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Using the available data on deeply virtual Compton scattering (DVCS) off protons and utilizing neural
networks enhanced by the dispersion relation constraint, we determine six out of eight leading Compton
form factors in the valence quark kinematic region. Furthermore, adding recent data on DVCS off neutrons,
we separate contributions of up and down quarks to the dominant form factor, thus paving the way towards
a three-dimensional picture of the nucleon.
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Introduction.—Understanding the structure of hadrons in
terms of their partonic constituents (quarks and gluons) is
one of the preeminent tasks of modern hadron physics.
Over the years, experiments like deep inelastic scattering
(DIS) led to a reasonably accurate knowledge of parton
distribution functions (PDFs), which describe the structure
of the proton in terms of the fraction of its large longitudinal
momentum carried by a quark. The generalization of this
picture from one to three dimensions (including transverse
spatial coordinates) is a major ongoing effort, to which
significant resources of JLab and CERN are dedicated, and
which is a major science case for the future electron-ion
collider (EIC) [1].
Such 3D hadron structure can be encoded in the

generalized parton distributions (GPDs) [2–5], which are
measurable in hard exclusive scattering processes, the most
studied of which is deeply virtual Compton scattering
(DVCS) of a photon with large virtuality Q2 off a proton,
γ�p → γp. The present phenomenological status (see, e.g.,
Refs. [6,7]) does not yet allow a reliable determination of
most GPDs. We are at the intermediate stage where one
aims for related functions—Compton form factors (CFFs),
which (at leading order in 1=Q2) factorize into a con-
volution of GPDs and the known perturbatively calculable
coefficient functions. CFFs thus also describe distributions
of partons, albeit indirectly, while at the same time being
more accessible experimentally. This is completely
analogous to the history of DIS studies, where the extrac-
tion of structure functions preceded the determination
of PDFs.

Since DVCS probes (both the initial virtual and final real
photon) couple to charge, not flavor, to determine the
distributions of particular quark flavors it is necessary
either to use other processes with flavored probes (e.g.,
with meson instead of photon in the final state), or to
combine DVCS measurements with different targets, like
protons and neutrons. The latter method, involving proc-
esses with fewer hadronic states, is less prone to the
influence of low-energy systematic uncertainties, and will
be utilized in this study.
The data on proton DVCS are relatively rich, so it is the

recent complementary neutronDVCSmeasurement by JLab’s
Hall A Collaboration [8] that made the present study possible,
and enabled us to separate the u and d quark contributions to
the leading CFF. The Hall A Collaboration itself also tried
to separate u and d quark flavors in Ref. [8], using the
technique of fitting separately in each kinematic bin, but their
results are somewhat inconclusive having large uncertainties.
Here, we reduce significantly the uncertainties of the extracted
CFFs by (i) performing global fits and (ii) using dispersion
relations (DR), thus imposing additional constraints on CFFs.
To keep our main results model independent, we parametrize
the form factors using neural networks.
We first perform both model and neural net fits to most of

the JLab 6 GeV proton-only DVCS data, demonstrating
how adding DR constraints to the neural net procedure
significantly increases our ability to extract CFFs. We end
up with an extraction of six out of the total eight real and
imaginary parts of leading twist-2 CFFs, including the CFF
E, which is a major research target related to the nucleon
spin structure [4]. Then, we make both model and neural
net fits to JLab’s combined proton and neutron DVCS data.
This enables a clear separation of u and d quark contri-
butions to the leading CFF H.
Methods and data.—To connect the sought structure

functions to the experimental observables, we use the
formulas from Refs. [9,10], giving the fourfold differential
cross section
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d4σλ;Λ
dxBdQ2djtjdϕ

for the leptoproduction of a real photon by scattering a
lepton of helicity λ=2 off a nucleon target with longitudinal
spin Λ=2. DVCS is a part of the leptoproduction amplitude
and is expressed in terms of four complex-valued twist-2
CFFs Hðξ ¼ xB=ð2 − xBÞ; t; Q2Þ, Eðξ; t; Q2Þ, H̃ðξ; t; Q2Þ,
and Ẽðξ; t; Q2Þ. The kinematical variables are squared
momentum transfers from the lepton Q2 and to the nucleon
t, Bjorken xB, and the angle ϕ between the lepton and
photon scattering planes. The dependence of CFFs onQ2 is
perturbatively calculable in QCD and will be suppressed in
what follows.
An important constraint on CFFs is provided by

dispersion relations [11], relating their real and imaginary
parts. For example, for CFF H we have

ReHðξ; tÞ ¼ ΔðtÞ

þ 1

π
P:V:

Z
1

0

dx

�
1

ξ − x
−

1

ξþ x

�
ImHðx; tÞ;

ð1Þ

where ΔðtÞ is a subtraction, constant in ξ, which is up to
an opposite sign the same for H and E, and is zero for
H̃ and Ẽ. This makes it possible to independently model
only the imaginary parts of four CFFs and one subtraction
constant. It is a known feature of any statistical inference
that, with given data, a more constrained model will
generally lead to smaller uncertainties of the results—a
property usually called the bias-variance trade-off. So we
expect that, besides easier modeling, the DR constraint will
result in more precise CFFs. The application of this
constraint to neural network models is the important
technical novelty of the fitting procedure presented here.
Model fit.—Although the main results of this study are

obtained using neural networks, for comparison we also
perform a standard least-squares model fit. We use the
“KM” model parametrization described in Refs. [12,13],
which is of a hybrid type: Flavor-symmetric sea quark and
gluon GPDs are modeled in the conformal-moment space,
evolved in Q2 using leading order (LO) QCD evolution,
convoluted with LO coefficient functions, and added
together to give the total sea CFF. On the other hand,
valence quark GPDs are modeled as functions of momen-
tum fractions, and by essentially modeling only the
imaginary part of the corresponding CFF, where evolution
is neglected. Additionally, ReẼ is modeled by pion pole
exchange, as described in Ref. [14]. Model parameters
were previously fitted to proton-only DVCS data. In this
work we first make a refit of this same model, adding also
the 2017 Hall A proton data to the dataset. The resulting
updated fit, named KM20, is the only model presented in
this Letter which is truly global in the sense that it

successfully describes also the low-xB HERA DVCS data.
Then, focusing on flavor separation, we construct a model
using the same flavor-symmetric sea, but parametrizing
separately u and d valence quark contributions, and fitting
to both proton and neutron DVCS data, where isospin
symmetry is assumed. Since neutron datapoints are few
and coming only from JLab, this flavor-separated fit is
performed only to JLab data because only in this
kinematics there is hope to tell flavors apart. The resulting
flavor-separated fit is named fKM20.
Neural networks fit.—For the neural network approach,

we use the method originally developed by two of us in
Ref. [15], and inspired by a similar procedure for PDF
fitting [16]. CFFs are parametrized as neural networks, with
values at input representing kinematical variables xB and t,
and values at output representing imaginary or real parts of
CFFs. Here we make significant improvements by
adding the possibility of DR constraints, where outputs
represent only imaginary parts, and one network output
represents the subtraction constant ΔðtÞ from (1), see
Fig. 1. The iterative analysis proceeds in several steps.
The network output is used as input for the DR and the
result in turn as input for the cross section formulas. From
comparison with experiment we then obtain the required
correction, which is back propagated to the neural network.
The network parameters are finally adjusted in a standard
cross-validated learning procedure. For this, we modified
the publicly available PyBrain software library [17]. This
DR-constrained neural net fitting procedure was already
applied by one of us recently to the specific study of

FIG. 1. Architecture of neural nets when DR constraints are
used. The main net parametrizes imaginary parts of CFFs, while
the simpler subsidiary net parametrizes the subtraction constant
ΔðtÞ. Real parts are then obtained using DR, Eq. (1). Architec-
tures (number of neurons per layer, starting from the input layer)
of our main nets are ½2 → 13 → 6� (for model NN20), ½2 → 13 →
4� (NNDR20), and ½2 → 11 → 17 → 8� (fNNDR20), while sub-
traction constant nets are ½1 → 3 → 1� (unflavored), ½1 → 5 → 1�
(u quark), and ½1 → 4 → 1� (d quark).
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pressure in the proton [18], but is applied here for the first
time in a more general context.
To propagate experimental uncertainties, we used the

standard method of fitting to several replicas of datasets
[16], generated by Gaussian distributions corresponding to
uncertainties of the measured data. To determine the needed
number of replicas to generate and, consequently, the
number of neural nets to train, we made preliminary
studies with reduced datasets, where we compared the
results obtained with 10 replicas with those obtained with
80 replicas and we found that the variation of results is less
than 5%, which we consider acceptable. Since training of
neural nets with DR constraints is quite slow, due to the
evaluation of a numerical Cauchy principal value integral
[Eq. (1)] in each training step, we opted to generate our
results with 20 replicas for each presented model.
Similar preliminary analyses demonstrated that we do

not need many neurons to successfully describe the data,
most likely due to the CFF functions being quite well
behaved in this kinematics. Actual numbers of neurons in
our nets are given in the caption of Fig. 1.
Preliminary fits using all of the 8 real and imaginary

parts of leading twist-2 CFFs have shown that ReH̃ and
ReẼ are consistent with zero and have negligible influence
on the goodness of fit, i.e., they cannot be extracted from
the present data. This is consistent with findings of
Ref. [19], which used an even larger dataset. Thus, to
simplify the model and further reduce the variance, we
removed these two CFFs and performed all neural network
fits presented below using just the remaining six CFFs.
First, to assess the influence of DR, we made fits to the

proton-only DVCS data using two parametrizations
1. Using neural network parametrization of four imaginary
parts of CFFs and ofReH andReE (i.e., without imposing
DR constraints)—this gives us the model NN20. 2. Using
neural network parametrization of four imaginary parts of

CFFs, and of the subtraction constant, whileReH andReE
are then given by DR (1)—this gives us the model
NNDR20.
After we convinced ourselves that the DR-constrained

neural net parametrization works in the proton-only case,
we made a separate parametrization for two light quark
flavors (essentially doubling everything) and fitted to the
combined proton and neutron DVCS data—this gave us the
model fNNDR20.
Experimental data used.—For the neural network fits we

used the JLab DVCS data listed in Table I. We excluded the
lower-xB HERA data because we wanted to be safe from
any Q2 evolution effects since QCD evolution is not yet
implemented in our neural network framework. Also, in
order to demonstrate flavor separation, it made sense to
restrict ourselves to the particular kinematic region where
the neutron DVCS measurement was performed such that
there is some balance between the proton and neutron data.
The data contain measurements of the unpolarized cross-

section dσ, various beam and target asymmetries defined
via

dσλ;Λ ¼ dσð1þ λALU þ ΛAUL þ λΛALLÞ; ð2Þ

as well as the helicity-dependent cross section
Δσ ≡ dσALU. For consistency with our leading-twist
framework, we removed the data with either Q2 <
1.5 GeV2 or −t > Q2=4. Furthermore, since formulas
[9,10] describe observables as truncated Fourier series in
ϕ, with only one or two terms, we made a Fourier transform
of the data, and fitted only to these first harmonics.
This makes the fitting procedure much more efficient.
We propagated the experimental uncertainties using the
Monte Carlo method, and checked that, indeed, no
harmonics beyond the second one are visible in the data
with any statistical significance.

TABLE I. Values of χ2=npts for presented models and for each set of DVCS measurements with fixed proton or neutron target used in
this study (ϕ-space). First row specifies the number of real independent CFFs plus the number of subtraction constants. Second row
gives total value for all datapoints in actually performed fit (which was just to leading harmonics of Fourier-transformed data—n-space).

Observable npts KM20 NN20 NNDR20 fKM20 fNNDR20

# CFFsþ Δs 3þ 1 6 4þ 1 5þ 2 8þ 2

Total (harmonics) 277 1.3 1.6 1.7 1.7 1.8
CLAS [20] ALU 162 0.9 1.0 1.1 1.2 1.3
CLAS [20] AUL 160 1.5 1.7 1.8 1.8 2.0
CLAS [20] ALL 166 1.3 3.9 0.8 1.1 1.6
CLAS [21] dσ 1014 1.1 1.0 1.2 1.2 1.1
CLAS [21] Δσ 1012 0.9 0.9 1.0 0.9 1.1
Hall A [22] dσ 240 1.2 1.9 1.7 0.9 1.3
Hall A [22] Δσ 358 0.7 0.8 0.8 0.7 0.7
Hall A [23] dσ 450 1.5 1.6 1.7 1.9 2.0
Hall A [23] Δσ 360 1.6 2.2 2.2 1.9 1.7
Hall A [8] dσn 96 1.2 0.9

Total (ϕ-space) 4018 1.1 1.3 1.3 1.2 1.3
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Results and conclusion.—The quality of the fit for each
model is displayed in Table I. Judging this quality by the χ2

values for fits of the above-mentioned Fourier harmonics of
the data (second row of Table I) is problematic, because
propagation of experimental uncertainties to subleading
harmonics is impaired by unknown correlations, see dis-
cussion in Sect. 3.1 of Ref. [7]. We consider the values of χ2

for the published experimental ϕ-dependent data as a better
measure of the actual fit quality. These are displayed in
other rows of Table I. Some particular datasets are
imperfectly described, but total values of χ2=npts of
1.1–1.3 look reasonable and give us confidence that the
resulting CFFs are realistic. Note that the significantly
different number of independent CFFs in our models (see
the first row of Table I) leads to a similar quality of fits. One
concludes that there are some correlations among CFFs.
Some are intrinsic, like the consequence of DR, while some
will be broken with more data, on more observables.
On Fig. 2 we display CFFs for models KM20, NN20,

and NNDR20 obtained from fits to proton-only data. We
observe the power of DR constraints, which lead to reduced
uncertainties of the NNDR20 model in comparison to
NN20, most notably for ImH, ReH, and ImẼ. Mean
values are also shifted for real parts of unpolarized CFFsH
and E, where DR constraints can even change the sign of
the extracted CFFs. (Interestingly, the popular VGG [24]
and GK [25] models have negative ReE, while the fit in
Ref. [26] gives a positiveReE in this region.) ForReH, DR
induce a strong ξ dependence and a clear extraction of this
CFF. It is this particular effect of DR that made recent
attempts at determination of quark pressure distribution in
the proton from the DVCS data possible [18,27]. The DR-
constrained neural net fit NNDR20 is, as is to be expected,
in somewhat better agreement with the model fit KM20

which is also DR constrained. The green bands in the
second row of Fig. 2 constitute the first unbiased extraction
of the important CFF E in this kinematic region.
The CFFs in the NNDR20 model are in broad agreement

with the results of the (also DR-constrained) model fit of
Ref. [26]. One notable exception is the opposite sign of
ImE. As this CFF has the largest uncertainty of the six
displayed, one can hope that with more data the discrep-
ancy will fade. Comparing with CFFs extracted by the
recent global neural network fit of Ref. [19], results agree
within specified uncertainties, with the largest tension now
being observed for ReE. One notes that ReE of Ref. [19]
agrees much better with our fit NN20, which is to be
expected since one is now comparing results of more
similar procedures: both are completely unbiased fits, with
neither using DR constraints.
Turning now to the simultaneous fit to proton and

neutron data, besides in Table I, the quality of the fit
can also be seen in Fig. 3, where the model fit fKM20 and
the DR-constrained neural net fit fNNDR20 are confronted
with Hall A data. The resulting ImH and ReH CFFs,
separately for up and down quarks, are displayed in the
right two panels of Fig. 4, demonstrating how the inclusion
of neutron DVCS data enables a clear flavor separation for
this CFF. For other CFFs, there is no visible separation.
The separated up and down quark CFFs have much

larger uncertainties than their sum, shown in the left panels
of Fig. 4, and although there are some hints of different t
slopes, at this level we are not yet able to address the

FIG. 2. Extraction of CFFs (at Q2 ¼ 4 and t ¼ −0.2 GeV2) by
three fits to JLab proton DVCS data. KM20 is model para-
metrization, NN20 is standard neural network parametrization,
while NNDR20 additionally includes DR constraints. ImE and
ImẼ are zero in the KM20 model by construction. FIG. 3. Model fit fKM20 (black solid line) and neural network

fit fNNDR20 (hatched green band) in comparison to Hall A
DVCS data on proton (red circles) and neutron (blue squares)
cross sections (upper two panels) and first cosine Fourier
harmonics of cross sections (lower two panels), for xB ¼ 0.36,
Q2 ¼ 1.75 GeV2, and two beam energies, E ¼ 4.45 (left) and
E ¼ 5.55 GeV (right).
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question of possible different spatial distributions of up and
down quarks in the nucleon.
To conclude, we have used JLab DVCS data to make

both a model-dependent and an unbiased neural net
extraction of six Compton form factors, where constraints
by dispersion relations proved valuable. Furthermore, in the
case of the dominant CFF H, we have successfully
separated the contributions of up and down quarks. This
constitutes another step towards a full three-dimensional
picture of the nucleon structure.
In the interest of open and reproducible research, the

computer code used in the production of numerical results
and plots for this Letter is made available in Ref. [28].
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FIG. 4. CFF H extracted (at Q2 ¼ 4 GeV2 and xB ¼ 0.36)
from neural network fit to proton-only DVCS data (left).
Separation of u (red band) and d (blue band) quark CFF H
resulting from neural network fit to proton and neutron JLab
DVCS data (right), where H ¼ ð4Hu þHdÞ=9. Red solid (un-
flavored), black solid (u), and dashed (d) lines correspond to an
analogous least-squares model fit to the same data.
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