

Z/8Z⊕Z/8Z.

This means that all of our candidates for the torsion subgroup are the subgroups of the

groups in Theorem 3.1.8.
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3.2. TORSION GROWTH OVER Q(ζ16)

In this section we prove Proposition 3.0.2. Assume that E/Q is an elliptic curve and

that E(Q(ζ16))tors
∼= Z/mZ⊕Z/mnZ. By Theorem 2.2.5, we have Q(ζm) ⊆ Q(ζ16). It

follows that m ∈ {1,2,4,8,16}. The case m = 16 is impossible by Theorem 3.1.8. We

first eliminate a certain amount of cyclic groups listed in Theorem 3.1.8.

Lemma 3.2.1. Let E/Q be an elliptic curve. Then E(Q(ζ16))tors is not isomorphic to

Z/nZ if n ∈ {11,14,17,18,19,21,25,27,37,43,67,163}.

Proof. Lemma 3.1.5 gives us that if Pn ∈ E(Q(ζ16)) is a point of order n∈ {11,14,18,19,

27,43,67,163}, we have [Q(Pn) : Q] | 2, which is impossible by Theorem 2.2.1. By the

same lemma we get that if Pn is a point of order n ∈ {21,25,37}, then we have [Q(Pn) :

Q] | 4, which is impossible by Theorem 2.2.3.

It remains to consider the case n = 17. By [36, Theorem 5.8.] we conclude that the

point P17 ∈ E(Q(ζ16)) of order 17 cannot be defined over some strictly smaller sub-

field of Q(ζ16). That means that all σ ∈ Gal(Q(ζ16)/Q) act differently on P17. Since

Gal(Q(ζ16)/Q) has four elements σ such that σ2 = id, we have that Pσ2

17 = k2P17 = P17

for four different σ ∈ Gal(Q(ζ16)/Q). That means that we have k2 ≡ 1 (mod 17) for

four different k ∈ Z/17Z, a contradiction. ■

After eliminating plenty of cyclic groups, we discuss the cases when E obtains the

full 2-torsion over Q(ζ16). This is done by the following lemmas:

Lemma 3.2.2. Let E/Q be an elliptic curve. Then E(Q(ζ16))tors is not isomorphic to

Z/2Z⊕Z/14Z or Z/2Z⊕Z/18Z.

Proof. We will prove the result for Z/2Z⊕Z/14Z and the proof for the case Z/2Z⊕
Z/18Z is identical. Let P14 ∈ E(Q(ζ16)) be the point of order 14. From Lemma 3.1.5 we

get that [Q(2P14) : Q] | 2. By Proposition 2.2.7 we have [Q(E[2]) : Q] ∈ {1,2,3,6}. Since

E[2] is defined over Q(ζ16), we have [Q(E[2]) : Q] ∈ {1,2}.
Let Q2 be a point of order 2 different from 7P14. We now have [Q(2P14,7P14,Q2) :Q] |

4. Since 2P14,7P14 and Q2 generate our torsion subgroup Z/2Z⊕Z/14Z, we now know

that this torsion subgroup appears over some strictly smaller subfield of Q(ζ16). Now we

get a contradiction by using Theorem 2.2.1 and Theorem 2.2.3. ■
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Lemma 3.2.3. Let E/Q be an elliptic curve. Then E(Q(ζ16))tors is not isomorphic to

any of the following groups:

Z/15Z, Z/2Z⊕Z/12Z,

Z/4Z⊕Z/12Z, Z/4Z⊕Z/8Z,

Z/4Z⊕Z/16Z, Z/8Z⊕Z/8Z.

Proof. Both X1(15) and X1(2,12) are elliptic curves whose models can be found in [77].

A computation in Magma shows that X1(15)(Q(ζ16)) = X1(15)(Q). Therefore, since

Z/15Z is not a possible torsion subgroup over Q by Theorem 1.1.9, it also cannot ap-

pear over Q(ζ16).

A computation in Magma shows that X1(2,12)(Q(ζ16)) = X1(2,12)(Q(i)). It was

proved in [69, Lemma 7] that Z/2Z⊕Z/12Z does not appear as a torsion subgroup of

E/Q over Q(i). Therefore, it also cannot appear over Q(ζ16). This also covers the case

Z/4Z⊕Z/12Z.

Now consider the modular curve X1(4,8) which is isomorphic (over Q(i)) to the ellip-

tic curve with LMFDB label 32.a3 by [70, Lemma 13.]. A computation in Magma shows

that X1(4,8)(Q(ζ16)) = X1(4,8)(Q(ζ8)), which contains only cusps, see [16, p. 12]. This

also covers the cases Z/8Z⊕Z/8Z and Z/4Z⊕Z/16Z. ■

The following lemma is a bit more complicated than the previous ones. The idea

is to consider the modular curve X1(16), which is hyperelliptic of genus 2, and its Ja-

cobian J1(16) over Q(ζ16). The first goal is to show that J1(16)(Q(ζ16)) has rank 0.

After that, we determine the torsion of J1(16)(Q(ζ16)) and consequently the points on

X1(16)(Q(ζ16)), all of which turn out to be cusps.

Lemma 3.2.4. Let E/Q be an elliptic curve. Then E(Q(ζ16))tors is not isomorphic to

Z/16Z or Z/2Z⊕Z/16Z.

Proof. We consider the modular curve X1(16)(Q(ζ16)) with the model [77]:

y2 = x(x2 +1)(x2 +2x−1)

and its Jacobian J1(16)(Q(ζ16)). We will demonstrate the use of standard methods for

this type of problem by determining all the points on X1(16)(Q(ζ16)). A computation in
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Magma shows that rk(J1(16)(Q(ζ16))) = 0 with the help of Lemma 3.1.4:

rk(J1(16)(Q(ζ8)(
√

ζ8))) = rk(J1(16)(Q(ζ8)))+ rk(J
ζ8

1 (16)(Q(ζ8))) = 0.

Now we determine J1(16)(Q(ζ16))tors. The rational prime p = 17 splits completely in

Q(ζ16) so by reducing modulo some prime p of Q(ζ16) that lies above p we get an injec-

tion due to Theorem 2.2.8:

redp : J1(16)(Q(ζ16))tors→ J1(16)(F17).

A computation in Magma shows that #J1(16)(F17) = 400. Hence, #J1(16)(Q(ζ16))≤ 400.

By using the generators of the 2-torsion subgroup of J1(16)(Q(ζ16)) and some elements

of J1(16)(Q(ζ16)) that we get from some known points on X1(16)(Q(ζ16)), we are able

to generate a group with 400 elements. Therefore, we know exactly how J1(16)(Q(ζ16))

looks like:

J1(16)(Q(ζ16))∼= (Z/2Z)4⊕ (Z/5Z)2.

Now we are able to determine all points on X1(16)(Q(ζ16)) by considering the Mum-

ford representations of the elements of J1(16)(Q(ζ16)). We get that #X1(16)(Q(ζ16)) =

14 with all points being cusps. Therefore, we can conclude that there are no elliptic curves

E/Q(ζ16) (and consequently E/Q) with a point of order 16 over Q(ζ16). ■

We now do a similar procedure with X1(13).

Lemma 3.2.5. Let E/Q be an elliptic curve. Then E(Q(ζ16))tors is not isomorphic to

Z/13Z.

Proof. We consider the modular curve X1(13)(Q(ζ16)) and its Jacobian J1(13)(Q(ζ16)).

The model for X1(13) can be found in [77]:

y2 = x6 +4x5 +6x4 +2x3 + x2 +2x+1.

A computation in Magma shows that rk(J1(13)(Q(ζ16))) = 0 with the help of Lemma

3.1.4:

rk(J1(13)(Q(ζ16))) = rk(J1(13)(Q(ζ8)))+ rk(J
ζ8

1 (13)(Q(ζ8))) = 0.
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The next step is to determine J1(13)(Q(ζ16))tors. We determine the 2-torsion subgroup,

which turns out to be trivial. By using Theorem 2.2.8, we get that this reduction map is

injective:

redp : J1(13)(Q(ζ16))tors→ J1(13)(F17).

We also get that the rational prime q = 41 has inertia degree 2 in Q(ζ16) so we have

another injection:

redq : J1(13)(Q(ζ16))tors→ J1(13)(F412).

We notice that gcd(#J1(13)(F17),#J1(13)(F412)) = 76, so #J1(13)(Q(ζ16)) | 76. Since

the two torsion subgroup is trivial, we get that #J1(13)(Q(ζ16)) | 19. We can find a point

of order 19 on our Jacobian. By checking the Mumford representations of all elements

of J1(13)(Q(ζ16)), we find that all of the points on J1(13)(Q(ζ16)) come from cusps on

X1(13)(Q(ζ16)) (and actually X1(13)(Q)). Therefore, we can conclude that there are no

elliptic curves E/Q(ζ16) (and consequently E/Q) such that E(Q(ζ16))tors
∼= Z/13Z. ■

Now all the lemmas in this section give us the proof of Proposition 3.0.2.
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3.3. TORSION GROWTH OVER Q(ζ27)

In this section we prove Proposition 3.0.3. Assume that E/Q is an elliptic curve and

that E(Q(ζ27))tors
∼= Z/mZ⊕Z/mnZ. By Theorem 2.2.5 we have Q(ζm) ⊆ Q(ζ27). By

combining that with Theorem 3.1.8, it follows that m ∈ {1,2,3,6}. We first eliminate a

certain amount of cyclic groups listed in Theorem 3.1.8 and one non-cyclic group.

Lemma 3.3.1. Let E/Q be an elliptic curve. Then E(Q(ζ27))tors is not isomorphic to

Z/nZ if n ∈ {11,13,14,15,16,17,19,25,37,43,67,163}. Additionally, E(Q(ζ27))tors is

not isomorphic to Z/2Z⊕Z/14Z.

Proof.

• If n ∈ {11,15,25} and Pn ∈ E(Q(ζ27)) is a point of order n, then by Lemma 3.1.5

we have [Q(Pn) : Q] | 2, which is impossible by Theorem 2.2.1.

• Assume n = 13 and let P13 ∈ E(Q(ζ27)) be a point of order 13. By Lemma 3.1.5

we have [Q(P13) : Q] | 6. Therefore, this torsion subgroup is defined over Q(ζ9).

Theorem 2.2.1 tells us that this torsion subgroup cannot be defined over quadratic

field. Therefore, it is defined over sextic or cubic field. Assume it is defined over

sextic field (the entire Q(ζ9)). Then we can use Lemma 3.1.3 to get:

Z/13Z∼= E(Q(ζ9))(2′)
∼= E(Q(ζ9)

+)(2′)⊕E−3(Q(ζ9)
+)(2′).

This means that either E or E−3 has torsion subgroup isomorphic to Z/13Z defined

over Q(ζ9)
+. Now we will be finished if we prove that torsion subgroup Z/13Z

can’t appear over Q(ζ9)
+. To do this, we consider X1(13)(Q(ζ9)

+). As before, we

use Magma to determine that X1(13)(Q(ζ9)
+) = X1(13)(Q), which completes the

proof.

• Now let P14 ∈ E(Q(ζ27)) be a point of order 14 and assume that E(Q(ζ27))tors is

isomorphic to Z/2Z⊕Z/14Z or Z/14Z. By Lemma 3.1.5 it follows that [Q(2P14) :

Q] | 6, so Q(2P14) is contained in Q(ζ9). The point 7P14 of order 2 satisfies

[Q(7P14) : Q] ∈ {1,2,3} by Proposition 2.2.6, which means that it is also contained

in Q(ζ9). It follows that P14 ∈ E(Q(ζ9)). Consider the modular curve X1(14). It is
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an elliptic curve with the LMFDB label 14.a5. A computation in Magma [12] shows

that X1(14)(Q) = X1(14)(Q(ζ9)), both only containing cuspidal points. Hence,

there does not exist an elliptic curve over Q(ζ9) with a point of order 14 over Q(ζ9)

and consequently over Q(ζ27).

• Assume n = 16 and let P16 ∈ E(Q(ζ27)) be a point of order 16. By Lemma 3.1.5

it follows that [Q(P16) : Q] | 2, so Q(P16) is contained in Q(
√
−3). Therefore,

E(Q(
√
−3))tors

∼= Z/16Z. That is impossible by [69, Lemma 12.].

• Assume that n ∈ {17,37} and that Pn ∈ E(Q(ζ27)) is a point of order n. By [36,

Theorem 5.8.] it follows that [Q(Pn) :Q] is divisible by 4, but since Q(Pn)⊆Q(ζ27),

this is impossible.

• Assume n= 19 , then E has a Q-rational 19-isogeny by Lemma 3.1.6. By [58, Table

4.] we have that j(E) =−215 ·33. The 19th division polynomial ψE,19 must have a

root over Q(ζ27). Using Magma, we check that this is not the case and therefore this

is impossible.

• Assume that n∈ {43,67,163} and let Pn ∈ E(Q(ζ27)) be a point of order n. By [58,

Theorem 2.1] it follows that [Q(Pn) :Q]≥ n−1
2

> [Q(ζ27) :Q] = 18, a contradiction.

■

We continue with examining the points of order 18.

Lemma 3.3.2. Let E/Q be an elliptic curve. Then E(Q(ζ27))tors is not isomorphic to

Z/18Z or Z/2Z⊕Z/18Z.

Proof. If E(Q(ζ27))tors
∼= Z/18Z, then Lemma 3.1.5 directly gives us that this torsion

subgroup is defined over a number field of degree 6 which can only be Q(ζ9).

If E(Q(ζ27))tors
∼=Z/2Z⊕Z/18Z, then Lemma 3.1.5 gives us that if P18 ∈ E(Q(ζ27))

is a point of order 18, then 2P18 is defined over Q(ζ9). We know that [Q(E[2]) : Q] ∈
{1,2,3,6} by Proposition 2.2.7, but all unique subextensions of Q(ζ27) of those degrees

are contained in Q(ζ9), so again our torsion subgroup is defined over Q(ζ9) since 2P18

and E[2] generate our torsion subgroup.
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Now from Lemma 3.1.3 we get that

Z/9Z∼= E(Q(ζ9))(2′)
∼= E(Q(ζ9)

+)(2′)⊕E−3(Q(ζ9)
+)(2′).

Therefore, one of E(Q(ζ9)
+) and E−3(Q(ζ9)

+) has a point of order 9. Let P2 ∈ E(Q(ζ9))

be a point of order 2. If [Q(P2) : Q] ∈ {1,3}, then P2 is on E(Q(ζ9)
+) but also on

E−3(Q(ζ9)
+) because of Proposition 2.2.6. If [Q(P2) : Q] = 2, then there is another point

Q2 of order 2 on E defined over Q. In any case, both E(Q(ζ9)
+) and E−3(Q(ζ9)

+) have

a point of order 2. Finally, one of them has a point of order 18. However, it was proved

in [54, Lemma 3.4.7.] that all the points on X1(18)(Q(ζ9)
+) are cusps, which completes

the proof. ■

Lemma 3.3.3. Let E/Q be an elliptic curve. Assume that E(Q(ζ27))tors
∼= Z/2Z⊕

Z/2nZ. Then n ∈ {1,2,3,4}. Also, E(Q(ζ27))tors is not isomorphic to Z/6Z⊕Z/6Z.

Proof. From Theorem 3.1.8 it follows that n≤ 9. We have shown that E(Q(ζ27)) cannot

contain a point of order 18 in Lemma 3.3.2 so n≤ 8.

• Assume that E(Q(ζ27))tors
∼= Z/2Z⊕Z/10Z and let P5 ∈ E(Q(ζ27)) be a point

of order 5. It follows from Lemma 3.1.6 that E has a Q-rational 5-isogeny. We

have from Lemma 3.1.5 that [Q(P5) : Q] | 2. Notice that P5 and E[2] generate our

torsion subgroup E(Q(ζ27))tors. Now we will use Table 2.1 and analyze the pos-

sible images of ρE,2. Notice that Table 2.1 covers only non-CM curves, but for

the mod 2 representation, the information is correct even if we include CM curves

(see also [83, p. 6]). If ρE,2 is surjective, then [Q(E[2]) : Q] = 6 and the corre-

sponding Galois group is not commutative by Proposition 2.2.7, which is a contra-

diction. If Im(ρE,2) ⊆ B(2), then by Table 2.1 we see that [Q(E[2]) : Q] ∈ {1,2}.
Therefore, Q(P5) and Q(E[2]) are two at most quadratic fields contained in Q(ζ27).

Since Q(ζ27) has a unique quadratic subextension F = Q(
√
−3) and no quartic

subextensions, it follows that E(Q(
√
−3))tors

∼= Z/2Z⊕Z/10Z, which is impos-

sible by [69, Theorem 2]. The only remaining option is Im(ρE,2) =Cns(2). It was

proved in [45, Page 61] that an elliptic curve E/Q with a Q-rational 5-isogeny and

Im(ρE,2) =Cns(2) does not exist. Hence, this case is impossible.
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• Assume that E(Q(ζ27))tors
∼= Z/2Z⊕Z/12Z and let P12 ∈ E(Q(ζ27)) be the point

of order 12. We have by Lemma 3.1.5 that [Q(2P12) : Q] | 2. We also have by

Lemma 3.1.7 that [Q(3P12) :Q(6P12)] | 4. Since [Q(6P12) :Q] | 2, we have [Q(3P12) :

Q] | 8. Since Q(ζ27) has a unique quadratic subfield and no quartic subfields, we

conclude that [Q(P12) : Q] | 2. We know that [Q(6P12) : Q] | 2, so E has a point

of order 2 defined over at most a quadratic field. Hence, [Q(E[2]) : Q] ∈ {1,2}
(see [83, p. 6]). Now we can conclude that E(Q(

√
−3))tors

∼= Z/2Z⊕Z/12Z,

which is impossible by [69, Theorem 2].

• Assume that E(Q(ζ27))tors
∼= Z/2Z⊕Z/16Z and let P16 ∈ E(Q(ζ27)) be the point

of order 16. We have by Lemma 3.1.5 that [Q(2P16) : Q] | 2. We also have by

Lemma 3.1.7 that [Q(P16) : Q(2P16)] | 4. Since Q(ζ27) has a unique quadratic sub-

field and no quartic subfields, we conclude that [Q(P16) : Q] | 2. We know that

[Q(8P16) : Q] | 2, so E has a point of order 2 defined over at most a quadratic

field. Hence, [Q(E[2]) : Q] ∈ {1,2} (see [83, p. 6]). Now we can conclude that

E(Q(
√
−3))tors

∼= Z/2Z⊕Z/16Z, which is impossible by Theorem 2.2.1.

• Assume that E(Q(ζ27))tors
∼= Z/6Z⊕Z/6Z. We can use [39, Theorem 1.1.] which

tells us that Gal(Q(E[6])/Q) is isomorphic to (Z/2Z)2 or to (Z/2Z)3. Since

Gal(Q(ζ27)/Q) is cyclic, this is impossible.

■

Now all the lemmas in this section give us the proof of Proposition 3.0.3.
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3.4. TORSION GROWTH OVER

Q(ζ5),Q(ζ7) AND Q(ζ11)

Notice that Proposition 3.0.4 follows directly from [16, Threorem 6], which eliminates all

the candidate subgroups for which we did not find an example except Z/17Z, which we

can exclude by using Theorem 2.2.3.

3.4.1. Proof of Proposition 3.0.6

Now we prove Proposition 3.0.6. If E/Q is an elliptic curve with E(Q(ζ11))tors
∼=Z/mZ⊕

Z/mnZ, then Q(ζm)⊆Q(ζ11) by Theorem 2.2.5, which means m ∈ {1,2,11}. By apply-

ing Theorem 3.1.8, we eliminate the possibility m = 11. Now we eliminate a lot of cyclic

groups.

Lemma 3.4.1. Let E/Q be an elliptic curve. Then E(Q(ζ11))tors is not isomorphic to

Z/nZ if n ∈ {13,14,15,17,18,19,21,27,37,43,67,163}.

Proof. Assume that E(Q(ζ11))tors
∼= Z/nZ for some n from the statement and let Pn ∈

E(Q(ζ11)) be a point of order n. By Lemma 3.1.5 we have [Q(Pn) : Q] | 2, so our torsion

subgroup is defined over Q(
√
−11), but this is impossible by Theorem 2.2.1. ■

Next we eliminate most of the remaining candidates for E(Q(ζ11))tors.

Lemma 3.4.2. Let E/Q be an elliptic curve. Then E(Q(ζ11))tors is not isomorphic to

Z/2Z⊕Z/2nZ if n ∈ {7,8,9}.

Proof. Assume that E(Q(ζ11))tors
∼=Z/2Z⊕Z/2nZ for n∈{7,9} and let Pn ∈E(Q(ζ11))

be a point of order n. By Lemma 3.1.5 we have [Q(2Pn) : Q] | 2. We also have [Q(E[2]) :

Q] ∈ {1,2} by Proposition 2.2.7. Since E[2] and 2Pn generate our torsion subgroup and

Q(ζ11) has one quadratic and no quartic subfields, we conclude that E(Q(
√
−11))tors

∼=
Z/2Z⊕Z/2nZ, but that is impossible by Theorem 2.2.1.

Assume that E(Q(ζ11))tors
∼= Z/2Z⊕Z/16Z and let P16 ∈ E(Q(ζ11)) be a point of

order 16. By Lemma 3.1.5 we have [Q(2P16) : Q] | 2. By Lemma 3.1.7 we have [Q(P16) :

Q(2P16)] | 4. We also have [Q(E[2]) : Q]∈ {1,2} by Proposition 2.2.7. Since E[2] and P16
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generate our torsion subgroup and Q(ζ11) has only one quadratic and no quartic subfields,

we conclude that E(Q(
√
−11))tors

∼= Z/2Z⊕Z/16Z, but that is impossible by Theorem

2.2.1. ■

There are only two groups left to eliminate for which we use the already described

computational methods in Magma [12].

Lemma 3.4.3. Let E/Q be an elliptic curve. Then E(Q(ζ11))tors is not isomorphic to

Z/2Z⊕Z/12Z or Z/16Z.

Proof. Assume that E(Q(ζ11))tors
∼= Z/2Z⊕Z/12Z and let P12 ∈ E(Q(ζ11)) be a point

of order 12. By Lemma 3.1.5 we have [Q(2P12) : Q] | 2. By Lemma 3.1.7 we have

[Q(3P12) : Q(6P12)] | 4. We also have [Q(E[2]) : Q] ∈ {1,2} by Proposition 2.2.7. Since

E[2], 2P12 and 3P12 generate our torsion subgroup and Q(ζ11) has only one quadratic

and no quartic subfields, we conclude that E(Q(
√
−11))tors

∼= Z/2Z⊕Z/12Z. Hence, E

comes from a non-cuspidal point on X1(2,12)(Q(
√
−11)) which is an elliptic curve. A

simple computation in Magma like before shows that X1(2,12)(Q(
√
−11))=X1(2,12)(Q)

and X1(2,12)(Q) consists only of cusps. Hence, this is impossible.

Assume that E(Q(ζ11))tors
∼= Z/16Z and let P16 ∈ E(Q(ζ11)) be a point of order 16.

By Lemma 3.1.5 we have [Q(P16) : Q] | 2. We conclude that E(Q(
√
−11))tors

∼= Z/16Z.

Hence, E comes from a non-cuspidal point on X1(16)(Q(
√
−11)). A simple computation

in Magma like before shows that X1(16)(Q(
√
−11)) = X1(16)(Q) and X1(16)(Q) consists

only of cusps. Hence, this is impossible. ■

With that, the proof of Proposition 3.0.6 is complete.

3.4.2. Proof of Proposition 3.0.5

Now we prove Proposition 3.0.5. If E/Q is an elliptic curve and if E(Q(ζ7))tors
∼=

Z/mZ⊕Z/mnZ, then Q(ζm) ⊆ Q(ζ7) by Theorem 2.2.5, which means m ∈ {1,2,7}.
By applying Theorem 3.1.8, we eliminate the possibility m = 7. Now we eliminate a lot

of cyclic groups.

Lemma 3.4.4. Let E/Q be an elliptic curve. Then E(Q(ζ7))tors is not isomorphic to

Z/nZ if n ∈ {11,15,16,17,19,21,25,27,37,43,67,163}.
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Proof.

• Assume that E(Q(ζ7))tors
∼= Z/nZ for n ∈ {11,15,17,25} and let Pn ∈ E(Q(ζ7))

be a point of order n. By Lemma 3.1.5 we have [Q(Pn) : Q] | 2 and now we get a

contradiction from Theorem 2.2.1.

• Assume that E(Q(ζ7))tors
∼=Z/nZ for n∈{19,37,43,67,163}. From [36, Theorem

5.8.], we get that a point of order n can’t be defined over the field Q(ζ7) (a degree

6 extension).

• Assume that E(Q(ζ7))tors
∼= Z/27Z. This is impossible by [44, Theorem 1.1.].

• Assume that E(Q(ζ7))tors
∼= Z/16Z and let P16 ∈ E(Q(ζ7)) be a point of order 16.

By Lemma 3.1.5 we have [Q(P16) : Q] | 2. That means that P16 ∈ E(Q(
√
−7)). We

can use similar methods in Magma as before to consider X1(16)(Q(
√
−7)) and show

that it consists of cusps and therefore prove that E/Q can’t have a point of order 16

defined over Q(
√
−7).

• Assume that E(Q(ζ7))tors
∼= Z/21Z. We conclude from Lemma 3.1.6 that E has

a Q-rational 21-isogeny. There are 4 elliptic curves (up to Q-isomorphism) with a

rational 21-isogeny (see [9, p.78-80]). Therefore, we can use the division polyno-

mial method. We will consider the seventh division polynomials ψE,7. We can use

Magma [12] to factor those polynomials in the field Q(ζ7) and see that they have

no zeroes there. Hence, the elliptic curves of interest can’t have a point of order 7

defined over Q(ζ7) so this case is impossible.

■

It remains to eliminate only three non-cyclic groups.

Lemma 3.4.5. Let E/Q be an elliptic curve. Then E(Q(ζ7))tors is not isomorphic to

Z/2Z⊕Z/2nZ if n ∈ {5,6,8}.

Proof. Assume that E(Q(ζ7))tors
∼= Z/2Z⊕Z/16Z and let P16 ∈ E(Q(ζ7)) be a point of

order 16. By Lemma 3.1.5 we have [Q(2P16) : Q] | 2. By Lemma 3.1.7 we have [Q(P16) :

Q(2P16)] | 4. That means that P16 ∈ E(Q(
√
−7)), which was shown to be impossible in

the proof of Lemma 3.4.4.
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Assume that E(Q(ζ7))tors
∼= Z/2Z⊕Z/12Z, then we can consider the elliptic curve

X1(2,12)(Q(ζ7)) and use Magma like several times before to show that X1(2,12)(Q(ζ7))=

X1(2,12)(Q), which completes the proof since torsion subgroup Z/2Z⊕Z/12Z does not

appear over Q.

Assume that E(Q(ζ7))tors
∼= Z/2Z⊕Z/10Z and let P5 ∈ E(Q(ζ7)) be the point of

order 5. The proof in this case will be very similar to the proof of the same case in

Lemma 3.3.3. It follows from Lemma 3.1.6 that E has a Q-rational 5-isogeny. We have

from Lemma 3.1.5 that [Q(P5) : Q] | 2. Notice that P5 and E[2] generate our torsion

subgroup E(Q(ζ7))tors. If ρE,2 is surjective, then [Q(E[2]) : Q] = 6 and the correspond-

ing Galois group is not commutative by Proposition 2.2.7, which is a contradiction. If

Im(ρE,2)⊆ B(2), then by Table 2.1 we see that [Q(E[2]) : Q] ∈ {1,2}. Hence, it follows

that E(Q(
√
−7))tors

∼= Z/2Z⊕Z/10Z. This is impossible since we can easily use Magma

to show that X1(2,10)(Q) = X1(2,10)(Q(
√
−7)) and they contain only cusps. The only

remaining option is Im(ρE,2) = Cns(2). It was proved in [45, Page 61] that an elliptic

curve E/Q with a Q-rational 5-isogeny and Im(ρE,2) =Cns(2) does not exist. Hence, this

case is impossible. ■

With that, the proof of Proposition 3.0.5 is complete.
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4. ISOGENIES OVER QUADRATIC FIELDS

OF ELLIPTIC CURVES WITH

RATIONAL j-INVARIANT

In this chapter we determine the possible degrees of cyclic isogenies defined over quadratic

fields for non-CM elliptic curves with rational j-invariant. This work is also documented

in the paper [94] written by the author of this thesis. This work is motivated by the work

of Najman [72] where Najman determined all the possible prime isogeny degrees of el-

liptic curves defined over number fields with rational j-invariants. His work covered the

fields of degree up to 7 (and of any degree, assuming Serre’s uniformity conjecture). The

next natural step is to consider cyclic isogenies of composite degree. We will only cover

quadratic fields, but it will be clear from the proofs that most of the techniques we will use

could be adapted to extensions of higher degrees with some additional work. Our main

result is the following:

Theorem 4.0.1. Let E be a non-CM elliptic curve with j(E) ∈ Q. Assume E has a

cyclic n-isogeny defined over a quadratic extension of Q. Then n ≤ 18 with n ̸= 14 or

n ∈ {20,21,24,25,32,36,37}.

The only new degrees not already arising for isogenies over Q are 20,24,32,36 for

which we can respectively find examples by simply using LMFDB: 2178.5-c7, 90.1-f3,

45.1-a3, 28.2-a11. Performing the following steps will give us the proof of Theorem

4.0.1:

1. Show that if p< q are primes dividing n, then q≤ 5 or (p,q)∈{(2,7),(3,7),(7,13)}.

2. Show that if p is a prime and p2 | n, then p ∈ {2,3,5}.
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3. Show that if 5k | n or 3k | n, then k ≤ 2.

4. Show that if 2k | n, then k ≤ 5.

5. Show that if n = 2a3b, then n ∈ {2,4,6,8,9,12,16,18,24,32,36}.

6. Show that if n = 2a5b, then n ∈ {2,4,5,8,10,16,20,25,32}.

7. Show that if n = 3a5b, then n ∈ {3,5,9,15,25}.

8. Show that n ∈ {14,30,63} is impossible.

9. Show that n = 91 is impossible.

Notice that these steps are really sufficient. Assume we have completed them. If n has at

least two prime divisors, then all prime divisors of n are in the set {2,3,5,7}. Notice that

the pair (p,q) = (7,13) is eliminated by eliminating n = 91. Notice that the pairs (2,7)

and (5,7) are also impossible. Because of that, if n had at least three prime divisors, the

only possible triplet would be 2, 3 and 5. However, n = 30 is impossible so n has only two

prime divisors. If they correspond to pairs (2,3), (2,5) or (3,5), those cases are handled.

If they are (3,7), then the prime 7 can appear only once in the factorization because 72 ∤ n.

Also, the prime 3 can only appear once because we have eliminated n = 63.

Now consider the case when n has only one prime divisor. If that prime is at least

p = 7, then n = p, hence n ∈ {2,3,5,7,11,13,17,37} by Theorem 2.2.11. Otherwise, n ∈
{2,3,4,5,8,9,16,25,32}. Therefore, the steps mentioned above really prove Theorem

4.0.1.

Some of these steps will be easy or will follow from some known results, others will

be more involved. The code that verifies all the computation related to this work can be

found on:

https://github.com/brutalni-vux/IsogeniesQuadratic_PhD.

4.1. AUXILIARY RESULTS

Notice that it is enough to consider non-CM elliptic curves defined over Q. Presence of

a cyclic n-isogeny is invariant under quadratic twisting by Proposition 1.1.21. Hence, for
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E/K (with K being a number field) with a K-rational cyclic n-isogeny we can descend

from E/K to E ′/Q via a quadratic twist and isomorphism over K with E ′ having a K-

rational cyclic n-isogeny.

Definition 4.1.1. Let E/Q be an elliptic curve and C a finite cyclic subgroup of E(Q).

The field Q(C) is defined as the smallest field whose absolute Galois group acts on C.

Notice that, by Theorem 1.1.17 and the comment after it, Q(C) is the field of definition

of the unique cyclic isogeny with kernel C. In the remaining part of this section, we list

several lemmas which we will use frequently.

Lemma 4.1.2 ( [72, Proposition 3.1.]). Let E/Q be an elliptic curve and p a prime such

that ρE,p is surjective, and C a subgroup of E[p] of order p. Then [Q(C) : Q] = p+1.

Lemma 4.1.3 ( [72, Lemma 3.2.]). Let E/Q be an elliptic curve over a number field and

P ∈ E[p]. Let C = ⟨P⟩. Then [Q(P) : Q(C)] divides p−1.

Lemma 4.1.4 ( [72, Proposition 3.3.]). Let E/Q be an elliptic curve and p a prime such

that the image of ρE,p is contained in the normalizer of the non-split Cartan subgroup and

let ⟨P⟩=C ⊆ E[p] a cyclic subgroup of order p. Then:

• If p≡ 1 (mod 3), then [Q(C) : Q] = p+1.

• If p≡ 2 (mod 3), then [Q(C) : Q]≥ (p+1)/3.

Definition 4.1.5. We say that the p-adic Galois representation ρE,p∞ : Gal(Q/Q) →
GL2(Zp) of E is defined modulo pn if the image ρE,p∞(Gal(Q/Q)) contains the ker-

nel of the reduction map GL2(Zp)→ GL2(Zp/pnZp). We also say that ρE,p∞ is of level

pn if n is the smallest integer such that ρE,p∞ is defined modulo pn.

Notice that being defined modulo pn is invariant under conjugation.

Lemma 4.1.6 ( [24, Proposition 3.7.]). Let E/Q be an elliptic curve such that its p-adic

representation is defined modulo pn−1 for some n≥ 1. Then for any cyclic subgroup C of

E(Q) of order pn, we have [Q(C) : Q(pC)] = p.

First we will draw several conclusions from some known results. Assume a non-CM

E/Q has a cyclic n-isogeny defined over a quadratic number field K and p | n. Then E has
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a p-isogeny defined over K. Theorem 2.2.11 gives us that p ∈ {2,3,5,7,11,13,17,37}.
We will first observe what happens when each of these possibilities for p divides n and

give out some easy bounds for the degree of a p-isogeny which will follow easily from

already mentioned lemmas.

4.1.1. Case 37 | n :

We know from [98, Theorem 1.11] that ρE,37 is surjective, conjugate to a subgroup of

Nns(37), or j(E) ∈ {−7 · 113,−7 · 1373 · 20833}. Let C be the kernel of a 37-isogeny. If

ρE,37 is surjective or conjugate to a subgroup of Nns(37), we have from Lemmas 4.1.2 and

4.1.4 respectively that [Q(C) : Q] ≥ 38. Otherwise, j(E) ∈ {−7 · 113,−7 · 1373 · 20833}
and there is a 37-isogeny defined over Q.

4.1.2. Case 17 | n :

We know from [98, Theorem 1.11] that ρE,17 is surjective, conjugate to a subgroup of

Nns(17), or j(E) ∈ {−17 ·3733/217,−172 ·1013/2}. Let C be the kernel of a 17-isogeny.

If ρE,17 is surjective or conjugate to a subgroup of Nns(17), we have from Lemmas 4.1.2

and 4.1.4 respectively that [Q(C) : Q] ≥ 6. Otherwise, j(E) ∈ {−17 · 3733/217,−172 ·
1013/2} and there is a 17-isogeny defined over Q.

4.1.3. Case 13 | n :

We can use [98, Theorem 1.8] which tells us that the image of ρE,13 is surjective or

conjugate to a subgroup of B(13), Ns(13), Nns(13) or to a subgroup of G7, a group whose

image in PGL2(F13) is isomorphic to S4. Let C be the kernel of a 13-isogeny. If ρE,13

is surjective, we have [Q(C) : Q] = 14 by Lemma 4.1.2. The possibilities Nns(13) and

Ns(13) for a non-CM E/Q have been eliminated by [4, Thoerem 1.1., Corollary 1.3.].

It was proved by [5, Section 5.1.] that the image of ρE,13 is conjugate to a subgroup of

G7 for only three possible j-invariants of E. Also, by [98, Theorem 1.8.], the image is

exactly G7 in those cases. If the image of ρE,13 is G7, we can use Table 2.2 to see that

if the image of ρE,13 is conjugate to G7, then [Q(P) : Q] ≥ 72 for any P of order 13. By

putting C = ⟨P⟩, we can use Lemma 4.1.3 to get: [Q(C) : Q] = [Q(P):Q]
[Q(P):Q(C)] ≥ 6. Otherwise,

52



Isog. over quad. fields of ell. curves with rat. j-inv. Auxiliary results

the image of ρE,13 is conjugate to a subgroup of B(13), so there is a 13-isogeny is defined

over Q. By [58, Table 3], we know that j(E) = (h2+5h+13)(h4+7h3+20h2+19h+1)3

h
for some

h ∈Q.

4.1.4. Case 11 | n :

We can use [98, Theorem 1.6] which tells us that the image of ρE,11 is surjective, conjugate

to a subgroup of B(11) or to a subgroup of Nns(11). Let C be the kernel of an 11-isogeny.

If ρE,11 is surjective, we have [Q(C) : Q] = 12 by Lemma 4.1.2. If the image of ρE,11 is

conjugate to a subgroup of Nns(11), we can use Table 2.1 to see that in that case we have

[Q(P) : Q] = 120 for any P of order 11. By putting C = ⟨P⟩, we can use Lemma 4.1.3 to

get: [Q(C) : Q] = [Q(P):Q]
[Q(P):Q(C)] ≥ 12. Otherwise, there is an 11-isogeny is defined over Q,

so by [58, Table 4], we know that j(E) ∈ {−11 ·1313,−112}.

4.1.5. Case 7 | n :

We can use [98, Theorem 1.5] which tells us that the image of ρE,7 is surjective, conjugate

to a subgroup of B(7), Nns(7) or Ns(7). Let C be the kernel of a 7-isogeny. If the image of

ρE,7 is surjective or conjugate to a subgroup of Nns(7), we can use Lemmas 4.1.2 and 4.1.4

respectively to get that [Q(C) : Q]≥ 8. If the image of ρE,7 is conjugate to a subgroup of

Ns(7), then E has a cyclic 7-isogeny defined over a quadratic extension of Q by Lemma

2.2.12 since a split-Cartan subgroup has index 2 in its normalizer. Otherwise, there is a

7-isogeny defined over Q, so by [58, Table 3], we know that j(E) = (h2+13h+49)(h2+5h+1)3

h

for some h ∈Q.

4.1.6. Case 5 | n :

We can use [98, Theorem 1.4] which tells us that the image of ρE,5 is surjective, conjugate

to a subgroup of B(5), Nns(5), Ns(5) or to a group G9 which is a unique maximal subgroup

of GL2(F5) containing Ns(5). Let C be the kernel of a 5-isogeny. If the image of ρE,5

is surjective, we can use Lemma 4.1.2 to get that [Q(C) : Q] = 6. If ρE,5 is conjugate to

a subgroup of Nns(5) or to G9, we can use Table 2.1 to see that in those cases we have

[Q(P) : Q] = 24 for any P of order 5. By putting C = ⟨P⟩, we can use Lemma 4.1.3 to

53



Isog. over quad. fields of ell. curves with rat. j-inv. Auxiliary results

get: [Q(C) : Q] = [Q(P):Q]
[Q(P):Q(C)] ≥ 6. If ρE,5 is conjugate to a subgroup of Ns(5), then E

has a cyclic 5-isogeny defined over a quadratic extension of Q by Lemma 2.2.12 since a

split-Cartan subgroup has index 2 in its normalizer. Otherwise, E has a 5-isogeny defined

over Q. Hence, by [58, Table 3], we know that j(E) = (h2+10h+5)3

h
for some h ∈Q.

4.1.7. Case 3 | n :

We can use [98, Theorem 1.2] which tells us that the image of ρE,3 is surjective or con-

jugate to a subgroup of B(3), Nns(3) or Ns(3). Let C be the kernel of a 3-isogeny. If the

image of ρE,3 is surjective, we can use Lemma 4.1.2 to get that [Q(C) : Q] = 4. If ρE,3 is

conjugate to a subgroup of Nns(3), we can use Table 2.1 to see that in those cases we have

[Q(P) : Q] = 8 for any P of order 3. By putting C = ⟨P⟩, we can use Lemma 4.1.3 to get:

[Q(C) : Q] = [Q(P):Q]
[Q(P):Q(C)] ≥ 4. We can also see from [98, Theorem 1.2] that if ρE,3 is not

surjective, then either E has a 3-isogeny defined over Q, or j(E) = h3 for h ∈Q.

4.1.8. Case 2 | n :

We can use [98, Theorem 1.1] to see that either ρE,2 is surjective, E has a 2-isogeny over

Q or that j(E) = h2+1728 for some h ∈Q. Notice that if ρE,2 is surjective, we can again

use Lemma 4.1.2 to get that [Q(C) : Q] = 3 for C a cyclic subgroup of E[2] of order 2.

Also notice that [Q(C) :Q] = 3 when E does not have a 2-isogeny over Q by [98, Theorem

1.1].
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4.2. TWO DIFFERENT PRIME DIVISORS OF THE

ISOGENY DEGREE

In this section we will consider a situation when E/Q without CM has a cyclic n-isogeny

defined over a quadratic extension of Q and n has at least two different prime divi-

sors p < q. It is known that if we only consider the isogenies defined over Q, then

(p,q) ∈ {(2,3),(2,5),(3,5),(3,7)}. Notice that in the statement of the following lemma,

we allow pairs (2,7) and (7,13) to potentially occur, but we will eliminate them in the

later chapters.

Lemma 4.2.1. Let E/Q be a non-CM elliptic curve with a cyclic n-isogeny defined over

a quadratic number field K. Assume that n has at least two different prime divisors p and

q with p < q. Then all possible pairs (p,q) are the same ones as for Q-rational isogenies

plus the pairs (2,7) and (7,13).

Proof. Clearly, E has a p-isogeny and a q-isogeny over K. We will constantly be using

the conclusions from Section 4.1.

Case q= 37: We know from Subsection 4.1.1 that j(E)∈ {−7 ·113,−7 ·1373 ·20833}
and there is a 37-isogeny defined over Q. If p = 17, then we see from Subsection 4.1.2

that j(E) ∈ {−17 · 3733/217,−172 · 1013/2}, so this is impossible. If p = 13, then we

see from Subsection 4.1.3 that we must have a 13-isogeny defined over Q, so we have

a 481-isogeny over Q by Lemma 2.2.10, but that is impossible. If p = 11, then we see

from Subsection 4.1.4 that we must have a 11-isogeny defined over Q, so we have a

143-isogeny over Q by Lemma 2.2.10, but that is impossible.

If p = 7, we see from Subsection 4.1.5 that either E has a 7-isogeny defined over Q or

over a quadratic extension. From Subsection 4.1.5 we see that j(E)= (h2+13h+49)(h2+5h+1)3

h

for some h in some (at most) quadratic extension of Q. We match the above formula for

j-invariant with the two possible j-invariants that allow a rational 37-isogeny and in both

cases we get a polynomial over Q with no quadratic roots, so h can’t be from a quadratic

extension and this is impossible.

If p = 5, we can do the analogous computation as for p = 7. We have j(E) =

(h2+10h+5)3

h
for some h inside some (at most) quadratic extension of Q. We match the
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j-invariants like before and again we always get a polynomial over Q with no quadratic

roots, so h can’t be from a quadratic extension of Q.

If p = 3, then we see from Subsection 4.1.7 that either E has a 3-isogeny defined over

Q or j(E) = h3. If E had a 3-isogeny defined over Q, it would have a 111-isogeny over Q

by Lemma 2.2.10, which is impossible. The remaining option is that j(E) = h3 for some

h ∈Q, which can’t match the j-invariants allowing a rational 37-isogeny.

If p = 2, then we see from Subsection 4.1.8 that either E has a 2-isogeny defined

over Q or j(E) = h2 + 1728. If E had a 2-isogeny defined over Q, it would have a 74-

isogeny over Q by Lemma 2.2.10, which is impossible. The remaining option is that

j(E) = h2 +1728 for some h ∈Q, which can’t match the j-invariants allowing a rational

37-isogeny.

Case q = 17: We know from Subsection 4.1.2 that j(E) ∈ {−17 · 3733/217,−172 ·
1013/2} and there is a 17-isogeny defined over Q. If p = 13, then we see from Subsection

4.1.3 that we must have a 13-isogeny defined over Q, so we have a 221-isogeny over Q by

Lemma 2.2.10, but that is impossible. If p = 11, then we see from Subsection 4.1.3 that

we must have a 11-isogeny defined over Q, so we have a 187-isogeny over Q by Lemma

2.2.10, but that is impossible.

If p = 7, we see from Subsection 4.1.5 that either E has a 7-isogeny defined over Q or

over a quadratic extension. That means that, by [58, Table 3], j(E)= (h2+13h+49)(h2+5h+1)3

h

for some h in some (at most) quadratic extension of Q. We match the above formula for j-

invariant with the two possible j-invariants that allow a Q-rational 17-isogeny and in both

cases we get a polynomial over Q with no quadratic roots, so h can’t be from a quadratic

extension.

If p = 5, we can do the analogous computation as for p = 7. We have j(E) =

(h2+10h+5)3

h
for some h inside some (at most) quadratic extension of Q. We match the

j-invariants like before and again we always get a polynomial over Q with no quadratic

roots, so h can’t be from a quadratic extension of Q.

If p = 3, then we see from Subsection 4.1.7 that either E has a 3-isogeny defined over

Q or j(E) = h3. If E had a 3-isogeny defined over Q, it would have a 51-isogeny over Q,

which is impossible. The remaining option is that j(E) = h3 for some h ∈Q, which can’t

match the j-invariants allowing a rational 17-isogeny.
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If p = 2, then we see from Subsection 4.1.8 that either E has a 2-isogeny defined

over Q or j(E) = h2 + 1728. If E had a 2-isogeny defined over Q, it would have a 34-

isogeny over Q by Lemma 2.2.10, which is impossible. The remaining option is that

j(E) = h2 +1728 for some h ∈Q, which can’t match the j-invariants allowing a rational

17-isogeny.

Case q = 13: We know from Subsection 4.1.3 that the 13-isogeny is defined over Q

and that

j(E) =
(h2 +5h+13)(h4 +7h3 +20h2 +19h+1)3

h

for some h ∈Q. If p = 11, then we know from Subsection 4.1.4 that the 11-isogeny must

be defined over Q, so E has a 143-isogeny over Q, a contradiction. If p = 7, then that

case is more difficult and we will solve it in the later chapter, see Section 4.6.

If p = 5, then E has a 65-isogeny defined over a quadratic extension of Q. We can use

the result from [13, Section 4] about quadratic points on X0(65). The result states that all

quadratic points on X0(65) are coming from X0(65)+(Q) via a rational quotient map ρ :

X0(65)→ X0(65)+. Notice that X0(65)(Q) contains no non-cuspidal points by Theorem

1.1.19, so we can assume that E is represented by some quadratic, but not rational point

Q on X0(65). If Q represents the pair (E,C), then ρ(Q) is a rational point. That means

that ρ(Q) = ρ(Q)σ = ρ(Qσ ). Hence, Q and Qσ are paired up with w65 so w65(Q) = Qσ .

Hence, w65(Q) represents a pair (Eσ ,C′), where E and Eσ are 65-isogenous. Since E

is defined over Q, we have E ∼= Eσ and E is 65-isogenous to itself, hence it has CM,

contradiction.

If p = 3, then we see from Subsection 4.1.7 that either E has a 3-isogeny defined over

Q or j(E) = h3. If E had a 3-isogeny defined over Q, it would have a 39-isogeny over

Q, which is impossible. The remaining option is that j(E) = h3 for some h ∈ Q. We

match that formula to the above formula for j-invariants allowing a rational 13-isogeny.

We obtain a genus 2 curve with a Jacobian of rank 0. By using the built-in Chabauty0()

function in Magma [12] which can provably compute rational points on a genus 2 rank 0

curve, we easily get that our curve has only one rational point at infinity which doesn’t

give us the desired elliptic curve. ■

If p = 2, then we see from Subsection 4.1.8 that either E has a 2-isogeny defined
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over Q or j(E) = h2 + 1728. If E had a 2-isogeny defined over Q, it would have a 26-

isogeny over Q by Lemma 2.2.10, which is impossible. The remaining option is that

j(E) = h2 + 1728 for some h ∈ Q. We match that formula to the above formula for j-

invariants allowing a rational 13-isogeny. This time we get a genus 1 curve which maps

to the elliptic curve 52.a2 which has rank 0. By taking preimages of its rational points, we

find that our curve has only one rational point at infinity which doesn’t give us the desired

elliptic curve.

Case q = 11: We know from Subsection 4.1.4 that the 11-isogeny is defined over Q

and that j(E) ∈ {−11 ·1313,−112}. If p = 7, we see from Subsection 4.1.5 that j(E) =

(h2+13h+49)(h2+5h+1)3

h
for h in an (at most) quadratic extension of Q. We again get a

polynomial with no quadratic roots by matching that formula to the possible j-invariants

allowing a rational 11-isogeny. Hence, this is impossible.

If p = 5, we see from Subsection 4.1.6 that j(E) = (h2+10h+5)3

h
for h in an (at most)

quadratic extension of Q. We again get a polynomial with no quadratic roots by matching

that formula to the possible j-invariants allowing a rational 11-isogeny. Hence, this is

impossible.

If p = 3, then we see from Subsection 4.1.7 that either E has a 3-isogeny defined over

Q or j(E) = h3 for h∈Q. If E had a 3-isogeny defined over Q, it would have a 33-isogeny

over Q by Lemma 2.2.10, which is impossible. The remaining option is that j(E) = h3

for some h ∈ Q. We match that formula to the possible j-invariants allowing a rational

11-isogeny and we easily see that this case is impossible.

If p = 2, then we see from Subsection 4.1.8 that either E has a 2-isogeny defined

over Q or j(E) = h2 + 1728. If E had a 2-isogeny defined over Q, it would have a 22-

isogeny over Q by Lemma 2.2.10, which is impossible. The remaining option is that

j(E) = h2 + 1728 for some h ∈ Q. We match that formula to the possible j-invariants

allowing a rational 11-isogeny and we easily see that this case is impossible.

Case q = 7: The only situation we have to eliminate here is p = 5. If p = 5, we can

use a similar argument as in the case (p,q) = (5,13). We use the result from [15, Table 9]:

there is only one exceptional quadratic point on X0(35) and it corresponds to a CM curve.

Therefore, all other quadratic points on X0(35) come from X+
0 (35)(Q) (non-exceptional

points). There are no non-cuspidal rational points on X0(35) by Theorem 1.1.19. By the
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same argument as in the case (p,q) = (5,13), any non-exceptional quadratic point P can

be paired up with its Galois conjugate Pσ which is equal to w35(P). If P represented some

E with a rational j-invariant, then w35(P) would represent Eσ which is 35-isogenous

to E. Since j(E) = j(Eσ ), we have that E is 35-isogenous to itself, so it has CM, a

contradiction. This completes the proof of Lemma 4.2.1.
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4.3. NON-SQUAREFREE ISOGENY DEGREES

In this section we will consider a situation when E/Q without CM has an n-isogeny

defined over a quadratic extension of Q and n is divisible by p2 for some prime p. It is

known that if we only consider the isogenies defined over Q, then p ∈ {2,3,5}.

Proposition 4.3.1. Let E/Q be a non-CM elliptic curve with a cyclic n-isogeny defined

over a quadratic number field K. Assume that p2 | n for some prime p. Then p∈ {2,3,5}.

Proof. Clearly, E has a cyclic p2-isogeny and a cyclic p-isogeny defined over K.

Assume p > 7. Then we know from Section 4.1 that our p-isogeny has to be defined

over Q. We can use [57, Theorem 3.9] to conclude that if E has a p-isogeny over Q, then

the image of ρE,p∞ contains a Sylow pro-p subgroup of GL2(Zp).

Every Sylow pro-p subgroup of GL2(Zp) is conjugate to this specific Sylow pro-p

subgroup:

S =

{Ñ
a b

c d

é
∈ GL2(Zp) | a≡ d ≡ 1 (mod p), c≡ 0 (mod p)

}
.

so we can choose compatible bases for all E[pk] such that the image of ρE,p∞ contains S.

This means that p-adic representation ρE,p∞ is defined modulo p (see Definition 4.1.5).

Now we can use Lemma 4.1.6 to conclude that for any cyclic subgroup C of E(Q) of

order p2, we have [Q(C) : Q(pC)] = p, so any p2-isogeny has to be defined over a field

of degree at least p > 7.

If p = 7 and E has a rational 7-isogeny, we can repeat the identical conclusions as

above since the conditions of [57, Theorem 3.9] are again satisfied. Otherwise, we know

from Subsection 4.1.5 that the image of ρE,7 is conjugate to a subgroup of Ns(7). There

are three such possible images, two of which only appear when j(E) = 2268945/128, ac-

cording to [98, Theorem 1.5]. If we have j(E) = 2268945/128, we can use the classical

modular polynomial ΦN(X ,Y ). It is known from [47] that for a field F of characteris-

tic not dividing N, a non-CM elliptic curve E/F has a cyclic N-isogeny if and only if

ΦN(X , j(E)) has a zero in F . We can factor Φ49(X ,2268945/128) into three irreducible

factors of degrees 14, 14, 21 respectively. Therefore, a cyclic 49-isogeny is defined over

a number field of degree (at least) 14.
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The third and final possible image of ρE,7 is the whole Ns(7). We use Magma [12]

to check all subgroups of GL2(Z/49Z) and select only those which reduce modulo 7 to

Ns(7), all up to conjugation. There are 8 such subgroups of GL2(Z/49Z) up to conjuga-

tion. Call them Hi for i ∈ {1,2, . . . ,8}. By using [57, Theroem 3.16], we see that all Hi

must contain all 7 scalars congruent to 1 modulo 7. This property is clearly not affected

by conjugation. Here is some information about the subgroups Hi:

• The group H1 is of order 72 and contains one scalar congruent to 1 modulo 7.

• The group H2 is of order 504 and contains one scalar congruent to 1 modulo 7.

• The group H3 is of order 504 and is conjugate to a subgroup of Ns(49).

• The group H4 is of order 3528 and contains one scalar congruent to 1 modulo 7.

• The group H5 is of order 3528 and is conjugate to Ns(49).

• The group H6 is of order 24696 and contains one scalar congruent to 1 modulo 7.

• The group H7 is of order 24696 and acts on the cyclic subgroups of E[49] of order

49. The corresponding orbit lengths are 14 and 42, so a cyclic 49-isogeny is defined

over the field of degree (at least) 14 by Lemma 2.2.14.

• The group H8 is of order 172872 and acts on the cyclic subgroups of E[49] of order

49. The corresponding orbit lengths are 14 and 42, so a cyclic 49-isogeny is defined

over the field of degree (at least) 14 by Lemma 2.2.14.

The only subgroups we can’t yet eliminate are those conjugate to some subgroup of

Ns(49) (H3 and H5). If there exists a non-CM elliptic curve over Q such that its mod 49

representation falls into that category, it will be represented by a point on Xs(49)(Q) by

Theorem 1.3.10. Recall that Xs(n) is the modular curve associated to the normalizer of the

split Cartan subgroup Ns(n). We can, for example, use the comment from [75, p.3] which

relies on [50] to recall that there is a Q-isomorphism Xs(N) ∼= X0(N
2)/wN2 ≡ X+

0 (N2),

where wN2 is the Atkin-Lehner involution. One can also look at [8, Section 2] for the

modular interpretation of the aforementioned isomorphism to see that CM points and

cusps on Xs(pr) correspond to CM points and cusps on X+
0 (p2r) for a prime p. We
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know from [66, Theorem 3.14] that X+
0 (7r)(Q) consists only of cusps and CM-points for

r ≥ 3. Since we were considering Xs(7
2) ∼= X0(7

4)/w74 ≡ X+
0 (74), we are done. The

cases p ∈ {2,3,5} are already possible over Q. Therefore, this completes the proof. ■
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4.4. ISOGENIES OF PRIME POWER DEGREE

We will now consider cyclic isogenies of degree divisible by powers of primes 2, 3 and 5.

They are the only primes that can occur more than once in the factorization of the degree

of a cyclic isogeny over quadratic fields by Proposition 4.3.1.

4.4.1. Isogenies of degree 5k

We will first consider isogenies of degree divisible by powers of 5. We will use the

following theorem:

Theorem 4.4.1 ( [40, Theorem 2]). Let E/Q be a non-CM elliptic curve with an isogeny

of degree 5 defined over Q. If no elliptic curve in the Q-isogeny class of E has two inde-

pendent isogenies of degree 5, then the image of ρE,5∞ contains a Sylow pro-5 subgroup

of GL2(Z5). Otherwise, the index [GL2(Z5) : Im(ρE,5∞)] is divisible by 5, but not by 25.

Here, the isogenies are considered independent if their kernels have trivial intersec-

tion. We first prove the following lemma which considers the situation when E has a

rational 5-isogeny:

Lemma 4.4.2. Let E/Q be a non-CM elliptic curve with a cyclic n-isogeny defined over

a number field K such that 5k | n with k ≥ 2. Assume E also has a 5-isogeny defined over

Q. Then [K : Q]≥ 5k−2.

Proof. Clearly, E has a cyclic 5k-isogeny defined over K. If the Q-isogeny class of E

does not contain a curve with two independent 5-isogenies, we can use Theorem 4.4.1

to conclude that the image of ρE,5∞ contains a Sylow pro-5 subgroup of GL2(Z5). We

can conclude that ρE,5∞ is defined modulo 5 (similar as in Proposition 4.3.1), so we can

use Lemma 4.1.6 to get that if C is a cyclic subgroup of E(Q) of order 5k (k ≥ 2), then

[Q(C) : Q(5C)] = 5. Therefore, if the Q-isogeny class of E does not contain a curve with

two independent 5-isogenies, any cyclic 5k-isogeny is defined over the number field of

degree at least 5k−1 so [K : Q]≥ 5k−1.

Now assume that the Q-isogeny class of E contains a curve E ′ with two independent

5-isogenies. Recall the fact that there is a cyclic isogeny φ : E→ E ′ of a unique degree d,
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since they are non-CM curves (see [24, Lemma A.1.]). We consider two cases, depending

on whether 5 | d.

Case 5 ∤ d: First we show that the images of ρE,5 and ρE ′,5 are the same, up to

conjugation. Let {P,Q} be a basis for E[5]. Then {φ(P),φ(Q)} is a basis for E ′[5]

since 5 ∤ d and φ is a homomorphism with no points of order 5 in its kernel. Notice

that if Pσ = aP + bQ for σ ∈ Gal(Q/Q), then, since φ is defined over Q, we have

φ(P)σ = φ(Pσ ) = aφ(P) + bφ(Q). We get the analogous result for Q so we get that

ρE,5(σ) = ρE ′,5(σ). Therefore, the images of ρE,5 and ρE ′,5 are the same, up to conju-

gation. By taking the generators of the kernels of two independent 5-isogenies as a basis

for E ′[5], we get that Im(ρE ′,5), and hence Im(ρE,5), consists of diagonal matrices (up

to conjugation). The subgroup of diagonal matrices in GL2(Z/5Z) has 16 elements, so

#Im(ρE,5) | 16. Let π5 : GL2(Z5)→ GL2(Z/5Z) be the mod 5 reduction. We have from

the first isomorphism theorem:

[Im(ρE,5∞) : Im(ρE,5∞)∩ ker(π5)] = #Im(ρE,5),

[GL2(Z5) : ker(π5)] = #GL2(Z/5Z) = 480.

We know that Im(ρE,5∞)∩ ker(π5) is of finite index in Im(ρE,5∞) and that Im(ρE,5∞) is of

finite index in GL2(Z5) due to Theorem 1.2.10 (Serre’s open image theorem). Therefore,

Im(ρE,5∞)∩ ker(π5) is of finite index in GL2(Z5) and consequently in ker(π5) too. The

group ker(π5) is a pro-5 group (see [10, p. 412]), so any of its subgroups of finite index

has index which is a power of 5 (see [1, Theorem 1]). Now we have for some m≥ 0:

[GL2(Z5) : Im(ρE,5∞)∩ ker(π5)] =

= [GL2(Z5) : ker(π5)][ker(π5) : Im(ρE,5∞)∩ ker(π5)] = 480 ·5m.

We also have:

480 ·5m = [GL2(Z5) : Im(ρE,5∞)∩ ker(π5)] =

= [GL2(Z5) : Im(ρE,5∞)][Im(ρE,5∞) : Im(ρE,5∞)∩ ker(π5)] =

= #Im(ρE,5) · [GL2(Z5) : Im(ρE,5∞)].

We know that #Im(ρE,5) | 16 and from Theorem 4.4.1 we know that 25 ∤ [GL2(Z5) :

Im(ρE,5∞)]. Hence, m = 0, so [ker(π5) : Im(ρE,5∞) ∩ ker(π5)] = 5m = 1. Therefore,
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ker(π5)≤ Im(ρE,5∞). This means that ρE,5∞ is defined modulo 5. We can now use Lemma

4.1.6 like in the beginning of the proof and we get that cyclic 5k-isogeny is defined over

the number field of degree at least 5k−1 so [K : Q]≥ 5k−1.

Case 5 | d: Our first step in this case is to compose φ with one of the two independent

rational 5-isogenies on the curve E ′ such that the composition is still a cyclic isogeny.

Assume {P,Q} is a basis for E[5] such that φ(P) = OE ′ . Then φ(Q) ̸= OE ′ since φ is

cyclic. Also, φ(Q) is of order 5 since φ is a homomorphism. At least one of the two

independent rational 5-isogenies of E ′ will not have φ(Q) in its kernel, call it α . Then

the composition α ◦ φ will not have Q in its kernel. The kernel of α ◦ φ is of order 5d

and since φ is cyclic, that kernel is isomorphic to either Z/5dZ or Z/dZ⊕Z/5Z. Since

5 | d and Q /∈ ker(α ◦φ), we have that α ◦φ is cyclic of degree 5d. Also notice that α ◦φ

is defined over Q and 25 | 5d so we must have 5d = 25. This means that E has a cyclic

25-isogeny defined over Q. Therefore, Im(ρE,25) consists of upper-triangular matrices

(up to conjugation) by the discussion in Section 1.2. The subgroup of upper-triangluar

matrices in GL2(Z/25Z) has 10000 elements, so #Im(ρE,25) | 24 ·54.

Now we proceed very similar to the case 5 ∤ d. We set π25 : GL2(Z5)→GL2(Z/25Z)

to be the mod 25 reduction map. We have from the first isomorphism theorem:

[Im(ρE,5∞) : Im(ρE,5∞)∩ ker(π25)] = #Im(ρE,25),

[GL2(Z5) : ker(π25)] = #GL2(Z/25Z) = 54 ·480.

We know that Im(ρE,5∞)∩ ker(π25) is of finite index in Im(ρE,5∞) and that Im(ρE,5∞) is

of finite index in GL2(Z5) due to Theorem 1.2.10 (Serre’s open image theorem). There-

fore, Im(ρE,5∞)∩ ker(π25) is of finite index in GL2(Z5) and consequently in ker(π25)

too. The group ker(π25) is a subgroup of ker(π5) of finite index equal to 54. That

can be easily obtained by applying the first isomorphism theorem on the homomor-

phism π25 : ker(π5)→ GL2(Z/25Z). Therefore, Im(ρE,5∞)∩ ker(π25) is a subgroup of

ker(π5) of finite index. Like before, ker(π5) is a pro-5 group and any its subgroup of

finite index has index which is a power of 5 (see [1, Theorem 1]). Hence the index

[ker(π25) : Im(ρE,5∞)∩ ker(π25)] is also a power of 5. Now we have for some m≥ 0:

[GL2(Z5) : Im(ρE,5∞)∩ ker(π25)] =

= [GL2(Z5) : ker(π25)][ker(π25) : Im(ρE,5∞)∩ ker(π25)] = 54 ·480 ·5m
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We also have:

54 ·480 ·5m = [GL2(Z5) : Im(ρE,5∞)∩ ker(π25)] =

= [GL2(Z5) : Im(ρE,5∞)][Im(ρE,5∞) : Im(ρE,5∞)∩ ker(π25)] =

= #Im(ρE,25) · [GL2(Z5) : Im(ρE,5∞)].

We know that #Im(ρE,25) | 24 ·54 and from Theorem 4.4.1 we know that 25 ∤ [GL2(Z5) :

Im(ρE,5∞)]. Since 55 | 54 · 480 · 5m, we can conclude that m = 0, so we have ker(π25) ≤
Im(ρE,5∞) similar as before. This means that ρE,5∞ is defined modulo 25. We can now use

Lemma 4.1.6 like before and we get that any cyclic 5k-isogeny is defined over the number

field of degree at least 5k−2 so [K : Q]≥ 5k−2. This completes the proof. ■

Next we consider the situation when E doesn’t have a rational 5-isogeny.

Lemma 4.4.3. Let E/Q be a non-CM elliptic curve which doesn’t have a 5-isogeny

defined over Q. Then any cyclic 25-isogeny of E is defined over a number field of degree

at least 6.

Proof. We know from Subsection 4.1.6 that if the image of ρE,5 is surjective, conjugate

to Nns(5) or to G9 from [98, Theorem 1.4], then any 5-isogeny (and hence any cyclic 25-

isogeny) is defined over a number field of degree at least 6. The only remaining possible

images of ρE,5 such that E doesn’t have a 5-isogeny defined over Q are Ns(5) and one

of its subgroups (G3 from [98, Theorem 1.4]). We eliminate these using Magma [12] the

same way we did in Proposition 4.3.1: we check all subgroups of GL2(Z/25Z) and select

only those which reduce modulo 5 to Ns(5) or G3, all up to conjugation. Those are the

possible images of ρE,25. Similarly to the proof of Proposition 4.3.1, for each possible

subgroup H ≤ GL2(Z/25Z), one of the following happens:

• The group H does not contain all scalars congruent to 1 modulo 5, a contradiction

with [57, Theroem 3.16].

• The orbit lengths of cyclic subgroups of E[25] of order 25 under the action of H are

10 and 20, so a cyclic 25-isogeny is defined over the number field of degree at least

10 by Lemma 2.2.14.
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• The group H is conjugate to a subgroup of Ns(25).

We can conclude that the last case is impossible by again using Xs(5
2)∼=X+

0 (54) (via a

Q-isomorphism) and [66, Theroem 3.14] like in the end of the proof of Proposition 4.3.1.

This tells us that all rational points on X+
0 (54), and hence also on Xs(5

2), are cusps or CM

points. This completes the proof. ■

Clearly, these results are useful even if we consider not only quadratic fields, but also

of number fields larger degree. Adapting them to our case of quadratic fields, we get the

following proposition:

Proposition 4.4.4. Let E/Q be a non-CM elliptic curve with a cyclic n-isogeny defined

over a quadratic number field K. Assume that 5k | n. Then k ≤ 2.

Proof. This follows directly from Lemmas 4.4.2 and 4.4.3. ■

4.4.2. Isogenies of degree 3k

We will now consider isogenies divisible by powers of 3. To begin, we will prove a simple

group-theoretic Lemma to make later proofs easier:

Lemma 4.4.5. Let G be a group and H, L its subgroups such that [G : L] ≤ 2. Then

[H : H ∩L]≤ 2.

Proof. If [G : L] = 1 then G = L and [H : H ∩L] = [H : H] = 1. The same holds if H ≤ L.

Now assume [G : L] = 2 and H ⊈ L. Then L ⊴ G. We can use the second isomorphism

theorem saying that (HL)/L ∼= H/(H ∩L). Since H ⊈ L and there are only two L-cosets

in G, we know that HL = G. Hence H/(H ∩L)∼= G/L, so [H : H ∩L]≤ 2. ■

First we consider the situation when E has a rational 3-isogeny.

Lemma 4.4.6. Let E/Q be a non-CM elliptic curve with a cyclic n-isogeny defined over

a number field K such that 3k | n with k ≥ 2. Assume E also has a 3-isogeny defined over

Q. Then [K : Q]≥ 3k−2.

Proof. Clearly, E has a cyclic 3k-isogeny defined over K. If E has a 3-isogeny defined

over Q, we can use the [78, Corollary 1.3.1.]. Notice that it tells us that ⟨Im(ρE,3∞),−I⟩
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is of level at most 9, except for one case which we will solve later. For now assume

⟨Im(ρE,3∞),−I⟩ is of level at most 9. Let π9 : GL2(Z3)→GL2(Z/9Z) and π3 : GL2(Z3)→
GL2(Z/3Z) be the mod 9 and mod 3 reductions. We have that ker(π9)≤ ⟨Im(ρE,3∞),−I⟩.
We can use Lemma 4.4.5 with G := ⟨Im(ρE,3∞),−I⟩, H := ker(π9), L := Im(ρE,3∞) to get

that [ker(π9) : ker(π9)∩ Im(ρE,3∞)] ≤ 2. The group ker(π9) is a subgroup of ker(π3) of

finite index equal to 34. That can be easily obtained by applying the first isomorphism

theorem on the homomorphism π9 : ker(π3)→ GL2(Z/9Z). Hence ker(π9)∩ Im(ρE,3∞)

is a subgroup of ker(π3) of finite index. Since ker(π3) is a pro-3 group, any subgroup

of finite index has index which is a power of 3 (see [1, Theorem 1]). Hence, [ker(π9) :

ker(π9)∩ Im(ρE,3∞)] = 1. Therefore, ker(π9)≤ Im(ρE,3∞), so ρE,3∞ is defined modulo 9.

Now we can use Lemma 4.1.6 to see that if E has a cyclic 3k-isogeny defined over K for

k ≥ 2, then [K : Q]≥ 3k−2.

Recall that there is still one group of level 27 that ⟨Im(ρE,3∞),−I⟩ can be conjugate to.

We can find its generators in [92, Table 1]. Either Im(ρE,3∞) contains −I and is therefore

equal to the mentioned group, or it is a subgroup of index 2 which doesn’t contain −I.

Using Magma [12], we see that orbit lengths of cyclic subgroups of E[27] of order 27 are

3,6,27 in all cases, so cyclic 27-isogeny is defined over the field of degree at least 3 by

Lemma 2.2.14. Since ρE,3∞ is defined modulo 27 in this case, we can again use Lemma

4.1.6 and conclude that if K is the field of definition of some cyclic 3k-isogeny with k≥ 2,

we have [K : Q]≥ 3k−2. This completes the proof. ■

Now we consider the situation when E doesn’t have a rational 3-isogeny.

Lemma 4.4.7. Let E/Q be a non-CM elliptic curve which doesn’t have a 3-isogeny

defined over Q. Then a cyclic 9-isogeny of E is defined over a number field of degree at

least 4.

Proof. We know from Subsection 4.1.7 that if ρE,3 is surjective or if its image is conjugate

to Nns(3), then any 3-isogeny is defined over a number field of degree 4. Hence, any cyclic

9-isogeny is defined over a number field of degree at least 4 in those cases. The remaining

option is that the image of ρE,3 is conjugate to Ns(3) by [98, Theorem 1.2.]. In that case,

3-isogeny is defined over a number field of degree 2. We analyze this the same way we did

for the similar situation with 5-isogeny and 7-isogeny. We consider all possible images
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of ρE,9. Those are the subgroups of GL2(Z/9Z) that reduce to Ns(3) modulo 3, up to

conjugation. Using Magma [12], we see that there are 12 such subgroups: 8 of them have

orbit lengths of cyclic subgroups of E[9] of order 9 all equal to 6, so any cyclic 9-isogeny

is defined over the number field of degree 6 in those cases by Lemma 2.2.14. The other

4 are conjugate to a subgroup of Ns(9). We can conclude that these 4 subgroups can’t

appear by using [66, Theorem 3.14] like in the end of the proof of Proposition 4.3.1 and

Lemma 4.4.3. ■

Combining these lemmas, we arrive at our desired result:

Proposition 4.4.8. Let E/Q be a non-CM elliptic curve with a cyclic n-isogeny defined

over a quadratic number field K. Assume that 3k | n. Then k ≤ 2.

Proof. This follows directly from Lemmas 4.4.6 and 4.4.7. ■

4.4.3. Isogenies of degree 2k

We will now consider isogenies divisible by powers of 2. This part will be very easy since

2-adic representations are well understood.

Lemma 4.4.9. Let E/Q be a non-CM elliptic curve with a cyclic n-isogeny defined over

a number field K such that 2k | n with k ≥ 4. Then [K : Q]≥ 2k−4. If K is quadratic, then

k ≤ 5.

Proof. Clearly E has a cyclic 2k-isogeny defined over K. We know from [79, Corollary

1.3] that ρE,2∞ is defined modulo 32. We also know that a cyclic 32-isogeny can’t be

defined over Q, so it is defined over at least a quadratic extension of Q. We can now use

Lemma 4.1.6 to conclude that [K : Q]≥ 2k−4. It is now easy to see that if K is a quadratic

number field, then k ≤ 5. ■
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4.5. ISOGENIES OF REMAINING COMPOSITE

DEGREES

Now we will eliminate the remaining cases, with the exception of a cyclic 91-isogeny

which we handle in the last chapter.

4.5.1. Isogenies of degree 2a ·3b

We will now consider isogenies whose degree is of the form 2a · 3b. Clearly, we need to

only consider a,b≥ 1 since the other cases are considered in the previous sections.

Lemma 4.5.1. Let E/Q be a non-CM elliptic curve with a cyclic n-isogeny defined over

a quadratic number field K, where n = 2a3b. Then n ∈ {2,4,6,8,9,12,16,18,24,32,36}.

Proof. We can use Proposition 4.4.8 to conclude that b≤ 2.

Case b = 2: Clearly, it is enough to show that n = 72 is impossible. This follows

directly from [74, Table 8.13.].

Case b = 1: Clearly, it is enough to show that n = 48 is impossible. One can use [15,

Table 15.] to see that the only exceptional quadratic points on X0(48) are CM points.

All non-exceptional quadratic points are paired up via hyperelliptic involution induced

by β48 =

Ñ
−6 1

−48 6

é
, see [15, Subsection 3.4]. We can also refer to [15, Subsection

3.4] to conclude that curves linked with this hyperelliptic involution are 12-isogenous.

Therefore, if there was an elliptic curve defined over Q among the non-exceptional points,

it would be 12-isogenous to its Galois conjugate (itself) since hyperelliptic involution and

Galois conjugation act identically on the non-exceptional points. Therefore, it would have

CM, which is a contradiction. The proof is now complete. ■

4.5.2. Isogenies of degree 2a ·5b

We will now consider isogenies whose degree is of the form 2a · 5b. Clearly, we need to

only consider a,b≥ 1 since other cases are considered in the previous sections.
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Lemma 4.5.2. Let E/Q be a non-CM elliptic curve with a cyclic n-isogeny defined over

a quadratic number field K, where n = 2a5b. Then n ∈ {2,4,5,8,10,16,20,25,32}.

Proof. We can use Proposition 4.4.4 to conclude that b≤ 2.

Case b = 2: Clearly, it is enough to show that n = 50 is impossible. We will use [15,

Table 16.]. We see from there that the only exceptional quadratic points on X0(50) are

two CM points and four non-CM points which don’t correspond to a rational j-invariant.

Non-exceptional points come in pairs via hyperelliptic involution which is also the Atkin-

Lehner involution w50. Therefore, if there was an elliptic curve defined over Q among the

non-exceptional points, it would be 50-isogenous to its Galois conjugate (itself) since hy-

perelliptic involution and Galois conjugation act identically on the non-exceptional points.

Therefore, it would have CM, which is a contradiction. The proof is now complete.

Case b = 1: Clearly, it is enough to show that n = 40 is impossible. We can use [15,

Table 11]. It tells us that all exceptional quadratic points on X0(40) correspond to CM-

curves. The remaining quadratic points are non-exceptional points, so the hyperelliptic

involution acts the same way on them as Galois conjugation. The hyperelliptic invo-

lution ι is induced by β40 =

Ñ
−10 1

−120 10

é
, see [15, Subsection 3.4]. We can refer

to [15, Subsection 3.4] to conclude that curves linked with this hyperelliptic involution

are 20-isogenous. Therefore, if there was an elliptic curve defined over Q among the

non-exceptional points, it would be 20-isogenous to itself. Therefore, it would have CM,

which is a contradiction.

■

4.5.3. Isogenies of degree 3a ·5b

We will now consider isogenies whose degree is of the form 3a · 5b. Clearly, we need to

only consider a,b≥ 1 since other cases are considered in the above sections.

Lemma 4.5.3. Let E/Q be a non-CM elliptic curve with a cyclic n-isogeny defined over

a quadratic number field K, where n = 3a5b. Then n ∈ {3,5,9,15,25}.

Proof. Clearly, it is enough to show that n = 45 and n = 75 are both impossible. This

follows from [74, Tables 8.5., 8.14.]. The curve X0(45) has two quadratic CM points
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and four quadratic non-CM points which don’t give us a rational j-invariant. The curve

X0(75) has no non-cuspidal, non-CM quadratic points. ■

4.5.4. Isogenies of degree 14,30,63

Only a few more cases remain. We will now eliminate isogeny degrees 14, 30 and 63.

Lemma 4.5.4. Let E/Q be a non-CM elliptic curve with a cyclic n-isogeny defined over

a quadratic number field K. Then n ̸∈ {30,63}.

Proof. To eliminate the option n = 30, we can use [15, Table 6.] to see that X0(30) has

six exceptional quadratic points. Two of them are CM points and four are non-CM points

which don’t correspond to a rational j-invariant. The remaining quadratic points are non-

exceptional points which come in pairs via hyperelliptic involution w15 and we can use

the same argument as before to show that they can’t correspond to a rational non-CM

j-invariant.

To eliminate the option n = 63, we can use [74, Table 8.11.] to see that X0(63) has no

non-CM non-cuspidal quadratic points.

■

Lemma 4.5.5. Let E/Q be a non-CM elliptic curve with a cyclic n-isogeny defined over

a quadratic number field K. Then n ̸= 14.

Proof. Notice that E can have a rational 14-isogeny, but then E has to be CM. If E didn’t

have a rational 2-isogeny, then any 2-isogeny would be defined over a number field of

degree 3 (see Subsection 4.1.8), making it impossible for E to have a 14-isogeny defined

over a quadratic number field. Hence, E has a rational 2-isogeny. This means that E

must have a 7-isogeny defined over a quadratic number field, but not over Q. By recalling

Subsection 4.1.5, we see that the image of ρE,7 has to be a subgroup of Ns(7). We can get

the form for j-invariant of such curves from [98, Theorem 1.5.]. We match that form with

the form of the j-invariants allowing a rational 2-isogeny from [58, Table 3]:

t(t +1)3(t2−5t +1)3(t2−5t +8)3(t4−5t3 +8t2−7t +7)3

(t3−4t2 +3t +1)7
=

(s+16)3

s
.

We get a genus 3 projective curve on which we want to find all the rational points. We

map it to a curve which has a degree 2 quotient that is the elliptic curve 14.a5 with only
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6 rational points. By taking the preimages, we find all the rational points on the starting

curve, none of which give us a desired non-CM curve E. Those points are: (2 : −256 :

1),(−1 :−16 : 1),(0 :−16 : 1),(0 : 1 : 0),(1 : 0 : 0). The last two are cusps and other give

us j-invariants 0 or 54000. That completes the proof. ■
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4.6. ISOGENIES OF DEGREE 91

The advantage of the approach we took for 14-isogenies is the fact that we had to look

for rational points on a curve of genus 3 instead of quadratic points on the curve X0(14)

which has genus 1. The disadvantage is the fact that very often we will get a curve of

much higher genus and looking for quadratic points on a curve of lower genus might be

easier. This happens with 91-isogenies.

Method description

Our goal is to show that there are no elliptic curves E/Q with a cyclic 91-isogeny defined

over a quadratic extension of Q. We will determine all quadratic points on X0(91) up

to those points that appear as pullbacks of rational points on X+
0 (91) (non-exceptional

points). We will see that all the exceptional points are either cusps or CM points. On

the other hand, we can use the identical modular interpretation argument as several times

before to show that if a non-exceptional point on X0(91) represents an E with a rational

j-invariant, then E is 91-isogenous to itself so it has CM.

We will use the relative symmetric Chabauty developed by Siksek in [82] and used by

Box in [13]. We will follow the approach and the implementation of Box and easily adapt

it to X0(91). Notice that our problem for X0(91) is the same problem Box tackled. The

Chabauty method and computations will be identical to Box’s work and we will make

some changes to the algorithm for getting the model of X0(91).

For some smooth, projective, non-hyperelliptic curve X/Q, the method provides an

easily computable criterion [13, Theorem 2.1.] for a point on X (2)(Q) to be the only

point in its residue class modulo prime p > 2. Also, the method provides another easily

computable criterion [13, Theorem 2.4.] for a point on X (2)(Q) to be the only point in its

residue class modulo prime p > 2, up to points appearing as pullbacks of points on C(Q),

where C is a degree 2 quotient of X .

In our case, we have X = X0(91) and C = X+
0 (91). We also need rk(J(X)) = rk(J(C))

for the method to work, which is true in our case as both ranks are 2. With this, we can

easily find a subgroup G ≤ J0(91)(Q) such that 2 · J0(91)(Q) ≤ G, see [13, Proprosition

3.1.]. Also, the equality of ranks gives us an easy way of finding annihilating differentials,
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see [13, Lemma 3.4.]. For a more detailed description of this method, see [73, Section 6]

or Chapter 5 of this thesis. For the full description, see [13] or [14].

Computing the model, rank and torsion

To get the model of X0(91), we use the approach of ÈOzman and Siksek [74, Section 3], but

we use a different basis for the space S2(91) of weight 2 cuspforms of level 91. We choose

a basis for S2(91) such that the matrix of w91 is diagonal with all the diagonal elements

equal to 1 or −1 in that basis. This reduces the time needed to obtain the model and the

resulting model has smaller coefficients. We remove the part in the ÈOzman-Siksek code

which computes a GrÈobner basis since it is only used to potentially simplify the equations

and didn’t seem to give us noticeable gains. With these minor adjustments, we were able

to obtain the model for X0(91) and the quotient X+
0 (91) relatively quickly. To get the

rank of J0(91)(Q), we can use the modular symbols package in Magma [12] developed

by W. Stein in [86, 87] and also the Kolyvagin-Logachev theorem [53] identically as

in [73, Proposition 5.1.] to get that rk(J0(91)) = 2.

Take an odd prime p of good reduction for X0(91). By Theorem 2.2.8, J0(91)(Q)tors

injects into J0(91)(Fp). By doing this for primes 3, 5 and 19, we get that #J0(91)(Q)tors≤
336. By taking the differences of cusps of X0(91), we are able to generate a torsion

subgroup isomorphic to Z/2Z×Z/168Z. Hence, J0(91)(Q)tors
∼= Z/2Z×Z/168Z.

Computations on quotient

We can easily compute the degree 2 quotient X+
0 (91) in Magma [12] which is a genus 2

hyperelliptic curve. We can use Stoll’s algorithm [88] to determine the generators of the

free part of J+0 (91)(Q) which also has rank 2. By taking their pullbacks, we are able

to generate a subgroup G ≤ J0(91)(Q) such that 2 · J0(91)(Q) ≤ G (see [13, Proposition

3.1.]).

Finding some quadratic points

The curve X0(91) has 4 cusps which are defined over Q. We can get 8 more Galois-

conjugate pairs of quadratic points on X0(91) by taking pullbacks of the 10 known rational

points on X+
0 (91). We can get one more pair of Galois-conjugate quadratic points by

75



Isog. over quad. fields of ell. curves with rat. j-inv. Isogenies of degree 91

examining the fixed points of w91. Notice that those points are CM points as they represent

elliptic curves 91-isogenous to themselves.

Chabauty computations and finishing

With all that information, we are able to replicate the same method used by Box in [13]

and to show that there are no other quadratic points on X0(91) apart from the known

ones and the pullbacks of rational points on X+
0 (91). All the exceptional (non-pullback)

quadratic points on X0(91) are the four cusps and a pair of conjugate CM points. The

remaining, non-exceptional quadratic points, are pullbacks of rational points on X+
0 (91).

Hence, w91 acts the same way on them as Galois conjugation. If some non-exceptional

point represents an E with a rational j-invariant, we see that it is 91-isogenous to itself by

a similar argument already used several times before (see, for example, Lemma 4.2.1, case

(p,q) = (5,13)). Therefore, a non-CM E/Q can’t have a cyclic 91-isogeny defined over

a quadratic field. Also notice that all the rational points on X+
0 (91) have been determined

in [3, Example 7.1.], so we are also able to get all the quadratic points on X0(91).

Model and data for X0(91)

Model for X0(91):

x2
0−12x1x2 +4x1x4−14x2

2 +12x2x3 +24x2x4−14x2
3 +16x3x4−23x2

4− x2
5−4x2

6 = 0,

x0x1−6x1x2 +6x1x4−3x2
2 +2x2x3 +7x2x4−5x2

3 +8x3x4−7x2
4− x5x6− x2

6 = 0,

x0x2−2x1x2 + x1x4−3x2
2 +6x2x3 +4x2x4−5x2

3 +4x3x4−3x2
4− x2

6 = 0,

x0x3− x1x2 + x1x4 +2x2x3− x2x4− x2
3 + x3x4 + x2

4 = 0,

x0x4− x2
2 +2x2x3− x2

3 +2x2
4 = 0,

x0x6− x1x5 + x2x5 + x4x6 = 0,

x2
1−2x1x2−3x2

2 +4x2x3 +4x2x4−4x2
3 +4x3x4−4x2

4− x2
6 = 0,

x1x3− x1x4− x2
2 + x2x3 + x2x4− x3x4 = 0,

x1x6− x2x5 + x3x5 = 0,

x2x6− x3x5 + x4x5− x4x6 = 0.

Genus of X0(91): 7.

Atkin-Lehner: w91(X0 : X1 : X2 : X3 : X4 : X5 : X6) = (X0 : X1 : X2 : X3 : X4 :−X5 :−X6).

76



Isog. over quad. fields of ell. curves with rat. j-inv. Isogenies of degree 91

Cusps: (1 : 0 : 0 : 0 : 0 : 1 : 0),(−1 : 0 : 0 : 0 : 0 : 1 : 0),(2 : 0 :−1 :−1 :−1 : 1 : 1),(−2 :

0 : 1 : 1 : 1 : 1 : 1).

C = X+
0 (91): hyperelliptic curve y2 = x6 +2x5− x4−8x3− x2 +2x+1.

Group structure of J0(91)(Q): J0(91)(Q)≃ Z⊕Z⊕Z/2Z⊕Z/168Z.

The only quadratic points on X0(91) are cusps (which are all defined over Q), pull-

backs of rational points on X+
0 (91) and a pair of CM points P,Pσ fixed by w91, where:

P =
(−8α +7

5
:

3α−7

5
:
−α +9

5
: α : 1 : 0 : 0

)
, α =

17+5
√

13

18
.

For the record, these are the non-cuspidal quadratic points on X0(91) which arise as pull-

backs of rational points on X+
0 (91) (up to Galois conjugation):

P1 =
(−
√
−3

3
: 0 :

√
−3

3
:

√
−3

3
: 0 : 1 : 1

)
,

P2 =
(−
√
−3

3
: 0 :

√
−3

3
: 0 :

√
−3

3
: 0 : 1

)
,

P3 =
(−
√
−3

3
: 0 :

√
−3

3
:

2
√
−3

3
:

√
−3

3
: 0 : 1

)
,

P4 =
(−2
√
−3

3
:

√
−3

3
:

√
−3

3
:

√
−3

3
:

√
−3

3
: 1 : 0

)
,

P5 =
(−
√
−3

9
:

√
−3

6
:

5
√
−3

18
:

√
−3

6
:
−
√
−3

18
:

3

2
: 1
)
,

P6 =
(−7
√
−3

9
:

2
√
−3

3
:

7
√
−3

9
:

5
√
−3

9
:

4
√
−3

9
: 3 : 1

)
,

P7 =
(−31

√
−87

174
:
−3
√
−87

87
:

2
√
−87

87
:

4
√
−87

87
:

8
√
−87

87
:

3

2
: 1
)
,

P8 =
(−14

√
−87

87
:
−12
√
−87

87
:
−7
√
−87

87
:
−3
√
−87

87
:
−
√
−87

87
: 3 : 1

)
.

With that, we have achieved our goal and have proved Theorem 4.0.1.
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5. QUADRATIC POINTS ON BIELLIPTIC

CURVES

Definition 5.0.1. Let K be a number field and X/K a smooth projective curve. We say

that X is bielliptic if it admits a map b : X →C, where C is a curve of genus 1. We say

that the map b is a bielliptic map.

As mentioned in Section 2.1, there has been some progress in our understanding of

quadratic points on modular curves X0(n). Box [13] has described all the quadratic points

on all X0(n) of genus 2≤ g≤ 5 with rk(J0(n)(Q))> 0. Three of those curves are bielliptic,

when n ∈ {43,53,61}. In those cases, the corresponding degree 2 quotients X+
0 (n) are

elliptic curves of positive rank. Let b : X0(n)→ X+
0 (n) be a bielliptic map. It turns out that

all but finitely many quadratic points are in b−1(X+
0 (n)(Q)) and correspond to Q-curves

of degree n. These points are called non-exceptional, while the (finitely many) remaining

points are called exceptional. One of the main tools Box uses, and one we will make

abundant use of, is the relative symmetric Chabauty method.

Recall (or see [46]) that a curve X/Q and having a Q-rational point can have infinitely

many quadratic points if and only if it is of gonality at most 2 or if it is bielliptic with a

bielliptic map bX : X → E such that the elliptic curve E has positive rank over Q. Since

the quadratic points on all hyperelliptic curves X0(n) have already been described, the

next logical step towards the problem of determining all the quadratic points on all X0(n)

is to study the bielliptic curves X0(n). Exactly this has been posed as a Question by

Mazur [59, Question 1 (iv)] at the workshop Rational Points and Galois Representations

held in May 2021.

Bars [7] determined all the bielliptic modular curves X0(n) (there are 41 of them) and
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those among them with infinitely many quadratic points (28 out of the 41 satisfy this).

Since many of the bielliptic curves have genus g ≤ 5, the quadratic points on all but 12

have already been described in the aforementioned papers [13, 16, 74]. In the table below

we list the remaining values of n, their genus g(X0(n)), and the rank rk(J0(n)(Q)) of their

Jacobian over Q.

n g(X0(n)) rk(J0(n)(Q)) n g(X0(n)) rk(J0(n)(Q))

60 7 0 62 7 0

69 7 0 79 6 1

83 7 1 89 7 1

92 10 1 94 11 0

95 9 0 101 8 1

119 11 0 131 11 1

Table 5.1: The remaining curves

In this chapter we describe the quadratic points on all these modular curves, answering

Mazur’s question completely. Furthermore, as mentioned above, this also completes the

description of quadratic points on all X0(n) with infinitely many quadratic points. We

explicitly find all the exceptional points and show that they correspond to CM elliptic

curves and show that the non-exceptional points correspond to Q-curves of degree dn for

some dn | n.

Although the approach for each of the modular curves is at least a bit different than for

the others, our proofs can roughly be grouped into two main methods. The first method,

described in Section 5.1, which allows us to solve the cases n ∈ {62,69,92,94}, is to

exploit the fact that for some of the n there is a divisor d of n such that X0(d) is hyperel-

liptic and hence any putative elliptic curve E with a cyclic n-isogeny (and hence a cyclic

d-isogeny) over a quadratic field K, by the results of [16], has to either correspond to

one of the explicitly known exceptional quadratic points on X0(d) (and we directly check

whether they have a cyclic n-isogeny over the quadratic field they are defined over) or be a

Q-curve of degree d′ for some divisor d′ of d for which wd′ is the hyperelliptic involution;

in all our cases we have gcd(d′,(n/d′)) = 1. In the latter case E has to be a Q-curve which

in addition has a cyclic (n/d′)-isogeny defined over K. This leads to the question: is there
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a modular curve whose points parametrize such elliptic curves? We give an answer to this

question and show that such an elliptic curve either corresponds or is isogenous over K to

an elliptic curve which corresponds to a Q-rational point on one of 2 or 3 modular curves.

The advantage of this method is that it requires very little explicit computation, as it is

usually not too challenging to find all the rational points on the necessary modular curves.

The second method, used to deal with n ∈ {60,79,83,89,95,101,119,131} is, fol-

lowing Siksek [82] and Box [13], the relative symmetric Chabauty method. In principle

what we do in these cases is very similar to [13], but there are a number of tweaks and

minor improvements that we do to make the necessary computations, which have previ-

ously been done on curves of genus only up to 5, work on our curves, which are of genus

6≤ g≤ 11. Most notably, for n = 131 we modify the method so that it doesn’t require a

finite index subgroup of X0(131), which is a considerable improvement. We explain these

cases in detail in the later sections.

The techniques used in the second method are applicable for general curves, not just

modular curves. However, the information we have about cusps and automorphisms of

modular curves does make some parts of the algorithms easier.

The work in this chapter is also documented in the paper by Najman and the author

of this thesis [73]. The code that verifies all our computations, along with the outputs

containing time and memory consumption in their last line, can be found on:

https://github.com/brutalni-vux/QuadPtsBielliptic.

All of our computations were performed on an Intel Xeon W-2133 CPU running at

3.60GHz and with 64 Gb of RAM.

5.1. Q-CURVES

Recall that we have already defined the Q-curves in Definition 1.1.22. Here, we will focus

on Q-curves over quadratic fields. Throughout this chapter, when saying that curves are

isogenous, without mentioning over which field, we will always mean over Q. Let K be

a quadratic field and σ the generator of Gal(K/Q). By factorising isogenies, we may

assume our given isogeny E → Eσ is cyclic [24, Lemma A.1], and if this cyclic isogeny
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E → Eσ is of degree d, we say that E is a Q-curve of degree d. Throughout this section,

for a positive integer m, by Cm we will denote a cyclic group of order m. Note that we

allow Q-curves to have complex multiplication.

Let n be a positive integer and factor n = dm with gcd(d,m) = 1. Notice that the

non-cuspidal points on X0(n) represent triples (E,Cd,Cm) (see Theorem 1.3.7). Let L be

a number field and let wd be the Atkin-Lehner involution sending a non-cuspidal point

x ∈ X0(n)(L), where x corresponds to (E,Cd,Cm), to the point wd(x), corresponding to

(E/Cd,E[d]/Cd,(Cm +Cd)/Cd). Here, quotienting out by Cd means mapping by the

cyclic d-isogeny µ such that ker µ =Cd , i.e. wd(x) = (µ(E),µ(E[d]),µ(Cm)) (see Defini-

tion 1.3.15 and the discussion after it). Thus, non-cuspidal Q-rational points on X0(n)/wd

correspond to unordered pairs

{(E,Cd,Cm),(E/Cd,E[d]/Cd,(Cm +Cd)/Cd)}

which are Gal(Q/Q)-invariant, meaning that either the point (E,Cd,Cm) is defined over

Q or there exists a quadratic extension K/Q with σ generating Gal(K/Q) such that

(E,Cd,Cm)
σ = (E/Cd,E[d]/Cd,(Cm +Cd)/Cd), (5.1)

implying that E is a Q-curve of degree d with the additional property that µ(Cm) = Cσ
m .

We will say that an elliptic curve F corresponds to a point on X0(n)/wd if there exists

an E as above such that j(F) = j(E) or j(F) = j(µ(E)). In the case of d = n, the curve

X0(n)/wn is denoted by X+
0 (n), as mentioned in Definition 1.3.15, and it parametrizes

pairs consisting of a Q-curve of degree n together with its Galois conjugate (without any

further conditions). All the fixed points of wd correspond to CM elliptic curves since they

represent elliptic curves isogenous to themselves.

We emphasize that the equality in (5.1) is an equality of points on the modular curve

X0(n), which is equivalent to the existence of an isomorphism φ : Eσ → E/Cd , defined

over Q, sending Cσ
d to E[d]/Cd and Cσ

m to (Cm +Cd)/Cd .

Let S1 be a subgroup of E1 and S2 a subgroup of E2, both cyclic of order n. We will say

that these two subgroups are equal and write S1 = S2 if (E1,S1) and (E2,S2) correspond to

the same point on X0(n), or equivalently, there exists an isomorphism φ : E1→E2, defined

over Q, such that φ(S1) = S2. Similarly, throughout the section, we will write E1 = E2
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if these two elliptic curves are isomorphic over Q, or equivalently, their j-invariants are

equal.

We now consider the following problem: for any such m and d, describe a finite col-

lection of modular curves Γ such that any Q-curve of degree d over a quadratic field with

an additional cyclic m-isogeny satisfying (m,d) = 1 gives rise to a rational point on some

member of Γ. Note that a somewhat similar problem is considered in [33, Proposition

2.2.]. The following propositions answer this question for m prime and m = 4, which will

be sufficient for our purposes.

Proposition 5.1.1. Let E be a non-CM Q-curve of degree d defined over a quadratic

field K having in addition a cyclic m-isogeny defined over K with (m,d) = 1 and m prime.

Then either E corresponds to a rational point on X0(dm)/wd or is isogenous over K to an

elliptic curve which corresponds to a rational point on X+
0 (dm2).

Proof. Suppose E/K is a Q-curve of degree d, Cd = ker µ where µ : E → Eσ is a cyclic

d-isogeny and Cm is a cyclic subgroup of order m of E defined over K. By [24, Lemma

A.4], we may assume µ is defined over K and so (E,Cd,Cm) defines a non-cuspidal point

on X0(dm)(K). Since E is a Q-curve of degree d, we have Eσ = E/Cd and Cσ
d = E[d]/Cd .

Now there are two possibilities: either µ(Cm) =Cσ
m or µ(Cm) ̸=Cσ

m .

• Assume that µ(Cm) =Cσ
m . In this case, by the discussion before the proposition, we

see that E corresponds to a rational point on X0(dm)/wd .

• Assume that µ(Cm) ̸= Cσ
m . Denote by E1 := E/Cm, by E2 := Eσ/(Cm)

σ and by

E3 := E/(Cm +Cd) = Eσ/(µ(Cm)). As µ(Cm) ̸= Cσ
m , it follows that E2 and E3

are m2-isogenous. Since E1 and E3 are d-isogenous, and by construction we have

E1 = Eσ
2 , it follows that E1 is a Q-curve of degree dm2.

■

Proposition 5.1.2. Let E be a non-CM Q-curve of odd degree d defined over a quadratic

field K having in addition a cyclic 4-isogeny defined over K. Then either E or a curve

isogenous over K to E corresponds to a rational point on X+
0 (2d), X+

0 (16d) or X0(4d)/wd .

Proof. Suppose E/K is a Q-curve of degree d, Cd = ker µ where µ : E → Eσ is a d-

isogeny and C4 is a cyclic subgroup of order 4 of E defined over K. By [24, Lemma A.4],
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we may assume µ is defined over K and so (E,Cd,C4) defines a non-cuspidal point on

X0(4d)(K).

• Assume that µ(C4) =Cσ
4 . In this case, by the discussion before Proposition 5.1.1,

we see that E corresponds to a rational point on X0(4d)/wd .

• Assume that µ(C4)∩Cσ
4 = {O}. Using the same arguments as in the µ(Cm) ̸=

Cσ
m case in Proposition 5.1.1, one proves that E is isogenous to an elliptic curve

corresponding to a point on X+
0 (16d).

• Assume that µ(C4)∩Cσ
4 = 2(C4)

σ = 2µ(C4). Let E1 = E/(2C4); it is d-isogenous

to Eσ
1 and has all 3 of its subgroups of order 2 defined over K. Indeed, as µ is

defined over K and of degree coprime to two, the subgroup of Eσ generated by

µ(C4) and Cσ
4 is defined over K and isomorphic to C2×C4. The quotient of this

latter group by the subgroup µ(C4)∩Cσ
4 is isomorphic to C2×C2 and thus the 2-

torsion of Eσ
1 is defined over K. Finally, using again that µ is defined over K and

has degree coprime to two, we find the same is true for E1. One of the subgroups

of E1[2] of order 2 is E[2]/(2C4). Call the other two S1 and S2. Since µ(C4) ̸=Cσ
4 ,

it follows that Sσ
1 = µ(S2) and Sσ

2 = µ(S1). It follows E1/S1 is 4d-isogenous to

(E1)
σ/(S1)

σ = (E1)
σ/µ(S2), and hence corresponds to a rational point on X+

0 (4d).

■

83



Quad. pts. on bielliptic curves Results for n ∈ {62,69,92,94}.

5.2. RESULTS FOR n ∈ {62,69,92,94}.
We will use the following result of Momose, which we state in a weaker form, but is

sufficient for our purposes.

Theorem 5.2.1 ( [64, Theorem 0.1]). Let N be a composite number. If N has a prime

divisor p such that X0(p) is of positive genus and such that J0(p)(Q) is finite, then X+
0 (N)

has no non-cuspidal non-CM Q-rational points.

Our main result of this section is:

Theorem 5.2.2.

• If (E,C) is a non-cuspidal point on X0(62)(K), where K is a quadratic field, then

K = Q(
√
−3), and either j(E) = 54000 or j(E) = 0 and E has a point of order 2

over K.

• If (E,C) is a non-cuspidal point on X0(69)(K), where K is a quadratic field, then

j(E) =−215 and K =Q(
√
−11).

• If (E,C) is a non-cuspidal point on X0(92)(K), where K is a quadratic field, then

K =Q(
√
−7) and j(E) =−3375 or j(E) = 16581375.

• There are no non-cuspidal quadratic points on X0(94).

Proof. All the values n for which we consider the modular curves X0(n) are of the form

n = mp, where m = 2,3 or 4 and p = 23,31 or 47. Let K be a quadratic field, (E,C) a K-

rational non-cuspidal point on X0(n), where E/K is an elliptic curve and C is a Gal(K/K)-

invariant cyclic subgroup of E of order n. It follows that y = (E,mC) is a K-rational non-

cuspidal point on X0(p). By the results of [16], we know that E is either a Q-curve of

degree p or y is one of the exceptional points listed in the appropriate table in [16].

For each of the exceptional points y listed in the appropriate table in [16] we construct

an elliptic curve with j-invariant j(y) and determine whether it admits an m-isogeny. For

m = 2 this is done by checking whether the curve has a 2-torsion point and for m = 3 it

is done by checking whether the division polynomial ψE,3 has a linear factor; this is a

necessary and sufficient condition for the existence of a 3-isogeny. We obtain that for n =
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69 this occurs if and only if K =Q(
√
−11) and j(y) =−215, i.e. when the elliptic curve

has complex multiplication by Z[1+
√
−11

2
], and it does not occur for the exceptional points

in the cases n = 62 and 94. In the remaining case n = 92 with m = 4, all computation can

be avoided by noting that (E,2C) defines a non-cuspidal point on X0(46)(K), and hence

E is necessarily a Q-curve of degree 23 by [16, Table 13].

It remains to consider the non-exceptional points, which are Q-curves of degree p.

Suppose first that E does not have CM. Let first n = 62,69 or 94. By Proposition 5.1.1,

either E corresponds to a rational point on X0(n)/wp or is isogenous to a non-CM elliptic

curve corresponding to a rational point on X+
0 (pm2). The latter is impossible by Theorem

5.2.1. For n = 92, by Proposition 5.1.2 we obtain that an elliptic curve isogenous to E

corresponds to a rational point on X0(92)/w23, X+
0 (92) or X+

0 (368), the last two again

being impossible by Theorem 5.2.1. By [35], X0(69)/w23 is the elliptic curve 69.a2,

X0(94)/w47 is the elliptic curve 94.a2 and X0(92)/w23 is the elliptic curve 92.b2. In the

first two cases the elliptic curve has 2 rational points and in the final case it has 3 rational

points, which is in all cases the same as the number of rational cusps. On the other hand,

the curve X := X0(62)/w31 is, by [35], the elliptic curve 62.a4. It has 4 rational points, 2

of which are cusps, while the remaining two correspond to elliptic curves defined with j-

invariant 54000 and 0, which give one point each. The pullbacks of both of these two non-

cuspdial rational points on X , with respect to the quotient map X0(62)→ X , are defined

over Q(
√
−3). Note that for elliptic curves with j(E) = 0 only those with a Q(

√
−3)-

rational 2-torsion point correspond to a quadratic point on X0(62), i.e. the elliptic curves

y2 = x3 +d for which d is a cube in Q(
√
−3).

It remains to check the existence of quadratic CM points on all the X0(n). From

[20, Corollary 8.9.c)] we conclude that X0(n) has no CM points for n = 94. Using data

provided by the authors of [20], which can be obtained using [20, Theorem 3.7], we find

that the only quadratic CM points for the values n that we haven’t already found are the

ones with j(E) =−3375 or j(E) = 16581375 over K =Q(
√
−7) for n = 92. ■

85



Quad. pts. on bielliptic curves Obtaining models for X0(n) and their quotients

5.3. OBTAINING MODELS FOR X0(n) AND THEIR

QUOTIENTS

For the remaining values of n, it will be necessary to obtain models for X0(n) and their

quotients by Atkin-Lehner involutions. We use the approach of ÈOzman and Siksek [74,

Section 3], but we use a different basis for the space S2(n) of weight 2, level n cuspforms.

We select an Atkin-Lehner operator wd , with d | n and d > 1, which we will be using

to get the quotient X0(n)/wd . Then we choose a basis for S2(n) such that the matrix of

wd is diagonal with all the diagonal elements equal to 1 or −1 in that basis. This reduces

the time needed to obtain a model for X0(n) and especially reduces the time needed to

compute C = X0(n)/wd . A method to compute a model for C that will often work in our

setting, i.e. when C is an elliptic curve, is to take the variables of X0(n) on which wd acts

non-trivially and compute relations between them. If we succeed in obtaining a model for

C in this way, then the map X0(n)→C is just the projection map.

We obtain the quotient map using this approach only for n = 101 as the default Magma

function was fast enough for all other n, except for n = 131, where we use a different

approach which avoids computing the quotient completely. In addition, the models we

got using our basis had shorter equations and generally smaller coefficients.

We remove the part in the ÈOzman-Siksek code which computes a GrÈobner basis since

it is only used to potentially simplify the equations and didn’t seem to give us noticeable

gains, while it made the computations considerably slower.

With these adjustments, we were able to obtain models for X0(n) and the quotients

X0(n)/wd quickly. For example, the computation of the model of X0(131) along with the

quotient using the diagonal basis took 3.560 seconds. On the other hand, when using the

basis of S2(n) that Magma returns by default, the computation of the model for X0(131)

took 489.579 seconds and it was not possible to compute the quotient map in reasonable

time. The files comparing those computations can be found in our code repository.
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5.4. DETERMINING THE MORDELL-WEIL

GROUPS OF J0(n)(Q)

5.4.1. Determining the ranks

Here we will prove that the ranks of J0(n)(Q) for our values of n are as listed in Table

5.1. Some of that data is already known: all the Jacobians of X0(n) of rank 0 over Q are

determined in [25, Theorem 3.1].

Proposition 5.4.1. The values of rk(J0(n)(Q)) are as listed in Table 5.1.

Proof. We can use the modular symbols package in Magma developed by W. Stein in

[86, 87]. See [83, Chapter 6] for more details and worked examples of this method for

computing the ranks of modular Jacobians. If L(A f ,1) ̸= 0 for some representative f

of some Galois orbit of Hecke eigenforms, the Kolyvagin-Logachev theorem [53] tells

us that rk(A f (Q)) = 0. Furthermore, if L(A f ,1) = 0 for some representative f of some

Galois orbit of Hecke eigenforms and the order of vanishing of L( f ,1) is 1, the Kolyvagin-

Logachev theorem tells us that rk(A f ) = [K f : Q], where K f is the Hecke eigenvalue field

of f , which is directly computed.

All our calculations fall into one of the two aforementioned categories and by sum-

ming all rk(A f ) we get rk(J0(n)(Q)) and check that the values in the Table 5.1 are cor-

rect. ■

5.4.2. Determining the torsion

Here we will describe the methods we used in our attempt to determine J0(n)(Q)tors for

the values of n from Table 5.1. For the prime values of n we will use the following result

of Mazur:

Theorem 5.4.2 ( [60, Theorem (1)]). For a prime number p, the number of elements in

J0(p)(Q)tors is equal to the numerator of (p−1)/12 in minimal form and J0(p)(Q)tors is

generated by the difference of two cusps.
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Proposition 5.4.1 and Theorem 5.4.2 now determine the Mordell-Weil group of all

J0(p)(Q) for prime p ∈ {79,83,89,101,131}.
Denote by Cn the subgroup of J0(n) generated by linear equivalence classes of dif-

ferences of cusps. This subgroup is called the cuspidal subgroup of J0(n). The rational

cuspidal subgroup is defined to be Cn(Q) := Cn∩J0(n)(Q). The Manin-Drinfeld theorem

states that Cn(Q)⊆ J0(n)(Q)tors. Ogg conjectured and Mazur proved (see Theorem 5.4.2)

that Cn(Q) = J0(n)(Q)tors for prime n. The Generalized Ogg Conjecture, which is still

open, says that Cn(Q) = J0(n)(Q)tors for all positive integers n. For a nice overview of

the current status of the proven cases of the Generalized Ogg Conjecture, see [97].

For composite n ∈ {60,95,119}, we will use the fact that J0(n)(Q)tors injects into

J0(n)(Fp) for an odd prime p of good reduction by Theorem 2.2.8.

Proposition 5.4.3. The following holds:

a) J0(60)(Q)tors
∼= Z/4Z⊕ (Z/24Z)3,

b) Z/6Z⊕Z/180Z≤ J0(95)(Q)tors ≤ (Z/2Z)2⊕Z/6Z⊕Z/180Z,

c) J0(119)(Q)tors
∼= Z/8Z⊕Z/288Z.

Remark 5.4.4. In b), by the Generalized Ogg Conjecture, we expect J0(95)(Q)tors to

be equal to the lower bound, but what we prove will already be good enough for our

purposes.

Proof of Proposition 5.4.3. For n = 60 we use the code of ÈOzman and Siksek from [74,

Section 5] to get that rational cuspidal subgroup of J0(60)(Q) is isomorphic to Z/4Z⊕
(Z/24Z)3. We also get that J0(60)(Q)tors is isomorphic either to Z/4Z⊕ (Z/24Z)3 or to

Z/4Z⊕ (Z/24Z)2⊕Z/48Z. We then compute that J0(60)(F23) doesn’t have an element

of order 48, so we must have J0(60)(Q)tors
∼= Z/4Z⊕ (Z/24Z)3.

For n squarefree, every cusp of X0(n) is defined over Q by Theorem 1.3.9 (more

generally the field of definition of the cusps can be determined using [56, Section 2] for

any modular curve), in particular the rational cuspidal subgroup coincides with the full

cuspidal subgroup.

For n = 95, we compute that the cuspidal group is isomorphic to Z/6Z⊕Z/180Z, so

clearly Z/6Z⊕Z/180Z≤ J0(95)(Q)tors. We also get the following local information:
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• J0(95)(F3)∼= (Z/2Z)2⊕Z/60Z⊕Z/180Z,

• J0(95)(F7)∼= (Z/2Z)5⊕Z/18Z⊕Z/90Z⊕Z/900Z,

• J0(95)(F11)∼= Z/4Z⊕Z/12Z⊕Z/36Z⊕Z/1658340Z.

Reduction modulo 7 tells us that J0(95)(Q)tors can’t have (Z/4Z)2 as a subgroup. Reduc-

tion modulo 11 tells us that J0(95)(Q)tors can’t have (Z/5Z)2 as a subgroup. Since we al-

ready know that Z/6Z⊕Z/180Z≤ J0(95)(Q)tors, we can conclude that J0(95)(Q)tors ≤
(Z/2Z)2⊕Z/6Z⊕Z/180Z.

For n= 119, we compute J0(119)(F3) and J0(119)(F5) and we get that J0(119)(Q)tors

has at most gcd(#J0(119)(F3),#J0(119)(F5)) = 2304 elements. We can directly compute

that differences of cusps generate a group isomorphic to Z/8Z⊕Z/288Z, so we can

conclude J0(119)(Q)tors
∼= Z/8Z⊕Z/288Z. ■
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5.5. THE RELATIVE SYMMETRIC CHABAUTY

METHOD

Our main tools for determining quadratic points on X0(n) for n ∈ {60,79,83,89,95,101,

119,131} are symmetric Chabauty and relative symmetric Chabauty combined with the

Mordell-Weil sieve. We first define the annihilating differentials:

Definition 5.5.1. Let X/Q be a curve and ΩX/Qp
the space of differentials of X when X

is considered over Qp. Coleman integration [22, 23] defines a bilinear pairing:

ΩX/Qp
× J(X)(Qp)→Qp, (ω,∑

i

(Pi−Qi)) 7→∑
i

∫ Qi

Pi

ω.

The annihilator of J(X)(Q) is called the space of annihilating differentials.

The survey article of McCallum and Poonen [62] is also a great source of information

about Coleman integration and annihilating differentials.

We will be building upon the work of Box in [13], which in turns builds on the work

of Siksek [82]. In [13, Theorem 2.1.] Box uses a directly computable criterion of Siksek

for a known point of X (2)(Q) to be the only point in its residue class modulo a prime p of

good reduction. However, there might be infinitely many quadratic points on X . This will

indeed happen when we have a degree 2 map X →C and C has infinitely many rational

points.

To circumvent this problem, Box [13, Theorem 2.4.], again building on work of Siksek

[82], gives a directly computable criterion for a known point of X (2)(Q) to be the only

point in its residue class modulo prime p of good reduction, up to pullbacks from C(Q).

One can then, if needed, combine the information acquired from the aforementioned two

theorems for different values of p by using the Mordell-Weil sieve as described in [13,

Section 2.5].

The input for Box’s method is:

(a) a model for a non-hyperelliptic projective curve X(Q),

(b) a set of known rational effective degree 2 divisors on X ;
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(c) a set Γ of matrices defining Atkin-Lehner operators on X such that C = X/Γ; in all

our cases Γ will have only one element (not counting the identity),

(d) a set of degree 0 divisors that generate a subgroup G of J(X)(Q) of finite index;

(e) an integer I such that I · J(X)(Q)⊆ G;

(f) a degree 2 effective divisor Dpull on X that is a pullback of a rational point on C,

used to embed X (2) into J(X).

For Box’s method to work, the following conditions need to be satisfied:

1. rk(J(X)(Q))< g(X)−1,

2. rk(J(X)(Q)) = rk(J(C)(Q)).

The first condition ensures that we can find at least two linearly independent anni-

hilating differentials, see [13, Section 2.2.1]. The second condition ensures that we can

find a suitable I in (e), see [13, Proposition 3.1.]. It also helps us in finding annihilating

differentials, see [13, Lemma 3.4.]. Also notice that Box proved his results [13, Lemma

3.4. and Proposition 3.5.] for the values of n he considered, but it is clear that analogous

proofs also work for all n ∈ {60,79,83,89,95,101,119,131} and for the Atkin-Lehner

operators we will be using. Hence we can use the same method as Box for determining

annihilating differentials.

For Q ∈ X (2)(Q), let φ be the map sending Q to φ(Q) = I · [Q−Dpull] ∈ G. For

a B ≤ G, w ∈ G, we call the set w+B a B-coset represented by w. Suppose now that

Q ∈ X (2)(Q) is some unknown point. We start with B0 ≤ G and W0 ⊆ G which satisfy
⋃

w∈W0
(w+B0) = G, (e.g. in some instances we choose B0 := G,W0 := {0}), from which

it follows that φ(Q) ∈ ⋃w∈W0
(w+B0) = G. In the i-th step, for i ≥ 1, after applying

Chabauty and the Mordell-Weil sieve using some prime pi, we create a new subgroup

Bi ≤ G and a set Wi of Bi-coset representatives, which satisfy φ(Q) ∈ ⋃w∈Wi
(w+Bi).

Using the information we obtained using Chabauty and the Mordell-Weil sieve, in each

step we aim to shrink the set Wi, in the aim of getting Wi = /0, which would prove that

there are no unknown points and hence our known points are equal to X (2)(Q). For more

details on how Chabauty and the Mordell-Weil sieve are applied see [13, Section 2] or the

next section.

91



Quad. pts. on bielliptic curves The Relative symmetric Chabauty method

We apply and, when needed, modify Box’s method to describe all quadratic points on

X0(n) for n ∈ {60,79,83,89,95,101,119,131}. For composite values of n, we use Box’s

method with only a small change in how the models of X0(n) are obtained, which made

some of the computations considerably faster.

For prime values of n < 131, we will make some adjustments, described in the next

section, that were already partially made in [14, Sections 3 and 4]. For n = 131, we will

make one substantial adjustment, which we describe in Subsection 5.6.5.
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5.6. METHODS AND COMPUTATIONS FOR

n ∈ {60,79,83,89,95,101,119,131}
Here we describe the methods and computations for n∈ {60,79,83,89,95,101,119,131}
which help us describe all quadratic points on those X0(n). For n ∈ {60,95,119} we use

Box’s method as described in Section 5.5 and the computations successfully determine the

quadratic points on those X0(n). Therefore, in the rest of this section we will be describing

the methods used for n ∈ {79,83,89,101,131}. The changes that we make to the method

from Section 5.5 will be based on Box’s unpublished work on X0(79) and [14]. For prime

values of n, using the same approach as in Section 5.5 does not give us the desired results

because we never seem to be able to get Wi = /0.

We improve on [13] and Box’s unpublished work by using the improved algorithms

to obtain ºdiagonalº (with respect to the action of wd) models of X0(n), which makes our

computations feasible, as explained in Section 5.3. Let w′n : J0(n)→ J0(n) be the map

induced by wn. For n = 131, we use a different operator 1−w′n for I, which seems to be

a novel idea (I has usually been chosen to be multiplication by an integer).

Notice that for all these values of n we have rk(J0(n)(Q)) = 1 and we have a degree

2 quotient map X0(n)→ X+
0 (n), where X+

0 (n) is an elliptic curve of rank 1. Since Box’s

unpublished Magma file for X0(79) and the methods of [14] work a bit differently than the

method described in [13], we will first describe that method, which we will call here the

ºupdated methodº and then build upon it for larger values of n.

5.6.1. Description of the updated method

The notation and input are the same as in Section 5.5. Furthermore, for any object (point,

divisor or divisor class) M we denote by ‹M the reduction of that object modulo p; it will

always be clear from the context which prime this is. Let X be a non-hyperelliptic curve

of genus g≥ 3. For a prime p> 2 of good reduction for X , define the following mappings:

• ι : X (2)(Q)→ J(X)(Q), ι(P) = [P−Dpull];

• φ : X (2)(Q)→ G, φ(P) = I · [P−Dpull];
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• m : J(X)(Q)→ G, m(A) = I ·A;

• redp : J(X)(Q)→ J(X)(Fp), redp(A) = Ã;

• hp : G→ J(X)(Fp), hp(A) = redp(A) = Ã;

• mp : J(X)(Fp)→ J(X)(Fp), mp(Ã) = I · Ã;

Notice that the images of m and φ really are in G by (e). Also, ι is injective since X is

not hyperelliptic by Proposition 1.3.31. These maps fit into a commutative diagram:

X (2)(Q)

ι
��

φ

&&

J(X)(Q)
m

//

redp

��

G

hp

��

J(X)(Fp)
mp

// J(X)(Fp).

Assume there is some unknown point Q ∈ X (2)(Q). As mentioned before, in Box’s

original method, described in Section 5.5, the goal was to get that φ(Q) ∈ /0, a contradic-

tion. Here we aim to either get the same result, or, if that is not possible, obtain some

information about what Q has to look like (e.g. to get that Q is a pullback of a rational

point on X+
0 (n) in our case of X := X0(n)). This additional information will allow us to

solve the problem.

As in Section 5.5, in the i-th step we want to determine Bi ≤ G and Wi ⊆ G such that

φ(Q) is a member of some Bi-coset represented by some w ∈Wi. We start with i = 0,

B0 = G f ree and W0 = Gtors, where G f ree is the free part of G and Gtors is the torsion

subgroup of G. Clearly, φ(Q) is a member of some B0-coset represented by some w∈W0,

since G =
⋃

w∈W0
(w+B0).

Now take some prime p := pi+1 > 2 of good reduction for X . Assume we have deter-

mined Bi and Wi and now want to construct Bi+1 and Wi+1. We set Bi+1 = Bi ∩ ker(hp)

and split each of the Bi-cosets represented by elements of Wi into Bi+1-cosets. We then

create the set Wi+1 of representatives of Bi+1-cosets we just produced. It follows that hp is

constant on each of the Bi+1-cosets represented by some w ∈Wi+1 (in particular this was

the goal of choosing this Bi+1). Clearly, φ(Q) will be in some Bi+1-coset represented by

some element of Wi+1 since
⋃

w∈Wi
(w+Bi) =

⋃
w∈Wi+1

(w+Bi+1).
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This splitting is useful because

hp

(
⋃

w∈Wi+1

(w+Bi+1)

)
= hp(Wi+1).

We now apply the Mordell-Weil sieve and the Chabauty method to eliminate some ele-

ments from Wi+1. Notice that hp(φ(Q)) ∈ Im(mp), so we need to only consider those

w ∈Wi+1 such that hp(w) ∈ Im(mp). Let Hi+1 = hp(Wi+1)∩ Im(mp). Since we know that

hp(φ(Q)) ∈ Hi+1, it follows that redp(ι(Q)) ∈ m−1
p (Hi+1).

We now give a criterion based on [13, Theorem 2.1.] which, if satisfied, will al-

low us to remove more elements from Wi+1. Take some Ap ∈ m−1
p (Hi+1) and assume

redp(ι(Q))=Ap. Denote by l(D) the dimension of the Riemann-Roch space of the divisor

D. If we have l(Ap+[fiDpull]) = 0, then we get a contradiction immediately since we must

have l(Ap + [fiDpull]) = l([Q̃]) > 0 since Q̃ is an effective degree 2 divisor. If one of our

known points Qknown ∈ X (2)(Q) satisfies redp(ι(Qknown)) = Ap and fulfills the criterion

given by [13, Theorem 2.1.] then (redp ◦ ι)−1(Ap) = {Qknown}. Notice that Q ̸= Qknown

because Q is an unknown point. If the criterion succeeds, that means that Qknown is the

only point in its residue disc modulo p. If we had [‡Qknown−fiDpull] = [Q̃−fiDpull], that

would imply Q̃ =‡Qknown by Proposition 1.3.31, since X is non-hyperelliptic, which is a

contradiction. Hence, if the criterion succeeds, we cannot have redp(ι(Q)) = Ap for an

unknown Q.

Clearly, if wh ∈ Hi+1 and if redp(ι(Q)) can’t equal any of the elements of m−1
p (wh),

then hp(φ(Q)) ̸= wh, hence φ(Q) /∈ h−1
p (wh). That means we can remove the elements of

h−1
p (wh) from Wi+1 while still having φ(Q) ∈⋃w∈Wi+1

(w+Bi+1) satisfied.

To recapitulate, we have obtained Bi+1 ≤ G and a set Wi+1 of Bi+1-coset representa-

tives such that φ(Q) ∈⋃w∈Wi+1
(w+Bi+1) and

⋃

w∈Wi+1

(w+Bi+1)⊆
⋃

w∈Wi

(w+Bi).

By repeating this for various primes p, it would be ideal to get Ws = /0 for some s,

which would imply that there are no unknown points in X (2)(Q).

Unfortunately, we are unable to get Ws = /0 when X = X0(n) and n ∈ {79,83,89,101,

131}. This is not surprising as X (2)(Q) is infinite in these cases. However, we get that

for some s both Bs and Ws contain only elements of the form aDn, where Dn is a pullback
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of a generator of J+0 (n)(Q) that generates the free part of G. That means that for any

Q ∈ X (2)(Q) we have φ(Q) = I · [Q−Dpull] = aDn, which will be very useful to us, as

will be explained in more detail in the next subsections. Note that in the method described

in this subsection we use only [13, Theorem 2.1.] and do not use [13, Theorem 2.4.].

5.6.2. Selecting G and I

We now describe how to select an appropriate G and I (see also [13, Section 3.3.]). Let ρn :

X0(n)→ X+
0 (n) be the degree 2 quotient map we get from wn and (ρn)∗ : J0(n)→ J+0 (n)

the induced (pushforward) map on J0(n). We have the following commutative diagram:

X0(n)
ι1

//

ρn

��

J0(n)

(ρn)∗
��

X+
0 (n)

ι2
// J+0 (n).

For all n ∈ {79,83,89,101,131} we have that J+0 (n)(Q) is an elliptic curve with

Mordell-Weil group isomorphic to Z. Let Pn be a generator of J+0 (n)(Q) and set Dn =

((ρn)∗)∗(Pn). Let Tn ∈ J0(n)(Q) be the divisor class of the difference of the two cusps,

which is a generator of J0(n)(Q)tors (see Theorem 5.4.2).

Suppose now n ̸= 131, as for n = 131 we will select different G and I, see Subsection

5.6.5. Set G = ⟨Dn,Tn⟩. Now we can use [13, Proposition 3.1.] to conclude that 2 ·
J0(n)(Q) ⊆ G so we can use I = 2. Notice that w′n(Dn) = Dn since Dn is a pullback and

that w′n(Tn) =−Tn since wn swaps the cusps.

Lemma 5.6.1. Let n ∈ {79,83,89,101,131}. Then for every D ∈ J0(n)(Q) we have

(1−w′n)(D) ∈ J0(n)(Q)tors.

Proof. By the information above, we know that 2D∈ ⟨Dn,Tn⟩, so 2D= aDn+bTn. Hence

(1−w′n)(2D) = (1−w′n)(aDn +bTn) = 2bTn, which is of finite order. ■

5.6.3. Quadratic points on X0(n) for n ∈ {79,83,101}

Before proceeding any further, we mention again that n = 79 was solved completely

by Box in an unpublished Magma file. By performing the computations described in

Subsection 5.6.1, we get that if there is an unknown Q ∈ X0(n)
(2)(Q), then φ(Q) =
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2 · [Q−Dpull] = kDn for some integer k. Hence w′n(2 · [Q−Dpull]) = 2 · [Q−Dpull] which

means that w′n([Q−Dpull])− [Q−Dpull] is of order at most 2. Since J0(n)(Q) doesn’t have

an element of order 2 for n ∈ {79,83,101}, we have w′n([Q−Dpull]) = [Q−Dpull]. Since

Dpull is a pullback and X0(n) is not hyperelliptic, we get wn(Q) = Q. Since Q = {Q1,Q2}
(as a 2-set), where Qi ∈ X0(n)(Q), we conclude that either wn swaps Q1 and Q2 or it fixes

them both. In the first case, Q is a pullback of a rational point on X+
0 (n). To deal with the

second case, we compute the fixed points of wn, which all correspond to CM curves (note

that the fixed points could also have been determined using the methods of [20]).

5.6.4. Quadratic points on X0(89)

Notice that J0(89)(Q) ∼= Z×Z/22Z has an element of order 2, so the approach from

Subsection 5.6.3 won’t work without modification. We need more information and we

get it by inspecting the possibilities for φ(Q) a bit more closely. By performing the

computations from Subsection 5.6.1, we get that if there is an unknown Q∈X0(89)(2)(Q),

then φ(Q) = 2 · [Q−Dpull] = 2kD89 for some integer k. Hence [Q−Dpull]− kD89 is of

order at most 2. If we have [Q−Dpull] = kD89, then w′n([Q−Dpull]) = [Q−Dpull] and we

continue as in Subsection 5.6.3. The other possibility is that [Q−Dpull] = kD89 +11T89,

but since w′n(T89) = −T89 and 11T89 = −11T89, we would have w′n([Q−Dpull]) = [Q−
Dpull] and again we can continue as in Subsection 5.6.3.

5.6.5. Quadratic points on X0(131)

In this case we use a different approach. We will take I to be the operator 1−w′131. The

reason for doing this is that we had originally been unable to compute the quotient curve

and hence could not proceed as in the other cases. Although we now know how to com-

pute the quotient map, we have left this case as it was. This is because it is possible that

the strategy of applying the operator I = 1−w′131 might be useful in future applications.

An additional benefit of using this operator I is that we do not need to choose a finite index

subgroup for G. We set G = ⟨T131⟩ = J0(131)(Q)tors, where T131 is the divisor class of

the difference of the two cusps of X0(131) as before, and I = 1−w′131. By Lemma 5.6.1,

we know that I · J0(131)(Q) ⊆ G. Since the action of w′131 commutes with the reduction
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modulo a prime p of good reduction, we now proceed as in Subsection 5.6.1.

After doing the computations described in Subsection 5.6.1, we get that if there is

an unknown Q ∈ X0(131)(2)(Q), then φ(Q) = (1−w′131) · [Q−Dpull] = 0, so w′131([Q−
Dpull]) = [Q−Dpull]. Now we can again continue as in Subsection 5.6.3.
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5.7. EXAMPLE OF THE SIEVING PROCESS FOR

N = 89

Here we describe the whole process for determining the quadratic points on X0(89) in

more detail. As mentioned before, we know that J0(89)(Q)∼= Z×Z/22Z. Following the

notation and method from Subsection 5.6.2, we are able to find a finite index subgroup

G≤ J0(89)(Q), where G = ⟨D89,T89⟩. The group is of index at most 2, so we use I = 2.

We will use the primes 3, 5 and 7 for the sieving method described in Subsection 5.6.1. We

have B0 = ⟨D89⟩ and W0 = {k ·T89 : 0≤ k≤ 21}. After performing the sieve with p= 3, we

get B1 = ⟨5D89⟩ and W1 = {0,D89,2D89,−D89,−2D89,2T89,20T89}. After performing

the sieve with p = 5, we get B2 = ⟨35D89⟩ and W2 = {0,k ·D89 : 0 ≤ k ≤ 34}. After

performing the sieve with p = 7, we get B3 = ⟨210D89⟩ and W3 = {0,2k ·D89 : 0 ≤ k ≤
104}. That means that φ(Q) = 2 · [Q−Dpull] = 2kD89 for an unknown Q ∈ X0(89)(2)(Q)

and we can continue as described in Subsection 5.6.4.

This example is instructive because it shows that even if we sometimes don’t reach an

empty set with the sieve, we might be able to reach a set with a property which enables

us to proceed.
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5.8. FINAL RESULTS AND TABLES

Here we describe the results that we get for n ∈ {60,79,83,89,95,101,119,131}. Re-

call that the results for n ∈ {62,69,92,94} can be found in Section 5.2. We describe all

quadratic points on those X0(n). By C we always denote the quotient of X0(n) by an

Atkin±Lehner involution which we used while doing the appropriate computations de-

scribed in Section 5.6. As usual, for elliptic curves O always denotes the point at infinity.

The column denoted by CM lists the discriminant of the order by which the elliptic curve

has complex multiplication if it does, and NO if it does not have CM.

For n ∈ {62,69,92,94} we did not need to do almost any computations and did not

even need to compute a model for X0(n). Hence we do not display any information for

these values of n.

We list for each n the elliptic curve C which we use in our computations, where b :

X0(n)→ C is of degree 2. We call the quadratic points on X0(n) which no not lie in

b−1(C(Q)) exceptional. Note that since a bielliptic curve might have multiple maps of

degree 2 to elliptic curves, whether a point is exceptional depends on the choice of C (or

equivalently b). The points we list are exceptional with respect to our choice of C.
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5.8.1. X0(60)

Model for X0(60):

x2
0 +2x2

1− x2
2 +6x2

3−6x3x5 + x2
4 +4x2

5− x2
6 = 0,

x0x2− x2
1 + x2

3 + x3x5 = 0,

x0x3− x1x2 = 0,

x0x4− x2
2− x2

3− x3x5 + x2
5 = 0,

x0x5− x2x3− x3x4 = 0,

x1x3− x2
2− x3x5 = 0,

x1x4− x2x3− x3x4 = 0,

x1x5− x2
3− x3x5 = 0,

x2x4− x2
3− x3x5 + x2

5 = 0,

x2x5− x3x4 = 0.

Genus of X0(60): 7.

Cusps: (0 : 0 : 0 : 0 : −1 : 0 : 1),(0 : 0 : 0 : 0 : 1 : 0 : 1),(0 : 0 : −1/4 : −1/4 : 1/4 : 1/4 :

1),(0 : 0 : −1/4 : 1/4 : 1/4 : −1/4 : 1),(0 : 0 : 1/4 : −1/4 : −1/4 : 1/4 : 1),(0 : 0 : 1/4 :

1/4 : −1/4 : −1/4 : 1),(−1 : 0 : 0 : 0 : 0 : 0 : 1),(−1/2 : −1/2 : −1/4 : −1/4 : −1/4 :

−1/4 : 1),(−1/2 : 1/2 : −1/4 : 1/4 : −1/4 : 1/4 : 1),(1/2 : −1/2 : 1/4 : −1/4 : 1/4 :

−1/4 : 1),(1/2 : 1/2 : 1/4 : 1/4 : 1/4 : 1/4 : 1),(1 : 0 : 0 : 0 : 0 : 0 : 1).

C = X0(60)/w15: elliptic curve y2 = x3 + x2− x.

Group structure of J(C)(Q): J(C)(Q)≃ Z/6Z · [QC−O], where QC := (1,−1).

Group structure of G⊆ J0(60)(Q): G≃ Z/4Z ·D1⊕Z/24Z ·D2⊕Z/24Z ·D3⊕Z/24Z ·
D4, where D1, . . . ,D4 are generated by differences of cusps.

There are no quadratic points on X0(60) apart from cusps which are all defined over Q.

Primes used in sieve: 13.
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5.8.2. X0(79)

Model for X0(79):

x2
0−2x0x1− x2

1−3x2
2−2x2x3 +4x2x4 +3x2

3 +2x3x4−11x2
4− x2

5 = 0,

x0x2− x2
1 +3x2x3− x2x4−2x2

3− x3x4 +4x2
4 = 0,

x0x3− x1x2 +2x2x3− x2
3 + x2

4 = 0,

x0x4− x2
2 +2x2x3 + x2x4− x2

3− x3x4 +2x2
4 = 0,

x1x3− x2
2 +2x2x4− x2

4 = 0,

x1x4− x2x3 + x2x4 + x2
3−2x2

4 = 0.

Genus of X0(79): 6.

Cusps: (1 : 0 : 0 : 0 : 0 : 1),(−1 : 0 : 0 : 0 : 0 : 1).

C = X+
0 (79): elliptic curve y2 + xy+ y = x3 + x2−2x.

Group structure of J(C)(Q): J(C)(Q)≃ Z · [QC−O], where QC := (0,0).

Group structure of G ⊆ J0(79)(Q): G ≃ Z ·D79⊕Z/13Z ·T79, where D79, T79 are as in

Subsection 5.6.2.

There are no exceptional non-cuspidal quadratic points on X0(79).

Primes used in sieve: 3, 5.
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5.8.3. X0(83)

Model for X0(83):

x2
0−2x0x1− x2

1− x2
2 +2x2x3− x2

3−4x3x4 +2x3x5−10x2
4 +24x4x5−31x2

5− x2
6 = 0,

x0x2− x2
1 +2x2x3−2x2

3 +6x3x4−6x3x5−3x2
4 +6x4x5 = 0,

x0x3− x1x2 +2x2x3−2x2
3 +5x3x4−2x3x5−4x2

4 +8x4x5−6x2
5 = 0,

x0x4− x2
2 + x2x3 + x3x4−3x3x5 +4x2

4−6x4x5 +9x2
5 = 0,

x0x5− x2
3 +2x3x4− x2

4 +2x4x5 = 0,

x1x3− x2
2 +2x2

3−4x3x4− x3x5 +7x2
4−14x4x5 +15x2

5 = 0,

x1x4− x2x3 + x2
3−2x3x4 +2x3x5 +3x2

4−8x4x5 +6x2
5 = 0,

x1x5− x3x4 + x3x5 + x2
4−2x4x5 = 0,

x2x4− x2
3 + x3x4 + x3x5−3x2

4 +5x4x5−6x2
5 = 0,

x2x5− x2
4 +2x4x5−3x2

5 = 0.

Genus of X0(83): 7.

Cusps: (1 : 0 : 0 : 0 : 0 : 0 : 1),(−1 : 0 : 0 : 0 : 0 : 0 : 1).

C = X+
0 (83): elliptic curve y2 + xy+ y = x3 + x2 + x.

Group structure of J(C)(Q): J(C)(Q)≃ Z · [QC−O], where QC := (0,0).

Group structure of G ⊆ J0(83)(Q): G ≃ Z ·D83⊕Z/41Z ·T83, where D83, T83 are as in

Subsection 5.6.2.

There are no exceptional non-cuspidal quadratic points on X0(83).

Primes used in sieve: 3, 5.
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5.8.4. X0(89)

Model for X0(89):

x2
0−2x0x1− x2

1 + x2
2 +6x2x3−21x2

3 +12x3x4 +36x3x5−13x2
4−6x4x5−21x2

5− x2
6 = 0,

x0x2− x2
1 +3x2

3−8x3x5 + x2
4 + x4x5 +5x2

5 = 0,

x0x3− x1x2 +3x2
3−6x3x5 +2x4x5 +3x2

5 = 0,

x0x4− x2
2 +2x2

3 +2x3x4−7x3x5 +2x2
4−2x4x5 +5x2

5 = 0,

x0x5− x2x3 + x2
3 +2x3x4−3x3x5− x4x5 +3x2

5 = 0,

x1x3− x2
2 +3x3x4−4x3x5 + x2

4−4x4x5 +4x2
5 = 0,

x1x4− x2x3 +2x3x4− x3x5−2x4x5 + x2
5 = 0,

x1x5− x2
3 + x3x4 +2x3x5−2x4x5− x2

5 = 0,

x2x4− x2
3 +3x3x5− x2

4− x4x5− x2
5 = 0,

x2x5− x3x4 + x3x5 + x4x5−2x2
5 = 0.

Genus of X0(89): 7.

Cusps: (1 : 0 : 0 : 0 : 0 : 0 : 1),(−1 : 0 : 0 : 0 : 0 : 0 : 1).

C = X+
0 (89): elliptic curve y2−19xy− y = x3−89x2−10x.

Group structure of J(C)(Q): J(C)(Q)≃ Z · [QC−O], where QC := (0,0).

Group structure of G ⊆ J0(89)(Q): G ≃ Z ·D89⊕Z/22Z ·T89, where D89, T89 are as in

Subsection 5.6.2.

There are no exceptional non-cuspidal quadratic points on X0(89).

Primes used in sieve: 3, 5, 7.
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5.8.5. X0(95)

Model for X0(95):

x2
0 +4x2x3 +4x2x5−3x2

3 +2x3x4 +4x3x5 +19x2
4−32x4x5 +10x2

5− x2
6 +2x7x8 +4x2

8 = 0,

x0x1 +2x1x5 +3x2x3−3x2x5−5x2
3−2x3x4 +6x3x5 +14x2

4−26x4x5 +13x2
5− x6x7 + x2

8 = 0,

x0x2−2x2x5−2x2
3− x3x4 + x3x5−2x2

4 + x4x5 + x2
5− x2

7 = 0,

x0x3−2x2x3 +3x2
3−2x3x5−9x2

4 +16x4x5−7x2
5− x7x8− x2

8 = 0,

x0x4−2x2x3 + x2
3 +2x3x4−2x3x5−6x2

4 +10x4x5−4x2
5− x2

8 = 0,

x0x5− x2x3− x2x5− x2
3 + x3x4 + x3x5− x2

4− x4x5 +2x2
5 = 0,

x0x7− x1x6 + x4x6 +2x4x7− x4x8− x5x6 + x5x8 = 0,

x0x8− x2x6 + x3x6− x4x7 +3x4x8 + x5x6 + x5x7− x5x8 = 0,

x2
1−4x2

4 +8x4x5−4x2
5− x2

7 = 0,

x1x2−2x1x5−2x2x3 +2x2x5 +4x2
3−2x3x4−2x3x5−8x2

4 +18x4x5−10x2
5− x7x8− x2

8 = 0,

x1x3− x1x5−2x2x3 +2x2x5 +2x2
3 +2x3x4−2x3x5−8x2

4 +14x4x5−8x2
5− x2

8 = 0,

x1x4− x1x5− x2x3 + x2x5 + x2
3−2x2

4 +4x4x5−3x2
5 = 0,

x1x7− x2x6− x4x7 +2x5x6 + x5x7 = 0,

x1x8− x3x6 + x4x6− x4x8 + x5x8 = 0,

x2
2−2x2x3−2x2x5 + x2

3 +4x3x4−2x3x5−8x2
4 +12x4x5−3x2

5− x2
8 = 0,

x2x4− x2x5− x2
3 + x3x4 + x3x5−3x4x5 +2x2

5 = 0,

x2x7− x3x6− x4x7 + x5x6− x5x7 = 0,

x2x8− x4x6− x4x8 + x5x6− x5x8 = 0,

x3x7− x4x6− x4x7− x4x8 + x5x6 + x5x8 = 0,

x3x8− x4x7 + x5x7− x5x8 = 0,

x6x8− x2
7 + x7x8 + x2

8 = 0.

Genus of X0(95): 9.

Cusps: (−1 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0),(1 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0),(−3/5 : 0 : −2/5 :

−1/5 :−1/5 :−1/5 : 1 : 0 : 0),(3/5 : 0 : 2/5 : 1/5 : 1/5 : 1/5 : 1 : 0 : 0).

C = X0(95)/w19: hyperelliptic curve y2 = x8−2x7−7x6 +16x5−2x4−2x3−4x2 +5.

Group structure of J(C)(Q): J(C)(Q) ≃ Z/2Z · [P+Pσ − 2∞+]⊕Z/10Z · [∞−−∞+],

where

P :=
(1

2
(−
√

5+3) :
1

2
(5
√

5−7) : 1
)
∈C(Q(

√
5)).
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Group structure of G ⊆ J0(95)(Q): G ≃ Z/6Z ·D1 ⊕Z/180Z ·D2, where D1,D2 are

generated by differences of cusps.

Below is the table of all quadratic points on X0(95) (up to Galois conjugacy) apart from

cusps, which are all defined over Q.

Name θ 2 Coordinates j-invariant CM

P1 -19 ( 1
14

(−θ−17): 1
7
(θ−11): 1

7
(θ+3): 1

7
(θ−4): 1

14
(θ+3):1:0:0:0) -884736 -19

Primes used in sieve: 11, 13.
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5.8.6. X0(101)

Model for X0(101):

x2
0−4x2

1−4x1x2 +2x2
2 +8x2x3 +4x2

3−20x3x4−41x2
4 +112x4x5 +18x4x6−22x2

5−204x5x6 +170x2
6− x2

7 = 0,

x0x2− x2
1 +8x3x4−8x2

4−15x4x5 +21x4x6 +32x2
5−61x5x6 +31x2

6 = 0,

x0x3− x1x2 +8x3x4−10x2
4−5x4x5 +17x4x6 +22x2

5−54x5x6 +30x2
6 = 0,

x0x4− x2
2 +6x3x4− x2

4−20x4x5 +15x4x6 +25x2
5−30x5x6 +9x2

6 = 0,

x0x5− x2x3 +4x3x4− x2
4−10x4x5 +6x4x6 +12x2

5−8x5x6 = 0,

x0x6− x2
3 +2x3x4− x4x5− x4x6−2x2

5 +10x5x6−5x2
6 = 0,

x1x3− x2
2 +8x2

4−18x4x5−2x4x6 +5x2
5 +26x5x6−23x2

6 = 0,

x1x4− x2x3 +6x2
4−9x4x5−6x4x6−4x2

5 +33x5x6−24x2
6 = 0,

x1x5− x2
3 +4x2

4− x4x5−8x4x6−10x2
5 +32x5x6−20x2

6 = 0,

x1x6− x3x4 +2x2
4−3x4x6−4x2

5 +12x5x6−8x2
6 = 0,

x2x4− x2
3 +6x4x5−7x4x6−10x2

5 +18x5x6−8x2
6 = 0,

x2x5− x3x4 +4x4x5−2x4x6−5x2
5 +3x5x6 = 0,

x2x6− x2
4 +2x4x5−5x5x6 +3x2

6 = 0,

x3x5− x2
4 +2x4x6 +2x2

5−9x5x6 +6x2
6 = 0,

x3x6− x4x5 +2x2
5−4x5x6 +2x2

6 = 0.

Genus of X0(101): 8.

Cusps: (1 : 0 : 0 : 0 : 0 : 0 : 0 : 1),(−1 : 0 : 0 : 0 : 0 : 0 : 0 : 1).

C = X+
0 (101): elliptic curve y2 + y = x3 + x2− x−1.

Group structure of J(C)(Q): J(C)(Q)≃ Z · [QC−O], where QC := (−1,0).

Group structure of G⊆ J0(101)(Q): G≃ Z ·D101⊕Z/25Z ·T101, where D101, T101 are as

in Subsection 5.6.2.

There are no exceptional non-cuspidal quadratic points on X0(101).

Primes used in sieve: 3, 5.
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5.8.7. X0(119)

Model for X0(119):

x2
0 +8x1x6−8x3x4 +24x3x6 +17x2

4−24x4x5−4x4x6 +5x2
5 +38x5x6−39x2

6− x2
7 +2x2

9 +2x9x10 +6x2
10 = 0,

x0x1 +4x1x6− x3x4 +2x3x6 +3x4x5−4x2
5 +2x5x6−4x2

6− x7x8 + x9x10 + x2
10 = 0,

x0x2−2x1x6 +4x2x6 +2x3x4−6x3x6−4x2
4 +4x4x5 +2x4x6 +3x2

5−14x5x6 +7x2
6− x2

8 = 0,

x0x3−3x1x6 + x3x4− x3x6−3x2
4 +3x4x5−4x2

5 +2x5x6−4x2
6− x8x9− x9x10 = 0,

x0x4−2x1x6 +3x3x4−8x3x6−4x2
4 +5x4x5 +2x4x6 + x2

5−12x5x6 +13x2
6− x2

9−2x2
10 = 0,

x0x5− x1x6− x3x6 + x4x5−3x4x6− x2
5 +4x5x6 + x2

6− x9x10 = 0,

x0x6− x1x6 + x3x4−3x3x6−2x2
4 +3x4x5−6x5x6 +8x2

6− x2
10 = 0,

x0x8− x1x7 + x5x7 +2x5x8− x6x7 +2x6x8 = 0,

x0x9− x2x7 + x4x7 + x5x8 +4x5x9− x5x10− x6x8 + x6x10 = 0,

x0x10− x3x7 + x5x7−2x5x8 + x5x9 +4x5x10 +2x6x7 +2x6x8− x6x9 = 0,

x2
1 +4x2

5−8x5x6 +4x2
6− x2

8 = 0,

x1x2−2x1x6− x2
4 + x4x5 +3x4x6−3x2

5 +4x5x6−5x2
6− x8x9− x9x10 = 0,

x1x3−3x1x6 +3x3x4−6x3x6−3x2
4 +2x4x5 + x4x6 +3x2

5−10x5x6 +13x2
6− x2

9−2x2
10 = 0,

x1x4−2x1x6 + x2
4− x4x5−3x4x6− x2

5 +4x5x6 + x2
6− x9x10 = 0,

x1x5− x1x6 + x3x4−2x3x6− x2
4 +2x4x5− x4x6 + x2

5−6x5x6 +7x2
6− x2

10 = 0,

x1x8− x2x7− x5x8 +2x6x7 + x6x8 = 0,

x1x9− x3x7 + x5x7−2x5x8 +2x5x10 +2x6x7 +2x6x8−2x6x10 = 0,

x1x10− x4x7− x5x8−2x5x9 +2x6x7 + x6x8 +2x6x9 = 0,

x2
2−4x2x6 + x2

4−2x4x5−2x4x6 +2x2
5 +6x2

6− x2
9−2x2

10 = 0,

x2x3−3x2x6−2x3x4 +2x3x6 +3x2
4−2x4x5−4x4x6−3x2

5 +10x5x6− x2
6− x9x10 = 0,

x2x4−2x2x6 + x4x5−3x4x6 + x2
5−4x5x6 +7x2

6− x2
10 = 0,

x2x5− x2x6− x3x4 +2x3x6 + x2
4− x4x5− x2

5 +2x5x6−3x2
6 = 0,

x2x8− x3x7−3x5x8 +3x6x7 + x6x8 = 0,

x2x9− x4x7− x5x8−2x5x9 + x5x10 +2x6x7 + x6x8− x6x10 = 0,

x2x10− x5x7− x5x8− x5x9−2x5x10 + x6x7 + x6x8 + x6x9 = 0,

x2
3−6x3x6−2x2

4 +6x4x5 +2x4x6−3x2
5−6x5x6 +10x2

6− x2
10 = 0,

x3x5− x3x6− x2
4 + x4x5 +3x4x6−2x2

5− x5x6− x2
6 = 0,

x3x8− x4x7−2x5x8 +2x6x7− x6x8 = 0,

x3x9− x5x7− x5x8− x5x9 + x5x10 + x6x7 + x6x8−2x6x9− x6x10 = 0,

x3x10− x5x8− x5x9− x5x10 + x6x8 + x6x9−2x6x10 = 0,

x4x8− x5x7− x5x8 + x6x7− x6x8 = 0,

x4x9− x5x8− x5x9 + x5x10 + x6x8− x6x9− x6x10 = 0,

x4x10− x5x9− x5x10 + x6x9− x6x10 = 0,

x7x9− x2
8 + x2

9 + x2
10 = 0,

x7x10− x8x9 = 0,

x8x10− x2
9− x2

10 = 0.
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Genus of X0(119): 11.

Cusps: (−1 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0 : 0),(1 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0 : 0),(−3/7 : 0 :

−2/7 :−3/7 :−2/7 :−1/7 :−1/7 : 1 : 0 : 0 : 0),(3/7 : 0 : 2/7 : 3/7 : 2/7 : 1/7 : 1/7 : 1 :

0 : 0 : 0).

C = X0(119)/w17: hyperelliptic curve y2 = x10 + 2x8 − 11x6 + 14x5 − 40x4 + 42x3 −
48x2 +28x−7.

Group structure of J(C)(Q): J(C)(Q)≃ Z/9Z · [∞+−∞−].

Group structure of G ⊆ J0(119)(Q): G ≃ Z/8Z ·D1⊕Z/288Z ·D2, where D1,D2 are

generated by differences of cusps.

Below is the table of all quadratic points on X0(119) (up to Galois conjugacy) apart from

cusps which are all defined over Q.

Name θ 2 Coordinates j-invariant CM

P1 -19 ( 1
7
(−2θ+1):0: 1

7
(θ−4): 1

14
(3θ−19): 1

7
(θ+3): 1

14
(θ−11): 1

14
(θ+3):−2:2:−1:1) -884736 -19

P2 -19 ( 1
7
(−2θ+1):0: 1

7
(θ−4): 1

14
(3θ−19): 1

7
(θ+3): 1

14
(θ−11): 1

14
(θ+3):2:−2:1:−1) -884736 -19

Primes used in sieve: 5.
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5.8.8. X0(131)

Model for X0(131):

x2
0−2x2

1−4x1x2−3x2
2 +4x2x3 +6x2

3 +8x3x4 +2x2
4−48x4x5−44x2

5 +38x5x6 +337x2
6−244x6x7−1368x2

7+

3738x7x8−4056x7x9−4088x2
8 +6808x8x9−2706x2

9− x2
10 = 0,

x0x2− x2
1 +12x4x5−2x2

5−36x5x6−3x2
6 +119x6x7−108x2

7 +38x7x8−12x7x9 +22x2
8−8x8x9 +98x2

9 = 0,

x0x3− x1x2 +14x4x5−12x2
5−14x5x6−15x2

6 +113x6x7−106x2
7 +31x7x8−20x7x9 +32x2

8−3x8x9 +86x2
9 = 0,

x0x4− x2
2 +12x4x5−35x5x6 + x2

6 +92x6x7−71x2
7 +4x7x8 +21x7x9 +42x2

8−54x8x9 +93x2
9 = 0,

x0x5− x2x3 +9x4x5−22x5x6−12x2
6 +87x6x7−43x2

7−59x7x8 +84x7x9 +109x2
8−162x8x9 +128x2

9 = 0,

x0x6− x2
3 +6x4x5−5x5x6−27x2

6 +48x6x7 +67x2
7−255x7x8 +280x7x9 +297x2

8−480x8x9 +214x2
9 = 0,

x0x7− x3x4 +4x4x5−4x5x6−12x2
6 +21x6x7 +35x2

7−116x7x8 +128x7x9 +134x2
8−218x8x9 +94x2

9 = 0,

x0x8− x2
4 +2x4x5− x5x6 + x2

6−8x6x7 +18x2
7−25x7x8 +29x7x9 +29x2

8−45x8x9 +11x2
9 = 0,

x0x9− x2
5 +2x5x6 + x2

6−2x6x7−7x2
7 +20x7x8−16x7x9−20x2

8 +37x8x9−10x2
9 = 0,

x1x3− x2
2 +14x2

5−24x5x6−12x2
6 +21x6x7 +98x2

7−261x7x8 +298x7x9 +281x2
8−492x8x9 +202x2

9 = 0,

x1x4− x2x3 +12x2
5−14x5x6−23x2

6 +15x6x7 +131x2
7−334x7x8 +370x7x9 +357x2

8−613x8x9 +240x2
9 = 0,

x1x5− x2
3 +9x2

5−36x2
6 +182x2

7−436x7x8 +468x7x9 +460x2
8−777x8x9 +287x2

9 = 0,

x1x6− x3x4 +6x2
5−17x2

6−13x6x7 +113x2
7−244x7x8 +261x7x9 +249x2

8−428x8x9 +148x2
9 = 0,

x1x7− x2
4 +4x2

5−4x2
6−24x6x7 +71x2

7−122x7x8 +129x7x9 +115x2
8−205x8x9 +59x2

9 = 0,

x1x8− x4x5 +2x2
5− x2

6−8x6x7 +22x2
7−36x7x8 +39x7x9 +33x2

8−62x8x9 +17x2
9 = 0,

x1x9− x5x6 +2x2
6 + x6x7−8x2

7 +18x7x8−19x7x9−19x2
8 +31x8x9−12x2

9 = 0,

x2x4− x2
3 +12x5x6−28x2

6 + x6x7 +99x2
7−246x7x8 +258x7x9 +264x2

8−434x8x9 +160x2
9 = 0,

x2x5− x3x4 +9x5x6−12x2
6−22x6x7 +77x2

7−146x7x8 +149x7x9 +144x2
8−243x8x9 +72x2

9 = 0,

x2x6− x2
4 +6x5x6−29x6x7 +37x2

7−34x7x8 +30x7x9 +21x2
8−42x8x9−7x2

9 = 0,

x2x7− x4x5 +4x5x6−13x6x7 +12x2
7−9x7x8 +6x7x9 +3x2

8−7x8x9−7x2
9 = 0,

x2x8− x2
5 +2x5x6− x6x7−5x2

7 +12x7x8−16x7x9−16x2
8 +26x8x9−11x2

9 = 0,

x2x9− x2
6 +2x6x7 + x2

7−6x7x8 +4x7x9 +7x2
8−12x8x9 +4x2

9 = 0,

x3x5− x2
4 +9x2

6−24x6x7 +6x2
7 +34x7x8−39x7x9−50x2

8 +74x8x9−45x2
9 = 0,

x3x6− x4x5 +6x2
6−9x6x7−17x2

7 +59x7x8−64x7x9−67x2
8 +109x8x9−47x2

9 = 0,

x3x7− x2
5 +4x2

6−22x2
7 +48x7x8−52x7x9−51x2

8 +86x8x9−31x2
9 = 0,

x3x8− x5x6 +2x2
6−7x2

7 +16x7x8−19x7x9−21x2
8 +32x8x9−12x2

9 = 0,

x3x9− x6x7 +2x2
7−3x7x8− x7x9 +2x2

8−4x8x9−2x2
9 = 0,

x4x6− x2
5 +6x6x7−18x2

7 +31x7x8−33x7x9−29x2
8 +52x8x9−15x2

9 = 0,

x4x7− x5x6 +4x6x7−6x2
7 +3x7x8−2x7x9− x2

8 +2x8x9 +4x2
9 = 0,

x4x8− x2
6 +2x6x7−5x7x8 +4x7x9 +3x2

8−7x8x9 +4x2
9 = 0,

x4x9− x2
7 +2x7x8−6x7x9−3x2

8 +5x8x9−5x2
9 = 0,

x5x7− x2
6 +4x2

7−12x7x8 +14x7x9 +13x2
8−23x8x9 +10x2

9 = 0,

x5x8− x6x7 +2x2
7−4x7x8 +2x7x9 + x2

8−3x8x9 = 0,

x5x9− x7x8−3x7x9 + x8x9−3x2
9 = 0,

x6x8− x2
7 +2x7x8−3x7x9−4x2

8 +5x8x9−2x2
9 = 0,

x6x9−2x7x9− x2
8 + x8x9−2x2

9 = 0.
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Quad. pts. on bielliptic curves Final results and tables

Genus of X0(131): 11.

Cusps: (1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1),(−1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1).

C = X+
0 (131): elliptic curve y2 + y = x3− x2 + x

Group structure of J(C)(Q): J(C)(Q)≃ Z · [QC−O], where QC := (0,0).

Group structure of G ⊆ J0(131)(Q): G ≃ Z/65Z · T131, where T131 is as in Subsection

5.6.2.

There are no exceptional non-cuspidal quadratic points on X0(131).

Primes used in sieve: 3, 5.
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CONCLUSION

In this thesis, we gave a complete classification of E(Q(µp∞))tors, where E/Q is an elliptic

curve and p≤ 11 a prime number. We have shown that, given an elliptic curve E/Q, the

group E(Q(µp∞))tors is either one of the groups from Mazur’s theorem or one of the

following groups:

• For p = 2: Z/4Z⊕Z/4Z or Z/2Z⊕Z/10Z.

• For p = 3: Z/21Z, Z/27Z, Z/3Z⊕Z/3Z, Z/3Z⊕Z/6Z or Z/3Z⊕Z/9Z.

• For p = 5: Z/15Z, Z/16Z or Z/5Z⊕Z/5Z.

• For p = 7: Z/13Z, Z/14Z, Z/18Z, Z/2Z⊕Z/14Z or Z/2Z⊕Z/18Z.

• For p = 11: Z/11Z, Z/25Z or Z/2Z⊕Z/10Z.

We also gave a complete classification of the possible cyclic isogeny degrees of non-

CM elliptic curves over quadratic fields with a rational j-invariant. We proved that, given

a non-CM elliptic curve E/K where K is some quadratic field, the possible cyclic isogeny

degrees of E are those from the Mazur’s theorem on isogenies plus the elements of the set

{20,24,32,36}. We also determined all the quadratic points on X0(91) in the process.

Lastly, we described all the quadratic points on all bielliptic curves X0(n) for the values

of n for which this has not been done before. This includes n∈{60,62,69,79,83,89,92,94,

95,101,119,131}.
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