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Abstract
Identification of the initial jet parton using machine learning techniques at the

ALICE detector

by Marko JERČIĆ

Keywords: Quantum Chromodynamics, Quark, Gluon, Jets, ALICE, Machine learning, Neu-
ral network

Quarks and gluons produced in high-energy collisions at the Large Hadron Col-
lider (LHC) are manifested as collimated jets of particles via fragmentation and hadro-
nisation processes. Distinguishing quark-initiated jets and gluon-initiated jets can be
very useful for theoretical understanding of the fragmentation process, for better mea-
surements of the Standard model parameters, as well as in the search for physics be-
yond the Standard model. Using machine learning techniques on data from the ALICE
(A Large Ion Collider Experiment) experiment at the LHC, this thesis would find a dis-
criminant which separates a quark-initiated sample of jets and a gluon-initiated sample
of jets. Based on this classification, we could perform an analysis of the dependence of
the fraction of quark jets in the total number of jets on the jet transverse momentum,
as well as look at the barion and meson production for different jet classes.
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Chapter 1

Introduction

Throughout history mankind sought to learn more and more about the building blocks
of our universe. This curiosity led us to the Standard Model of particle physics, cur-
rently the best theory that describes nature’s constituents and their interactions. The
absence of the description of gravity and recently discovered phenomena such as neu-
trino oscillations show us that the Standard Model is an incomplete theory and needs
further improvements. Modern particle accelerators are continuously testing the Stan-
dard Model and looking for new discoveries which would help in its further devel-
opment. The Large Hadron Collider (LHC) at the European Organization for Nuclear
Research (CERN) is the leading particle accelerator in the world with the highest col-
lision energies. Detectors at the LHC produce enormous amounts of data which are
analyzed by an army of scientists all over the world.

Jets are collimated streams of particles produced in the high energy collisions. They
can be seen as an experimental manifestation of the quarks or gluons that are created
in the primary process of the collision. These quarks and gluons, commonly denoted
as partons, undergo through the process of fragmentation where multiple emissions
of other partons occur. During this process, the energy of partons is getting smaller
and they form hadrons in the final state via hadronization process. These hadrons
are detectable and scientists have access to their properties. Multiple techniques and
methods are devised to cluster these hadrons in the final states into jets. The kinematic
properties of the jet is then assigned to the single parton created in the primary pro-
cess. Although many parton properties are relatively easily reconstructed this way, an
information about the parton flavour remain unknown. A lot of effort is invested in
the parton flavour tagging. The first introduced techniques involved tagging of the
jets initiated by the heavier quarks, such as charm and bottom quarks. Knowledge of
the parton flavour can be very useful for the more precise measurements in Standard
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Model a good parton flavour tagger can be crucial in obtaining it. The discrimina-
tion of the light quark initiated jet from the gluon jet background proved to be even
harder task due to the similar emission patterns in the fragmentation process. There
are some variables that show a particular discrimination power. However, if one wants
perform even more precise measurements he must include some other techniques. Dif-
ficulty arises from the high-dimensionality of jets paired with non-perfect knowledge
of the fragmentation and the hadronization process. One possible approach to solve
this issues is to use modern machine learning techniques which showed very good per-
formance when dealing with high-dimensional data in problems with the insufficient
domain knowledge. Neural networks proved to be especially powerful in capturing
non-linear correlations between the different features in data. Aim of this research is to
develop a quark-gluon jet discriminator suitable for the applications in data collected
by the ALICE detector at CERN. Also, we introduced a technique to recover emissions
pattern in such data.

This thesis is organized as follows: This chapter describes the theoretical back-
ground of the Standard Model and Quantum Chromodoynamics and the theoretical
overview of jets with jet finding algorithms and the most common variables used in the
description of the jets. The experimental setup consisting of the LHC and the ALICE
detector is described in Chapter 2. An overview of the machine learning techniques
with the special attention to the neural networks is presented in the Chapter 3. Chap-
ter 4 provides the methodology of the presented research which contains descriptions
of the introduced algorithms and models. The results and evaluations of the devel-
oped models are presented in Chapter 5. Finally, the overview of introduced models
and methods along with the corresponding results are discussed in the Chapter 6.

1.1 Standard Model

The Standard Model (SM) of particle physics is widely regarded as the best description
of physics at subatomic level. It successfully describes strong and weak nuclear inter-
actions as well as electromagnetism. The remaining fundamental force, not described
in the SM, is gravity, which is the weakest of the interactions and it’s effects can be
well observed only on the scale of large masses and distances. Currently, gravity is
best described by the theory of General Relativity (GR) which describes how matter
affects the fabric of spacetime and vice versa. These two frameworks are proven to be
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mutually incompatible at the moment, but a lot of research is aimed towards their uni-
fication which would provide the so called Theory of Everything (ToE). One example
of such a theory would be the famous String theory, along with its variations. The Stan-
dard Model is based on the Quantum Field Theory (QFT) framework in which all of
the elementary particles are described as excitations of quantum fields. An important
feature of the SM is gauge symmetry. A consequence of this symmetry is the existence
of the so called spin 1 gauge bosons, which are particles that mediate forces between
elementary particles.

According to the SM, the matter content of the universe consists of 12 fundamental
particles. They can be divided into two groups, quarks and leptons. Unlike the gauge
bosons, quarks and leptons are fermions with a spin of exactly 1

2 and they obey the
Fermi-Dirac statistic. The six flavours of quarks are the down (d), up (u), strange (s),
charm (c), bottom (b) and top (t). The six leptons are the electron, the electron neutrino
(νe), the muon (µ), the muon neutrino (νµ), the tau lepton (τ) and the tau neutrino (ντ).
Quarks interact with all three known fundamental forces, while leptons do not interact
via the strong nuclear force. All of the mentioned particles have their antimatter coun-
terparts which have the opposite electric charge. These twelve fermions can also be
divided into three generations. Each generation consists of four particles, two quarks
with electric charges of +2

3 and −1
3 , a lepton with charge of −1 and a corresponding

neutral neutrino. All the charges are expressed in units of the elementary charge e. The
three generations of particles differ only in particle masses, while the other properties
remain the same. The particles from a higher mass generation spontaneously decay
into lower mass generation particles. As a consequence of this, the Universe mostly
consists of the particles of the first generation, the up and down quarks, and the elec-
tron and the electron neutrino. Two u quarks and one d quark make up a proton and
one u quark and two d quarks make up a neutron. It must be noted this is a very sim-
plified view of the proton and the neutron. In a particular moment in time there can be
a lot of quark-antiquark pairs inside the proton or neutron, as well as heavier quarks
from a higher mass generation. The matter particles interact with each other by three
fundamental interactions. Each of the three has its own force carrier particles.

The electromagnetic interaction is described in terms of Quantum Electrodynamics
(QED). It is a quantum field theory with U(1) gauge symmetry. This causes the exis-
tence of a massless neutral gauge boson called photon. Charged particles interact by
exchanging virtual photons. Out of the fundamental matter particles, only the neutri-
nos don’t interact via the electromagnetic interaction. Since the photon does not have
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any verifiable mass, the electromagnetic interaction has an infinite range. Due to the
small coupling constant which allows perturbative calculations, QED predicted a va-
riety of precise results, like the g factor of an electron or the hyperfine structure of the
electron levels in a hydrogen atom [1].

Both quarks and leptons also interact via the weak nuclear interaction. This inter-
action is responsible for radioactive decays. A particle can change its flavour via the
weak interaction. For example, a muon can spontaneously decay into an electron, an
electron antineutrino and a muon neutrino. The first theoretic approach to a descrip-
tion of the weak interaction was done by Enrico Fermi in 1933, where he suggested
that the beta decay can be explained by a four-fermion interaction, known as Fermi’s
interaction [2]. After the discovery of parity violation and CP symmetry breaking, a
more accurate theoretical description was needed [3]. This was done in the work of
Sheldon Glashow, Abdus Salam and Steven Weinberg [4]–[6]. Their approach unifies
the weak interaction and QED into a single Electroweak framework. The electroweak
theory is the quantum field theory with a gauge symmetry group SU(2) × U(1). It
gives rise to four massless gauge fields: three weak isospin fields, W1, W2 and W3, and
a weak hypercharge field B. However, these are not physical fields. With the concepts
of spontaneous symmetry breaking and associated Higgs mechanism one can imply
an existence of four physical gauge bosons: the photon, the W± and the Z bosons. The
photon is, as mentioned, responsible for the long range electromagnetic interactions.
Charged W± bosons have a mass of 80.4 Gev/c2 and the neutral Z boson 91.2 GeV/c2.
They have been experimentally confirmed in 1983 by the UA1 and UA2 collaborations
at European Center for Nuclear Research (CERN). Since these bosons are not mass-
less, the weak interaction has a short range. A consequence of the Higgs mechanism is
the existence of the scalar Higgs boson [7]. The interaction with the Higgs field gives
masses to other fundamental particles. This final piece of the SM was experimentally
confirmed in 2012 by the ATLAS and CMS collaborations at CERN [8].

The strong nuclear interaction describes the interactions between quarks. It is re-
sponsible fur nucleon stability (it holds the quarks inside the proton or neutron), and,
as a residual effect it is also responsible for the interaction between the nucleons. The
strong nuclear force is theoretically described by Quantum Chromodynamics (QCD),
which is analyzed in detail in the following section.
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FIGURE 1.1: The particles of the Standard model [9].

1.2 Quantum Chromodynamics (QCD)

The Quantum Chromodynamics is a quantum field theory with SU(3) gauge symme-
try. As a consequence, quarks have additional three degrees of freedom called the color
charge, which can be red, green or blue, hence the name Quantum Chromodynamics.
There are 8 different generators of the group SU(3). Therefore, there are eight gauge
bosons which mediate the strong nuclear force. These bosons are called gluons. The
Lagrangian density of the QCD is given by 1.1:

L = −1
4

Fα
µνFµν

α + ∑
i

ψ̄iγ
µ(∂µ − igAα

µtα)ψi − ∑
i

miψ̄iψi . (1.1)

In the Lagrangian density the index i iterates on all quark flavours. ψ and Aα
µ denote

quark and gluon fields, respectively. The index α iterates over 8 different gluons and tα
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are the 3 × 3 Gell-Mann matrices, which are the SU(3) group generators. The indices
µ, ν, α follow the Einstein summation convention. The first term in 1.1 describes the
free gluon fields defined by eight four-potentials Aα

µ in the following way:

Fα
µν = ∂µ Aα

ν − ∂ν Aα
µ + Cα

βγ Aβ
µ Aγ

ν , (1.2)

where Cα
βγ are the SU(3) structure constants. In contrast to photons, the gauge bosons

of QED, gluon field tensors depends on the gluon fields, and not only on its deriva-
tives. As a result, the gluons interact with each other since the third term in 1.2 implies
color charged gluons which interact mutually. There are four possible processes in the
QCD. One is where a quark emits a gluon, one is where a gluon splits into a quark-
antiquark pair and the remaining two are the 3-point gluon interaction and the 4-point
gluon interaction. The first two processes are analogous to QED processes, unlike the
latter two which are specific only to QCD. Another big difference between QCD and
QED is the value of their coupling constants. In QCD, the value of this dimensionless
parameter is much higher than in QED (α ≈ 1/137) and it forbids the application of
perturbative calculations. There are several non-perturbative approaches to do calcu-
lations and predictions in the QCD, with the Lattice QCD being the best established
[10]. This approach discretizes spacetime points in order to simplify the calculation of
path integrals. It is a slow method and needs a lot of computational resources, but it
has high applicability. A peculiarity of QCD is that the coupling constant g becomes
lower at high energy scales. Then, one is allowed to use a perturbative approach.

1.2.1 Vacuum polarization

The first order perturbations of the QCD vacuum involve a process where a quark-
antiquark loop is created from the gluon field. An analogue process appear in QED.
This causes a stronger interaction on shorter distances. But, there is also the possibility
that a pair of gluons is created from the gluon fields. The latter process causes anti-
screening of the color charge. It makes the coupling stronger at longer distances. The
combined effect of these causes the strong interaction to be stronger at large distances
and low transferred momenta. However, the interaction is weaker in the opposite case.
A first order of the perturbative QCD calculation of the strong coupling constant gives:

αs(Q2) =
12π

(22 − n f ) ln Q2

Λ2
QCD

, (1.3)
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where n f denotes the number quark flavours, ΛQCD ≈ 0.22 GeV is parameter of the
QCD and Q is the transferred four-momentum. This gives rise to the two important
features of the QCD, asymptotic freedom and color confinement. The comparison of
the QED and QCD running coupling constants with marked asymptotic freedom and
color confinement are shown in Fig. 1.2.

FIGURE 1.2: The comparison of the running coupling constants for QED
and QCD [11].

1.2.2 Asymptotic freedom

Asymptotic freedom is the QCD property where it is implied that very close quarks
does not „see” each other [12]. According to 1.3, quarks and gluons are almost free
of each other when the energy density is high enough. This allows for the usage of
perturbative calculations. Because of asymptotic freedom, the scientific community
proposed a new phase of matter, the quark gluon plasma (QGP), which is believed to
have been the dominant phase in the early universe, before cooling down. The QGP
is considered to be a soup of deconfined quarks and gluons. The existence of QGP
was first experimentally confirmed by the RHIC experiment in high energy heavy ion
collisions [13]. In such experiments the conditions of the early universe are simulated.

1.2.3 Color confinement

In contrast to the high energy densities and closer distances, at lower energy densities
and larger distances a strong nuclear interaction grows stronger. As a quark distances
itself from the other quark, a gluon field between them can contain sufficient energy to
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create a new quark-antiquark pair. These processes continue until all the quarks group
itself into color-singlets, a composition of particles with zero total color charge. This
process is called hadronization and the color-singlets are called hadrons. An isolated
single quark cannot be detected. Only hadrons are detected. In most cases, hadrons are
made up of 2 or 3 quarks and they are accordingly divided into two groups, mesons
and baryons, respectively. Pions and kaons are examples of mesons, while nucleons
are examples of baryons. In heavy ion collisions, as the created QGP cools down,
a phase transition occurs and results in a hadronic gas. Very energetic quarks and
gluons created in hard processes with high transferred momenta manifest themselves
as collimated showers of hadrons. These objects are called jets and they are studied to
infer knowledge about initial quark or gluon and the hard process they participated
in. The jets are analyzed more thoroughly in the next section since their are the main
topic of a research in this thesis.

1.3 QCD Jets

A QCD jet is a collimated stream of particles. It can be used as an experimental probe
with which one can deduce some fundamental properties of the QCD by measuring its
total energy, momentum, mass and other observables. Quarks and gluons, created in
a hard process, move as quasi-free particles at short distances (of the order of 10−2 fm)
due to the asymptotic freedom. When these partons separate themselves to the dis-
tance of the order of 1 fm, they radiate gluons preferentially with small angles relative
to their direction. Subsequently, the gluons split into two gluons or quark-antiquark
pairs. This can be repeated numerous times so that the original parton cascades into
a shower within a narrow cone. This process is called jet fragmentation [14]. After-
wards, when quarks and gluons become separated by larger distances, hadrons are
non-perturbatively created via the process of hadronization which preserves the kine-
matic properties of the original parton.

The description of the initial stages of parton fragmentation is possible in a pertur-
bative way. Let us consider the cross-section for a quark emitting a gluon calculated to
first order:

d2σ

dzd sin θ
= CF

αS

2π

2
sin2 θ

1 + (1 − z)2

z
, (1.4)
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FIGURE 1.3: Visualization of the QCD jet with the fragmentation and
hadronization processes [16].

where θ is the angle between the initial quark and the emitted gluon, z is the energy
fraction of the gluon with respect to the quark and CF = 4/3 is a color factor which
quantifies the coupling between the quark and the gluon. One can notice that the
cross-section diverges for „soft” z (z ≈ 0) and in the collinear limit (θ ≈ 0, π). These
two divergences, taken together, are called the Infrared divergence. Preferably, in an
experimental study of jets one wants to use observables which are infrared safe, i.e. ob-
servables which are not sensitive to effects in the collinear and soft limits. The splitting
functions Pij(z), also called Altarelli-Parisi functions [15], are interpreted as the proba-
bility that a parton of type j emits a parton of type i, with a fraction z of the energy of
the parent parton. The spin-avaraged splitting functions in the collinear limit for the
QCD processes are:

Pqg(z) = CF
1 + (1 − z)2

z
Pqq(z) = CF

1 + z2

1 − z
(1.5)

Pgg(z) = 2CA
(1 − z(1 − z))2

z(1 − z)
Pgq(z) =

1
2
(z2(1 − z)2) (1.6)
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1.3.1 Jet algorithms

In high-energy collisions, the final states consist of many particles. To identify QCD
jets, the final state particles must be grouped in some way. Because of the collimated
nature of the jets, qualitatively they are easy to classify. However, if highly precise
measurements are to be made, algorithms that define the jets in a rigorous manner
must be used. Also, when comparing experimental measurements with some theoret-
ical predictions, the algorithms used in both analyses must be mutually compatible.
There are several algorithms used to perform this task that, and can be classified into
two categories, recombination and cone algorithms. Important requirements that jet
algorithms must fulfill are infrared and collinear safety. In other words, collinear split-
tings and soft emissions should not alter the clustered jets. Also, jet finding algorithms
should have minimal sensitivity to hadronization, since the process belongs to a non-
perturbative regime of the QCD and is not modelled properly.

In the past, cone algorithms have been widely used in hadron colliders due to
their fast computational performance. However, they are usually not infrared and
collinearly safe and are generally not favored by theorists. With the development and
improvement of the speed of sequential recombination algorithms, cone algorithms
are used less and less in modern analyses. Examples of the cone algorithms used at the
LHC are the Iterative Cone Algorithm and SISCone [17].

Sequential recombination algorithms attempt to mimic the QCD fragmentation pro-
cess. Particles from the final state recombine iteratively. First, a pair of particles with
a minimum distance between them is searched for. The distance metric is defined as
follows:

dij = min(k2p
Ti , k2p

Tj)
(yi − yj)

2 + (ϕi − ϕj)
2

R2 , (1.7)

with kT denoting the transverse momenta of the particles with regard to the beam axis.
(y, ϕ) denote the particle’s rapidity and the azimuthal angle. The parameter R scales
the calculated distance and is typically chosen to have value of 0.4. The parameter
p is typically chosen to be 1, 0,−1 and implies an algorithm which is used. These
algorithms are called the kT, Cambridge-Aachen (C/A), and the anti-kT, respectively.
After the pair with the minimum distance dij is found, the two particles are combined
so that their four-momenta are summed into so-called pseudojets. The same procedure
is repeated for the remaining particles and pseudojets. The algorithm stops when each
pair of particles has a distance larger than the minimal distance to the beam defined
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FIGURE 1.4: Event clusterings of different jet finding algotithms [19].

as diB = k2p
Ti . When this condition occurs, the procedure is stopped and recombined

pseudojet is called a jet.
The kT algorithm prefers to cluster low momenta particles first according to 1.7. As

a result, the area of the reconstructed jet is prone to the significant fluctuations and the
algorithm is susceptible to the Pile-Up (PU) and Underlying Event (UE) effects [18].
In the C/A algorithm, the distance variables are independent of momentum and so
its area fluctuates somewhat and is moderately susceptible to the UE and PU effects.
This algorithm is proven to be best in the resolving of the jet substructure. The anti-
kT clusters high energy particles first and is only slightly sensitive to the UE and PU
effects. The reconstructed jets have an almost perfect conical shape and their areas
experience only small fluctuations. However, this algorithm is worst for studying the
jet substructure.
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1.3.2 Jet substructure

Jet finding algorithms aim to identify a jet which will represent an initial quark or
gluon participating in the primary hard process of the collision. However, an analy-
sis of the jet substructure also proves to be useful in studying QCD. The most common
task of such an analysis is to distinguish different kinds of jets. For example, one wants
to separate W/Z jets from much more common quark or gluon initiated jets. Jet sub-
structure tools are designed to study the internal kinematic characteristics of the jets.
These methods can be grouped in three broad categories, prong finders, radiation con-
straints and groomers.

Prong finders are designed to identify hard emissions inside a jet. Typically, quark
and gluons emit soft partons and are considered to be a 1-prong object. On the other
side, boosted massive particles such as W±, Z and Higgs bosons decay into two high-
momenta partons. Then these objects are called 2-prong. Boosted top jets would be
3-prong objects. Prong finder tools are used to distinguish between these different
kinds of jets.

Groomers are generally used when studying large-radius jets. Because of their
large area they are very sensitive to PU and UE effects. These tools are designed to
minimize the impact of these effects. They usually work by removing soft particles
far from the jet axis where these effects will likely show up, hence the name groom-
ing. Groomers share similarities with prong finders since removing soft background
reveals hard prongs. Examples of the prong finding and grooming tools are Mass-drop
tagger, SoftDrop, I and Y-pruning and others [20], [21].

The other main difference between jets is in their soft-gluon radiation patterns. For
example, jets initiated by quarks are expected to have less soft gluons than jets initiated
by gluons. In the radiation constraint approach one typically wants to study jet shapes.
In most cases, a jet shape observable is constructed and is then used to impose a cut.
There is a variety of introduced jet shape observables. The simplest group of such
observables are the so-called generalized angularities [22], which are defined as:

λκ
β = ∑

i∈jet
zκ

i θ
β
i , (1.8)

where zi is the fraction of the jet transverse momentum carried by the particle i and θi

roughly represent the angle of the i-th particle relative to the jet axis:

12



1.3. QCD Jets

zi =
pT,i

∑j pT,j
θi =

(yi − yjet)
2 + (ϕi − ϕjet)

2

R2 . (1.9)

The angularities λ0
0 and λ1

0 are simply the total number of constituents (jet multiplicity)
and the jet total transverse momentum, respectively. Generalized angularities are not
infrared safe except in a special case when κ = 1. The special case (κ, β) = (1, 1) is a
known jet shape observable called the jet width or girth. The observable λ2

1 in the limit
of massless particles reduces to the jet mass. The more radiation there is present in a
jet, the higher the values of angularities. Therefore, it is a measure of QCD radiation
relative to the jet axis. Typically, gluon initiated jets have higher angularity values than
quark initiated jets and can be used to discriminate between the two.

Finally, jet shape observables called N-subjettines are widely used in jet substruc-
ture analyses [23]. Firstly, for a given jet, one needs to specify a set of N axes (subjets).
Then the N-subjettines are introduced as follows:

τN =
1
d0

∑
i∈jet

pT,imin(∆Rij) , (1.10)

where the index i runs over all jet constituents and the index j runs over the set of
specified axes. The expression ∆Rij =

√
(yi − yj)2 + (ϕi − ϕj)2 represents the distance

between the i-th jet constituent and j-th axis. There are several ways to define a needed
set of axes. One way is to use the kT algorithm to re-cluster jet constituents into N
distinct subjets. Also, one can choose axes which minimize the value of τN. Often, the
minimisation process is done iteratively. Similarly to the angularities, τN measures the
amount of the radiation relative to the specified axes. For a jet with N prongs, a higher
value τi is expected for the i < N and a lower value for the i ≥ N. A ratio of the
consecutive subjettines τN,N−1 = τN/τN−1 can be useful in a discrimination of the N-
prong jets against the QCD background (quark and gluon initiated jets). For example,
one can use a cut on τ2,1 to identify W/Z/H jets from the QCD background. Also, τN

exhibits a slightly higher values for a gluon initiated jet in contrast to a quark initiated
jet.

1.3.3 The Lund jet plane

The Lund jet plane is introduced as a useful graphical representation of emissions in a
jet [25]. The variables (ln 1/θ, ln zθ) are in the most cases the axes of the Lund diagram,
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FIGURE 1.5: The Lund jet plane with the distinct regimes [24].

where z denotes the transverse momentum fraction and θ denotes the angle of emission
as defined in 1.9. This way, different kinematic regimes are clearly separated as seen in
1.5. Also, emissions in soft and collinear limits are distributed uniformly in the Lund
plane according to 1.4. Mass, angle and momentum can easily be determined from a
Lund plane. These considerations can be expanded to the jet as a whole. In such an
analysis one usually declusters the full jet into two subjets using the C/A algorithm.
Knowing the four momenta of the full jet and subjets, p = pi + pj, variables z and θ can
be constructed. This procedure is then repeated for the harder jet pi. Such a procedure
provides a list of pairs (ziθi, 1/θi), where index i iterates over all primary emissions in
a jet. In a way, one can access to the internal structure of a jet. Using the given pairs,
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an average Lund plane density can be obtained:

ρ =
1

Njet

d2Nemissions

d(ln zθ)d(ln 1/θ)
. (1.11)

This distribution of emissions has been studied analytically in [26]. Experimental val-
ues can be seen in measurements done by the ATLAS Collaboration [24]. The Lund jet
plane also can be useful for constraining Monte-Carlo generators and studying how
the medium in heavy ion collisions impacts the jet. Also, jet discriminators and tag-
gers can be built with the help of the Lund jet plane using log-likelihood approach or
a machine learning technique of some kind.

1.3.4 Quark and gluon initiated jets

Hard scattering processes emit partons which produce hadronic jets, as explained.
These jets can be found by using the tracking and calorimeter systems. From experi-
mental observations and theoretical insights, these reconstructed jets can show some-
what different properties depending on the flavour of the initial parton. Generally, if
a gluon initiated a jet, it will have higher particle multiplicity and softer fragmenta-
tion functions. Also, gluon jets tend to be wider than quark jets. One of the reasons
for this is the higher gluon color factor. These differences can be used to construct jet
taggers which can be used in physics analyses where one wants to eliminate the QCD
background, in which the gluon component is predominant.

The ATLAS Collaboration used a method based on data-driven extraction of quark
and gluon jet properties. They also tested a number of discriminant variables [27]. The
ATLAS jet multiplicity measurements are shown in 1.6.

Quark/gluon tagging in the CMS Collaboration used observables based on per-
formances in the Monte Carlo simulated QCD events. They constructed a likelihood-
based discriminator and validated it using data. They also employed a data-driven
method to do corrections for observed differences with the data. The use of different
parton shower models and their effect on the performance of the classifier is analyzed
in [29].
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FIGURE 1.6: pT- dependence of charged-particle multiplicity for quark-
and gluon-initiated jets, as measured by the ATLAS collaboration [28].
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Chapter 2

Experimental Setup

This chapter describes the LHC (Large Hadron Collider) and ALICE (A Large Ion Col-
lider Experiment). The LHC is the particle accelerator which houses ALICE, the detec-
tor used to collect data used to develop the methods presented in this thesis.

2.1 The Large Hadron Collider

The LHC is currently the world’s largest particle accelerator. It was built by the Eu-
ropean Organization for Nuclear Research (CERN) with an intent to test various pre-
dictions in particle physics, primarily the existence of the Higgs boson. It is the latest
addition to the CERN accelerator complex. The LHC first started in September 10,
2008, but the run soon terminated due to a malfunction in some of its magnets. After a
period of repairs, it produces high energy particle collisions since march 2010 without
any major issues. One of the most significant breakthroughs came in 2012, when the
major experiments at the LHC confirmed the existence of the Higgs boson with a mass
of approximately 125 GeV/c2. The LHC is located in the tunnel with a circumference
of 27 km which lies up to 175 m underground beneath the France-Switzerland border
near Geneva.

At the LHC, large superconducting magnets are used to contain particles in their
circular trajectories. The particle acceleration takes place at a number of radiofre-
quency cavities located along the LHC ring. Particle beams travelling in opposite
directions intersect at four points. These interaction points are occupied by large de-
tectors which are run by the four large collaborations of scientists. The largest ones
are general-purpose detectors, ATLAS (A Toroidal Lhc Apparatus) and CMS (Com-
pact Muon Solenoid). They investigate a wide range of physics, from the search for the
Higgs boson to extra dimensions and particles that could make up dark matter. The
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FIGURE 2.1: Location of the major LHC experiments [30].

LHC includes more specialized experiments such as ALICE, an experiment dedicated
to heavy-ion physics, and LHCb (Large Hadron Collider), which specializes in inves-
tigating the slight differences between matter and antimatter by studying „beauty”
quarks. Also, three smaller experiments are located at the LHC. TOTEM (TOTal Elastic
and diffractive cross section Measurement) shares an interaction point with CMS and
measures total cross sections, elastic scatterings and diffractive processes. MoEDAL
(Monopole and Exotics Detector at the LHC) shares an interaction point with the LHCb
and is involved in search for the magnetic monopoles or other highly ionizing parti-
cles. Finally, LHCf (LHC forward) shares an interaction point with ATLAS and studies
particles thrown forward in collisions in order to simulate cosmic rays in laboratory
conditions.

2.1.1 The CERN accelerator complex

The CERN accelerator complex is a collection of successive particle accelerators. Each
machine boosts the energy of particles before injecting it into the next accelerator in the
sequence. In the LHC, which is the last part of the complex chain, particles are acceler-
ated up to the energy of 6.5 TeV per beam. The complex consists of six accelerators and
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one decelerator. Since 2020, Linear accelerator 4 (Linac 4) is the source of proton beams
by accelerating hydrogen ions, H− to the energy of 160 MeV. The ions are stripped of
their two electrons during injection from Linac4 into the Proton Synchrotron Booster
(PSB) where they are accelerated to the energy of 2 GeV. Next elements in the chain
of the complex are the Proton Synchrotron (PS) and Super Proton Synchrotron (SPS)
which accelerate the beam of protons to energies of 26 Gev and 450 GeV, respectively.
Then, the protons are finally injected to the two beam pipes of the LHC. Under normal
operating conditions the beams circulate for few hours inside the LHC beam pipes af-
ter which the cycle is repeated. As already mentioned, the two beams are brought into
collision inside four detectors, ALICE, ATLAS, CMS and LHCb, where the total energy
per nucleon at the collision point is equal to 13 TeV. Although they are the most com-
mon particles to collide in the LHC, the protons are not the only particles accelerated.
Lead ions used in the LHC start from a source of vaporised lead and are injected into
the Linear Accelerator 3 (Linac3) before being collected and accelerated in the Low En-
ergy Ion Ring (LEIR). After the transfer into PS they follow the same route to maximum
energy of 2.76 TeV per nucleon.

2.1.2 The LHC superconducting magnets

A strong magnetic field is needed to keep the high energy particles in their circular
path. For this purpose, a total of 1 232 of superconducting dipole magnets are installed
at the LHC. Each of these magnets is 15 meters long and weighs 35 tonnes. They gener-
ate powerful 8.3 T magnetic fields. These magnets consists of two coils of copper-clad
niobium-titanium wire cooled using superfluid helium-4 to their operating tempera-
ture of 1.9 K. Particles are accelerated in bunches which have a tendency to spread out
since the they consist of positively charged entities. The imperfections in the magnetic
fields on their edges also cause further spreading of the bunches. Several other factors
also contribute to this drifting apart, such as initial conditions at the injection of the
particles into the beam pipes. Spreading out in direction along the beam is annulled
by the radiofrequency cavities. In the transverse direction the beam is focused by a
total of 858 quadropole magnets.

Since quadrupoles focus the beam in one plane and defocus in the other, the quadrupole
magnets are arranged in a FODO pattern to achieve focusing in both transverse planes.
A FODO cell is a combination of focusing (F) and defocusing (D) quadrupoles sepa-
rated by some drift space (O). The main dipole magnets and other multipole magnets,
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FIGURE 2.2: A schematic of the CERN’s accelerator complex [31]

(A) Dipole magnets (B) Quadrupole magnets

FIGURE 2.3: A schematic of the LHC’s dipole and quadrupole magnets.

20



2.1. The Large Hadron Collider

FIGURE 2.4: A standard LHC arc FODO cell [32].

used to correct imperfections in magnetic fields, are usually installed into the drift
spaces in order to optimise the space on the accelerator’s circumference. On the ends
of each of the quadrupoles and dipoles are smaller corrector magnets of higher order.
The basic magnetic cell (FODO) at the LHC is approximately 110 m long and consists
of two perpendicular quadrupoles, six dipoles and a number of multipolar correction
magnets [32]. There are approximately 10 000 superconducting magnets installed at
the LHC in total which require almost 100 tonnes of superfluid 4He.

2.1.3 Radiofrequency cavities

A radiofrequency (RF) cavity is a metallic chamber that contains an electromagnetic
field. Its primary purpose is to accelerate charged particles. An electromagnetic field is
supplied by klystrons and the energy is transferred by a waveguide. Charged particles
passing through the cavity interact with the resulting electromagnetic field and are
accelerated. The shape and size of the cavities is such that their resonant frequency
corresponds to that of the generated periodic of the electric field. In the LHC, each RF
cavity is tuned to oscillate at 400 MHz. The ideally timed proton, with the right amount
of energy, will experience zero accelerating voltage when the LHC is at full energy.
Protons with slightly different energies arriving earlier or later will be accelerated or
decelerated so that they stay close to the energy of the ideal particle. This way, the beam
is divided into discrete bunches of particles. At the LHC, there are two sets of four RF
cavities per beam. A maximum electrical potential difference is set to 2 MV per cavity
or a total of 16 MV per beam. At 7 TeV each bunch has an averege length of 7.6 cm
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FIGURE 2.5: The principle of work of an RF cavity at the LHC.

and an average spread in energy of 0.011 %. The cavities are housed in cylindrical
cryomodules which keep them working in a superconducting state, without losing
energy to electrical resistance.

2.2 The ALICE detector

The ALICE detector is specialized for research of heavy-ion physics at the LHC. It is
specifically designed to study the physics of strongly interacting matter at extreme
energy densities and temperatures. Collisions in the LHC can generate temperatures
more than 100 000 times hotter than the centre of the Sun. When the LHC provides col-
lisions between lead ions, laboratory conditions similar to those just after the Big Bang
can be recreated. Under such extreme conditions, protons and neutrons disintegrate
into a soup of quarks and gluons. This peculiar phase of matter is called the quark-
gluon plasma (QGP). Studying such a phase and its properties can prove to be very
important for the understanding of the theory of quantum chromodynamics (QCD).
The ALICE collaboration studies the QGP as it expands and cools down, observing its
evolution and its phase transition to the hadronic phase of matter, the phase of matter
the every-day Universe is mostly made of.

The ALICE collaboration uses the 10 000-tonne ALICE detector, which is 26 m long,
16 m high, and 16 m wide, to study QGP. The detector design enables efficient tracking
of the huge number of particles which can occur in heavy-ion collisions. Also, it has
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FIGURE 2.6: Layout of the ALICE detector.

very powerful particle identification capabilities. The detector is located in a cavern
56 m underground, close to the village of St.Genis-Pouilly.

As of 2022, the collaboration involves almost 2 000 scientists from 174 physics insti-
tutes in 40 countries.

The detector itself consists of two main parts: the Central barrel and the forward
muon spectrometer (muon arm). The Central barrel is centred around the interac-
tion point and is composed of detectors designed for the study of hadrons, electrons
and photons. The central barrel covers the full azimuthal range and a pseudorapidity
range of |η| < 0.9. The muon arm is located off to the side and is dedicated to the
study of quarkonia behaviour in dense matter. It covers the pseudorapidity range of
−4.0 ≤ η ≤ 2.5. Just as the central barrel, it also covers the full azimuthal range. The
detectors of the central barrel are embedded in an L3 solenoidal magnet which gen-
erates a magnetic field 0.5 T in order to bend the tracks of charged particles for their
momentum and charge determination. The ALICE detector is composed of a number
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of smaller sub-detectors which are designed to do a specific task. Together they pro-
duce a precise and reliable measurement. The main tasks of the ALICE detector are
particle tracking and particle identification, among others. A brief description of the
most important sub-systems of the ALICE detector is given in the following sections.

2.2.1 The tracking system

A composition of cylindrical detectors located around the nominal interaction point is
used to track the particles that are generated in the collision. The Inner Tracking Sys-
tem (ITS), the Time Projection Chamber (TPC) and the Transition Radiation Detector
(TRD) detect the positions of charged particles along a number of points from which
the particle trajectory can be reconstructed.

The Inner Tracking System (ITS)

The ITS is the innermost and the closest detector to the interaction point. It consists
of 6 layers of semiconductor silicon detectors. Its primary task is precise tracking of
particles and determining the positions of the primary vertex of the collision and the
secondary vertices in the case of short-lived heavy particles. It consists, from inside
out, of two layers of Silicon Pixel Detector (SPD), two layers of Silicon Drift Detec-
tor (SDD) and two layers of Silicon Strip Detector (SSD). Charged particles passing
through each layer leave a signal which is used to reconstruct the particle tracks. Also,
the ITS is used for the improvement of the momentum and angle measurements of
other detectors. Additionally, it can be used for the identification of low-momentum
particles.

The Time Projection Chamber (TPC)

The TPC is the principal component of the ALICE detector and its main tracking de-
vice. It is a cylindrical drift chamber with a length of 5 m, an inner diameter of 85 cm
and an outer diameter of 250 cm. The total working volume of the TPC is about 90 m3.
This volume is filled with a Ne-CO2-N2 (90:10:5) gas-mixture. The chamber is divided
into two parts by the central electrode which is located in the middle of the detector.
Read-out planes are located at the both ends of the volume. A voltage difference be-
tween the central electrode and the read-out planes is equal to 100 kV and generates
an electric field inside the volume. Charged particles travelling through the chamber
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ionize the gas along their trajectory. Then, electrons drift towards the read-out plane
which is divided into more than 570 000 pads. Each pad detects a drifting electron
signal amplified by multi-wire proportional chambers located in front of the readout
planes. This way, the radial component of the particle position can be measured. The
longitudinal component can be determined by measuring the time needed by a drift-
ing electron to reach the readout plane. The track position resolution of the TPC is
about 1 mm in both the radial and the longitudinal directions. In the normal operating
conditions the TPC can measure particles with momenta in the range from 200 Mev/c
to 100 GeV/c. Although particle tracking is its primary purpose, the TPC can be very
useful in particle identification by measuring the energy loss per unit of path length
(dE/dx). Using this value and comparing with the well known Bethe-Bloch formula
can be indicative of the type of the measured particle.

The Transition Radiation Detector (TRD)

Electrons and positrons can be distinguished from other charged particles by look-
ing at the transition radiation (TR), which are X-rays emitted when a particles cross a
boundaries of materials with differing dielectric constants. To amplify the produced
transition radiation, the TRD uses a radiator containing a foam-like substance which
causes the particles to pass over many such boundaries, thereby increasing the prob-
ability of TR emission. The TRD consists of 540 chambers arranged in 6 layers at a
radial distance from 2.90 m to 3.68 m from the beam axis surrounding the TPC. In each
chamber, the radiator is followed by a Multi Wire Proportional Chamber filled with
Xe-CO2 gas-mixture which precedes a drift region of 3 cm. The extracted temporal in-
formation represents the depth in the drift volume at which the ionisation signal was
produced. Each chamber has over 2 000 readout pads. Although the main purpose
of the TRD is to provide electron and positron identification and fast triggering of the
charged particles, the TRD also contributes significantly to the track reconstruction and
calibration.

2.2.2 Particle Identification

One of the best features of the ALICE detector is its capability to identify particles. Al-
though the ITS, the TPC and the TRD give information about particle identity, more
specialized detectors are needed for more reliable measurements. Such detectors are
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the Time-Of-Flight (TOF) and the High Momentum Particle Identification Detector
(HMPID).

The Time-Of-Flight detector (TOF)

The TOF of the ALICE detector measures time needed by a particle to reach the detec-
tor from the collision point. Since the length of the particle’s trajectory can be obtained
from the measurements from other detectors, the velocity of the particle can be deter-
mined. Also, momentum information can be retrieved, which, when combined with
the velocity value, can give the mass of the particle. Charged particle mass uniquely
determine its identity. The TOF is composed of Multigap Resistive Plate Chambers
(MRPCs). They consist of two stacks of 400 µm thick glass plates separated by 250 µm
thick gas gaps. Two electrodes create an electric field in the gas which is ionized by
the passing particle. The MRPCs are organized into a cylindrical surface at a radius of
370 cm from the beam line. The TOF has total active area of 141 m2. There are approxi-
mately 160 000 MRPC pads. The time resolution of the TOF is about 100 ps which gives
very accurate indication of the particle type. For example, kaons can be distinguished
from the pions with a 2 sigma statistical significance up to momenta of 3 Gev/c.

The High Momentum Particle Identification Detector (HMPID)

The HMPID is a Ring-imaging (RICH) detector used to determine the velocity of par-
ticles beyond the momentum range available through energy loss and time-of-flight
measurements. The speed of the high momentum particle is obtained by the Cherenkov
radiation it emits by travelling faster than light in a particular material. The HMPID
is the world’s largest caesium iodide RICH detector, with an active area of 11 m2. The
momentum range of kaon-pion discrimination is up to 3 Gev/c and the momentum
range of kaon-proton discrimination is up to 5 GeV/c.

2.2.3 Calorimeters

Calorimeters are the detectors responsible for energy measurements. All particles ex-
cept muons and neutrinos deposit all their energy in the calorimeters by means of elec-
tromagnetic or hadronic showers. Photons, electrons and positrons deposit all their
energy in an electromagnetic calorimeter. Their showers cannot be distinguished, but,
since the photon carries zero charge, it can be identified by the non-existent track in
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the tracking system of the ALICE detector. The photons can tell us information about
the temperature of the system (thermal radiation). In order to measure such radiation,
other special detectors are also necessary.

The Photon Spectrometer (PHOS)

The PHOS is a high resolution electromagnetic calorimeter specialized for photon iden-
tification. It can provide measurement for the research of the thermal and dynami-
cal properties of the initial phase of the collision. It is made up of fast scintillating
lead tungstate (PbWO4) crystals and uses Avalanche Photodiodes (APD) for readout.
(PbWO4) is extremely dense and stops most of the photons. The energy range de-
tectable by PHOS is from 0.5 Gev up to 10 GeV.

The Electro-Magnetic Calorimeter (EMCal)

The EMCal improves the high momentum particle measurement capabilities of the
ALICE detector. It is a shashlik-type lead-scintillator calorimeter composed of 4 416
modules that are grouped into 20 super-modules (SM). Each of the modules consists of
4 optically isolated towers which gives a total of 17 664 individual towers. The readout
from the EMCal is done by wavelength shifting fibers. The EMCal is the outmost
detector in the central barrel. It is 24 cm thick and weighs about 100 tonnes. It covers
an azimuthal angle of 110 degrees and a pseudorapidity range of |η| < 0.7. Also, it is
used for the reconstruction of high energy jets, which can give an insight in the physics
of hard processes.

The Photon Multiplicity Detector (PMD)

The PMD measures the multiplicity and the spatial distribution of photons produced
in the collisions. It consists of two layers, each with 24 gas-filled modules. Each mod-
ule consists of an array of closely packed hexagonal proportional counters, with wire
readouts. Charged hadrons are rejected using a charged particle veto (CPV) in front of
the converter. The photons pass through the converter, initiating an electromagnetic
shower in a second detector layer.
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The muon spectrometer

The muon spectrometer is designed to study the spectra of heavy quarkonia by ana-
lyzing their decay in the µ+µ− channel. The design of the muon spectrometer is based
on the fact they are the only charged particles able to pass almost undisturbed through
any material. Muons with momenta under a few hundred GeV/c do not produce elec-
tromagnetic showers. For this reason a set of absorbers is installed in order to isolate
muons. There are three absorbers, a passive front absorber, which absorbs hadrons and
photons from the collision, an inner beam shield to protect the chambers from parti-
cles produced at large rapidities, and a passive muon-filter wall. It also consists of a
tracking system of 10 detection plates, four planes of trigger chambers, and one large
dipole magnet. The muon spectrometer is located outside of the central barrel in the
pseudorapidity region of -4.0 ≤ η ≤ -2.5.

2.2.4 Forward detectors

The ALICE detector is also equipped with so-called forward detectors located in the
forward region which are used to measure the global characteristics of the collision
event.

The Forward Multiplicity Detector (FMD)

The FMD consist of 5 large silicon discs, each with 10 240 individual detector channels.
It detects charged particles emitted at small angles relative to the beam. The FMD
provides a measurement of charged particle multiplicity. It also can give insight on the
inclination of the event planes and shape variables of the event.

The V0 Detector

The V0 detector is a common name for two detectors installed on both sides of the
interaction point. The two parts, V0-A and V0-C are located 340 cm and 90 cm from
the nominal interaction point. The V0 detector mainly serves as a trigger detector, as it
provides minimum-bias triggers for the other detectors. It is also able to independently
estimate the multiplicity of the event. Each of the V0s is made up of 32 scintillator
counters.
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The T0 Detector

The T0 detector is used as a trigger and luminosity detector. The measured interaction
time is used as the reference signal and is crucial for the functioning of the TOF detector
that is used for particle identification. Also, it is used to measure the vertex position
of the collision. The T0 detector consists of two arrays of Cherenkov counters (T0-
A and T0-C) which are located at both sides of the interaction point at distances of
375 cm and 72.7 cm, respectively. Each array has 12 cylindrical counters equipped with
a quartz radiator and a photomultiplier.

The Zero Degree Calorimeter (ZDC)

There are two ZDCs located 115 m on both sides of the nominal interaction point. They
measure the energy of the spectator nucleons in order to determine the overlap region
in the nucleus-nucleus collisions. This way, centrality of the collision can be measured.
The ZDC has a distinct proton calorimeter (ZP) and a neutron calorimeter (ZN). ZPs
are made of stack of brass plates grooved to allocate a matrix of quartz fibers. The ZNs
are made of tungsten alloy plates.
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Machine learning

Machine learning is a field of study in programming and computer science which aims
to build and understand adaptable methods and models that „learn” without being
explicitly „told” what to do. The basic assumption behind machine learning is that
algorithms, methods or models which worked in past are likely to work in the future.
More specifically, given some training data, a model will learn important features and
properties from which it could predict some future behavior. Such algorithms closely
resemble optimization algorithms which aim to minimize a specific loss of some kind
to better describe a dataset. However, the goal of machine learning algorithms is a gen-
eralization in which one is concerned with minimizing loss on the unseen examples.
Machine learning techniques can be very powerful in tasks where human knowledge
is not complete, like in science, or in tasks where humans posses knowledge but cannot
explain it, for example in speech recognition.

The idea of self-teaching algorithms exists for a long time, but with recent devel-
opment of suitable hardware, machine learning and other artificial intelligence frame-
works experienced a rapid development in the last few years. Today, machine learning
algorithms are involved in a wide variety of applications in medicine, speech recog-
nition, computer vision, etc. Also, there is growing number of scientists that use ma-
chine learning methods in their fields of study. Given the enormous amount of the
data provided by the high energy physics experiments one can assume that such an
environment is suitable for the usage of machine learning algorithms in data analysis.
There are many examples of applications of such an algorithms in the scientific col-
laborations that work on modern particle accelerators. For example, such algorithms
are already in use in tagging of jets initiated by the „beauty” and „charm” quark [33].
There is a growing interest in utilizing machine learning in search for rare unknown
particles (dark matter, supersymmetric particles etc.)[34].
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3.1 Approaches to Machine learning

There are three main approaches to the machine learning algorithms. In supervised
learning, the machine is presented with inputs and the desired outputs. The machine
then tries to find a general rule or a function that maps inputs to outputs. In unsu-
pervised learning, only the input data is given to the machine. In principle, the goal
in that case is to find hidden patterns in the data. Finally, in reinforcement learning,
the algorithm interacts with some dynamic environment where it aims to achieve a
specific goal. Feedback for the actions of the algorithm is given by the environment
itself.

3.1.1 Supervised learning

Supervised learning algorithms are the easiest to understand of the three mentioned.
They use labeled training data with pairs of input data and the desired outputs. The
goal is to find an algorithm that creates a function which maps the data from the input
space to the output space. For example, if we want to distinguish dog pictures from
cat pictures, assuming the pictures are labeled (dog - 1, cat - 0 ), the algorithm should
find a function that maps inputs (pictures, however they are represented) into interval
from zero to one. Ideally, the output of the function for a given picture would represent
the probability of seeing a dog picture. In most cases, learning is done by minimizing
some loss function averaged over the training data. This is some metric that describes
the difference between the predicted and desired output. The main two categories of
supervised learning tasks are classification, where the outputs of the model are discrete
and associated with desired class, and regression, where outputs are continuous rather
than discrete.

There is a wide range of supervised learning algorithms, such as support vector
machines, decision trees or neural networks (described in detail in later sections). Each
of them posses strengths and weaknesses. However, there is not a learning algorithm
that works best for all supervised learning problems. The choice of a learning algo-
rithm depends of the type of the problem one wants to solve.

There are several generalizations of the traditional supervised learning. Semi-supervised
learning denotes the case where only a subset of data is provided with the desired out-
puts. In weak supervision one must deal with noisy, limited labeling of the training
data. Active learning assumes that all of the training examples are not given at the
start and the algorithms interactively collect new data.
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3.1.2 Unsupervised learning

Unsupervised learning is a framework where an algorithm is given some input data
without any desired outputs. The main goal of such an algorithm is to find some hid-
den patterns and correlations in the data. There is a variety of tasks that demand some
form of unsupervised learning. For example, in clustering, one wants to group data
points in some unknown categories. Also, some algorithms are used for dimensional-
ity reduction of the input data. In that case, one wants to represent input data with the
vectors of lower dimension, but with the minimal loss of information. For such a task,
the most important independent features in the input data must be extracted. Principal
Component Analysis (PCA) is an example of the such an algorithm [35]. Some gener-
ative models which generate data that mimics given training data are also examples
of unsupervised learning. Anomaly detection problems and wide range of other tasks
often use unsupervised learning algorithms.

3.1.3 Reinforcement learning

Reinforcement learning (RL) is a field of machine learning concerned with the notion
of how to take actions in an environment. In reinforcement learning one does not
need labelled input/output pairs. Also, it does not need an explicit correction of some
wrong action. The goal is find a balance between exploration, where actions are taken
sometimes randomly to investigate some unexplored possibilities, and exploitation,
where the best action is taken based on the current knowledge. Partially supervised
RL algorithms combine the advantages of supervised and RL algorithms.

The RL environment is usually modelled by the Markov decision process (MDP)
[36]. However, reinforcement learning algorithms do not assume knowing an exact
mathematical model of the MDP, in difference with the classical dynamic program-
ming methods. In general, the goal is to find the optimal „policy”, i.e. the probability
of transition from the one state to another in the environment under some action by
maximizing the „reward” function which represents some feedback from the environ-
ment. RL algorithms can be powerful in problems where the model of the environment
is known, but there is no analytic solution, and in problems where you gather knowl-
edge by interaction with the environment. An example of the latter is the game of chess
where Google Deep Mind developed AlphaZero algorithm using RL [37].
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3.2 Data overview

Since machine learning models use examples to „learn”, it is important to collect good
data which should be represented accordingly to the used algorithm. Quality data
can be the key to a successful machine learning model. Data is regarded as a physical
representation of some information. A collection of data instances is called the dataset.
The data instances are usually represented by a number of features which capture some
piece of the corresponding information. There are various ways how the data can be
represented since many factors enter its form, such as equipment used to collect the
data, processing operations and storage requirements.

3.2.1 Types of data

In most cases, the data is represented as a set of independent records described by
certain pre-specified features. For instance, an iris flower can be represented by four
features: sepal length, sepal width, petal length and petal width. In this case, each
feature is described by a continuous numeric value. A feature can be described as a
categorical entity as well. This example is fairly simple, but if we want to describe
pictures of an iris flower with the size of 256×256 pixels, each pixel is regarded as a
feature with its numeric value. Mathematically, data is often represented by the means
of the vectors and tensors, in which each component describes a particular feature.
Data from the above examples would be represented by a vector with a size of 4 and a
rank 2 tensor with a size of 256×256, respectively.

In sequenced data, such as in texts or in time-series data, the order of information
entities or features is relevant and contains additional information. It can also be rep-
resented as a simple vector, but one should be careful to take ordering information in
the design of the algorithm.

In some cases data is structured, so links and interactions between information enti-
ties or features are very important. An example is a description of chemical molecules.
This kind of the data is regarded as graph data. There are various ways to mathemati-
cally describe graph data, one of them being adjacency matrix or matrices.

3.2.2 Data quality

Real world datasets will almost certainly contain errors. These errors can be caused
by various things, like human errors, imperfect devices, bad data processing and so
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on. They can be grouped into various categories, such as noise, outliers, missing val-
ues, inconsistent feature values or duplicates. These errors can significantly degrade
the learning performance. Also, in many cases one deals with sparse data. The fea-
ture space is large but only small number of features are effective. This also presents a
challenge in learning performance. Dealing with imbalanced data in supervised learn-
ing problems, where data is labelled mostly in one or a few ways, is an issue too. It
is important to analyze the dataset before starting machine learning tasks. Thorough
cleaning of the dataset and transforming or preprocessing operations can be crucial to
the performance of a machine learning algorithm.

3.3 Standard issues in ML algorithms

Machine learning has found success in many disciplines, but sometimes machine learn-
ing techniques fail to deliver expected results. This is caused by a number of possible
reasons, like lack of suitable data, biased data, wrong choice of algorithms and meth-
ods, lack of resources and others. Often, machine learning models have to be specifi-
cally tuned in order to work properly, which is often not a very easy task. This section
will deal with the most common general issues one can encounter when dealing with
a machine learning task.

3.3.1 Underfitting

In some cases, used models and algorithms simply do not have a capacity to solve a
particular task. The variety of data is too big for a model to map inputs to desired
outputs. In other words, the task is too hard for the given model and it did not learn
anything. One says that the model underfits.

3.3.2 Overfitting

Overfitting appears when a trained model reflects the noise in the given training data
too much. Such models does not generalize well. It is as if someone learns (remembers)
the whole book but does not know anything outside of it. This often happens when
a model is overly complex. In that case, there are a lot of ways a model can fit the
data and no one can guarantee that its solution is the real solution. One of the ways
to overcome overfitting is an early stopping of the training process. Also, there exist a
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number of regularization techniques which dynamically decrease the complexity of the
model. In most cases, the principle that the simplest solution is the best solution works.
Since neural networks are especially prone to overfitting due to their complexity, some
of the regularization techniques will be explained in the section that describes neural
networks.

3.3.3 The curse of dimensionality

Sometimes, when one must deal with highly dimensional data it becomes very chal-
lenging to handle it due to limited computational resources, among other reasons.
Also, most of machine learning algorithms have a complexity of the order at least
O(n2). This causes the usage of unnecessarily complex models. To deal with such
a challenge, some data processing techniques are used, like dimensional reduction
and feature selection. They effectively reduce dimensionality by projecting the data
instances to a lower dimensional space or by selecting fewer features for their descrip-
tion.

3.4 Machine learning algorithms

There is a wide range of machine learning algorithms. Choosing which one to use
depends on the specific characteristics of the task one wants to address. There is no
exact way to tell which algorithm will perform the best. Data scientists often rely on
their intuition and some general rules to pick the right algorithm. The most commonly
used machine learning algorithms are described in this section. Since a neural network
algorithm, as an example of a machine learning algorithm, is widely used in this thesis,
they will be described in detail in a separate section.

3.4.1 Linear regression

The most basic form of a machine learning algorithm is the linear regression. It is a
linear model where the relationships are modeled using linear functions whose pa-
rameters are estimated from the data. Let’s say there is a dataset consisting of a pair
of variables, one independent and one dependent. The goal is to find a line which
describes data the best, y = Ax + B. The parameters A and B are estimated by the
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minimization of some error, in most cases the Mean Squared Error (MSE). Linear re-
gression can also be generalized to vectors, where some set of variables (y) depends
on multiple independent variables (x). In that case A is a matrix, and B is a vector. Its
basic assumption is that variables depend linearly and it is unable to capture nonlinear
correlations.

3.4.2 Logistic regression

Despite its name, logistic regression is in fact a classification algorithm. It wants to
predict the probability of the some binary outcome, like in coin flipping. Suppose a
dataset consisting of independent variables x and associated outcomes y (denoted by
0 or 1) is presented. The goal of the regression is to estimate the probability that the
outcome will be one for a given x, p(1|x). Then, the probability of the outcome of zero
is simply p(0|x) = 1 − p(1|x). In the algorithm, the probability is modelled by the
means of the logistic function defined as:

p(x) =
1

1 + e−
x−µ

σ

(3.1)

where µ is a location parameter and σ is a scale parameter. The special case of logistic
function where µ = 0 and σ = 1 is called the sigmoid function. In logistic regression,
the parameters µ and σ are usually estimated by maximizing the log-likelihood. This
is identical to minimizing the binary crossentropy loss defined as

L = −y ln p(x)− (1 − y) ln (1 − p(x)) (3.2)

where p(x) is the output of the model for a given input variable x, and y is a desired
outcome. In practice, an averaged loss over the all data points is minimized.

3.4.3 Support Vector Machine (SVM)

SVM is one of the most popular algorithms in supervised learning tasks. It is primarily
used for classification problems, although it too can be used in regression tasks. The
goal of the SVM is to find a hyperplane which classifies the data points the best. The
dimension of the hyperplane depends on the number of features in data instances.
The estimated hyperplanes are used as decision boundaries. Data points positioned on
either sides of the hyperplane are considered to belong to different classes. The support
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FIGURE 3.1: A visualization of support vectors [38].

vectors are the vectors closest to the hyperplane. The position and the orientation of
the hyperplane depend on these support vectors. The objective of the SVM algorithm
is to maximize the distance between support vectors and the hyperplane, also called
the margin. Often, this is done by minimizing the hinge loss which can be defined as:

L = ∑
i

Max(0, 1 − yidi) , (3.3)

where yi is the desired output for a given data point x and di is the distance between
a given data point xi and the hyperplane. If a hyperplane is defined by parameters w
and b as a collection of points x that satisfy wTx − b = 0, the distance di is equal to
wTxi − b.

3.4.4 K-Means

K-Means is a clustering algorithm and belongs to the category of unsupervised learn-
ing algorithms. This algorithm aims to partition collection of data points into k clusters,
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where k is a predefined number. It wants to find k centroids which are points that rep-
resent a center or a mean of a cluster. Then, it allocates each data point to the nearest
cluster center. Centroids are found by minimizing the average distance between data
points of a particular cluster and its centroid. It is often done in an iterative way where
the initial locations of centroids are set randomly.

3.4.5 K-Nearest Neighbours (kNN)

The kNN is a simple supervised learning algorithm which can be applied on both
classification and regression problems. The algorithm assumes that similar things are
closer to each other, where „distance” is defined by some metric. The most popular
choice used is the Euclidean distance. k stands for a user-defined number of neigh-
bours. The kNN works in the following way. Assuming k is determined and a metric
is defined, for each data point it calculates the distances to other data points. These
values are then sorted and k data points with smallest distances are chosen. Next, la-
bels of the nearest k neighbours are used. In classification, for a given data point, the
algorithm outputs the mode of the k labels, i.e. it outputs the label that appears most
often. In regression, it outputs the mean of the k labels.

3.4.6 The Decision Tree

The Decision Tree algorithm aims to create a model which makes a prediction by learn-
ing simple decision rules. These rules have a hierarchical, tree-like structure, hence the
name decision tree. It starts from the root node with a goal to find an attribute or a
feature of the data point which splits the data the best according to some labels. If
the values of the features in a data point are continuous, they need to be discretized.
Selecting the best attribute is done by means of the information gain which is defined
as the difference in Shannon entropy and the average Shannon entropy of the subsets
created by the decisions on a given attribute [40]. The Shannon entropy of a set S is in
this case defined by:

H(S) = −∑
i

pi ln pi , (3.4)

where the index i iterates over the number of classes and pi is the probability that a
particular class appears in the set S. In other words, pi is a fraction of data points in the
i-the class with respect to the total number of data points in the set S. The best attribute
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is considered as the one with the highest information gain. This procedure is done re-
cursively on each node of the tree. The algorithm continues to split on attributes until
either it classifies all the data points or there are no more attributes to split on. In other
words, there is no more information gain. After the tree is built in the previously de-
scribed way, the decisions are made on the basis of the calculated best attribute for each
node. Decision trees provide a clear insight into fields which are the most important
to make some prediction. A model built this way is highly interpretable. It also does
not require much computational power to make predictions. However, it can be com-
putationally expensive to train them. Also, it is prone to overfitting. Decision trees can

FIGURE 3.2: An example of a decision tree [39].

40



3.5. Neural networks

be sequentially combined to boost their performance, in which case we have Boosted
Decision Trees (BDT) [41]. Using the techniques of bagging or bootstrap aggregating
it is possible to create an ensemble of decision trees to construct the Random forest
algorithm, which in general has a better performance than an individual tree [42].

3.5 Neural networks

A neural network is an algorithm based on a set of inter-connected objects called arti-
ficial neurons. They loosely model the neurons in a biological brain. Like neurons and
synapses in an animal brain, artificial neurons receive some signal, usually a real num-
ber, from other neurons and applies some, usually non-linear, function to the weighted
sum of the inputs from the other neurons and transmits it to the next neuron, also in the
form of the real number. The history of neural networks started in 1943 when Warren
McCulloch and Walter Pitts developed a computational model for neural networks [].
Since then, a lot of researchers worked on the topic, but there was not sufficient com-
puter support and only pretty small and primitive networks were used. Over decades,
steady progress was made in a field, with a rapid development observed by usage of
modern GPUs and distributed computing, which allowed an application of very com-
plex and deep neural networks. Such networks proved to be very successful in fields
like computer vision and speech recognition. Use cases of neural networks are mul-
tiple, such as function approximation, pattern recognition, data processing, etc. They
are suitable for both classification and regression tasks. Also, they can be used in su-
pervised, unsupervised and reinforcement learning approaches.

3.5.1 Artificial neurons

An artificial neuron is the basic building block of a neural network. It receives some,
often multiple, inputs, whether from external user input or from other neurons and
outputs some function of the received inputs. Typically, each input is weighted and
summed with others. A certain bias value is added to the sum. In the end, a neuron
outputs some function of that value. Mathematically, it can be described as:

y = f

(
∑

i
wixi + b

)
, (3.5)
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FIGURE 3.3: The neural network neuron in comparison to the human
brain neuron [43].

where xi denotes inputs, wi weights associated with given inputs and b a bias value.
f (x) is some activation function. The most popular activation functions are the sigmoid
function and the Rectified Linar Unit (ReLU) function, defined as f (x) = Max(0, x).
The activation function is important and is needed in order to enable a neural network
to capture non-linearities in data which increases its learning capacity. The neurons
are typically organized in one or multiple layers. The Input layer is a collection of
neurons that receive external data. The Output layer is a collection of neurons that
output a final result. In between them, there can exist any number of hidden layers,
which are collections of neurons that neither receive input data nor output the final
result. A neural network without a hidden layer is called a simple neural network.
Complex neural networks with multiple hidden layers are called deep neural networks
and are associated with the deep learning paradigm. In general, each neuron from one
layer is connected to each neuron in the next layer. Then, the neural network forms a
directed a-cyclic graph and is called a feed-forward neural network. When layers have
connections in the same layer or to a previous layer, we talk about recurrent neural
networks. Mathematically, a layer can be described as vectorized analogue of 3.5:

y = f (Wx + b) , (3.6)

where x denotes the input vector and y the output vector of the layer. w is a weight
matrix which transforms the input vector x by operation of matrix multiplication and
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b is a bias vector which contains a bias value of each neuron in the layer. The acti-
vation function f is applied element-wise on the vector Wx + b. Neural networks, as
described above, are called fully-connected and display the most general case of a feed-
forward neural network. The goal of the neural network is to find the parameters of
the weight matrix W and the bias vector b for each layer, which solves a problem the
best. Assuming these parameters are found, predictions are made simply by using 3.6
where each layer receives inputs from the previous layer and transmits the output to
the next layer.

Sometimes, fully-connected networks are too complex and prone to overfitting. In
order to address that issue and achieve better performance, various architectures of
neural networks are suggested. An architecture is defined by a constraint put in con-
nection weights suitable for a specific problem. This kind of neural network design
reduces the degrees of freedom a neural network can have and directs the neural net-
work to learn in the right way. The best example of the neural network architecture is
a Convolutional Neural Network (CNN), where a large number of weights are shared
by its neurons.

3.5.2 Optimization algorithms

In this section we describe how a neural network learns. Optimization algorithms are
designed to find the right weights for a given neural network. They are based on the
concept of minimizing some loss function which somehow describes the difference be-
tween what we have and what we want to have. The idea is to use gradients of the
neural network to iteratively find minima of the loss function, since neural networks
consist of differentiable multivariate functions (assuming all of their activation func-
tions are differentiable). At first, one needs to find how much a change of a particular
parameter of the neural network affects the loss function. Then, this parameter is up-
dated accordingly to the amount of change it generates. Basically, one wants to make
larger changes to parameters which reduce the value of the loss function the most.
Calculating gradients of the loss-function is done by the algorithm of backpropagation.
There are several algorithms which use calculated gradients somewhat differently, all
of them trying to stabilize the training process. These algorithms, along with the back-
propagation algorithm, are described in the following sections.
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Backpropagation

Differentiating a composition of functions is done using the chain rule. Since a neural
network is basically a composition of functions the chain rule is used as a basis for the
backpropagation algorithm.

Given an input/output pair (x, y), the scalar loss function is given by L(y, f (x)),
where f represents the whole neural network. As described above, a neural network is
a composite function f (x) = fN( fN−1(.. f1(x))), where fi represents a transformation
in the i-th layer. One wants to find the gradient of a loss function in terms of weight
parameters. Assuming the output of the i-th layer is equal to

fi = σ(zi) = σ(Wifi−1 + bi) (3.7)

we have:
∂L

∂W i
jk
=

∂L
∂ f i

j

∂ f i
j

∂zi
j

∂zi
j

∂W i
jk

. (3.8)

The last element in the product is easy to calculate since there is an explicit connection
between zi

j and the weight matrix element W i
jk. The first two elements of the product

are denoted by δi
j:

δi
j =

∂L
∂zi

j
. (3.9)

Since δ is a vector, this expression can be written in terms of the gradient, δi = ∇zi L.
Now, one wants to see in what way the gradients between two consecutive layers
connect. We will assume the vector δi+1 is known. Since each component of the vector
zi+1 is a function of all components of the vector zi and there is an explicit dependence
between two vectors,

zi+1 = Wi+1σ(zi) + bi+1 , (3.10)

the j-th component of the vector δi can be written as

δi
j =

∂L
∂zi

j
= ∑

k

∂L
∂zi+1

k

∂zi+1
k

∂zi
j

= ∑
k

δi+1
k W i+1

kj σ′(zj) . (3.11)

It can be seen that the right side of the above expression is in fact a matrix multiplica-
tion of the transposed weight matrix, (Wi+1)T and the vector δi+1. The full vector form
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of the 3.11 is written as
δi

j = (Wi+1)Tδi+1 ◦ σ′(z) . (3.12)

The symbol ◦ denotes the Hadamard product, an element-wise product between vec-
tors. It can be noticed that each δi can be calculated iteratively if the last, δN, is known.
Indeed, it is easily calculated since the loss function explicitly depends on the output of
the neural network. The gradients of the loss function in terms of weights and biases
are, according to 3.8, simply calculated if the inputs from the previous layer are used.
Inputs of the first layer are external data inputs.

∂L
∂W i

jk
= δi

jσ(z
i−1
k )

∂L
∂bi

j
= δi

j (3.13)

This algorithm is called backpropagation since it propagates the error on the loss function
backwards from the last layer.

Gradient Descent

The Gradient Descent algorithm is designed to iteratively update the parameters of a
neural network to minimize a given convex loss function. In the beginning, the weights
are parameterized randomly by some small numbers. In each step, the weights are
updated in the following way:

W i
jk → W i

jk − α
∂L

∂W i
jk

, (3.14)

where the parameter α is called the learning rate. It is a very important parameter
and it should be neither too large nor to small. It is assumed that the loss function
is calculated over the entire dataset. In contrast, when using the Stochastic Gradient
Descent (SGD), the loss function is calculated only on one data instance in each step of
the algorithm. In practice, the most commonly used gradient descent algorithm is the
Mini-Batch Stochastic Gradient Descent (MB-SGD) which, in each step, evaluates the
loss-function on some small subset of data called a batch. Typically, there would be 32
or 64 data instances in a mini-batch. It is less noisy than a regular SGD does not have
a large memory requirement for data storage. In order to reduce noise, the MB-SGD
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with momentum is sometimes used. It introduces a momentum defined by

Vi
jk(t) = γVi

jk(t − 1)− α
∂L

∂W i
jk

, (3.15)

where the parameter γ is pre-defined and usually takes on the value of 0.9. The vari-
able t represents the iteration of the algorithm. Consequently, each iteration reduced
the value of Vi

jk(t). The idea is to denoise the gradients in this way by giving more
importance to the recent updates compared to the previous updates.

Adaptive Momentum Estimation (AdaM)

The principle of work of the AdaM algorithm was introduced in a paper from 2015
by Diederik Kingma and Jimmy Ba [44]. It combines the advantages of AdaGrad and
RMSProp algorithms [45], [46]. It is used for the neural network optimizations in this
thesis. Empirically, it provides very good performance. It is straightforward to imple-
ment and computationally efficient. It is well suited for neural networks with a large
number of parameters and problems with sparse or noisy gradients.

3.5.3 Regularization techniques

Regularization techniques are used to overcome the problem of overfitting. Generally,
fully connected neural networks are very powerful, but sometimes too complex and
prone to overfitting. In this section some commonly used regularization techniques
are described.

L2 regularization

The L2 regularization is the most common type of all regularization techniques and is
also commonly known as weight decay. It aims to control the weight parameters by min-
imizing their Euclidean norm. It is done by adding the term Ω(W) = ∥W∥2

2 = ∑ij W2
ij

weighted by some parameter α to a regular loss function one wants to minimize. The
parameter α is a new hyperparameter of the neural network and is called the regu-
larization rate. It quantifies how much one wants to regularize. The consequence of
this method is that weights are on average smaller after each update. This way, the
complexity of a neural network is reduced.
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L1 regularization

The L1 regularization, also known as Lasso regression, is very similar to the L2 regu-
larization in implementation. In it, the sum of the absolute values of the weight pa-
rameters in a weight matrix is added to a loss function, Ω(W) = ∥W∥1 = ∑ij |Wij|.
The aim of the L2 regularization is to minimize the weights as much as possible, but
the goal of the L1 regularization is to have as many of them equal exactly zero. One
needs to be careful in choosing the parameter α. If it is too high, it will overshadow the
regular loss and the model will not converge. If it is too low, the regularization will be
negligible and very likely overfitting will take place.

Dropout

In addition to the above described L2 and L1 regularization techniques, another widely
used and powerful technique is the dropout regularization. The implementation of the
dropout regularization is quite simple. During the training of the neural network a
random neuron gets turned off, i.e. it outputs zero regardless of its input. The proba-
bility p of a neuron to turn off is set by the user and is another hyperparameter of the
neural network. The dropout prevents neurons from adapting to each other too much,
and as a consequence one has sparsely populated weights across the neural network.
Therefore, it effectively reduces the complexity of the neural network [47].

3.5.4 Convolutional Neural Network (CNN)

The architecture of the Convolutional Neural Network is typically constructed from a
few convolutional layers, each paired with a pooling layer. The last few layers are gen-
erally fully-connected layers. The network aims to capture local patterns in some high
dimensional data, for example pictures represented by pixels, and transform them to
some abstract features which are then fed to the fully-connected layers. The convolu-
tional layer is a special case of a fully connected layer where the weights are shared
between neurons. The pooling layers are often non-parametric layers which reduce
the dimension of a vector or a tensor by combining adjacent elements into one. These
kinds of neural networks proved to be very successful in fields of computer vision,
image and video recognition, significantly improving performance and speed of con-
vergence.
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FIGURE 3.4: A typical architecture of the convolutional neural network
[48].

The convolutional layer

The convolutional layer often takes tensor of rank 3 as an input. The axes of the tensor
correspond to width, the height, and the number of channels. For example, a two-
dimensional picture can have a shape of 256× 256× 3, where an image has a size of 256
pixels in width, 256 pixels in height and there are three channels for color, assuming the
RGB coloring scheme is used. It transforms the input into an abstracted feature map.
Weight sharing in the convolutional layer is done by using filters or kernels. They can
be regarded as fully-connected layers which receive only a low-dimensional part of
the original input and output a single number. In general, a filter of size 3 × 3 is used.
Each filter with its weights slides over an input image and constructs a feature map
by applying itself on different parts of the image. This operation is called convolution
since it closely resembles a mathematical convolution. A convolutional layer can have
multiple different filters, with their number corresponding to the number of channels
of the feature map which the layer outputs. Assuming the input tensor has a size of
256 × 256 × 3 and the layer has 8 filters, the size of the output tensor will be 254 ×
254 × 8. The height and the width of the input image are slightly reduced because a
filter of size 3 × 3 can move itself 256 − 2 = 254 times in each direction. This way,
one tends to recognize a local pattern in an image. Another important benefit of the
convolutional layer is the introduction of translational symmetry. In other words, a
specific important pattern will be recognized regardless of its position in the image.
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The pooling layer

The purpose of the pooling layer is to reduce the height and the width of the feature
map obtained from the convolution layer. Typically, 2× 2 pools are used. It means that
this layer takes a part of the feature map with a size of 2 × 2 and combines it into one
singular value. The most common way is to take the maximum value of the numbers
in a given pool. In that case the pooling layer is called Max Pooling. Sometimes, the
way to combine values in a pool is to take an average of the values in the pool. Then the
layer is called Average Pooling. After the application of a pooling layer of dimensions
2 × 2 the data size is reduced by a factor of 4. For example, assuming an input of
254 × 254 × 8, the pooling layer outputs a tensor with a size of 127 × 127 × 8. The goal
of such an operation is to disregard non-important or redundant features in a feature
map.

Layer organization

The first two layers of a CNN are usually a convolutional layer followed by a pooling
layer. This stack of layers outputs a tensor that is less wide and high but more long than
the input tensor. Generally, such a stack is repeated a few times producing even longer
and very thin tensors. Gradually, the feature maps (outputs of each convolutional
layer) become more and more abstract. In the end a feature vector is sent to a fully
connected layer. The first convolutional layer typically recognizes edges and shapes.
Deeper layers recognize connections and correlations between the shapes and objects
in the picture. This way, fully connected layers in the end have an easier job because
they receive a low dimensional feature vector with the most important features. The
schematic of a CNN is shown in 3.4. The CNN have a significantly smaller number
of free parameters than the fully connected neural network, which directly takes an
image as input. With this specific design, the CNN’s complexity is reduced and is
less prone to overfitting. Also, it achieves faster convergence to a minimum of a loss
function.

3.5.5 Autoencoders

Autoencoders are neural network models that try to approximate the identity function.
They consist of two parts, the encoder and the decoder. The encoder aims to encode
input data into some latent vector. Then, the goal of the decoder is to reconstruct

49



Chapter 3. Machine learning

the original input from the latent vector. Training is done by minimizing some loss
function between input and output, usually mean squared error,

L =
1
n

n

∑
i
(xi − D(E(xi)))

2 . (3.16)

Here, D denotes the decoder and E denotes the encoder. In general, the latent vector
has a much lower number of elements than the input vector. It forms an information
bottleneck. Taking into account that the training process succeeded, the latent vector
has most of the information needed to reconstruct the input, but with a much lower
number of elements than the input. Since it needs only the input data, an autoencoder
is used in unsupervised learning tasks. It is applied for the purpose of dimensionality
reduction or feature extraction. Any architecture of a neural network can be used to
design an encoder or a decoder. If encoder and decoder use convolutional layers, it is
called an convolutional autoencoder.

3.5.6 Generative models

Until so far, we were describing discriminative models. In principle, given some input
data x, one wants to find a probability distribution of outputs, P(y|x). In generative
models, the goal is to find the real probability distribution P(x) and to be able gen-
erate some data from random noise according to this distribution. Generally, models
don’t explicitly calculate P(x), but imitate this probability to generate data using some
statistical methods. In this thesis, a generative model is presented which in fact esti-
mates underlying distributions of the input data. In the following text, two of the most
popular generative models based on neural networks are presented, the Variational
Autoencoder and the Generative Adversarial Network.

The Variational Autoencoder

In a regular autoencoder, the elements of the latent vector are mutually entangled and
highly correlated. This makes it difficult to interpret the features in the latent vector. If
the elements of the latent vector are independent and follow some simple probability
distribution, it could enable the usage of the decoder network to sample data from the
latent vector by feeding it with some noise modelled by some simple distribution, for
example a multivariate Gaussian distribution, N (0, I). The variational autoencoder
is the regularized version of an ordinary autoencoder in which the latent vector is
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forced to have independent and untangled elements. The variational autoencoder also
consists of the encoder and the decoder. In contrast to an ordinary autoencoder, it uses
two vectors. The latent vector z is then sampled by introducing some Gaussian noise

z = µ + σN (0, I) . (3.17)

This way, the latent vector follows the multivariate normal distribution with a mean
and variance µ and σ, N (µ, σ) [50]. Then, the vector is fed to the decoder which tries
to reconstruct the input vector x. In the training process one wants to minimize the
difference between the input and the output vectors, but also wants that the probability
distribution of the latent vector gets closer to the N (0, I). This is done by minimizing
the Kullback-Leibler (KL) divergence between N (0, I) and N (µ, σ). The KL divergence
is a specific measure of the difference between probability distributions defined in [].
The difference between N (0, I) and N (µ, σ) in terms of the KL divergence is expressed
by

KL(N (0, I),N (µ, σ)) = −1
2

ln σ + σ2 +
1
2

µ2 − 1
2

. (3.18)

This regularization term, averaged over the dataset, is added to the loss function
shown in 3.16. The variational autoencoder simultaneously wants to achieve good
reconstruction of the input and regularization of the latent vector. Sometimes, the KL
term in the variational autoencoder loss is weighted by a parameter β. In that case, it is
called β-VAE [51]. If trained properly, the decoder of the variational autoencoder can
be fed with a data sample from \(0, I) and it would produce output data that resemble
the input data x. Because of this, the variational autoencoder is considered to be a

FIGURE 3.5: An architecture of the variational autoencoder [49].
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generative model.

Generative Adversarial Network (GAN)

A generative adversarial network (GAN) is a generative model designed by Ian Good-
fellow et. al. in June 2014 [52]. It consists of two neural networks, the generator and the
discriminator, that are in contest with each other, hence the name adversarial. The ba-
sic idea is this: the generator samples some data vectors z from random noise, usually
modelled by a multivariate normal distribution N (0, I). The outputs of the generator
are fed to the discriminator together with the external real data x. The discriminator is
then trained to classify real data and data created by the generator into different cat-
egories. In other words, it wants to distinguish between real and fake data the best it
can. Usually, this is done by the means of the binary crossentropy loss:

L = −∑
i

ln D(xi) + ln(1 − D(G(zi))) , (3.19)

where the generator is denoted by G and the discriminator by D. In the next step
the generator is trained to produce data which the discriminator will see as real. In
this step, random noise is fed to the generator, and the objective is that a combined
model consisting of both, the generator and the discriminator, outputs a value of one,
assuming the real data is labeled by one in the previous step. The optimization is done
by a gradient descent through the combined model, but only the generator’s weights
are allowed to be updated. The weights of the discriminator remain constant in this
step.

L = −∑
i

ln(1 − D(G(zi))) . (3.20)

These two steps are repeated until the discriminator is not capable to distinguish
between the real data and the data provided by the generator. Then its desired output
is 1

2 , so that it assigns an equal probability to each input. The generator is then used as
generative model to sample data instances that mimic the real data. Since the desired
working point is not a minimum of the objective function, but a saddle point also called
the Nash equilibrium [], the training process of the GAN proved to be unstable and
hard to achieve. One can encounter a variety of issues, such as vanishing gradients,
exploding gradients, mode collapse, a discriminator that is too strong, a discriminator
that is to weak, etc. [52]. A wide range of solutions are proposed to address these
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FIGURE 3.6: Noise passed through a GAN generates fake celebrity images
[53].

issues. Because of that there are many variations which improve above the described
GAN, like Wasserstein GAN (WGAN) and InfoGAN [54], [55]. The schematic of a
GAN and some images of non-existent fake celebrities generated by a GAN are shown
in 3.6.
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Methodology

This chapter contains a detailed description of the methodology used in this thesis. It
can be divided into two parts. First, an analysis of the quark-gluon jet discrimination
is presented along with corresponding machine learning models used for it. Also, we
present the overview of the data used to train, validate and apply the models. Next,
we present a novel method which calculates the underlying probability distributions
of emissions in jet-like data which can potentially be used in measurements of the
fragmentation functions.

4.1 Quark-gluon jet discrimination

The quark and gluon jet discriminators developed in this research are meant to be
suited for the application at the ALICE experiment. In order to do this, a large amount
of data describing jets is simulated to mimic data gathered by the ALICE detector.
Then, this data is used to train, validate and apply proposed models.

4.1.1 The ALICE data

One of the goals of this thesis is to develop a method for identification and tagging
of the light quark and gluon jets in the ALICE experiment. The method is based on a
machine learning approach and uses the data obtained by the ALICE detector. Training
of the models is done by using the data simulated by Monte Carlo (MC) generators.
The data used is chosen to be from proton-proton collisions recorded in 2018 during the
LHC run 2. The centre-of-mass energy of these collisions is

√
s = 13 TeV. Pythia 6 with a

Perugia0 tune and GEANT3 were used to generate the events and simulate the detector
response. The settings of the MC generator correspond to the state of the LHC collider
and the ALICE detector at the time of the data taking. The jets from are clustered by
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the anti-kT algorithm with the E-recombination scheme and the parameter R set to 0.4.
This is done by the FastJet package incorporated in the AliPhysics framework [].

Event and track selection

The ALICE detector is equipped with a number of triggers in order to reject unwanted
events and reduce background signals. In this analysis, the selected events are required
to satisfy several criteria. First, they must pass the minimum bias trigger. This trigger
rejects background interactions such as beam-gas and beam-halo interactions. Also, in
order to pass the minimum bias trigger, an event is required to have a signal in one of
the two inner layers of the SPD detector or in one of the V0 detectors. Furthermore, the
distance of the primary collision from the center of the detector along the beam line.

There are also several selection criteria for tracks in the selected events. First, to
avoid too small a radius of particle trajectories in the detector’s magnetic field, we
require that the particle transverse momentum is greater than 0.15 GeV/c. Also, the
particles are required to have a pseudorapidity of |η| < 1.0 due to the limited de-
tector’s acceptance outside this region. Additionally, the trajectory of the particle in
the TPC must be reconstructed with at least 70 measured points. The distance of the
closest approach (DCA) of the track relative to the primary vertex must be no more
than 0.018 + 0.035p−1.01

T ċm, where pT is particle’s transverse momentum measured in
GeV/c.

Jet reconstruction

The jets are clustered and reconstructed by the anti-kT algorithm as said above. The
jets used in the analysis are required to have a total transverse momentum greater than
1 GeV/c. Also, the number of jet constituents, i.e. jet multiplicity, is selected to be 10
or higher. The minimal jet area of the jets is set to be 0.001 in (y, ϕ) space. After apply-
ing selection criteria, the number of the obtained MC jets is 2.67 ·107. A jet as a data
instance is saved as an array of size of 50 × 4. The values of the array represent each
jet constituents four momentum. Size 50 is chosen since it is the maximum multiplicity
of a jet in the dataset. Data represented in this way contain the maximum amount of
information and can be easily suitably preprocessed for a model used in the analysis.
Furthermore, jets are divided into bins according to their total transverse momentum,
since the pT-dependence of the quark and gluon fractions is of particular interest in
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this thesis. Detailed specifics of the binning and properties of each of the subsamples
are shown in table 4.1.

TABLE 4.1: Number of jets in each pT bin.

pT N Nq Ng Ntrain Ntest

0-25 GeV 5352459 509416 (9.5 %) 4843043 (90.5%) 4817213 1338114

25-50 GeV 5059608 872273 (17.2%) 4187335 (82.8%) 3794706 1264902

50-75 GeV 4774522 1011871 (21.2%) 3762651 (78.8%) 3580891 1193630

75-100 GeV 3951685 840789 (21.3%) 3110896 (78.7%) 2963763 987921

100-125 GeV 3051618 661499 (21.7%) 2390119 (78.3%) 2288713 762904

125-150 GeV 2080107 487988 (23.5%) 1592119 (76.5%) 1560080 520026

150-175 GeV 1246585 335412 (26.9%) 911173 (73.1%) 934938 311646

175-200 GeV 681821 217856 (32.0%) 463965 (68.0%) 511365 170455

200-250 GeV 536163 211876 (39.5%) 324287 (60.5%) 402122 134040

Jet labelling in MC

A parton flavour definition of the jets is needed to train the machine learning mod-
els. Monte Carlo generators give access to the additional information other than final
state particles. In our analysis a particular jet is matched to the highest energy parton
present within the radius ∆R used by the jet finding algorithm. This way, only a small
fraction of jets remains unlabeled since jets with more than one high-energy partons in
the shower are rare. Jets initiated by the heavier c-quarks and b-quarks are dismissed
from the analysis. Bottom quark originated jets are defined by the requirement that
at least one b-quark with pT > 5 GeV is present in the parton shower. If there are no
b-quarks and there is at least one c- quark with pT > 5 GeV, these jets are labelled as
charm jets.

4.1.2 Data preprocessing

There is a variety of ways and representations of data which can be used as an input
to a machine learning model, namely a neural network. In the case of jets, there is a
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number of possibilities one can consider. For example, global jet observables can be
used. As an upside, this approach implies a low dimensionality of a model and the
used observables can be designed specifically by using existing knowledge to extract
the most important features. However, one is risking to omit information in the data
which can be very important for the discriminating power. Examples of such observ-
ables are total jet momentum, jet mass, jet width, generalized angularities and many
more. Another approach is to keep most of the features on the particle level. The
downside of this approach is high dimensionality, but the information loss remains
low. Also, one needs to be careful and recognize underlying symmetries in data. For
example, if raw data (50 × 4 arrays of particles) is used as an input to a model, there
exists a permutation symmetry since the ordering of the constituents physically does
not change a jet. This can be partially addressed by employing some rule on the or-
dering. For example, arrays can be sorted according to the energy or momentum of
a constituent. Another possibility is to use jet images, which resolves the problem of
the ordering symmetry but introduces a spatial translational and rotational symmetry.
Also, physical symmetries can be considered, such as Lorentz symmetry.

In this analysis three distinct representations are used. A list of particles’ kinematic
variables, a vector of generalized angularities and jet images. These representations
are derived from the array of four-vectors with some kinematic transformations. The
considered representations are chosen due to their generality and performance.

List of kinematic variables

As mentioned, data is stored as collections of jet constituent particle four-vectors (E, px, py, pz).
Since a neural network model implies inputs with a constant size, a tensor of size 50× 4
is constructed. The first axis runs over the particles in a jet. The second axis runs over
the components of the four-vector. The size 50 is chosen as it is the maximum jet mul-
tiplicity in the datasets. Most of the jets have a lower jet multiplicity, so the remaining
part of the tensor is filled with zeros. This representation is used by the model pPFN
described below. We also use four different kinematic variables to describe a particle,
(z, ∆y, ∆ϕ, m), defined by:

z =
pT

∑i∈jet pT,i
, (4.1)

∆y = y − yjet =
1
2

ln
E + pz

E − pz
− 1

2
ln

Ejet + pz,jet

Ejet − pz,jet
, (4.2)
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∆ϕ = ϕ − ϕjet = arccos
px px,jet + py py,jet

pT pT,jet
, (4.3)

m =
√

E2 − p2
x − p2

y − p2
z . (4.4)

These variables are calculated from four-vectors for each particle. They represent the
fraction of total transverse momentum, relative rapidity, relative azimuth and mass of
the particle. Total four-vectors of a jet are calculated by adding together four-vectors
of its constituents. Identically as the described above, a tensor with size 50 × 4 is con-
structed which contains variables (z, ∆y, ∆ϕ, m) for each particle.

Generalized angularities

Generalized angularities are calculated according to equations 1.8. They are easily
retrieved using the already calculated (z, ∆y, ∆ϕ, m) representation of data. The an-
gularities λκ

β, where κ = 0, 1, 2 and β = 0, 1, 2 are considered in the analysis. These
combinations of indices give us a total of 9 angularities. This way, a jet is represented
by a vector with the size of 9, filled with real values. Since we are dealing with the pow-
ers of variables that range from 0 to 1, the generalized angularities of higher orders are
significantly smaller in value than the generalized angularities of lower orders. In or-
der to prepare the data, a standard scaling is used. This means each variable is scaled
so that its mean is zero and its standard deviation is one across the dataset.

Jet images

The usage of the jet images as a representation of the data is motivated by the per-
formance of the CNNs in tasks of computer vision. The basic idea is to put each
constituent particle on the right spot in the (∆y, ∆ϕ) grid. Both of the variables are
constrained in interval [-0.4, 0.4], since the parameter R of the anti-kT algorithm is set
to 0.4. These intervals are divided into 32 bins. This way, a 2D grid is constructed
with 32 × 32 = 1024 bins. The central bin of the image represents the jet axis and
the particles are usually found in the vicinity of that point. This way, a translational
symmetry of the image is eliminated. If a particle has an η and a ϕ which belong to
a particular bin, it is filled with the particle energy E in units of GeV. If a bin contains
multiple particles, their energy is summed together. Jet images can also be constructed
by other variables such as the total momentum of a particle, p, or a fraction of total
transverse momentum, z. These different jet images can be stacked together so that

59



Chapter 4. Methodology

(A) (B)

FIGURE 4.1: Jet image examples in (z) representation.

the different channels represent variables E, p and z. In this analysis we use stacked
(E, p) representations and standalone z representations. Constructed this way, jets are
represented by tensors with sizes of (32 × 32 × 2) and (32 × 32), respectively. The one
arising problem of a such representation is sparsity. In our dataset the jet multiplicity
does not exceed 50 which means that only a maximum of 50 bins out of 1024 will be
populated. The rest of them will be zero. In order to overcome this, a Gaussian filter is
used. The parameter σ (width) of the filter is set to be 3% of the height and width of the
image. This parameter is adjustable and can be gradually decreased during the train-
ing process. Examples of jet images are shown in Figure 4.1. The model denoted by
CNN uses (E, p) jet images and the model denoted by zCNN uses (z) jet images. Both
models are discussed in detail in 4.1.4 below. Jet images (E, p) and (z) do not explic-
itly contain information of the particle identities. Additional versions of jet images are
constructed in order to give some information about particle flavours. These images
contain three channels. Fractions z of particles with m < 0.3 only are shown in the first
channel. Particles with mass in the range [0.3, 0.6] are shown in the second channel
and finally, m > 0.6 particles are show in the third channel. This representation is de-
noted as (zπ, zK, zp) since the first channel mostly consists of pions, the second channel
consists mostly of kaons and the third channel consists mostly of protons.
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4.1.3 Data balancing

An imbalance between quark and gluon initiated jets is present in the dataset as shown
in Table 4.1. There are several methods to avoid this issue. For example, data instances
can be weighted according the probability of its category. Another possibility is simply
to cut down number of instances in the larger category so it is equal to the number of
instances in the smaller category. In our case, this procedure would be problematic for
jets in low pT bins since there, the number of gluon labelled jets is much greater. As a
consequence, the trained models will be either too simple or prone to an overfit. In this
analysis the data is balanced by the requirement that the training process runs over
the sample which contains the same number of quark labelled jets and gluon labelled
jets. In each epoch, a subsample of the gluon labelled jets is randomly selected for the
training dataset. The number of these gluon jets is equal to the total number of quark
labelled jets in the corresponding pT bin.

4.1.4 Discrimination models

In this section, different models used for the discrimination of quark and gluon initi-
ated jets are discussed. Models that use jets represented by generalized angularities are
the simple multivariate logistic regression model and the fully connected neural net-
work. Models that use jet images are convolutional neural networks. Finally, kinematic
properties of constituents are used by the ParticleFlow and EnergyFlow networks de-
scribed below.

Fully connected network

A fully connected feed-forward network uses a vector of generalized angularities as an
input. The architecture of the network consists of three hidden layers with 100 neu-
rons each. The last layer has one neuron that is activated by the sigmoid function to
constrain the network output in the interval between zero and one. Other layers are
activated by the ReLU function. Such a network has approximately 20 000 parameters,
depending how many generalized angularities are used as an input. A multivariate
logistic regression is also used in an attempt to discriminate between jet flavours. For
this, a neural network with only one neuron activated by the sigmoid function is used.
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Such a model is clearly less capable than the neural network with multiple hidden lay-
ers, but offers a possibility of interpretation since the number of its parameters is low
and equals the number of used generalized angularities.

Convolutional neural networks

Convolutional neural networks are employed to make use of jet images described in
section 4.1.2. All of the used CNNs consist of 3 consecutive convolutional layers cou-
pled with MaxPooling layers. Convolutional layers use a 3 × 3 kernel and have 32, 64
and 128 filters, in that order. They are regularized by the Dropout technique. Max-
Pooling layers use 2 × 2 pools. The output of the last MaxPooling layer is flattened
and fed into a block of three fully connected layers with 100, 50 and 1 neuron, respec-
tively. These layers use the ReLU activation function, except the last one which uses
the sigmoid activation function. CNNs constructed this way contain approximately 300
000 parameters. There are three used CNN models which differ in type of jet images
they use as an input. pCNN uses jet images with (E, p) channels and zCNN uses jet
images with the z channel. Finally, zCNN-ID uses (zπ, zK, zp) jet images with 3 chan-
nels.

FIGURE 4.2: Architecture of the EnergyFlow and ParticleFlow networks
introduced in [56].
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4.1.5 EnergyFlow and ParticleFlow networks

EnergyFlow and ParticleFlow networks are introduced in [56]. The basic idea behind
these architectures is the fact that any jet observable O can be approximated arbitrarily
well by the following decomposition:

O(p1, ..., pn) = F(
n

∑
i

Φ( p̂i)) , (4.5)

where pi is some particle level information of the i-th jet constituent, such as their
four momentum. Also, one can use some other kinematic variables, such as fraction
of the transverse momentum z, rapidity y and the azimuthal angle ϕ. Φ is particle
level mapping of pi into some observable and F is some continuous function. These
mappings can be represented by networks. Such a model with two neural networks is
called the ParticleFlow network (PFN). Infrared safety of such a decomposition can be
enforced by

O(p1, ..., pn) = F(
n

∑
i

ziΦ( p̂i)) , (4.6)

where p̂i is usually (yi, ϕi). Such a model would be called EnergyFlow network (EFN).
In our analysis we used both models, the PFN and the EFN. Also, since the ALICE
detector has a strong particle identification capability, particle flavour information is
used in the PFN. The architecture of the neural networks Φ and F is based on the
architecture used [56]. A schematic of the architecture is shown in 4.2. The neural
network Φ consists of two layers with 100 hidden units. The size of its output vector
(latent vector) is varied. The neural network F consists of three layers with 100 hidden
units. The last layer of the network F outputs a scalar value with the sigmoid activation
function. All of the other layers are activated by the ReLU activation function. In
this analysis we used EFN as described, PFN with (z, ∆y, ∆ϕ) kinematic properties,
PFN-ID with variables (z, ∆y, ∆ϕ, m), where m is the mass of the given particle and
gives particle identification information. Lastly, pPFN use four-vectors (E, px, py, pz)

as kinematic representations of the particle.

4.1.6 The training process

The optimization of the described neural network is done by minimization of the bi-
nary crossentropy loss. This way, in fact, the log-likelihood is maximized. Samples in
each pT bin are divided into training and test datasets. The size of training dataset is
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set to be 75% of the total dataset. This differs for jets in the first pT bin (0-25 GeV) where
the training sample consists of 90% of the total number of jets. As discussed in section
4.1.3, each epoch is run over the same number of quark and gluon labelled jets. All
of the quark jets and the corresponding number of randomly selected gluon jets from
the training dataset are used in each epoch. A good convergence for each model is
obtained after 20 epochs, with CNNs being the exception, needing 40 epochs to reach
satisfying convergence. Each neural network model is optimized by the ADAM algo-
rithm.

4.1.7 Performance metrics

In this section some of the used performance metrics of the discriminating models are
explained such as ROC and AUC. Also, permutation feature importance is used as a
technique to interpret trained models.

Receiver Operating Characteristic (ROC)

One of the performance metrics used in the analysis of discriminating models is the
ROC (Receiver Operating Characteristic) curve, defined with respect to a given class,
which in our case that would be quark initiated jets. In this case, gluon initiated jets
would be considered as the background. For a given jet j, we aim to find a model that
outputs the probability that this jet belong to a class of quark initiated jets, P(q|j). Ac-
cording to this probability, one can set a decision rule where we consider the jet a quark
jet if a probability is greater than a certain threshold value, P(q|j) > T. Each threshold
value generates a fraction of true positives (quark efficiency) and also a fraction of true
negatives (gluon efficiency). For example, if T = 0, each jet is considered as a quark
jet. In that case quark efficiency is equal to one since each quark jet is tagged correctly,
but gluon efficiency is equal to zero since none of the gluon jets is recognized correctly.
The ROC curve consists of the ensemble of (ϵq, ϵg) pairs generated by each possible
threshold value T. This curve is in most cases a continuous function with start- and
end-points being (0,1) and (1,0). The Area under this curve (AUC) is considered to be
a good performance metric of a classifier, since the greater area under the curve, there
are more points (ϵq, ϵg) with good quark and gluon reconstruction efficiency. The ROC
curve can also be plotted by quark efficiency against gluon rejection (1 - ϵq). The ROC
curve can help visualize the point where a model has very good background rejection
with a small sacrifice in signal efficiency.
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Feature importance

Feature importance measures how important a particular feature is for the predictive
value of a model. It evaluates how the the prediction error increases when a feature is
absent. This can be done by removing a particular feature and retraining the model.
This procedure can be computationally exhausting. Also, the architecture of a model
very often changes if the size ofda the input is decreased. To avoid these issues, we
use permutation feature importance where retraining of the model is not necessary. In
permutation feature importance one shuffles the values of a particular feature along
samples in the, usually, test dataset. If a feature is important, this random reordering
causes less accurate predictions. If the model does not rely on this feature, the predic-
tions will have the same accuracy. Any scoring metric can be used in this procedure.
In our analysis, we define a metric called PFI:

PFI =
L − Li

L
, (4.7)

where L is binary crossentropy loss averaged over the whole test dataset without any re-
ordering of features. Li represents the binary crossentropy loss averaged over the whole
dataset if the values of the i-th feature are shuffled. This metric shows the relative fea-
ture importance. Defined this way, if the PFI equals zero, a feature does not have any
importance to the performance of the model. As the PFI increases, a feature is more
and more important for the performance of the model.

Shapley values

Another way to explain and interpret machine learning models is to calculate the Shap-
ley values for each feature [57], [58]. The Shapley values are a game theory concept,
but can be used in purpose of explaining a machine learning model, so the model rep-
resents a game and a specific feature represents a player of the game. These values
show how much a feature contributes to a prediction in total. The prediction f (x) of
the model, where x is an input feature vector, can be linearly decomposed as follows:

f (x) = ϕ0 +
M

∑
i

ϕi(x) , (4.8)

where ϕi(x) denotes the Shapley value of i-th feature for the input x in the total number
of M features. The value of ϕ0 is the averaged mean of the predictions over the whole
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phase space of the feature vector x. The global averaged importance of a feature can
be obtained by taking the mean of absolute Shapley values over the whole dataset. In
practice, in order to calculate Shapley values, the computational time grows exponen-
tially with the total number of features and only a subset of the test dataset is used,
usually 1 000 – 5 000 data instances. In this research Shapley values are calculated
using the SHAP Python module (SHapley Additive exPlanations).

4.2 The 2NN algorithm

In this section we present a method which iteratively recovers the underlying probabil-
ities of emissions in some hypothetical physical system where the particles only decay
into two daughter particles. The idea is to design a method with a high level of general-
ization, so that in be applicable in a particular real physical system in some degree. Two
basic assumptions used in the method are the conservation of four-momenta and rela-
tivistic invariance. Such a method could possibly give an insight to radiation patterns
in QCD jets. We present the 2NN method introduced in [59] which is a generalization
and a continuation of the method presented in [60]. Also, further generalizations and
improvements of these methods are suggested.

4.2.1 The physical system

In particle physics, jets are detected as collimated streams of particles. The jet pro-
duction mechanism is in essence clear: partons from the initial hard process undergo
the fragmentation and hadronization processes. In this work, we develop a simplified
physical model in which the fragmentation process is modeled as cascaded 1 → 2 in-
dependent decays of partons with a constant number of decays. We represent each
decay of a mother parton of mass M by four real numbers (m1

M , m2
M , θ, ϕ), where m1 and

m2 are the masses of the daughter particles, and θ and ϕ are the polar and azimuthal
angle of the lighter particle, as measured from the rest frame of the mother particle.
For simplicity we make all the decays isotropic, which is not necessarily true in real
processes. Using conservation laws, the energies and the momenta of the daughter
particles for a given mother particle’s mass M can be calculated in the rest frame of the
mother particle in the following way:

E1 =
1

2M
(M2 + m2

1 − m2
2) , E2 =

1
2M

(M2 + m2
2 − m2

1) , (4.9)
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p1 =
√

E2
1 − m2

1 , p2 =
√

E2
2 − m2

2 , (4.10)

p1x = −p2x = p1 sin θ cos ϕ ,

p1y = −p2y = p1 sin θ sin ϕ ,

p1z = −p2z = p1 cos θ . (4.11)

The four-momenta of the daughter particles in the laboratory frame are obtained
by performing a Lorentz transformation from the rest frame of the mother particle.

We note that this setup also covers the case in which a particle does not decay by
setting m1 equal to zero and m2 = M. This produces a daughter particle with zero
energy and a daughter particle with the same four-momentum as the mother parti-
cle. Physically, this corresponds to a non-decayed mother particle. Furthermore, we
observe that for any pair of daughter masses in which m1 + m2 < M, some mass has
converted to energy. The calculations described here are performed for each decay.
This way, in each step we obtain the daughter particles’ four-momenta and use them
as mother particles’ four-momenta in the next step. When this procedure is repeated
N times, after 2N − 1 decays, we obtain a jet with 2N particles in the final state (some
of which may have mass zero). Assuming that the initial particle’s properties are fixed,
this means any single jet is described by 4 × (2N − 1) parameters. We call these pa-
rameters the degrees of freedom of a jet, and can sample them from some probability
distribution.

To fully define our physical system we set a decay probability distribution function
p(m1, m2|M), the details of which are given in the following subsection. The aim of our
proposed algorithm is to recover these underlying probability distributions, assuming
we have no information on them, using only a dataset consisting of jets described with
final particles’ four-momenta, as one would get from a detector.

4.2.2 The particle Generator

To generate the jets, we developed an algorithm where we take a particle of known
mass that undergoes three successive decays. We consider only the possibility of dis-
crete decays, in the sense that the decay product masses and decay probabilities are
well defined. We consider a total of 10 types of particles, labeled A–J, which can only
decay into each other. The masses and the decay probabilities of these particles are
given in Table 4.2. In this scenario, the „decay probabilities” p are given by the ratios
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TABLE 4.2: Allowed particle decays in the discrete model. The designa-
tion p/channel shows the probability that a mother particle will decay into

specific daughters.

Particle A B C D E
Mass 0.1 0.6 1.3 1.9 4.4

p/channel 1 A 0.7 B 1 C 0.4 D 0.6 C+C
0.3 A+A 0.3 A+A 0.4 E

0.3 A+C
Particle F G H I J

Mass 6.1 8.4 14.2 18.1 25
p/channel 0.5 A+A 0.9 B+B 0.6 D+D 1 F+G 0.5 F+I

0.5 B+C 0.1 A+F 0.25 D+E 0.4 G+H
0.15 E+F 0.1 E+E

of decay amplitudes. Thus, the total sum of the probabilities for a given particle to
decay into others has to be one, and the probabilities describe the number of produced
daughters per N decays, scaled by 1/N.

Particles A–E are set to be long lived and can thus be detected in the detector, which
only sees the decay products after several decays. This can be seen in Table 4.2 as a
probability for a particle to decay into itself. In this way, we assure two things: first,
that we have stable particles and second, that each decay in the binary tree is recorded,
even if it is represented by a particle decaying into itself. Particles A and C are com-
pletely stable, as they only have one „decay” channel, in which they decay back into
themselves. On the other hand, particles F–I are hidden resonances: if one of them
appears in the i-th step of the decay chain, it will surely decay into other particles in
the next, (i+1)-th step of the chain.

To create a jet, we start with particle J, which we call the mother particle, and allow
it to decay in one of the decay channels. Each of the daughter particles then decays
according to their decay channels, and this procedure repeats a total of 3 times. In
the end, we obtain a maximum of 8 particles from the set A–E, with known momenta
measured from the rest frame of the mother particle.

4.2.3 Mathematical background of the method

The starting point of the method is the Neymann-Paerson lemma which states that the
likelihood ratio is the most powerful hypothesis test between two random variables at
a given significance level [61]–[63]. In other words, the optimal discriminator of the
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two random variables would be their likelihood ratio. Let us assume there is a dataset
of real numbers x. These values follow some unknown probability density p(x). This
dataset is denoted as the real dataset. If a test dataset is constructed so that it contains
values x according to probability density q(x), the Neymann-Pearson lemma states
that the best discriminator between the two datasets is the following ratio:

Λ(x) =
preal(x)
ptest(x)

. (4.12)

Assuming one is equipped with an optimal classifier and ptest is known, this enables
determination of the probability preal for a given x. In practice, machine learning mod-
els and other techniques used in classification tasks aim to output probability of the
category that the given input x will be part of. In the case of a binary classification
between the real and the test dataset this can be written as conditional probability den-
sity p(real|x). This quantity can be calculated from the likelihood ratio by employing
the Bayes’ theorem

p(real|x) = p(x|real)p(real)
p(x|real)p(real) + p(x|test)p(test)

. (4.13)

If the datasets are of the same size, p(real) and p(test) are both equal to 1/2. Quantities
p(x|real) and p(x|test) are probabilities preal(x) and ptest(x) that the given value x will
appear in the real and the test dataset, respectively. Combining of the expressions 4.12
and 4.13 results in the following expression:

preal(x) =
p(real|x)

1 − p(real|x) ptest(x) . (4.14)

In order to simplify equations, values p(real|x), preal(x) and ptest(x) will be denoted
as CNN(x), p(x) and q(x) in future considerations. In ideal conditions, the unknown
probability density p(x) can be calculated with the help of the known probability den-
sity q(x) and a classifier. In practice, one does not deal with an optimal classifier. In
further text we present a proof that the iterative application of sub-optimal classifiers
indeed converges to the recovery of the real probability density p(x), assuming classi-
fiers are neural networks trained by minimization of a binary crossentropy loss. It can
be assumed that the averaged binary crossentropy loss will be higher than the loss of
the optimal classifier loss and lower than the value of ln 2, being the averaged loss of
the random classifier. These inequalities can be written as follows:
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− 1
n ∑

i∈real
ln CNN(x) < − 1

n ∑
i∈real

ln C′
NN(x) < ln 2 (4.15)

− 1
n ∑

i∈test
ln (1 − CNN(x)) < − 1

n ∑
i∈test

ln (1 − C′
NN(x)) < ln 2 , (4.16)

where CNN denotes an optimal and C′
NN a sub-optimal classifier. Both inequalities can

be expanded and simplified in the following way:

∑
i∈real

ln
CNN(x)

1 − CNN(x))
> ∑

i∈real
ln

C′
NN(x)

1 − C′
NN(x))

> 0 (4.17)

∑
i∈test

ln
1 − CNN(x))

CNN(x)
> ∑

i∈test
ln

1 − C′
NN(x))

C′
NN(x)

> 0 (4.18)

When the sub-optimal classifier is applied in 4.14 it results in some probability density
p′(x) which is not the real probability density p(x). The inequalities written in terms
of these probability densities become:

∑
i∈real

ln p(x) > ∑
i∈real

ln p′(x) > ∑
i∈test

ln q(x) (4.19)

∑
i∈test

p(x) < ∑
i∈test

p′(x) < ∑
i∈test

ln q(x) . (4.20)

The obtained result tells us, although the calculated p′(x) is not the desired probability
p(x), it is on average closer to the desired result than the probability density q(x). As a
consequence, the same procedure can be repeated using the probability density p′(x)
instead of q(x). This process can continue iteratively until the satisfactory convergence
to the real probability density p(x) occurs.

Generalization to Jets

The 2NN algorithm aims to recover underlying probabilities of particle emissions which
occur in a cascading manner. Such a process generates a final state that is detected in an
experiment. Since only the final states are detected in particle accelerators, the densities
have to be retrieved only from the final states. In order to apply the 2NN algorithm,
the data probability of the final state must be modeled somehow. We represent jets
as a binary tree of depth N which consists of 2N − 1 independent decays producing a
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maximum of 2N particles in the final state. This way, a jet is described by a vector x⃗
with size 4 × (2N − 1). Then, the probability distribution function given by:

p (x⃗) =
2N−1

∏
i

p(mi
1, mi

2|M)pθ(θ
i)pϕ(ϕ

i), (4.21)

where i denotes the decay index and (mi
1, mi

2, θi, ϕi) are the components of the vector
x⃗ and pθ(θ

i) and pϕ(ϕi) are the angle probability distributions. We assume that both
angles are uniformly spatially distributed. Therefore, they contribute to the probability
distribution with a constant factor. After plugging in p (x⃗) from Eq.4.21 into Eq.4.14,
the angles can be omitted, since the constant factors cancel each other out:

2N−1

∏
i

p(mi
1, mi

2|M) =
CNN(x⃗)

1 − CNN(x⃗)

2N−1

∏
i

q(mi
1, mi

2|M). (4.22)

2N−1

∑
i

ln p(mi
1, mi

2|M) = ln CNN(x⃗)− ln(1 − CNN(x⃗)) +
2N−1

∑
i

ln q(mi
1, mi

2|M). (4.23)

This linear system of equations has to be solved to obtain the probability p(m1, m2 | M).
This is a very computationally exhausting task due to the size of the dataset. To avoid
this issue, a neural network f is introduced to approximate ln p(m1, m2|M), which
can then be optimized by minimizing the mean squared error between the two sides
of Eq.4.23

4.2.4 The workflow of the 2NN algorithm

The analysis done in the above section is used to design the steps of the 2NN algorithm.
The workflow of the algorithm is constructed as follows: firstly, the parameters of both
neural networks are initialized. Then, a test dataset is generated using the probability
distributions according to the neural network f . In the next step, the classifier network
is trained to distinguish between jets from the test dataset and the jets from the real
dataset. This produces a set of linear equations in the form of Eq.4.23. These are not
solved, but their solutions are approximated by fitting the neural network f , which
in turn produces a new test dataset. This procedure is then repeated iteratively. The
algorithm stops when there are no noticeable changes in the difference in the real and
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the test distributions. The individual steps of the algorithm workflow are described in
the next subsections.

Generating the test dataset

After the parameters of the neural network f are initialized, a test dataset of jets is
generated with known decay probabilities q(x⃗). The input of the neural network f
is a vector consisting of 3 real numbers: a = m1/M, b = m2/M and M. We denote
the output of the neural network with f (a, b, M). Due to conservation laws, the sum
a + b needs to be strictly less or equal to 1. We can assume a ≤ b without any loss of
generality. In order to manipulate with probabilities a partition function, defined by

Z(M) =
∫

Ω
e f (a,b,M) dadb (4.24)

needs to be calculated first. Here, Ω denotes the entire probability space and is shown
as the gray area in the left panel of Fig. 4.3. To calculate the integral in the above
expression, the probability space is discretized into 650 equal areas shown in the right
panel of Fig.4.3. These areas are obtained by discretizing the parameters a and b into
equidistant segments of length 0.02. After the discretization, the partition function
Z(M) then becomes equal to

Z(M) ≈ ∑
j

∑
k

e f (aj,bk,M) . (4.25)

To generate the jets which form the test dataset, we must generate each decay in the
cascading evolution using the neural network f . Each of the decays is generated by
picking a particular pair of parameters (a, b) from the 650 possible pairs which form
the probability space for a given mass M. The decay probability is then given by:

q(m1, m2 | M) =
e f (a,b,M)

Z(M)
. (4.26)

This probability is used to generate a single decay of a given mother particle of mass
M. Each decay is generated by randomly sampling a pair of parameters (a, b) accord-
ing to the calculated probability (Eq. 4.26) from 650 possible pairs which form the
probability space. The kinematical parameters of the decay are calculated according to
Eqs. 4.9–4.11 and setting m1 = aM and m2 = bM, to obtain the four momenta of the
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a

b

a =
b

a+
b
=

1

Ω

a

b

a =
b

a+
b
=

1

FIGURE 4.3: (a) The left panel shows the entire allowed probability space
of the parameters a and b, designated by Ω. Due to conservation of mass-
energy, a + b ≤ 1 needs to hold true. To describe our system, we selected
the case where a ≤ b, which we can do without loss of any generality.
(b) The right panel shows the discretized space Ω, as used to evaluate the

partition function.

daughter particles. To produce a full event, i.e. a jet, this procedure is done iteratively
N times. The four-momentum of the initial parton in it’s rest frame is sampled from
the distribution of the total jet mass in the „real” dataset which is, in turn, obtained
from the total jet mass histogram. It must be noted that the jets in the „real” dataset
have to be preprocessed by applying suitable Lorentz transformations, so that the total
momentum of each jet in it’s rest frame equals zero. In the presented physical system
the mass of the initial parton takes only on one possible value, equal to M = 25 (in
dimensionless units).

After applying this procedure a test dataset is obtained in which each jet is repre-
sented as a list of 2N particles and their four-momenta. For each decay, we also store
the pairs (ai, bi) as well the corresponding decay probabilities. For each jet in the test
dataset we store 2N − 1 triplets (a, b, M) and their corresponding probabilities calcu-
lated by Eq. 4.26 for each decay in the jet. Since all the decays are independent, the total
probability of a jet appearing in the test dataset is a direct product of the probabilities
for each particular decay. The value of N is a parameter of the algorithm which needs
to be guessed, since we can not foresee how many consecutive decays are needed to
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produce a specific real dataset. Since our kinematic setup allows non-decays, the value
of N has to be larger or equal to the degree of the longest chain of consecutive decays
in a physical system.

Classifier optimization

The classifier used in this work is a convolutional neural network. The input to these
types of network are typically sets of images. For this purpose, all the jets are prepro-
cessed by transforming the list of particles’ four-momenta into jet images. This way,
32×32 images are produces for a single jet. In the images, the axes correspond to the
decay angles θ and ϕ, while the pixel values are either the energy or the momentum
of the particle found in that particular pixel. If a pixel contains two or more particles,
their energy and momenta are summed together and stored as pixel values. The trans-
formation of jet representations is done on both the real and the test datasets. We label
the „real” jet images with the digit 1 and the „test” jet images with the digit 0. The
classifier is then optimized by minimizing the binary crossentropy loss between the
real and the test datasets. The optimization is performed by the ADAM algorithm.

Optimization of the neural network f

After the classifier is optimized, a new jet dataset is generated by using the neural
network f as described in 4.2.4. Just as earlier, the generated jets are first transformed
into jet images and then fed to the classifier. Since we have access to each of the decay
probabilities for each jet, the right side of Eq.4.23 can be easily calculated for all the
jet vectors x⃗ in the dataset. This way we can obtain the desired log value of the total
probability for each jet p(x⃗):

ln p(x⃗) = ln CNN(x⃗)− ln(1 − CNN(x⃗)) +
2N−1

∑
i

ln q(mi
1, mi

2|M). (4.27)

The parameters of the neural network f are then updated by minimizing the expres-
sion given by:

L =
1
n

n

∑
i

[
2N−1

∑
j

f (aj
i , bj

i , Mj)− ln pi(x⃗)

]2

, (4.28)

where i denotes the jet index and j denotes the decay index in a particular jet. In this
purpose we introduce a model which takes a sequence of 2N − 1 triplets (aj, bj, Mj) as
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an input, and simply gives the sum of neural network f outputs for each of the triplets.
We store all the triplets when generating a dataset. After this step, the weights of the
neural network are updated in such a way that the network output values f (a, b, M)

are on average closer to the real log value of p(m1, m2 | M). The updated network f is
then used to generate the test dataset used as input for the next iteration.

4.2.5 Evaluation of the 2NN algorithm

Upon completion of each iteration of the algorithm, the underlying probability den-
sities can be obtained from the output values of the neural network f according to
Eq.4.26. In the Results section, the 2NN algorithm is evaluated in terms of the Kullback-
Leibler divergence (KL) in the following way:

KL(M) = ∑
j,k

preal(m
j
1, mk

2 | M)
[
ln preal(m

j
1, mk

2 | M)− f (aj, bk, M) + ln Z(M)
]

(4.29)

where the sum is performed over the whole probability space. The KL-divergence is a
non-negative measure of the difference between two probability densities defined on
the same probability space. If the probability densities are identical, the KL divergence
is zero.

4.3 Hardware and software

The code used for calculations in this research is written in the Python programming
language using Tensorflow 2 and Numpy modules. An NVIDIA Quadro p6000 GPU
Unit obtained from the NVIDIA Grant for academic research was used to increase the
speed of the performed calculations.
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Results

The results presented in this chapter contain evaluations of various neural network
models used for the discrimination of the quark and gluon initiated jets. Each model
is separately trained on jets from the different pT bins. Separability of quark and gluon
samples for different bins is analyzed. Interpretability and possible applications of
the trained models are discussed. Furthermore, the 2NN algorithm is applied on the
data simulated by the particle generator described in 4.2.2. Performance evaluation of
the algorithm is analyzed and presented. The obtained probability distributions are
compared to the expected values. Also, the convergence of the algorithm is analyzed
and discussed.

5.1 The Quark-gluon model performance

The performance of our models is evaluated by means of ROC curves and, more im-
portantly, AUC metrics evaluated over the test dataset. The discriminating power of
the models is compared to known discriminating variables such as jet multiplicity and
jet mass. The model evaluations are divided into three parts, ANG model evaluation,
ParticleFLow models evaluation (EFN, PFN, PFN-ID, pPFN) and convolutional mod-
els evaluation (CNN, zCNN, zCNN-ID).

5.1.1 The ANG model

In this section we evaluate the ANG model and the logistic regression using general-
ized angularities. Fig. 5.1 shows the ROC curves for the ANG model evaluated for
different pT bins. It can be qualitatively seen that the model performance increases
with increasing pT. For jets in the lowest pT bin, the model shows only a small im-
provement relative to a random classifier. The ANG model trained on jets that belong
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FIGURE 5.1: The ANG model ROC curves for the different pT bins.

to the highest pT bin shows much better discriminating power. To quantify the per-
formance, the area under the ROC curve is calculated (AUC). Fig. 5.2 shows the pT

dependence of the AUC metric for the ANG model and the logistic regression of gen-
eralized angularities in comparison to AUC metrics of jet multiplicity and jet mass.
The logistic regression shows an improvement relative to jet multiplicity and jet mass.
This improvement is expected since jet multiplicity is explicitly located in the vector of
the generalized angularities and the jet mass closely relates to the variable λ2

1.
The ANG model shows even greater improvement as a neural network with a cou-

ple of hidden layers which can capture non-linear correlations between different gen-
eralized angularities. Also, one can clearly see that the AUC value increases mono-
tonically with pT. Using logistic regression, weights assigned to each generalized an-
gularity can be extracted. These weights roughly give an information of how much a
particular angularity contributes to the prediction. These weights can be seen in Fig
5.3 for the lowest and the highest pT bin. In the lowest bin (0-25 GeV) the generalized
angularity (κ, β) = (1, 1) contributes the most. This variable is known as jet width or
jet girth. In the highest pT bin the jet multiplicity is the most important along with
significant contributions from jet width and generalized angularity (κ, β) = (2, 0). The
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ANG model is a neural network with approximately 20 000 parameters and it acts like
a black box. One cannot extract meaningful information from its weights. In order to
do analysis of how a specific variable affects its predictions we use PFI metrics defined
in 4.7. In Fig. 5.4 a PFI metric can be seen for jets in the lowest and highest pT bins. In
the lowest pT bin, similar feature importance is observed as in the logistic regression
model. However, in the highest pT bin some differences occur. The most contributing
variable is still jet width, but one also can see that a lot of other variables are important
as well. The ANG model captures these and performs significantly better than simple
logistic regression on jets with high pT. At lower jet pT values it performs similarly
since there is additional information available, i.e. quark initiated and gluon initiated
jets are very similar in when represented with generalized angularities.

In addition to the PFI metric, the Shapley values of the features were calculated.
The mean absolutes of the Shapley values are qualitatively in agreement with the cal-
culated PFI metric. The jet width is found to be the most important feature overall.
Since a particular prediction of the ANG model can be decomposed as the sum of in-
dividual Shapley values according to 4.8, we are able to plot the Shapley values of the

FIGURE 5.2: pT dependence of AUC metrics for various convolutional
neural network models and the ANG model.
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(A) pT ∈ [0 − 25 GeV] (B) pT ∈ [200 − 250 GeV]

FIGURE 5.3: Logistic regression weights assigned to generalized angular-
ities (κ, β) for jets in the lowest and the highest pT bins.

(A) pT ∈ [0 − 25 GeV] (B) pT ∈ [200 − 250 GeV]

FIGURE 5.4: PFI values of generalized angularities (κ, β) used in the ANG
model for jets in the lowest and the highest pT bins.

specific feature against the feature value. In Fig. 5.5 we can see such scatter plots for
jet multiplicity and jet width variables according to ANG models in the lowest and the
highest pT bins. The Shapley values are evaluated on 1 000 data instances. Clearly,
we can see a higher contribution from the jet width variable than the jet multiplicity
variable, whose contribution in the lowest pT bin is almost negligible. The jet width
shows a significant contribution in the lowest pT bin. A continuous trend is found for
both variables, such that their contributions to the prediction become more and more
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negative as their values increase. This means that higher values of these variables im-
ply that a jet is more probable to be a gluon jet. Alternatively, the jets are more likely
to be quark jets if the jet width and the jet multiplicity are low in value. We can safely
conclude that the jet width variable is the most important for the discriminating power
of the ANG model.

(A) Jet multiplicity (B) Jet width

FIGURE 5.5: Shapley values for jet multiplicity and jet width.

5.1.2 Convolutional models

In this section various convolutional neural networks, namely the CNN, zCNN and
zCNN-ID models, are evaluated. Fig. 5.6 shows the pT dependence of the AUC met-
ric for the mentioned models in comparison with the ANG model. The CNN model
which uses (E, p) channels of jet images has the worst performance of the three. The
other two models have a similar performance but PFN-ID exhibits slightly better per-
formance across the entire range of jet pT-s. These results give us two conclusions.
The standalone fraction of jet total transverse momentum z proves to be a very suit-
able variable. An additional conclusion is that information of the particle identity is
important and can further improve the performance of a model. In comparison with
the ANG model, the CNN model exhibits similar performance. zCNN and zCNN-ID
perform better than the ANG across the entire pT range with greater differences being
bigger at high pT.

Similarly to the ANG model, we performed a feature importance analysis for jet
images. Different pixels in the (∆ϕ, ∆y) grid are considered to be the features of the
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jet images. This way, a PFI value of a specific pixel is obtained. In Fig. 5.7 PFI values
of different pixels are shown for jets in the lowest and the highest pT bins. One must
be careful when drawing strong conclusions from the PFI in high-dimensional data,
like jet images, since there can be a lot of correlated pixels and omitting one important
pixel may not alter the PFI score. However, one can gain some insight on what is
happening. In this case, one can observe that the model is much more sensitive to the
pixels in the close proximity to the center, i.e. to the jet axis. For jets with the lowest
pT, the sensitive area is much larger than the sensitive area around the jet axis of the
model trained on high pT jets. This is in an agreement with the observed jet width
importance in the ANG model where jet width is more important relative to other
generalized angularities at low pT. At higher pT, jets seem to be more collimated and
jet width is not as important relative to other observables. In that case, the model needs
to find additional information to successfully distinguish between the two categories.

As is the case with the ANG model, we calculated the Shapley values for the pixels

FIGURE 5.6: The pT dependence of AUC metrics for various convolutional
neural network models.
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(A) pT ∈ [0 − 25 GeV] (B) pT ∈ [200 − 250 GeV]

FIGURE 5.7: PFI values of different pixels in jet images used by the zCNN
model for jets in the lowest and the highest pT bins.

in the jet image. The results for all the pixels are presented together in 5.8. In the high-
est pT bin there are two distinct groups of points. The lower group corresponds to the
most central group of pixels, a 2× 2 square in the center of the image. This result shows
that if there is a particle with z > 0.6, a jet is more likely to be a quark jet. For lower
values of z we can see a small negative contribution and the model is trying to find
additional information in the wider areas. The higher of the two groups corresponds
to the all remaining pixels. The Shapley values of all the pixels, according to zCNN
trained on the jets from the lowest pT bin, follow a similar distribution. This could be
explained by the fact that jets which do not contain a particle with a high momentum
fraction are more similar to low-energy jets. These results are also in agreement with
the conclusion that jet width is an important discriminative variable.

5.1.3 ParticleFlow models

In this section EFN, PFN, PFN-ID and pPFN models are evaluated. The pT dependence
of the AUC metric for these models is shown in Fig. 5.9. EFN has proven to be worst
of the four models. From this, one can conclude that some information whether a jet
is quark-initiated or gluon-initiated is contained in non-infrared safe variables. So, if
one wants to design a good discriminative model one must include non-infrared safe
variables in jet representations. pPFN performs slightly better than EFN, but is signif-
icantly worse than PFN and PFN-ID. This shows us that (z, ∆y, ∆ϕ, (m)) is a superior
representation of the particle’s kinematic properties than its four-vector (E, px, py, pz),
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FIGURE 5.8: Shapley values for the pixels in z-jet images in dependence
on the z value.

which can also be seen in the previous section with convolutional models. Finally, best
discriminative power is achieved by the PFN-ID model. This confirms that the particle
identity is very important in the predictive power. Furthermore, PFN-ID shows the
best performance among all trained and used models consistently across the entirety
of the pT range. Fig. 5.10 shows the pT dependence of the AUC metric of the PFN-ID
in comparison with the zCNN-ID and the ANG models. The Shapley values for the
features used by the PFN-ID are also calculated.

The scatter plots of Shapley values versus feature values for variables z, ∆y, ∆ϕ and
m are presented in Figures 5.11 and 5.12. These values are calculated and presented
together for all the particles in the jet. We were able to do this since the PFN-ID model
is invariant with respect to ordering and it treats each particle independently. We can
observe more positive contributions for particles with higher z and more negative con-
tributions for particles with lower z. This agrees with the theoretical expectation, which
states that gluon jets contain softer particles relative to quark jets. The importance of z
increases almost linearly with its value for both pT bins. This similarity can indicate a
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FIGURE 5.9: The pT dependence of AUC metrics for ParticleFlow neural
network models.

scaling symmetry of the QCD. The mean absolute values of the Shapley values for the
masses of particles are higher for protons and heavier charged particles. This effect is
more predominant in the lowest pT bin where the presence of a heavier hadron almost
certainly means that a jet is a quark jet. However, in the highest pT bin, the particle
mass does not have such a strong contribution as in the lowest pT bin, but it is still
impactful according to the mean absolute of the Shapley values. Finally, the Shapley
values for ∆y and ∆ϕ confirm once again that jet width is crucial in the discrimination
of quark and gluon jets, even for jets with low pT. Fig. 5.12 clearly indicates that the
model sees more collimated jets as quark jets and wider jets as gluon jets. It is interest-
ing to observe that the contributions of these variables to the final prediction are more
clear for jets in the lowest pT bin. Still, it has to be noted that as with the PFI metric,
this analysis is blind to the importance of a particular combination of variables on the
model and only describes a particular feature unilaterally.
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FIGURE 5.10: The comparison of AUC values for PFN-ID, zCNN-ID and
ANG models.

(A) z (B) m

FIGURE 5.11: Shapley values for z and m variables against their values.
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(A) ∆y (B) ∆ϕ

FIGURE 5.12: Shapley values for ∆y and ∆ϕ variables against their values.

5.1.4 Model performance summary

A full summary of the AUC values obtained by each model for a particular pT bin is
shown in Table 5.1. Uncertainties of the AUC values are approximately in the range
0.001-0.002. The uncertainties are estimated from several training sessions of a partic-
ular model. The first conclusion that can be drawn is the universality of the model
performance, meaning that the best model will perform the best across the entire pT

range. In our case that would be PFN-ID. It must be noted that PFN-ID is a family
of models with the same architecture but different weights since they are separately
trained over the samples from different pT bins. Therefore, one should choose a dis-
tinct PFN-ID model for real data application.

5.2 Quark-gluon separation

The general purpose of a tagger is to remove as much background as possible while
keeping a sufficient number of signal events. In our case, signal events are quark-
initiated jets and background events are gluon initiated jets. Such a tagger would be
useful in analysis where pure or almost pure samples of quark jets are needed. In this
section outputs of our models are analyzed on the test dataset and the possible purity
of the samples is discussed. We used the best of our models, the PFN-ID. Figures 5.13
and 5.14 show histograms of the PFN-ID output values evaluated on the test dataset.
This is done for each pT bin separately. This way, one can visualize how well the
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model separates quark and gluon jet samples. In many cases one wants to maximize
the purity of the signal events. In this case we want to find the decision threshold, i.e.,
when the purity of quark jets sample is maximized for a sufficient quark efficiency. The
purity can be defined as the ratio of true positives in total number of positives:

P =
TP

TP + FP
. (5.1)

This way, after the application of the PFN-ID model and usage of a certain decision
threshold t, the purity of the quark sample can be obtained. The threshold t can be
chosen according to an analysis one wants to do. Some analyses want to keep a large
number of quark jets regardless of the purity and some want pure quark jet samples.

(A) pT ∈ [0-25 GeV] (B) pT ∈ [25-75 GeV]

(C) pT ∈ [50-75 GeV] (D) pT ∈ [75-100 GeV]

FIGURE 5.13: Histograms of the PFN-ID predictions for different pT bins
(0-100 GeV).
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(A) pT ∈ [100-125 GeV] (B) pT ∈ [125-150 GeV]

(C) pT ∈ [150-175 GeV] (D) pT ∈ [175-200 GeV]

(E) pT ∈ [200-250 GeV]

FIGURE 5.14: Histograms of PFN-ID predictions for different pT bins (200-
250 GeV).
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The purities of the quark jet samples at the quark jet efficiency of 20% for different pT

bins are shown in Fig 5.15. The uncertainties are estimated by the propagation of the
square root error through 5.1. We can notice increasing purities with increasing pT, as
expected.

At quark efficiency of 20% we see more than 50% pure quark samples for every pT

bin, except for the two lowest ones. An application of the PFN-ID to jets from the high-
est pT bin can produce very pure quark jet samples with the purity of approximately
90%.

FIGURE 5.15: The pT dependence of the produced quark jet purity by the
PFN-ID model metrics at a quark efficiency of 20%.
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5.3 Performance of the 2NN algorithm

In this section we present our findings after applying the 2NN algorithm on 500 000
jets created using the particle generator described in 4.2.2. During each iteration, the
classifier is optimized using 50 000 randomly picked jets from the „real” dataset, and
50 000 jets generated using the neural network f . To optimize the neural network f , we
use 50 000 jets as well. The algorithm performed 800 iterations in total. In each step, a
single epoch is used when training the classifier and the neural network f in order to
prevent overfitting on small subsamples, which would slow down the algorithm. After
the final iteration, we obtain the calculated probability densities, which can be then
used to generate samples of jets. First, we show the energy spectrum of the particles
in the final state in jets generated by the calculated probabilities in Fig. 5.16. This
spectrum is directly compared to the energy spectrum of the particles taken from jets
belonging to the „real” dataset and shown on Figure 5.16.

The plotted spectra are obtained using 10 000 randomly selected jets from each
dataset. The error bars in the histogram are smaller than the marker size and are hence
not visible. A resemblance between the two spectra is notable, especially at higher
energies. This points to the fact that the calculated probabilities are approximately
correct, so we can use them to generate samples of jets that resemble „real” jets. To
further examine the calculated probability densities we need to reconstruct the hid-
den resonances which are not found in the final state. For this purpose, the calculated
probability densities for mother particle masses of M = 25.0, M = 18.1, M = 14.2
and M = 1.9 are analyzed and compared to the real probability densities in the follow-
ing subsections. These masses are chosen since they match the masses of the hidden
resonances, as was introduced earlier in table 4.2.

5.3.1 Mother particle with mass M = 25.0

The calculated 2D-probability density p(m1, m2 | M) is shown in Figure 5.17, compared
to the real probability density. A simple look reveals that 3 possible decays of particle
of mass M = 25.0 are recognized by the algorithm. After dividing the probability space
as in panel (c) in Figure 5.17 with lines m2 > 16.0 and m2 < 10.0, we calculate the mean
and the variance of the data on each of the subspaces. As a result, we obtain (m1, m2) =

(18.1 ± 0.5, 6.1 ± 0.5) for m2 > 16.0, (m1, m2) = (14.0 ± 0.7, 8.4 ± 0.7) for 16.0 ≤ m2 >

10.0 and (m1, m2) = (4.8 ± 0.2, 4.6 ± 0.2) for m2 ≤ 10.0. These values agree with the
masses of the resonances expected as the products of decays of the particle with mass
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FIGURE 5.16: The energy spectrum of the particles in the final state in jets
generated by the calculated probabilities, compared to the energy spec-

trum of particles taken from jets belonging to the „real” dataset.

M = 25.0. The calculated small variances indicate that the algorithm is very precise.
The total decay probabilities for each of the subspaces are equal to p1 = 0.48, p2 = 0.47,
p3 = 0.05, which approximately agree with the probabilities of decay channels of the
particle with mass M = 25.0, as defined in table 4.2.

These results show that we can safely assume that the 2NN algorithm successfully
recognizes the decay modes of the particle that initiates a jet. In this specific case, all
three possible decays were clearly found. To quantify the difference between the cal-
culated probability density and the real probability density, we use the KL-divergence.

Figure 5.18 shows the dependence of the KL-divergence on the iteration index of the
2NN algorithm. At first, we observe a steep decrease in the value of the divergence.
Large variations in the divergence value are observed later. This is an indicator that
the approximate probability density is found relatively quickly - after a few hundred

92



5.3. Performance of the 2NN algorithm

(A) (B) (C)

FIGURE 5.17: The calculated probability density for a decaying particle
of mass M = 25.0. (a) The left panel shows the density evaluated on the
entire discretized probability space. (b) The probability density of „real”
data. (c) A division of the probability space into three subspaces, in order

to isolate particular decays.

iterations. As the algorithm decreases the width of the peaks found in the probabil-
ity distribution, the KL-divergence becomes very sensitive to small variations in the
location of these peaks and can therefore vary by a large relative amount.

5.3.2 Mother particle with mass M = 18.1

A similar analysis as for the mother particle with mass M = 25.0 is performed for the
particle with mass M = 18.1. The calculated probability density is shown in Figure 5.19
compared to the expected probability density. In this case, only one decay is allowed,
so a division into probability subspaces is not necessary, as was for the case when M
= 25.0. The calculated mean and the variance of the shown probability density are
(m1, m2) = (5.9± 0.4, 8.2± 0.6). In this case, just as in the former, the calculated values
closely agree with the only possible decay, in which the mother particle decays into two
particles of masses 6.1 and 8.4. Also, just as in the previous subsection, the obtained
result is very precise. Therefore, the algorithm can successfully find hidden resonances,
as well as recognize the decay channels, without ever seeing them in the final state in
the „real” dataset.
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FIGURE 5.18: The KL-divergence between the calculated and the real
probability densities, evaluated in the case of particle of mass M = 25.0.
The presented results are averaged over 50-iteration intervals. The error

bars represent the standard deviation calculated on the same intervals.

The calculated KL-divergence in the case of particle with mass M = 18.1 decreases
over time in a very smooth manner, as can be seen in Figure 5.20. We believe this could
be due to the simpler expected probability density, which the algorithm manages to
find very quickly.

5.3.3 Mother particle with mass M = 14.2

Figure 5.21 shows the 2D-probability density for the decaying particle of mass M =

14.2. In this case, we can identify 3 possible decay channels, which are not as clearly
separated as the channels in the previous subsections. Similar to the case of decaying
particle of mass M = 25.0, we divided the probability space into 3 subspaces, each
of which covers one of the possible decays. In this case, the three subspaces cover
areas where m2 ≤ 4.0, 4.0 < m2 ≤ 5.5 and m2 > 5.5. The calculated mean values of
the probability density on each of the subspaces are (m1, m2) = (2.4 ± 0.5, 2.9 ± 0.7),
(m1, m2) = (2.7 ± 0.7, 4.3 ± 0.3) and (m1, m2) = (4.4 ± 0.4, 6.2 ± 0.3), respectively. The
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FIGURE 5.19: The calculated probability density for a decaying particle
of mass M = 18.1. (a) The calculated density evaluated on the entire
discretized probability space. (b) The probability density of „real” data.

allowed decays of a mother particle with mass M = 14.2 in the „real” data are into
channels with masses (1.9, 1.9), (1.9, 4.4) and (4.4, 6.2), which agree with the calculated
results. However, in this case the calculations show higher variance, especially for
decays where one of the products is a particle with mass 1.9. The total probabilities
of decay in each of the subspaces are 0.89, 0.05 and 0.06, respectively. The relative
probabilities of decay channels into particles with masses (4.4, 6.1) and (1.9, 4.4) are
approximately the same as expected. However, the algorithm predicts more decays in
the channel (1.9,1.9) than expected. The KL-divergence shows a steady decrease with
occasional spikes, as shown on Figure 5.22.

5.3.4 Mother particle with mass M = 1.9

The last probability density we analyze is the probability density for the mother par-
ticle with mass M = 1.9. Figure 5.23 shows the calculated probability density. It can
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FIGURE 5.20: The KL-divergence between the calculated and the real
probability densities, evaluated in the case of particle of mass M = 18.1.
The presented results are averaged over 50-iteration intervals. The error

bars represent the standard deviation calculated on the same intervals.

be seen that one of the decay modes present in the „real” data, namely when the par-
ticle decays in the (0.1, 0.1) channel, is not recognized by the algorithm, but the de-
cay mode when the particle decays in the (0.1, 1.3) channel is visible. If we isolate
the given decay as shown in the right panel of Figure 5.23, we get a mean value of
(m1, m2) = (0.14 ± 0.09, 1.27 ± 0.09), which agrees with the expected decay. We also
observe significant decay probabilities along the line m1 + m2 = 1.9. The decays that
correspond to the points on this line in effect create particles with zero momentum in
the rest frame of the mother particle. In the lab frame this corresponds to the daughter
particles flying off in the same direction as the mother particle. Since they reach the de-
tector in the same time, they are registered as one particle of total mass M = 1.9. Thus,
we can conclude that the probabilities on this line have to add up to the total probabil-
ity of the mother particle not decaying. The calculated probabilities in the case of no
decay and in the case when decaying into particles with masses (0.1, 1.3) are 0.71 and
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(A) (B) (C)

FIGURE 5.21: The calculated probability density for a decaying particle
of mass M = 14.2. (a) The left panel shows the density evaluated on the
entire discretized probability space. (b) The probability density of „real”
data. (c) A division of the probability space into three subspaces, in order

to isolate particular decays.

0.29, respectively. We note that relative probabilities are not correct, but 2 of the 3 de-
cay modes are still recognized by the algorithm. The KL-divergence in this case can’t
produce reasonable results, simply because of multiple points in the (m1, m2) phase
space which produce the same decay and is therefore omitted from the analysis. We
summarize the obtained results for different masses in Table 5.2.

5.3.5 The accuracy of the classifier

The accuracy of the classifier is defined as the fraction of correctly „guessed” samples
on a given dataset. The criterion used for guessing is checking whether the output
of the classifier, CNN, is greater than 0.5. The accuracy can indirectly indicate how
distinguishable are two given datasets. In our algorithm, after starting from a test
probability density, we approach the real probability density with increasing iteration
number, so we can expect that the two jet datasets, the „real” and the „test” dataset,
are less and less distinguishable over time. In Figure 5.24 we show the accuracy of the
classifier in dependence on the iteration number.
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FIGURE 5.22: The KL-divergence between the calculated and the real
probability density evaluated for a particle of mass M = 14.2. The re-
sults are averaged over intervals of 50 iterations. The error bars represent

the standard deviations on the same interval.

After an initially high value, the accuracy decreases with growing iteration number,
which demonstrates that the test dataset becomes more and more similar to the real
dataset. Ideally, the datasets are no longer distinguishable by a given classifier if the
evaluated accuracy reaches 0.5. Therefore, we can use the evaluated accuracy of the
classifier as a criterion for stopping the algorithm. Other measures can also be used
as the stopping criterion such as the loss value of the classifier or the area under ROC
curve of the classifier. In this work, the algorithm is stopped after the accuracy reaches
a value of 0.65, because we didn’t see any significant decrease in the accuracy once
it reached this value. An accuracy value of 0.65 clearly shows that the classifier is
capable of further discriminating between the two datasets. This is explained by the
fact that the neural network f and its hyperparameters are not fully optimized. For the
algorithm to perform better, we need to optimize the neural network f and possibly
improve the architecture for the selected task.
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(A) (B) (C)

FIGURE 5.23: The calculated probability density for a decaying particle
of mass M = 1.9. (a) The left panel shows the density evaluated on the
entire discretized probability space. (b) The probability density of „real”
data. (c) A division of the probability space into three subspaces in order

to isolate particular decays.

FIGURE 5.24: The calculated accuracy of the classifier in dependence on
the iteration number.
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TABLE 5.1: A summary of AUC values for different models for each pT
bin.

pT LR ANG CNN zCNN zCNN-ID

0-25 GeV 0.630 0.632 0.623 0.631 0.635

25-50 GeV 0.727 0.732 0.733 0.734 0.737

50-75 GeV 0.748 0.757 0.757 0.758 0.761

75-100 GeV 0.759 0.772 0.769 0.772 0.774

100-125 GeV 0.771 0.784 0.782 0.786 0.788

125-150 GeV 0.780 0.795 0.791 0.796 0.798

150-175 GeV 0.790 0.805 0.800 0.808 0.810

175-200 GeV 0.797 0.814 808 0.816 0.817

200-250 GeV 0.802 820 0.816 0.825 0.827

pT EFN pPFN PFN PFN-ID

0-25 GeV 0.622 0.631 0.632 0.641

25-50 GeV 0.729 0.730 0.737 0.743

50-75 GeV 0.743 0.751 0.761 0.764

75-100 GeV 0.753 0.759 0.777 0.780

100-125 GeV 0.766 0.770 0.790 0.793

125-150 GeV 0.775 0.777 0.802 0.804

150-175 GeV 0.783 0.788 0.813 0.814

175-200 GeV 0.788 0.794 820 0.823

200-250 GeV 0.798 804 0.829 0.831
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particle mass 25 25 25
decay masses 18.1 6.1 14.2 8.4 4.4 4.4

reconstructed masses 18.1 ± 0.5 6.1 ± 0.5 14.0 ± 0.7 8.4 ± 0.7 4.8 ± 0.2 4.6 ± 0.2
channel probability 0.5 0.4 0.1

reconstructed probability 0.48 0.47 0.05
particle mass 18.1 14.2 14.2
decay masses 8.4 6.1 6.1 4.4 4.4 1.9

reconstructed masses 8.2 ± 0.6 5.9 ± 0.4 6.2 ± 0.3 4.4 ± 0.4 4.3 ± 0.3 2.7 ± 0.7
channel probability 1 0.15 0.25

reconstructed probability 1 0.05 0.06
particle mass 14.2 1.9 1.9
decay masses 1.9 1.9 1.3 0.1 no decay

reconstructed masses 2.4 ± 0.5 2.9 ± 0.7 1.27 ± 0.09 0.14 ± 0.09 no decay
channel probability 0.6 0.3 0.4

reconstructed probability 0.89 0.29 0.71
particle mass 14.2 1.9 18.1
decay masses 1.9 1.9 1.3 0.1 no decay

reconstructed masses 2.4 ± 0.5 2.9 ± 0.7 1.27 ± 0.09 0.14 ± 0.09 no decay
channel probability 0.6 0.3 0.4

reconstructed probability 0.89 0.29 0.71

TABLE 5.2: The characteristics of the reconstructed decay channels for de-
caying particles with masses M = 25, 18.1, 14.2 and 1.9. The decay chan-
nel for the particle with mass 1.9 which was not reconstructed is not given

here.
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Conclusion

This research presents an introduction to machine learning models and techniques
used to discriminate between quark-initiated and gluon-initiated jets for applications
on data gathered by the ALICE experiment at CERN. This is done by using a large
amount of Monte Carlo simulated data to train and validate the proposed models.
A comprehensive analysis of the models and the predictions is performed. The model
that shows the best performance is PFN-ID, a specially designed neural network which
uses particle level kinematics along with the information of particle flavour. PFN-ID
is universally the best model since it is superior to the every other model across the
whole range of observed jet total momenta.

Several conclusions can be drawn from the analysis. The particle-level variables
should first be preprocessed in order to minimize the amount of symmetry in data.
Models that use raw four-momenta showed inferior performance to the models that
use fractions of total transverse momenta, rapidity and azimuthal angle relative to the
jet axis. Another conclusion is that a particle-level flavour is very important in building
discriminators between quark and gluon jets. Each model that uses this information
performs better than its analogue which doesn’t use it. This may be very convenient for
applications on data collected by the ALICE detector since that detector exhibits very
good particle identification capabilities. Models that use global jet variables, such as
generalized angularities, perform slightly worse than models that use particle-level in-
formation (including particle identity). This is to be expected since at the particle-level,
the data contain much more information which the models with sufficient complexity
can exploit. However, such models can be computationally demanding and difficult
to train.

The discriminative power of each of the trained models increases with the total jet
pT, regardless of the architecture and data representation. This can imply that samples
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of quark and gluon jets are mutually more inseparable at low pT. The radiation pat-
terns inside the parton shower may be too similar to retrieve the initial parton flavour
with satisfying accuracy. The origin of jets with high pT ( 200 GeV) can be deduced
very well, so that we are able to achieve high purity samples of quark jets. We note
that the achieved purity continuously increases with increasing jet pT.

Feature importance analysis shows us which variables are significant in a model’s
decision process. The most important global variables are jet width and jet multiplic-
ity, both being special cases from the family of generalized angularities. Jet width is
dominantly important for models trained on jets with low pT. The importance of other
variables increases with increasing jet pT. The feature importance performed on jet im-
ages show an area around the jet axis which is the most sensitive to model decisions.
This effective area decreases with increasing jet pT.

Furthermore, we developed a method for calculating underlying probability distri-
butions in particle decays, using only data that can be collected in a real-world physical
system. First, we generate an artificial physical system based on a part of the QCD frag-
mentation process. Next, we present the core part of the method: the 2NN algorithm,
which we describe in detail. The algorithm performs very well when tested on the de-
veloped physical system. It accurately predicts most of the hidden resonant particles,
as well as their decay channels, which can occur in the evolution of jets. The energy
spectra of the particles in the final state can also be accurately reproduced.

Although tested only on the developed artificial physical system, we believe that
the method is general enough to be applicable to real-world physical systems, such as
collisions of high-energy particles, with a few possible modifications. For example, we
hope that, in the future, this method can prove helpful in measuring the fragmenta-
tion functions of quarks and gluons. Additionally, one could employ such a method
in the search for supersymmetric particles of unknown masses, or in measuring the
branching ratios of known decays.

The 2NN algorithm does not specify the exact architecture of used the neural net-
works, nor the representation of the data used. In fact, the classifier does not need to
be a neural network at all – it can be any machine learning technique which maximizes
likelihood. Although the algorithm has a Generative Adversarial Network (GAN)-
like structure, it converges readily and does not show issues that are usually asso-
ciated with GANs, such as mode collapse or vanishing gradients. The downside of
the presented algorithm are high computational requirements. Continuous probabil-
ity distributions, which we expect to occur in nature, are approximated by discrete
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probability distributions. In quest for higher precision and a better description of re-
ality, one always aims to increase the resolution of discrete steps, but this carries a
high computational cost. We note that in our case, the used neural networks are not
fully optimized, which slows down the convergence of the algorithm. In conclusion,
in order to cut down computational costs, a more thorough analysis of convergence is
needed to achieve better performance.

In future work we hope to make the method even more general and thus even more
applicable to real-world physical systems. Currently, the method approximates a part
of the QCD decay tree, covering 1 → 2 decays. Even though we prove that some of the
decay characteristics can be recovered from the final state without prior knowledge of
the underlying processes, the method still doesn’t lend itself for use on general QCD
data. To remedy that, we want to introduce angle dependent probability distributions,
which can be retrieved from detector data. We would also like to investigate the pos-
sibility of including other decay modes, such as 1 → 3 type decays. Finally, we plan to
include other processes that appear naturally in QCD, such as 2 → 2 and 2 → 3 type
interactions.
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Poglavlje 7

Hrvatski prošireni sažetak

7.1 Uvod

Sudaranje čestica pri visokim energijama daje nam eksperimentalni uvid u fiziku el-
ementarnih čestica. U Europskom centru za nuklearna istraživanja (CERN) nalazi se
najveći postojeći sudarivač koji se naziva Veliki Hadronski Sudarivač (LHC). Trenutna
dostupna energija sudara u sustavu centra mase na LHC-u je čak 13 TeV po nukleonu.
Jedan od najčešćih objekata koji se pojavljuje kao posljedica sudara su tzv. mlazovi.
To su usmjerene skupine čestica, uglavnom hadrona, detektirane u eksperimentima.
Mlazovi su eksperimentalne manifestacije kvarkova i gluona koji su nastali u proces-
ima s visokim prijenosom energije, takozvanim „tvrdim” procesima. Kvarkovi i gluoni
često se zajedničkim imenom nazivaju partoni. Tijekom procesa fragmentacije početni
partoni emitiraju dodatne partone koji kaskadno emitiraju još novih partona. Pojedine
partone nije moguće detektirati izolirane od ostalih partona zbog temeljnih svojstava
kvantne kromodinamike kao što su zatočenje boje i asimptotska sloboda te se proce-
som hadronizacije grupiraju u bojne singlete koji se nazivaju hadroni. Najčešće detek-
tirani hadroni su pioni, kaoni i protoni. Pioni i kaoni spadaju u kategoriju mezona,
bojnih singleta koji se sastoje od dva kvarka. Protoni i neutroni se za razliku od njih
sastoje od tri kvarka te spadaju u kategoriju bariona.

Postoje razni algoritmi za rekonstrukciju mlazova na eksperimentima. Najčešće
korišteni algoritmi su kT, Cambridge/Aachen (C/A) i anti-kT algoritmi. Oni spadaju
u skupinu rekominacijskih sekvencionalnih algoritama u kojima se parovi čestica it-
erativno rekombiniraju zbrajanjem njihovih četveromomenata. Par čestica koji će se
rekombinirati se odabire prema najmanjoj udaljenosti med̄u njima. Navedeni algo-
ritmi se razlikuju samo prema načinu definiranja udaljenosti med̄u česticama. Cam-
bridge/Aachen i kT algoritmi se često koriste pri analizama unutarnje strukture mlaza,
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SLIKA 7.1: Shematski prikaz evolucije mlaza [16].

dok se anti-kT algoritam koristi u slučajevima gdje je bitno točno identificirati mlazove
zbog njegove neosjetljivosti na razne neželjene pozadinske dogad̄aje i efekte koji se
pojavljuju u praksi. Nakon rekonstrukcije mlazova, njihova globalna kinematička svo-
jstva mogu se identificirati s kinematičkim svojstvima partona koji je inicirao taj mlaz.
Dok se kinematičke varijable kao što su energija, rapiditet ili azimutalni kut relativno
lako povežu s istovjetnim kinematičkim varijablama početnog partona, informacija o
njegovoj vrsti nije trivijalno dostupna. Posjedovanje te informacije bi uvelike pomoglo
u raznim analizama u eksperimentalnoj fizici elementarnih čestica. Varijable kao što
su multiplicitet mlaza ili ukupna masa mlaza posjeduju moć razlikovanja kvarkovskih
i gluonskih mlazova do neke mjere. Med̄utim, za bolje raspoznavanje i identifikaciju
okusa početnog partona potrebne su naprednije metode. Zbog velikih količina dostup-
nih podataka i visoke dimenzionalnosti u opisima mlazova, tehnike strojnog učenja su
sve popularnije u rješavanju ovog problema.

Cilj ovoga istraživanja je razviti metodu koristeći tehnike strojnog učenja koja bi
razlikovala kvarkovske i gluonske mlazove u podacima prikupljenima na detektoru
ALICE. Takod̄er, dodatni cilj je razviti metodu koja bi mogla pomoći u odred̄ivanju
fragmentacijskih funkcija za kvarkove i gluone, konkretno metodu koja bi odred̄ivala
vjerojatnosti emitiranja partona tijekom evolucije mlaza.
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U sljedećim poglavljima opisani su ukratko LHC i detektor ALICE. Takod̄er, pred-
stavljen je pregled najčešćih tehnika strojnog učenja. U metodologiji su opisane sve ko-
rištene metode uz opis razvijenih algoritama. Nadalje, prezentirani su dobiveni rezul-
tati, kao i evaluacija razvijenih metoda i algoritama. Konačno, diskusija dobivenih
rezultata nalazi se u zaključku.

7.2 LHC i detektor ALICE

LHC je trenutno najveći svjetski ubrzivač čestica. Sagrad̄en je od strane Europske orga-
nizacije za nuklearna istraživanja (CERN) s namjerom testiranja raznih predvid̄anja u
fizici elementarnih čestica, primarno postojanje Higgsovog bozona. LHC je posljednji
dodatak CERN-ovom ubrzivačkom kompleksu. Sa stabilnim je radom počeo u ožujku
2010. godine. Najvažnije otkriće na LHC-u je potvrda postojanja Higgsovog bozona s
masom od otprilike 125 GeV/c2. LHC se nalazi na francusko-švicarskoj granici blizu
Ženeve. Ima opseg 27 km te se nalazi u prosjeku na dubini od 100 m ispod zemlje.

Prije ulaska na LHC protoni se prvo ubrzavaju kroz Linac4, a nakon toga se poste-
peno ubrzavaju kroz redom Proton Synchrotron Booster (PSB), Proton Synchrotron
(PS) i Super Proton Synchrotron (SPS). Tijekom svakog koraka energija protona se
povećava dok na kraju protoni u LHC-u ne dostignu maksimalnu energiju od 6.5 TeV
po snopu. Veliki dipolni supravodljivi magneti se koriste za održavanje čestica na
njihovoj kružnoj putanji. Kvadrupolni i ostali višepolni magneti se koriste za fokusir-
anje snopova s obzirom da pozitivno nabijeni protoni imaju tendenciju udaljavanja
jedan od drugoga. Ubrzavanje se dogad̄a unutar 16 radiofrekventnih šupljina. Pos-
toje četiri velika ekperimenta na LHC-u, od kojih su najveći ATLAS i CMS. Radi se o
velikim višenamjenskim detektorima koji se bave istraživanjima u fizici elemetarnih
čestica. Primjer takvih istraživanja je potraga za česticama koje bi mogle tvoriti tamnu
materiju. ALICE eksperiment je specijaliziran za fiziku sudara teških iona, uz pose-
ban naglasak na istraživanje kvarkovsko-gluonske plazme, stanja tvari za koje se pret-
postavlja da je vladalo u ranom svemiru. LHCb istražuje male razlike izmed̄u materije
i antimaterije analiziranjem lijepih kvarkova. Takod̄er, na LHC-u se nalaze tri dodatna
manja eksperimenta. TOTEM dijeli iterakcijsku točku s CMS-om i bavi se mjerenjima
ukupnog udarnog presjeka i elastičnim raspršenjima. MoEDAL dijeli interakcijsku
točku s LHCb-om i bavi se potragom za magnetskim monopolima i drugim visoko-
ionizirajućim česticama. Konačno, LHCf dijeli interakcijsku točku s ATLAS-om te se
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SLIKA 7.2: Detektor ALICE.

bavi mjerenjima koje pomažu što boljoj simulaciji kozmičkih zraka u laboratorijskim
uvjetima.

Detektor ALICE je specijaliziran je za analizu sudara teških iona. U takvim su-
darima nastaje kvarkovsko-gluonska plazma (QGP), juha slabo interagirajućih kvarkova
i gluona. Analiza kvarkovsko-gluonske plazme je izrazito važna za razumijevanje
kvantne kromodinamike te uvjeta koji su potencijalno postojali u ranim razdobljima
svemira. Detektor ALICE je opremljen sustavima koji istovremeno mogu pratiti putanje
tisuća čestica nastalih u sudarima teških iona. Takod̄er, ALICE posjeduje veliku moć
identifikacije vrsta čestica s obzirom na druge detektore. Dvadeset manjih podsustava
surad̄uju zajedno kako bi se to omogućilo. Njih okružuje veliki L3 elektromagnet koji
proizvodi polje od 0.5 T s ciljem zakretanja nabijenih čestica, što omogućuje mjerenje
potrebnih kinematičkih svojstava. Najvažnija komponenta detektora ALICE je TPC
(Time Projection Chamber) koji koristi radni obujam od čak 90 m3 ispunjen plinskom
mješavinom kako bi uspješno izmjerio putanje velikog broja čestica. Visoko-energetska
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čestica ionizira plin prolaskom kroz njega. Novonastali slobodni elektroni zbog nar-
inutog električnog polja putuju prema ravnini za očitavanje. Radijalna komponenta
položaja čestice se odredi prema mjestu na kojem elektroni udare o ravninu. Lon-
gitudinalna komponenta se odredi mjerenjem vremena putovanja elektrona pošto je
driftna brzina elektrona u plinskoj mješavini poznata. Informacija o vrsti čestice može
se dobiti mjerenjem specifičnog gubitka energije prolaskom kroz plin koristeći Bethe-
Blochovu formulu.

Od ostalih sustava izdvajamo Inner Tracking System (ITS) koji je takod̄er krucijalan
za praćenje putanja čestica te mjerenje točnog položaja sudara. ITS se sastoji od 3 vrste
silicijskih detektora koji su redom, radijalno prema van, Silicon Pixel Detector (SPD),
Silicon Drift Detector (SDD) te Silicon Strip Detector (SSD).

7.3 Strojno učenje

Strojno učenje je područje istraživanja u računalnoj znanosti koje za cilj ima razviti
metode i modele koji bi mogli riješiti neki zadatak bez da im se eskplicitno kaže što i
kako napraviti. Model bi trebao iz prikupljenih podataka naučiti koja su svojstva po-
dataka najvažnija te iz njih uspjeti predvidjeti buduća ponašanja. Za razliku od čistih
optimizacijskih algoritama, strojno učenje želi razviti tehnike koje mogu uspješno gen-
eralizirati naučena svojstva i značajke na neke nove, dosad nevid̄ene primjere. Tehnike
strojnog učenja mogu biti vrlo uspješne u problemima gdje ljudsko znanje nije potpuno
(znanost), ili je potrebno znanje prisutno, ali teško objašnjivo (prepoznavanje govora
ili računalni vid).

Postoje tri osnovna pristupa u strojnom učenju: nadzirano učenje, nenadzirano
učenje i učenje s potkrepljenjem. Nadzirano učenje pretpostavlja da imamo primjere
za koji su poznati željeni rezultati. Cilj ovog pristupa je naučiti općenito pravilo koje
mapira primjere i željene rezultate te naučeno pravilo primijeniti na nekim novim po-
dacima za koje rezultat nije poznat. Problemi koji se susreću u nadziranom učenju
mogu se ugrubo podijeliti u dvije katogorije, klasifikacijske i regresijske probleme. U
nenadziranom učenju željeni rezultati nisu poznati. Cilj ovakvog učenja je pronaći
skrivene uzorke i korelacije u podacima. Konačno, u učenju s potkrepljenjem, algori-
tam med̄udjeluje s okolišem u kojem želi postići neki definiran cilj. U ovom pristupu
okoliš daje algoritmu potrebnu povratnu informaciju.

Strojno učenje je područje koje se vrlo brzo razvija. Svakim danom se predlaže sve
više novih tehnika i algoritama. Najjednostavniji primjer algoritma u strojnom učenju
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je linearna regresija. Od ostalih najćešće korištenih algoritama izdvajamo logističku
regresiju, Support Vector Machine (SVM), K-Means grupiranje, kNN, stabla odluke i
neuralne mreže.

Neuralne mreže se temelje na med̄usobno povezanim objektima koji se nazivaju
neuroni. Oni ugrubo modeliraju neurone u ljudskom mozgu. Matematički opis neu-
rona možemo vidjeti u sljedećoj jednadžbi:

y = f

(
∑

i
wixi + b

)
. (7.1)

Neuron prima neki ulazni vektor te izračunava težinsku sumu komponenti tog vek-
tora. Vrijednosti težina se prilagod̄avaju tijekom učenja. Izlazna vrijednost neurona
je neka nelinearna aktivacijska funkcija primijenjena na izračunatu sumu. Primjeri
najčešćih aktivacijskih funkcija su ReLU i sigmoid. Ovako opisani neuroni mogu se
med̄usobno spajati na način da izlazna vrijednost jednog neurona bude ulazna vrijed-
nost u drugi neuron. Na taj se način može konstruirati proizvoljno komplicirana mreža
povezanih neurona. Takvi objekti se nazivaju neuralnim mrežama.

Prema načinu med̄usobnog povezivanja neurona razlikujemo razne arhitekture neu-
ralnih mreža. Najopćenitija arhitektura neuralne mreže je takozvana gusto povezana
neuralna mreža. U takvoj mreži su svi neuroni u odred̄enom sloju povezani sa svim os-
talim neuronima. Iako posjeduju kapacitet za rješavanje najkompleksnijih problema,
za korištenje gusto povezane mreže u praksi često nema dovoljno podataka te teško
postiže konvergenciju. U svrhu stabilnijeg i bržeg učenja predložene su razne arhitek-
ture neuralnih mreža. Konvolucijska neuralna mreža se pokazala kao jedna od na-
juspješnijih arhitektura, posebice u području računalnog vida. U konvolucijskim neu-
ralnim mrežama neuroni su ograničeni mali broj lokalnih veza te se uz to težinske
vrijednosti dijele med̄u neuronima. Na taj način se se značajno smanjuje ukupni broj
slobodnih parametara.

Proces učenja neuralne mreže i optimiziranje vrijednosti njezinih parametara se vrši
korištenjem algoritma povratne propagacije u kojem se minimizira vrijednost neke loss
funkcije na dostupnim primjerima. Za regresijske probleme se najčešće koristi srednje
kvadratno odstupanje, dok se za klasifikacijske probleme nejčešće koristi srednja un-
akrsna entropija.

Uz primjene u nadziranom učenju, neuralne mreže se često koriste u nenadzira-
nom učenju. Primjerice, autoencoder je neuralna mreža koja želi aproksimirati funkciju
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identiteta. Cilj takve mreže je naći najvažnije značajke koje su potrebne za rekonstruk-
ciju ulaznih podataka. Takod̄er, neuralne mreže se koriste i u generativnim modelima
kao što su Variational autoencoder (VAE) ili Generative Adversarial Network (GAN) u
kojima se želi iz nekog nasumičnog šuma generirati primjere koji prate gustoću vjero-
jatnosti dostupnih podataka te ih na taj način imitiraju.

7.4 Metodologija

Korištena metodologija se može podijeliti na dva dijela. U prvom dijelu je opisana
metoda razvijenja diskriminante kvarkovskih i gluonskih mlazova. U drugom dijelu
dan je kratak opis 2NN algoritma predstavljenog u [59].

7.4.1 Diskriminacija kvarkovskih i gluonskih mlazova

Za potrebe diskriminacije kvarkovskih i gluonskih mlazova simuliran je veliki broj do-
gad̄aja pomoću Pythia8 Monte Carlo generatora. Za modeliranje efekata ALICE detek-
tora korišten je paket GEANT4. Algoritam anti-kT s parametrom R = 0.4 je iskorišten
u svrhu identificiranja mlazova. Podaci su podijeljeni prema intervalima ukupnog
transverzalnog impulsa mlaza. Tablica 7.1 daje pregled generiranih podataka. U simuli-
ranim dogad̄ajima dostupna je informacija o vrsti početnog partona mlaza. Razvijeni
modeli će se optimizirati pomoću ovih informacija. Nakon učenja i testiranja modeli se
mogu iskoristiti na stvarnim podacima u kojima ta informacija nije dostupna. Podaci
su spremljeni kao lista četveroimpulsa svih čestica koje konstituiraju mlaz.

Reprezentacije podataka

Korištene su tri različite reprezentacije podataka. Lista kinematičkih varijablih poje-
dinih čestica, generalizirane uglatosti (generalized angularities) i slike mlazova. Liste
kinematičkih varijabli su predstavljene tenzorom veličine (50 × 4). Prva os ide po ra-
zličitim česticama unutar mlaza, a druga os po različitim kinematičkim varijablama.
Korištena su dva seta po četiri kinematičke varijable. Prvi set sastoji se od četveroim-
pulsa. Drugi set sastoji se od frakcije ukupnog transverzalnog momenta, translatira-
nog rapiditeta, translatiranog azimutalnog kuta i mase ćestice. Navedene varijable su
dobivene na sljedeći način:
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TABLICA 7.1: Broj mlazova po pT intervalima.

pT N Nq Ng Ntrain Ntest

0-25 GeV 5352459 509416 (9.5 %) 4843043 (90.5%) 4817213 1338114

25-50 GeV 5059608 872273 (17.2%) 4187335 (82.8%) 3794706 1264902

50-75 GeV 4774522 1011871 (21.2%) 3762651 (78.8%) 3580891 1193630

75-100 GeV 3951685 840789 (21.3%) 3110896 (78.7%) 2963763 987921

100-125 GeV 3051618 661499 (21.7%) 2390119 (78.3%) 2288713 762904

125-150 GeV 2080107 487988 (23.5%) 1592119 (76.5%) 1560080 520026

150-175 GeV 1246585 335412 (26.9%) 911173 (73.1%) 934938 311646

175-200 GeV 681821 217856 (32.0%) 463965 (68.0%) 511365 170455

200-250 GeV 536163 211876 (39.5%) 324287 (60.5%) 402122 134040

z =
pT

∑i∈jet pT,i
, (7.2)

∆y = y − yjet =
1
2

ln
E + pz

E − pz
− 1

2
ln

Ejet + pz,jet

Ejet − pz,jet
, (7.3)

∆ϕ = ϕ − ϕjet = arccos
px px,jet + py py,jet

pT pT,jet
, (7.4)

m =
√

E2 − p2
x − p2

y − p2
z . (7.5)

Drugi način reprezentacije podataka su globalne varijable koje opisuju mlazove naz-
vane generalizirane uglatosti te su definiraju se na sljedeći način:

λκ
β = ∑

i∈jet
zκ

i θ
β
i , (7.6)

pri čemu je θ =
√

∆y2 + ∆ϕ2/R te indeks i predstavlja redni broj čestice u mlazu.
U ovom istraživanju se koriste sve varijable s kombinacijom indeksa κ = 0, 1, 2 i
β = 0, 1, 2. Zadnji način na koji su podaci predstavljeni su slike mlazova. Takva
reprezentacija koristi tenzore veličine (32 × 32 × N), gdje prve dvije osi redom pred-
stavljaju diskretizirani (∆ϕ, ∆y) prostor, dok zadnja os predstavlja broj korištenih kanala.
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Za vrijednosti piksela u pojedinim kanalima korištene su energije čestica E, iznos ukupnog
impulsa čestice p, frakcija ukupnog impulsa mlaza z, frakcija frakcija ukupnog impulsa
mlaza ako čestica ima masu manju od 0.3 GeV/c2, zπ, frakcija ukupnog impulsa mlaza
ako čestica ima masu u rasponu od 0.3 GeV/c2 do 0.6 GeV/c2, zκ te frakcija ukupnog
impulsa mlaza ako čestica ima masu veću od 0.6 GeV/c2, zp. Tri različite vrste slika
mlazova su konstruirane. Prva se sastoji od E i p kanala, a druga se sastoji od slika
samo sa z kanalom. Posljednja ima kombinaciju od 3 kanala, (zπ, zκ, zp).

Modeli neuralnih mreža

Za svrhu diskriminacije kvarkovskih i gluonskih mlazova i njihove med̄usobne us-
poredbe korišteno je ukupno 9 razičitih modela. Na generaliziranim uglatostima ko-
rištene su logistička regresija i ANG model. ANG model je gusto povezana neuralna
mreža koja prima vektor veličine 9 i kao izlaznu vrijednost daje realan broj izmed̄u 0 i 1.
ANG model sadrži 3 skrivena sloja sa 100 neurona koji su aktivirani ReLU funkcijom.

Modeli koji koriste liste kinematičkih varijabli su EFN, PFN, PFN-ID te pPFN. Arhitek-
ture ovih modela su preuzete iz [56]. pPFN koristi četveroimpulse kao kinematičke
varijable. EFN i PFN koriste (z, ∆y, ∆ϕ), dok PFN-ID uz navedene varijable koristi i
mase pojedinih čestica.

Slike mlazova se koriste kao ulazni tenzori konvolucijskih neuralnih mreža CNN,
zCNN i zCNN-ID. CNN koristi slike mlazova s (E, p) kanalima. zCNN koristi slike
sa z-kanalom dok zCNN-ID uzima (zπ, zκ, zp) slike mlazova. Arhitektura svake od
navedenih mreža sastoji se od 3 konvolucijska sloja uparena s MaxPooling slojevima.
Broj filtera u konvolucijskim slojevima je redom 32, 54, i 128 te koriste veličinu filtera
3 × 3. Nakon toga slijede tri skrivena gusto povezana sloja aktivirana ReLU funckijom
s veličinom od, redom, 100, 50 i 10 neurona. Zadnji sloj se sastoji od jednog neurona
aktiviranog funkcijom sigmoid.

Modeli su trenirani korištenjem algoritma AdaM. Tijekom treniranja podaci su bal-
ansirani tako da u svakoj epohi postoji jednaki broj mlazova označenih kao kvarkovski
i mlazova označenih kao gluonski. Za usporedbu i evaluaciju modela korištena je
površina ispod ROC krivulje (AUC).

7.4.2 2NN algoritam

2NN algoritam se temelji na Neyman-Pearsonovoj lemi koja konstatira da je opti-
malni diskriminator izmed̄u dviju slučajnih varijabli njihov likelihood omjer. To nam
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omogućuje da, u slučaju da smo opremljeni optimalnim klasifikatorom i uz pretpostavku
da je gustoća vjerojatnosti jedne od te dvije slučajne varijable poznata, izračunamo gus-
toću vjerojatnosti po kojoj se ponaša preostala slučajna varijabla.

Uzmimo npr. da imamo uzorak vektora x koji prate neku nepoznatu višedimenzi-
onalnu gustoću vjerojatnosti preal(x) koju nam je cilj odrediti. Takod̄er, imamo i uzo-
rak vektora x koji prate poznatu gustoću vjerojatnosti ptest(x). Ako je kao klasifika-
tor izmed̄u tih dvaju uzoraka korištena neuralna mreža koja daje izlaznu vrijednost
CNN(x) trenirana tako da se minimizira binary crossentropy loss, tad se gustoća vjerojat-
nosti preal(x) može odrediti na sljedeći način:

preal(x) =
CNN(x)

1 − CNN(x)
ptest(x) . (7.7)

Napomenimo da je gornja jednadžba egzaktna samo u slučaju da je neuralna mreža
optimalan klasifikator. Med̄utim, u praksi to nije slučaj te izračunata gustoća vjerojat-
nosti neće odgovarati željenoj gustoći vjerojatnosti. Iako ta nova gustoća vjerojatnosti
nije željena, ona je u prosjeku bliža preal(x) nego što je to ptest(x) bila. Ova spoznaja
omogućava iterativno korištenje jednadžbe 7.7 tako što se u svakom idućem koraku
ptest(x) zamjenjuje s gustoćom vjerojatnosti dobivenom iz prošle iteracije.

Za korištenje 2NN algoritma mlaz se modelira kao kolekcija uzastopnih neovisnih
1 → 2 raspada. Svaki raspad je ograničen očuvanjima četveroimpulsa. Svaki ras-
pad ima točno 4 stupnja slobode. Za varijable koje opisuju raspad su odabrane mase
produkata raspada i kutovi u sustavu centra mase. Ako pretpostavimo da su kutovi
uniformno raspored̄eni, vjerojatnost pojavljivanja odred̄enog mlaza x je:

p (x) = ∏
i

p(mi
1, mi

2|M)pθ(θ
i)pϕ(ϕ

i), (7.8)

pri čemu je M masa čestice koja se raspada. Mase m1 i m2 označavaju mase novonastalih
produkata. Vjerojatnost p(mi

1, mi
2|M) označava vjerojatnost da će se čestica mase M

raspasti u dvije čestice masa m1 i m2. Algoritam 2NN je konstruiran da iz uzorka kon-
ačnih stanja mlazova rekonstuira tražene vjerojatnosti prema sljedećoj generalizaciji
jednadžbe 7.7:

∑
i

ln p(mi
1, mi

2|M) = ln CNN(x⃗)− ln(1 − CNN(x⃗)) + ∑
i

ln q(mi
1, mi

2|M), (7.9)
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pri čemu je q(mi
1, mi

2|M) neka poznata pretpostavljena vjerojatnost raspada, x pred-
stavlja konačna stanja mlazova generiranih prema pretpostavljenim vjerojatnostima i
CNN(x) izlazna vrijednost neuralne mreže koja je trenirana da razlikuje stvarne dos-
tupne podatke od mlazova generiranih prema vjerojatnosi q. Kako je u pitanju vi-
sokodimenzionalni linearni sustav jednadžbi, vjerojatnosti p(mi

1, mi
2|M) su modeli-

rane neuralnom mrežom f koja za ulazne vrijednosti prima trojku realnih brojeva
(m1, m2, M). Cilj 2NN algoritma je optimizirati neuralnu mrežu f kako bi što bolje opi-
sivala stvarne gustoće vjerojatnosti. Daljnji zahtjevi za neuralnu mrežu f kao i način
njene optimizacije su opisani u [59]. Takod̄er, predstavljen je jednostavni fizikalni sus-
tav na kojem je testiran 2NN algoritam.

7.5 Rezultati

U ovom poglavlju predstavljeni su rezultati modela razvijenih za svrhu razlikovanja
kvarkovskih i gluonskih mlazova. Uz to, predstavljen je i kratak pregled rezultata
testiranja 2NN algoritma na jednostavnom fizikalnom sustavu.

7.5.1 Model za kvarkovsko-gluonsku diskriminaciju

Modeli su evaluirani koristeći ROC krivulje. Kao kvantitativna skalarna vrijednost
koje opisuje performase modele korištena je vrijednost površine ispod ROC krivulje
(AUC). Što je veća AUC vrijednost to model može bolje raspoznati razliku med̄u kvarkovskim
i gluonskim mlazovima. Radi bolje preglednosti, rezultati modela opisanih u prošlom
poglavlju su podijeljeni u tri skupine. Na slici 7.3 prikazane su AUC vrijednosti ANG
modela i logističke regresije provedene na generaliziranim uglatostima za različite in-
tervale transverzalnog impulsa mlaza. Uspored̄ene su s AUC vrijednostima za diskrim-
inatore koji su temeljeni na multiplicitetu mlaza i masi mlaza. Iz priloženog može se
primjetiti kako ANG model pokazuje najbolje performanse na svim pT intervalima.
ANG model i logistička regresija puno bolje razlikuju vrstu mlaza nego jednostavni rez
na varijablu mase mlaza. Takod̄er, navedeni modeli su značajno bolji od reza na mul-
tiplicitet na niskim vrijednostima transverzalnog impulsa. Iz ovoga se može zaključiti
da je multiplicitet kao diskriminativna varijabla pogodnija za korištenje na mlazovima
visokog ukupnog transverzalnog impulsa. Na slici 7.4 vidimo relativne važnosti ra-
zličitih generaliziranih uglatosti na predvid̄anja ANG modela. Može se primijetiti kako
je najvažnija generalizirana uglatost λ1

1 daleko najvažnija za mlazove niskog ukupnog
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SLIKA 7.3: AUC vrijednosti ANG modela i logističke regresije na general-
iziranim uglatostima za različite pT intervale.

transverzalnog impulsa. Ta varijabla se može interpretirati kao širina mlaza. Ovaj
rezultat se slaže s teoretskim spoznajama koje konstatiraju da gluoni emitiraju par-
tone u širim kutovima u odnosu na kvarkovske mlazove. Širina mlaza se pokazala
kao najvažnija i na mlazovima visokog ukupnog transverzalnog impulsa, med̄utim
i ostale varijable takod̄er pokazuju značajnu važnost. AUC vrijednosti za različite
konvolucijske modele su prikazane na slici 7.5. Kao najbolji konvolucijski model se
pokazao zCNN-ID koji koristi (zπ, zκ, zp)-kanalne slike mlazova. Konvolucijski mod-
eli pokazuju unapred̄enje u odnosu na ANG model. Takvo ponašanje je očekivano s
obzirom da slike mlazova sadrže više informacija u odnosu na samo nekolicinu glob-
alnih varijabli koje koristi ANG model. Nedostatak takvih modela je velika količina
potrebnih podataka i relativno dugo vrijeme potrebno za konvergenciju modela. Do-
datni zaključak koji se može donijeti je taj da informacija o vrsti čestice koja konstituira
mlaz može unaprijediti performanse modela.

Konačno, slika 7.6 predstavlja AUC vrijednosti za EFN, PFN, pPFN i PFN-ID mod-
ele. Može se jasno vidjeti kako se modeli PFN i PFN-ID svojim performansama izdva-
jaju od EFN i pPFN modela. EFN model je konstruiran tako da je neosjetljiv na infracr-
vene divergencije koje se pojavljuju u kvantnoj kromodinamici. Ostali modeli nisu
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infracrveno sigurni. Priloženi rezultati potvrd̄uju da infracrveno nesigurne varijable
posjeduju neku informaciju bitnu za razlikovanje vrsta mlazova. PFN-ID pokazuje
najbolje performanse u usporedbi sa svim predstavljenim modelima. Još jednom je
potvrd̄eno da je informacija o vrsti čestica u mlazu važna za razlikovanje kvarkovskih
i gluonskih mlazova. PFN-ID se pokazao univerzalno najboljim u svim pT-intervalima.
U tablici 7.2 je prikazan pregled AUC vrijednosti za sve modele izvrednjene u svim pT

intervalima. Nepouzdanosti AUC vrijednosti su procijenjene ponovljenim treniranjem
modela te se njihove vrijednosti kreću u rasponu od 0.001 i 0.002.

Nadalje, provedena je analiza koliku čistoću kvarkovskog uzorka možemo postići
pomoću PFN-ID modela u slučaju njegovog korištenja na pravim ALICE podacima.
Ako želimo zadržati barem 20% kvarkovskih mlazova najveća čistoća uzorka ovisi o
pT intervalu koji želimo gledati. Vrijednost čistoće se tada kreće od otprilike 90% u
intervalu transverzalnog impulsa [200-250 GeV] do malo manje od 50% za interval
od [25-50 GeV]. U intervalu ukupnog transverzalnog impulsa [0-25 GeV] je nemoguće
izolirati uzorak kvarkovskih mlazova korisne čistoće pomoću PFN-ID modela.

7.5.2 Performanse 2NN algoritma

2NN algoritam je testiran na jednostavnom fizikalnom sustavu koji je detaljno opisan
u [59]. U tom fizikalnom sustavu mlazovi nastaju uzastopnim kaskadnim raspadima
počevši od čestice mase M = 25.0. Svi mogući kanali raspada u tom sustavu zajedno s

(A) pT ∈ [0 − 25 GeV] (B) pT ∈ [200 − 250 GeV]

SLIKA 7.4: Relativne važnosti generaliziranih uglatosti (κ, β) korištenih
ANG modelom za mlazove u najnižem i najvišem pT intervalu.
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SLIKA 7.5: pT ovisnost AUC vrijednosti za različite konvolucijske modele.

pripadnim vjerojatnostima su prikazani u tablici 7.4. Zadatak 2NN algoritma je pron-
aći kanale raspada i pripadne vjerojatnosti tih raspada samo iz konačnih čestica u mla-
zovima. Iako su vjerojatnosti raspada u fizikalnom sustavu diskretne i svaka čestica se
može raspasti u najviše 3 kanala, ta informacija nije a priori poznata. 2NN algoritam je
konstruiran tako da pronad̄e bilo koju moguću dvodimenzionalnu vjerojatnosnu dis-
tribuciju raspada p(m1, m2 | M) te je ograničen samo kinematičkim zakonima očuvanja
i pretpostavkom da su raspadi med̄usobno neovisni. Tablica 7.3 prikazuje rekonstru-
irane kanale raspada 2NN algoritmom. Možemo vidjeti kako se rekonstruirani kanali
raspada vrlo dobro poklapaju s kanalima raspada u fizikalnom sustavu. Identificirane
su čak i čestice koje se ne pojavljuju u konačnom stanju. Bolja rekonstukcija se može
primijetiti za čestice većih masa u odnosu na čestice manjih masa. Detaljniji pregled
dobivenih rezultata i evaluacija 2NN algoritma se može pronaći u [59].
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7.6 Zaključak

Ovo istraživanje predstavlja modele strojnog učenja i tehnike koje se koriste za raz-
likovanje mlazova nastalih od kvarkova ili gluona, a primjenjeni su za korištenje na
podacima prikupljenim eksperimentom ALICE u CERN-u. To se postiže korištenjem
velike količine Monte Carlo simuliranih podataka za obuku i validaciju predloženih
modela. Izvršena je opsežna analiza modela i predvid̄anja. Model koji pokazuje na-
jbolje performanse je PFN-ID, posebno dizajnirana neuralna mreža koja koristi kine-
matičke veličine čestica zajedno s informacijama o njihovom okusu. PFN-ID je uni-
verzalno najbolji model budući da je superiorniji od svakog drugog modela u cijelom
rasponu promatranih ukupnih momenta mlazova.

Iz analize se može izvući nekoliko zaključaka. Varijable na razini čestica treba prvo
prethodno obraditi kako bi se smanjila količina simetrije u podacima. Modeli koji
koriste neobrad̄ene četverovektore količina gibanja četiri pokazuju se gorim od mod-
ela koji koriste udjele ukupnih transverzalnih momenta, brzine i azimutalne kutove
u odnosu na os mlaza. Drugi zaključak je da je okus na razini čestica vrlo važan za

SLIKA 7.6: pT ovisnost AUC vrijednosti za EFN, PFN, pPFN i PFN-ID
model.
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SLIKA 7.7: Ovisnost ćistoće uzorka kvarkovskih mlazova u ovisnosti o pT
intervalu za efikasnost od 20 %

diskriminantu koja razlučuje kvarkovske i gluonskie mlazove. Svaki model koji ko-
risti ove podatke ima bolju izvedbu od svog analognog modela koji ih ne koristi. Ovo
je vrlo korisno za primjenu na podacima koje prikuplja ALICE detektor, budući da
taj detektor ima vrlo dobru sposobnost identifikacije čestica. Modeli koji koriste glob-
alne varijable mlaza pokazuju nešto goru izvedbu od modela koji koriste informacije
na razini čestica (uključujući identitet čestica). To je za očekivati budući da na razini
čestica, podaci sadrže mnogo više informacija koje dovoljno složeni modeli mogu isko-
ristiti. Med̄utim, takvi modeli mogu biti računalno zahtjevni i teški za obuku.

Diskriminacijska moć svakog od treniranih modela raste s ukupnim transverzal-
nim momentom mlaza pT, bez obzira na arhitekturu i prikaz podataka. To znači da
su uzorci kvarkovskih i gluonskih mlazova med̄usobno slabije odvojivi pri niskim pT.
Analiza važnosti značajki pokazuje nam koje su varijable značajne u procesu odluči-
vanja modela. Najvažnije globalne varijable su širina mlaza i broj čestica u mlazu.
Širina mlaza je dominantno važna za modele trenirane na mlazovima s niskim pT.
Važnost ostalih varijabli raste s povećanjem pT mlazova. Važnosti značajki izvedenih
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TABLICA 7.2: Pregled AUC vrijednosti za različite modele u svim pT in-
tervalima.

pT LR ANG CNN zCNN zCNN-ID

0-25 GeV 0.630 0.632 0.623 0.631 0.635

25-50 GeV 0.727 0.732 0.733 0.734 0.737

50-75 GeV 0.748 0.757 0.757 0.758 0.761

75-100 GeV 0.759 0.772 0.769 0.772 0.774

100-125 GeV 0.771 0.784 0.782 0.786 0.788

125-150 GeV 0.780 0.795 0.791 0.796 0.798

150-175 GeV 0.790 0.805 0.800 0.808 0.810

175-200 GeV 0.797 0.814 808 0.816 0.817

200-250 GeV 0.802 820 0.816 0.825 0.827

pT EFN pPFN PFN PFN-ID

0-25 GeV 0.622 0.631 0.632 0.641

25-50 GeV 0.729 0.730 0.737 0.743

50-75 GeV 0.743 0.751 0.761 0.764

75-100 GeV 0.753 0.759 0.777 0.780

100-125 GeV 0.766 0.770 0.790 0.793

125-150 GeV 0.775 0.777 0.802 0.804

150-175 GeV 0.783 0.788 0.813 0.814

175-200 GeV 0.788 0.794 820 0.823

200-250 GeV 0.798 804 0.829 0.831

na slikama mlazova pokazuje područje oko osi mlaza koje je najosjetljivije na odluke
modela. Ova efektivna površina se smanjuje s povećanjem mlaza pT.

Nadalje, razvili smo metodu za izračunavanje temeljnih distribucija vjerojatnosti
raspada čestica, koristeći samo podatke koji se mogu prikupiti u detektoru. Prvo,
generiramo umjetni fizikalni sustav temeljen na dijelu QCD procesa fragmentacije.
Zatim predstavljamo ključni dio metode: algoritam 2NN. Algoritam točno predvid̄a
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TABLICA 7.3: Dozvoljeni diskretni raspadi s pripadnim vjerojatnostiima u
modelu fizikalnog sustava.

Particle A B C D E
Mass 0.1 0.6 1.3 1.9 4.4

p/channel 1 A 0.7 B 1 C 0.4 D 0.6 C+C
0.3 A+A 0.3 A+A 0.4 E

0.3 A+C
Particle F G H I J

Mass 6.1 8.4 14.2 18.1 25
p/channel 0.5 A+A 0.9 B+B 0.6 D+D 1 F+G 0.5 F+I

0.5 B+C 0.1 A+F 0.25 D+E 0.4 G+H
0.15 E+F 0.1 E+E

particle mass 25 25 25
decay masses 18.1 6.1 14.2 8.4 4.4 4.4

reconstructed masses 18.1 ± 0.5 6.1 ± 0.5 14.0 ± 0.7 8.4 ± 0.7 4.8 ± 0.2 4.6 ± 0.2
channel probability 0.5 0.4 0.1

reconstructed probability 0.48 0.47 0.05
particle mass 18.1 14.2 14.2
decay masses 8.4 6.1 6.1 4.4 4.4 1.9

reconstructed masses 8.2 ± 0.6 5.9 ± 0.4 6.2 ± 0.3 4.4 ± 0.4 4.3 ± 0.3 2.7 ± 0.7
channel probability 1 0.15 0.25

reconstructed probability 1 0.05 0.06
particle mass 14.2 1.9 1.9
decay masses 1.9 1.9 1.3 0.1 no decay

reconstructed masses 2.4 ± 0.5 2.9 ± 0.7 1.27 ± 0.09 0.14 ± 0.09 no decay
channel probability 0.6 0.3 0.4

reconstructed probability 0.89 0.29 0.71
particle mass 14.2 1.9 18.1
decay masses 1.9 1.9 1.3 0.1 no decay

reconstructed masses 2.4 ± 0.5 2.9 ± 0.7 1.27 ± 0.09 0.14 ± 0.09 no decay
channel probability 0.6 0.3 0.4

reconstructed probability 0.89 0.29 0.71

TABLICA 7.4: Značajke rekonstruiranih kanala raspada za čestice masa
M = 25, 18.1, 14.2 and 1.9.

većinu skrivenih rezonantnih čestica, kao i njihove kanale raspada, koji se mogu pojav-
iti u evoluciji mlazova. Energetski spektri čestica u konačnom stanju takod̄er se mogu
dosta točno reproducirati. Iako je testiran samo na spomenutom sustavu, vjerujemo da
je algoritam dovoljno općenit kako bi se primijenio na stvarne fizikalne sustave, kao
što su sudari visokoenergetskih čestica. Nadamo se da će se u budućnosti ova metoda
pokazati korisnom u mjerenju fragmentacijskih funkcija kvarkova i gluona. Dodatno,
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takva bi se metoda mogla upotrijebiti u potrazi za supersimetričnim česticama nepoz-
natih masa ili u mjerenju omjera grananja poznatih raspada.
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