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Unveiling the strong interaction among 
hadrons at the LHC

ALICE Collaboration*

One of the key challenges for nuclear physics today is to understand from first 
principles the effective interaction between hadrons with different quark content. 
First successes have been achieved using techniques that solve the dynamics of 
quarks and gluons on discrete space-time lattices1,2. Experimentally, the dynamics of 
the strong interaction have been studied by scattering hadrons off each other. Such 
scattering experiments are difficult or impossible for unstable hadrons3–6 and so 
high-quality measurements exist only for hadrons containing up and down quarks7. 
Here we demonstrate that measuring correlations in the momentum space between 
hadron pairs8–12 produced in ultrarelativistic proton–proton collisions at the CERN 
Large Hadron Collider (LHC) provides a precise method with which to obtain the 
missing information on the interaction dynamics between any pair of unstable 
hadrons. Specifically, we discuss the case of the interaction of baryons containing 
strange quarks (hyperons). We demonstrate how, using precision measurements of 
proton–omega baryon correlations, the effect of the strong interaction for this 
hadron–hadron pair can be studied with precision similar to, and compared with, 
predictions from lattice calculations13,14. The large number of hyperons identified in 
proton–proton collisions at the LHC, together with accurate modelling15 of the small 
(approximately one femtometre) inter-particle distance and exact predictions for the 
correlation functions, enables a detailed determination of the short-range part of the 
nucleon-hyperon interaction.

Baryons are composite objects formed by three valence quarks 
bound together by means of the strong interaction mediated 
through the emission and absorption of gluons. Between baryons, 
the strong interaction leads to a residual force and the most common 
example is the effective strong force among nucleons (N)—baryons 
composed of up (u) and down (d) quarks: proton (p) = uud and 
neutron (n) = ddu. This force is responsible for the existence of a 
neutron–proton bound state, the deuteron, and manifests itself in 
scattering experiments7 and through the existence of atomic nuclei. 
So far, our understanding of the nucleon–nucleon strong interaction 
relies heavily on effective theories16, where the degrees of freedom 
are nucleons. These effective theories are constrained by scattering 
measurements and are successfully used in the description of 
nuclear properties17,18.
The fundamental theory of the strong interaction is quantum chromo-
dynamics (QCD), in which quarks and gluons are the degrees of free-
dom. One of the current challenges in nuclear physics is to calculate 
the strong interaction among hadrons starting from first principles. 
Perturbative techniques are used to calculate strong-interaction 
phenomena in high-energy collisions with a level of precision of a 
few per cent19. For baryon–baryon interactions at low energy such 
techniques cannot be employed; however, numerical solutions on 
a finite space-time lattice have been used to calculate scattering 
parameters among nucleons and the properties of light nuclei1,2. Such 
approaches are still limited: they do not yet reproduce the properties 

of the deuteron20 and do not predict physical values for the masses 
of light hadrons21.

Baryons containing strange (s) quarks, exclusively or combined with 
u and d quarks, are called hyperons (Y) and are denoted by uppercase 
Greek letters: Λ = uds, Σ0 = uds, Ξ− = dss, Ω− = sss. Experimentally, little 
is known about Y–N and Y–Y interactions, but recently, major steps 
forward in their understanding have been made using lattice QCD 
approaches13,14,22. The predictions available for hyperons are character-
ized by smaller uncertainties because the lattice calculation becomes 
more stable for quarks with larger mass, such as the s quark. In particu-
lar, robust results are obtained for interactions involving the heaviest 
hyperons, such as Ξ and Ω, and precise measurements of the p–Ξ− and 
p–Ω− interactions are instrumental in validating these calculations. 
From an experimental point of view, the existence of nuclei in which 
a nucleon is replaced by a hyperon (hypernuclei) demonstrates the 
presence of an attractive strong Λ–N interaction23 and indicates the 
possibility of binding a Ξ− to a nucleus24,25. A direct and more precise 
measurement of the Y–N interaction requires scattering experiments, 
which are particularly challenging to perform because hyperons are 
short-lived and travel only a few centimetres before decaying. Previ-
ous experiments with Λ and Σ hyperons on proton targets3–5 delivered 
results that were two orders of magnitude less precise than those for 
nucleons, and such experiments with Ξ (ref. 6) and Ω beams are even 
more challenging. The measurement of the Y–N and Y–Y interactions 
has further important implications for the possible formation of a 
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Y–N or Y–Y bound state. Although numerous theoretical predictions 
exist13,26–30, so far no clear evidence for any such bound states has been 
found, despite many experimental searches31–35.

Additionally, a precise knowledge of the Y–N and Y–Y interactions 
has important consequences for the physics of neutron stars. Indeed, 
the structure of the innermost core of neutron stars is still completely 
unknown and hyperons could appear in such environments depending 
on the Y–N and Y–Y interactions36. Real progress in this area calls for 
new experimental methods.

Studies of the Y–N interaction via correlations have been pioneered 
by the HADES collaboration37. Recently, the ALICE Collaboration has 
demonstrated that p–p and p–Pb collisions at the LHC are best suited 
to study the N–N and several Y–N, Y–Y interactions precisely8–12. Indeed, 
the collision energy and rate available at the LHC opens the phase 
space for an abundant production of any strange hadron38, and the 
capabilities of the ALICE detector for particle identification and the 
momentum resolution—with values below 1% for transverse momentum  
pT < 1 GeV/c—facilitate the investigation of correlations in momen-
tum space. These correlations reflect the properties of the interaction 
and hence can be used to test theoretical predictions by solving the 
Schrödinger equation for proton–hyperon collisions39. A fundamen-
tal advantage of p–p and p–Pb collisions at LHC energies is the fact 
that all hadrons originate from very small space-time volumes, with 
typical inter-hadron distances of about 1 fm. These small distances 
are linked through the uncertainty principle to a large range of the 
relative momentum (up to 200 MeV/c) for the baryon pair and enable 
us to test short-range interactions. Additionally, detailed modelling 
of a common source for all produced baryons15 allow us to determine 
accurately the source parameters.

Similar studies were carried out in ultrarelativistic Au–Au colli-
sions at a centre-of-mass energy of 200 GeV per nucleon pair by the 
STAR collaboration for Λ–Λ40,41 and p–Ω−42 interactions. This collision 
system leads to comparatively large particle emitting sources of 
3–5 fm. The resulting relative momentum range is below 40 MeV/c, 
implying reduced sensitivity to interactions at distances shorter 
than 1 fm.

In this work, we present a precision study of the most exotic among 
the proton–hyperon interactions, obtained via the p–Ω− correlation 
function in p–p collisions at a centre-of-mass energy s = 13 TeV at the 
LHC. The comparison of the measured correlation function with 
first-principle calculations13 and with a new precision measurement 
of the p–Ξ− correlation in the same collision system provides the first 
observation of the effect of the strong interaction for the p–Ω− pair. 
The implications of the measured correlations for a possible p–Ω− 
bound state are also discussed. These experimental results challenge 
the interpretation of the data in terms of lattice QCD as the precision 
of the data improves.

Our measurement opens a new chapter for experimental methods 
in hadron physics with the potential to pin down the strong interaction 
for all known proton–hyperon pairs.

Analysis of the correlation function
Figure 1 shows a schematic representation of the correlation method 
used in this analysis. The correlation function can be expressed theo-
retically43,44 as C(k*) = ∫d3r*S(r*) × |ψ(k*, r*)|2, where k* and r* are the 
relative momentum and relative distance of the pair of interest. S(r*) 
is the distribution of the distance r* = |r*| at which particles are emitted 
(defining the source size), ψ(k*, r*) represents the wavefunction of the 
relative motion for the pair of interest and k* = |k*| is the reduced rela-
tive momentum of the pair ( p pk = | − |/2⁎ ⁎ ⁎

2 1 ). Given an interaction poten-
tial between two hadrons as a function of their relative distance, a 
non-relativistic Schrödinger equation can be used39 to obtain the  
corresponding wavefunction and hence also predict the expected 
correlation function. The choice of a non-relativistic Schrödinger  
equation is motivated by the fact that the typical relative momenta 
relevant for the strong final-state interaction have a maximal value of 
200 MeV/c. Experimentally, this correlation function is computed as 
C(k*) = ξ(k*)[Nsame(k*)/Nmixed(k*)], where ξ(k*) denotes the corrections 
for experimental effects, Nsame(k*) is the number of pairs with a given 
k* obtained by combining particles produced in the same collision 
(event), which constitute a sample of correlated pairs, and Nmixed(k*) is 
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Fig. 1 | Schematic representation of the correlation method. a, A collision of 
two protons generates a particle source S(r*) from which a hadron–hadron pair 
with momenta p1 and p2 emerges at a relative distance r* and can undergo a 
final-state interaction before being detected. Consequently, the relative 
momentum k* is either reduced or increased via an attractive or a repulsive 
interaction, respectively. b, Example of attractive (green) and repulsive 
(dotted red) interaction potentials, V(r*), between two hadrons, as a function 
of their relative distance. Given a certain potential, a non-relativistic 
Schrödinger equation is used to obtain the corresponding two-particle 

wavefunction, ψ(k*, r*). c, The equation of the calculated (second term) and 
measured (third term) correlation function C(k*), where Nsame(k*) and Nmixed(k*) 
represent the k* distributions of hadron–hadron pairs produced in the same 
and in different collisions, respectively, and ξ(k*) denotes the corrections for 
experimental effects. d, Sketch of the resulting shape of C(k*). The value of the 
correlation function is proportional to the interaction strength. It is above 
unity for an attractive (green) potential, and between zero and unity for a 
repulsive (dotted red) potential.
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the number of uncorrelated pairs with the same k*, obtained by com-
bining particles produced in different collisions (the so-called 
mixed-event technique). Figure 1d shows how an attractive or repulsive 
interaction is mapped into the correlation function. For an attractive 
interaction the magnitude of the correlation function will be above 
unity for small values of k*, whereas for a repulsive interaction it will 
be between zero and unity. In the former case, the presence of a bound 
state would create a depletion of the correlation function with a depth 
increasing with increasing binding energy.

Correlations can occur in nature from quantum mechanical inter-
ference, resonances, conservation laws or final-state interactions. 
Here, it is the final-state interactions that contribute predominantly 
at low relative momentum; in this work we focus on the strong and 
Coulomb interactions in pairs composed of a proton and either a Ξ− or 
a Ω− hyperon.

Protons do not decay and can hence be directly identified within the 
ALICE detector, but Ξ− and Ω− baryons are detected through their weak 
decays, Ξ− → Λ + π− and Ω− → Λ + Κ−. The identification and momentum 
measurement of protons, Ξ−, Ω− and their respective antiparticles are 
described in Methods. Figure 2 shows a sketch of the Ω− decay and the 
invariant mass distribution of the ΛΚ− and ΛK¯ + pairs. The clear peak 
corresponding to the rare Ω− and Ω̄

+
 baryons demonstrates the excel-

lent identification capability, which is the key ingredient for this meas-
urement. The contamination from misidentification is ≤5%. For the 
Ξ− (Ξ̄

+
) baryon the misidentification amounts to 8%11.

Once the p, Ω− and Ξ− candidates and charge conjugates are selected 
and their 3-momenta measured, the correlation functions can be built. 
Since we assume that the same interaction governs baryon–baryon 
and antibaryon–antibaryon pairs8, we consider in the following the 
direct sum (⊕) of particles and antiparticles (p Ξ p Ξ p Ξ– ⊕ ¯ – ¯ ≡ –− + − 
and p Ω p Ω p Ω– ⊕ ¯ – ¯ ≡ –− + −). The determination of the correction ξ(k*) 
and the evaluation of the systematic uncertainties are described in 
Methods.

Comparison of the p–Ξ− and p–Ω− interactions
The obtained correlation functions are shown in Fig. 3a, b for the p–Ξ− 
and p–Ω− pairs, respectively, along with the statistical and systematic 
uncertainties. The fact that both correlations are well above unity 
implies the presence of an attractive interaction for both systems. For 
opposite-charge pairs, as considered here, the Coulomb interaction 

is attractive and its effect on the correlation function is illustrated 
by the green curves in both panels of Fig. 3. These curves have been 
obtained by solving the Schrödinger equation for p–Ξ− and p–Ω− pairs 
using the Correlation Analysis Tool using the Schrödinger equation 
(CATS) equation solver39, considering only the Coulomb interaction and 
assuming that the shape of the source follows a Gaussian distribution 
with a width equal to 1.02 ± 0.05 fm for the p–Ξ− system and to 0.95 ± 
0.06 fm for the p–Ω− system, respectively. The source-size values have 
been determined via an independent analysis of p–p correlations15, 
where modifications of the source distribution due to strong decays 
of short-lived resonances are taken into account, and the source size 
is determined as a function of the transverse mass mT of the pair, as 
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Fig. 3 | Experimental p–Ξ− and p–Ω− correlation functions. a, b, Measured  
p–Ξ− (a) and p–Ω− (b) correlation functions in high multiplicity p–p collisions at 

s = 13 TeV . The experimental data are shown as black symbols. The black 
vertical bars and the grey boxes represent the statistical and systematic 
uncertainties. The square brackets show the bin width and the horizontal black 
lines represent the statistical uncertainty in the determination of the mean k* 
for each bin. The measurements are compared with theoretical predictions, 
shown as coloured bands, that assume either Coulomb or Coulomb + strong 
HAL QCD interactions. For the p–Ω− system the orange band represents the 
prediction considering only the elastic contributions and the blue band 
represents the prediction considering both elastic and inelastic contributions. 
The width of the curves including HAL QCD predictions represents the 
uncertainty associated with the calculation (see Methods section ‘Corrections 
of the correlation function’ for details) and the grey shaded band represents, in 
addition, the uncertainties associated with the determination of the source 
radius. The width of the Coulomb curves represents only the uncertainty 
associated with the source radius. The considered radius values are 1.02 ± 0.05 
fm for p–Ξ− and 0.95 ± 0.06 fm for p–Ω− pairs, respectively. The inset in b shows 
an expanded view of the p–Ω− correlation function for C(k*) close to unity. For 
more details see text.
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described in Methods. The average mT of the p–Ξ− and p–Ω− pairs are 
1.9 GeV/c and 2.2 GeV/c, respectively. The difference in size between 
the source of the p–Ξ− and p–Ω− pairs might reflect the contribution 
of collective effects such as (an)isotropic flow. The width of the green 
curves in Fig. 3 reflects the quoted uncertainty of the measured source 
radius. The correlations obtained, accounting only for the Coulomb 
interaction, considerably underestimate the strength of both measured 
correlations. This implies, in both cases, that an attractive interaction 
exists and exceeds the strength of the Coulomb interaction.

To discuss the comparison of the experimental data with the predic-
tions from lattice QCD, it is useful to first focus on the distinct charac-
teristics of the p–Ξ− and p–Ω− interactions. Figure 4 shows the radial 
shapes obtained for the strong-interaction potentials calculated from 
first principles by the HAL QCD (Hadrons to Atomic nuclei from Lat-
tice QCD) collaboration for the p–Ξ− (ref. 14) and the p–Ω− systems13, 
see Methods for details. Only the most attractive (isospin I = 0 and 
spin S = 0) of the four components14 of the p–Ξ− interaction and the 
isospin I = 1/2 and spin S = 2 component of the p–Ω− interaction are 
shown. Aside from an attractive component, we see that the interac-
tion contains also a repulsive core starting at very small distances, 
below 0.2 fm. For the p–Ω− system no repulsive core is visible and the 
interaction is purely attractive. This very attractive interaction can 
accommodate a p–Ω− bound state, with a binding energy of about  
2.5 MeV, considering the Coulomb and strong forces13. The p–Ξ− and 
p–Ω− interaction potentials look very similar to each other above a 
distance of 1 fm. This behaviour is not observed in phenomenologi-
cal models that engage the exchange of heavy mesons and predict a 
quicker fall off of the potentials45.

The inset of Fig. 4 shows the correlation functions obtained using the 
HAL QCD strong interaction potentials for: (i) the channel p–Ξ− with 
isospin I = 0 and spin S = 0, (ii) the channel p–Ξ− including all allowed 
spin and isospin combinations, and (iii) the channel p–Ω− with isospin 
I = 1/2 and spin S = 2. The correlation functions are computed using the 
experimental values for the p–Ξ− and p–Ω− source-size. Despite the fact 
that the strong p–Ω− potential is more attractive than the p–Ξ− I = 0  
and S = 0 potential, the resulting correlation function is lower. This is 

due to the presence of the bound state in the p–Ω− case46. If we con-
sider all four isospin and spin components of the p–Ξ− interaction11 the 
prediction for the global p–Ξ− correlation function is lower than that 
for p–Ω−. Experimentally, as shown in Fig. 3, the less attractive strong 
p–Ξ− interaction translates into a correlation function that reaches 
values of 3 in comparison with the much higher values of up to 6 that 
are visible for the p–Ω− correlation. The theoretical predictions shown 
in Fig. 3 also include the effect of the Coulomb interaction.

Regarding the p–Ξ− interaction, it should be considered that 
strangeness-rearrangement processes can occur, such as pΞ− → ΛΛ, ΣΣ, 
ΛΣ. This means that the inverse processes (for example, ΛΛ → pΞ−) can 
also occur and modify the p–Ξ− correlation function. These contribu-
tions are accounted for within lattice calculations by exploiting the well 
known quark symmetries14 and are found to be very small. Moreover, 
the ALICE collaboration measured the Λ–Λ correlation in p–p and p–Pb 
collisions10 and good agreement with the shallow interaction predicted 
by the HAL QCD collaboration was found.

The resulting prediction for the correlation function, obtained by 
solving the Schrödinger equation for the single p–Ξ− channel includ-
ing the HAL QCD strong and Coulomb interactions, is shown in Fig. 3a. 
The first measurement of the p–Ξ− interaction using p–Pb collisions11 
showed a qualitative agreement to lattice QCD predictions. The 
improved precision of the data in the current analysis of p–p collisions 
is also in agreement with calculations that include both the HAL QCD 
and Coulomb interactions.

Detailed study of the p–Ω− correlation
Concerning the p–Ω− interaction, strangeness-rearrangement pro-
cesses can also occur47, such as pΩ− → ΞΛ, ΞΣ. Such processes might 
affect the p–Ω− interaction in a different way depending on the relative 
orientation of the total spin and angular momentum of the pair. Since 
the proton has Jp = 1/2 and the Ω has JΩ = 3/2 and the orbital angular 
momentum L can be neglected for correlation studies that imply low 
relative momentum, the total angular momentum J equals the total 
spin S and can take on values of J = 2 or J = 1. The J = 2 state cannot couple 
to the strangeness-rearrangement processes discussed above, except 
through D-wave processes, which are strongly suppressed. For the 
J = 1 state only two limiting cases can be discussed in the absence of 
measurements of the pΩ− → ΞΛ, ΞΣ cross-sections.

The first case assumes that the effect of the inelastic channels is 
negligible for both configurations and that the radial behaviour of the 
interaction is driven by elastic processes, following the lattice QCD 
potential (see Fig. 4), for both the J = 2 and J = 1 channels. This results in 
a prediction, shown by the orange curve in Fig. 3b, that is close to the 
data in the low k* region. The second limiting case assumes, follow-
ing a previous prescription47, that the J = 1 configuration is completely 
dominated by strangeness-rearrangement processes. The obtained 
correlation function is shown by the blue curve Fig. 3b. This curve clearly  
deviates from the data. Both theoretical calculations also include the 
effect of the Coulomb interaction and they predict the existence of a 
p–Ω− bound state with a binding energy of 2.5 MeV, which causes a deple-
tion in the correlation function in the k* region between 100 and 300 
MeV/c, because pairs that form a bound state are lost to the correlation 
yield. The inset of Fig. 3 shows that in this k* region the data are consist-
ent with unity and do not follow either of the two theoretical predictions.

At the moment, the lattice QCD predictions underestimate the data, 
but additional measurements are necessary to draw a firm conclu-
sion on the existence of the bound state. Measurements of Λ–Ξ− and 
Σ0–Ξ− correlations will verify experimentally the strength of possible 
non-elastic contributions. Measurements of the p–Ω− correlation func-
tion in collision systems with slightly larger size (for example, p–Pb 
collisions at the LHC)11 will clarify the possible presence of a deple-
tion in C(k*). Indeed, the appearance of a depletion in the correlation 
function depends on the interplay between the average intra-particle 
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distance (source size) and the scattering length associated with the 
p–Ω− interaction47.

Summary
We have shown that the hyperon–proton interaction can be studied in 
unprecedented detail in p–p collisions at s = 13 TeV at the LHC. We 
have demonstrated, in particular, that even the as-yet-unknown p–Ω− 
interaction can be investigated with excellent precision. The com-
parison of the measured correlation functions shows that the 
p–Ω− signal is up to a factor two larger than the p–Ξ− signal. This reflects 
the large difference in the strong-attractive interaction predicted by 
the first-principle calculations by the HAL QCD collaboration. The 
correlation functions predicted by HAL QCD are in agreement with the 
measurements for the p–Ξ− interaction. For the p–Ω− interaction,  
the inelastic channels are not yet accounted for quantitatively within 
the lattice QCD calculations. Additionally, the depletion in the correla-
tion function that is visible in the calculations around k* = 150 MeV/c, 
owing to the presence of a p–Ω− bound state, is not observed in the meas-
ured correlation. To draw quantitative conclusions concerning the exist-
ence of a p–Ω− bound state, we plan a direct measurement of the Λ–Ξ− and 
Σ0−Ξ− correlations and a study of the p–Ω− correlation in p–Pb collisions 
in the near future. Indeed, with the upgraded ALICE apparatus48 and the 
increased data sample size expected from the high luminosity phase of 
the LHC Run 3 and Run 449, the missing interactions involving hyperons 
will be measured in p–p and p–Pb collisions and this should enable us to 
answer the question about the existence of a new baryon–baryon bound 
state. Since this method can be extended to almost any hadron–hadron 
pair, an unexpected avenue for high-precision tests of the strong inter-
action at the LHC has been opened.
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Methods

Event selection
Events were recorded from inelastic p–p collisions by ALICE50,51 at 
the LHC. A trigger that requires the total signal amplitude measured 
in the V0 detector52 to exceed a certain threshold was used to select 
high-multiplicity (HM) events. The V0 detector comprises two plas-
tic scintillator arrays placed on both sides of the interaction point at 
pseudorapidities 2.8 < η < 5.1 and −3.7 < η < −1.7. The pseudorapidity is 
defined as η = −ln[tan(θ/2)], where θ is the polar angle of the particle 
with respect to the proton beam axis.

At s = 13 TeV, in the HM events, 30 charged particles in the range |η| 
< 0.5 are produced on average. This η range corresponds to the region 
within 26 degrees of the transverse plane that is perpendicular to the 
beam axis. The HM events are rare, constituting 0.17% of the p–p colli-
sions that produce at least one charged particle in the pseudorapidity 
range |η| < 1.0. It was shown38 that HM events contain an enhanced yield 
of hyperons, which facilitates this analysis. The yield of Ω− in HM events 
is at least a factor 5 larger, on average, compared with that in total inelas-
tic collisions53. A total of 1 × 109 HM events were analysed. Additional 
details on the HM event selection can be found in a previous work12.

Particle tracking and identification
For the identification and momentum measurement of charged par-
ticles, the Inner Tracking System (ITS)54, Time Projection Chamber 
(TPC)55, and Time-Of-Flight (TOF)56 detectors of ALICE are used. All 
three detectors are located inside a solenoid magnetic field (0.5 T) 
leading to a bending of the trajectories of charged particles. The meas-
urement of the curvature is used to reconstruct the particle momenta. 
Typical transverse momentum (pT) resolutions for protons, pions and 
kaons vary from about 2% for tracks with pT = 10 GeV/c to below 1% for 
pT < 1 GeV/c. The particle identity is determined by the energy lost per 
unit of track length inside the TPC detector and, in some cases, by the 
particle velocity measured in the TOF detector. Additional experimental 
details are discussed in a previous work51.

Protons are selected within a transverse momentum range of 0.5 
< pT < 4.05 GeV/c. They are identified requiring TPC information for 
candidate tracks with momentum p < 0.75 GeV/c, whereas TPC and TOF 
information are both required for candidates with p > 0.75 GeV/c. An 
incorrect identification of primary protons occurs in 1% of the cases, 
as evaluated by Monte Carlo simulations.

Direct tracking and identification is not possible for Ξ− and Ω− hyper-
ons and their antiparticles, because they are unstable and decay as a 
result of the weak interaction within a few centimetres after their pro-
duction. The mean decay distances (evaluated as c × τ, where τ is the 
particle lifetime) of Ξ Ξ Λ Λ π π( ¯ ) → ( ¯) + ( )− + − +  and Ω Ω Λ Λ K K( ¯ ) → ( ¯) + ( )− + − +  
are 4.9 and 2.5 cm, respectively57. Both decays are followed by a second 
decay of the unstable Λ Λ( ¯) hyperon, Λ Λ p p π π( ¯) → ( ¯) + ( )− + , with an aver-
age decay path of 7.9 cm (ref. 57). Consequently, pions (π±), kaons (Κ±) 
and protons have to be detected and then combined to search for Ξ Ξ( ¯ )− +

  
and Ω Ω( ¯ )− +

 candidates. Those secondary particles are identified by 
the TPC information in the case of the reconstruction of Ξ Ξ( ¯ )− +

, and in 
the case of Ω Ω( ¯ )− +

 it is additionally required that the secondary protons 
and kaons are identified in the TOF detector. To measure the Ξ Ξ( ¯ )− +

 
and Ω Ω( ¯ )− +

  hyperons, the two successive weak decays need to be recon-
structed. The reconstruction procedure is very similar for both hyper-
ons and is described in detail previously58. Topological selections  
are performed to reduce the combinatorial background, evaluated  
via a fit to the invariant mass distribution.

Determination of the source size
The widths of the Gaussian distributions constituting S(r*), and defin-
ing the source size, are calculated on the basis of the results of the 
analysis of the p–p correlation function in p–p collisions at s = 13 TeV 
by the ALICE collaboration15. Assuming a common source for all 

baryons, its size was studied as a function of the transverse mass of the 
baryon–baryon pair, m k m= ( + )T T

2 2 1/2, where m is the average mass and 
kT = |pT,1 + pT,2|/2 is the transverse momentum of the pair. The source 
size decreases with increasing mass, which could reflect the collective 
evolution of the system. The average transverse mass ⟨mT⟩ for the p–Ξ− 
and p–Ω− pairs differ and are equal to 1.9 GeV/c and 2.2 GeV/c, respec-
tively. To determine the source sizes for these values, the measurement 
from p–p correlations (shown in figure 5 of ref. 15) is parameterized as 
r am c= +b

core T , where rcore denotes the width of the Gaussian distribution 
defining the source before taking into account the effect produced by 
short lived resonances.

In p–p collisions at s = 13 TeV , Ξ− and Ω− baryons are produced 
mostly as primary particles, but about 2/3 of the protons originate from 
the decay of short-lived resonances with a lifetime of a few fm per c.  
As a result, the effective source size of both p–Ξ− and p–Ω− is modified. 
This effect is taken into account by folding the Gaussian source with 
an exponential distribution following the method outlined previously15. 
The resulting source distribution can be characterized by an effective 
Gaussian source radius equal to 1.02 ± 0.05 fm for p–Ξ− pairs and to 
0.95 ± 0.06 fm for p–Ω− pairs. The quoted uncertainties correspond to 
variations of the parametrization of the p–p results according to their 
systematic and statistical uncertainties.

Corrections of the correlation function
The correction factor ξ(k*) accounts for the normalization of the k* 
distribution of pairs from mixed-events, for effects produced by finite 
momentum resolution and for the influence of residual correlations.

The mixed-event distribution, Nmixed(k*), has to be scaled down, 
because the number of pairs available from mixed events is much higher 
than the number of pairs produced in the same collision used  
in Nsame(k*). The normalization parameter N  is chosen such that the 
mean value of the correlation function equals to unity in a region of  
k* values where the effect of final-state interactions are negligible,  
500 < k* < 800 MeV/c.

The finite experimental momentum resolution modifies the meas-
ured correlation functions at most by 8% at low k*. A correction for this 
effect is applied. Resolution effects due to the merging of tracks that 
are very close to each other were evaluated and found to be negligible.

The two measured correlation functions are dominated by the con-
tribution of the interaction between p–Ξ− and p–Ω− pairs. Nevertheless, 
other contributions also influence the measured correlation function. 
They originate either from incorrectly identified particles or from par-
ticles stemming from other weak decays (such as protons from Λ → p + 
π− decays) combined with primary particles. Because weak decays occur 
typically some centimetres away from the collision vertex, there is no 
final-state interaction between their decay products and the primary 
particles of interest. Hence, the resulting correlation function either 
will be completely flat or will carry the residual signature of the interac-
tion between the particles before the decay. A method to determine 
the exact shape and relative yields of the residual correlations has been 
previously developed8,59, and it is used in this analysis. Such contribu-
tions are subtracted from the measured p–Ξ− and p–Ω− correlations 
to obtain the genuine correlation functions. The residual correlation 
stemming from misidentification is evaluated experimentally11 and its 
contribution is also subtracted from the measured correlation function.

The systematic uncertainties associated with the genuine correlation 
function arise from the following sources: (i) the selection of the pro-
ton, Ξ Ξ( ¯ )− +

 and Ω Ω( ¯ )− +
, (ii) the normalization of the mixed-event dis-

tributions, (iii) uncertainties on the residual contributions, and (iv) 
uncertainties due to the finite momentum resolution. To evaluate the 
associated systematic uncertainties: (i) all single-particle and topo-
logical selection criteria are varied with respect to their default values 
and the analysis is repeated for 50 different random combinations of 
such selection criteria so that the maximum change introduced in the 
number of p–Ξ− and p–Ω− pairs is 25% and the changes in the purity of 
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protons, Ξ Ξ( ¯ )− +

 and Ω Ω( ¯ )− +
 are kept below 3%; (ii) the k*-normalization 

range of the mixed-events is varied, and a linear function of k* is also 
used for an alternative normalization which results in an asymmetric 
uncertainty; (iii) the shape of the residual correlations and its relative 
contribution are altered; and (iv) the momentum resolution and the 
used correction method are changed. The total systematic uncertain-
ties associated with the genuine correlation function are maximal at 
low k*, reaching a value of 9% and 8% for p–Ξ− and p–Ω−, respectively.

HAL QCD potentials
Results from calculations by the HAL QCD Collaboration for the p–Ξ−14 
and p–Ω−13 interactions are shown in Figs. 3, 4. Such interactions were 
studied via (2 + 1)-flavor lattice QCD simulations with nearly physical 
quark masses (mπ = 146 MeV/c2).

In Fig. 4, the p–Ξ− and p–Ω− potentials are shown for calculations 
with t/a = 12, with t the Euclidean time and a the lattice spacing of the 
calculations. The HAL QCD Collaboration provided 23 and 20 sets of 
parameters for the description of the shape of the p–Ξ− and p–Ω− poten-
tials, respectively. Such parametrizations result from applying the 
jackknife method, which takes into account the statistical uncertainty 
of the calculations. The width of the curves in Fig. 4 corresponds to 
the maximum variations observed in the potential shape by using the 
different sets of parameters.

To obtain the correlation functions shown in Fig. 3 we consider the 
calculations with t/a = 12, both for p–Ξ− and p–Ω−. The statistical uncer-
tainty of the calculations is evaluated using the jackknife variations, 
and a systematic uncertainty is added in quadrature evaluated by con-
sidering calculations with t/a = 11 and t/a = 13.

Data availability
All data shown in histograms and plots are publicly available on the 
HEPdata repository (https://hepdata.net).

Code availability
The source code used in this study is publicly available under the names 
AliPhysics (https://github.com/alisw/AliPhysics) and AliRoot (https://
github.com/alisw/AliROOT). Further information can be provided by 
the authors upon reasonable request.
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