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Summary

The main goal of this thesis is to discuss renewal theorems in the framework of the

cluster point processes on the real line. More precisely, under appropriate integrability

assumptions, we describe the asymptotic distribution of the shifted renewal cluster point

process and, as a consequence, we show that its mean measure on a bounded interval

is asymptotically proportional to the length of the interval. Also, we prove the equiv-

alent version of the latter result that allows one to determine the asymptotic behavior

of the functions of special convolution form. These generalizations of the well-known

results from the standard renewal theory are obtained using the methods and tools of

modern probability theory, such as point process theory, especially vague convergence,

and coupling method.

Keywords: cluster point processes, Blackwell’s renewal theorem, the key renewal

theorem, the extended renewal theorem
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Sažetak

Glavni cilj ove disertacije je diskutirati teoreme obnavljanja u kontekstu točkovnih

procesa s klasterima na skupu realnih brojeva. Preciznije, uz odredene pretpostavke na

prve momente, opisujemo asimptotsku distribuciju pomaknutog točkovnog procesa s klas-

terima te, kao posljedicu, pokazujemo da je srednja mjera takvog procesa na ograničenom

intervalu proporcionalna duljini intervala. Takoder, dokazujemo ekvivalentnu verziju

prethodnog rezultata koja omogućuje odredivanje asimptotskog ponašanja konvolucije

funkcija specijalnog oblika. Navedene generalizacije dobro poznatih rezultata iz stan-

dardne teorije obnavljanja su dobivene korǐstenjem metoda i alata moderne teorije vjero-

jatnosti, kao što su teorija točkovnih procesa, posebno vague konvergencija, te metoda

sparivanja.

Ključne riječi: točkovni procesi s klasterima, Blackwellov teorem obnavljanja, ključni

teorem obnavljanja, prošireni teorem obnavljanja
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Chapter 1

Introduction

1.1 Motivation

Renewal theory has a long history and many applications in different areas of mathe-

matics and engineering. In its simplest form, it studies the so-called renewal process, i.e.

a process of renewal times Tn, which satisfy Tn = X0 +X1 + · · ·+Xn for some sequence of

i.i.d. nonnegative random variables (Xn)n≥1 independent of the initial nonnegative random

variable X0. Blackwell’s renewal theorem shows that the expected number of renewals in

an interval of a bounded length is asymptotically proportional to that length, provided

that the distribution of Xn’s is nonarithmetic and has a finite mean. Several related

results soon appeared in the literature, for instance concerning the limiting distribution

of the overshoot over a given level t and also concerning the asymptotic behaviour of the

solutions of the so-called renewal equation. The latter result is known as the key renewal

theorem. Although their statements are intuitively simple, initial proofs of various re-

newal theorems were rather analytical until the arrival of the so-called coupling method

to probability theory, as described in the books by Lindvall [Lin02] and Thorisson [Tho00].

First generalizations of the renewal theorems to random walks appeared soon after the

original results, see e.g. [Bla53]. Since then, renewal theorems have been extended to a

number of other stochastic processes, for instance to Markov renewal processes, see [Ç69],

to nonlinear renewal sequences, see [LS77] and [LS79], and recently to iterated random

walks, see [IRS22] and [BIMR22].

It appears to be quite natural to discuss renewal theory from the point process view-

point. In [Kal17], a so-called extended renewal theorem is presented, which describes the

1



Introduction

asymptotic distribution of renewal times after time t, using the language of point process

theory. Furthermore, in the last couple of years Iksanov and coauthors derived renewal

theorems for random processes with immigration, see [Iks16b] and [IMM17]. Continuing

their research, Marynych, see [Mar15], extended these results by relaxing the indepen-

dence assumptions.

In some applications, it makes sense to assume that the renewal times are accompanied

by a cluster of points. For instance, Mikosch in his non-life insurance mathematics book

[Mik09] devoted a whole chapter to cluster point processes. Furthermore, Daley and

Vere-Jones in [DVJ03] explain how Poisson cluster processes have been proved useful

in a variety of fields when modelling events which cluster either in space or time. For

applications in financial mathematics, see e.g. [BMM15], in seismology, see e.g. [CS18], in

neurology, see e.g. [WDWL20], or in teletraffic engineering, see e.g. [FGAMS06].

Initial renewal results for some special cluster point processes appeared already in the

1960s. For instance, Lewis in [Lew64] studied the limiting distribution of the overshoot

over a given level t, relying on analytical methods and special Poissonian character of a

process. However, the corresponding renewal theory remains comparatively undeveloped

in the setting of cluster point processes.

1.2 Chapter overview

This thesis is divided in four chapters. In Chapter 2 we introduce the basic theoretical

concepts of point processes which will be used throughout the thesis, including station-

arity and convergence in distribution. Since the latter depends on the choice of topology

on the space of point measures Mp(S), we describe the vague topology on this space.

Furthermore, we present some important classes of point processes: Poisson process, the

renewal point process and the marked point process, whose study will be continued in

subsequent chapters.

Chapter 3 deals with the main results of renewal theory, including the stationary

version of a given renewal process, equivalent versions of the renewal theorem, as well as

its extended version. The above-mentioned subjects are a basis for a more sophisticated

renewal theory for the renewal cluster point processes studied in the final chapter.

Chapter 4 is the central part of the thesis where we define renewal cluster point

2



Chapter overview

process on the real line and give, under certain first moment conditions, extension of the

classical renewal theorems to this case. We apply this results to some special cluster point

processes and conduct a short simulation study. Also, as an auxiliary result, we give an

alternative proof of the extended renewal theorem for the marked point processes based

on the coupling method.

3



Introduction

4



Chapter 2

Point processes

This chapter is intended to be a brief but comprehensive introduction to the study

of point processes on general Polish spaces. We give formal definitions and overview of

the results from the existing literature necessary for understanding the material in the

central part of this thesis. Furthermore, we introduce the notation which will be used

in the subsequent chapters. This part of the thesis is influenced mostly by the books by

Kallenberg [Kal17], Resnick [Res87] and Karr [Kar91], as well as the short note by Basrak

and Planinić [BP19].

2.1 Boundedness

Let S be a Polish space, meaning that S is a topological space whose topology is

induced by some metric d on S and (S, d) is a complete separable metric space. It is well-

known that R with the usual topology induced by the Euclidean norm is Polish, as well as

N with the discrete topology. Furthermore, the product of countably many Polish spaces

is Polish. In particular, RN equipped with the product topology of the usual topologies

is Polish. The σ-algebra generated by the topology of S is called the Borel σ-algebra of S

and denoted by B(S).

Definition 2.1.1. A (Borel) boundedness Bb(S) on S is a family of Borel subsets of S,

called bounded sets, satisfying the following conditions:

(i) every subset of a bounded set is a bounded set,

(ii) a finite union of bounded sets is a bounded set.

5



Point processes

For notational convenience, when there is no fear of confusion, we will omit the state

space S and simply write B instead of B(S) and Bb instead of Bb(S).

A boundedness is said to properly localize S if there exists a sequence of open bounded

sets (Un)n≥1 such that for every bounded set B there exists n ∈ N such that B ⊆ Un,

S ⊆
⋃

n∈N Un and Un ⊆ Un+1, for all n ∈ N, where Un denotes the closure of a set Un in

S. Sequence (Un)n is called a proper localizing sequence.

Theorem 2.1.2. Boundedness Bb properly localizes S if and only if there exists metric on

S which generates the topology of S and under which the metrically bounded Borel subsets

of S coincide with Bb.

For the proof of the above theorem we refer to Theorem 2.1 in [BP19]. We now give

examples of boundednesses which will be used in the sequel, as well as the one which is

important in the theory of regular variation.

Example 2.1.3.

(i) Let S = R and Bb = {B ∈ B : ∃h > 0 such that B ⊆ [−h, h]}. Observe that such Bb

properly localizes R since one can take Un = ⟨−n, n⟩, n ∈ N, as a proper localizing

sequence.

(ii) Denote by M a general Polish space. Let S = R × M and Bb = {B ∈ B : ∃h >

0 such that B ⊆ [−h, h]×M}. Observe that such Bb properly localizes R×M since

one can take Un = ⟨−n, n⟩ ×M, n ∈ N, as a proper localizing sequence.

(iii) Let S = R\{0} and Bb = {B ∈ B : ∃ε > 0 such that |x| > ε, for all x ∈ B}.

Observe that such Bb properly localizes R\{0} since one can take Un = ⟨−∞,− 1
n
⟩∪

⟨ 1
n
,+∞⟩, n ∈ N, as a proper localizing sequence.

From now on, we will always assume that the space S is properly localized by a family

of bounded sets Bb.

2.2 Vague convergence

A Borel measure m on S is said to be locally finite if m(B) < ∞ for all B ∈ Bb.

The space of all such measures will be denoted by M(S). Let M(S) denote the smallest

σ-algebra on M(S) making the mappings m 7→ m(B) measurable for all B ∈ Bb, i.e.

M(S) = σ{m 7→ m(B) : B ∈ Bb} .

6



Vague convergence

Definition 2.2.1. For measures m,m1,m2, . . . ∈ M(S), a sequence (mn)n≥1 is said to

converge vaguely to m, denoted by mn
v
−→ m, if

∫

S

f(x)mn(dx) →

∫

S

f(x)m(dx) ,

as n → ∞, for all continuous and bounded real-valued functions f on S with bounded

support.

Let CBb(S) denote the family of all functions as in Definition 2.2.1 and CB+
b (S) the

subset of all nonnegative functions in CBb(S). In the sequel, we will occasionally use

compact integral notation m(f) =
∫
S
f(x)m(dx).

Remark 2.2.2. There are other approaches to vague convergence of locally finite measures

on Polish spaces. The above presented concept of vague convergence puts emphasize on

the notion of bounded set which is defined without reference to a metric. Just by choosing

a different family of bounded sets in S one changes the space of locally finite measures and

consequently the corresponding notion of vague convergence of locally finite measures. On

the other hand, concept of vague convergence in [Kal17] is based on metrically bounded

Borel sets with respect to a metric generating the topology of S. However, the assumption

that the boundedness Bb properly localizes S and Theorem 2.1.2 allow one to unite the

two concepts. More on this subject, as well as the connection with other frequently used

types of vague convergence from the literature can be found in [BP19], see Section 2.

The following result gives some useful characterizations of vague convergence in terms

of sets. For the proof see Lemma 4.1 in [Kal17].

Theorem 2.2.3. (Portmanteau theorem) Let m,m1,m2, . . . ∈M(S). The following state-

ments are equivalent:

(i) mn
v
−→ m,

(ii) lim
n→∞

mn(B) = m(B), for all B ∈ Bb such that m(∂B) = 0,

(iii) m(Bo) ≤ lim inf
n→∞

mn(B) ≤ lim sup
n→∞

mn(B) ≤ m(B), for all B ∈ Bb,

where Bo denotes the interior and ∂B the boundary of B.

On M(S) we introduce the topology giving the notion of vague convergence in the

following way. The family of all finite intersections of sets of the form

{m ∈M(S) : a < m(f) < b} ,

7



Point processes

for any f ∈ CB+
b (S) and 0 < a < b forms a base for a topology on M(S). This topology

is equivalent to the topology generated by the mappings m 7→ m(f), f ∈ CB+
b (S), i.e.

the smallest topology making these mappings continuous. By Lemma 4.7 in [Kal17], σ-

algebra generated by the vaguely open sets in M(S) coincides with the above introduced

σ-algebra M(S).

Recall that for every x ∈ S, mapping δx : B → {0, 1} given by

δx(B) =





1 , x ∈ B ,

0 , otherwise ,

defines the Dirac measure concentrated at x.

Definition 2.2.4. A point measure on S is a locally finite measure given by

m =
l∑

i=1

δxi
,

for some 0 ≤ l ≤ +∞ and not necessarily distinct points x1, x2, . . . , xl ∈ S.

Note that in case of point measures

m(f) =
l∑

i=1

f(xi) ,

for all measurable functions f : S → R. Furthermore, we say that m is simple if m({x}) ≤

1, for all x ∈ S.

The space of all point measures on S will be denoted by Mp(S). Note that one can

equivalently define point measures as integer-valued measures in M(S), see Theorem 2.18

in [Kal21]. Denote by Mp(S) the induced sub σ-algebra of M(S) on Mp(S).

The following result gives a characterization of vague convergence of point measures

in terms of points, see Proposition 2.8 in [BP19], cf. also Proposition 3.13 in [Res87].

Proposition 2.2.5. Let m,m1,m2, . . . ∈ Mp(S). Then mn
v−→ m, as n → ∞, if and

only if for every B ∈ Bb such that m(∂B) = 0 there exist k, n0 ∈ N and a labeling of

points of m and mn, n ≥ n0, in B such that

mn

∣∣∣∣
B

=
k∑

i=1

δxi
(n) and m

∣∣∣∣
B

=
k∑

i=1

δxi

and

xi
(n) → xi in S , for all i = 1, 2, . . . , k ,

as n→ ∞, where m

∣∣∣∣
B

denotes the restriction of a measure m to the set B.

8



Vague convergence

We now give a proof of a fundamental topological result, see also Proposition 9.1.IV.

(iii) in [DVJ08].

Proposition 2.2.6. The space Mp(S) equipped with the vague topology is Polish.

Proof. By Theorem 4.2 in [Kal17], see also Section 3 in [BP19], M(S) is Polish. Adapting

the proof of Proposition 3.14 in [Res87] on a locally compact state space with countable

base to our setting, we show that Mp(S) is vaguely closed in M(S), hence Polish itself.

Let m1,m2, . . . ∈Mp(S), m ∈M(S) and mn
v
−→ m. Denote

B0 = {B ∈ Bb : m(∂B) = 0} .

Then, by Theorem 2.2.3, mn(B) → m(B), for all B ∈ B0, as n → ∞. Since N is closed

in R+, m(B) is a nonnegative integer, for all B ∈ B0.

Let (Un)n≥1 be a proper localizing sequence and set

Bn =




Un , m(∂Un) = 0 ,

U ε
n , m(∂Un) > 0 ,

for all n ∈ N, where

U ε
n = {x ∈ S : d(x, Un) < ε} ,

and d is a metric from Theorem 2.1.2. Note that by choosing the metric d from Theorem

2.1.2, one can find ε0 > 0 such that U ε0
n ∈ Bb and U ε0

n ⊆ Un+1. Observe that for all

0 < ε ≤ ε0, ∂U
ε
n ⊆ {x ∈ S : d(x, Un) = ε} and therefore {∂U ε

n : 0 < ε ≤ ε0} is a disjoint

family of sets. Then U ε
n ∈ B0 for all but at most countably many 0 < ε ≤ ε0, otherwise

m(U ε0
n ) = ∞. Hence, (Bn)n≥1 ⊆ B0 and S ⊆

⋃
n∈NBn.

Fix n ∈ N and let

Bn = {B ∈ B : m(B ∩ Bn) is a nonnegative integer} .

Note that B ∈ B0 implies B ∩ Bn ∈ B0, hence B0 ⊆ Bn. One easily checks that B0 is a

π−system and Bn is a λ−system. Hence Dynkin’s π−λ theorem, see e.g. Theorem A.1.4

in [Dur10], yields σ(B0) ⊆ Bn. Furthermore, by [Kal17] Lemma 1.9 (v) and the discussion

before it, we conclude that σ(B0) = B. Hence, B = Bn.

It now immediately follows that, for every B ∈ B,

m(B) = lim
n→∞

m(B ∩ Bn) ∈ {0, 1, . . . ,+∞} ,

which completes the proof.

9



Point processes

The next result, which is a simple generalisation of Proposition 3.18 in [Res87], gives

a sufficient condition for continuity of functionals on Mp(S).

Lemma 2.2.7. Let S′ and S be Polish spaces. Suppose f : S′ → S is a continuous function

which satisfies

f−1(B) ∈ Bb(S
′), for all B ∈ Bb(S) , (2.1)

then Tf : Mp(S
′) →Mp(S) defined by

Tf (m) = m ◦ f−1 ,

i.e.

Tf

(
l∑

i=1

δxi

)
=

l∑

i=1

δf(xi)

is continuous.

Proof. Let m,m1,m2, . . . ∈Mp(S
′) and mn

v
−→ m. For g ∈ CB+

b (S), we obtain

(Tf (mn))(g) = mn ◦ f
−1(g) =

∫

S

g(x)mn ◦ f
−1(dx)

=

∫

S′
(g ◦ f)(x)mn(dx) = mn(g ◦ f) ,

where we have used the change of variable formula in the third equality. Obviously, g ◦ f

is continuous, bounded and nonnegative. Denote the bounded support of g with supp g.

Since x ∈ f−1(supp g) if g(f(x)) ̸= 0 and f−1(supp g) is bounded by assumption (2.1), we

conclude that g ◦ f ∈ CB+
b (S′). Therefore, mn

v
−→ m implies

(Tf (mn))(g) = mn(g ◦ f) → m(g ◦ f) = (Tf (m))(g) ,

as n→ ∞, which proves the claim.

For a continuous function f , requirement (2.1) is automatically satisfied whenever S′

is bounded.

2.3 Fundamentals of point processes

Let (Ω,F ,P) be a probability space. A random measure ξ on S is a measurable map

from (Ω,F ,P) into (M(S),M(S)). Equivalently, we may define a random measure on S

as a locally finite kernel from Ω to S. Thus,

10



Fundamentals of point processes

• for fixed ω ∈ Ω, the mapping B 7→ ξ(ω,B) is a locally finite measure,

• for fixed B ∈ B, the mapping ω 7→ ξ(ω,B) is a random variable.

Definition 2.3.1. A point process ξ on S is an integer-valued random measure.

Alternatively, a point process on S can be defined as a measurable mapping from

(Ω,F ,P) into (Mp(S),Mp(S)). Furthermore, by Theorem 2.18 in [Kal21], one can write

ξ =
L∑

i=1

δXi
, (2.2)

for some random elements X1, X2, . . . ∈ S and a random variable L with values in

{0, 1, . . . ,+∞}. We will call (Xi)i the points of a point process ξ. However, we will

use a slightly different notation and terminology on R, since it is a custom to denote the

points of a point process on R with a nondecreasing sequence of arrival times (Ti)i. A

point process ξ is said to be simple if

P(ξ({x}) ≤ 1, for all x ∈ S) = 1 .

Definition 2.3.2. The mean measure of a point process ξ on S is the measure Eξ on S

given by

Eξ(B) = E[ξ(B)] , for all B ∈ B .

Note that the mean measure of a point process ξ is not necessarily a locally finite

measure, since the expected value of a random variable ξ(B) can be infinite, even for

B ∈ Bb.

Let ξ be a point process on Rd, d ∈ N. If there exists a nonnegative measurable

function λ : Rd → R such that

Eξ(B) =

∫

B

λ(x)dx , for all B ∈ B ,

then the function λ is called the intensity function of ξ. If λ is a constant, then it is called

the intensity of ξ. Note that in this case mean measure is a multiple of the Lebesgue

measure, which will be denoted by Leb in the sequel.

Example 2.3.3 (Poisson process). Assume that Λ is a given locally finite measure on S.

The point process ξ on S is called a Poisson (point) process or, synonymously, Poisson

random measure with mean measure Λ if it satisfies

11



Point processes

(i) for all k ∈ N and for all B ∈ Bb

P(ξ(B) = k) = e−Λ(B)Λ(B)k

k!
, (2.3)

(ii) for all k ∈ N and for all disjoint sets B1, . . . , Bk ∈ Bb

ξ(B1), . . . , ξ(Bk)

are independent random variables.

Note that the local finiteness of the mean measure Λ ensures that, for any B ∈ Bb,

ξ(B) <∞ a.s., as required in the definition of a point process.

Example 2.3.4 (Homogeneous Poisson process on R+). Poisson process ξ on R+ =

[0,∞⟩ with mean measure λLeb, for some λ > 0, is called the homogeneous Poisson

(point) process on R+ with intensity λ. It can be equivalently defined, see for instance

Proposition 4.2.1 in [Res92], as a point process

ξ =
∞∑

i=1

δTi
,

for Ti, i ≥ 1 given by Ti =
∑i

j=1Ej, where Ej, j ≥ 1 are i.i.d. exponential random variables

with rate λ.

Example 2.3.5 (Renewal point process on R+). Given a renewal sequence (Ti)i≥0, the

associated renewal point process ξ is defined by

ξ =
∞∑

i=0

δTi
.

By Lemma 3.1.5 it follows that ξ(B) <∞ a.s., for all B ∈ Bb, hence ξ is well-defined.

Definition 2.3.6. The distribution of a point process ξ on S defined over (Ω,F ,P) is the

probability measure Pξ on Mp(S) given by

Pξ(A) = P(ξ ∈ A) , for all A ∈ Mp(S) .

We say that point processes ξ1 and ξ2, not necessarily defined over the same probability

space, are equal in distribution if Pξ1 = Pξ2 and we denote it by ξ1
d
= ξ2.

Definition 2.3.7. The Laplace functional of a point process ξ on S is the mapping Lξ

defined by

Lξ(f) = Ee−ξ(f) ,

for all nonnegative measurable functions f : S → R.

12



Fundamentals of point processes

Laplace functional Lξ uniquely determines the distribution Pξ of a point process ξ,

see Proposition 3.5 in [Res87]. However, as will be stated below, analogous result is valid

even for some smaller families of functions.

Example 2.3.8. The Laplace functional of a Poisson process ξ on S with mean measure Λ

is given by

Lξ(f) = exp

ß
−

∫

S

(1 − e−f(x))Λ(dx)

™
,

for all nonnegative measurable functions f : S → R.

Definition 2.3.9. The avoidance (or void) probability function of a point process ξ on S

is the function vξ defined by

vξ(B) = P(ξ(B) = 0) , for all B ∈ B .

Example 2.3.10. For a Poisson process ξ on S with mean measure Λ it follows directly

from (2.3) that vξ(B) = e−Λ(B), for all B ∈ Bb.

The next theorem gives some useful characterizations of the distribution of a point

process. For the proof see Theorem 2.2 and Corollary 2.3 in [Kal17].

Theorem 2.3.11. For point processes ξ1 and ξ2 on S the following assertions are equiv-

alent:

(i) ξ1
d
= ξ2,

(ii) (ξ1(B1), . . . , ξ1(Bk))
d
= (ξ2(B1), . . . , ξ2(Bk)), for all k ∈ N and all B1, . . . , Bk ∈ Bb,

(iii) ξ1(f)
d
= ξ2(f), for all f ∈ CB+

b (S),

(iv) Lξ1(f) = Lξ2(f), for all f ∈ CB+
b (S).

For simple point processes ξ1 and ξ2 on S, additional equivalent assertion is given by

(v) vξ1(B) = vξ2(B), for all B ∈ Bb.

We associate with a point process ξ on S a σ-algebra

F ξ = σ{ξ(B) : B ∈ B} ,

which represents complete knowledge of ξ.

Definition 2.3.12. A family {ξi : i ∈ I} of point processes on S, defined on the same

probability space, for an arbitrary set I, is said to be independent if the family of σ-algebras

{F ξi : i ∈ I} is independent.

13
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2.4 Convergence in distribution

The following definition is a standard definition of convergence in distribution of a

sequence of random elements in a Polish space.

Definition 2.4.1. A sequence (ξn)n≥1 of point processes on S converges in distribution

to a point process ξ on S, denoted by ξn
d
−→ ξ, if

Ef(ξn) → Ef(ξ) ,

as n→ ∞, for all bounded and continuous real-valued functions f on Mp(S).

Note that,

Ef(ξ) =

∫

Ω

f(ξ(ω))P(dω) =

∫

Mp(S)

f(m)Pξ(dm) ,

where (Ω,F ,P) is the underlying probability space for ξ. It is apparent that point pro-

cesses ξ, ξ1, ξ2, . . . in Definition 2.4.1 do not have to be defined over the same probability

space.

Since continuity is defined with respect to the topology and a point process on S can be

regarded as a random element with values in Mp(S), convergence in distribution of point

processes on S therefore depends on the choice of topology on Mp(S). We will consider

convergence in distribution in Mp(S) with respect to the vague topology. The following

result gives some basic characterizations of this convergence, for the proof see Theorems

4.11 and 4.15 in [Kal17].

Theorem 2.4.2. Let ξ, ξ1, ξ2, . . . be point processes on S. The following statements are

equivalent:

(i) ξn
d
−→ ξ ,

(ii) (ξn(B1), . . . , ξn(Bk))
d
−→ (ξ(B1), . . . , ξ(Bk)) , for all k ∈ N and all B1, . . . , Bk ∈ Bb

such that ξ(∂Bi) = 0 a.s., for each i = 1, . . . , k ,

(iii) ξn(f)
d
−→ ξ(f) , for all f ∈ CB+

b (S) ,

(iv) Lξn(f) → Lξ(f) , for all f ∈ CB+
b (S) ,

as n→ ∞. If ξ is a simple point process on S, additional equivalent assertion is given by

14
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(v) vξn(B) → vξ(B) , for all B ∈ Bb such that ξ(∂B) = 0 a.s. and

lim sup
n→∞

P(ξn(B) > 1) ≤ P(ξ(B) > 1) , for all B ∈ Bb such that ξ(∂B) = 0 a.s.

In the following example, as a consequence of Theorem 2.4.2, we obtain a necessary

condition for convergence in distribution of point processes on R+.

Example 2.4.3. Let ξ =
∑∞

i=1 δTi
with 0 ≤ T1 ≤ T2 ≤ . . . and ξn =

∑∞
i=1 δTni

with

0 ≤ Tn1 ≤ Tn2 ≤ . . ., n ≥ 1, be point processes on R+. Then ξn
d
−→ ξ implies

(Tn1, . . . , Tnk)
d
−→ (T1, . . . , Tk) ,

for all k ∈ N, as n → ∞. Indeed, let ξn
d
−→ ξ as n → ∞. Then, by Theorem 2.4.2

(i) ⇒ (ii), for all k ∈ N and all 0 ≤ x1 ≤ . . . ≤ xk such that ξ({0, xi}) = 0 a.s., for

i = 1, . . . , k

(ξn⟨0, x1], . . . , ξn⟨0, xk])
d
−→ (ξ⟨0, x1], . . . , ξ⟨0, xk]) ,

thus

P(ξn⟨0, x1] = 1, . . . , ξn⟨0, xk] = k) → P(ξ⟨0, x1] = 1, . . . , ξ⟨0, xk] = k) ,

and

P(Tn1 ≤ x1, . . . , Tnk ≤ xk) → P(T1 ≤ x1, . . . , Tk ≤ xk) ,

as n→ ∞, which proves the statement.

In the above example and in the sequel, we use abbreviation ξ⟨0, x] for ξ(⟨0, x]) to

avoid abundance of parentheses. Analogous abbreviations, for all a, b ∈ R ∪ {±∞} such

that a ≤ b and all types of intervals, will be used in the sequel without any further notice.

2.5 Stationarity

In this part we consider point processes on finite-dimensional Euclidean spaces. For

any constant t ∈ Rd, d ∈ N, let θt denote the shift operator defined by

θts = s− t ,

for all s ∈ Rd. For an arbitrary m in Mp(R
d), the shifted measure θtm is defined by

θtm(B) = m(B + t) ,

for all B ∈ B, where B + t = {b + t : b ∈ B}. Equivalently, shifted measure θtm can

be defined in terms of integrals by θtm(f) = m(f ◦ θt), for all nonnegative measurable

functions f on Rd.

15
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Definition 2.5.1. A point process ξ on Rd is stationary if

θtξ
d
= ξ ,

for all t ∈ Rd.

Note that θtξ is indeed a point process, as a composition of two measurable mappings

and since B + t ∈ Bb, for all B ∈ Bb and t ∈ R. Proof that, for all t ∈ Rd, θt : Mp(R
d) →

Mp(R
d) is measurable can be found, for instance, in [DVJ08] (see Lemma 12.1.I).

To be consistent with the terminology introduced in Section 2.3, we will denote λ :=

Eξ[0, 1]d and call it the intensity of ξ. Stationarity of ξ implies that its mean measure is

shift invariant, that is Eξ(B + t) = Eξ(B), for all B ∈ B and all t ∈ Rd. If additionally

ξ has a finite intensity λ, then it follows e.g. from Theorem 5.8 (ii) in [Sch17] that the

mean measure of a stationary point process ξ on Rd is a multiple of a Lebesgue measure,

i.e.

Eξ(B) = λLeb(B) for all B ∈ B .

The converse is generally not true. However, by Proposition 8.3 in [LP18], a Poisson

process on Rd with finite intensity λ is stationary if and only if its mean measure equals

λLeb.

By the so-called 0 −∞ law (see Lemma 5.2 in [Kal17]), any stationary point process

ξ ̸= 0 on Rd has infinitely many points. Additionally, if d = 1 and point process is simple,

points of ξ may be enumerated as

. . . < T−2 < T−1 < 0 ≤ T0 < T1 < T2 < . . . .

Remark 2.5.2. Note that it is a standard in the point process literature to enumerate the

first point on R+ with T1. However, that differs from the usual enumeration of points in

the renewal theory, where the first point on R+ is denoted as T0. Careful reader may have

noticed that we have already used both enumerations, see e.g. Examples 2.3.4 and 2.3.5.

Since our main interest are point processes with certain renewal structure, we embrace

the latter enumeration.

The above described concept of stationarity will sometimes be referred to as time

stationarity to avoid confusion with point stationarity. The latter one can be found in

the literature also by the name cycle stationarity.
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Definition 2.5.3. A simple point process ξ̃ =
∑

i∈Z δT̃i
on R with . . . < T̃−1 < 0 ≤ T̃0 <

T̃1 < . . . is point stationary if

θT̃k
ξ̃

d
= ξ̃ ,

for all k ∈ Z.

It is obvious that a simple point stationary point process ξ̃ has a point at 0 a.s.

Furthermore, note that random variables T̃k − T̃k−1, for all k, form a stationary sequence.

In fact, it is easy to show that a simple point process with these properties is necessarily

point stationary.

A simple point process on R can be stationary with respect to time shifts, which yields

the concept of time stationarity, or with respect to point shifts, which yields the concept

of point stationary. These two forms of stationarity are mutually exclusive.

Example 2.5.4. Let Ei, i ∈ Z be i.i.d. exponential random variables with rate λ > 0.

(i) Time stationary Poisson process on R with intensity λ is given by

ξ =
∑

i∈Z

δTi
,

where T0 = E0, Ti =
∑i

j=0Ej and T−i = −
∑−1

j=−iEj, i ≥ 1.

(ii) Point stationary Poisson process on R with intensity λ is given by

ξ̃ =
∑

i∈Z

δT̃i
,

where T̃0 = 0, T̃i =
∑i

j=1Ej and T̃−i = −
∑0

j=−i+1Ej, i ≥ 1.

2.6 Marked point processes

To each point of a point process may be attached an attribute. In many examples,

this attribute is a way of adding some additional data or information about the point.

For instance, to each point of the point process of claim arrival times we may attach the

claim size.

Definition 2.6.1. Let ζ =
∑L

i=1 δXi
be a point process on S and let (Wi)i be a random

sequence with values in a Polish space M. A point process

ξ =
L∑

i=1

δ(Xi,Wi)

on S×M is called a marked point process on S with marks in M.

17
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We will refer to the point process ζ as the ground process, to the random element Wi

in M as the mark associated to Xi and to the space M as the mark space.

We will be mostly interested in the marked point processes with ground process on

R. In Example 2.1.3 (ii), we have seen that the boundedness Bb = {B ∈ B : ∃h >

0 such that B ⊆ [−h, h] × M} properly localizes R × M. Hence, if ξ takes values in

Mp(R×M) then ξ(A×M) <∞ a.s., for an arbitrary A ∈ Bb(R).

Typical examples of mark spaces are M = N or M = Rd. However, marks can be very

general random elements. By Proposition 2.2.6, Mp(S) is a Polish space, hence marks can

even be point processes.

Example 2.6.2 (Independently marked point process). Let ζ =
∑L

i=1 δXi
be a point

process on S and let (Wi)i be a sequence of i.i.d. random variables independent of ζ with

values in a Polish space M. Then the marked point process ξ =
∑L

i=1 δ(Xi,Wi) is called an

independently marked point process on S with marks in M.

Both concepts of stationarity extend immediately to marked point processes with

ground process on R. A marked point process ξ =
∑

i∈Z δ(Ti,Wi) on R with marks in M is

said to be (time) stationary if

θtξ =
∑

i∈Z

δ(Ti−t,Wi)
d
= ξ ,

for all t ∈ R. Furthermore, we say that a marked point process ξ on R with marks in

M is simple if P(ξ({t} × M) ≤ 1 , for all t ∈ R) = 1. A simple marked point process

ξ̃ =
∑

i∈Z δ(T̃i,W̃i)
on R with marks in M is said to be point stationary if

θT̃k
ξ̃ =

∑

i∈Z

δ(T̃i−T̃k,W̃i)

d
= ξ̃ ,

for all k ∈ Z.

Starting from a simple marked point stationary process ξ̃ on R with marks in M it is

relatively easy to see that

Ef(ξ) =
1

µ
E

∫ T̃1

0

f(θtξ̃)dt , (2.4)

where µ = ET̃1 ∈ ⟨0,∞⟩ and f is an arbitrary nonnegative measurable function on

Mp(R × M), defines a distribution of a stationary marked point process ξ on R with

marks in M. Indeed, for any n ∈ N and an arbitrary nonnegative bounded measurable
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function f on Mp(R×M),

nEf(ξ) =
1

µ
En

∫ T̃1

0

f(θtξ̃)dt =
1

µ
E

∫ T̃n

0

f(θtξ̃)dt ,

where we have used the assumption of point stationarity. Also, for any s ∈ R,

nEf(θsξ) =
1

µ
E

∫ T̃n

0

f(θt+sξ̃)dt =
1

µ
E

∫ T̃n+s

s

f(θtξ̃)dt ,

by the change of variable formula. Therefore,

n |Ef(θsξ) − Ef(ξ)| =
1

µ

Ç∣∣∣∣∣E
∫ T̃n+s

T̃n

f(θtξ̃)dt− E

∫ s

0

f(θtξ̃)dt

∣∣∣∣∣

å

≤
1

µ

Ç∣∣∣∣∣E
∫ T̃n+s

T̃n

f(θtξ̃)dt

∣∣∣∣∣+

∣∣∣∣E
∫ s

0

f(θtξ̃)dt

∣∣∣∣

å

≤
2

µ
∥f∥|s| <∞ ,

where ∥f∥ = supm∈Mp(R×M)f(m). As n → ∞, we get Ef(θsξ) = Ef(ξ), for all s ∈ R

and all bounded measurable f ≥ 0. Let now f denote an arbitrary, possibly unbounded,

nonnegative measurable function. Define

fn(m) = min (f(m), n) ,

for all n ∈ N and for all m ∈ Mp(R × M). Observe that ∥fn∥ ≤ n < +∞, for all

n ∈ N and (fn)n∈N is a nondecreasing sequence such that limn→∞ fn(m) = f(m), for all

m ∈Mp(R×M). By the monotone convergence theorem,

Ef(θsξ) = lim
n→∞

Efn(θsξ) = lim
n→∞

Efn(ξ) = Ef(ξ) ,

for all s ∈ R. Hence, ξ is a stationary marked point process on R with marks in M.

Remark 2.6.3. In the Palm theory for stationary point processes, equality (2.4) is known

under the name of inversion formula. The above procedure is an adaptation of arguments

from [Kal17], see Theorem 5.4, to our setting.
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Chapter 3

Standard renewal theory

Renewal theory has its origins in the study of some particular probability problems

connected with the failure and replacement of industrial components, such as light bulbs.

Over the years, it was noticed that essentially the same problems arise also in a wide range

of other applied probability areas. On the other hand, mathematical results of renewal

theory are of great importance on their own and constitute a fundamental part of the

theory of probability.

Due to its great importance and long history, there is an abundance of literature

concerning renewal theory. Classical references used in this chapter include [Cox62] and

[Fel71], more modern ones, suitable even for the beginners in the field, are [Res92] and

[Iks16a], while a yet unpublished manuscript [Als13] takes the most general approach of

all of the above.

3.1 Renewal processes

Definition 3.1.1. Renewal process is a random sequence (Ti)i≥0 defined by

Ti = X0 +X1 + · · · +Xi ,

for all i ≥ 0, where (Xi)i≥1 is a sequence of nonnegative i.i.d. random variables with a

positive (possibly infinite) mean µ, independent of a nonnegative random variable X0.

Renewal process (Ti)i≥0 is called pure or zero-delayed if X0 = 0 and delayed otherwise.

Random variable Ti is usually thought of as a time of occurrence of some phenomenon

and is called the i-th renewal time, while the common distribution function of (Xi)i≥1 is

called the interarrival distribution.
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Standard renewal theory

Example 3.1.2. Suppose we are given an infinite supply of light bulbs of the same type

produced at the same factory. It is only natural to assume that their lifetimes (Xi)i≥1 are

independent and identically distributed. Suppose that light bulbs are used one at a time

until they fail, when they are instantaneously replaced. If the initial light bulb is fresh

then X0 = 0, otherwise X0 > 0 represents the time until the first replacement. Failure

times Ti = X0 +X1 +X2 + . . . Xi, for i ≥ 0, constitute a renewal process.

Alsmeyer in [Als13] listed questions which are naturally related to this example. These

turn out to be the most important questions of renewal theory.

• Is the number of renewals up to time t finite almost surely, for all t ≥ 0?

• What is the long run average number of renewals per unit of time?

• What can be said about the asymptotic behaviour of the expected number of re-

newals in a fixed length interval?

All of the above will be answered in this chapter.

As seen in Example 2.3.5, it is quite natural to embed the renewal process in the point

process framework. Recall, given the renewal process (Ti)i≥0, the associated point process

ξ =
∑∞

i=0 δTi
is called the renewal point process.

Definition 3.1.3. Stochastic process

ν(t) =
∞∑

i=0

✶{Ti≤t} , t ≥ 0 ,

is called the renewal counting process.

For each t ≥ 0, the random variable ν(t) counts the number of events of the renewal

point process ξ in the closed interval [0, t]. Note that

ν(t) = inf{i ≥ 0 : Ti > t} ,

hence ν(t) can be interpreted as the level t first-passage time. Furthermore, observe that

for all i ≥ 0, {ν(t) ≤ i} = {ν(t) > i}c = {Ti ≤ t}c, thus ν(t) is a stopping time with

respect to the natural filtration (Fk)k∈N0 of the renewal process (Ti)i≥0, defined by

Fk = σ{T0, T1, . . . , Tk} , k ∈ N0 .
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Renewal processes

Definition 3.1.4. Function U : [0,∞⟩ → [0,∞] defined by

U(t) = Eν(t)

is called the renewal function.

Hereafter, let G denote the distribution of X0 and F the common distribution func-

tion of Xi, i ≥ 1. It will be convenient to express the renewal function in terms of the

distribution functions of Xi, i ≥ 0. Observe that Ti, for i ≥ 1, is the sum of independent

random variables. Hence, for T0 = 0,

U(t) = E

[
∞∑

i=0

✶{Ti≤t}

]
=

∞∑

i=0

P(Ti ≤ t) =
∞∑

i=0

F i∗(t) (3.1)

and, for T0 > 0,

U(t) = E

[
∞∑

i=0

✶{Ti≤t}

]
=

∞∑

i=0

P(Ti ≤ t) =
∞∑

i=0

G ∗ F i∗(t) = G ∗

∞∑

i=0

F i∗(t) , (3.2)

where F i∗ is the i-fold convolution of F with itself, defined recursively by

F 0∗(t) = ✶[0,∞⟩(t) ,

F i∗(t) = F (i−1)∗ ∗ F (t) =

∫

[0,t]

F (i−1)∗(t− s)dF (s) , i ≥ 1 .

Lemma 3.1.5. The renewal function U is finite, for all t ≥ 0.

For the proof of Lemma 3.1.5 in the zero-delayed case see e.g. Theorem 3.3.1 in [Res92].

Statement in the delayed case then follows by relation (3.2).

It is now immediate that ν(t) < ∞ almost surely for all t ≥ 0. Furthermore, Lemma

3.1.5 and the dominated convergence theorem yield the right-continuity of the renewal

function U and since it is obviously nondecreasing, we can associate with it an unique

measure µU on [0,∞⟩ such that µU [0, t] = U(t), for all t ≥ 0. However, it is common in

the literature to use the same notation for the renewal function and this measure, called

the renewal measure, since the context prevents the confusion. Hence, in the sequel we

will denote both with U .

The following theorem is the simplest renewal theorem. For the proof see e.g. Theorem

3.3.3 in [Res92].

Theorem 3.1.6 (Elementary renewal theorem). The renewal function U satisfies

lim
t→∞

U(t)

t
=

1

µ
.

Remark 3.1.7. In case µ = ∞, we henceforth interpret the ratio 1
∞

as 0.
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3.2 Stationary renewal processes

Intuitively, for a renewal process to be stationary we require that, if for any t > 0 we

shift the origin to t, distributions of the renewal times are left unchanged.

Definition 3.2.1. The delayed renewal process is called stationary if

(Tν(t)+k − t)k≥0
d
= (Tk)k≥0 , (3.3)

for all t ≥ 0.

By differencing successive terms on both sides of (3.3), we get

Tν(t) − t,Xν(t)+1, Xν(t)+2, . . .
d
= X0, X1, X2, . . . .

Breaking things down according to the value of ν(t), it is easy to see that Tν(t) − t is

independent of (Xν(t)+k)k≥1 and that the latter sequence has the same distribution as

(Xk)k≥1. Hence, by a suitable choice of the delay distribution, a renewal process can be

made stationary. The following theorem is proved in e.g. [Bré20], see Theorem 4.1.20.

Theorem 3.2.2. For a delayed renewal process to be stationary it is necessary and suf-

ficient that

µ <∞ and P(X0 ≤ x) = F0(x) ,

where F0 is the integrated tail distribution given by

F0(x) =
1

µ

∫ x

0

(1 − F (y))dy , x ≥ 0 . (3.4)

Example 3.2.3. Let X0 and (Xi)i≥1 have exponential distribution with strictly positive

and finite parameter 0 < λ <∞. It is easy to show that

F0(x) = 1 − e−λx , x ≥ 0 .

Hence, by the previous theorem, (Xi)i≥0 is a stationary renewal process. Obviously, the

associated renewal point process is the homogeneous Poisson process on R+ with intensity

λ, which was introduced in Example 2.3.4. Moreover, in the notation of this chapter, we

know that U(t) = t
µ
, for all t ≥ 0.

The last statement in the above example is valid for general stationary renewal pro-

cesses. In fact, even more can be said.
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Blackwell’s renewal theorem

Theorem 3.2.4. The delayed renewal process is stationary if and only if

U(t) =
t

µ
,

for all t ≥ 0.

For the proof of necessity see e.g. [Iks16a], page 18, and for sufficiency see e.g. [Dur10],

page 179.

3.3 Blackwell’s renewal theorem

The next definition gives an important classification of distribution functions in the

context of renewal theory.

Definition 3.3.1. Let F be a distribution function of an arbitrary nonnegative random

variable X. If there is no d > 0 such that
∑∞

k=0 P(X = kd) = 1, then F is said to be

nonarithmetic. In the contrary case, F is said to be arithmetic.

If the common distribution function F of the interarrival times Xi, i ≥ 1 is nonarith-

metic, we say that the renewal process in nonarithmetic. As observed in the literature

(see e.g. [Kal17], page 489), results in the arithmetic case are similar and more elementary

then the ones in the nonarithmetic case, though technically cumbersome and therefore

skipped in the sequel. Interested reader can find the proofs of the most important results

from the standard renewal theory in the arithmetic case in, for instance, Section 3.8.

in [Res92] or Sections 3.1 and 4.1 in [Iks16a].

Blackwell’s renewal theorem is one of the most fundamental results in the probability

theory. It is named after the mathematician who first proved it in the nonarithmetic

case, see [Bla48]. Since the 1948th, several proofs have been obtained, however neither of

those is really elementary, even though the statement of the theorem is intuitively simple.

Initial proofs were rather analytical, relaying on, for instance, Fourier analysis (in [FO61]),

Choquet-Deny theorem (in [Fel71], pages 364-366) or harmonic analysis (in [McD75]).

Finally, usage of the coupling method resulted in the probabilistic proofs of the theorem,

the first one given in [Lin77] and the self-contained one in [Tho87]. Longer historical

account and more references important in the development of the modern day proof of

Blackwell’s renewal theorem can be found in [Als13].
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Theorem 3.3.2 (Blackwell’s renewal theorem). Suppose that U is the renewal measure

of a nonarithmetic renewal process, then

lim
t→∞

U⟨t, t+ x] =
x

µ
,

for all x > 0.

Note that Blackwell’s renewal theorem is stronger then the elementary renewal the-

orem. An alternate proof of the elementary renewal theorem which uses Theorem 3.3.2

can be found e.g. in Section 3.7 in [Res92].

3.4 Key renewal theorem

It is a simple observation that

lim
t→∞

∫

[0,t]

✶[0,x⟩(t− y)dU(y) = lim
t→∞

U⟨t− x, t] =
x

µ
=

1

µ

∫ ∞

0

✶[0,x⟩(y)dy , (3.5)

for all x > 0, where we have used Blackwell’s renewal theorem in the second equality.

Hence, it is natural to ask to which class of functions g : R → R it is possible to generalize

(3.5) in the sense that

lim
t→∞

∫

[0,∞⟩

g(t− y)dU(y) =
1

µ

∫ ∞

−∞

g(y)dy .

First, we recall the notion of Riemann integrability. A function g : R → R+ is said to

be Riemann integrable on the closed interval [a, b], for −∞ < a < b <∞, if

lim
h→0+

(σR(h) − σR(h)) = 0 ,

where

σR(h) = h
∑

k:a+h≤kh≤b

sup
(k−1)h≤y<kh

g(y) and σR(h) = h
∑

k:a+h≤kh≤b

inf
(k−1)h≤y<kh

g(y) .

Riemann integral is then defined by
∫ b

a

g(y)dy = lim
h→0+

σR(h) .

Furthermore, g : R → R+ is said to be improperly Riemann integrable on R if it is

Riemann integrable on closed intervals [a, c], [c, b] and the limit lima→−∞

∫ c

a
g(y)dy +

limb→∞

∫ b

c
g(y)dy exists, for every c ∈ ⟨a, b⟩. In this case

∫ ∞

−∞

g(y)dy = lim
a→−∞

∫ c

a

g(y)dy + lim
b→∞

∫ b

c

g(y)dy ,
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for an arbitrary c ∈ ⟨a, b⟩. Essentially, improper Riemann integral is defined as a limit of

Riemann integrals on closed intervals which are made bigger and bigger. These definitions

are easily extended to functions g : R → R since every real-valued function can be

expressed as a difference of two nonnegative functions, namely g = g+−g−, where g+(x) =

max(g(x), 0) and g−(x) = max(−g(x), 0).

As we will see shortly, definition of Riemann integrability makes too many functions

integrable. Hence, it is preferable to naively extend the original definition to infinite

intervals. This notion of integrability, know as direct Riemann integrability, was first

introduced and thus named in [Fel71].

Definition 3.4.1. A function g : R → R+ is called directly Riemann integrable on R if

σ(h) <∞, for all h > 0 (3.6)

and

lim
h→0+

(σ(h) − σ(h)) = 0 (3.7)

where

σ(h) = h
∑

k∈Z

sup
(k−1)h≤y<kh

g(y) and σ(h) = h
∑

k∈Z

inf
(k−1)h≤y<kh

g(y) .

Analogous definitions of direct Riemann integrability on R− = ⟨−∞, 0] and R+ are

obtained by changing the bounds of summation in the definition of σ and σ. A function

g : R+ → R+ is said to be directly Riemann integrable on R+ if (3.6) and (3.7) are valid,

where

σ(h) = h
∞∑

k=1

sup
(k−1)h≤y<kh

g(y) and σ(h) = h
∞∑

k=1

inf
(k−1)h≤y<kh

g(y) . (3.8)

Similarly, a function g : R− → R+ is said to be directly Riemann integrable on R− if (3.6)

and (3.7) are valid, where

σ(h) = h

0∑

k=−∞

sup
(k−1)h≤y<kh

g(y) and σ(h) = h

0∑

k=−∞

inf
(k−1)h≤y<kh

g(y) .

A function g : R → R is said to be directly Riemann integrable on a (semi-)infinite

interval, if so are the nonnegative functions g+ and g−.
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Example 3.4.2. Let g : R+ → R+ be given by

g(y) =





hk
y−(ck−2−1lk)

2−1lk
, y ∈ [ck − 2−1lk, ck⟩ ,

hk
(ck+2−1lk)−y

2−1lk
, y ∈ [ck, ck + 2−1lk⟩ ,

0 , otherwise ,

(3.9)

where (⟨ck − 2−1lk, ck + 2−1lk⟩)k∈N is a disjoint sequence of intervals, (ck)k∈N is an increas-

ing sequence such that infk∈N(ck+1 − ck) > 0, (hk)k∈N is a nondecreasing sequence such

that
∑∞

k=1 hk = ∞ and
∑∞

k=1 lkhk < ∞. One can think of lk as the basis of the k-th

g(y)

y0 1 2 3 4 5 6 7 8 9 10

1

2

3

Figure 3.1: Graph of g on interval [0, 10.5⟩, for ck = k, lk = k−2 and hk = k
1
2 .

non-overlapping isosceles triangle centered at ck with height hk, for all k ∈ N (see Figure

3.1). Then,
∫ ∞

0

g(y)dy = 2−1

∞∑

k=1

hklk <∞ ,

and g is Riemann integrable on R+. However, g is not directly Riemann integrable on

R+, since

σ(h) = h
∞∑

k=1

sup
(k−1)h≤y<kh

g(y) ≥ h

∞∑

k=1

hk = ∞ ,

for h = infk∈N(ck+1 − ck).

We state here some necessary and sufficient conditions for direct Riemann integrability

which will be needed in the sequel. More criteria can be found in the literature, see for

instance Section 3.10 in [Res92], Section 4.1 in [Als13], Section 4.2 in [Iks16a] or Section

4.2 in [Bré20].
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Lemma 3.4.3. Suppose that g : R+ → R+ is directly Riemann integrable on R+, then g

is Riemann integrable on R+ and

lim
h→0+

σ(h) =

∫ ∞

0

g(y)dy .

For the proof of the above lemma see e.g. Remark 3.10.2 in [Res92]. Note that Example

3.4.2 and Lemma 3.4.3 imply that the class of directly Riemann integrable functions on

R+ is a proper subset of the class of Riemann integrable functions on R+.

Lemma 3.4.4. (i) Suppose that g : R+ → R+ is nonincreasing and Riemann integrable

on R+, then g is directly Riemann integrable on R+.

(ii) Suppose that g : R− → R+ is nondecreasing and Riemann integrable on R−, then g

is directly Riemann integrable on R−.

Proof. (i) See e.g. Remark 3.10.3 in [Res92].

(ii) Define f : R+ → R+ by f(y) = g(−y) and apply (i) to f .

The following lemma can be found, for instance, in [Res92] (see Remark 3.10.5).

Lemma 3.4.5. Suppose that g : R+ → R+ is a Riemann integrable function on R+ and

h : R+ → R+ is a directly Riemann integrable function on R+ such that g(y) ≤ h(y), for

all y ≥ 0. Then g is directly Riemann integrable on R+.

Most of the literature considers only directly Riemann integrable functions on R+,

hence we first state the key renewal theorem in its most familiar form. Proof can be

found e.g. in [Res92], see Theorem 3.10.1 (ii). Note that Resnick gives the proof only in

the zero-delayed case, however the proof in the delayed case is essentially the same.

Theorem 3.4.6 (Key renewal theorem). Suppose that U is the renewal measure of a

nonarithmetic renewal process and that g : R+ → R+ is a directly Riemann integrable

function on R+, then

lim
t→∞

∫

[0,t]

g(t− y)dU(y) =
1

µ

∫ ∞

0

g(y)dy .

The first proof of the key renewal theorem was given by W. L. Smith for nonincreasing

bounded Lebesgue integrable functions on R+, see [Smi54]. In the same article, Smith
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also gave a version for functions of bounded variation vanishing outside an arbitrary finite

interval, not necessarily confined to a positive half line.

Analogous versions of the key renewal theorem, involving directly Riemann integrable

functions on R− and R, are obtained by simple and obvious modifications in the proof.

Theorem 3.4.7 (Key renewal theorem on a negative half line/real line).

(i) Suppose that U is the renewal measure of a nonarithmetic renewal process and that

g : R− → R+ is a directly Riemann integrable function on R−, then

lim
t→∞

∫

[t,∞⟩

g(t− y)dU(y) =
1

µ

∫ 0

−∞

g(y)dy .

(ii) Suppose that U is the renewal measure of a nonarithmetic renewal process and that

g : R → R+ is a directly Riemann integrable function on R, then

lim
t→∞

∫

[0,∞⟩

g(t− y)dU(y) =
1

µ

∫ ∞

−∞

g(y)dy .

Remark 3.4.8. Blackwell’s renewal theorem and the key renewal theorem are equivalent.

From the proof of Theorem 3.10.1 (i) ⇒ (ii) in [Res92], i.e. reference for the proof of

Theorem 3.4.6, it follows that Blackwell’s renewal theorem implies the key renewal the-

orem. The converse implication follows by choosing g(y) = ✶[0,x⟩(y) or g(y) = ✶[x,0⟩(y),

depending on the domain of g.

The next example shows that the key renewal theorem can fail if the function g

oscillates too much in the neighbourhood of infinity.

Example 3.4.9. Let F concentrate on {α, 1 − α}, for some irrational α ∈ ⟨0, 1⟩. Then the

renewal function U of the pure renewal process is piecewise constant with jumps at the

points of the form k1α+ k2(1−α), for k1, k2 ∈ N0. Define function g : R+ → R+ by (3.9)

with ck = k1α + k2(1 − α), for k1, k2 ∈ N0 such that k1 + k2 = k, and hk = 1, for all

k ∈ N. Note that we have already shown in Example 3.4.2 that this function is Riemann

integrable, but it is not directly Riemann integrable on R+. If the key renewal theorem

was true, then

lim
t→∞

∫

[0,t]

g(t− y)dU(y) =
1

µ

∫ ∞

0

g(y)dy
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would be finite. However, for an arbitrary n ∈ N,

∫

[0,n]

g(n− y)dU(y) =
∑

k1,k2∈N0

k1α+k2(1−α)≤n

g(n− (k1α + k2(1 − α)))U(k1α + k2(1 − α))

=
∑

k1,k2∈N0

k1α+k2(1−α)<n

∞∑

i=0

P(Ti = k1α + k2(1 − α))

> U(n− 1) → ∞ ,

as n → ∞. The last equality follows since g(0) = 0 and g(n − (k1α + k2(1 − α))) =

g((n− k1)α + (n− k2)(1 − α)) = 1, for k1α + k2(1 − α) < n.

3.5 Extended renewal theorem

The following renewal theorem describes the asymptotic behavior of the renewal point

process. Unlike the other renewal theorems, this one is not as common in the literature.

For the proof see Theorem 12.7 in [Kal17], case m <∞, cf. also Lemma 5.1 in [IMM17].

Theorem 3.5.1 (Extended renewal theorem). Suppose that ξ′ is a point process associated

to the renewal process (T ′
i )i≥0 with an arbitrary initial distribution and nonarithmetic

interarrival distribution F with finite mean. Furthermore, suppose that ξ is a point process

associated to the stationary renewal process (Ti)i≥0 with the initial distribution given by

(3.4) and the same interarrival distribution F . Then

θtξ
′ d
−→ ξ ,

as t→ ∞, with respect to the vague topology on Mp(R+).

As noted in [Kal17], in the case of a finite interarrival mean it is possible to deduce

Blackwell’s renewal theorem from the extended renewal theorem. Indeed, by Lemma 12.9

in [Kal17], ξ′⟨t, t + x], t ≥ 0 are uniformly integrable random variables for a fixed x > 0,

hence Theorem 3.3.2 follows by Lemma 5.11 in [Kal21].
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3.6 Renewal equation

Starting from relation (3.1), we get the following well-known equation for the renewal

function U of the zero-delayed renewal process

U(t) =
∞∑

i=0

F i∗(t) = F 0∗(t) +
∞∑

i=1

F i∗(t)

= 1 + F ∗
∞∑

i=1

F (i−1)∗(t) = 1 + F ∗ U(t) , t ≥ 0 . (3.10)

Similar equation for the renewal function in the delayed case is obtained from relations

(3.2) and (3.10)

U(t) = G ∗
∞∑

i=0

F i∗(t) = G ∗

(
1 + F ∗

∞∑

i=0

F i∗

)
(t)

= G(t) + F ∗

(
G ∗

∞∑

i=0

F i∗

)
(t) = G(t) + F ∗ U(t) , t ≥ 0 , (3.11)

where we have used the algebraic properties of convolution in the third equality. We have

just showed that the renewal function of an arbitrary renewal process, both pure and

delayed, satisfies the renewal equation.

Definition 3.6.1. The convolution equation

f = g + f ∗ F ,

that is

f(t) = g(t) +

∫

[0,t]

f(t− y)dF (y) , t ≥ 0 , (3.12)

where f : R+ → R is an unknown function, g : R+ → R is a known measurable

function and F is a known nondecreasing right-continuous function on R+ such that

limx→∞ F (x) <∞ and F (0) = 0, is called the renewal equation.

Note that in case limx→∞ F (x) = 1, F is a distribution function of a nonnegative

random variable. Denote c = limx→∞ F (x). Regarding the value of c, a renewal equation

is called defective if c < 1, proper if c = 1 and excessive if c > 1.

We now give two more examples of the renewal equation.
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Example 3.6.2 (Forward and backward recurrence times). Let (Ti)i≥0 be a renewal

process. Define

RF (t) = Tν(t) − t , for all t ≥ 0 ,

and

RB(t) = t− Tν(t)−1 , for all t ≥ T0 .

The forward recurrence time or overshoot RF (t) is the time until the next renewal, while

the backward recurrence time or undershoot RB(t) is the time since the last renewal. It

can be shown that, in the zero-delayed case, for a fixed x > 0

P (RF (t) > x) = 1 − F (t+ x) +

∫

[0,t]

P (RF (t− y) > x) dF (y) (3.13)

and

P (RB(t) ≤ x) = (1 − F (t))✶[0,x](t) +

∫

[0,t]

P (RB(t− y) ≤ x) dF (y) , (3.14)

where F is the interarrival distribution. The proof is based on the renewal argument,

meaning that one conditions on the value in T1 and then observes that the process starts

from scratch at T1. Indeed,

P(RF (t) > x) = P(RF (t) > x, T1 > t) + P(RF (t) > x, T1 ≤ t) ,

where

P(RF (t) > x, T1 > t) = P(T1 − t > x, T1 > t) = P(T1 > t+ x) = 1 − F (t+ x)

and

P(RF (t) > x, T1 ≤ t) = P(Tν(t) − t > x, ν(t) ≥ 2)

=
∞∑

i=2

P(Ti − t > x, Ti−1 ≤ t < Ti)

=
∞∑

i=2

∫

[0,t]

P(y +
i∑

j=2

Xi − t > x, y +
i−1∑

j=2

Xi ≤ t < y +
i∑

j=2

Xi)dF (y)

=
∞∑

i=2

∫

[0,t]

P(Ti−1 − (t− y) > x, Ti−2 ≤ t− y < Ti−1)dF (y)

=
∞∑

i=2

∫

[0,t]

P(Tν(t−y) − (t− y) > x, ν(t− y) = i− 1)dF (y)

=

∫

[0,t]

P(RF (t− y) > x, ν(t− y) ≥ 1)dF (y)

=

∫

[0,t]

P (RF (t− y) > x) dF (y) .
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This shows relation (3.13). One similarly obtains (3.14), for the details see e.g. Example

3.5.3 in [Res92].

Actually, many renewal quantities may be described as solutions to some renewal

equation, hence it is only natural to ask about existence and uniqueness of a solution.

Recall that a function g : R+ → R is called locally bounded if g is bounded on finite

intervals. The following theorem is proved in e.g. [Res92], see Theorem 3.5.1.

Theorem 3.6.3. Suppose g : R+ → R is a locally bounded function, then a unique locally

bounded solution of the renewal equation (3.12) is given by

U ∗ g(t) =

∫

[0,t]

g(t− y)dU(y) .

Note that, in case of a directly Riemann integrable function g, the key renewal theorem

describes the asymptotic behavior of the unique solution of the renewal equation.
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Chapter 4

Renewal cluster point processes

This chapter is the main part of the thesis in which results from the standard renewal

theory are extended to renewal cluster point processes. Following [Mik09], see Chapter 11,

we give a simple and intuitive interpretation of points of a renewal cluster point process

in terms of insurance mathematics. Assume that at every point of a renewal point process

a cluster of activities start. We interpret these points as the arrival times of claims and

think of them as the cluster centers. The i-th claim triggers a random stream of payments

from the insurer to the insured and the times at which the payments are executed are the

members of the i-th cluster. The superposition of the cluster members constitutes the

renewal cluster point process.

4.1 Marked renewal point processes

In this section we first construct a stationary marked renewal point process and then

give a generalization of the so-called extended renewal theorem (Theorem 3.5.1) to marked

renewal point processes, which will be an initial step in the further generalization to the

renewal cluster point processes.

Assume that (W̃i)i≥0 is an i.i.d. M-valued sequence, where M is a general Polish space.

Furthermore, assume that for some measurable function ϕ : M → R+, nonarithmetic

random variables

‹Xi = ϕ(W̃i) , i ≥ 1 ,
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are given and satisfy µ = E‹X1 ∈ ⟨0,∞⟩. Define

T̃0 = 0 and T̃i =
i∑

j=1

‹Xj , i ≥ 1 .

We now form a two-sided renewal process with arrival times · · · < T̃−2 < T̃−1 < T̃0 <

T̃1 < T̃2 · · ·, where T̃0 = 0, by extending the pure renewal process (T̃i)i≥0 on R+ in the

obvious way. Precisely, let W̃−i be an independent copy of W̃i, for all i ≥ 1, and define

T̃−i = −

0∑

j=−i+1

‹Xj , i ≥ 1 ,

where ‹X−i = ϕ(W̃−i). Finally, set

η̃ =
∑

i∈Z

δ(T̃i,W̃i)

and note that such process is clearly point stationary by construction. It might be even

considered as a simplest class of point stationary processes on R×M.

Remark 4.1.1. Alternatively, we may consider i.i.d. pairs (W̃i, ‹Xi) ∈ M×R+, as in [Mar15].

However, the two formulations are equivalent, since M × R+ is also Polish and we may

use the projection on the second coordinate instead of ϕ. In particular, this implies that

one can assume that ϕ above is continuous with no loss of generality in the sequel.

We start the construction of the stationary version of η̃ by picking the renewal interval

in which origin will land. However, one must be careful and observe that origin is more

likely to fall into a long renewal interval than into a short one. This phenomenon is known

as size-biasing (see e.g. [AGK19]). Therefore, we define an additional random element W ∗

in M independent of the sequence (W̃i)i ̸=0 with the distribution W̃1 biased by ‹X1, or more

precisely

Ef(W ∗) =
1

µ
E
î‹X1f(W̃1)

ó
,

for all bounded measurable real-valued functions f . Denote X∗ = ϕ(W ∗). Next, we

randomly pick the relative position of the origin in the landing interval of the length X∗.

To make this precise, let U denote an uniform random variable on [0, 1] independent of

W ∗, (W̃i)i ̸=0 and set

T0 = UX∗ and T−1 = −(1 − U)X∗ . (4.1)

36



Marked renewal point processes

Now we define recursively

Ti = T0 +
i∑

j=1

‹Xj , T−(i+1) = T−1 −
−1∑

j=−i

‹Xj , i ≥ 1 (4.2)

and set

W0 = W ∗ , Wi = W̃i , for all i ̸= 0 . (4.3)

Then

η =
∑

i∈Z

δ(Ti,Wi) (4.4)

is a stationary marked renewal point process. Indeed, one can check that an alternative

representation of the distribution of η is given by (2.4), i.e.

Ef(η) =
1

µ
E

∫ T̃1

0

f

(
∑

i

δ(T̃i−t,W̃i)

)
dt ,

for an arbitrary nonnegative measurable function on Mp(R×M). Then, stationarity of η

follows as observed in Section 2.6.

Let point process η̂ =
∑

i∈Z δ(T̂i,Ŵi)
with . . . T̂−1 < 0 ≤ T̂0 < T̂1 < . . . satisfy (2.4) and

denote X̂0 = T̂0, X̂−1 = −T̂−1, X̂i = T̂i − T̂i−1 and X̂−(i+1) = −(T̂−(i+1) − T̂−i), for i ≥ 1.

Let x−i, . . . , xi ∈ R+ be arbitrary nonnegative numbers and A−i, . . . , Ai arbitrary sets in

B(M), i ≥ 0. Observe that

P(X̂−i ≤ x−i, Ŵ−i ∈ A−i, . . . , X̂i ≤ xi, Ŵi ∈ Ai)

=
1

µ
E

∫ T̃1

0

✶{‹X−i+2≤x−i}
✶{W̃−i+1∈A−i}

· · ·✶{‹X0≤x−2}
✶{W̃−1∈A−2}

✶{t≤x−1}✶{W̃0∈A−1}

✶{T̃1−t≤x0}
✶{W̃1∈A0}

✶{‹X2≤x1}
✶{W̃2∈A1}

· · ·✶{‹Xi+1≤xi}
✶{W̃i+1∈Ai}

dt

=
1

µ
E

ï
✶{‹X−i+2≤x−i}

✶{W̃−i+1∈A−i}
· · ·✶{‹X0≤x−2}

✶{W̃−1∈A−2}
✶{W̃0∈A−1}

✶{W̃1∈A0}

✶{‹X2≤x1}
✶{W̃2∈A1}

· · ·✶{‹Xi+1≤xi}
✶{W̃i+1∈Ai}

∫ ‹X1

0

✶{t≤x−1,‹X1−t≤x0}
dt

ò

=
1

µ
P(‹X−i+2 ≤ x−i)P(‹X−i+1 ≤ x−i−1, W̃−i+1 ∈ A−i) · · ·P(‹X0 ≤ x−2, W̃0 ∈ A−1)

P(‹X2 ≤ x1, W̃2 ∈ A1) · · ·P(‹Xi+1 ≤ xi, W̃i+1 ∈ Ai)E

ï
✶{W̃1∈A0}

∫ ‹X1∧x−1

(‹X1−x0)+

dt

ò

where we have used (2.4) in the first equality and the independence of (‹Xi, W̃i), for all

i, in the last equality. As usual in the literature, symbol ∧ denotes minimum, while ∨
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denotes maximum. Furthermore,

1

µ
E

ï
✶{W̃1∈A0}

∫ ‹X1∧x−1

(‹X1−x0)+

dt

ò
=

1

µ
E

ï
✶{W̃1∈A0}

‹X1

∫ 1∧
x−1

X̃1Å
1−

x0
X̃1

ã
+

du

ò

=
1

µ
E

ï
✶{W̃1∈A0}

‹X1

∫ 1

0

✶{‹X1≤
x0
1−u

}✶{‹X1≤
x−1
u

}du

ò

=

∫ 1

0

1

µ
E

ï
‹X1✶{W̃1∈A0}

✶{‹X1≤
x0
1−u

}✶{‹X1≤
x−1
u

}

ò
du

=

∫ 1

0

P(X∗ ≤
x0

1 − u
,X∗ ≤

x−1

u
,W ∗ ∈ A0)du

= P((1 − U)X∗ ≤ x0, UX
∗ ≤ x−1,W

∗ ∈ A0)

= P(T0 ≤ x0,−T−1 ≤ x−1,W0 ∈ A0) ,

where the last equality follows from (4.1) and (4.3). Since (‹Xi, W̃i)i is an i.i.d. sequence

and moreover (‹Xi, W̃i)i ̸=0 is independent of T−1, T0 and W0, we have shown that

P(X̂−i ≤ x−i, Ŵ−i ∈ A−i, . . . , X̂i ≤ xi, Ŵi ∈ Ai)

= P(‹X−i+1 ≤ x−i, W̃−i ∈ A−i, . . . , ‹X−1 ≤ x−2, W̃−2 ∈ A−2,−T−1 ≤ x−1, W̃−1 ∈ A−1,

T0 ≤ x0,W0 ∈ A0, ‹X1 ≤ x1, W̃1 ∈ A1, . . . , ‹Xi ≤ xi, W̃i ∈ Ai) ,

which implies that

(T̂−i, Ŵ−i, . . . , T̂i, Ŵi)
d
= (T−i,W−i, . . . , Ti,Wi) ,

for all i ≥ 0. Now, as a consequence of Theorem 2.3.11 (ii) ⇒ (i), we conclude that

η̂
d
= η .

We now turn to the announced generalization of the extended renewal theorem to

marked renewal point processes. Consider a stationary marked renewal point process

η =
∑

i∈Z

δ(Ti,Wi)

introduced in (4.4) above. Recall that (Wi)i ̸=0 is an i.i.d. M-valued sequence and that for

some measurable ϕ : M → R+, Xi = Ti − Ti−1, i ̸= 0 satisfy Xi = ϕ(Wi), i ∈ Z.

Furthermore, let (X ′
0,W

′
0) be a random element in R+×M which is independent of an

i.i.d. M-valued sequence (W ′
i )i≥1 with the same distribution as W̃1. Denote X ′

i = ϕ(W ′
i ),

for all i ≥ 1 and T ′
i =

∑i

j=0X
′
i, for all i ≥ 0. Consider now marked renewal point process

η′ =
∞∑

i=0

δ(T ′
i ,W

′
i )
.
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We sometimes identify η′ with the sequence (T ′
i ,W

′
i )i≥0.

In the context of Theorem 3.5.1, the following lemma is not overly surprising. Actually,

we learnt that it was already proved analytically by Marynych for a very complicated but

special space of marks (see Lemma 3.1 in [Mar15]). However, we give a completely different

probabilistic proof based on the coupling method.

Proposition 4.1.2 (Extended renewal theorem for marked renewal point processes).

Under the assumptions above, it holds that

θtη
′ d−→ η ,

as t→ ∞ with respect to the vague topology on Mp(R×M).

To prove Proposition 4.1.2, we need two auxiliary results. Before we state the first

one, recall that a discrete random variable ϑ is said to be Rademacher if

P(ϑ = 1) = P(ϑ = −1) = 1/2

and a sequence of independent Rademacher variables is called a Rademacher sequence,

see e.g. Chapter 4 in [LT91].

Lemma 4.1.3. Suppose that β is a random element in some Polish space M independent

of a Rademacher sequence (ϑk)k∈N and let Fn = σ{β, ϑ1, . . . , ϑn}. Assume that τ is

{Fn}–stopping time, then the sequence

(β, ϑ1, . . . , ϑτ ,−ϑτ+1,−ϑτ+2, . . .)

has the same distribution as (β, ϑ1, ϑ2, ϑ3, . . .) .

Proof. Select arbitrary i1, i2, . . . , in ∈ {−1, 1} and observe that both An = {τ > n − 1}

and Ac
n = {τ < n} are in Fn−1 and therefore independent of ϑn. Hence for any measurable

B ⊆ M

P
(
ϑj(−1)✶{τ<j} = ij, j = 1, 2, . . . , n, β ∈ B

)

= P
(
ϑn = in , ϑj(−1)✶{τ<j} = ij, j = 1, 2, . . . , n− 1, β ∈ B,An

)

+ P
(
ϑn = −in , ϑj(−1)✶{τ<j} = ij, j = 1, 2, . . . , n− 1, β ∈ B,Ac

n

)

= P (ϑn = in)P
(
ϑj(−1)✶{τ<j} = ij, j = 1, 2, . . . , n− 1, β ∈ B,An

)

+ P (ϑn = −in)P
(
ϑj(−1)✶{τ<j} = ij, j = 1, 2, . . . , n− 1, β ∈ B,Ac

n

)

= P (ϑn = in)P
(
ϑj(−1)✶{τ<j} = ij, j = 1, 2, . . . , n− 1, β ∈ B

)
.
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Repeating the argument for j = 1, 2, . . . , n− 1, yields the claim.

Note that, as kindly suggested by prof. Alexander V. Marynych, the above result is

valid for any sequence of i.i.d. random variables with a symmetric distribution.

Lemma 4.1.4. Let M be an arbitrary Polish space. Assume that for an arbitrary non-

negative continuous real-valued function f on M and a sequence (t
(n)
0 , (w

(n)
i )i≥0)n≥1 in

R+ ×MN0 the following conditions hold:

(i) t
(n)
0 → t0 in R+ and w

(n)
i → wi in M , for all i ≥ 0 , as n→ ∞ ,

(ii)
∑i

j=1 f(w
(n)
j ) → ∞ and

∑i

j=1 f(wj) → ∞ , for all n ∈ N , as i→ ∞ .

Then
∞∑

i=0

δ
(t

(n)
0 +

∑i
j=1 f(w

(n)
j ),w

(n)
i )

v−→
∞∑

i=0

δ(t0+
∑i

j=1 f(wj),wi)
,

as n→ ∞.

Proof. Denote

mn =
∞∑

i=0

δ
(t

(n)
0 +

∑i
j=1 f(w

(n)
j ),w

(n)
i )

, for all n ∈ N and m =
∞∑

i=0

δ(t0+
∑i

j=1 f(wj),wi)
.

From assumption (ii), it follows that integer-valued measures mn and m are locally finite

on R+ ×M. Furthermore, we conclude from (i) and (ii) that for an arbitrary h > 0 such

that m(∂([0, h] ×M)) = 0, there exist k, n0 ∈ N such that for all n ≥ n0

mn

∣∣∣∣
[0,h]×M

=
k∑

i=0

δ
(t

(n)
0 +

∑i
j=1 f(w

(n)
j ),w

(n)
i )

and m

∣∣∣∣
[0,h]×M

=
k∑

i=0

δ(t0+
∑i

j=1 f(wj),wi)
.

Moreover, by (i)

t
(n)
0 +

i∑

j=1

f(w
(n)
j ) → t0 +

i∑

j=1

f(wj) in R+ and w
(n)
i → wi in M ,

for all i = 0, 1, . . . , k, since f is continuous. Thus, by Proposition 2.2.5

mn
v−→ m,

as n→ ∞.

We are now in position to prove Proposition 4.1.2.
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Proof of Proposition 4.1.2. Like several other proofs of different types of renewal theorem,

we base our argument on the coupling method. In the initial steps, it follows a coupling

of the type used by Thorisson [Tho00] in sections 2.7 and 2.8 and Kallenberg [Kal17] in

the proof of Theorem 12.7.

Consider an i.i.d. sequence (W̃i, ‹Xi)i≥1 with the same distribution as (Wi, Xi)i≥1 and

an independent Rademacher sequence (ϑi)i≥1.

Step 1. We first construct copies of η and η′ on the same probability space. Assume that

(W0, X0) and (W ′
0, X

′
0) have the desired distribution, but are independent of the sequences

(W̃i, ‹Xi)i≥1 and (ϑi)i≥1. Set K0 = K ′′
0 = 0 and then for i ≥ 1

Ki = inf{k > Ki−1 : ϑk = 1} and K ′′
i = inf{k > K ′′

i−1 : ϑk = −1} .

Alternatively, one can view Ki and K ′′
i as the indices of the i-th 1 and −1, respectively,

in the sequence (ϑi)i≥1. Let T0 = X0, T
′′
0 = X ′

0 and W ′′
0 = W ′

0. Then, for i ≥ 1 let

Ti = T0 +

Ki∑

j=1

‹Xj✶{ϑj=1} = T0 +
i∑

j=1

‹XKj
=: Ti−1 + Yi , and Wi = W̃Ki

, (4.5)

T ′′
i = T ′′

0 +

K′′
i∑

j=1

‹Xj✶{ϑj=−1} = T ′′
0 +

i∑

j=1

‹XK′′
j
, and W ′′

i = W̃K′′
i
. (4.6)

Note that Yi = ‹XKi
in (4.5) are i.i.d., for all i ≥ 1. As explained above, one can

extend the sequence (Ti,Wi)i≥0 to a sequence indexed over Z so that the point process

η =
∑

i∈Z δ(Ti,Wi) becomes stationary. It is immediate then that η and

η′′ =
∑

i≥0

δ(T ′′
i ,W ′′

i )

have the same distribution as the η and η′ in the statement of the theorem.

Step 2. Set

Li = |{k ≤ i : ϑk = 1}| and L′
i = i− Li , i ≥ 0 ,

where | · | denotes cardinality of a set. By (4.5) and (4.6), the difference between the

arrival times TLi
and T ′′

L′
i

equals

Vi = T0 − T ′′
0 +

i∑

j=1

ϑj
‹Xj , i ≥ 0 .

In particular (Vi)i≥0 is a random walk with nonarithmetic and symmetric steps. By the

Chung-Fuchs theorem, see Theorem 4 in [CF51], (Vi)i≥0 is recurrent and for all x ∈ R and
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ε > 0

P(|Vi − x| < ε i.o.) = 1 .

Therefore, for any ε > 0, with probability 1

τ = inf{i : Vi ∈ [0, ε⟩} <∞ .

Step 3. Let now

T ′
i = T ′′

i and W ′
i = W ′′

i , if i ≤ L′
τ

T ′
i = T ′

i−1 + Yk+Lτ
= T ′

i−1 + ‹XKk+Lτ
and W ′

i = Wk+Lτ
, if i = L′

τ + k , k > 0 .

Then in particular, for any k ≥ 0

Tk+Lτ
− T ′

k+L′
τ
∈ [0, ε⟩ and Wk+Lτ

= W ′
k+L′

τ
.

That is, after coming ε–close at times Lτ and L′
τ , the marked point processes η and

η′ =
∑

i≥0

δ(T ′
i ,W

′
i )

stay ε–close in time with exactly the same marks indefinitely. Denote now by (ϑ̃i)i≥1

Rademacher sequence

ϑ1, ϑ2, ϑ3, . . . , ϑτ ,−ϑτ+1,−ϑτ+2,−ϑτ+3, . . .

Applying Lemma 4.1.3 to the sequence β = (W̃i, ‹Xi)i≥1, the sequence (ϑi)i≥1 and stopping

time τ , we see that (β, ϑ̃1, ϑ̃2, . . . ) has the same distribution as (β, ϑ1, ϑ2, . . . ). Let K ′
0 = 0

and K ′
i = inf{k > K ′

i−1 : ϑ̃k = −1}, i ≥ 1. Since

T ′
i = T ′

0 +

K′
i∑

j=1

‹Xj✶{ϑ̃j=−1} and W ′
i = W̃K′

i
,

a quick comparison with (4.6) shows that η′ has the same distribution as in the statement

of the theorem.

Step 4. Observe that Vε := TLτ
∨ T ′′

L′
τ
<∞ a.s. Denote for t > 0

σ(t) = inf{k ≥ 0 : Tk > t} and σ′(t) = inf{k ≥ 0 : T ′
k > t} .

For arbitrary u ≥ 0 and a measurable set A0 ⊆ M, we have

P
(
Tσ(t) − t > u+ ε, Wσ(t) ∈ A0

)
− P(Vε > t)

≤ P
Ä
T ′
σ′(t) − t > u, W ′

σ′(t) ∈ A0

ä
(4.7)

≤ P
(
Tσ(t) − t ∈ [0, ε⟩

)
+ P

(
Tσ(t) − t > u, Wσ(t) ∈ A0

)
+ P(Vε > t) .
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Clearly, P(Vε > t) → 0 as t→ ∞. Moreover, by the stationarity of the process η

P
(
Tσ(t) − t > u, Wσ(t) ∈ A0

)
= P (T0 > u, W0 ∈ A0) .

Observe further that the function u 7→ P (T0 ≤ u, W0 ∈ A0) is continuous, for any choice

of A0. Therefore, letting first t → ∞ and then ε → 0 on the left and right hand side of

(4.7), yields Ä
T ′
σ′(t) − t,W ′

σ′(t)

ä
d−→ (T0,W0) , (4.8)

as t→ ∞. On the other hand, observe that

Ä
W ′

σ′(t)+i

ä
i≥1

d
= (Wi)i≥1 (4.9)

with the left hand side independent of
Ä
T ′
σ′(t) − t,W ′

σ′(t)

ä
and the right hand side inde-

pendent of (T0,W0).

Step 5. Because R ×M is Polish space, by the Skorokhod’s representation theorem (see

e.g. [Kal21], Theorem 5.31), there exists a probability space where one can find random

elements (T̂ ′
σ′(t)− t, Ŵσ′(t), (Ŵσ′(t)+i)i≥1), t > 0, and (T̂0, Ŵ0, (Ŵi)i≥1) which have the same

joint distribution as the random elements in (4.8) and (4.9), but satisfy

Ä
T̂ ′
σ′(t) − t, (Ŵσ′(t)+i)i≥0

ä
a.s.−→
Ä
T̂0, (Ŵi)i≥0

ä
,

as t → ∞, in the product topology on R × MN0 . Moreover, by the strong law of large

numbers (see e.g. Theorem 2.4.1 in [Dur10])

i∑

j=1

ϕ(Ŵσ′(t)+j) =
i∑

j=1

X̂σ′(t)+j and
i∑

j=1

ϕ(Ŵj) =
i∑

j=1

X̂j

tend to ∞ almost surely, as i→ ∞. Observe that by Lemma 4.1.4

θtη
′ d
=

∞∑

i=0

δ(
T̂ ′
σ′(t)

−t+
∑i

j=1 ϕ
(
Ŵ ′

σ′(t)+j

)
,Ŵ ′

σ′(t)+i

)

a.s.−→

∞∑

i=0

δ(T̂0+
∑i

j=1 ϕ(Ŵj),Ŵi)
d
= η

∣∣∣∣
[0,∞⟩×M

,

as t→ ∞. This now yields the statement of the theorem on the state space [0,∞⟩ ×M.

Step 6. To extend convergence in Mp([0,∞⟩×M) to the convergence in distribution with

respect to the vague topology on Mp(R×M), consider an arbitrary continuous bounded

function f : R×M → R+ with a support on a set of the form [−h, h]×M, for some h > 0.
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Introduce fh(u, w) = f(u− h, w) which is clearly continuous bounded and supported on

[0, 2h] ×M. Now for any fixed h > 0 as t→ ∞

E exp (−θtη
′(f)) = E exp

Ñ
−

∑

i≥−σ′(t)

f
Ä
T ′
σ′(t)+i − t,W ′

σ′(t)+i

ä
é

= E exp

Ñ
−

∑

i≥−σ′(t)

fh
Ä
T ′
σ′(t)+i − (t− h),W ′

σ′(t)+i

ä
é

= E exp

(
−
∑

i≥0

fh
Ä
T ′
σ′(t−h)+i − (t− h),W ′

σ′(t−h)+i

ä)

= E exp
(
−θt−hη

′(fh)
)
−→ E exp

(
−η(fh)

)

= E exp

(
−
∑

i≥0

fh (Ti,Wi)

)
= E exp

(
−
∑

i∈Z

fh (Ti,Wi)

)

= E exp

(
−
∑

i∈Z

f (Ti − h,Wi)

)
= E exp (−η(f)) ,

where the last equality follows by the stationarity of the process η. Since f was arbitrary,

by Theorem 2.4.2, this concludes the proof.

4.2 Fundamentals of renewal cluster point processes

We now give a detailed description of the central object of interest to which we extend

the renewal theorems from the previous chapter. Let (X ′
i)i≥1 be a sequence of nonnegative

random variables with a nonarithmetic distribution and a finite strictly positive mean µ

and let (ξ′i)i≥1 be a sequence of point processes on R such that the pairs W ′
i = (ξ′i, X

′
i) are

independent and identically distributed. Note that ξ′1 and X ′
1 are allowed to be dependent.

Assume further that a random pair W ′
0 = (ξ′0, X

′
0) also takes values in Mp(R) × R+ and

is independent of the i.i.d. sequence (W ′
i )i≥1. Let (T ′

i )i≥0 be a renewal sequence with

increments X ′
i, i.e.

T ′
i =

i∑

j=0

X ′
j , i ≥ 0 .

The associated renewal cluster point process is given by

ξ′(B) =
∑

i≥0

ξ′i(B − T ′
i ) , B ∈ B(R) , (4.10)

assuming that almost surely ξ′(B) < ∞, for all B ∈ Bb(R). To be in line with the

terminology of [BBK20], we call ζ ′ =
∑

i≥0 δT ′
i

the parent process and ξ′i, i ≥ 0, the
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descendant process.

Remark 4.2.1. We would like to mention that the definitions of a cluster process differ

in the literature. In [BBK20], parent process ζ ′ is an arbitrary point process on R and

descendant processes are said to be conditionally independent point processes given ζ ′

with distribution p(T ′
i , ·) for a probability kernel p : R → Mp(R). Even more general

cluster process is defined in [Kal17] on page 245, where descendent processes are not

even assumed to be point processes but only random measures. It is interesting that

these processes can not be considered as generalizations of a renewal cluster point process

introduced above. Indeed, assume that a parent process ζ ′ is a Poisson process on R+

and let

(i) ξ′i = δ0 + δ1 ,

(ii) ξ′i = δ0 + δ✶{X′
i
≤1}+2✶{X′

i
>1}

,

(iii) ξ′i = δ0 + δ∑∞
n=0 ✶{2n≤T ′

i
<2n+1}+2

∑∞
n=1 ✶{2n−1≤T ′

i
<2n}

,

for all i ≥ 0. Hence, we are studying a process that consist of the points of the parent

process followed by one more point. All three definitions cover (i). However, note that ξ′i

defined in (ii) essentially depends on the difference of T ′
i and T ′

i−1. On the other hand, ξ′i

in (iii) depends on the location of the corresponding point of the parent process and not

only of the last interarrival time, hence it does not fit the definition of a renewal cluster

point process.

By relation (2.2), each ξ′i has a representation

ξ′i =

L′
i∑

j=1

δT ′
ij
,

where L′
i is a random variable with values in {0, 1, . . . ,+∞} and T ′

i,1, . . . , T
′
i,L′

i
is a sequence

of random variables with values in R. We will assume henceforth that L′
i is almost surely

finite, for all i. One can identify

W ′
i = (ξ′i, X

′
i) with (L′

i, (T
′
ij)j, X

′
i) , (4.11)

for all i ≥ 0. Thus, we study a renewal cluster point process constructed in such a way

that around each point T ′
i of the parent process one observes L′

i other points translated
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by random times (T ′
ij)j. More precisely,

ξ′(B) =
∑

i≥0

L′
i∑

j=1

δT ′
ij

(B − T ′
i ) =

∑

i≥0

L′
i∑

j=1

δT ′
i+T ′

ij
(B) ,

for every B ∈ B(R). Although the points of the parent process ζ ′ are often unobserved,

it is possible to include them in the cluster point process, which will be done occasionally

in the sequel. We simply set T ′
i0 = 0, for every i and write

ξ′i =

L′
i∑

j=0

δT ′
ij

and ξ′ =
∑

i≥0

L′
i∑

j=0

δT ′
i+T ′

ij
.

In this case, the i−th cluster size is L′
i + 1. Proofs in this chapter are carried out without

counting the points of the parent process, however they are essentially the same in both

cases.

By (4.11), we may regard W ′
i as a random element in a Polish space M = N0×RN×R+,

for all i ≥ 0. Hence,
∑

i≥0 δ(T ′
i ,W

′
i )

is a marked renewal point process on R+ with marks in

M and we can, as in the previous section, construct its stationary version
∑

i∈Z δ(Ti,Wi),

where Wi = (Li, (Tij)j, Xi), for all i ∈ Z. It now follows that the process

ξ =
∑

i∈Z

Li∑

j=1

δTi+Tij
,

provided that it is finite a.s. on bounded sets, can be referred to as a stationary renewal

cluster point process.

Proposition 4.2.2. Mean measure of a stationary renewal point process ξ equals

Eξ(B) =
1

µ
EL1Leb(B) ,

for all B ∈ B(R).

Proof. First, we introduce the notation. Let B + x = {b + x : b ∈ B}, for all B ∈ Bb(R)

and x ∈ R.

Eξ(B) = E

[
∑

i∈Z

ξi(B − Ti)

]
= E

[
∑

i∈Z

fB(Ti, ξi)

]
=

1

µ

∫

R

E[fB(y, ξ′1)]dy

=
1

µ
E

ï∫
R

ξ′1(B − y)dy

ò
=

1

µ
E

ï∫
R

∫

R

✶{s∈B−y}dξ
′
1(s)dy

ò

=
1

µ
E

ï∫
R

∫

R

✶{y∈B−s}dydξ′1(s)

ò
=

1

µ
E

ï∫
R

Leb(B)dξ′1(s)

ò

=
1

µ
Eξ′1(R)Leb(B) =

1

µ
EL′

1Leb(B) ,
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where the third equality follows by the Campbell-Little-Mecke formula (see e.g. relation

(1.2.19) in [BB03]) applied to a stationary marked point process
∑

i∈Z δ(Ti,ξi) for a non-

negative measurable function fB : R×Mp(R) → R given by fB(y,m) = m(B − y). Note

that E
[∑

i∈Z δTi
[0, 1]

]
= 1

µ
, see Theorem 3.2.4. By construction, X1

d
= X ′

1 and L1
d
= L′

1,

which completes the proof.

Remark 4.2.3. It follows immediately from the previous proposition that

EL1 <∞

implies Eξ(B) < ∞, hence P(ξ(B) < ∞) = 1, for all B ∈ Bb(R). Thus, finite mean

cluster size is a simple sufficient condition for the existence of a stationary renewal cluster

point process. However, as stated in [DVJ03] on page 177, this condition is in general not

necessary. For instance, assume that at every point of a two-sided Poisson parent process

Li points is observed (i.e. all the points of the descendant process are located at distance

0 from the Ti), where P(Li = n) = 1
n(n+1)

, for all n ∈ N. Obviously, such a process is

finite a.s. on bounded sets, but ELi = ∞, for all i.

4.3 Extended renewal theorem

It is useful in the sequel to introduce the following notation

R′
i = sup

j≤L′
i

|T ′
ij| ,

for all i ≥ 0. Observe that R′
i, i ≥ 1 are i.i.d. nonnegative random variables. Recall that

X+ := X ∨ 0 is a standard abbreviation for a positive part and X− := (−X) ∧ 0 for a

negative part of a general random variable X, which will be used henceforth.

Theorem 4.3.1 (Extended renewal theorem for cluster point processes). Assume that

ξ′ is the renewal cluster point process introduced in Section 4.2 and ξ is its stationary

version. If ER′
1 is finite, then

θtξ
′ d
−→ ξ ,

i.e.

∑

i≥0

L′
i∑

j=1

δT ′
i−t+T ′

ij

d
−→
∑

i∈Z

Li∑

j=1

δTi+Tij
,

as t→ ∞ with respect to the vague topology on Mp(R).
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Proof. Step 1. Note that the mark space M = N0 × RN × [0,∞⟩ of the corresponding

marked renewal point processes is again Polish, hence Proposition 4.1.2 can be applied,

yielding
∑

i≥0

δ(T ′
i−t,W ′

i )
d
−→
∑

i∈Z

δ(Ti,Wi) ,

as t→ ∞ in Mp(R×M). By the definition of convergence in distribution,

∑

i≥0

δ(T ′
i−t,L′

i,(T
′
ij)j)

d
−→
∑

i∈Z

δ(Ti,Li,(Tij)j) , (4.12)

as t→ ∞ in Mp(R×M∗), where M∗ = N0 × RN.

Step 2. Fix K > 0 and consider the mapping TK : Mp(R×M∗) →Mp(R× R) given by

TK

(
∑

i

δ(xi,yi,(zij)j)

)
=
∑

i

yi∑

j=1

δ(xi,zij)✶{|xi|≤K} .

It is well defined, i.e. ∀m ∈Mp(R×M∗), TK(m) is a locally finite point measure on R×R.

Denote

NK = {m ∈Mp(R×M∗) : m({±K} ×M∗) = 0} .

We will show that TK is continuous on NK . Let m1,m2, . . . ∈Mp(R×M∗), m ∈ NK and

mn
v
−→ m. Then, by Proposition 2.2.5, there exist integers n0, P and a labelling of the

points of m and mn, n ≥ n0 in [−K,K] ×M∗ such that

mn

∣∣
[−K,K]×M∗ =

P∑

i=1

δ
(x

(n)
i ,y

(n)
i ,(z

(n)
ij )j)

,

m
∣∣
[−K,K]×M∗ =

P∑

i=1

δ(xi,yi,(zij)j)

and for all i = 1, 2, . . . , P

x
(n)
i → xi , y

(n)
i → yi , (z

(n)
ij )j → (zij)j ,

as n→ ∞. Observe that

TK(mn) =
P∑

i=1

y
(n)
i∑

j=1

δ
(x

(n)
i ,z

(n)
ij )

, for all n ≥ n0 ,

and

TK(m) =
P∑

i=1

yi∑

j=1

δ(xi,zij) ,
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have only finitely many terms, hence it holds that TK(mn) → TK(m), as n→ ∞. Finally,

an application of the continuous mapping theorem (see e.g. [Bil68], Corollary 1, p. 31) to

(4.12) yields

TK

Å∑
i≥0

δ(T ′
i−t,L′

i,(T
′
ij)j)

ã
d
−→ TK

Å∑
i∈Z

δ(Ti,Li,(Tij)j)

ã
,

thus
∑

i≥0

L′
i∑

j=1

δ(T ′
i−t,T ′

ij)

∣∣∣∣
[−K,K]×R

d
−→
∑

i∈Z

Li∑

j=1

δ(Ti,Tij)

∣∣∣∣
[−K,K]×R

, (4.13)

as t→ ∞ in Mp(R× R). Indeed, from Proposition 8.2 in [LP18], it follows that

P

(
∑

i∈Z

δ(Ti,Li,(Tij)j) ∈ NK

)
= P

(
∑

i∈Z

δTi
({±K}) = 0

)
= 1 .

Step 3. Since addition, as a function from [−K,K] × R to R, trivially satisfies condition

(2.1), we may apply the continuous mapping theorem to (4.13). Then,

∑

i≥0

L′
i∑

j=1

✶{|T ′
i−t|≤K}δT ′

i−t+T ′
ij

d
−→
∑

i∈Z

Li∑

j=1

✶{|Ti|≤K}δTi+Tij
,

as t→ ∞ in Mp(R).

Taking the point process on the right hand side of the above relation and letting

K → ∞, one obtains

∑

i∈Z

Li∑

j=1

✶{|Ti|≤K}δTi+Tij

d
−→
∑

i∈Z

Li∑

j=1

δTi+Tij
, (4.14)

in Mp(R). Indeed, let f : R → R+ be an arbitrary continuous bounded function with a

bounded support. Then, by the monotone convergence theorem,

∑

i∈Z

Li∑

j=1

✶{|Ti|≤K}f(Ti + Tij)
a.s.
−−→

∑

i∈Z

Li∑

j=1

f(Ti + Tij) ,

as K → ∞. Since almost sure convergence implies convergence in distribution, Theorem

2.4.2 yields the equation (4.14).

To complete the proof, by the variant of the Slutsky’s lemma (see Theorem 4.2 in

[Bil68]) and Theorem 2.4.2, it suffices to show that for every u > 0 and every function f

as above

lim
K→∞

lim sup
t→∞

P

Ñ∣∣∣∣∣∣
∑

i≥0

L′
i∑

j=1

✶{|T ′
i−t|≤K}f(T ′

i − t+ T ′
ij) −

∑

i≥0

L′
i∑

j=1

f(T ′
i − t+ T ′

ij)

∣∣∣∣∣∣
> u

é
= 0 .
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Assume that the support of f is contained in ⟨−C,C⟩, for some C > 0. Observe that for

K > C

P

Ñ∣∣∣∣∣∣
∑

i≥0

L′
i∑

j=1

✶{|T ′
i−t|≤K}f(T ′

i − t+ T ′
ij) −

∑

i≥0

L′
i∑

j=1

f(T ′
i − t+ T ′

ij)

∣∣∣∣∣∣
> u

é

= P

Ñ∣∣∣∣∣∣
∑

i≥0

L′
i∑

j=1

✶{|T ′
i−t|>K}f(T ′

i − t+ T ′
ij)

∣∣∣∣∣∣
> u

é

≤ P
(
∃i, j ≤ L′

i : |T ′
i − t| > K, |T ′

i − t+ T ′
ij| < C

)
.

Denote

σ(t) = inf{i ≥ 0 : T ′
i > t}

and observe that the last expression above is bounded by

P
(
∃i : T ′

i − t < −K,T ′
i − t+R′

i > −C
)

+ P
(
∃i : T ′

i − t > K, T ′
i − t−R′

i < C
)

≤ P
(
T ′
0 − t < −K,T ′

0 − t+R′
0 > −C

)

+
∑

i≥1

P
(
T ′
i−1 − t ≤ −K,T ′

i−1 − t+X ′
i +R′

i > −C
)

+ P
(
T ′
σ(t+K) − (t+K) −R′

σ(t+K) < C −K
)

+
∑

i≥1

P
(
T ′
i−1 − t ≥ K,T ′

i−1 +X ′
i − t−R′

i < C
)

=: I+0 (t,K) + I+1 (t,K) + I−0 (t,K) + I−1 (t,K) .

It is easy to see that

lim
K→∞

lim sup
t→∞

I+0 (t,K) ≤ lim
K→∞

P(R′
0 > K − C) = 0 .

Denote by U ′ the renewal function and recall from Section 3.1 that U ′ =
∑

i≥0 FT ′
i
, where

FT ′
i

is the distribution function of the arrival time T ′
i . Then, using the independence

between T ′
i−1 and X ′

i, R
′
i, for all i ≥ 1, we obtain

I+1 (t,K) =
∑

i≥1

∫

[0,t−K]

P(y − t+X ′
i +R′

i > −C)dFT ′
i−1

(y)

=

∫

[0,t−K]

P(X ′
1 +R′

1 + C −K > t−K − y)dU ′(y) .

Observe that the function y 7→ P(X ′
1 + R′

1 + C − K > y) is nonnegative, nonincreasing

and Riemann integrable on R+, since
∫ ∞

0

P(X ′
1 +R′

1 + C −K > y)dy =

∫ ∞

K−C

P(X ′
1 +R′

1 > y)dy ≤ E[X ′
1 +R′

1] <∞ ,
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by integrability assumptions on X ′
1 and R′

1. By Lemma 3.4.4, it is also a directly Rie-

mann integrable function on R+, hence by the key renewal theorem (Theorem 3.4.6) and

integrability assumptions on X ′
1 and R′

1

lim
K→∞

lim sup
t→∞

I+1 (t,K) = lim
K→∞

1

µ
E(X ′

1 +R′
1 + C −K)+ = 0 .

One can argue similarly as in Example 2.4.3 and conclude that Proposition 4.1.2 and

Theorem 2.4.2 yield

(T ′
σ(t) − t, R′

σ(t))
d
−→ (T0, R0) ,

as t → ∞, where R0 = sup
j≤L0

|T0j|. Hence, by the continuous mapping argument it follows

that

lim
K→∞

lim sup
t→∞

I−0 (t,K) = lim
K→∞

P (T0 −R0 < C −K) ≤ lim
K→∞

P(R0 > K − C) = 0 .

As before, using independence assumption between T ′
i−1 and X ′

i, R
′
i, for all i ≥ 1, we

obtain

I−1 (t,K) =

∫

[t+K,∞⟩

P(X ′
1 −R′

1 − C +K < t+K − y)dU ′(y)

≤

∫

[t+K,∞⟩

P(−R′
1 − C +K < t+K − y)dU ′(y) .

Note that the function y 7→ P(−R′
1 − C + K < y) is nonnegative, nondecreasing and

Riemann integrable on R−, since

∫ 0

−∞

P(−R′
1 − C +K < y)dy =

∫ ∞

K−C

P(R′
1 > y)dy ≤ ER′

1 <∞ ,

by integrability assumption on R′
1. Another application of Lemma 3.4.4 now yields that

y 7→ P(−R′
1 − C + K < y) is a directly Riemann integrable function on R−. Hence,

by the key renewal theorem on a negative half line (Theorem 3.4.7 (i)) and integrability

assumptions on X ′
1 and R′

1

lim
K→∞

lim sup
t→∞

I−1 (t,K) = lim
K→∞

1

µ
E(−R′

1 − C +K)− = 0 ,

which completes the proof.

Remark 4.3.2. Let us arrange the points of the renewal cluster point process ξ′ in a

nondecreasing order

. . . ≤ S ′
−2 ≤ S ′

−1 ≤ 0 ≤ S ′
0 ≤ S ′

1 ≤ S ′
2 ≤ . . . .
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Renewal cluster point processes

Generally, S ′
k = T ′

i + T ′
ij, for some i, j. For an arbitrary t > 0, set

σ(t) = inf{k ∈ N : S ′
k > t} ,

then

R(t) = S ′
σ(t) − t

is a forward recurrence time. In Sections 4.6 and 4.7, for some specific cluster point

processes, we will obtain closed formulae for the limiting distribution of the forward

recurrence time as a consequence of Theorem 4.3.1.

4.4 Blackwell’s renewal theorem

To deduce Blackwell’s renewal theorem for renewal cluster point processes from the

extended renewal theorem, we need a technical result involving uniform integrability.

Recall that the random variables Xt, t ∈ T , are said to be uniformly integrable if

lim
x→∞

Å
sup
t∈T

E
[
|Xt|✶{|Xt|>x}

]ã
= 0 ,

where T is a nonempty index set.

Lemma 4.4.1. Assume that ξ′ is the renewal cluster point process introduced in Section

4.2. Suppose that L′
0, L

′
1, L

′
1X

′
1 and L′

1R
′
1 are integrable random variables. Then for all

x > 0,

ξ′⟨t, t+ x] , t ≥ 0 ,

are uniformly integrable random variables.

Proof. Based on the position of the cluster centers T ′
i , we obtain the following decompo-

sition

ξ′⟨t, t+ x] = ξ′1⟨t, t+ x] + ξ′2⟨t, t+ x] + ξ′3⟨t, t+ x] ,

where

ξ′1⟨t, t+ x] =
∑

i≥0

L′
i∑

j=1

✶{T ′
i+T ′

ij∈⟨t,t+x]}✶{T ′
i≤t} ,

ξ′2⟨t, t+ x] =
∑

i≥0

L′
i∑

j=1

✶{T ′
i+T ′

ij∈⟨t,t+x]}✶{t<T ′
i≤t+x}
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and

ξ′3⟨t, t+ x] =
∑

i≥0

L′
i∑

j=1

✶{T ′
i+T ′

ij∈⟨t,t+x]}✶{T ′
i>t+x} .

Note that if T ′
ij take only negative values, ξ′1⟨t, t+x] is identically 0. Hence, when dealing

with this term, one needs to take care only of T ′
ij ≥ 0, for all i, j ≤ L′

i. Similarly, when

dealing with ξ′3⟨t, t+x] one can ignore positive T ′
ij and assume that T ′

ij ≤ 0, for all i, j ≤ L′
i.

These simple observations will be useful in the sequel. Once the uniform integrability of

all three terms is proved, statement of the lemma follows by Theorem 4.6 in Chapter 5

of [Gut05]. We now show uniform integrability of each term separately.

Term ξ′1. Observe that

ξ′1⟨t, t+ x] ≤
∑

i≥0

L′
i✶{T ′

i+R′
i>t}✶{T ′

i≤t}

≤ L′
0 +

∑

i≥1

L′
i✶{T ′

i−t+R′
i>0}✶{T ′

i≤t} =: L′
0 + I ′1(t) . (4.15)

Trivially, an integrable random variable L′
0 is uniformly integrable. For the other term in

the above relation, using the independence between T ′
i−1 and X ′

i, L
′
i, R

′
i, for all i ≥ 1, we

get

EI ′1(t) = E

[
∑

i≥1

L′
i✶{T ′

i−t+R′
i>0}✶{T ′

i≤t}

]

= E

[
∑

i≥1

E
î
L′
i✶{T ′

i−1+X′
i−t+R′

i>0}✶{T ′
i−1+X′

i≤t}✶{T ′
i−1≤t}|T

′
i−1

ó]

=
∑

i≥1

∫

[0,t]

E
[
L′
i✶{X′

i+R′
i>t−y}✶{X′

i≤t−y}

]
dFT ′

i−1
(y)

=

∫

[0,t]

E
[
L′
1✶{X′

1+R′
1>t−y}✶{X′

1≤t−y}

]
dU ′(y) .

By the key renewal theorem (Theorem 3.4.6), as t → ∞, the above expression converges

to

1

µ

∫ ∞

0

E
[
L′
1✶{X′

1+R′
1>y}✶{X′

1≤y}

]
dy =

1

µ
E

ñ
L′
1

∫ X′
1+R′

1

X′
1

dy

ô
=

1

µ
E [L′

1R
′
1] =: c1 ,

if y 7→ E
[
L′
1✶{X′

1+R′
1>y}✶{X′

1≤y}

]
is a directly Riemann integrable function on R+. This

follows by Lemma 3.4.5, since

∫ ∞

0

E
[
L′
1✶{X′

1+R′
1>y}✶{X′

1≤y}

]
dy = E [L′

1R
′
1] <∞
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by the assumption,

E
[
L′
1✶{X′

1+R′
1>y}✶{X′

1≤y}

]
≤ E

[
L′
1✶{X′

1+R′
1>y}

]
, (4.16)

for all y ≥ 0 and the majorant in (4.16) is directly Riemann integrable on R+ by Lemma

3.4.4. Indeed, the majorant is nonnegative, nonincreasing and

∫ ∞

0

E
[
L′
1✶{X′

1+R′
1>y}

]
dy = E [L′

1(X
′
1 +R′

1)] <∞ ,

by the assumptions of the theorem.

Let Ri = supj≤Li
|Tij|, for all i ∈ Z. We now show that, as t→ ∞,

I ′1(t)
d
−→
∑

i≤−1

Li✶{Ti+Ri>0} =: I ′1 ,

by checking the conditions of Theorem 4.2 from [Bil68]. Simple modifications in the proof

of Theorem 4.3.1 give

∑

i≥1

L′
iδT ′

i−t+R′
i
✶{T ′

i≤t}
d
−→
∑

i≤−1

LiδTi+Ri
,

hence Theorem 2.4.2 yields

∑

i≥1

L′
i✶{0<T ′

i−t+R′
i≤M}✶{T ′

i≤t}
d
−→
∑

i≤−1

Li✶{0<Ti+Ri≤M} ,

as t → ∞, for an arbitrary M > 0. Considering the random variable on the right hand

side, letting M → ∞ and applying the monotone convergence theorem, we get

∑

i≤−1

Li✶{0<Ti+Ri≤M}
a.s.
−−→

∑

i≤−1

Li✶{Ti+Ri>0} .

It now remains to show that for every u > 0

lim
M→∞

lim sup
t→∞

P

Ñ∣∣∣∣∣∣
∑

i≥1

L′
i✶{0<T ′

i−t+R′
i≤M}✶{T ′

i≤t} − I ′1(t)

∣∣∣∣∣∣
> u

é
= 0 .
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Indeed,

P

Ñ∣∣∣∣∣∣
∑

i≥1

L′
i✶{0<T ′

i−t+R′
i≤M}✶{T ′

i≤t} −
∑

i≥1

L′
i✶{T ′

i−t+R′
i>0}✶{T ′

i≤t}

∣∣∣∣∣∣
> u

é

= P

Ñ∣∣∣∣∣∣
∑

i≥1

L′
i✶{T ′

i−t+R′
i>M}✶{T ′

i≤t}

∣∣∣∣∣∣
> u

é

≤ P(∃i ≥ 1 : T ′
i − t+R′

i > M,T ′
i−1 ≤ t)

≤
∑

i≥1

P
(
T ′
i−1 +X ′

i − t+R′
i > M,T ′

i−1 ≤ t
)

=
∑

i≥1

∫

[0,t]

P(y +X ′
i − t+R′

i > M)dFT ′
i−1

(y)

=

∫

[0,t]

P(X ′
1 +R′

1 −M > t− y)dU ′(y) ,

which converges by the key renewal theorem (Theorem 3.4.6) to

1

µ

∫ ∞

0

P(X ′
1 +R′

1 −M > y)dy =
1

µ
E(X ′

1 +R′
1 −M)+ ,

as t→ ∞, if y 7→ P(X ′
1 + R′

1 −M > y) is a directly Riemann integrable function on R+.

This condition is easily proved to be true as an immediate consequence of Lemma 3.4.4

and integrability assumptions on X ′
1 and R′

1. Under the same integrability assumptions,

we conclude that the above expression converges to 0, as M → ∞.

By construction, Ti is independent of Ri, Li, and Ti
d
= −T−i−1, X1

d
= X ′

1, Ri
d
= R′

1 and

Li
d
= L′

1, for all i ≤ −1. Hence, we obtain

EI ′1 = E

[
∑

i≤−1

Li✶{Ti+Ri>0}

]
= E

[
−1∑

i=−∞

E
[
Li✶{Ti+Ri>0}|Ti

]
]

=

∫

⟨−∞,0]

−1∑

i=−∞

E
[
Li✶{y+Ri>0}

]
dFTi

(y) =

∫

⟨−∞,0]

∞∑

i=0

E
[
L′
1✶{y+R′

1>0}

]
dFTi

(−y)

=

∫

[0,∞⟩

E
[
L′
1✶{R′

1>y}

]
dU(y) =

1

EX1

∫ ∞

0

E
[
L′
1✶{R′

1>y}

]
dy =

1

µ
E[L′

1R
′
1] = c1 ,

which is finite by the assumptions.

We have shown that

EI ′1(t) → c1 , I ′1(t)
d−→ I ′1 and EI ′1 = c1 <∞ ,

hence, by Lemma 5.11 in [Kal21], I ′1(t), t ≥ 0 are uniformly integrable random variables.

Applying first Theorem 4.6 and then Theorem 4.5 in Chapter 5 of [Gut05] to (4.15), we

conclude that ξ′1⟨t, t+ x], t ≥ 0 are also uniformly integrable random variables.
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Term ξ′2. Observe that

τ(t) = inf{i ≥ 0 : T ′
i ∈ ⟨t, t+ x]}

is a stopping time with respect to the natural filtration of (T ′
i )i≥0. By the definition of

ξ′2⟨t, t + x] it only makes sense to restrict our analysis to the event {τ(t) < ∞}. Let

(W ′′
i )i≥1 be an independent copy of (W ′

i )i≥1 and set T ′′
0 = 0, T ′′

i = X ′′
1 + . . . + X ′′

i , for all

i ≥ 1. Using the strong Markov property, we get

ξ′2⟨t, t+ x] ≤
∑

i≥0

L′
i✶{T ′

i∈⟨t,t+x]}

≤ L′
τ(t) +

∑

i≥0

L′
τ(t)+i+1✶{T ′

τ(t)+i
∈⟨t,t+x]}

d
= L′

τ(t) +
∑

i≥0

L′′
i+1✶{T ′

τ(t)
+T ′′

i ∈⟨t,t+x]}

= L′
τ(t) +

∑

i≥0

L′′
i+1✶{T ′′

i ∈⟨t−T ′
τ(t)

,t+x−T ′
τ(t)

]}

≤ L′
τ(t) +

∑

i≥0

L′′
i+1✶{T ′′

i ∈⟨−x,x⟩} . (4.17)

As in the proof of Theorem 4.3.1, we denote

σ(t) = inf {i ≥ 0 : T ′
i > t} .

Observe that on event {τ(t) <∞}, stopping times τ(t) and σ(t) coincide, hence

{σ(t) <∞} and L′
τ(t)

d
= L′

σ(t) .

Using the independence between T ′
i−1 and X ′

i, L
′
i, for all i ≥ 1, we get

EL′
τ(t) = EL′

σ(t) = E

[
∞∑

i=0

L′
i✶{σ(t)=i}

]
= E

[
L′
0✶{T ′

0>t} +
∞∑

i=1

L′
i✶{T ′

i−1≤t<T ′
i}

]

= E
[
L′
0✶{T ′

0>t}

]
+ E

[
∞∑

i=1

E
î
L′
i✶{T ′

i−1≤t<T ′
i−1+X′

i}
|T ′

i−1

ó]

= E
[
L′
0✶{T ′

0>t}

]
+

∫

[0,t]

∞∑

i=1

E
[
L′
i✶{X′

i>t−y}

]
dF ′

Ti−1
(y)

= E
[
L′
0✶{T ′

0>t}

]
+

∫

[0,t]

E
[
L′
1✶{X′

1>t−y}

]
dU ′(y) . (4.18)

Since EL′
0 < ∞ by the assumption, monotone convergence theorem for decreasing func-

tions yields

E
[
L′
0✶{T ′

0>t}

]
→ 0 ,
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as t → ∞. Furthermore, by Lemma 3.4.4, y 7→ E
[
L′
1✶{X′

1>y}

]
is a directly Riemann

integrable function on R+, since it is nonnegative, nonincreasing and

∫ ∞

0

E
[
L′
1✶{X′

1>y}

]
dy = E[L′

1X
′
1] <∞ ,

by the assumption. Hence, by the key renewal theorem (Theorem 3.4.6)

∫

[0,t]

E
[
L′
1✶{X′

1>t−y}

]
dU ′(y) →

1

µ
E[L′

1X
′
1] ,

thus

EL′
τ(t) →

1

µ
E[L′

1X
′
1] ,

as t→ ∞. Furthermore, Proposition 4.1.2 yields

L′
τ(t)

d
= L′

σ(t)
d
−→ L0 ,

as t→ ∞. By construction

EL0 =
1

µ
E[L′

1X
′
1]

and since we assumed strictly positive mean of X ′
1 and integrability of L′

1X
′
1, it follows

that EL0 <∞. Lemma 5.11 in [Kal21] finishes the proof of uniform integrability of L′
τ(t),

t ≥ 0.

We now focus on the other term in relation (4.17). Independence between T ′′
i and

L′′
i+1, for all i ≥ 0, integrability assumption on L′

1 and Lemma 3.1.5 yield

E

[
∑

i≥0

L′′
i+1✶{T ′′

i ∈⟨−x,x⟩}

]
= EL′

1E

[
∑

i≥0

✶{T ′′
i ∈⟨−x,x⟩}

]
= EL′

1U
′′(x) <∞ ,

thus
∑

i≥0 L
′′
i+1✶{T ′′

i ∈⟨−x,x⟩} are uniformly integrable random variables. It now only remains

to apply first Theorem 4.6 and then Theorem 4.5 in Chapter 5 of [Gut05] to (4.17) and

conclude that ξ′2⟨t, t+ x], t ≥ 0 are also uniformly integrable random variables.

Term ξ′3. We proceed similarly as in the first part of the proof and observe that

ξ′3⟨t, t+ x] ≤
∑

i≥0

L′
i✶{T ′

i−R′
i≤t+x}✶{T ′

i>t+x}

≤ L′
0 +

∑

i≥1

L′
i✶{T ′

i−(t+x)−R′
i≤0}✶{T ′

i>t+x} := L′
0 + I ′3(t) . (4.19)
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Since L′
0 is trivially uniformly integrable, we deal only with the second term in the

above relation. Observe

EI ′3(t) = E

[
∑

i≥1

L′
i✶{T ′

i−(t+x)−R′
i≤0}✶{T ′

i>t+x}✶{T ′
i−1≤t+x}

]

+ E

[
∑

i≥1

L′
i✶{T ′

i−(t+x)−R′
i≤0}✶{T ′

i−1>t+x}

]

=: E ′
1(t) + E ′

2(t) . (4.20)

Using the independence between T ′
i−1 and X ′

i, L
′
i, R

′
i, for all i ≥ 1, we get

E ′
1(t) = E

[
∑

i≥1

E
î
L′
i✶{T ′

i−1+X′
i−(t+x)−R′

i≤0}✶{T ′
i−1+X′

i>t+x}✶{T ′
i−1≤t+x}|T

′
i−1

ó]

=
∑

i≥1

∫

[0,t+x]

E
[
L′
i✶{X′

i−R′
i≤t+x−y}✶{X′

i>t+x−y}

]
dFT ′

i−1
(y)

=

∫

[0,t+x]

E
[
L′
1✶{X′

1−R′
1≤t+x−y}✶{X′

1>t+x−y}

]
dU ′(y) .

It now follows by the key renewal theorem (Theorem 3.4.6) that the above expression

converges to

1

µ

∫ ∞

0

E
[
L′
1✶{X′

1−R′
1≤y}✶{X′

1>y}

]
dy =

1

µ
E

ñ
L′
1

∫ X′
1

(X′
1−R′

1)∨0

dy

ô

=
1

µ
E [L′

1 (X ′
1 − (X ′

1 −R′
1)+)] , (4.21)

as t→ ∞, since y 7→ E
[
L′
1✶{X′

1−R′
1≤y}✶{X′

1>y}

]
is dominated by a nonnegative, nonincreas-

ing function y 7→ E
[
L′
1✶{X′

1>y}

]
which is Riemann integrable on R+ by the assumption.

Hence, conditions of Lemmas 3.4.4 and 3.4.5 are satisfied which yields direct Riemann in-

tegrability of y 7→ E
[
L′
1✶{X′

1−R′
1≤y}✶{X′

1>y}

]
on R+ and justifies the use of the key renewal

theorem. Note that, since µ is positive and E[L′
1X

′
1] is finite by the assumption, (4.21) is

finite. Similarly as above, one can show that

E ′
2(t) =

∫

⟨t+x,∞⟩

E
[
L′
1✶{X′

1−R′
1≤t+x−y}

]
dU ′(y)

and converges by the key renewal theorem on the negative half line (Theorem 3.4.7 (i)),

see also the proof of Lemma 4.3 in [BIMR22], to

1

µ

∫ 0

−∞

E
[
L′
1✶{X′

1−R′
1≤y}

]
dy =

1

µ
E [L′

1(R
′
1 −X ′

1)+] , (4.22)
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as t→ ∞. Again, one has to justify the use of the key renewal theorem by showing that

y 7→ E
[
L′
1✶{X′

1−R′
1≤y}

]
is a directly Riemann integrable function on ⟨−∞, 0⟩. This follows

by Lemma 3.4.4, since y 7→ E
[
L′
1✶{X′

1−R′
1≤y}

]
is nonnegative, nondecreasing and

∫ 0

−∞

E
[
L′
1✶{X′

1−R′
1≤y}

]
dy ≤

∫ 0

−∞

E[L′
1✶{−R′

1≤y}]dy = E[L′
1R

′
1] <∞ ,

by the assumption. Since µ is positive, this also shows that (4.22) is finite. Hence,

equations (4.20) - (4.22) yield

EI ′3(t) →
1

µ
E [L′

1 (X ′
1 − (X ′

1 −R′
1)+)] +

1

µ
E [L′

1(R
′
1 −X ′

1)+] := c3 <∞ . (4.23)

Next, we check the conditions of Theorem 4.2 from [Bil68] to conclude that

I ′3(t) =
∑

i≥1

L′
i✶{T ′

i−(t+x)−R′
i≤0}✶{T ′

i>t+x}
d
−→
∑

i≥0

Li✶{Ti−Ri≤0} =: I ′3 ,

as t→ ∞. From the proof of Theorem 4.3.1 one obtains

∑

i≥1

L′
iδT ′

i−(t+x)−R′
i
✶{T ′

i>t+x}
d
−→
∑

i≥0

LiδTi−Ri
,

hence for an arbitrary M > 0

∑

i≥1

L′
i✶{−M≤T ′

i−(t+x)−R′
i≤0}✶{T ′

i>t+x}
d
−→
∑

i≥0

Li✶{−M≤Ti−Ri≤0} ,

as t → ∞, by Theorem 2.4.2. It easily follows as a consequence of the monotone conver-

gence theorem that

∑

i≥0

Li✶{−M≤Ti−Ri≤0}
a.s.
−−→

∑

i≥0

Li✶{Ti−Ri≤0} ,

as M → ∞. Furthermore, observe that for all u > 0

P

Ñ∣∣∣∣∣∣
∑

i≥1

L′
i✶{−M≤T ′

i−(t+x)−R′
i≤0}✶{T ′

i>t+x} −
∑

i≥1

L′
i✶{T ′

i−(t+x)−R′
i≤0}✶{T ′

i>t+x}

∣∣∣∣∣∣
> u

é

= P

Ñ∣∣∣∣∣∣
∑

i≥1

L′
i✶{T ′

i−(t+x)−R′
i<−M}✶{T ′

i>t+x}

∣∣∣∣∣∣
> u

é

≤ P(∃i ≥ 1 : T ′
i − (t+ x) −R′

i < −M,T ′
i > t+ x)

≤ P(T ′
σ(t+x) − (t+ x) −R′

σ(t+x) < −M) +
∑

i≥1

P
(
T ′
i − (t+ x) −R′

i < −M,T ′
i−1 ≥ t+ x

)
,

where one shows that the term on the left hand side converges to 0, letting first t → ∞

and then M → ∞, just like in the proof of Theorem 4.3.1 (see Step 3, term I−0 (t,K)).
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For the term on the right hand side, we once again exploit the independence between

T ′
i−1 and X ′

i, R
′
i, for all i ≥ 1 and use the key renewal theorem on the negative half line

(Theorem 3.4.7 (i)). Hence

∑

i≥1

P
(
T ′
i−1 +X ′

i − (t+ x) −R′
i < −M,T ′

i−1 ≥ t+ x
)

=
∑

i≥1

∫

[t+x,∞⟩

P(y +X ′
i − (t+ x) −R′

i < −M)dFT ′
i−1

(y)

=

∫

[t+x,∞⟩

P(X ′
1 −R′

1 +M < t+ x− y)dU ′(y)

→
1

µ

∫ 0

−∞

P(X ′
1 −R′

1 +M < y)dy

≤
1

µ

∫ ∞

0

P(R′
1 −M > y)dy =

1

µ
E(R′

1 −M)+ ,

as t → ∞, if y 7→ P(X ′
1 − R′

1 + M < y) is a directly Riemann integrable function

on R−. Letting M → ∞, we conclude that the above expression converges to 0, by the

integrability assumption on R′
1. It remains to prove direct Riemann integrability, however

this follows easily from Lemma 3.4.4 and the same integrability assumption. Hence, we

have just shown that for every u > 0

lim
M→∞

lim sup
t→∞

P

Ñ∣∣∣∣∣∣
∑

i≥1

L′
i✶{−M≤T ′

i−(t+x)−R′
i≤0}✶{T ′

i>t+x} − I ′3(t)

∣∣∣∣∣∣

é
= 0 ,

which completes the checking of the assumptions of Theorem 4.2 from [Bil68].

Next, we show that

EI ′3 = E
[
L0✶{T0−R0≤0}

]
+ E

[
∑

i≥1

Li✶{Ti−Ri≤0}

]
(4.24)

equals c3. The first term can be easily calculated using inversion formula (2.4)

E
[
L0✶{T0−R0≤0}

]
=

1

µ
E

ñ∫ X′
1

0

L′
1✶{X′

1−y−R′
1≤0}dy

ô

=
1

µ
E

ñ
L′
1

∫ X′
1

(X′
1−R′

1)∨0

dy

ô
=

1

µ
E [L′

1(X
′
1 − (X ′

1 −R′
1)+)] .

For the second term in (4.24), as before, using the independence assumption between Ti−1
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and Xi, Ri, Li, for all i ≥ 1, and since X ′
1

d
= X1, R

′
1

d
= R1 and L′

1
d
= L1, we obtain

E

[
∑

i≥1

Li✶{Ti−Ri≤0}

]
= E

[
∞∑

i=1

Li✶{Ti−1+Xi−Ri≤0}

]
= E

[
∞∑

i=1

E
[
Li✶{Ti−1+Xi−Ri≤0}|Ti−1

]
]

=

∫

[0,∞⟩

∞∑

i=1

E
[
Li✶{y+Xi−Ri≤0}

]
dFTi−1

(y) =

∫

[0,∞⟩

E
[
L1✶{X1−R1≤−y}

]
dU(y)

=
1

EX1

∫ ∞

0

E
[
L1✶{X1−R1≤−y}

]
dy =

1

µ

∫ 0

−∞

E
[
L1✶{X1−R1≤y}

]
dy

=
1

µ
E

ñ
L1

∫ 0

(X1−R1)∧0

dy

ô
=

1

µ
E[L′

1(R
′
1 −X ′

1)+] .

Hence,

EI ′3 =
1

µ
E [L′

1(X
′
1 − (X ′

1 −R′
1)+)] +

1

µ
E[L′

1(R
′
1 −X ′

1)+] = c3 .

By Lemma 5.11 in [Kal21], I ′3(t), t ≥ 0 are uniformly integrable random variables.

Application of Theorem 4.6 and then Theorem 4.5 in Chapter 5 of [Gut05] to (4.19)

proves the uniform integrability of ξ′3⟨t, t+ x], t ≥ 0.

Theorem 4.4.2 (Blackwell’s renewal theorem for cluster point processes). Under the

assumptions of Lemma 4.4.1

Eξ′⟨t, t+ x] →
1

µ
EL′

1x ,

as t→ ∞, for all x > 0.

Proof. Theorem 4.3.1 and Theorem 2.4.2 yield

θtξ
′(B)

d
−→ ξ(B) ,

as t → ∞, for all B ∈ Bb(R) such that ξ(∂B) = 0 a.s. Let B = ⟨0, x], for an arbitrary

x > 0. Then,

θtξ
′⟨0, x]

d
−→ ξ⟨0, x] ,

as t → ∞, because P(ξ{0, x} = 0) = 1, e.g. by Proposition 4.2.2. Note that we have

already shown in Lemma 4.4.1 that θtξ
′⟨0, x], t ≥ 0 are uniformly integrable random

variables. Therefore, by Lemma 5.11 in [Kal21]

Eξ′⟨t, t+ x] = Eθtξ
′⟨0, x] → Eξ⟨0, x] =

1

µ
EL′

1x ,

as t → ∞, where equality on the right follows from Proposition 4.2.2 and distributional

equality of L′
1 and L1, as well as X ′

1 and X1.
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In the cluster point process framework, just like in the standard setting, Blackwell’s

renewal theorem implies the elementary renewal theorem.

Theorem 4.4.3 (Elementary renewal theorem for cluster point processes). Under the

assumptions of Lemma 4.4.1
Eξ′⟨0, t]

t
→

1

µ
EL′

1 ,

as t→ ∞.

Proof. The proof is based on the same arguments as in the standard renewal theory, see

for instance Section 3.7 in [Res92]. First, we observe that Theorem 4.4.2 implies

Eξ′⟨k − 1, k] →
1

µ
EL′

1 ,

as k → ∞ and since convergent sequences are Cesàro convergent to the same limit

1

k
Eξ′⟨0, k] =

1

k

k∑

j=1

Eξ′⟨j − 1, j] →
1

µ
EL′

1 ,

as k → ∞. Let ⌊t⌋ denote the largest integer not exceeding t and observe

Eξ′ ⟨0, ⌊t⌋]

⌊t⌋

⌊t⌋

t
≤

Eξ′⟨0, t]

t
≤

Eξ′⟨0, ⌊t⌋ + 1]

⌊t⌋ + 1

⌊t⌋ + 1

t
.

Letting t→ ∞ completes the proof.

4.5 Key renewal theorem

Since Blackwell’s renewal theorem and the key renewal theorem in the classical re-

newal process framework are equivalent, it is natural to ask if the equivalence can also

be established in our setting. The answer is affirmative and it is fairly easy to check that

the two versions of renewal theorem for cluster point processes are equivalent, since the

proof essentially follows the classical argument. However, certain preparatory work must

be done. Analogously as in Chapter 3, we define the renewal function Uξ′ : R → [0,∞] by

Uξ′(t) = E




∞∑

i=0

L′
i∑

j=1

✶{T ′
i+T ′

ij≤t}


 .

Lemma 4.5.1. Suppose that L′
0, L

′
1, L

′
1X

′
1 and L

′
1R

′
1 are integrable random variables, then

the renewal function Uξ′ is finite, for all t ∈ R.
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Proof. For all t ≥ 0

Uξ′(t) ≤ EL′
0 + E

[
∞∑

i=1

L′
i✶{T ′

i−R′
i≤t}✶{T ′

i≤t}

]
+ E

[
∞∑

i=1

L′
i✶{T ′

i−R′
i≤t}✶{T ′

i>t}

]
. (4.25)

The first term in (4.25) is finite by the assumption. For the second term, observe that

E

[
∞∑

i=1

L′
i✶{T ′

i−R′
i≤t}✶{T ′

i≤t}

]
= E

[
∞∑

i=1

L′
i✶{T ′

i≤t}

]
≤ E

[
∞∑

i=1

L′
i✶{T ′

i−1≤t}

]
= EL′

1U
′(t) <∞ ,

by the integrability assumption on L′
1 and Lemma 3.1.5. Just like in the proof of Lemma

4.4.1 (see term I ′3(t)), one can show that as t→ ∞

E

[
∞∑

i=1

L′
i✶{T ′

i−R′
i≤t}✶{T ′

i>t}

]
→ c3 <∞ ,

where c3 is defined in (4.23). Hence, for all ε > 0 there exists tε > 0 such that

E

[
∞∑

i=1

L′
i✶{T ′

i−R′
i≤t}✶{T ′

i>t}

]

= E

[
∞∑

i=1

L′
i✶{T ′

i−R′
i≤t}✶{T ′

i>t}✶{t>tε}

]
+ E

[
∞∑

i=1

L′
i✶{T ′

i−R′
i≤t}✶{T ′

i>t}✶{t≤tε}

]

< c3 + ε+ E

[
∞∑

i=1

L′
i✶{T ′

i−R′
i≤tε+1}✶{t<T ′

i≤tε+1}

]
+ E

[
∞∑

i=1

L′
i✶{T ′

i−R′
i≤tε+1}✶{T ′

i>tε+1}

]

≤ c3 + ε+ EL′
1U

′(tε + 1) + c3 + ε <∞ .

Obviously, Uξ′(−t) ≤ Uξ′(t), for all t > 0 which completes the proof.

Arguing just like in Section 3.1 after Lemma 3.1.5, we associate with renewal function

an unique measure on R denoted again by Uξ′ .

Let G denote distribution of X ′
0 and F common distribution of X ′

i, i ≥ 1. We first

recall the renewal equation (3.11)

U ′(t) = G(t) + F ∗ U ′(t), t ≥ 0 ,

where U ′(t) = E
[∑∞

i=0 ✶{T ′
i≤t}

]
= E

[∑∞
i=0 δT ′

i
[0, t]

]
. Using the independence assumption
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between T ′
i−1 and L′

i, (T
′
ij)j, for all i ≥ 1, we get that

Uξ′(t) = E




∞∑

i=0

L′
i∑

j=1

δT ′
i+T ′

ij
⟨−∞, t]




= E




L′
0∑

j=1

✶{T ′
0+T ′

0j≤t}


+ E




∞∑

i=1

L′
i∑

j=1

✶{T ′
i−1+X′

i+T ′
ij≤t}




= φ(t) + E




∞∑

i=1

E




L′
i∑

j=1

✶{T ′
i−1+X′

i+T ′
ij≤t}|T

′
i−1






= φ(t) +

∫

[0,∞⟩

∞∑

i=1

E




L′
i∑

j=1

✶{X′
i+T ′

ij≤t−y}


 dF ′

Ti−1
(y)

= φ(t) +

∫

[0,∞⟩

E




L′
1∑

j=1

✶{X′
1+T ′

1j≤t−y}


 dU ′(y)

= φ(t) +

∫

[0,∞⟩

ψ(t− y)dU ′(y) ,

where φ(t) = E
î∑L′

0
j=1 ✶{T ′

0+T ′
0j≤t}

ó
and ψ(t) = E

î∑L′
1

j=1 ✶{X′
1+T ′

1j≤t}

ó
, t ∈ R. One now

easily obtains a convolution equation

Uξ′(t) = φ(t) + U ′ ∗ ψ(t)

= φ(t) + (G+ F ∗ U ′) ∗ ψ(t)

= φ(t) +G ∗ ψ(t) + F ∗ U ′ ∗ ψ(t)

= (1 − F ) ∗ φ(t) +G ∗ ψ(t) + F ∗ φ(t) + F ∗ U ′ ∗ ψ(t)

= (1 − F ) ∗ φ(t) +G ∗ ψ(t) + F ∗ Uξ′(t) , (4.26)

for all t ≥ 0.

Theorem 4.5.2 (Key renewal theorem for cluster point processes). Under the assump-

tions of Lemma 4.4.1 and additionally if g : R+ → R+ is a directly Riemann integrable

function on R+, then

lim
t→∞

∫

[0,t]

g(t− y)dUξ′(y) =
1

µ
EL′

1

∫ ∞

0

g(y)dy .

Proof. The proof is divided into three steps, with successively more complex g.

Step 1. Suppose

g(t) = ✶[(k−1)h,kh⟩(t) , t ≥ 0 ,
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for a fixed k ∈ N and h > 0. Then g(t− y) = 1 if and only if t− kh < y ≤ t− (k − 1)h,

thus

∫

[0,t]

g(t− y)dUξ′(y) = Uξ′⟨t− kh, t− (k − 1)h]✶{t≥kh} + Uξ′⟨0, t− (k − 1)h]✶{(k−1)h≤t<kh} .

Observe that for all t ∈ [(k − 1)h, kh⟩,

Uξ′⟨0, t− (k − 1)h] ≤ Uξ′(h) <∞ , (4.27)

hence Theorem 4.4.2 yields

lim
t→∞

∫

[0,t]

g(t− y)dUξ′(y) =
1

µ
EL′

1h+ 0 =
1

µ
EL′

1

∫ ∞

0

g(y)dy .

Step 2. Suppose

g(t) =
∑

k≥1

ck✶[(k−1)h,kh⟩(t) , t ≥ 0 ,

where (ck)k≥1 is a sequence of nonnegative numbers such that
∑

k≥1 ck < ∞ and h is

chosen so that F (h) < 1. Then

∫

[0,t]

g(t−y)dUξ′(y) =
∞∑

k=1

ckUξ′⟨t−kh, t−(k−1)h]✶{t≥kh}+
∞∑

k=1

ckUξ′⟨0, t−(k−1)h]✶{(k−1)h≤t<kh} .

For each k ∈ N and t ≥ kh, we have

lim
t→∞

Uξ′⟨t− kh, t− (k − 1)h] =
1

µ
EL′

1h .

It follows from the equation (4.26), that

φ(t) +G ∗ ψ(t) ≥ (1 − F ) ∗ φ(t) +G ∗ ψ(t) = (1 − F ) ∗ Uξ′(t) ,

hence

EL′
0 + EL′

1 = EL′
0 +

∫

[0,∞⟩

EL′
1dG(y)

≥ φ(t− (k − 1)h) +

∫

[0,∞⟩

ψ(t− (k − 1)h− y)dG(y)

≥

∫

[t−kh,t−(k−1)h]

(1 − F (t− (k − 1)h− y))dUξ′(y)

≥ (1 − F (h))Uξ′⟨t− kh, t− (k − 1)h] .

Therefore

sup
t,k

Uξ′⟨t− kh, t− (k − 1)h] ≤
EL′

0 + EL′
1

1 − F (h)
,
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which is finite by integrability assumptions on L′
0, L

′
1 and choice of h. For an arbitrary k

and t ∈ [(k − 1)h, kh⟩, recall (4.27). Hence, by the dominated convergence theorem

lim
t→∞

∫

[0,t]

g(t− y)dUξ′(y) =
1

µ
EL′

1h
∑

k≥1

ck + 0 =
1

µ
EL′

1

∫ ∞

0

g(y)dy .

Step 3. Let g be an arbitrary directly Riemann integrable function on R+ and define

g(t) =
∞∑

k=1

sup
(k−1)h≤y<kh

g(y)✶[(k−1)h,kh⟩(t)

g(t) =
∞∑

k=1

inf
(k−1)h≤y<kh

g(y)✶[(k−1)h,kh⟩(t) ,

for all t ≥ 0. By the definition of direct Riemann integrability on R+

∞∑

k=1

inf
(k−1)h≤y<kh

g(y) ≤
∞∑

k=1

sup
(k−1)h≤y<kh

g(y) <∞ ,

thus g and g have the same structure as the functions considered in Step 2. As in (3.8),

we denote

σ(h) = h
∞∑

k=1

sup
(k−1)h≤y<kh

g(y) and σ(h) = h
∞∑

k=1

inf
(k−1)h≤y<kh

g(y) .

It follows that

1

µ
EL′

1σ(h) = lim inf
t→∞

∫

[0,t]

g(t− y)dUξ′(y) ≤ lim inf
t→∞

∫

[0,t]

g(t− y)dUξ′(y)

≤ lim sup
t→∞

∫

[0,t]

g(t− y)dUξ′(y) ≤ lim sup
t→∞

∫

[0,t]

g(t− y)dUξ′(y) =
1

µ
EL′

1σ(h) ,

(4.28)

since g ≤ g ≤ g. By the definition of direct Riemann integrability on R+

lim
h→0+

(σ(h) − σ(h)) = 0

and by Lemma 3.4.3

lim
h→0+

σ(h) =

∫ ∞

0

g(y)dy .

Hence, letting h→ 0+ in (4.28) the result follows.

The proof above shows that Blackwell’s renewal theorem implies the key renewal

theorem. The reverse implication is straightforward if we set g = ✶[0,x⟩, for all x ≥ 0.

This proves that these two renewal theorems are equivalent, as suspected.
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4.6 Bartlett-Lewis process

In this and the following section, we will study two Poisson cluster processes, i.e.

cluster point processes with a Poissonian parent process. First of them is a point process

which is nowadays best known as a Bartlett-Lewis process.

In 1963, Bartlett [Bar63] derived a model to describe a clustering effect in motor traffic

and called it a Poisson clustering process. Lewis in [Lew64] used the same model, which

he calls a branching Poisson process, in the analysis of computer failure patterns, see

also [Lew69]. More modern approach to the analysis of the same process can be found

in [FGAMS06], where it is used to model teletraffic arrivals. However, results in all of the

references above heavily rely on the special properties of the observed process and thus

can not be directly generalized to renewal cluster point processes.

Suppose that T ′
i , i ≥ 1 are the points of a homogeneous Poisson process on R+ with

intensity λ and Y ′
ij, i ≥ 1, j ≥ 1 are i.i.d. nonnegative random variables with distribution

F independent of T ′
i , for all i. Let L′

i, i ≥ 1 be i.i.d. nonnegative integer-valued random

variables independent of T ′
i and Y ′

ij, for all i, j. Define T ′
ik =

∑k

j=1 Y
′
ij and set T ′

i0 = 0, for

every i ≥ 1. Bartlett-Lewis point process is given by

∑

i≥1

L′
i∑

j=0

δT ′
i+T ′

ij
.

Note that this model coincides with a a homogeneous Poisson process on R+ if L′
1 = 0

almost surely.

Let x > 0. As we earlier stressed out, the proofs in this chapter, as well as the

statements of the theorems, are written without counting the points of the parent process

which is now not the case. Hence, a simple modification of Theorem 4.4.2 is needed,

which yields

lim
t→∞

E


∑

i≥1

L′
i∑

j=0

δT ′
i+T ′

ij


 ⟨t, t+ x] =

1

µ
E[L′

1 + 1]x = λE[L′
1 + 1]x , (4.29)

under the assumptions of Theorem 4.4.2. Furthermore, if L′
1 and Y ′

11 are integrable, then

67



Renewal cluster point processes

by Theorem 4.3.1 and Theorem 2.4.1

lim
t→+∞

P

Ñ
∑

i≥1

L′
i∑

j=0

δT ′
i+T ′

ij
⟨t, t+ x] = 0

é
= P

(
∑

i∈Z

Li∑

j=0

δTi+Tij
⟨0, x] = 0

)

= exp

ß
−λ

Å
x+ EL′

1

∫ x

0

P(Y ′
11 > y)dy

ã™
, (4.30)

where the proof of the last equality can be found in Section 5 of [FGAMS06], see also

Example 6.3 (b) in [DVJ03]. As before, let R denotes the forward recurrence time. Hence,

lim
t→+∞

P(R(t) ≤ x) = 1 − exp

ß
−λ

Å
x+ EL′

1

∫ x

0

P(Y ′
11 > y)dy

ã™
.

Remark 4.6.1. Equations (4.29) and (4.30) which we obtained as a consequence of Theo-

rem 4.3.1 and 4.4.2 are not surprising and can be found already in [Lew69], see Theorem

2.3 and [Lew64], see equation (4.3.5).

4.7 Neyman-Scott process

Neyman-Scott process was first introduced in [NS58] as a model for the distribution

of galaxies in the universe. However, we will study only the temporal version.

Suppose that T ′
i , i ≥ 1 are the points of a homogeneous Poisson process on R+ with

intensity λ and T ′
ij, i ≥ 1, j ≥ 1 are i.i.d. nonnegative random variables with distribution

F independent of T ′
i for all i. Let L′

i, i ≥ 1 be i.i.d. nonnegative integer-valued random

variables independent of T ′
i and T ′

ij, for all i, j. Neyman-Scott point process is given by

∑

i≥1

L′
i∑

j=1

δT ′
i+T ′

ij
.

Let x > 0. If the assumptions of Theorem 4.4.2 are satisfied, then it is immediate that

lim
t→∞

E


∑

i≥1

L′
i∑

j=1

δT ′
i+T ′

ij


 ⟨t, t+ x] = λEL′

1x .

If L′
1 and T ′

11 are integrable random variables, then by Theorem 4.3.1 and Theorem 2.4.1

lim
t→+∞

P

Ñ
∑

i≥1

L′
i∑

j=1

δT ′
i+T ′

ij
⟨t, t+ x] = 0

é
= P

(
∑

i∈Z

Li∑

j=1

δTi+Tij
⟨0, x] = 0

)

= exp

ß
−λ

∫ +∞

−∞

[
1 − φL′

1

(
F (y) + F (x+ y)

)]
dy

™
, (4.31)
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where φL′
1

denotes a probability generating function of a discrete random variable L′
1.

The last equality is a known result, see for instance Example 6.3 (a) in [DVJ03] where

it is obtained from the probability generating functional of the Neyman-Scott process.

Interested reader can find below, see Lemma 4.7.1, a different proof which exploits the

form of the Laplace functional of the marked Poisson process. Furthermore, it follows

immediately from (4.31) that

lim
t→+∞

P(R(t) ≤ x) = 1 − exp

ß
−λ

∫ +∞

−∞

[
1 − φL′

1

(
F (y) + F (x+ y)

)]
dy

™
.

Lemma 4.7.1. Suppose that
∑

i∈Z

∑Li

j=1 δTi+Tij
is a stationary version of a Neyman-Scott

process introduced above. Then, for all x > 0,

P

(
∑

i∈Z

Li∑

j=1

δTi+Tij
⟨0, x] = 0

)
= exp

ß
−λ

∫ +∞

−∞

[
1 − φL′

1

(
F (y) + F (x+ y)

)]
dy

™
.

Proof. It is easy to see that, by construction, Ti, i ∈ Z, are the points of the homogeneous

Poisson process on R with intensity λ, Tij, i ∈ Z, j ≥ 1 are i.i.d. nonnegative random

variables with common distribution F and Li, i ∈ Z are i.i.d. nonnegative integer-valued

random variables distributed as L′
1. Furthermore, Ti, Tij and Li are mutually independent,

for all i, j. Hence,

P

(
∑

i∈Z

Li∑

j=1

δTi+Tij
⟨0, x] = 0

)

= P (Ti + Tij ≤ 0 ∪ Ti + Tij > x, ∀j ∈ {1, 2, . . . , Li}, ∀i ∈ Z)

= E
[
✶{Ti+Tij≤0}∪{Ti+Tij>x}, ∀j ∈ {1, 2, . . . , Li}, ∀i ∈ Z

]

= E

[
∏

i∈Z

Li∏

j=1

(
✶{Ti+Tij≤0} + ✶{Ti+Tij>x}

)
]

= E

[
exp

{
∑

i∈Z

log

Li∏

j=1

(✶{Ti+Tij≤0} + ✶{Ti+Tij>x})

}]

= L∑
i∈Z

δ(Ti,Wi)
(f) , (4.32)

where L∑
i∈Z

δ(Ti,Wi)
is a Laplace functional of the point process

∑
i∈Z δ(Ti,Wi), where Wi =

(Li, (Tij)j≥1). Further, define f : R× N0 × RN
+ by

f(y, w) = − log
l∏

j=1

(
✶{y+yj≤0} + ✶{y+yj>x}

)
,

where w = (l, (yj)j). By Proposition 3.8 in [Res87],
∑

i∈Z δ(Ti,Wi) is a Poisson process with

mean measure Λ = λLeb × Q, where Q = P(L1 ∈ ·) ×
∏

i∈N dF . Note that Proposition
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3.8 in [Res87] applies to point processes on locally compact spaces, but its proof is easily

extended to a general Polish space. Therefore, (4.32) equals

exp

{
−

∫ ∞

−∞

∞∑

l=0

P(L1 = l)

∫

[0,∞⟩

···

∫

[0,∞⟩

(
1 −

l∏

j=1

(
✶{y+yj≤0} + ✶{y+yj>x}

)
)

dF (y1) ···dF (yl)λdy

}

= exp

{
−λ

∫ ∞

−∞

∞∑

l=0

P(L1 = l)

(
1 −

Ç∫
[0,∞⟩

(
✶{y+y1≤0} + ✶{y+y1>x}

)
dF (y1)

ål
)

dy

}

= exp

{
−λ

∫ ∞

−∞

∞∑

l=0

P(L1 = l)

(
1 −

Ç∫
[0,y]

dF (y1) +

∫

⟨x+y,∞⟩

dF (y1)

ål
)

dy

}

= exp

{
−λ

∫ ∞

−∞

∞∑

l=0

P(L1 = l)
Ä
1 − (F (y) + 1 − F (x+ y))l

ä
dy

}

= exp

{
−λ

∫ ∞

−∞

(
1 −

∞∑

l=0

P(L1 = l) (F (y) + 1 − F (x+ y))l
)

dy

}

= exp

ß
−λ

∫ ∞

−∞

(1 − φL1 (F (y) + 1 − F (x+ y))) dy

™

= exp

ß
−λ

∫ ∞

−∞

(
1 − φL′

1
(F (y) + 1 − F (x+ y))

)
dy

™
,

where the first equality follows since Tij are i.i.d. and the last one since L1 and L′
1 are

equally distributed.

4.8 Numerical results

In this section we study two renewal cluster point processes and check if the simulation

data are in agreement with the theoretically obtained results.

Example 4.8.1. Suppose that (T ′
i )i≥0 is a delayed renewal process with exponential in-

terarrival distribution with parameter λ, L′
i is a Bernoulli random variable with success

probability p ∈ ⟨0, 1⟩, T ′
i0 ≡ 0 and T ′

i1 are uniformly distributed on interval ⟨−a, a⟩, a > 0,

for all i ≥ 0. Let

ξ′ =
∑

i≥0

L′
i∑

j=0

δT ′
i+T ′

ij
.

It is easily seen that the conditions of Theorem 4.3.1 are satisfied, hence one can show

similarly as in the previous section (see (4.31) and Lemma 4.7.1)

lim
t→∞

P(R(t) ≤ x) =





1 − exp
{
−λ
(
ap

2
+ x
)}
, x ≥ a ,

1 − exp
{
−λ
(
x(1 + p) − x2 p

2a

)}
, x < a .
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We simulated 10000 realisations of the above introduced process, with T ′
0 ∼ χ2(3), λ = 0.8,

p = 0.2 and a = 1. Each renewal sequence has 1500 points. In Figure 4.1 we see that, for

large t, distribution of distances of the first point after t in the simulated renewal cluster

point processes to t agrees with the theoretical distribution.
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Figure 4.1: Left: Histogram of the time until the arrival of the first point after t, for

t = 1000. Red line is an asymptotic probability density function of the overshoot R(t).

Right: Zoomed in tail of the histogram on the left, for x ≥ 5.

Example 4.8.2. Suppose that (T ′
i )i≥0 is a pure renewal process with interarrivals dis-

tributed uniformly on ⟨0, 5⟩. Let L′
0 ≡ 0 and suppose that both L′

i and T ′
ij depend on

the last interarrival X ′
i, for all i ≥ 1. Precisely, let L′

i1 and L′
i2 be i.i.d. Poisson random

variables with parameters 0.5 and 5, respectively and let Y ′
ij be i.i.d. random variables

with standard normal distribution, for all i, j ≥ 1. Then, we set

L′
i = L′

i1✶{X′
i>1} + L′

i2✶{X′
i≤1} and T ′

ij = X ′
i + Y ′

ij ,

for all i, j ≥ 1. Renewal cluster point process is given by

ξ′ =
∑

i≥0

L′
i∑

j=1

δT ′
i+T ′

ij
.

By direct calculation one easily checks the conditions of Theorems 4.4.2 and 4.4.3, hence

lim
t→∞

Eξ′⟨t, t+ x] =
1

EX ′
1

EL′
1x = 0.4 · 1.4x = 0.56x , for all x > 0
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and

lim
t→∞

Eξ′⟨0, t]

t
=

1

EX ′
1

EL′
1 = 0.56 .

Simulated data are in agreement with our theoretical results, see Figure 4.2. Furthermore,
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Figure 4.2: Upper left: The mean number of points of the process ξ′ in the interval

⟨t, t + x], for x = 2 and 1000 simulations. Red line represents the theoretically obtained

value 1.12. Upper right: Each of the 7 grey lines represents mean number of points of one

simulation of the process ξ′ in n consecutive intervals of length x = 2. Red line represents

the theoretically obtained value 1.12. Lower center: The mean number of points of the

process ξ′ in the interval ⟨0, t] divided by the length of the interval, for 1000 simulations.

Red line represents the theoretically obtained value 0.56.

Figure 4.2 motivates an interesting question of the rate of convergence which we have not

studied yet. It is the one of the possible topics for the future research.
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2016.

[IMM17] Alexander Iksanov, Alexander Marynych, and Matthias Meiners. Asymp-

totics of random processes with immigration II: Convergence to stationarity.

Bernoulli, 23(2):1279–1298, 2017.

[IRS22] Alexander Iksanov, Bohdan Rashytov, and Igor Samoilenko. Renewal theory

for iterated perturbed random walks on a general branching process tree:

early generations. J. Appl. Probab., page 1–23, 2022.

[Kal17] Olav Kallenberg. Random measures, theory and applications, volume 77 of

Probability Theory and Stochastic Modelling. Springer, Cham, 2017.

[Kal21] Olav Kallenberg. Foundations of modern probability, volume 99 of Probability

Theory and Stochastic Modelling. Springer, Cham, third edition, 2021.

[Kar91] Alan F. Karr. Point processes and their statistical inference, volume 7 of

Probability: Pure and Applied. Marcel Dekker, Inc., New York, second edi-

tion, 1991.

[Lew64] Peter A. W. Lewis. A branching Poisson process model for the analysis of

computer failure patterns (with discussion). J. Roy. Statist. Soc. Ser. B,

26:398–456, 1964.

75



Bibliography

[Lew69] Peter A. W. Lewis. Asymptotic properties and equilibrium conditions for

branching Poisson processes. J. Appl. Probability, 6:355–371, 1969.

[Lin77] Torgny Lindvall. A probabilistic proof of Blackwell’s renewal theorem. Ann.

Probability, 5(3):482–485, 1977.

[Lin02] Torgny Lindvall. Lectures on the coupling method. Dover Publications, Inc.,

Mineola, NY, 2002. Corrected reprint of the 1992 original.

[LP18] Günter Last and Mathew Penrose. Lectures on the Poisson process, vol-

ume 7 of Institute of Mathematical Statistics Textbooks. Cambridge Univer-

sity Press, Cambridge, 2018.

[LS77] Tze L. Lai and David Siegmund. A nonlinear renewal theory with applica-

tions to sequential analysis. I. Ann. Statist., 5(5):946–954, 1977.

[LS79] Tze L. Lai and David Siegmund. A nonlinear renewal theory with applica-

tions to sequential analysis. II. Ann. Statist., 7(1):60–76, 1979.

[LT91] Michel Ledoux and Michel Talagrand. Probability in Banach spaces, vol-

ume 23 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results

in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1991.

Isoperimetry and processes.

[Mar15] Alexander V. Marynych. A note on convergence to stationarity of random

processes with immigration. Theory Stoch. Process., 20(1):84–100, 2015.

[McD75] David McDonald. Renewal theorem and Markov chains. Ann. Inst. H.

Poincaré Sect. B (N.S.), 11(2):187–197, 1975.

[Mik09] Thomas Mikosch. Non-life insurance mathematics. Universitext. Springer-

Verlag, Berlin, second edition, 2009. An introduction with the Poisson pro-

cess.

[NS58] Jerzy Neyman and Elizabeth L. Scott. Statistical approach to problems of

cosmology. J. Roy. Statist. Soc. Ser. B, 20:1–43, 1958.

76



Bibliography

[Res87] Sidney I. Resnick. Extreme values, regular variation, and point processes,

volume 4 of Applied Probability. A Series of the Applied Probability Trust.

Springer-Verlag, New York, 1987.

[Res92] Sidney I. Resnick. Adventures in stochastic processes. Birkhäuser Boston,
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