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DOKTORSKI RAD

Mentor:
prof. dr. sc. Nils Paar

Zagreb, 2023



Supervisor information

Nils Paar graduated physics study programme (Mag. phys.) at the Faculty of Science (PMF) of the
University of Zagreb in 1998. From 2000 to 2003, he was a doctoral student at the Physik Depart-
ment, Technische Universitaet Muenchen, Germany, where he defended his doctoral dissertation in
theoretical nuclear physics in 2003, and obtained the academic title of Doctor rerum naturalium.
From 2003 to 2006, he was postdoctoral researcher at the Institut fuer Kernphysik, Technische Uni-
versitaet Darmstadt, Germany. After returning to Croatia, he worked as an assistant professor (until
2008), associate professor (until 2013) and full professor (until today) at the Department of Physics,
Faculty of Science of the University of Zagreb. In academic year 2014/2015 he was a Marie Curie
research fellow at the Departement Physik, Universität Basel, Switzerland. Most of the scientific
activity of Prof. Paar is in development and application of nuclear theory, especially for (1) non-
linear phenomena in the vibrations of the atomic nucleus, (2) exotic excitations in unstable atomic
nuclei, (3) weak interaction processes in supernova evolution, (4) neutrino-nucleus interaction, and
(5) symmetry energy and neutron star properties. He is the author and co-author of 134 scientific
publications, of which 88 original scientific papers were published in international peer-reviewed
scientific journals, cited more than 3900 times according to the ISI Web of Science. He actively
participated in international scientific conferences, workshops and schools, where he delivered 64
lectures, of which 33 were invited lectures. He was the leader of a number of competitive scientific
research projects and mentor to numerous students on graduate and doctoral studies in physics, as
well as postdoctoral researchers and visiting scientists from abroad. He received the state award for
science for a significant scientific achievement in physics for 2017.



Acknowledgements

I am deeply grateful to my supervisor, Prof. Nils Paar, for his support throughout my PhD work.
He provided excellent guidance, numerous comments, and ideas that helped me to develop as a
researcher.

I thank Prof. Tamara Nikšić, who has always found time for our discussions. Her guidance has
helped me to accomplish much of the work.

Continuous support by Prof. Esra Yüksel is gratefully acknowledged. Her comments, correc-
tions, and work on our models and publications have immensely helped. She was also an excellent
host during my stay in Istanbul on two occasions. Thanks to Prof. Yifei Niu for inviting me
to her research group in Lanzhou, China. Without her support throughout my PhD study, my
understanding of the nuclear structure theory wouldn’t be at the same level.

Furthermore, thanks to Prof. Remco Zegers and Prof. WitekNazarewicz for their support during
my stay at Michigan State University. I am also grateful for the discussions with Simon Giraud and
Sylvester Agbemava. I thank Evan Ney for numerous discussions on the finite-temperature QRPA.

Part of the deformed FT-pnRQRPA was completed during my visit to GSI in Darmstadt, for
whose support I am thankful to Prof. Gabriel Martínez-Pinedo. Thanks to Diana and Luis for all
the discussions and fun we had.

I thank all my collaborators, Prof. Gianluca Colò, Prof. Elias Khan, Prof. Peter Ring, Prof. John
Engel, Dr. Tomohiro Oishi, and others, for their contributions to our published (and soon-to-be)
papers.

Special thanks to my office colleagues from F28, Ana, Lucija, Marija, Ivan, and Domagoj, on
our "trač" parties. Also, to my friends from Ruđer, Nikola, Luka, Tea, Josipa, Neven, Igor, Deša,
Isabela, and Margareta, thank you for all the coffee and cakes!

My mother Marijana and father Dobroslav deserve a special mention in this thesis. Thank you
for everything! Just a few more postdocs and I can probably stand on my own feet.

And last, I am very grateful to have shared my PhD journey with Ivana. She celebrated with me
when the code was working, comforted me when it wasn’t, and helped to nurture my passion for
science.

This work is supported by the QuantiXLie Centre of Excellence, a project co-financed by the
Croatian Government and European Union through the European Regional Development Fund, the
Competitiveness and Cohesion Operational Programme (KK.01.1.1.01.0004).



Abstract
The processes mediated by the weak interaction have significant implications in nuclear physics,
astrophysics, and particle physics. In particular, the electron capture (EC) plays a prominent role
in driving the dynamics of core-collapse supernovae, while the β-decay determines the time scale
of the nuclear r-process. Both processes are influenced by the underlying nuclear structure through
the spin-isospin excitations and the associated resonances. The main aim of this work is to establish
a theoretical framework for obtaining the spin-isospin transition strength at finite temperature and
its extension to the description of stellar electron capture and β-decay. The nuclear ground state
at finite temperature is determined by solving either the relativistic Hartree-Bogoliubov (FT-RHB)
or Hartree Baarden-Cooper-Schrieffer (FT-HBCS) equations, while the relativistic quasiparticle
random-phase approximation (FT-pnRQRPA) in the charge-exchange channel is developed to deter-
mine the excited states. The new theoretical approach combines the effects of nuclear pairing, finite
temperature, and deformation. The limits of nuclear stability (drip lines) for hot nuclei are studied
within the FT-RHB supplemented with the subtraction of continuum. Investigated spin-isospin
excitations include the Fermi and Gamow-Teller (GT) transitions. While the Fermi transitions dis-
play one resonance peak independent of temperature and deformation, the GT transition strength
has a much richer structure, more sensitive to the temperature and deformation effects. When
considering the spherically symmetric nuclei, the GT strength separates into a low-lying, and a
resonance region, as exemplified for even-even tin isotopes. However, the deformation effects lead
to a substantial fragmentation of the GT transition strength, as demonstrated for selected pf -shell
nuclei, exhibiting a crucial role of the nuclear shape. Results are presented for the EC rates of
nuclei near the N = 50 shell closure, with subsequent implications for the supernovae simulations.
The large-scale β-decay rate calculations are shown for even-even nuclei in the range 8 ≤ Z ≤ 82,
displaying how the β-decay half-lives change with temperature and stellar density. Our study high-
lights the complex interplay between temperature, nuclear pairing, and deformation effects with
subsequent implications forweak-interaction rates and their implementation in astrophysicalmodels.

Keywords: relativistic energy density functionals, weak-interaction rates, electron capture, core-
collapse supernovae, β-decay, nuclear pairing, hot nuclei, nuclear deformation, drip lines



Prošireni sažetak

Procesi posredovani slabom nuklearnom silom su od velike važnosti za nuklearnu fiziku, kao i fiziku
elementarnih čestica te astrofiziku. Takvi procesi primarno uključuju uhvat elektrona, β-raspade
te reakcije između neutrina i jezgre. Uhvat elektrona (EC) ima ključnu ulogu u evoluciji supernovi
sa kolapsirajućom sredicom (CCSNe) odnosno kraja života masivnih zvijezda uzrokovanog pro-
padanjem materijala iz vanjskih slojeva na kompaktnu sredicu zvijezde [1–3]. Evolucija CCSNe
uglavnom ovisi o dva parametra: (i) omjeru broja elektrona i bariona (Ye) te (ii) entropiji sredice.
Reakcije uhvata elektrona uklanjaju dostupne elektrone iz sustava te smanjuju Ye, dok izlazni ne-
utrini iznose entropiju iz sredice. Sredica masivne zvijezde se nalazi u delikatnoj ravnoteži između
tlaka degeneriranog elektronskog plina i gravitacijskog privlačenja, sve dok joj masa ne dosegne
Chandrasekharovu masuMch. U tom trenutku tlak degeneracije se više ne može oduprijeti gravita-
cijskom privlačenju i vanjski slojevi zvijezde propadaju na sredicu. Oni se zatim gotovo elastično
odbijaju od sredice, koja ima gustoću sličnu gustoći nuklearne materije oko saturacije, i raspršuju u
Svemir [1,2]. Ovisno o stopama uhvata elektrona mijenjat će se važni parametri koji određuju dina-
miku kolapsa pa i same opservable kao što su masa nastale protoneutronske zvijezde te luminozitet
izračenih neutrina [1,2]. S druge strane, tijekom razvoja zvijezde pred kolaps supernove, β-raspadi
se mogu natjecati s uhvatom elektrona, budući da imaju podjednake vjerojatnosti odvijanja [3, 4].
No kako se evolucija zvijezde nastavlja i gustoća postaje sve veća, fazni prostor β-raspada postaje
značajno potisnutiji u odnosu na uhvat elektrona. S druge strane, na znatno nižim temperaturama,
β-raspadi sudjeluju u stvaranju atomskih jezgara kroz brzi proces uhvata neutrona (r-proces) [5–7].
U nizu (n, γ) reakcija u uvjetima gdje su gustoće neutrona 1020 g/cm3 a temperature blizu mi-
lijardu kelvina nastaju neutronski bogate jezgre. Jednom kada vremenska skala uhvata neutrona
bude usporediva s vremenom poluživota β-raspada, jezgra se raspada i r-proces nastavlja u novom
izotopnom lancu. Zbog toga se obično kaže da β-raspadi određuju vremensku skalu r-procesa.

Teorijski opis atomske jezgre je zahtjevam pothvat, budući da se opis njezinih konstituenata
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zasniva na teoriji kvantne kromodinamike (QCD). Na energetskoj skali nuklearnih procesa QCD
je neperturbativna teorija što značajno otežava teorijske račune složenijih višečestičnih sustava.
Stoga, danas postoje tri glavne teorijske metode. Prva su ab-initio modeli koji kreću od simetrija
QCD-a da napišu najopćenitiji Hamiltonijan nukleon-nukleon interakcije, a zatim rješavaju kom-
pliciranu višečestičnu Schrödingerovu jednadžbu [8–10]. Iako takvi modeli imaju značajan uspjeh
u opisu nuklearne strukture lakih atomskih jezgara, jako komplicirane jednadžbe onemogućavaju
primjenu ab-initio metoda na teže jezgre bez ozbiljnijeg smanjivanja konfiguracijskog prostora. S
druge strane, imamo nuklearni model ljusaka koji se zasniva na teoriji srednjeg polja [11]. Naime,
umjesto da gledamo ukupni potencijal kojeg generiraju svi nukleoni zasebno, možemo zamisliti
da se jedan nukleon nalazi u efektivnom potencijalu (srednjem polju) kojeg generiraju svi ostali
nukleoni. No, za detaljniji opis svojstava atomskih jezgara potrebno je Hamiltonijanu dodati i
članove međudjelovanja koji značajno povećavaju dimenziju problema. Iako su se razvili nume-
rički algoritmi koji omogućavaju dijagonalizaciju jako velikih matrica (reda 109), nuklearni model
ljusaka je primjenjiv na jezgre do A ∼ 80. Vjerojatno najekonomičniji model gledano s numeričke
strane se zasniva na teoriji nuklearnog energetskog funkcionala gustoće (EDF) [12]. Teorija se
zasniva na slici nukleona u srednjem polju a dodatne korelacije dolaze kroz samosuglasno rje-
šavanje odgovarajućih jednadžbi gibanja. Teorija energetskih funkcionala gustoće (DFT) je prvi
put korištena u fizici čvrstog stanja, zbog komplicirane strukture ne-lokalnog Fockovog člana, u
do tada primarno zastupljenoj Hartree-Fock aproksimaciji. Temelji se na teoremima Hohenberga
i Kohna [13] koji su dokazali da postoji funkcional gustoće E[ρ] koji je funkcija gustoće ρ, tako
da njegova varijacija daje gustoću osnovnog stanja sustava. U fizici čvrstog stanja moguće je
konstruirati egzaktni funkcional gustoće, budući da je interakcija kulonska. No u nuklearnoj fi-
zici još nije moguće konstruirati funkcional gustoće krenuvši od nukleon-nukleon interakcije [14].
Stoga, funkcionali gustoće u nuklearnoj fizici su fenomenološki, što znači da se nepoznati parametri
funkcionala određuju prilagodbom na eksperimentalne podatke. Postoje dva glavna tipa funkci-
onala gustoće u nuklearnoj fizici, to su relativistički i nerelativistički funkcionali. Nerelativistički
funkcionali su zapisani pomoću jednočestičnih gustoća i struja, pri čemu zadovoljavaju općenite
simetrije nukleon-nukleon interakcije [12]. S druge strane relativistički funkcionali poštuju načela
Lorentz invarijantnosti [15,16]. Formulirani su preko gustoće Lagrangiana i sastoje se od Diracovih
spinora, koji omogućuju vezanje prostornih i spinskih komponenti valne funkcije. Bazirani su na
teoriji kvantne hadrodinamike (QHD) koja pretpostavlja da su nukleoni točkaste Diracove čestice
koje međudjeluju izmjenom mezona, poput izoskalarnog-skalarnog σ, izoskalarnog-vektorskog ω
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i izovektorskog-vektorskog ρ mezona, zajedno s elektromagnetskim poljem [17,18]. Teorija relati-
vističkog srednjeg polja (RMF) se zasniva na razmatranju očekivanih vrijednosti mezonskih polja u
osnovnom stanju jezgre, čime ona postaju klasična polja opisana odgovarajućim Klein-Gordonovim
jednadžbama. Kako bi se postigao zadovoljavajući opis svojstava konačnih jezgara i nuklearne ma-
terije, potrebno je dodati nelinearne članove u gustoću Lagrangiana ili pretpostaviti vezanja ovisna
o gustoći [15,18]. Ovisnost o gustoći se može parametrizirati na fenomenološki način ili temeljeno
na Dirac-Brueckner Hartree-Fock računima [15]. Primjerice, verzija relativističkog funkcionala
gustoće sa izmjenom mezona i vezanjima ovisnima o gustoći, s DD-ME2 parametrizacijom, ko-
rištena je za račun svojstava osnovnog i pobuđenih stanja jezgara duž karte nuklida [19]. Drugu
kategoriju funkcionala gustoće čine oni s točkastom interakcijom (PC), a dobiveni su razvijanjem
mezonskih propagatora po odgovarajućim masama mezona [15]. Sastoje se od razvoja po bilinear-
nim kovarijantama Diracovog polja. Efekti nuklearnog medija se mogu uzeti u obzir ili kroz članove
višeg reda ili vezanjima ovisnima o gustoći (DD-PC) [15,16]. Najpoznatija parametrizacija DD-PC
funkcionala je DD-PC1 [20]. Nedavno je razvijena i DD-PCX parametrizacija za čiju su prilagodbu
osim svojstava osnovnog stanja jezgara korištena i pobuđena stanja [21]. Postoje i drugi tipovi
relativističkih funkcionala kao što su oni s derivativnim vezanjima (DC), od kojih je najpoznatiji
D3C funkcional [22]. Kako bi se razmatrale jezgre s otvorenim ljuskama potrebno je uključiti i
nuklearnu interakciju sparivanja. Transformiranjem jednočestične baze u RMF teoriji u kvazičes-
tičnu pomoću Bogoljubovljeve transformacije dobivamo relativističku Hartree-Bogoliubov (RHB)
teoriju [23]. Zahvaljujući dobrom vezanju sa stanjima u kontinuumu, ona se može primijeniti na
sve vezane jezgre, od doline stabilnosti pa sve do linija kapanja [23, 24]. U dijagonalnoj aproksi-
maciji, pri čemu Bogoljubovljeve matrice postaju realni brojevi, RHB teorija se svodi na Hartree
Bardeen-Cooper-Schrieffer (HBCS) teoriju [24]. Njihova proširenja na konačnu temperaturu se
nazivaju FT-RHB, odnosno FT-HBCS [25].

Pobuđena stanja jezgre možemo odrediti razmatranjem njenog odziva u vremenski ovisnom
vanjskom polju. Jednadžbe koje opisuju vremensku evoluciju nuklearne gustoće se nazivaju
vremenski-ovisne Hartree-Fock (TDHF) jednadžbe. Ako pretpostavimo harmoničnu vremensku
ovisnost nuklearne gustoće i napravimo razvoj TDHF jednadžbe do linearnih članova u gustoći,
izvodimo jednadžbe aproksimacije nasumičnih faza (RPA) [26]. Osim što razmatra doprinose
nuklearnog srednjeg polja, RPA uzima u obzir i dvočestičnu rezidualnu interakciju. Krenuvši od
potencijala srednjeg polja, pobuđena stanja se mogu konstruirati djelovanjem RPA fononskog ope-
ratora koji se sastoji od čestica-šupljina pobuđenja. U formalizmu funkcionala gustoće, rezidualna
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interakcija se može izvesti konzistentno iz samog funkcionala, kao druga derivacija funkcionala po
matrici gustoće [27]. Koristeći relativistički EDF izvodimo relativističku RPA (RRPA). Generaliza-
cija RRPA na kvazičestična pobuđenja se naziva kvazičestična RRPA (RQRPA) [26]. Ona se može
primijeniti na pobuđenja unutar iste jezgre ili u kanalu izmjene naboja (engl. charge-exchange), pri
čemu govorimo o proton-neutron RQRPA (pnRQRPA) [27, 28].

Spinsko-izospinska pobuđenja su kolektivni vibracijski modovi koji povezuju prijelaze između
različitih nabojnih stanja jezgara, pri čemu je ukupni spin (S), izospin (T ), angularni moment
(J). Najpoznatija spinsko-izospinska gigantska rezonancija je Gamow-Teller (GT), koja predstavlja
pobuđenje s Jπ = 1+ između (Z,N) i (Z±1, N∓1) jezgara, a eksperimentalno je prvi put otkrivena
kao potpis u udarnom presjeku reakcija izmjene naboja poput (p, n) [29]. Osim što svojstva spinsko-
izospinskih pobuđenja opisuju izovektorske članove NN interakcije, kao i nuklearnu energiju
simetrije, njihova snaga određuje stope procesa posredovanih slabom silom, poput uhvata elektrona
ili β-raspada [3].

Glavni cilj ovog doktorskog rada je razviti teorijski okvir za proučavanje procesa posredova-
nih slabom silom u ekstremnim astrofizičkim okruženjima. U tu svrhu teorijski model mora (i)
sadržavati efekte konačne temperature, (ii) pravilno tretirati doprinose čestičnog kontinuuma, (iii)
pravilno interpretirati različite tipove prijelaza na konačnoj temperaturi, poput de-ekscitacija te (iv)
obuhvatiti važne efekte poput nuklearne interakcije sparivanja i deformacija.

Kao prvi korak prema ovom cilju, u poglavlju 3 razvili smo pnRQRPA u formalizmu linearnog
odziva na konačnoj temperaturi (FT-pnRQRPA) pretpostavljajući sferične jezgre [30]. Formalizam
linearnog odziva se zasniva na rješavanju Bethe-Salpeter jednadžbe koja određuje nuklearni odziv
i rješava se inverzijom. Glavna prednost našeg modela je njegova numerička kompaktnost i brzina
izvođenja računa. Naime, umjesto u konfiguracijskom prostoru kvazičestičnih pobuđenja, funkciju
odziva smo definirali u koordinatnom prostoru pomoću separabilnih kanala interakcije. Takva defi-
nicija vrijedi ako se rezidualna interakcija može napisati kao suma produkata separabilnih članova,
što je ispunjeno za relativističke točkaste interakcije. U reduciranom koordinatnom prostoru, di-
menzija problema je znatno manja, što znači da je i odgovarajuća Bethe-Salpeter jednadžba manje
zahtjevna za riješiti. Razvijeni model se temelji na funkcionalima s točkastim interakcijama poput
DD-PC1 i DD-PCX. U kanalu sparivanja pretpostavljamo separabilnu interakciju sparivanja, koja
ima isti oblik u izovektorskom (T = 1) i izoskalarnom (T = 0) kanalu. Snaga izoskalarne interak-
cije sparivanja nije određena na razini osnovnog stanja jezgre, stoga smo ju fiksirali na V is = 1.5,
što daje zadovoljavajući opis eksperimentalno određenih svojstava spinsko-izospinskih pobuđenja.
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Izračune evolucije spinsko-izospinskih pobuđenja o temperaturi primijenili smo na parno-parne
izotope kositra u intervalu temperature T = 0–1.5 MeV. Pokazali smo da je Fermi funkcija snage
gotovo neovisna o temperaturi i locirana u jednom vrhu rezonancije za sve razmatrane temperature.
S druge strane, GT funkcija snage ima znatno kompliciraniju strukturu, pri čemu je snaga uglavnom
raspodijeljena u dva vrha. Onaj na višim energijama predstavlja GT rezonanciju (GTR), dok je
niskoenergetski vrh posljedica jake spin-orbit interakcije u jezgrama. Efekti temperature su jasno
uočljivi u izotopima poput 120Sn i 124Sn gdje dolazi do fragmentacije GTR na niskim temperatu-
rama. Povećanjem temperature na T = 0.9 MeV fragmentacija nestaje. Glavni efekt temperature
u razmatranim izotopima kositra je redukcija snage korelacija sparivanja koja iščezava na T pc ∼ 1

MeV. Usporedbom s eksperimentalno izmjerenom GT snagom u 112Sn, 116Sn i 132Sn dobivamo
slaganje centroida energije unutar 2 MeV.

Koristeći matrični FT-pnRQRPA baziran na FT-HBCS u poglavlju 4, napravili smo izračune
stopa uhvata elektrona na konačnoj temperaturi. Po prvi put, zajedno s efektima temperature, uklju-
čili smo efekte nuklearne interakcije sparivanja unutar relativističkog formalizma [31,32]. Prvo smo
predstavili teorijski formalizam uhvata elektrona u tzv. dozvoljenoj aproksimaciji (engl. allowed
approximation) gdje imamo doprinos samo GT prijelaza. Osim što model predviđa postojanje
prijelaza između osnovnog stanja početne i konačne jezgre, na konačnoj temperaturi možemo imati
i prijelaze između pobuđenih stanja. Posebna vrsta prijelaza su oni koji dolaze s negativnom ener-
gijom prijelaza, tzv. de-ekscitacije. Napravljeni su izračuni stopa uhvata u 78Ni u temperaturnom
rasponu do 20 GK i relevantnom rasponu gustoća karakterističnih prije eksplozije supernove. Kod
neutronski bogatih jezgara poput 78Ni, de-ekscitacije čine glavni doprinos stopama uhvata. Model
smo nadogradili koristeći sofisticiraniju teoriju baziranu na struja-struja interakciji koja osim do-
zvoljenih uključuje i prve zabranjene prijelaze, zajedno s članovima ovisnima o prijenosu impulsa.
Usporedbom s drugim teorijskim modelima dobili smo zadovoljavajuće rezultate. Model koji smo
primijenili na globalne izračune zasniva se na D3C∗ interakciji s Gogny interakcijom sparivanja
u pp kanalu. Snaga sparivanja u osnovnom stanju Vpair određena je s obzirom na empirijske ras-
cjepe sparivanja (engl. pairing gaps). U izoskalarnom kanalu rezidualne pp interakcije koristimo
sličan oblik interakcije (suma dva Gaussijana) čija je snaga V is određena iz globalne prilagobne
na eksperimentalna vremena poluživota β-raspada. Model smo primijenili na račun stopa uhvata
jezgara u okolini N = 50 zatvorene ljuske, koje su od velikog značaja za dinamiku CCSN [33].
Izračuni iz našeg relativističkog modela, zajedno s odgovarajućim nerelativističkim modelom su
za 86Kr uspoređeni s GT+ snagom dobivenom iz modela ljusaka. Iako modeli bazirani na RPA
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ne mogu reproducirati gustoću stanja iz modela ljusaka, opći trendovi funkcije snage pokazuju
zadovoljavajuće slaganje između različitih modela. Stope uhvata smo iskoristili kao ulazne para-
metre za 1D simulaciju eksplozije CCSNe. Važne opservable, poput evolucije Ye s gustoćom ρ,
vršni luminozitet neutrina te masa sredice u trenutku eksplozije, pokazuju odlično slaganje između
našeg relativističkog i nerelativističkog modela. Takav rezultat nas vodi na zaključak da su glavne
korelacije u stopama uhvata elektrona dobro obuhvaćene unutar novo-razvijenih modela. To znači
da su neodređenosti koje dolaze od modeliranja uhvata elektrona dobro ograničene. Naš relativis-
tički pristup još uključuje i prve zabranjene prijelaze te smo pokazali da oni dovode do značajnijih
promjena u opservablama supernova, primarno tako da povećavaju ukupne stope uhvata.

Nadalje, FT-HBCS+FT-pnRQRPA formalizam primijenili smo na račun β-raspada ovisan o
temperaturi u zvijezdama u poglavlju 5. Na niskim temperaturama i gustoćama, usporedbom
rezultata vremena poluživota s eksperimentalnim podacima, zaključili smo da naš model može
dobro reproducirati eksperimentalne rezultate. Izračunali smo evoluciju vremena poluživota β-
raspada o temperaturi do T = 1.5 MeV, pri čemu smo pokazali da se vremena poluživota sustavno
smanjuju s povećanjem temperature [34]. One jezgre koje imaju duga vremena poluživota na
niskim temperaturama pokazuju najveće smanjenje. Takve jezgre se nalaze duž doline stabilnosti
i oko zatvorenih ljusaka. S druge strane, jezgre koje imaju kratka vremena poluživota na niskim
temperaturama, ne pokazuju značajne promjene s povećanjem temperature. Povećavanjem produkta
zvjezdane gustoće i omjera broja elektrona i bariona ρYe demonstrirali smo značajan porast vremena
poluživota, koji primarno dolazi od reduciranja dostupnog faznog prostora za izlazne leptone.
Konačno, napravili smo globalni račun vremena poluživota β-raspada za parno-parne jezgre 8 ≤
Z ≤ 82 za T = 5 GK i 10 GK pri ρYe = 107 g/cm3 i ρYe = 109 g/cm3, koji je od značaja za razne
astrofizičke simulacije.

U poglavlju 6 proširujemo naša razmatranja na deformirane jezgre. Točnije ograničavamo se na
aksijalnu deformaciju, kakvu pokazuje većina deformiranih jezgara. Prvo smo proširili RHB teoriju
tako da obuhvaća i konačnu temperaturu (FT-RHB), a zatim smo implementirali Bonche-Levit-
Vautherin (BLV) metodu suptrakcije kontinuuma [35–37]. Jednom kada se temperatura uključi u
RHB račun, nukleoni se raspršuju iznad Fermijevog nivoa, a diktirano Fermi-Diracovom raspodje-
lom. Ako razmatramo slabo vezane jezgre (u blizini linija kapanja), čak i na niskim temperaturama
može doći do slučaja gdje stanja u čestičnom kontinuumu (εi > 0) imaju neiščezavajuće zauzeće
stanja (v2

i > 0). To dovodi do velikog problema, budući da je naša FT-RHB implementacija (kao
i velika većina drugih) bazirana na razvoju Diracovih spinora u valne funkcije harmoničkog os-
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cilatora. One nemaju dobro asimptotsko ponašanje valnih funkcija, što dovodi do krivog profila
vektorske gustoće na većim udaljenostima od jezgre. Konkretno, javlja se doprinos nukleonskog
plina, koji uzrokuje da naši rezultati ne konvergiraju s povećanjem baze (broja oscilatorskih lju-
saka). Demonstrirali smo da BLV metoda dovodi do uklanjanja doprinosa nukleonskog plina i
dobre konvergencije. Štoviše, opravdali smo korištenje oscilatorske baze unutar BLV metode uspo-
redbom rezultata s odgovarajućom implementacijom u koordinatnoj bazi. Napravljeni su globalni
računi svojstava jezgara u rasponu 8 ≤ Z ≤ 104 na temperaturama do 2 MeV, koristeći različite
relativističke funkcionale gustoće. Zaključili smo da povećanje temperature dovodi do (i) smanji-
vanja utjecaja korelacija sparivanja, (ii) faznog prijelaza pri čemu jezgre prelaze iz deformiranog u
sferično stanje, (iii) iščezavanja magičnih brojeva i strukture ljusaka u jezgrama. Ovo posljednje
dovodi do značajnih promjena u neutronskoj liniji kapanja s povećanjem temperature, pri čemu broj
vezanih jezgara raste.

Kako bismo proučili utjecaj deformacije na pobuđena stanja jezgara razvili smo aksijalno-
deformirani FT-pnRQRPA u formalizmu linearnog odziva. Iako sličan onome prezentiranom u
poglavlju 7, razmatranje aksijalno-deformiranih jezgara zahtijeva važne promjene. Prvo, ukupni
angularni moment J nije više dobar kvantni broj. No njegova projekcija na z-os, Jz ≡ K, je
sačuvana. Ako pretpostavimo sačuvanje pariteta, i simetriju s obzirom na vremenski obrat, slijedi
da je FT-pnRQRPA blok dijagonalna u Kπ blokovima. Nadalje, broj separabilnih kanala koje
treba uključiti u reduciranu odzivnu funkciju je znatno veći, budući da osim integracije u r smjeru,
imamo i integraciju u z smjeru. Naš model smo primijenili na račun Fermi i GT funkcije snage,
odnosno spinsko-izospinskih pobuđenja. Pokazali smo da je Fermi funkcija snage neovisna o
deformaciji, dok GT funkcija snage pokazuje značajne promjene, prvenstveno fragmentaciju. Prvo,
zanemarujući efekte temperature, napravili smo izračune GT+ snage u jezgrama pf -ljuske gdje su
dostupni eksperimentalni podaci o distribuciji funkcije snage. Usporedbom sa sferičnim pnRQRPA
računom, pokazali smo da razmatranje efekata deformacije dovodi do značajno boljeg slaganja
između teorijskih izračuna i eksperimenta. Izračunali smo GT− funkciju snage za 58,60,62Fe te za
različite oblike jezgre dobivene RHB računom s kvadrupolnim ograničenjem (engl. constrained
RHB). Oblik jezgre značajno utječe na izgled GT− funkcije snage. Proširili smo naše istraživanje na
konačnu temperaturu u rasponu do T = 2 MeV te istražili utjecaj na GT+ pobuđenja za 56Fe. Račun
za sfernu konfiguraciju ne pokazuje značajne promjene u funkciji snage s rastom temperature —
ona je koncentrirana u jedan rezonantni vrh. Deformirani FT-pnRQRPA račun pokazuje značajne
promjene već na T = 0.5 MeV. Znatno bogatija struktura GT+ snage u deformiranom slučaju
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je osjetljivija na manje promjene u temperaturi. Konačno, istražili smo kako deformacija utječe
na vremena poluživota β-raspada. Oni su osjetljivi samo na uski raspon niskoležeće GT− snage
koja može doprinositi β-raspadu (Qβ prozor). Deformirana jezgra ima znatno veću gustoću stanja
od sferične jezgre što dovodi do više prijelaza u Qβ prozoru. Naime, različite K projekcije u
sferičnoj jezgri su međusobno degenerirane, dok u deformiranim jezgrama imamo razdvajanje
K = 0 i K = 1 modova. Smjer tog razdvajanja (koji mod ide na višu energiju a koji na nižu)
ovisi o geometriji jezgre. U svakom slučaju, deformacija dovodi do sustavnog smanjenja vremena
poluživota β-raspada u odnosu na sferični pnRQRPA. Efekt smanjenja vremena poluživota zbog
deformacije može biti veći od reda veličine. Takav zaključak vodi na potrebno smanjenje vrijednosti
snage izoskalarne interakcije sparivanja V is u odnosu na sferične račune.

Novorazvijeni teorijski formalizam u okviru ove doktorske disertacije uključuje efekte konačne
temperature, nuklearne interakcije sparivanja te deformacije, čija međuigra može dovesti do novih
i zanimljivih rezultata koji do sada nisu uočeni. Štoviše, sustavnim izračunima stopa uhvata elek-
trona duž karte nuklida i njihovom primjenom na simulacije supernovi s kolapsirajućom sredicom,
napravili bismo prvo takvo istraživanje, gdje su sve jezgre izračunate koristeći jedan, samosuglasan
model. Takvi rezultati bi bili od velikog značaja za nuklearnu astrofiziku. Utjecaj deformacije na
β-raspade planiramo razmotriti u okviru simulacija nuklearnog r-procesa, što bi činilo direktnu
poveznicu između našeg teorijskog modela i zastupljenosti kemijskih elementa u Svemiru.

Ključne riječi: relativistički energetski funkcionali gustoće, stope reakcija slabom silom, uhvat
elektrona, supernove s kolapsirajućom sredicom, β-raspad, nuklearna interakcija sparivanja, vruće
jezgre, nuklearna deformacija, linije kapanja
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Chapter 1

Introduction

The early attempts in understanding the nuclear structure date back to 1930s when C.F. Weizsäcker
[38] andH.A. Bethe [39] postulated that nucleus can be described as a drop of incompressible liquid.
They assumed that the total binding energy of the nucleus increases with its size (the volume term)
and decreases proportional to its surface, and Coulomb repulsion between protons. In addition, one
has to add the so called asymmetry term, which tells us that nucleus prefers states where the number
of protons is close to the number of neutrons, as well as the pairing term which describes the odd-
even staggering in nuclear masses [40, 41]. The latter two terms are purely quantal and stem from
the fact that nucleons are fermions, and that nucleus is a superfluid system. By adjusting parameters
of the liquid drop model to the available experimental data on nuclear masses, the first nuclear
structure model was devised, able to extrapolate to the masses of yet unknown nuclei. However, it
was noticed that such a model has large discrepancies between the predicted and measured masses
of nuclei with specific number of protons and neutrons, corresponding to 8,20,28,50,82,..., which
are called the magic numbers. To understand the occurrence of magic numbers, nuclear physicists
had to establish a new theoretical model, taking into account correlations that go beyond the simple
assumption that nucleus is a semi-classical liquid drop. One can imagine nucleus as a system of
nucleons where each nucleon is thought of as being in an external field produced by the other
nucleons around it. This means that a complex problem of solving a many-body Schrödinger
equation forN nucleons was reformulated as solvingN Schrödinger equations for only one nucleon
in an external field. These kinds of models are called the mean-field models. Of course, one could
go on and solve the many-body Schrödinger equation, but even if one could handle the complicated
equations that resulted, the form of the underlying nucleon-nucleon interaction was unknown (and
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still remains elusive). At the time, only the simplest systems with 2 and 3 nucleons, such as deuteron
and 3He were solved [42, 43]. The first successful model of nuclear structure able to reproduce
the magic numbers was the shell-model by Mayer and Jansen [44]. In order to reproduce the
experimental data it required the addition of a strong spin-orbit potential. The spin-orbit effect was
known previously from atomic physics, but its importance in nuclear physics was a novelty. The
single-particle orbitals which nucleons occupy are split based on their total angular momentum
j. This splitting caused a rearrangement of levels in such a way that gaps appeared between the
certain numbers of nucleons. Those gaps exactly corresponded to the magic numbers. Therefore,
a picture of nucleus in 1950s changed from a liquid drop to a quantum object where nucleons
are occupying orbitals, corresponding to solutions of the mean-field equations, obeying the Pauli
principle. Soon after the establishment of the theory of superconductivity in metals by Bardeen,
Cooper and Schrieffer [45], Bohr, Mottelson and Pines realized that a similar theory could be
applied to nuclear structure [46]. Theory of nuclear superconductivity could explain systematically
increased energies of the first excited states in even-even open-shell nuclei, discrepancy between
the moments of inertia calculated by the Inglis formula and experimental values [47,48], measured
spectroscopic factors in nucleon transfer reactions and others [49].

Today, no single microscopic theory exists to describe all experimentally discovered (and yet
to be discovered nuclei) in great detail. In fact, the theoretical methods can be categorized in
three main groups. First are the ab-initio models. Starting from the underlying symmetries of
the QCD to write the most general Hamiltonian of the nucleon-nucleon interaction, they solve the
resulting complicated many-body Schrödinger equation. The ab-initio theories include the no-core
shell-model approaches [8], self-consistent Green function (SCGF) method and Green function
Monte-Carlo (GFMC) methods [50,51], the in-medium similarity renormalization group (IMSRG)
theories [52] and coupled cluster theory [9]. Such models are characterized by a remarkable success
in reproducing the experimental data on the structure of light nuclei [10]. However, due to great
complexity of the underlying equations with increasing system size, application to heavier systems
remains challenging. Another theoretical approach is the nuclear shell-model (SM), also known as
the configuration interaction (CI) method. Today, shell-model calculations are based on a similar
theory developed by Mayer and Jansen, however with significantly more complicated model inter-
actions and configuration spaces. The dimension of the resulting Hamiltonian is intractably large
(order of 109), requiring development of complicated numerical algorithms for its diagonalization.
Therefore, the SM is applied to medium-mass nuclei (A ∼ 80) where it is able to reproduce the
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experimentally measured transition strengths in great detail [11]. The third approach is based on
the nuclear energy density functional (EDF) theory, starting from the picture of nucleons in a mean-
field and providing additional correlations through the self-consistent solution of the underlying
model equations [12]. Although today’s EDFs are mostly phenomenological, and require adjusting
their parameters to the available data, no other theoretical method compares even closely to the
scalability of the EDF theory, therefore, it can be used for the study of nuclear properties throughout
the nuclide chart.

The energy density functional theory (DFT) has its roots in solid-state physics. A well-
established method in the field, the Hartree-Fock approximation was numerically very prohibitive,
due to the non-local nature of the exchange term. To remedy this, Hohenberg and Kohn proved a
series of theorems stating that there exists an energy functionalE[ρ]which is a function of density ρ,
such that its variation yields the ground-state density of the system ρgs [13]. However, the problem
is that the theorem does not state how to construct such functional. In solid state physics where
one deals with the Coulomb interaction, it is possible to find a form of this functional starting from
the bare interaction (ab-initio). However, in nuclear physics, the interaction is a strong nuclear
interaction and currently, its derivation from the first principles remains challenging [14]. The
ground state density ρgs is only a function of three spatial coordinates, spin, and isospin, unlike 5N ,
being the dimension of the N -body wave function. Therefore, the number of degrees of freedom
within the DFT is independent of the system size, and the main advantage of the DFT is its excellent
scalability. In fact, no other microscopic method is nearly computationally feasible as the DFT. It
can be applied to the nuclei throughout the nuclear chart, either at the drip lines or in the valley of
stability. It applies for medium mass as well as heavy nuclei [15, 16, 53]. However, one should be
careful when applying the DFT to light nuclei since the fluctuations going beyond the mean-field
become significant. Nevertheless, with proper projection methods, the DFT can be used to study the
structure of very light nuclei [54–56]. The main object of the DFT is the energy density functional.
There are twomain categories of the EDFs in nuclear physics: (i) non-relativistic and (ii) relativistic.
The most famous types of the non-relativistic EDFs are the Skyrme and Gogny, each consisting of
numerous parameterizations [57]. They are written in the most general form in terms of one-body
nuclear densities and currents, satisfying the general symmetries of the nucleus such as translational
and Galilean invariance, angular momentum conservation in addition with time-reversal and space
reflection invariance [58]. Both types are phenomenological functionals where the corresponding
coupling constants are adjusted to a selected experimental data on finite nuclei and nuclear matter
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properties. The Skyrme EDF is based on the underlying Skyrme interaction [59] consisting of a
two-body and three-body interaction terms with zero-range. The Gogny interaction [60] is a finite-
range interaction where the radial dependence of the interaction is represented in terms of a sum
of two Gaussians. On the other hand, we have the relativistic EDFs. The main advantages of the
relativistic treatment of a nucleus are: (i) a natural inclusion of nuclear spin and the strong spin-orbit
coupling [61]. The relativistic wave functions are Dirac spinors consisting of both upper and lower
components with coupled spatial and spin degrees of freedom. In the non-relativistic EDFs the
spin-orbit term has to be added explicitly, together with the corresponding coupling strength. (ii)
It provides a realistic account of the real part of the optical potential at intermediate energies [62],
(iii) it offers a natural mechanism for the saturation of nuclear matter [19,20,22,63], (iv) it offers to
describe interaction of nucleus with other particles such as kaons, hyperons, antiprotons ... [64,65],
(v) it provides a natural explanation of the pseudospin symmetry in nuclei [66] and others [16]. The
relativistic EDFs are based on the theory of quantum hadrodynamics (QHD) [67]. Starting from
a field theory point of view, the Lagrangian density of the system is written in terms of nucleons,
described as Dirac particles, that can exchange mesons in addition with the electromagnetic field.
Themesons included correspond to energy scales that we are interested in nuclear physics, therefore,
the theory is a form of an effective field theory, with interaction strength being reparameterized as
to include the underlying degrees of freedom. For instance, a so-called minimal set of meson fields
includes the isoscalar-scalar σ, isoscalar-vector ω and isovector-vector ρmeson. This set constitutes
a basics of the meson-exchange models, where exchange of each type of meson, together with its
quantum numbers, corresponds to a region of the nucleon-nucleon (NN ) potential. The σ meson
represents the two-pion exchange component of the NN -force corresponding to the intermediate-
range attraction [68]. The ω meson describes the repulsive part of the NN -interaction while the ρ
meson determines its isovector properties. One could include more mesons in the consideration,
however, there is no experimental data by which their interaction strength can be constrained. A
minimal set of meson fields, together with the electromagnetic interaction and point-like Dirac
nucleons constitutes the relativistic mean-field theory (RMF) first formulated by J. D. Walecka [17].
The meson fields are treated as classical by replacing their values with expectation values in the
ground state. Although providing good qualitative description, such model was unable to predict
nuclear properties with required precision [69]. Only after taking the in-medium effects into account
by either adding non-linear terms to the Walecka model, within the so-called non-linear models,
or by assuming the density dependence of coupling constants, the quantitative predictions of the
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model became satisfactory [15, 18]. The density-dependence of the coupling constants can be ei-
ther phenomenological or based on a Dirac-Brueckner Hartree-Fock calculations of nuclear matter
properties [15]. For example, the density-dependent version of the meson-exchange (ME) RMF
theory has been introduced an extensively used in studies of nuclear structure and dynamics [19,70].
By reformulating it in terms of the ground-state density, and by calculating the energy-momentum
tensor one obtains a covariant extension of the DFT. A very successful example is the DD-ME2
parameterization [19], that was applied to calculation of both ground-state and excited state prop-
erties throughout the nuclide chart. If we expand the ME functional in the power series of meson
masses, replacing the meson propagators with the delta functions, we obtain the point-coupling
(PC) functionals. The PC functionals consist of bilinear covariants in Dirac nucleon fields, where
medium effects are either considered by adding higher powers of Dirac fields or by the density-
dependence of coupling constants. Examples of the non-linear PC functionals are PC-PK1 [71] or
PC-F1 [72], while the DD-PC1 is the density-dependent PC functional [20]. However, the RMF
theory applies only to closed-shell nuclei. In order to consider open-shell nuclei, a Bogoliubov
transformation from the single-particle to the quasi-particle basis has to be performed, yielding the
relativistic Hartree-Bogoliubov (RHB) equations [23]. More fundamentally, using the Green func-
tion many-body methods, the RHB equations were derived by following the Gorkov factorization
approach [73]. The RHB theory can be applied to bound nuclei throughout the nuclear chart [70,74].
It combines the relativistic mean-field with the nuclear pairing interaction. Its main advantage is the
proper coupling between the bound and continuum states of nuclei, thereby avoiding the unphysical
results obtained by the simpler BCS approach [24].

The nuclear excited states can be determined by considering a nucleus in a time-dependent
external field. Equations describing the time-dependence of the nucleon density are the time-
dependent Hartree-Fock (TDHF) equations. By assuming a harmonic time-dependence of the
external field and linearizing the TDHF equation keeping the terms linear in density, we obtain
the random-phase approximation (RPA) [26, 58, 75]. Initially, the RPA was applied to study
the giant resonances in nuclear excited states by employing the schematic model interactions
[58,76]. The main advantage of the RPA is that it allows treatment of the nuclear two-body residual
interaction not included in the mean-field calculations. Starting from the appropriate mean-field
vacuum, we can build the excited states by considering the one-particle one-hole excitations (1p1h)

satisfying the imposed selection rules by the external field operator, constituting the Tamm-Dancoff
approximation (TDA). The RPA goes beyond the TDA by also taking into account not only the
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direct residual interaction term vmjin but also the exchange term vmjni, representing the virtual
2p2h excitations of the vacuum. The additional correlations within the RPA proved to be not
only beneficial in reproducing the experimental data on nuclear excitations, but also by restoring
the symmetries broken at the mean-field level, the so-called spurious modes [58]. The RPA can
be built based on the ground-state EDF methods, determining the single-nucleon basis, and is
also divided into non-relativistic [77–81] and relativistic RPA (RRPA) [27, 28]. Both approaches
had significant success in describing both the like-particle and charge-exchange excitations for
nuclear properties across the nuclide chart. In order to consider the open-shell nuclei one has to
generalize the notion of 1p1h excitations to quasi-particle excitations. The corresponding RPA
equations in the quasiparticle basis are known as the QRPA equations. A great success of the RPA
methods is reported in understanding the structure of the giant resonances, collective nuclear modes
where multiple particle-hole excitations contribute coherently in determining the total strength
[70]. Examples of the like-particle resonances are the giant electric monopole (IS)IVGMR, and
giant dipole (IS)IVGDR resonances, either in the isoscalar (IS) or the isovector (IV) mode. The
GMR is also known as the "breathing mode" and provides the information on the nuclear matter
incompresibility K [82]. On the other hand, the isovector giant dipole resonance probes the
symmetry energy of asymmetric nuclear matter in addition to the neutron skin thickness, i.e.
the difference between the neutron and proton radii [83]. The spin-isospin excitations represent
the collective mode where also the nuclear isospin is included in the vibrational mode, coupled
through spin and orbital angular momentum degrees of freedom. The most famous spin-isospin
resonance is the Gamow-Teller (GT) resonance [84]. Theoretically predicted earlier [85], it was
experimentally confirmed through a 90Zr(p, n)90Nb charge-exchange reaction in Ref. [29]. It is
represented by the total angular momentum and parity number Jπ = 1+, and connects states in
nuclei with different charges. In order to study such a mode, the RPA equations have to be extended
to the so-called proton-neutron basis in the form of pnRPA equations [26]. The importance in
theoretical description of spin-isospin excitations is in determining the isovector terms of the NN
interaction as well as the nuclear symmetry energy [26]. Furthermore, their strength determines the
rates of weak-interaction processes such as β-decay, electron capture, neutrino-nucleus reactions
and scattering [1, 5]. Although microscopic, the weak-interaction rates can dictate dynamics of
something as large as the explosions of massive stars and neutron star mergers.

The experimental study of spin-isospin excitations occurs throughweak, strong, and electromag-
netic probes [86]. Most effort is concentrated to Fermi and GT transitions. The weak-interaction
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processes include the β±-decay, limited to a small energy window determined by the transition
Q-value (Qβ window). However, the connection between the measured half-lives and the GT
strength function, B(GT), is well established and allows one to study the B(GT) strength in nuclei
far from stability [87]. The precise determination of B(GT) value within the β-decay requires (i)
precise knowledge of nuclear masses, (ii) measurement of half-life T1/2, and (iii) determination of
subsequent decay patterns [86]. With the development of Penning trap methods at Isotope Separator
On-Line (ISOL) and fragmentation facilities in addition to storage rings, the nuclear masses are
determined with high precision [88]. To measure the half-life, one studies the decay patterns of
γ-decay or for more exotic nuclei, proton, or neutron emission. Most commonly, high-efficiency
germanium detectors are employed to detect the emitted γ-rays [86]. With modern experimental
facilities, one can pursue studies of the β-decays in exotic nuclei near the drip line, which have large
B(GT) values and Qβ window. One such example includes the 100Sn, whose B(GT) was extracted
from the β-decay at GSI Helmholtzzentrum für Schwerionenforschung, Germany, in Ref. [89], and
at the RIKEN Nishina Center in Ref. [90].

Concerning the electromagnetic probes, it is possible to investigate the spin-isospin excitations
through the spin part of M1 transitions. This can be realized either by the γ-decay, or the proton
(p, p′) or electron (e, e′) inelastic scattering [86]. The spin part of the M1 transition operator has a
structure like that of the GT [91]. However, the γ-decays and (e, e′) inelastic scattering also excite
the part corresponding to the orbital angular momentum, requiring special care.

The strong-interaction probes include the charge-exchange (CE) reactions of the type (p, n) in
the β−, or (n, p) in the β+ direction at intermediate beam energies (∼ 150 MeV per nucleon) and
0◦ (low momentum transfer). Using the well-established relation of the differential cross-section
at low-momentum transfer with the B(GT) strength [92], they allow for the extraction of B(GT)
strength up to much higher excitation energies compared to β-decay. Some time ago, a significant
number of experiments were conducted to investigate the GT strength in pf -shell nuclei using (n, p)

or (p, n) and (3He, t) CE reactions [93–95], found near the valley of stability. However, with the
advancement of the radioactive ion (RI) beams, the extraction of GT strength function in unstable
isotopes has become possible [96, 97].

The experimental B(GT) strength in the β+ direction provides important constraints for the
electron capture (EC) rates. In the allowed approximation, the EC rate is theoreticallywell-described
and determined by a product of the known phase-space factor and the B(GT) strength [98]. The
main focus of the experimental effort is on the nuclei whose EC rates significantly impact the
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core-collapse supernovae (CCSNe) dynamics. Using the advanced γ-ray detectors the GT strength
was precisely measured in 64Zn [99], 93Nb [100], 45Sc [101], 86Kr [102], and 46Ti [103] through
the (t,3He+γ) reaction. Other reactions with measured GT strength of significance for CCSNe
are listed in Refs. [104, 105]. Very recent experimental advances include the (d, 2He) reaction in
inverse kinematics applied to 14O [106]. Thus, the combination of experimental efforts together
with theoretical developments works together to provide better constraints for the CCSNe dynamics.

In order to consider processes mediated by the weak nuclear forces in extreme stellar envi-
ronments, such as the interior of massive stars before the collapse (presupernova), the existing
theoretical models have to be extended. Namely, the temperature in those environments can be
high, of the order of MeV (10 billion kelvins), therefore, enough to influence the nuclear structure
itself. On the other hand, nuclei can be found in excited states, and subsequent transitions from
the excited states have to be explicitly considered. The stellar plasma consists of electrons and
positrons which are in a thermal equilibrium determined by the interior properties. In order to
consider the finite-temperature effects, the QRPA equations have to be extended by considering
additional correlations which include transitions between the excited states both in initial and final
nuclei [107]. The resulting set of equations has twice the dimension of the original problem, and is
known as the finite-temperature QRPA (FT-QRPA). When extending the underlying RHB theory to
finite temperature, which determines the initial nuclear state, we use the notion of thermal averages.
The density matrix of the initial state is not simply a Slater determinant (product state), but is rather
a mixture containing a sum over thermally excited states weighted by the Boltzmann factor. The
corresponding equations of motion are known as the finite-temperature RHB (FT-RHB) [25]. Simi-
larly, the FT-QRPA is derived by slightly perturbing the FT-RHB density and is also defined in terms
of thermal averages. Therefore, one has to be careful when trying to obtain the physical strength
from the FT-QRPA. In fact, there exist states with negative transition energy (de-excitations) which
correspond to transitions from the highly excited states [31, 108]. Only after implementing all of
the above considerations, we can employ our model to extreme stellar environments. In this work
we focus on the electron capture and β-decay rates.

The electron capture plays a prominent role in the evolution of CCSNe, i.e. explosions of
massive stars caused by the infall of material from outer layers on a compact core. H. A. Bethe [2]
has demonstrated that evolution of the CCSNe depends mainly on two parameters: (i) electron-to-
baryon ratio (Ye) and (ii) the core entropy. The EC reactions remove available electrons from the
system thus lowering Ye, while outgoing neutrinos carry out entropy from the core. The core of the
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massive star is kept in a delicate equilibrium between the degeneracy pressure of the electrons and
the gravitational attraction, until the core mass reaches the Chandrasekhar massMch ∼ Y 2

e . At that
point the degeneracy pressure cannot hold the gravity any more and the core collapses. First steps
in theoretical calculations of weak-interaction rates were made by Fuller, Fowler and Newmann
(FFN) [109–112] in a set of 4 famous papers. By using the independent particle model, they have
recognized the importance of EC in nuclei through Fermi and GT resonances. Prior to this work
it was believed that the EC on free protons is of more significance than the capture on nuclei due
to larger reaction rate. With the development in numerical techniques of the nuclear shell-model,
significant amount of calculations were performed. First, Oda et al. [113] have tabulated weak-
interaction rates for sd-shell nuclei. Later, this was extended to pf -shell nuclei by Langanke et
al. [114] based on the large-scale shell-model (LSSM) calculations. Hindering the progress, one
great disadvantage of the shell-model calculations is huge computational cost in order to describe
neutron-rich nuclei due to enlargement of configuration space with increasing number of nucleons.
In order to remedy this issue, the shell-model Monte Carlo (SMMC) approach was developed and
EC rates have been calculated for allowed GT transitions in Ref. [115], however the model could not
provide a detailed strength distribution. Juodagalvis et al. have calculated EC rates for roughly 2700
nuclei in presupernova environment [116] averaged over the Nuclear Statistical Equillibrium (NSE)
distribution. Today, most simulations of the CCSNe dynamics employ the rate set of Juodagalvis.
With the development of the RPA based on the EDF theory, the model calculations could be
applied to heavier nuclei. Calculations were performed both with the non-relativistic [117, 118]
and relativistic [32, 119] EDFs. However, those calculations did not consider pairing interaction,
deformation, nor de-excitations, missing a considerable part of the strength function and were
applied to only a handful of nuclei. Therefore, one of the main goals of this thesis is to develop a
complete theoretical formalism for weak processes that will consider nuclear pairing, deformation,
and finite temperature effects and also calculate rates for larger set of nuclei which can then be
applied to astrophysical simulations of interest.

The nuclear β-decay stands out as one of the most important processes in understanding the
nuclear weak-interaction. It was discovered at the end of the nineteenth century by the nuclear
physics pioneers Henri Becquerel, Marie and Pierre Curie and Ernest Rutherford. Its profound
implications for theoretical physics stem from the discovery of neutrino as well as the confirmation
of the parity-violating character of the nuclear force [120]. Even nowadays, it still has a decisive
role in nuclear astrophysics [5–7], particle physics [121,122] and nuclear structure theory [123]. In
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nuclear astrophysics it plays a main role in the rapid neutron capture (r-process) that is responsible
for creating more than a half of chemical elements heavier than iron. The r-process occurs in
explosive stellar environment where the temperature is measured in billions of degrees kelvin and
neutron densities exceed 1020 g/cm3. Such conditions allow for creation of extremely neutron rich
nuclei in a series of (n, γ) reactions. The equilibrium is restored once the time-scale of the neutron
capture becomes comparable with the β-decay lifetime. Therefore, it is often stated that β-decays
determine the time-scale of the r-process. Nuclei that play an important role in the r-process are
beyond the present experimental capabilities. In fact, the neutron drip line was experimentally
reached only up to Z = 10, and possibly Z = 11 [124]. This large discrepancy between the
required and available experimental data necessitates robust theoretical calculations with excellent
extrapolation ability across the nuclide chart. The β-decays have important role in the dynamics of
the CCSNe, at times competing with the EC reactions [4]. As the collapse ensues the β-decay rates
are severely Pauli blocked, while the EC rates increase. However, the equilibrium between the EC
rates and β-decay rates sets the stage for the ongoing collapse of the star [125]. Both the CCSNe
evolution and the r-process invite theoretical calculation of β-decay rates at high temperatures and
densities. The developments of theoretical calculations for β-decay rates closely follow those of EC
rates. Apart from different kinematics, the underlying interaction is the same. The independent-
particle model of FFN [109–112] together with the LSSM calculations [114, 126] also included a
tabulation of stellar β-decay rates. However, the shell-model calculations are limited to pf -shell
nuclei. The large-scale calculations of β-decay half-lives were also performed with the QRPA on
top of the finite-range droplet model (FRDM) [127]. In Refs. [77, 128, 129], the β-decay half-lives
are calculated with the non-relativistic self-consistent QRPA. The pnRQRPA based on the RHB
with the D3C∗ interaction was used to calculate the β-decay half-lives of neutron-rich nuclei near
Z = 28 and 50 shell closure [130]. The same model was later extended to the calculation of 5409
nuclei in the range 8 ≤ Z ≤ 104, including GT and first-forbidden transitions [131]. The β-decay
half-lives were also studied using the (quasi)particle-vibration coupling (QPVC) methods, which
consider coupling to higher-order configurations going beyond theQRPA [132,133]. Considerations
of β-decay rates for hot nuclei are limited. In Ref. [134], the FT-pnQRPA was developed on top of
the finite-temperature Skyrme-HF+BCS to determine the β-decay half-lives of N = 82 isotones.
However, they did not consider the contribution of first-forbidden transitions and the de-excitations,
which become increasingly important at higher temperatures. The finite-temperature relativistic
time-blocking approximation (FT-RTBA) was applied to study the β-decay half-lives of 78Ni and
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132Sn up to T = 2 MeV [135]. Although providing excellent agreement with experimental results
at zero temperature, the FT-RTBA implementations are currently limited to spherical nuclei. In
this thesis, we develop a theoretical formalism based on the FT-pnRQRPA to describe the β-decay
half-lives in a stellar environment that includes nuclear pairing and deformation, as well as the finite
temperature.

This thesis is organized as follows. In Chapter 2 we introduce the relativistic EDF theory,
including both the finite temperature and pairing correlations. In Chapter 3, starting from the FT-
RHB static limit, we perturb the nucleus in a charge-changing external field. The small-amplitude
limit of the corresponding time-dependent equations yields the RQRPA equations in the proton-
neutron basis at finite temperature (FT-pnRQRPA). Two methods of solving the FT-pnRQRPA
equations are introduced, the linear response theory and the matrix FT-pnRQRPA. The linear
response FT-pnRQRPA model is developed in the coordinate-space basis and spherical geometry,
by assuming the relativistic point-coupling functionals and a separable pairing interaction. By
transforming the resulting Bethe-Salpeter equation from the configuration to the space of the
interaction channels, we obtain the equation for the reduced response, having a significantly smaller
dimension compared to the original problem. The model calculations are benchmarked against the
available matrix FT-pnRQRPA solvers and applied to the calculation of spin-isospin excitations in
even-even tin isotopes. In Chapter 4 we give an overview of our work on the electron capture in
stellar environment. Starting from the allowed approximation for the Jπ = 1+ GT transitions, we
demonstrate how to calculate the EC cross sections and rates within the FT-pnRQRPA. A proper
treatment of finite-temperature effects in addition to de-excitations from highly excited states is
crucial for description of EC rates. After exemplifying the model calculations in the allowed
approximation we also include the first-forbidden transitions within the Walecka model [136],
which introduces additional momentum-dependence in the transition matrix elements. We perform
a calculation of both EC and neutrino energy loss rates for nuclei near the N = 50 shell closure,
and apply our results to the CCSNe simulations. As another weak-interaction process, we apply
the FT-pnRQRPA to the calculation of the β-decay rates in stellar environment in Chapter 5. First,
we present the theoretical framework, similar to the theoretical framework used in Chapter 4 for
EC rates, but with different phase-space factors. Results are presented for systematic calculation
of β-decay half-lives of even-even nuclei in the range 8 ≤ Z ≤ 82, for temperatures and stellar
densities relevant for extreme astrophysical processes. At very high temperatures T ∼ 1 MeV, the
coupling of nuclear states to the particle continuum becomes very important, therefore in Chapter
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6 we implement a continuum subtraction method in the FT-RHB, that removes the unphysical
nucleon vapor. The model calculations are applied to the FT-RHB theory in axial-geometry. A
systematic calculation of nuclear properties is performed in the temperature range T = 0–2MeV for
even-even nuclei 8 ≤ Z ≤ 104, to demonstrate that nucleus undergoes both pairing and shape phase-
transitions as the temperature increases. Finally, in Chapter 7 we also generalize the FT-pnRQRPA
to axially-deformed nuclei. The model calculations are based on the linear response theory with
point coupling functionals. It is shown that the approach demonstrated in Chapter 3 can be extended
to axial-geometry, by increasing the dimension of the reduced response equations, and explicitly
treating the time-reversed pairs. The resulting equations are significantly more complicated than
the spherical pnRQRPA equations, but still manageable on a moderate computer cluster. After
benchmarking our model in the spherical limit, we apply it to calculate the spin-isospin excitations
at both zero and finite temperature, as well as the β-decay half-lives. Additional formalism and
derivations are presented in Appendices A–D.
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Chapter 2

Relativistic nuclear density functional
theory

The density functional theory (DFT) originates from the work of Hohenberg and Kohn [13], which
proved that there exists an energy density functional Es[ρ], expressed in terms of density ρ(r)

as [15, 16]
Es[ρ] = FHK [ρ] +

∫
d3rvext(r)ρ(r), (2.1)

where vext(r) is an external potential and FHK functional independent of the system size. The
boldfaced symbols denote the vectors in the coordinate space. The problem is that Hohenberg
and Kohn have only shown the existence of FHK and do not provide a method for obtaining it.
By minimizing the energy density functional (EDF) Es[ρ] with respect to the density ρ, and by
solving the equations of motion self-consistently we obtain the ground-state density of the system
ρgs(r), which also includes the many-body correlations. In order to reproduce the shell effects,
important in determining the nuclear magic numbers, Kohn and Sham have introduced the local
single-particle potential vKS[ρ](r), such that the density of the system can be written as a sum over
the single-particle auxiliary wave functions φi[ρ](r) [137]

ρ(r) =
N∑
i=1

|φi[ρ](r)|2 , (2.2)
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where the summation goes over the single-particle occupied states i. Minimization of the Es[ρ]

leads to the Kohn-Sham (KS) equations [15, 16][
− ~2

2m
∇2 + vKS[ρ](r)

]
φi[ρ](r) = εiφi[ρ](r), (2.3)

wherem is the nucleon mass and εi the single-particle energy. Therefore, a N -particle many-body
equation has been reduced to N single-particle KS equations. Notice that the above equation has a
form similar to the Schrödinger equation, although with interaction that depends on the density ρ(r).
In the case of relativistic EDFs, the KS equation corresponds to the single-particle Dirac equation.
Since the KS potential vKS[ρ] depends on the density, the equations are solved self-consistently.
The exact functional FHK [ρ] can be written as

FHK [ρ] = Ts[ρ] + EH [ρ] + Exc[ρ], (2.4)

where the first term corresponds to kinetic energy Ts, second term is the Hartree energyEH , and all
other correlations are included in the exchange-correlation term Exc. The KS potential is obtained
as

vKS[ρ](r) =
δ (EH [ρ] + Exc[ρ])

δρ
, (2.5)

and the KS equations are solved until the convergence is reached. Although the DFT is similar to the
Hartree-Fock (HF) theory, it avoids complicated calculations of non-local Fock terms. In principle,
Fock terms are included in the exchange-correlation energy Exc. The DFT is an exact theory
for Coulombic systems, where the underlying interaction is known. However, in nuclear physics
results depend on the chosen type of functional. The underlying theory describing the nucleon-
nucleon (NN ) interactions is quantum chromodynamics (QCD). Unfortunately, at the energy scales
relevant to nuclear physics, the QCD is highly non-perturbative. Therefore, calculations starting
from the bare NN interactions are extremely computationally difficult and applicable only to the
lightest nuclei. Even if one writes down the total NN interaction Hamiltonian consistent with
the symmetries of the underlying QCD theory, the parameters of the Hamiltonian still have to be
adjusted to the NN scattering data. Derivations of the EDFs starting from the NN interaction,
the so-called ab-initio functionals, are still in development [14], and far from the required accuracy
needed for practical calculations. Therefore, in this work, we resort to empirical functionals which
contain contributions of nuclear densities and currents together with their expansion in gradient
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terms, with parameter strengths adjusted to reproduce a handful of experimental data on finite nuclei
and nuclear matter. In this work, we focus on relativistic functionals (also known as covariant) and
refer the reader to Refs. [15, 18] for detailed review.

2.1 The relativistic mean-field (RMF) theory

The main ingredient for the calculation of ground-state properties within the relativistic EDF theory
is the Lagrangian density which can be split into 3 parts [18]:

L = LN + Lm + Lint, (2.6)

where the first term represents nucleons as point-like Dirac particles

LN = ψ̄ (iγµ∂µ −m)ψ, (2.7)

ψ denotes the nucleon spinor andm its bare mass. In the following wework in theMinkowski metric
where the metric tensor is defined as gµν = diag(1,−1,−1,−1). The second term is the meson
term that describes fields of the free mesons (typically σ, ω and ρ) as well as the electromagnetic
field, and has the form

Lm = Lσ + Lω + Lρ + LA

=
1

2

(
∂µσ∂

µσ −m2
σσ

2
)
− 1

2

(
ΩµνΩ

µν −m2
ωωµω

µ
)

− 1

2

(
~Rµν

~Rµν −m2
ρ~ρµ~ρ

µ
)
− 1

4
FµνF

µν ,

(2.8)

with the corresponding field tensors

Ωµν = ∂µων − ∂νωµ
~Rµν = ∂µ~ρν − ∂ν~ρµ

F µν = ∂µAν − ∂νAµ,
(2.9)

mσ,mω andmρ being the σ, ω and ρ-meson masses, respectively. The arrows over symbols denote
vectors in the isospin space, while the coordinate-space vectors are boldfaced. In principle, the pion
field (π) should be also included within the meson set, but due to keeping only the Hartree terms,
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ψ̄

ψ

−igσσ
ψ̄

ψ

−igωγμωμ

ψ̄

ψ

−igρ ⃗τγμ ⃗ρ μ

ψ̄

ψ

−ieγμ 12 (1 − τ0)Aμ

Figure 2.1: The meson interaction vertices within the RMF theory.

it drops out from the mean-field equations. The interaction term can be written in the general form

Lint = −ψ̄Γmφmψ, (2.10)

where index m runs over different meson fields φm ∈ {σ, ωµ, ~ρµ, Aµ}, and Γm is the interaction
vertex. The meson vertex functions are shown in Fig. 2.1.

The equations of motion are obtained from the Euler-Lagrange equations

∂µ

(
∂L

∂ (∂µqj)

)
− ∂L
∂qj

= 0, (2.11)

where qj stands for either nucleon ψ1 . . . ψA or meson σ, ω, ~ρ, and A fields. By varying L with ψ̄
we obtain the single-particle Dirac equation [68]

[iγµ∂
µ + V µ +m+ S]ψi = 0, (2.12)

where the scalar field is S(r, t) = gσσ(r, t) and the vector field is V µ(r, t) = gωγµω
µ(r, t) +

gρ~τγµ~ρ
µ(r, t) + eγµA

µ(r, t). By varying with respect to meson fields we obtain a set of Klein-
Gordon equations [

�2 +m2
σ

]
σ(r, t) = −gσρs(r, t)[

�2 +mω

]
ωµ(r, t) = gωj

µ(r, t)[
�2 +mρ

]
~ρµ(r, t) = gρ~j

µ(r, t)

�2Aµ(r, t) = ejµc (r, t),

(2.13)
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where �2 = ∂2
t −∇2, and we have introduced the scalar density

ρs(r, t) =
A∑
i=1

ψ̄i(r, t)ψi(r, t), (2.14)

the vector current density

jµ(r, t) =
A∑
i=1

ψ̄i(r, t)γ
µψi(r, t), (2.15)

with its time-like component being the vector density (known as baryon density)

ρv(r, t) =
A∑
i=1

ψ̄iγ
0(r, t)ψi(r, t). (2.16)

The isovector-vector current density is

~jµ(r, t) =
A∑
i=1

ψ̄i(r, t)γ
µ~τψi(r, t), (2.17)

and the electromagnetic current which has contribution only from proton states

jµc (r, t) =
A∑
i=1

ψ̄i(r, t)
1

2
(1 + τ0) γµψi(r, t), (2.18)

where τ0 is the third component of the isospin matrix ~τ . In the above expressions we perform
summation only over occupied nucleon orbitals i = 1 . . . A in the Fermi sea, the so-called no-sea
approximation [15,18]. In the static approximation, the time-dependent meson fields can be written
in the form

ψi(r, t) = ψi(r)eiεit. (2.19)

Furthermore, assuming even-even nuclei with time-reversal invariance, the space-like components
of vector currents j,~j, and jc vanish, while only the third component of isospin vectors, τ0, is
non-vanishing. The single-particle Dirac equation in the static limit reduces to

[−iα ·∇ + β(m+ S) + V ]ψi = εiψi, (2.20)
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where α, β are Dirac matrices. The Dirac equation can be written in a form of the eigenvalue
problem ĥψ = εψ, where we have introduced the Dirac Hamiltonian ĥ. The time-independent
Klein-Gordon equations for the time-like components of meson fields become[

−∇2 +mσ

]
σ(r) = −gσρs(r)[

−∇2 +mω

]
ω0(r) = −gωρv(r)[

−∇2 +mρ

]
ρ0

0(r) = −gρρtv(r)

−∇2A0(r) = eρc(r),

(2.21)

where the isovector and charge density are

ρtv(r) =
A∑
i=1

ψ†i (r)τ0ψi(r), ρc(r) =
A∑
i=1

ψ†i (r)
1

2
(1 + τ0)ψi(r), (2.22)

respectively. The vector and scalar potentials in the static limit are

V (r) = gωω
0(r) + gρτ0ρ

0
0(r) + eA0(r), S(r) = gσσ(r). (2.23)

The set of equations (2.20) and (2.21) are known as the RMF equations. In order to reformulate the
RMF equations to be more consistent with the nuclear DFT, we start by calculating the Hamiltonian
density

H =
∑
j

∂L
∂q̇j

q̇j − L, (2.24)

where qj ∈ {ψ1 . . . ψA, σ
0, ω0, ρ0

0, A
0} goes over the nucleon and meson fields. Finally, the rela-

tivistic EDF is constructed as

ERMF

[
ψi, ψ̄i, σ, ω

0, ρ0
0, A

0
]

=

∫
d3rH(r) =

A∑
i=1

∫
d3rψ†i (−iα ·∇− βm)ψi

+
1

2

∫
d3r

[
(∇σ)2 +mσσ

2
]
− 1

2

∫
d3r

[(
∇ω0

)2
+m2

ω

(
ω0
)2
]

− 1

2

∫
d3r

[(
∇ρ0

0

)2
+m2

ρ

(
ρ0

0

)2
]
− 1

2

∫
d3r

(
∇A0

)2

+

∫
d3r

[
gσρsσ + gωρvω

0 + gρρtvρ
0
0 + eρcA

0
]
.

(2.25)
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In the following, assuming localized meson fields, we can express the gradients in above equations
using Eq. (2.20) so that the EDF reduces to

ERMF

[
ψi, ψ̄i, σ, ω

0, ρ0
0, A

0
]

=

∫
d3rH(r)

=
A∑
i=1

∫
d3rψ†i (−iα ·∇− βm)ψi︸ ︷︷ ︸

Ekin

+
1

2

∫
d3rgσσρs︸ ︷︷ ︸
Eσ

+
1

2

∫
d3rgωω

0ρv︸ ︷︷ ︸
Eω

+
1

2

∫
d3rgρρ

0
0ρtv︸ ︷︷ ︸

Eρ

+
1

2

∫
d3reρcA

0︸ ︷︷ ︸
Ee.m.

,

(2.26)

where the first term is the nucleon kinetic energy, and others correspond to interaction terms due
to mesons and electromagnetic field. Following the prescription of the DFT the single-particle
equations are now obtained by varying the EDF with respect to density. The first relativistic EDF
we introduce is the density-dependent meson-exchange (DD-ME), which assumes that the couplings
gσ(ρv), gω(ρv) and gρ(ρv) are functions of the vector density. When performing the variations, this
leads to the Dirac equation of the form [18]

[
−iα ·∇ + V (r) + Σ0

R(r) + β(m+ S(r))
]
ψi(r) = εiψi(r), (2.27)

where in addition to vector and scalar potential defined in Eq. (2.23) we also have the so-called
rearrangement term [15]

Σ0
R =

∂gσ
∂ρv

ρsσ +
∂gω
∂ρv

ρvω
0 +

∂gρ
∂ρv

ρtvρ
0
0, (2.28)

which contains the derivatives of couplings with respect to vector density. The couplings for σ and
ω mesons are parameterized as [19, 138]

gσ,ω (ρv) = gσ,ω (ρsat) fσ,ω(x), (2.29)

where

fi(x) = ai
1 + bi (x+ di)

2

1 + ci (x+ di)
2 , i = σ, ω, (2.30)

with x = ρv/ρsat, ρsat being the saturation density of the symmetric nuclear matter. The eight
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Table 2.1: The coupling parameters of the meson-exchange functionals used in this work, DD-
ME2 [19], D3C [22] and D3C∗ [130].

DD-ME2 D3C D3C∗
mσ [MeV] 550.1238 556.9862 574.8388
gσ(ρsat) 10.5396 11.0274 10.2991
gω(ρsat) 13.0189 13.7505 12.4820
gρ(ρsat) 3.6836 3.9175 4.7884
bσ 1.0943 3.5207 0.7006
cσ 1.7057 7.0718 1.3923
bω 0.9240 4.5637 0.9402
cω 1.4620 9.8648 1.7942
aρ 0.5647 0.4220 0.0522

ΓS(ρsat) 0.0 -21.6321 -146.0897
ΓV (ρsat) 0.0 302.1887 180.8898
ρsat [fm−3] 0.152 0.129 0.152

parameters aσ,ω, bσ,ω, cσ,ω, dσ,ω are further constrained by

fi(1) = 1, f ′′σ = f ′′ω(1), f ′′i (0) = 0, (2.31)

reducing the number of parameters to three, in addition to gσ(ρsat), gω(ρsat) andmσ, being the mass
of the σ-meson. The ρ-meson coupling is parameterized as [19, 138]

gρ (ρv) = gρ (ρsat) e
−aρ(x−1), (2.32)

having two parameters, gρ(ρsat) and aρ. In table 2.1 we list the eight parameters of the DD-ME2
interaction, determined in Ref. [19] by a fit to nuclear matter properties, in addition to binding
energies, nuclear radii and neutron radii of spherical nuclei.

Although it has enormous success in describing nuclear properties across the nuclide chart,
including both the ground-state [19] and excited states [19, 28], a main drawback of the DD-ME2
functional is a low value of the effective Landau massmeff [22,68]. The effective mass determines
the density of states around the Fermi level, where a larger value leads to a more compressed
single-particle spectrum, in a better agreement with the experiment. To allow for higher value of
meff , a separate category of the meson-exchange functionals was devised, called the derivative-
coupling (DC) interactions [22, 63]. They are developed by introducing additional couplings with
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momentum-dependent self-energies into the Lagrangian density. We start by rewriting the Dirac
single-particle equation (2.20) in a more general form

[iΓµ∂
µ + V µ +m+ S]ψi = 0, (2.33)

where the vector potential is

V µ(r, t) = gωΓµω
µ(r, t) + gρ~τΓµ~ρ

µ(r, t) + eΓµA
µ(r, t), (2.34)

and the scalar potential is
S(r, t) = gσΓσ(r, t). (2.35)

The matrices Γ and Γµ present the generalization of the unit matrix and the Dirac γµ matrix,
respectively, and are defined as [22]

Γµ = γνgµν + γνYµν − gµνZν , Γ = 1 + γµuνY
µν − uµZµ, (2.36)

where
Y µν =

ΓV
m4

m2
ωωµω

µ, Zµ =
ΓS
m2

ωµσ. (2.37)

We note that ΓS and ΓV represent additional coupling terms of the DC models [cf. Tab. (2.1)].
Therefore, there are additional terms in the Lagrangian density which contain non-linear σ and ω
couplings. The four velocity uµ is defined in terms of the vector current density uµ = jµ/ρv, and
introduces the momentum dependence in the vertex functions. Again, we take the static limit of
the equations of motion, assuming time-reversal invariance and even- even nuclei. This means that
only the time-like components of the meson fields contribute in addition to the third component of
the isospin. It can be shown that the baryon current for DC models is [22]

ρ = ρv (1 + Y00)− ρsZ0, (2.38)

which reduces to ρv if we neglect additional coupling terms Y00 and Z0. The density dependence of
the couplings is parameterized same as for the DD-ME2 interaction [19]. The additional coupling
of the DC model are parameterized as [22]

ΓV = ΓV (ρsat)
ρsat
ρv

, ΓS = ΓS (ρsat)
ρsat
ρv

. (2.39)
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Therefore, the DC models have 10 parameters, compared to 8 parameters of the DD-ME models.
The corresponding parameters are determined in Ref. [22] by χ2 minimization in a 8-dimensional
space by using the saturation properties of symmetric nuclear matter as additional constraints. The
fit was performed on properties of doubly-magic nuclei, such as binding energies, diffraction radii,
surface thickness and others [22]. The fitted parameters are listed in table 2.1, and the corresponding
EDF is called D3C. The main advantage of the DC models is that the effective Landau mass meff

can be better adjusted due to additional couplings in the model, while keeping the effective Dirac
mass m∗ in the appropriate range — responsible for the magnitude of spin-orbit splitting. The
Landau mass meff determines the density of states around the Fermi level, a known drawback of
relativistic models, which have lower effective mass compared to non-relativistic models.

Therefore, in order to obtain better agreement with the experimental data for β-decay half-
lives, the D3C EDF was refitted in Ref. [130], by increasing its effective mass to meff = 0.79,
while still keeping a reasonable description of nuclear matter and finite-nuclei properties. The
re-parametrization is called the D3C∗, and its parameters are displayed in table 2.1. The range of
energies we are interested in is much lower compared to the corresponding meson masses. This
means that we can expand the meson propagators in terms of meson masses, and instead of writing
the meson fields in the Lagrangian density, rewrite it in terms of nucleon fields. Therefore, each
meson vertex in Fig. 2.1 is replaced by a simple 4-point (or more) contact interaction vertex,
consisting only of the delta function. There are no additional meson Klein-Gordon equations, and
the self-consistent RMF equations are somewhat simplified. Functionals of that type are known
as point-coupling (PC). Of course, the question is at which point do we truncate the expansion?
In fact, some PC functionals contain higher 6-point (ψ̄ψ)3 and 8-point (ψ̄ψ)4 vertices, simulating
the in-medium effects [16]. It was noted that for density-dependent interactions, only the 4-point
vertices should be kept, in addition to the derivative term ∂ν(ψ̄ψ)∂ν(ψ̄ψ), taking into account the
nuclear surface effects [15]. In order to construct the point-coupling functional we start by writing
the possible bilinear covariants of the Dirac field ψ of the form ψ̄OΓψ, where

Γ ∈ {1, γµ, γ5, γµγ5} , O ∈ {1, ~τ}. (2.40)

The Lagrangian density consists of a series expansion of ψ̄OΓψ and their derivatives. For the
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density-dependent PC interactions (DD-PC) the Lagrangian density has the form [20]

L = ψ̄ (iγµ∂
µ −m)ψ − 1

2
αs (ρv) (ψ̄ψ)(ψ̄ψ)− 1

2
αV (ρv)

(
ψ̄γµψ

) (
ψ̄γµψ

)
− 1

2
αTV (ρv)

(
ψ̄~τγµψ

) (
ψ̄~τγµψ

)
− 1

2
δS
(
∂νψ̄ψ

)
(∂νψ̄ψ)− eψ̄γµAµ

1− τ0

2
ψ,

(2.41)

where αS(ρv), αV (ρv) and αTV (ρv), are the scalar, vector and isovector coupling constants, being
a function of the vector density. The derivative coupling δS is density-independent. We can
immediately see correspondence between the PC and ME models; the scalar term corresponds to
σ meson, vector to ω meson, and isovector to ρ meson. Additionally, the PC models also require
a derivative term. The EDF is constructed by assuming static limit of the time-reversal invariant
ground-state of even-even nuclei, meaning that only the time-like components of nuclear currents
contribute. Following the prescription from Eq. (2.24) we construct the EDF as

ERMF

[
ψ, ψ̄, A0

]
=

∫
d3rH(r)

=
A∑
i=1

∫
d3rψ†i (−iα ·∇− βm)ψi + e

∫
d3rρc(r)A0

+
1

2

∫
d3r

[
αSρ

2
s − αvρ2

v − αTV ρ2
tv − δSρs∇2ρs

]
,

(2.42)

where we have used the Poisson equation∇2A0 = −eρc in addition to the assumption that the field
A0 and nuclear currents are localized. Following the DFT prescription and varying with respect to
density we derive the single-particle Dirac equation as in Eq. (2.20), but with modified vector and
scalar fields. They have the form

V = αV ρv + αTV τ0ρtv + eA0 + Σ0
R, S = αSρs + δS∇2ρs, (2.43)

where Σ0
R is the rearrangement contribution

Σ0
R =

∂αS
∂ρv

ρ2
s +

∂αV
∂ρv

ρ2
v +

∂αTV
∂ρv

ρ2
tv. (2.44)

The couplings are parameterized as

αi (ρv) = ai + (bi + cix) e−dix, i = S, V, TV, (2.45)
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Table 2.2: The coupling parameters of the point-coupling functionals used in this work, DD-
PC1 [20] and DD-PCX [21].

DD-PC1 DD-PCX
aS [fm2] -10.0462 -10.9792
bS [fm2] -9.1504 -9.0383
cS [fm2] -6.4273 -5.3130
dS 1.3724 1.3791

aV [fm2] 5.9195 6.4301
bV [fm2] 8.8637 8.8706
dV 0.6584 0.6553

bTV [fm2] 1.8360 2.9632
dTV 0.6403 1.3098

δS [fm4] -0.8149 -0.8789
Gn [MeV fm3] -728.0 -800.6631
Gp [MeV fm3] -728.0 -773.7768

where x = ρv/ρsat. The parameters cV , aTV and cTV are set to zero, while the ten remaining
parameters aS, bS, cS, dS, aV , bV , dV , bTV , dTV and δS are adjusted to nuclear matter properties
together with binding energies of axially-deformed nuclei in Ref. [20]. The resulting parameter set
is called DD-PC1 and its parameters are shown in table 2.2.

Recently, in Ref. [21], using the same form of the DD-PC functional, the parameters were
constrained in addition to the ground-state properties by also considering the nuclear excitations in
the fitting procedure. Apart from binding energies, the χ2 minimization procedure also included
charge radii and paring gaps in the ground state, togetherwith the isoscalar giantmonopole resonance
energy and dipole polarizability, obtained by considering small oscillations around the ground state
density (within the RQRPA to be explained in Chapter 3). The corresponding parameter set DD-
PCX is shown in table 2.2. We note that in addition to the RMF, the pairing interaction was
also considered in the optimization procedure, characterized by the pairing strength constants for
proton(neutron) states Gp(n). We will describe the generalization of the RMF equations to the
superfluid nuclei in the next section.
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2.2 Relativistic Hartree-Bogoliubov (RHB) theory

To introduce the pairing correlations in the mean-field calculation we perform the Bogoliubov
transformation from the single-particle {c†i , ci} to quasi-particle (q.p.) {α†i , αi} basis [23]

α†k =
∑
k

Umkc
†
m + Vmkcm =⇒ αk|Φ〉 = 0, (2.46)

where |Φ〉 is the Bogoliubov vacuum. The relativistic Hartree Bogoliubov (RHB) equations are
usually derived by introducing the generalized density matrix [23]

R =

(
ρ κ

−κ∗ 1− ρ∗

)
, (2.47)

where ρij = 〈Φ|c†icj|Φ〉 is the single-particle density matrix and κij = 〈Φ|cicj|Φ〉 is the pair density,
with the following form in the single-particle basis [58]

ρ = V ∗V T , κ = V ∗UT . (2.48)

The total EDF now not only depends on the mean-field but also on the pairing term, which is a
functional of κ

E[ρ, κ] = ERMF [ρ] + Epair[κ], (2.49)

where the pairing energy is given by Epair[κ] = 1/4Tr[κ∗V ppκ], and V pp is the effective particle-
particle force in the pairing channel. Performing the variation of the functional with respect to the
density δE/δR we obtain the following form

δE[ρ, κ]

δR =

(
h− λ ∆

−∆∗ −h∗ + λ

)
, (2.50)

where h is the Dirac Hamiltonian defined in Eq. (2.20), and ∆ is the pairing field of the following
form in the configuration space

∆ab =
1

2

∑
cd

V pp
abcdκcd. (2.51)
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The condition δE/δR = 0, yields the RHB equation of the form [23](
h− λ ∆

−∆∗ −h∗ + λ

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
, (2.52)

where the chemical potential λ is determined from the particle number subsidiary condition N =

Trρ. The RHB spinor is defined as Ψk =
(
Uk Vk

)T
, where both U and V components consist of

large and small Dirac component. For each solution with eigenvalue Ek and eigenvector (Uk, Vk),
there exists a solution −Ek with eigenvector (V ∗k , U

∗
k ). In practical calculation, one often chooses

positive eigenvalues Ek > 0.
What is the formof the relativisticV pp? In general, different types of pairing interactions are used

with different types of relativistic functionals. Initially, the same form of the relativitsic Lagrangian
was used for the pairing interaction, as was for the mean-field. This produced too large pairing gaps
compared to empirical data [23,139]. On the other hand, use of the non-relativistic forces has lead
to more reasonable results, a sucessfull example being the Gogny force [60]. Furthermore, in the
Dirac basis, the pairing potential can be written in the form

∆ =

(
∆++ ∆+−

∆−+ ∆−−

)
, (2.53)

where "+" refers to the large components of Dirac spinor and "-" to small components. The RHB
calculations with the phenomenological Gogny force neglect the ∆+−,∆−+ and ∆−− components,
which contain small components of Dirac spinor. Such method has lead to success in describing
the properties of open-shell nuclei across the nuclide chart [23] . Therefore, in the following we
adopt only the ∆++ part of the pairing potential. In this work we employ two forms of the pairing
interaction within the RHB

• pairing part of the Gogny interaction with the D1S parameter set from Ref. [140] (defined in
Sec. 4.3)

• the separable pairing interaction from Ref. [141] (defined in Sec. 6.1)
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2.2.1 The BCS approximation

Instead of constructing and diagonalizing the full RHB matrix, we can use the following strategy.
We solve the RMF equations, obtaining a set of single-particle energies {εk}. Next, we calculate
the pairing field ∆αβ from Eq. (2.51) in a basis of choice (such as the harmonic oscillator basis)
and then calculate the state-dependent pairing gaps

∆k =
∑
αβ

f
(α)
k ∆αβf

(β)
k , (2.54)

where f (α)
k is the expansion coefficient of the upper component of Dirac spinor in a specified

basis. Using the Baarden-Cooper-Schrieffer (BCS) approximation of the nuclear pairing, the
corresponding occupation factors vk and uk can be calculated from [40,58]

v2
k =

1

2

1− εk − λ√
(εk − λ)2 + ∆2

k

 , u2
k = 1− v2

k, (2.55)

where λ is the chemical potential (either of proton or neutron states), determined from the condition∑
k gkv

2
k = N , where gk is the degeneracy of state k. Instead of only having fully occupied (v2

k = 1)

and empty (v2
k = 0) single-particle levels, the occupation of states can be scattered around the Fermi

level (determined by λ). Therefore, various single-particle densities defined in Eq. (2.14), (2.16)
and (2.22) entering the RMF equations have the following form

ρv(r) =
∑
k

v2
kψ
†
k(r)ψk(r), ρs(r) =

∑
k

v2
kψ
†
k(r)γ0ψk(r)

ρtv(r) =
∑
k

v2
kψ
†
k(r)τ0ψk(r), ρc(r) =

∑
k

v2
kψ
†
k(r)

1

2
(1 + τ0)ψk(r)

, (2.56)

weighted by the corresponding occupation factor of the level. The set of RMF equations is again
solved self-consistently according to the above prescription. The total energy is now given by a
sum of the RMF energy ERMF and a pairing energy Epair, E = ERMF + Epair, where the latter is
calculated as

Epair = −
∑
k

gkukvk∆k. (2.57)
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Instead, if we assume a fixed pairing strength, so that V pp

kk̄k′k̄′
= −Gδkk′ , k̄ being the time-reversed

state of k, then the pairing gap ∆ is obtained by solving the gap equation [58]

∆ =
G

2

∑
k

∆√
(εk − λ)2 + ∆2

. (2.58)

For instance, the pairing strength G can be determined by adjusting the calculated pairing gaps ∆

to empirical pairing gaps [40].

2.3 Extension to the finite-temperature RHB (FT-RHB)

The nuclei at finite temperatures are found in excited states. Extension of the RHB used to describe
the ground state to the description of hot nuclei requires special care. The expectation values of
observables cannot be evaluated by simply taking the ground-state expectation values. For instance,
for the observable O, the expectation value is defined as 〈Ψ0|O|Ψ0〉, where |Ψ0〉 is the correlated
ground-state wavefunction of the nucleus. In the gist of the EDF theory, it can also be rewritten as
Tr[Oρ̂], where ρ̂ is the ground-state density operator. At finite temperature the expectation value
is defined as the sum of expectation values for each excited state, weighted by the corresponding
Boltzmann factors. Furthermore, it requires the definition of external heat and particle reservoir
for the construction of a grand-canonical ensemble. One can follow two approaches in evaluating
the ensemble averages. First approach is to define the non-interacting density at finite-temperature
and proceed with the derivations as for the zero-temperature RHB. This method was used to derive
the FT-RHB equations by A.L. Goodman in Refs. [25]. Second approach is to try and keep the
notion of a vacuum even at finite temperature, known as the thermal vacuum. It requires doubling
the degrees of freedom of the many-body Hilbert space and is known as the thermofield dynamics
(TFD) [142,143].

Herewe present the derivation of the FT-RHBequation following the approach ofGoodman [25].
The original derivation was applied to non-relativistic Hartree-Fock-Bogoliubov (HFB) theory,
however, the extension to the RHB is straightforward. The nucleus is treated as an open system,
that can exchange both heat and particles with its environment. For such a system the equilibrium
condition is obtained by minimizing the grand-canonical potential δΩ = 0, which is defined as

Ω = E − TS − λN, (2.59)
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whereE, S andN stand for the expected energy, entropy and particle number. We define the density
operator D̂, with the property TrD̂ = 1 so that the expectation value of observable O is defined as
〈O〉 = Tr(D̂O) and the expected values of energy, entropy and particle number are

E = 〈Ĥ〉 = Tr(D̂Ĥ), S = −kBTr(D̂lnD̂), N = Tr(D̂N̂). (2.60)

In the above, Ĥ is the Hamiltonian operator, kB the Boltzmann constant and N̂ =
∑

i c
†
ici is

the particle number operator. Variation condition δΩ → 0 is realized with respect to the density
operator δD̂, and gives the following equation

δΩ = Tr(δD̂Ĥ)− kTTr(δD̂lnD̂ + δD̂)− µTr(δD̂N̂)− λTr(δD̂)

= Tr
[
δD̂(Ĥ + kT lnD̂ + kT − λN̂ − λ)

]
= 0.

(2.61)

In order to satisfy the condition TrD̂ = 1 we can set λ = kT − 1
β
lnZ, which gives the following

expression for the density operator

D̂ = Z−1e−β(Ĥ−λN̂), Z = Tr
[
e−β(Ĥ−λN̂)

]
, (2.62)

where Z is the partition function and β = 1/(kBT ). Within the RHB theory the Hamiltonian Ĥ is
approximated by an independent q.p. Hamiltonian with Ei the q.p. energy

Ĥ − λN̂ ≈ ĤRHB = E0 +
∑
i

Eiα
†
iαi, (2.63)

where the Bogoliubov transformation is defined as in Eq. (2.46), or in the matrix form(
α†

α

)
=

(
UT V T

V † U †

)(
c†

c

)
. (2.64)

Within the RHB approximation the partition function is given by

ZRHB = e−βE0

∏
i

(
1 + e−βEi

)
, (2.65)
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while the RHB density operator has the form

D̂RHB =
∏
i

[fin̂i + (1− fi)(1− n̂i)] , (2.66)

where fi = (1 + exp(βEi))
−1 is the Fermi-Dirac factor and n̂i = c†ici.

Next, we have to evaluate the particle density ρ̃ = 〈α†jαi〉 and the pairing density κ̃ = 〈αjαi〉 in
the q.p. basis, from which we obtain [25]

ρ̃ij = 〈D̂RHBα
†
jαi〉 = fiδij, κ̃ij = 〈D̂RHBαjαi〉 = 0, (2.67)

which constitute the expressions of the generalized Wick theorem. Now we can transform ρ̃ and κ̃
back to the single-particle basis to get

ρ = UfU † + V ∗(1− f)V T , κ = UfV † + V ∗(1− f)UT . (2.68)

Notice that at zero temperature, above expressions reduce to the well-known form in Eq. (2.2).
Looking back at the grand-canonical potential in Eq. (2.59), we can now calculate the ensemble

averages in the RHB approximation to get

Ω = Tr
[
(t+

1

2
Γ− λ)ρ+

1

2
∆κ†

]
+ kT

∑
µ

[(1− fµ)ln(1− fµ) + fµlnfµ] , (2.69)

where the mean-field interaction is Γij =
∑
kl

v̄ikjlρlk, with t being the kinetic energy, and pairing

field is ∆ij = 1
2

∑
kl

v̄ijklκkl.

In the following, the variations in expression for Ω have to be performed with respect to U, V
and f . As a first step we want to obtain expressions for the variation of densities ρ′ = ρ + δρ and
κ′ = κ+ δκ. An infinitesimal transformation of the Bogoliubov transformation can be represented
as (

α′†

α′

)
=

[
1 +

(
εT1 εT2

ε†2 ε†1

)](
α†

α

)
=

(
U ′T V ′T

V ′† U ′†

)(
c†

c

)
. (2.70)

Since the infinitesimal transformation has to be unitary it follows that ε1 = −ε†1 and ε2 = −εT2 .
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New Bogoliubov wave functions (U ′, V ′) can be now found from[
1 +

(
εT1 εT2

ε†2 ε†1

)](
UT V T

V † U †

)
=

(
U ′T V ′T

V ′† U ′†

)
. (2.71)

Since U ′ = U + δU , V ′ = V + δV we get for the variations

δU = Uε1 + V ∗ε2, δV = V ε1 + U∗ε2. (2.72)

By inserting these variations into expressions for single-particle densities ρ and κ in Eq. (2.68) we
get

δρ = Uδρ̄U † − Uδκ̄V T + V ∗δκ̄∗U † − V ∗δρ̄∗V T ,

δκ = Uδρ̄V † − Uδκ̄UT + V ∗δκ̄∗V † − V ∗δρ̄∗UT ,
(2.73)

where we have defined δρ̄ = δf + [ε1, f ] and δκ̄ = ε∗2 + {f, ε∗2} as in Ref. [25]. We can perform
variation of Ω which gives

δΩ = Tr [(t− λ)δρ+ Γδρ] +
1

2
Tr
[
∆δκ† + c.c.

]
+ kT

∑
i

ln
(

fi
1− fi

)
δfi. (2.74)

The variations can be expressed in terms of δρ̄ and δκ̄ as

δΩ = Tr
[
(H11 − E)δρ̄+

1

2

(
H†20δκ̄+ h.c.

)]
, (2.75)

with the definitions

H11 = U †HU − V †H∗V + U †∆V − V †∆∗U,
H20 = V †H∗U∗ − U †HV ∗ + V †∆∗V ∗ − U †∆U∗,

Ei = −kT ln
(

fi
1− fi

)
,

(2.76)

where H = h − λ and h = t + Γ being the single-particle Dirac Hamiltonian. The variations δρ̄
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and δκ̄ are independent as can be seen from their definitions

(δρ̄)ii = δfi,

(δρ̄)ij = (fi − fj)(ε∗1)ij, i 6= j,

(δκ̄)ii = 0,

(δκ̄)ij = (fi + fj − 1)(ε∗2)ij, i 6= j,

(2.77)

where ε1, ε2 and δf are varied independently. Except for the accidental case where fi − fj = 0 or
fi + fj − 1 = 0 it follows that δρ̄ and δκ̄ are independent [25]. The variational principle δΩ = 0

requires that the coefficients of δρ̄ and δκ̄ vanish

H11 = E, H20 = 0. (2.78)

We define the following matrices [25]

α = (HU + ∆V )E−1, β = (−∆∗U −H∗V )E−1, (2.79)

so that Eqs. (2.78) can be written as

U †αE + V †βE = E

V †α∗E + U †β∗E = 0.
(2.80)

By comparing above relations with unitarity condition of Bogoliubov transformation

U †U + V †V = 1

UTV + V TU = 0,
(2.81)

we get α = U, β = V and inserting in Eq. (2.79)

HU + ∆V = UE,

−H∗V −∆∗U = V E.
(2.82)

In the matrix form (
h− λ ∆

−∆∗ −h∗ + λ

)(
U

V

)
= E

(
U

V

)
. (2.83)
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Chapter 2. Relativistic EDF theory

Thus, the FT-RHB equations have the same form as the T = 0 RHB equations [cf. Eq. (2.52)].
Also the Dirac Hamiltonian h, the mean-field potential Γ and the pairing potential ∆ have the
same definitions as for zero temperature. However, the densities ρ and κ have different definitions
given by Eq. (2.68). The chemical potential λ is adjusted to reproduce the correct particle number
N = Trρ. Aswewill demonstrate in Chapter 6, the FT-RHB equation in the above form is applicable
only to well-bound nuclei in the vicinity of the stability valley, and for temperatures up to T = 1

MeV. Namely, as the temperature increases, nucleons can scatter above the Fermi level and into the
particle continuum, becoming unbound. The FT-RHB equation has to be supplemented with the
continuum subtraction technique if we want to obtain reliable results, independent of the basis size
used to discretisize the problem.
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Chapter 3

Relativistic proton-neutron Quasiparticle
Random-Phase Approximation (pnRQRPA)
at finite temperature

The relativistic Hartree-Bogoliubov theory describes ground state of the nucleus. In order to study
the excited states aswell as the collective excitations of nuclei one has to extend themean-field theory
and include the residual interaction. We can study the behavior of nucleus in a perturbing time-
dependent external field F(t). If the field has a harmonic time-dependence and only linear terms
in the generalized density expansion are considered, one obtains the linear response approximation.
To have a complete picture we will work in a generalized basis assuming that the system is in an
equilibrium with a heat bath at temperature T . Our system can be described as a statistical ensemble

|n〉 = |m1 . . .mn〉 = α†m1
. . . α†mn|φ〉, (3.1)

here m1 . . .mn are quantum numbers denoting the basis states and |φ〉 is the vacuum for q.p.
operators αm |φ〉 = 0, ∀m = 1 . . .M . The thermal average of a single-particle operator Ô is then
given by

〈Ô〉T =
∑
n

〈n| Ô |n〉 pn =
TrÔρ
Trρ

, (3.2)

where pn = 1/Ze−βEn are the Boltzmann factors, Z being the partition function defined in Eq.
(2.65), ρ = 1/Z

∑
n pn|n〉〈n| is the density matrix, and En the q.p. energy. By introducing a set of
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Chapter 3. pnRQRPA at finite temperature

complete basis states
∑

i |i〉 〈i| we get

〈Ô〉T =

∑
ni

〈n| Ô |i〉 〈i| ρ |n〉∑
n

〈n| ρ |n〉 . (3.3)

Assuming a non-interacting Hamiltonian of the form Ĥ−λN̂ =
∑

mEmα
†
mαm the matrix element

of the density matrix is

〈i| ρ |n〉 = 〈i| e−β(Ĥ−λN̂) |n〉 = 〈i| e−βEn |n〉 = e−βEnδin. (3.4)

Now the thermal average can be written in the following form

〈Ô〉T =

∑
n

〈n| Ô |n〉 e−βEn∑
n

e−βEn
, (3.5)

which when normalized to unity yields

〈Ô〉T =
∑
n

〈n| Ô |n〉 e−βEn , (3.6)

where the quasiparticle energies are defined by Em = 〈φ| {[αm, Ĥ − λN̂ ], α†m} |φ〉. Thermal
averages of any operator can be expressed by the single-particle density matrix

R =

(
〈c†k′ck〉T 〈ck′ck〉T
〈c†k′c†k〉T 〈ck′c†k〉T

)
, (3.7)

where operators ck, c†k represent an arbitrary single-particle basis. It is convenient to introduce the
set of operators aµ which combine creation and annihilation operators [75]

aµ = αm

aµ̄ = α+
m

}
m = 1 . . .M ;µ = 1 . . .M,−1,−2, . . . ,−M, (3.8)

and obey the commutation relations

{aµ, aµ′} = δµµ̄′ . (3.9)
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Chapter 3. pnRQRPA at finite temperature

In the finite-temperature q.p. representation the density matrixR is diagonal

R =

(
〈α†m′αm〉T 〈αm′αm〉T
〈α†m′α†m〉T 〈αm′α†m〉T

)
=

(
fm 0

0 1− fm

)
, (3.10)

where the Fermi-Dirac occupation factor is fm = (1 + eβEm)−1. Assuming that operators aµ are
time-dependent (Heisenberg picture)

aµ(t) = eiHtaµ(0)e−iHt, (3.11)

follows the equation of motion for the densityR

iṘ = [H(R),R], (3.12)

with Hµµ′ = 〈{[aµ, H], a†µ′}〉T , known as the time-dependent HFB equation. Derivation of above
equation can be found in Appendix A. If there is no external field, equation above reduces to the
static HFB equation

[H(R0),R0] = 0, (3.13)

at finite temperature. Extension to the RHB equation is straightforward [23]. In this basis R0 and
H(R0) are diagonal, with the eigenvalues

fµ = fm, fµ̄ = 1− fm
Eµ = Em, Eµ̄ = −Em

}
µ > 0. (3.14)

To describe the charge-exchange transitions we have to introduce the charge-exchange external
field operator F(t) in the super-matrix space, which has the following form

F(t) =

(
0 F(pn)(t)

F(np)(t) 0

)
, (3.15)

where only the pn and np blocks are relevant. The matrix elements of F(pn) are denoted as Fπν . The
densityRπν is the matrix element of the R(pn) matrix, while the generalized density super-matrix is

R =

(
R(pp) R(pn)

R(np) R(nn)

)
. (3.16)
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Chapter 3. pnRQRPA at finite temperature

Starting from Eq. (3.12) for the generalized density R we write

iδṘ(t) = [H0, δR(t)] + [δH(t) + F(t),R0], (3.17)

where we introduce the following notation [77]

H0 =

(
H(p)

0 0

0 H(n)
0

)
, R0 =

(
R(p)

0 0

0 R(n)
0

)
, (3.18)

denoting super-matrices in the enlarged proton-neutron space. The proton-neutron induced density
takes the form

δR =

(
0 δR(pn)

δR(np) 0

)
. (3.19)

By taking the (pn) block from the above equation one can derive the linear response equation at
finite temperature in the q.p. basis as

− ωδRπν = EπδRπν − EνδRπν − (fπ − fν)(δHπν + Fπν), (3.20)

where the time-dependent fields have been expanded as

δRπν(t) = δRπν(ω)e−iωt + h. c.. (3.21)

Details can be found in Appendix A. The label π(ν) denotes the proton(neutron) q.p. indices and is
used in the following. The induced Hamiltonian can be written as [30, 75]

δHπν =
∑
π′ν′

δHπν

δRπ′ν′
δRπ′ν′ ≡

∑
π′ν′

Wπνπ′ν′δRπ′ν′ . (3.22)

There are two approaches to solve Eq. (3.20): (i) to search for its eigenvalues obtained by setting the
external field to zero i.e. Fπν = 0, which is called the matrix pnRQRPA and (ii) approach based
on introduction of the response function known as the linear response pnRQRPA. Of course,
all calculated observables should be independent of the method we choose to solve Eq. (3.20),
however, based on peculiarities of the interaction selected, one approach could be more numerically
advantageous compared to the other. In Sec. 3.1 we introduce the linear response formalism at
finite temperature, while in Sec. 3.2 we define the matrix pnRQRPA.
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Chapter 3. pnRQRPA at finite temperature

3.1 Linear response pnRQRPA

We define the response function R, starting from the induced density as

δRπν =
∑
π′ν′

Rπνπ′ν′Fπ′ν′ , (3.23)

and by inserting the above definition in Eq. (3.20) we get

Rπνπ′ν′ = R0
πνπ′ν′ +

∑
µµ′

R0
πνµµ′

∑
π′′ν′′

Wπνπ′′ν′′Rπ′′ν′′π′ν′ , (3.24)

which is known as the Bethe-Salpeter equation [75]. We used the definition of the unperturbed
response as [75]

R0
πνπ′ν′ =

(fπ − fν)
ω − Eπ − Eν + iη

δππ′δνν′ , (3.25)

where a small smearing parameter η is added due to the singular behaviour of the denominator. The
linear response equation is significantly simplified if the following separable interaction form of the
Hamiltonian is used

Ĥ = Ĥ0 + χ
∑
ρ

D†ρDρ, (3.26)

where Ĥ0 is the single particle Hamiltonian (at the RHB level) and ρ runs over a set of single-particle
operators Dρ, which in the charge-exchange case are not necessarily Hermitian or anti-Hermitian.
However, the full Hamiltonian has to remain Hermitian. Now, by solving for Wπνπ′ν′(fπ′ − fν′) =

〈[a†π′a†ν′ , {[aπ, H], a†ν′}]〉T and keeping only direct terms we get

Wπνπ′ν′ = χD∗πνDπ′ν′ + χD∗π̄′ν̄′Dπ̄ν̄ . (3.27)

Note that the second term arises due to using the charge-exchange residual interaction instead of
the like particle one. Derivations of the interaction matrix can be found in Appendix A.3. Instead
of solving the Bethe-Salpeter equation in the q.p. configuration space, we introduce the reduced
response function as in Ref. [75]

Rρρ′(ω) =
∑
πνπ′ν′

D∗ρπνRπνπ′ν′(ω)Dρ′
π′ν′
. (3.28)
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Chapter 3. pnRQRPA at finite temperature

The unperturbed reduced response function is given by a simple substitution of R0 in the above
definition

R0
ρρ′ =

∑
πν

D∗ρπνDρ′πν (fν − fπ)

ω − Eπ + Eν′ + iη
, (3.29)

which now yields the reduced Bethe-Salpeter equation in the coordinate space

Rρρ′ = R0
ρρ′ +

∑
ρ′′

R0
ρρ′′χRρ′′ρ′ . (3.30)

Compared to the linear response equation in the configuration space [cf. Eq. (3.24)], above equation
has a substantially lower dimension, and thus is more suitable for the large-scale calculations of
nuclear properties across the nuclide chart.

The physical strength function is calculated as [75, 107]

SF (ω) =
∑

if

pi|〈f|F̂ |i〉|2δ (ω − Ef + Ei) , (3.31)

where pi = e−βEi/
∑

j e
−βEj , Ei(f) is the initial(final) state energy and 〈f|F̂ |i〉 is the external field

matrix element. By defining the response function

RFF =
∑
µµ′νν′

F ∗µµ′Rµµ′νν′Fνν′ , (3.32)

we can write the strength function within the linear response approximation as

SF (ω) ≈ − 1

π

1

1− e−βω ImRFF (ω), (3.33)

where (1− e−βω)−1 is often termed as a detailed balance factor and will be clarified in Appendix B.

3.1.1 Solving the linear response equations

To simplify the following discussion, in this section we assume spherical symmetry. Extension to
axial-symmetry is straightforward and demonstrated in Chapter 7. Suppose that the total interaction
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Chapter 3. pnRQRPA at finite temperature

Hamiltonian of the proton-neutron interaction can be written as [144]

Ĥ = Ĥ0 +
1

2

Nc∑
c=1

∞∫
0

drr2
∑
pnp′n′

Q(1)
cp,n(r)vc(r)Q

∗(2)
cp′n′(r)drc

†
pcnc

†
n′cp′ , (3.34)

here we assume that the residual interaction can be written as a sum of Nc separable terms denoted
as Q(1,2)

cp,n with interaction strength vc(r). Separable terms appearing in the interaction Hamiltonian
can be written as

Q̂pn =
∑
pn

〈p|Q|n〉c†pcn, (3.35)

in an arbitrary single-particle proton-neutron basis {c†p, cn} (later we will assume either spherical
or axial symmetry and further determine the basis). We want to represent the above operator in the
q.p. basis by employing the Bogoliubov transformation [58]

cp =
∑
π

Upπαπ + V ∗pπα
†
π, cn =

∑
ν

Unναν + V ∗nνα
†
ν , (3.36)

where U, V are Bogoliubov matrices and {α, α†} set of q.p. operators. Inserting transformation in
Eq. (3.35) we get

Q̂pn =
∑
pn

∑
πν

{
(U †QU)πνα

†
παν + (U †QV ∗)πνα

†
πα
†
ν + (V TQU)απαν + (V TQV ∗)απα

†
ν

}
=
∑
pn

∑
πν

(
U †QU U †QV ∗

V TQU V TQV ∗

)
=

∑
pnπνkk′

Q
(pn)
kk′ akπak′ν ,

(3.37)

where we have written the q.p. operator in matrix form according to the basis defined in Eq. (3.8).
Notice that the operators απ,ν are replaced with aπ,ν .

Rather than solving the Bethe-Salpeter equation in the q.p. space, it is significantly easier to
solve the above equation in the coordinate-space by introducing the reduced response [75]

Rcc′(ω; r, r′) =
∑
µµ′νν′

Q∗cµµ′(r)Rµµ′νν′Qc′νν′(r
′), (3.38)

where Qcµµ′(r) = 〈µ|Qc(r)|µ′〉 is the separable channel of the interaction. In the case when the
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Chapter 3. pnRQRPA at finite temperature

interaction matrix W can be written as a sum of separable channels and using result of Eq. (3.27)

Wµµ′νν′ =
∑
c

∫
r2drQcµµ′(r)vc(r)Q

∗
cνν′(r) +

∑
c

∫
r2drQcν̄ν̄′(r)vc(r)Q

∗
cµ̄µ̄′(r)︸ ︷︷ ︸

this can be treated as another channel

. (3.39)

The second term can be treated as another channel, doubling the dimension of the reduced response
function. If there are Nc separable interaction channels then in the proton-neutron picture there
will be total of 2Nc channels in the response equation. Keeping this in mind we get the reduced
Bethe-Salpeter equation in the coordinate space

Rcc′ (ω; r, r′) = R0
cc′ (ω; r, r′) +

∑
c′′

∫
r′′2dr′′R0

cc′′ (ω; r, r′′) vc′′ (r
′′)Rc′′,c′ (ω; r′′, r′) , (3.40)

where the reduced unperturbed response is defined as

R0
cc′ (ω; r, r′) =

∑
µµ′

(fµ′ − fµ)

ω − Eµ + Eµ′ + iη
Q∗cµµ′(r)Qc′µµ′ (r

′) . (3.41)

In order to solve for the response functionRFF perturbed by the external fieldF we use the definition

RFF =
∑
µµ′νν′

F ∗µµ′Rµµ′νν′Fνν′ , (3.42)

and insert the Bethe-Salpeter equation (3.24) to get the equation

RFF = R0
FF +

∑
c

∫
r2drR0

Fc(r)vc(r)RcF (r), (3.43)

where we have defined the following response functions

R0
FF =

∑
µµ′νν′

F ∗µµ′R0
µµ′νν′Fνν′ ,

R0
Fc(r) =

∑
µµ′νν′

F ∗µµ′R0
µµ′νν′Qνν′(r),

RcF (r) =
∑
µµ′νν′

Q∗cµµ′(r)Rµµ′νν′Fνν′ .
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Chapter 3. pnRQRPA at finite temperature

The next step is to solve for RcF (r) from

RcF (r) = R0
cF (r) +

∑
c′

∫
r2drR0

cc′(r)v
′
c(r)Rc′F (r), (3.44)

where R0
cc′ is defined in Eq. (3.41). To solve the above system of equations we simply use the

matrix inversion.
To illustrate the calculation procedure, suppose there are Nc interaction channels and that the

radial integration mesh is discretized in Nr mesh-points. Let’s denote N = Nc ×Nr. We can then
write the above coupled system of equations in the matrix form as

RQF = R0
QF +R0

QQ × VN×N ×RQF ,

RFF = R0
FF +R0

FQ × VN×N ×RQF ,
(3.45)

where VN×N is a matrix of dimension N × N with elements consisting of vc(r), the response
functions RQF and R0

QF are of the dimension N × Nr, while RFF and R0
FF are Nr × Nr. The

reduced response matrix R0
QQ is N × N matrix. Since the interaction matrix elements are real,

RQF = RT
FQ, reducing the number of required equations. We can calculate the RQF response by

matrix inversion
RQF = R0

QF (1N×Nr −R0
QQVN×N)−1, (3.46)

which is substituted to obtain the response RFF in Eq. (3.43).
The unperturbed response is calculated from the external field matrix elements as

R0
FF (ω; r) =

∑
πν

(fν − fπ)

ω − Eπ + Eν + iη
F ∗πν(r)Fπν(r), (3.47)

and the external field operator in the q.p. basis is

Fπν(r) = f(r)

(
(U †FU)πν (U †FV ∗)πν̄

(V TFU)π̄ν −(V TFV ∗)π̄ν̄

)
, (3.48)

with f(r) denoting its radial dependence. Thus, the unperturbed response at zero-temperature has
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Figure 3.1: The pnQRPA strength as calculated in the proton-neutron linear response formalism.
Check Eq. (3.50).

the form

R0
FF (ω; r) =

∑
πν

(U †FV ∗)∗πν(r)(U
†FV ∗)πν(r)

ω − Eπ − Eν + iη
− (V TFU)∗πν(r)(V

TFU)πν(r)

ω + Eπ + Eν + iη
. (3.49)

If we assume that η → 0+ and use 1/(ω + iη) = P (1/ω)− iπδ(ω), then the imaginary part of the
unperturbed response is

ImR0
FF (ω; r) =

∑
πν

−π(U †FV ∗)∗πν(r)(U
†FV ∗)πν(r)δ(ω − (Eπ + Eν))

+ π(V TFU)∗πν(r)(V
TFU)πν(r)δ(ω + (Eπ + Eν)).

(3.50)

The total strength is then obtained by integrating with
∫
r2drf(r). From the form of the above

expression, we observe that at ω = Eπ + Eν we obtain the β− unperturbed strength (for pn pairs)
while for ω = −(Eπ + Eν) we get the β+ unperturbed strength. This is shown in Fig. 3.1 in the
case of only one 2 q.p. pair. It means that we can calculate the response function on a symmetric
energy interval and get both β− and β+ strength.
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3.1.2 The DD-PC1(X) interaction with the separable pairing

To take the full advantage of writing the response function in the reduced form we make use of the
point-coupling interactions such as DD-PC1 [20] and DD-PCX [21], already introduced in Chapter
2. The use of the point-coupling interactions allows for the residual interaction to be written as

V ph
αβα′β′ =

∑
c

Q†cαβv
ph
c Q

c
α′β′ , (3.51)

where c is the number of the separable channels1, Qc
αβ is the matrix element of the separable

channel and vphc is the diagonal interaction matrix — now we assume particle-hole (ph), but extend
to particle-particle (pp) later. Since we are considering the charge-exchange case only two terms in
the residual interaction Lagrangian contribute [cf. Sec. 2.1]

• isovector-vector (TV) interaction

LTV = −1

2
αTV (ρv)(ψ̄~τγµψ) · (ψ̄~τγµψ)δ(r1 − r2), (3.52)

• isovector-pseudovector (TPV) interaction

LTPV = g0(γ0γ5γµ~τ) · (γ0γ5γ
µ~τ)δ(r1 − r2), (3.53)

where · implies integration over the radial coordinates as well as a summation over µ. The parameter
g0 is the TPV interaction coupling constant. Its strength is g0 = 0.734 for the DD-PC1 interaction
and g0 = 0.621 for the DD-PCX, as determined by reproducing the experimental GT− centroid
energy in 208Pb [145]. We note that at the FT-RHB level, only the TV term is present in the
Lagrangian density [30, 145]. The Dirac spinors in the central field with spherical symmetry have
the form [138,146]

|ψ〉 =

(
fi(r)

[
χ1/2 ⊗ Yl

]
jm

igi(r)
[
χ1/2 ⊗ Yl̃

]
jm

)
, (3.54)

where fi(r) (gi(r)) are upper (lower) components of the Dirac spinor, j labels the total angular
momentum with projection m and orbital angular momentum l (l̃) for upper (lower) components,
while χ1/2ms are spin-1/2 wave functions with projection ms. The Dirac spinors are expanded in

1Here we assume that vc is a diagonal matrix. To treat the derivative terms in the residual interaction it has to be
expanded as vcc′ , having off-diagonal elements.
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Nosc (Ñosc) harmonic oscillator shells for upper(lower) components [146]

fi(r) =
Nosc∑
n=0

f (i)
n Rnli(r, b0), gi(r) =

Ñosc∑
n=0

g(i)
n Rnl̃i

(r, b0), (3.55)

whereRnli(r, b0) are radial harmonic oscillator wavefunctions, and b0 the oscillator length [146]. If
the number of upper components is nf and lower ng we define the spinor dimension nh = nf + ng.
The RHB wave function has the dimension nRHB = nh + nh and is of the form(

Uf (r)︸ ︷︷ ︸
nf

Ug(r)︸ ︷︷ ︸
ng

Vf (r)︸ ︷︷ ︸
nf

Vg(r)︸ ︷︷ ︸
ng

)T

i︸ ︷︷ ︸
nRHB

=

(
1nh
0nh

)
⊗
(
Nosc∑
n=0

u
n,l(i)
f Rnl(r)

[
χ1/2 ⊗ Yl

]
jm

Ñosc∑
n=0

u
n,l̃(i)
g Rnl̃(r)

[
χ1/2 ⊗ Yl̃

]
jm

)

+

(
0nh
1nh

)
⊗
(
Nosc∑
n=0

v
n,l(i)
f Rnl(r)

[
χ1/2 ⊗ Yl

]
jm

Ñosc∑
n=0

v
n,l̃(i)
g Rnl̃(r)

[
χ1/2 ⊗ Yl̃

]
jm

)
,

where
(

1nh 0nh

)
=

 1 . . . 1︸ ︷︷ ︸
nh

0 . . . 0︸ ︷︷ ︸
nh

.

Separable interaction terms can be distinguished between natural parity and unnatural parity
transitions. By abbreviating fnli ≡ f

(i)
n Rnli(r, b) we have the following channels corresponding to

ph residual interaction in Eq. (3.51):

• natural parity transitions (Jπ = 0+, 1−, 2+):

Q1k1k3(r) = fnk1 lk1 (r)fnk3 lk3 (r)〈lk1jk1||YJ (Ω)~τ ||lk3jk3〉
+ gnk1 l̃k1

(r)gnk3 l̃k3
(r)〈l̃k1jk1||YJ (Ω)~τ ||l̃k3jk3〉,

(3.56)

Q2k1k3(r) = fnk1 lk1 (r)gnk3 l̃k3
(r)〈lk1jk1|| [σSYJ−1 (Ω)]J ~τ ||l̃k3jk3〉

− gnk1 l̃k1 (r)fnk3 lk3 (r)〈l̃k1jk1|| [σSYJ−1 (Ω)]J ~τ ||lk3jk3〉,
(3.57)
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Q3k1k3(r) = fnk1 lk1 (r)gnk3 l̃k3
(r)〈lk1jk1|| [σSYJ+1 (Ω)]J ~τ ||l̃k3jk3〉

− gnk1 l̃k1 (r)fnk3 lk3 (r)〈l̃k1jk1|| [σSYJ+1 (Ω)]J ~τ ||lk3jk3〉,
(3.58)

Q4k1k3(r) = fnk1 lk1 (r)fnk3 lk3 (r)〈lk1jk1 || [σSYJ (Ω)]J ~τ ||lk3jk3〉
+ gnk1 l̃k1

(r)gnk3 l̃k3
(r)〈l̃k1jk1||YJ (Ω)~τ ||l̃k3jk3〉,

(3.59)

with v1(r, r′) = αTV (r)
r2

δ(r − r′), v2(r, r′) = −αTV (r)
r2

δ(r − r′), v3(r, r′) = −αTV (r)
r2

δ(r −
r′), v4(r, r′) = −g0

r2
δ(r − r′).

• unnatural parity transitions (Jπ = 0−, 1+, 2−)

Q1k1k3(r) = gnk1 l̃k1
(r)fnk3 lk3 (r)〈l̃k1jk1 || [σSYJ (Ω)]J ~τ ||lk3jk3〉

− fnk1 lk1 (r)gnk3 l̃k3
(r)〈lk1jk1|| [σSYJ (Ω)]J ~τ ||l̃k3jk3〉,

(3.60)

Q2k1k3(r) = fnk1 lk1 (r)gnk3 l̃k3
(r)〈lk1jk1||YJ (Ω)~τ ||l̃k3jk3〉

− gnk1 l̃k1 (r)fnk3 lk3 (r)〈l̃k1jk1||YJ (Ω)~τ ||lk3jk3〉,
(3.61)

Q3k1k3(r) = fnk1 lk1 (r)fnk3 lk3 (r)〈lk1jk1|| [σSYJ−1 (Ω)]J ~τ ||lk3jk3〉
+ gnk1 l̃k1

(r)gnk3 l̃k3
(r)〈l̃k1jk1 ||YJ−1 (Ω1)~τ ||l̃k3jk3〉,

(3.62)

Q4k1k3(r) = fnk1 lk1 (r)fnk3 lk3 (r)〈lk1jk1|| [σSYJ−1 (Ω)]J ~τ ||lk3jk3〉
+ gnk1 l̃k1

(r)gnk3 l̃k3
(r)〈l̃k1jk1||YJ−1 (Ω)~τ ||l̃k3jk3〉,

(3.63)

with v1(r, r′) = −g0
r2
δ(r−r′), v2(r, r′) = g0

r2
δ(r−r′), v3(r, r′) = −αTV (r)

r2
δ(r−r′), v4(r, r′) =

−g0
r2
δ(r − r′).

The spin rank is either S = 0, 1, therefore the rank of spherical harmonics is J, J ± 1 so that
the total matrix element can be coupled to J . The isospin Pauli matrix is denoted by ~τ , while the
spin matrix is σS . There are only 4 channels for both cases of natural parity.
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Two-body matrix elements of the residual pairing interaction in the basis of spherical harmonic
oscillator are calculated as

〈nl1ll1jl1 , nl2ll2jl2|V̂pp(r1, r2, r
′
1, r
′
2)|nl3ll3jl3 , nl4ll4jl4〉, (3.64)

where we assume the separable pairing interaction of the form [141]

V̂pp(r1, r2, r
′
1, r
′
2) = −Gδ(R−R′)P (r)P (r′)

1

2
(1− P rP σP τ ), (3.65)

withP r, P σ, P τ being coordinate, spin and isospin exchange operators respectively,R = 1
2
(r1+r2)

and r = r1 − r2 are the center-of-mass and relative coordinates while

P (r) =
1

(4πa)3/2
e−

r2

4a2 , (3.66)

where a and G are free parameters depending on the underlying EDF. By calculating the matrix
element in Eq. (3.64) and coupling to good angular momentum J , residual pairing matrix elements
assume the separable form in the harmonic oscillator basis

V J
l1l2,l3l4

= −Gf
∑
NLS

V NLSJ
l1l2

V NLSJ
l3l4

, (3.67)

where we define the separable terms as [145]

V NLSJ
l1l2

=
L̂Ŝ

23/2π3/4b3/2

(1− α2)n

(1 + α2)n+3/2
×

× (2n+ 1)!

2nn!
ĵl1 ĵl2


ll2 1/2 jl2

ll1 1/2 jl1

L S J

MNLn0
nl1 ll1nl2 ll2

,

(3.68)

with α = a/b0, b0 being the harmonic oscillator constant and MNLn0
nl1 ll1nl2 ll2

the Talmi-Moschinsky
bracket [141]. We use the usual abbreviation ĵ =

√
2j + 1. Due to constraints imposed by coupling
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charge-exchange channel and exchange operators of Eq. (3.64)

f =


1, if T = 1, S = 0

V is, if T = 0, S = 1

0 otherwise

. (3.69)

For the charge-exchange channel total isospin operator can assume values T = 0, 1.

3.1.3 Angular momentum coupling

Assuming spherical and time-reversal symmetry, the total angular momentum J is a good quantum
number, in addition to the parity π. Therefore, the dimensions of the problem can be significantly
reduced by solving the linear response equations within well defined Jπ blocks. To achieve that,
we have to couple the separable interaction channels Qc to QJ

c which have a well defined angular
momentum. In order to couple the fermion operators we use [30, 58, 147]:

[α†pjα
†
nj′ ]JM =

∑
mm′

CJM
jmj′m′α

†
pjmα

†
nj′m′ , [α̃pjα̃nj′ ]JM = −(−)J+M

∑
mm′

CJ−M
jmj′m′αpjmαnj′m′ ,

(3.70)
with the definitions

[α†pj ⊗ α̃nj′ ]JM =
∑
mm′

(−)j
′−m′CJM

jmj′−m′α
†
pjmαnj′m′ , (3.71)

[α̃pj ⊗ α†nj′ ]JM = −(−)J+M
∑
mm′

(−)j
′−m′CJ−M

jmj′−m′αpjmα
†
nj′m′ . (3.72)

Also, α̃jm = (−)j+mαj−m. Here, we have explicitly denoted the angular momentum and projection
of the q.p. operator as j and m, respectively. The Bogoliubov transformation between spherical
fermion operators is [147]:

ckj−m =
∑
l

U j
klαlj−m + (−)j+mV j∗

kl α
†
ljm, (3.73)

c†kjm =
∑
l

(−)j−mV j
klαlj−m + U j∗

kl α
†
ljm, (3.74)
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where U, V are independent of the projection m. The coupling has to be performed separately for
the ph and pp residual interaction. In addition to the ph and pp channels, we also demonstrate
coupling of the external field matrix element.

The ph residual interaction

The single-particle ph operator can be transformed to the spherical q.p. basis as

Q̂pn =
∑

pn;jj′;mm′

Qpjm;nj′m′c
†
pjmcnj′m′

=
∑

pn;jj′;mm′

Qpjm;nj′m′

(
(−)j−mVpπUnναπj−mανj′m′ + (−)j+j

′−m−m′VpπV
∗
nναπj−mα

†
νj′−m′

+U∗pπUnνα
†
πjmανj′m′ + (−)j

′−m′U∗pπV
∗
nνα

†
πjmα

†
νj′−m′

)
,

(3.75)

by performing the coupling of the ph matrix element to angular momentum J we have

Qpjm;nj′m′ =
∑
JM

QJ
pj;nj′(−)j

′−m′CJM
jmj′−m′ , (3.76)

and inserting in the above derivation with the use of Eqs. (3.70,3.71) we get

Q̂pn =
∑

pπnνjj′JM

QJ
pj;nj′

(
VpπUnν [α̃πjα̃νj′ ]JM − VpπV ∗nν [α̃πj ⊗ α†νj′ ]JM

+U∗pπUnν [α
†
πj ⊗ α̃νj′ ]JM + U∗pπV

∗
nν [α

†
πjα

†
νj′ ]JM

)
.

(3.77)

In the matrix notation introduced previously in Eq. (3.37)

Q̂pn =
∑
pj;nj′

∑
JM

∑
πν

(
(U †QJU)πν (U †QJV ∗)πν

(V TQJU)πν −(V TQJV ∗)πν

)
=
∑
πνkk′

Q
(pn)
kk′ akπak′ν . (3.78)

External field operator

As an example of the charge-changing external field operator we take the Gamow-Teller F̂ = στ±,
for β± direction corresponding to the GT± transitions. The external field operator for the GT−
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strength can be written as

F̂ pn =
∑

pnjj′mm′

Fpjm;nj′m′c
†
pjmcnj′m′ =

∑
pnjj′mm′

〈pjm|[στ−]JM |nj′m′〉c†pjmcnj′m′ , (3.79)

where τ−|n〉 = |p〉. For the GT+ strength we have

(F̂ pn)† =
∑

pnjj′mm′

Fnjm;pj′m′c
†
njmcpj′m′ =

∑
pnjj′mm′

〈njm|[στ+]JM |pj′m′〉c†njmcpj′m′ , (3.80)

where τ+|p〉 = |n〉. Hence, these two operators are related through the Hermitian conjugation.
Written in the q.p. basis with coupled angular momentum, their form corresponds exactly to Eq.
(3.78) for the ph interaction.

The pp residual interaction

Based on the similar analysis of the ph channel, the residual pairing separable term has the form

V̂ †pn =
∑
pn

V NJ
pn c†pc

†
n, (3.81)

where V NJ
pn is the separable residual pairing channel corresponding to expression in Eq. (3.68).

The pp-part of the residual interaction has the form

V̂ †pnV̂pn =
∑
pnp′n′

V NJ
pn V NJ∗

p′n′ c
†
pc
†
ncn′cp′ , (3.82)

and above is Hermitian as it should be, since it is a term in the Hamiltonian. We can now write for
a separable term in the spherical h.o. basis

V̂pn =
∑

pjm;nj′m′

Vpjm;nj′m′c
†
pjmc

†
nj′m′ , (3.83)
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which we will transform in the q.p. representation in the following. Using Eqs. (3.70) and (3.71)
we get

V̂pn =
∑
pj:nj′

∑
JM

∑
πν

V J
pj;nj′

{
−(V TV JV )πν [α̃πjα̃νj′ ]JM − (V TV JU∗)πν [α̃πj ⊗ α†νj′ ]JM

− (U †V JV )πν [α
†
πj ⊗ α̃νj′ ]JM + (U †V JU∗)πν [α

†
πjα

†
νj′ ]JM

}
=
∑
pj:nj′

∑
JM

∑
πν

(
−(U †V JV )πν (U †V JU∗)πν

−(V TV JV )πν −(V TV JU∗)πν

)
=
∑
πνkk′

V
(pn)
kk′ akπak′ν ,

(3.84)

where in the above we have used the matrix notation as introduced in Eq. (3.37).

3.2 Matrix FT-pnRQRPA

The FT-QRPA equations in the matrix form were derived in Refs. [107, 148, 149] for both the like-
particle and charge-exchange channels. Here we follow the work presented in Refs. [31, 34] which
connects the matrix QRPA to the linear response QRPA formalism. Starting from the linearized
TD-HFB equation in Eq. (3.20) we can write it in the matrix form [31, 34]

[TW + E − ωM]TδR = −TF , (3.85)

where we have expanded the interacton matrix δHπν as in Eq. (3.22). The matrix of Fermi-Dirac
factors is defined as

Tµµ′ = diag(fµ′ − fµ, 1− fµ′ − fµ, 1− fµ′ − fµ, fµ′ − fµ), (3.86)

the norm matrix is
M = diag(1, 1,−1,−1), (3.87)

and the q.p. energy matrix

Eµµ′ = diag(Eµ + Eµ′ , Eµ − Eµ′ ,−Eµ − Eµ′ ,−Eµ + Eµ′). (3.88)
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These are diagonal matrices of the dimension 4Nph × 4Nph where Nph is the number of q.p. pairs.
The interaction matrix W has the structure

Wµµ′νν′ =
δHµµ′

δRνν′
=


C ′ a b D

a† A′ B bT

b† B∗ A′∗ aT

D∗ b∗ a∗ C ′∗

 , (3.89)

where the definition of submatrices a, aT , a†, b, bT , b†, A′, B,D and C ′ can be found in Ref. [107].
The external field operator F and the induced density δR have the following structure in the q.p.
basis, respectively

Fµµ′ =
(
F 11 F 20 F 02 F 1̄1

)T
µµ′

, δRµµ′(ω) =
(
P (ω) X(ω) Y (ω) Q(ω)

)T
µµ′

, (3.90)

with F 11, F 20, F 02, F 1̄1 defined in Ref. [58]. By setting the external field to zero in Eq. (3.85) we
obtain the FT-pnRQRPA eigenvalue problem

[E + TW]TX =MTXΩ, (3.91)

where X is the matrix whose columns consist of the FT-pnRQRPA eigenvectors

X =


P1 . . . P2Nph Q∗1 . . . Q

∗
2Nph

X1 . . . X2Nph Y ∗1 . . . Y
∗

2Nph

Y1 . . . Y2Nph X∗1 . . . X
∗
2Nph

Q1 . . . Q2Nph P ∗1 . . . P
∗
2Nph

 , (3.92)

with the matrix of eigenvalues defined as Ω = diag(E1 . . . E2Nph ,−E1 . . .−E2Nph). We introduce
the 2 q.p. excitation operator as [107]

Γn =
∑
νν′

P n∗
νν′ανα

†
ν′ −Xn∗αναν′ + Y n∗

νν′α
†
να
†
ν′ −Qn∗

νν′α
†
ναν′ . (3.93)
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The transition matrix element of the external field has to be generalized from the zero temperature
form |〈0|F̂ |n〉|2 to

〈[Γn, F̂ ]〉 =
∑
νν′

P n∗
νν′F

11
nuν′(fν′ − fν) +Xn∗

νν′F
20
νν′(1− fν′ − fν)

+ Y n∗
νν′F

02
νν′(1− fν′ − fν) +Qn∗

νν′F
1̄1
νν′(fν′ − fν),

(3.94)

where 〈·〉 denotes the thermal average with respect to the non interacting density matrix R0 [107].
The equation (3.91) is solved by matrix diagonalization, which yields set of eigenvalues Ω and
the corresponding eigenvectors X which are used to calculate the transition matrix element in
Eq. (3.94). The dimension of the matrix which has to be diagonalized is 4Nph × 4Nph. For
spherical nuclei where the number of q.p. pairs is Nph ∼ 1000 the problem is easily solved with
moderate amount of computer resources. However, as we will demonstrate later, once the spherical
symmetry is broken, the number of q.p. pairs raises toNph ∼ 50000 which is computationally quite
demanding.

3.3 Numerical tests

In this section we perform the numerical comparisons between the linear response FT-pnRQRPA
andmatrix FT-pnRQRPA.Detailed investigationwas carried in Ref. [30] and herewe use this section
to illustrate numerical differences between the two implementations. The tests are performed for
the GT− strength function in 116Sn at finite temperature. The initial state of the nucleus is calculated
with the FT-HBCS solver using the delta-pairing interaction as described in Ref. [30] and section
2.2.1. The FT-HBCS presents an approximation to the FT-RHB but requires less calculation time
compared to the full FT-RHB. Nevertheless, for our purposes in this work it is sufficient. The matrix
FT-pnRQRPA is developed in Refs. [145,149] and offers an independent test of the implementation.
The wave functions of the FT-HBCS are expanded in Nosc = 10 h.o. shells at T = 0.6 MeV
using the DD-PC1 interaction. The strength of the isoscalar pairing is set to V is = 1.0. In Figure
3.2 we compare the GT− strength function between the two implementations, the linear response
FT-pnRQRPA (lrFT-QRPA) and the matrix FT-pnRQRPA (mFT-QRPA).

The lrFT-QRPA result represents a continuous line for which we have used a smearing parameter
η = 0.25 MeV, while the mFT-QRPA results are discrete peaks at corresponding pnFT-RQRPA
eigenvalues. The height of the peaks and the continuous line should not be compared, however,
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Figure 3.2: The GT− strength function of 116Sn at T = 0.6 MeV calculated with the FT-pnRQRPA
based on the linear response (red solid line) and the matrix formulation (blue peaks). Calculations
are based on the FT-HBCS initial state with the delta-pairing interaction. Both implementations
employ Nosc = 10 h.o. shells.

their energies agree. The strength function in Eq. (3.33) is given as the imaginary part of the
response function, whose poles correspond to the mFT-QRPA eigenvalues. To directly compare the
matrix elements between the two approaches we have to compare the lrFT-QRPA induced densities
to the mFT-QRPA eigenvectors. In Ref. [30] we have defined the linear response amplitudes as
δRπν̄ = Xπν(ω), δRπ̄ν = Yπν(ω), δRπν = Pπν(ω) and δRπ̄ν̄ = Qπν(ω). Starting from the linear
response amplitudes the mFT-QRPA eigenvectors of the i-th mode can be calculated as

X i
πν = e−iθ|〈i|F̂ |0〉|−1 1

2πi

∮
Ci

Xπν(ω)dω, P i
πν = e−iθ|〈i|F̂ |0〉|−1 1

2πi

∮
Ci

Pπν(ω)dω,

Y i
πν = e−iθ|〈i|F̂ |0〉|−1 1

2πi

∮
Ci

Yπν(ω)dω, Qi
πν = e−iθ|〈i|F̂ |0〉|−1 1

2πi

∮
Ci

Qπν(ω)dω,

(3.95)

where the FT-QRPA external field matrix element is |〈i|F̂ |0〉| , and e−iθ is the overall phase which

54



Chapter 3. pnRQRPA at finite temperature

remains undetermined. The above system of equations can be solved on a circular contour of small
radius η using the Simpson’s rule. To calculate the mFT-QRPA matrix element numerically we
parameterize the integration around the circular contour of radius η as:

|〈i|F̂ |0〉|2 =
1

2πi

∮
RFF (ω)dω =

1

2πi

2π∫
0

RFF (ω0 + ηeiφ)iηeiφdφ =
η

2π

2π∫
0

RFF (ω0 + ηeiφ)eiφdφ

=

∣∣∣∣∣ t = φ
2π

dt = dφ
2π

∣∣∣∣∣ = η

1∫
0

RFF (ω0 + ηei2πt)e2πitdt

= η

1∫
0

(ReRFF + iImRFF )(cos 2πt+ i sin 2πt)dt

= η

 1∫
0

ReRFF cos 2πtdt−
1∫

0

ImRFF sin 2πtdt


+ iη

 1∫
0

ImRFF cos 2πtdt+

1∫
0

ReRFF sin 2πtdt


︸ ︷︷ ︸

0

.

In order for the strength to be real, second term should be 0, which is a nice test of the implementation.
We find that around 10 mesh-points for Simpson’s rule are sufficient for a good convergence. To
test the approach, in Fig. 3.2 we select the peak located at E = 17.16 MeV and integrate around
it using a contour with η = 0.05 MeV. Results for the total GT− matrix element |〈i|F̂ |0〉|2 as well
as contribution from different 2 q.p. pairs are shown in Table 3.1. We observe that the agreement
between the two different implementations of the FT-pnRQRPA yields the same results up to seven
decimal places (boldfaced digits are the same in both columns in Tab. 3.1). Sign of the matrix
elements is different, but this is of no concern since the overal phase in Eqs. (3.95) is undetermined.
The above test includes both pairing and finite-temperature effects and constitutes the most general
test of the linear response FT-pnRQRPA implementation.
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Table 3.1: The comparison between the lrFT-QRPA and mFT-QRPA of the total GT− strength
function |〈i|F̂ |0〉|2 and contribution from the different 2 q.p. pairs 〈i|F̂ |0〉πν for peak at E = 17.16
MeV in 116Sn at T = 0.6 MeV. The integration is performed with 10 Simpson’s integration mesh-
points. The matching digits between the two calculations are boldfaced.

E = 17.16 MeV, T = 0.6 MeV lrFT-QRPA mFT-QRPA
|〈i|F̂ |0〉|2 23.23101 23.23101

pair 〈i|F̂ |0〉πν 〈i|F̂ |0〉πν
(ν2d5/2, π2d3/2) 0.3245577984955 -0.3245577473408
(ν2d5/2, π2d5/2) 0.1863725292102 -0.1863725334486
(ν1g7/2, π1g7/2) 0.1700622943878 -0.1700622569598
(ν1g9/2, π1g7/2) 3.9183937066269 -3.918393471595

3.4 Results

In this section we provide illustrative calculations of the spin-isospin excitations in even-even tin
isotopes (Z = 50) in the range A = 112 − 134 and for temperatures T = 0–1.5 MeV. Results
shown in this section are adapted from our work published in Ref. [30]. These are open-shell
nuclei for neutron states (except 132Sn), while they have a closed number of shells (Z = 50) for
proton states. The calculations are based on the FT-RHB initial state with the DD-PC1 [20] or
DD-PCX [21] relativistic EDFs, and the separable pairing interaction [141]. The calculations are
performed for Nosc = 20 with no other cut-offs on the 2 q.p. basis. The proton pairing gaps
∆p vanish irrespective of the temperature, due to shell closure. However, because of the grand-
canonical description of nuclei, the neutron pairing gaps ∆n vanish at a critical temperature T nc .
Above the critical temperature, pairing properties collapse and only effects of the finite-temperature
influence the nuclear excitations. In table 3.2 we show the critical temperature for neutron states
of selected even-even tin isotopes using the DD-PC1 and DD-PCX interactions. We notice that
the zero-temperature neutron pairing gaps ∆0

n for the DD-PCX interaction are larger than those for
the DD-PC1 interaction, meaning that the corresponding critical temperatures will also be higher.
This is a consequence of the larger neutron pairing strength of the separable interaction within the
DD-PCX parameter set [21].

First, we focus on the Fermi strength function governed by the external field operator F̂ = τ−

with quantum numbers Jπ = 0+. It is characterized by a total coupling to spin zero (S = 0) and
no orbital angular momentum (L = 0). The Fermi transitions give rise to the Isobaric Analog
Resonance (IAR) connecting the isobaric analog states between the parent even-even and daughter
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Table 3.2: The neutron critical temperature T nc and mean pairing gap ∆0
n at zero temperature

for even-even tin isotopes A = 112–120. Results are calculated with the DD-PC1 and DD-PCX
interactions. The table is adopted from Ref. [30].

DD-PC1 DD-PCX
nucleus T nc [MeV] ∆0

n [MeV] T nc [MeV] ∆0
n [MeV]

112Sn 0.81 1.31 1.06 1.73
114Sn 0.81 1.23 1.05 1.67
116Sn 0.79 1.25 1.04 1.65
118Sn 0.80 1.30 1.00 1.65
120Sn 0.80 1.34 1.00 1.64

odd-odd nucleus. In Fig. 3.3 we display the Fermi strength function for even-even A = 112–122
tin nuclei for different temperatures with respect to the energy of the parent nucleusE. Upper panel
shows the results with the DD-PC1 interaction and lower panel with the DD-PCX. The experimental
centroid energies are taken from Ref. [95] and represented as black arrows. We observe that the
temperature does not impact the IARmuch, so we can focus our discussion to zero temperature only.
The IAR excitation energy slightly reduces with increasing number of neutrons, starting from 13.60
MeV for 112Sn to 13.27 MeV for 122Sn for the DD-PC1 interaction. Since the excitation energy of
the IAR when measured with respect to the parent nucleus is directly proportional to the difference
between the Coulomb energy in parent and daughter nuclei, this shift is related to softening of the
Coulomb repulsion with increasing neutron number. Indeed, if the Coulomb interaction is neglected
in the FT-RHB mean-field, the IAR excitation energy is exactly zero (providing a good test of the
numerical implementation). The calculation of the Fermi transitions within the FT-pnRQRPA
is fully self-consistent, requiring no additional terms in the residual interaction apart from those
derived from the underlying EDF at the Hartree level. The agreement with experimental centroids
from Ref. [95] is excellent for both DD-PC1 and DD-PCX functionals. Therefore, in the following
discussion we employ only the DD-PCX, results with DD-PC1 being consistent.

The Gamow-Teller (GT) transition strength is characterized by the total spin S = 1 and the
total orbital angular momentum L = 0 coupled to total angular momentum Jπ = 1+. The GT−

external field operator has the form F̂ = στ− and connects the single particle states with the
same orbital angular momentum number l and the total angular momentum j = l ± 1/2. Based
on the structure of the operator, the GT− strength will be split into the two main peaks: (i) the
low-lying peak composed of the core-polarization (νj = l± 1/2, πj = l± 1/2) and back spin-flip
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Figure 3.3: The Jπ = 0+ strength functions inA = 112−122 even-even tin isotopes with respect to
the excitation energy of the parent nucleus for temperatures T = 0, 0.5, 0.9 and 1.5 MeV, calculated
by the linear response FT-pnRQRPA using the DD-PC1 (upper panel) and DD-PCX (lower panel)
interaction. Black arrows denote the experimental centroid energies from Ref. [95]. The figure is
taken from Ref. [30].

(νj = l − 1/2, πj = l + 1/2) transitions and (ii) the GT resonance (GTR), mainly composed
of spin-flip (νj = l + 1/2, πj = l − 1/2) transitions. Unlike the Fermi excitations which are
determined self-consistently from the underlying EDF, for the description of the GT transitions we
have to include the isovector-pseudovector (TPV) interaction as in Eq. (3.53). It corresponds to
the exchange of the π meson and is vanishing at the Hartree level, because the π meson interaction
would be manifested only in the exchange (Fock) term [146]. This means that its strength g0 is not
constrained by the EDF fitting procedure. Therefore, we determine its value in order to reproduce
the experimental GTR energy in 208Pb as in Ref. [145]. Furthermore, the residual pp interaction
is fully determined by the isoscalar pairing (T = 0, S = 1). Since we neglect the proton-neutron
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Figure 3.4: The GT− strength function for 112Sn at zero temperatre for changing values of the
isocalar pairing strength V is. Calculations are performed with the linear response pnRQRPA using
the DD-PCX interaction.

mixing at the FT-RHB level, this means that only the isovector component (T = 1, S = 0) of the
pairing interaction contributes. Therefore, the isoscalar pairing strength V is [cf. Eq. (3.69)] is
also not determined from the EDF. There is no a priori reason for the isoscalar pairing strength to
be the same as in the isovector case (corresponding to V is = 1.0). To demonstrate the influence
of changing V is, in Fig. 3.4 we show the GT− strength function of 112Sn at zero-temperature
for V is = 0, 0.5, 1.0 and 1.5. We observe that with increasing V is the strength function changes
quite substantially. As the V is is increased, the GTR strength is slightly reduced and shifted to
lower excitation energies. On the other hand, the low-lying strength demonstrates drastic changes.
This is because the low-lying part of the strength function is mainly composed of transitions with
nearly empty shells (quasi-particles, unlike the quasi-holes) which are strongly influenced by the pp
interaction. Incidentally, it turns out that the low-lying strength is the one contributing to β-decay
half-lives. Therefore, it is imperative to get a reliable estimate of the isoscalar pairing strength, that,
once fixed can be used for calculations throughout the nuclide chart. We return to this question in
Chapter 4. In the following, based on the study on the centroid energy difference between IAR and
GTR in Ref. [145] we employ V is = 1.5.

In Fig. 3.5 we display the temperature evolution of the GT− strength function for selected
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even-even tin isotopes. Starting our discussion at zero temperature, we observe that with increasing
neutron number the total GT− strength increases and shifts to lower excitation energies. The strength
function is clearly separated between the GTR peak and the low-lying strength. Our results for GTR
energies in 112,116,120Sn agree within 2MeVwith the experimental results from Ref. [95]. Especially
satisfying is the agreement for the doubly-magic 132Sn with the centroid energy from Ref. [97].
Comparing the pnRQRPA strength distribution with the experimental distribution is impractical,
since the pnRQRPA cannot reproduce the resonance width. For such comparison we would have to
include correlations stemming from coupling to higher order phonons within the particle-vibration
coupling (PVC) [133, 150] or the second RPA (SRPA) [151]. In this work we simulate this width
by a smearing parameter η = 1 MeV. In 120,124Sn, for T = 0 MeV we observe an interesting
splitting of the GTR strength into two peaks, that is later restored for increasing neutron number.
The fragmentation disappears as the temperature is increased. The mechanisms of this splitting
were described in Ref. [28]. Namely, the splitting occurs already at the level of the unperturbed
strength (without the residual interaction), and the attractive residual interaction cannot bring the
peaks together, leaving the main GTR split in two. As the temperature increases, the pairing
correlations vanish, restoring the degeneracy in the unperturbed strength and subsequently at the
residual interaction level. For temperatures below T = 0.5 MeV, the strength function is almost
unchanged with increasing temperature, however, for T > 0.5 MeV rapid changes occur in the
strength function. This is because of the reduction of the neutron pairing gap as the temperature
increases. These changes are especially visible in the low-lying strength of 116,120Sn, being most
influenced by the pp interaction. Looking at Tab. 3.2 for the DD-PCX interaction we observe that
for temperatures above 1 MeV pairing collapses. This signals a transition from the superfluid to the
normal state of the nucleus, in which the single-particle levels are described only by the Fermi-Dirac
distribution. At T = 1.5 MeV, the strength function is slighlty shifted to lower excitation energies
due to softening of the repulsive ph residual interaction as discussed in Refs. [30, 32, 149].
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Figure 3.5: The Jπ = 1+ strength function for particular even-even tin isotopes with respect to the
excitation energy of the parent nucleus for temperatures in the range T = 0–1.5 MeV, calculated by
the linear response FT-pnRQRPA using the DD-PCX interaction. The isoscalar pairing strength is
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figure is taken from Ref. [30].
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Chapter 4

Stellar electron capture

The electron capture (EC) is a reaction mediated by the weak nuclear force where an electron is
captured by a nucleus upon which one proton is converted to a neutron with an outgoing electron
neutrino νe [105]. The reaction can be written as

(Z,N) + e− → (Z − 1, N + 1) + νe. (4.1)

The term stellar signifies that the reaction occurs inside of massive stars, characterized by high
temperature and density. More specifically, we are interested in the final moments before a star
collapses within a core-collapse supernova (CCSN) [1]. The electrons are degenerate, their distri-
bution being described by the Fermi-Dirac function. Since the EC is process mediated by the weak
nuclear interaction, we can study it based on the Fermi theory, similar to that of the β-decay. If the
momentum transfer in the EC is much lower than theW -boson mass, the complex weak-interaction
vertices reduce to a simple contact interaction.

In the following discussion we will first focus on the so-called allowed approximation, which
neglects the higher multipoles in the lepton-nucleus expansion. We show how to calculate the EC
rates and demonstrate their dependence on the previously mentioned GT strength function (this
time in the β+ direction). To include the dependence of matrix elements on the momentum transfer
we employ the Walecka model of weak-interaction developed in Refs. [136,152,153]. Expressions
within the Walecka model are much more complex and hide some important details in the EC rate
calculations. Lastly, we perform large-scale calculations of EC rates in the diamond region in the
vicinity of the N = 50 shell closure and study their implications on the main observables of the
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CCSNe.

4.1 The allowed approximation

Within the allowed approximation, the EC rates are determined by the Fermi (S = 0, L = 0) and
Gamow-Teller (S = 1, L = 0) transitions. Usually, Fermi transitions can be neglected and the GT
transitions determine the rates. Considering only the contribution of the GT transitions, the EC rate
is calculated as [33, 98]

λec =
ln2

K

1

Z

∑
i,f

e−βEig2
A|〈f |στ+|i〉|2f(W

(i,f)
0 ), (4.2)

where the sum goes over the set of initial(final) states |i(f)〉, Z =
∑

i(2Ji + 1)e−βEi is the partition
function with Ji the initial angular momentum,K = 6147 s and B(GT+)if = g2

A|〈f |στ+|i〉|2 is the
GT+ operator. The axial coupling gA = −1.26 is quenched from its free value to gA = −1.0 [32].
The phase-space factor is dimensionless and defined in terms of the maximum lepton energyW (i,f)

0

f(W
(i,f)
0 ) =

∞∫
W

(i,f)
th

pW (W
(i,f)
0 +W )2F0(Z,W )fe(W,µe)dW, (4.3)

where the total electron energy is Ee and W = Ee/(mec
2) is the electron energy in terms of

the electron mass me. The electron momentum is p =
√
W 2 − 1 and fe(W,µe) is the electron

Fermi-Dirac factor

fe(W,µe) =

[
1 + e

W−µe/(mec2)
kBT

]−1

, (4.4)

with µe the electron chemical potential and kB the Boltzmann constant. The difference between the
initial and final nuclear states in terms of electron mass is defined as

W
(i,f)
0 = (MNi −MNf + E∗i − E∗f )/(mec

2), (4.5)

where MNi(MNf ) is the initial(final) nuclear mass and E∗i (E
∗
f ) excitation energy of the par-

ent(daughter) nucleus. The condition that neutrino energy should be positive Eν > 0 defines
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the threshold energy

W
(i,f)
th =

{
1, W

(i,f)
0 ≥ −1,

|W (i,f)
0 |, W

(i,f)
0 < −1.

(4.6)

The Fermi function F0(Z,W ) takes into account the distortion of the electron wavefunction due to
the nuclear charge [154]. The electron chemical potential is determined from the charge neutrality
condition in stellar environment

ρYe =
mu

π2

(mec

~

) ∞∫
0

[fe(W,µe)− fe(W,−µe)]p2dp, (4.7)

where mu is the atomic mass unit, ρ is the stellar density and Ye is the electron-to-baryon ratio.
The factor fe(W,−µe) stands for the Fermi-Dirac distribution of positrons with negative chemical
potential.

In the following we have to connect above definitions with the FT-pnRQRPA. We seek for
transitions between the initial states in the even-even (Z,N) nucleus to the final states in the
odd-odd (Z − 1, N + 1) nucleus. The energy diagram for the EC is shown in Fig. 4.1.

Within the FT-pnRQRPA, the initial-final energy difference can be expressed as

W
(i,f)
0 (mec

2) ≈ −Wm
0 (mec

2) = ∆np + ∆B + E∗
1+m

= ∆np + Em
QRPA + (λn − λp), (4.8)

where ∆B is the binding energy difference between the parent and the daughter nucleus, ∆np =

1.293 MeV is the neutron-proton mass difference, E∗
1+m

is the energy of the m-th 1+ excited state
with respect to the ground state of the daughter nucleus, and λn−λp is the neutron-proton chemical
potential difference. The excitation energy of the m-th 1+ excited state with respect to the parent
nucleus isE1+m

= E∗
1+m

+∆B, where the excitation energy is approximated within the FT-pnRQRPA
as

E1+m
= Em

QRPA + (λn − λp). (4.9)

In this way, we can express the sum over initial-final states
∑

i,f as the sum over discrete FT-
pnRQRPA eigenvalues

∑
m. Finally, the ensemble averaged matrix element is obtained as the

residue of the strength function SF (ω) in Eq. (3.33)

Res
[
SF (ω)

1− e−βω , E
m
QRPA

]
≈ 1

Z

∑
i,f

e−βEi|〈f |στ+|i〉|2, (4.10)
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Excited state

Figure 4.1: The energy diagram for the EC between the initial ground state Ei of the even-even
(Z,N) nucleus to the final excited state of the odd-odd (Z − 1, N + 1) nucleus. See text for details.

where (1− e−βω)−1 is the detailed balance factor [31,33]. Depending on the computational method
of choice, there are two main ways of calculating the residue in Eq. (4.10):

• linear response FT-pnRQRPA where the residue is obtained by a contour integration over
the suitably defined contour Ci, so that the total EC rate is

λec =
ln2

K

1

2πi

∮
Ci

SF (ω)

1− e−βω f(W0)dω, (4.11)

which was explained in detail in Refs. [31, 33]. The strategy consists of setting the circular
contours around the poles both at Re(ω) > 0 and Re(ω) < 0, taking the special care of
the ω = 0 point. Furthermore, one has to be careful in the analytic continuation of the
phase-space factor f(W0) [77].
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• matrix FT-pnRQRPA where the EC rate is calculated as a summation

λec =
ln2

K

∑
m

Bm

∞∫
W th,m

0

Wp[−(Em
QRPA + ∆np +λnp)/(mec

2) +W ]2F0(Z,W )fe(W,µe)dW,

(4.12)
whereW th,m

0 is the threshold energy of them-th eigenenergy [cf. Eq. (4.6)], λnp = λn− λp,
and Bm is the transition matrix element defined as

Bm ≡ B+
m =

|〈[Γm, F̂ ]〉|2
1− e−βω , Em > 0,

Bm ≡ B−m = −|〈[Γm, F̂
†]〉|2

1− e−βω , Em < 0,

(4.13)

where the ensemble averagedmatrix element 〈[Γm, F̂ ]〉 is defined in Eq. (3.94). This approach
was applied in Refs. [31–33].

In the following we apply the matrix FT-pnRQRPA approach assuming spherical symmetry and
explain the meaning of positive and negative energy transitions. As an example we will select the
doubly magic 78Ni, and study its GT+ strength for temperatures T9 = 0, 5, 10 and 20 (T9 labeling
the temperature in 109 kelvin), that correspond to T = 0, 0.43, 0.86 and 1.72 MeV. Since there is no
pairing in 78Ni, it suffices to employ the FT-pnRRPA based on the FT-RMF approach [119, 155].
The relativistic EDF of choice is the D3C∗ [130, 131].

In Fig. 4.2(a)-(d) we show the GT+ strength function in 78Ni at selected temperatures. The red
vertical line denotes the reaction threshold (Q−value) which can be approximated as the chemical
potential difference λn − λp for even-even nuclei. The strength below the threshold is called the
de-excitation strength, having the negative transition energy (negative here means that the strength
function is located below the threshold). According to Eq. (4.13) if the external field operator is
F̂ = στ+, then the strength above the threshold corresponds to the GT+ strength, while the strength
below threshold is determined by the operator F̂ † = στ− corresponding to the GT− strength. To
obtain the total strength, both contributions have to be included, multiplied by the detailed balance
factor (1 − e−βω)−1, shown as the blue dashed line in the figure. Notice that below the threshold,
the detailed balance factor falls of rapidly and effectively determines the minimum energy which
contributes to the strength function. As the temperature is increased further, the GT− strength
contributes more, and increases the influence of the de-excitation strength. This implies that as the
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Figure 4.2: The temperature evolution of the GT strength in 78Ni as calculated by the FT-RMF+FT-
RRPAwith the D3C∗ interaction. Red vertical line represents theQ-value threshold which separates
the strength below the threshold (de-excitations) and strength above the threshold. Different panels
(a)-(d) correspond to different temperatures in the range 0–2 MeV. The blue dashed line stands for
the detailed balance temperature factor (1− e−βω) [cf. Eq. (4.13)].

temperature increases, the de-excitation strength becomes increasingly important in determining the
EC rate. This is especially because of the large phase-space factor that accompanies the de-excitation
strength in the EC rate integral, as in Eq. (4.12).

To better demonstrate different kinds of transitions that we have within the FT-pnRQRPA we
refer to the diagram in Fig. 4.3. Unlike the zero-temperature pnRQRPA which describes transitions
from the ground state of the parent nucleus to both the ground and excited states of the daughter
(blue arrows), the FT-pnRQRPA also introduces the transitions from the excited states in the parent.
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Transitions at T = 0

Transitions at T > 0, between excited states

De-excitations, approximated by 𝛽+ strength

Figure 4.3: The diagram demonstrates different kinds of transitions within the FT-pnRQRPA. The
zero temperature pnRQRPA is characterized only by the transitions from the ground state of the
parent nucleus to both the ground state and excited states in the daughter nucleus (blue transitions).
The FT-pnRQRPA also introduces the transitions between excited states in the parent and daughter
nuclei. They can be located above the Q-value threshold (red transitions) or below the threshold
(violet transitions) in which case they are called the de-excitations.

If the transition energy is located above theQ-value threshold it is shown with red arrows, while the
transitions that contribute below the threshold are shown as violet (de-excitations). Therefore, the
de-excitations can be understood as transitions from the highly-excited states in the parent nucleus.
We present a more detailed account of de-excitations in Appendix B.

Finally, having the strength function, we are able to calculate the EC rates for 78Ni using Eq.
(4.12). Again, we note that this calculation includes only the GT transition strength (Jπ = 1+)

and neglects the momentum dependence of the matrix element. In order to calculate the electron
chemical potential µe we have to supply the ρYe product as in Eq. (4.7). To mimic the conditions
in the late stages of the CCSNe, we vary the density in the range ρYe = 108–1011 g/cm3, while the
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temperature is in the interval T9 = 0–20 (corresponding to 0–1.72 MeV). We divide the total rate as

λec = λec+ + λec− , (4.14)

where λec+ denotes the contribution from the strength above the threshold (excitation strength), while
λec− is the rate from the de-excitation strength. In Fig. 4.4 we show the EC rate contributions from
both the λec+ (red solid line) and λec− (blue solid line) along with the total strength λec (black dashed
line) as a function of temperature T9. Our rates are also compared with those from Ref. [108] (green
triangles) based on the thermal QRPA (TQRPA) with the non-relativistic SkM∗ interaction. For
all densities, the total rate λec is mostly dominated by the de-excitation contribution λec− , starting
from T9 ∼ 4. Once the temperature is large enough for the de-excitation strength to be relevant,
its contribution to the total rate starts increasing abruptly. The 78Ni is a neutron-rich nucleus
consisting ofN = 50 neutrons, which means that the GT+ transitions are mostly blocked due to the
shell closure. However, once the temperature is increased, the nucleons scatter from closed shells
according to the Fermi-Dirac distribution and unblock previously forbidden transitions due to the
Pauli blocking. This mechanism was described in details in Refs. [105, 156]. It explains why we
observe an increasing λec+ rate with temperature. Also, as the density ρYe increases, so does the
electron chemical potential, allowing for larger contribution of the lepton phase-space factor. It
means that the EC rate will increase significantly with stellar density, as observed in Fig. 4.4. A
large contribution of de-excitation strength can be inferred by inspecting Fig. 4.2. For 78Ni, the GT−

strength below the threshold is much larger compared to the strength above the threshold. As the
temperature increases, and the detailed balance factor allows for more GT− strength to contribute, it
quickly starts dominating the EC rate. In the lower two panels of Fig. 4.4, for densities ρYe = 1010

and 1011 g/cm3, we have compared our results with those from Ref. [108]. Notice that if we only
considered the excitation contribution (λec+ ) we would underestimate their results by almost 5 orders
of magnitude. Addition of the de-excitations (λec− ) improves the agreement between the two models.
However, it should be mentioned that the EC rates in Ref. [108], also include contributions from
first-forbidden transitions (Jπ = 0−, 1−, 2−), together with dependence on the lepton momentum
transfer. Therefore, in the following section we extend our model.
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Figure 4.4: The EC rates on 78Ni calculated within the allowed approximation assuming only the
Jπ = 1+ strength with respect to temperature T9 (denoting 109 K). Stellar densities are varied in
the range 108–1011 g/cm3. Both λec+ (red solid) and λec− (blue solid) are shown together with the
total sum (black dashed). For comparison, data from Ref. [108] based on the TQRPA with SkM∗
interaction is also shown.

4.2 Extension to the Walecka model

We extend the allowed approximation using the model of the weak-interaction rates developed by J.
D. Walecka et al. in Refs. [136,152,153], which we denote in the following as the Walecka model.
It starts from the Fermi’s golden rule

dσec
dΩ

=
1

(2π)2
Ω2E2

ν

1

2

∑
lept.spin.

1

2Ji + 1

∑
MiMf

|〈f |ĤW |i〉|2, (4.15)
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where ĤW is the weak-interaction Hamiltonian in the form of the current-current interaction

ĤW = − G√
2

∫
d3rjleptµ (r)J µ(r), (4.16)

where G is the Fermi constant, jleptµ (r) is the lepton current and J µ(r) is the hadron current. The
EC cross section is then derived by the multipole expansion of the current-current Hamiltonian,
and calculation of the lepton traces Ω2

2

∑
lept.spin.

, where Ω is the normalization volume. Details of the

derivations can be found in Refs. [136, 152, 153], with the resulting EC cross section presented in
Appendix C. Here we note that the final expression contains four different reduced matrix elements
that can be calculated within the FT-pnRQRPA: transverse magnetic 〈Jf ||T̂ magJ ||Ji〉 and electric
〈Jf ||T̂ elJ ||Ji〉, longitudinal 〈Jf ||L̂J ||Ji〉 and charge 〈Jf ||M̂J ||Ji〉 operators, containing both the
squares of their absolute values and products. They are calculated between the initial |Ji〉 and final
|Jf〉 nuclear and lepton states. Final expression is complicated in a sense that momentum-transfer
is also included in the calculation of EC cross-section, which is not the case in Eq. (4.2). Finally,
once the EC cross section is calculated, EC rates are given by folding the cross section with respect
to the Fermi-Dirac distribution of electrons

λec =
(mec

2)3

π2~3

1

Z

∑
if

e−βEi
∞∫

W
th(i,f)
0

pWσ(i,f)
ec (W )fe(W,µe)dW, (4.17)

where the average is taken with respect to the initial state and sum over the final states. The above
expression should be directly compared with Eq. (4.2), that assumes the allowed approximation.
Analogously to the EC rate in Eq. (4.14) we can divide the total cross section as the sum of the
excitation (σ+

ec) and de-excitation (σ−ec) contribution so that the total cross section is σec = σ+
ec +σ−ec.

To investigate the effects of including the momentum transfer terms within the EC calculation, we
compare the cross sections obtained with: (i) the allowed approximation and (ii) within theWalecka
model. The EC cross sections within the allowed approximation are calculated as

σ+
ec =

G2(mec
2)2

2π(~c)2
F (Z,W )

∑
m

B+
m(Wm

0 −W )2

1− e−βω δ(ω − Em),

σ−ec =
G2(mec

2)2

2π(~c)2
F (Z,W )

∑
m

−B
−
m(Wm

0 −W )2

1− eβω δ(ω + Em),

(4.18)
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Figure 4.5: The electron capture cross sections σ+
e on 78Ni for the Jπ = 1+ multipole calculatedwith

the FT-RMF+FT-pnRRPA using the D3C∗ interaction. Results between the allowed approximation
(green dashed) are compared with the Walecka model results (red solid).

containing no momentum dependent terms in the matrix elements. First, in Fig. 4.5 we compare the
σ+
ec cross sections between the allowed approximation and the full Walecka model for the Jπ = 1+

transitions and temperatures T = 0, 0.5, 1 and 2 MeV. We observe that for the electron energies up
to 30 MeV, results between the two calculation methods agree. This is expected from the fact that
the Walecka model reduces to the allowed approximation when q → 0 (check Appendix C). Once
the electron energies are high enough we observe differences between the two approaches, results
of the allowed approximation underestimating the Walecka model results. Such conclusions were
also reproduced in Ref. [108].

In the following we employ only the Walecka model by also including the first-forbidden
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Figure 4.6: Same as in Fig. 4.4 but within the Walecka model including the Jπ = 0±, 1±, 2−

multipoles.

multipoles Jπ = 0−, 1−, 2− in addition to the allowed Jπ = 0+, 1+. Again, we compare our results
with those from Ref. [108], noting that they also contain the first-forbidden transitions. Results are
shown in Fig. 4.6 for densities ρYe = 1010 and 1011 g/cm3. At ρYe = 1010 g/cm3 we overestimate
the results of Ref. [108], however, at ρYe = 1011 g/cm3 the agreement between the models is
excellent. We note that in Ref. [108] the non-relativistic SkM∗ interaction is implemented, unlike
our relativistic D3C∗, which causes systematic differences between the two model calculations.
These differences are more pronounced at lower densities, where the EC rates are more dependent
on the peculiarities of the strength function. At this point our model can be applied to nuclei across
the nuclide chart and benchmarked against other theoretical results.

4.3 Results

Results presented in this section were published in Refs. [31–33]. The model we employ for the
large-scale calculations of EC rates is the FT-HBCS+FT-pnRQRPA in the matrix form [cf. Sec.
3.2]. The FT-HBCS is an approximation to the FT-RHB, however, it is more suitable for the large
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scale calculations due to its smaller dimension of the pairing space, while maintaining reasonable
accuracy when compared to the FT-RHB. In the ph channel we use the derivative coupling D3C∗

interaction [130]. For the pp channel in the FT-HBCS initial state we employ the pairing part of the
Gogny D1S interaction of the form

Vpp(r1, r2) = Vpair
∑
i=1,2

e(|r1−r2|/µi)2(Wi +BiP
σ −HiP

τ −MiP
σP τ ), (4.19)

where P σ, P τ are the spin and isospin exchange operators. Parameters µi,Wi, Bi, Hi and Mi

are adopted from Ref. [157]. Within the RHB the overall interaction is multiplied by a factor
Vpair = 1.15 [23]. However, the HBCS theory usually underestimates the pairing gaps obtained in
the RHB, therefore a different value of Vpair could be optimal. To this aim we calculate the ∆uv

pairing gaps [158] for the isotopic chains with magic proton numbers Z = 20, 28, 50 and 82, and
compare the results with those obtained from the 5-point (5p) formula [40]. Results are shown in
Fig. 4.7, for both the zero temperature HBCS and RHB calculations. In the case of the RHB we
use the original prescription where Vpair = 1.15, while for the HBCS we use both Vpair = 1.15 and
Vpair = 1.25. The experimental data is calculated by using the 5-point formula and experimental
binding energies from Ref. [159]. First, we observe that the HBCS pairing gaps underestimate the
RHB pairing gaps, as expected. Furthermore, there is not a single value of Vpair that works for all
isotopic chains. Although Vpair = 1.25 reproduces the pairing gaps reasonably in Ca, Ni and Sn
chains, it overestimates the experimental data in Pb. This points to an isotopic dependent formula
which will vary across the nuclide chart. Here, we have analized both the isotopic Z = 20, 28, 50

and 82 chains along with the isotonic N = 20, 28, 50, 82 and 126, and formulated the following
prescription

Vpair =

{
1.25, 8 ≤ Z ≤ 50,

1.15, 50 ≤ Z ≤ 120,
(4.20)

with the same values for both proton and neutron pairing. Note that such behavior is in agreement
with the trends of scailing the pairing strength used in the work of Agbemava et al. in Ref. [158].

At the level of the residual interaction the ph channel is derived self-consistently from the D3C∗

EDF. However, similar to the TPV term [cf. Sec. 3.1], to account for the contact part of the
nucleon-nucleon interaction, additional zero-range Landau-Migdal term is added [28]

Vδπ = g′
(
fπ
mπ

)2

~τq~τ2Σ1 ·Σ2δ(r1 − r2), (4.21)
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where f 2
π/(4π) = 0.08,mπ = 138 MeV and Σ =

(
σ 0

0 σ

)
. The coupling g′ = 0.76 is adjusted to

reproduce the GTR centroid energy in 208Pb [130]. We have verified that g′ = 0.76 reproduces the
experimental GTR excitation energy in 132Sn measured in Ref. [97] within the uncertainty limits,
while g′ = 0.79 reproduces the mean value of the experimental GTR energy. A change from
g′ = 0.76 to 0.79 makes no significant alterations in the EC rates. Furthermore, our calculations
are also able to reproduce the measured GTR centroid energy in 48Ca [160], for g′ = 0.76 within
the experimental error.

In the pp channel of the residual interaction we have both the isovector (T = 1, S = 0) and
isoscalar (T = 0, S = 1) type, depending on the quantum numbers of the transitions. The isovector
pairing is derived from the FT-HBCS self-consistently. On the other hand, the isoscalar pairing is
not present in the FT-HBCS and here we assume the following form [28,32]

V is
pp = V is

2∑
j=1

gje
−r212/µj

∏
S=1,T=0

, (4.22)

which represents a sum of a repulsive and an attractive Gaussian. The projector
∏

S=1,T=0 ensures
T = 0, S = 1 states, while for the parameters we use µ1 = 1.2 fm, µ2 = 0.7 fm, g1 = 1 and
g2 = −2 [28].

As already stressed in Sec. 3.1 the isoscalar pairing strength is not constrained at the FT-HBCS
(or FT-RHB) level. Therefore, we use the following functional form [131,161]

V is = VL +
VD

1 + ea+b(N−Z)
, (4.23)

with parameters VL = 153.2 MeV, VD = 8.4 MeV, a = 6.0 and b = −0.6, adjusted to reproduce
the available experimental data on the β-decay half-lives in the range 8 ≤ Z ≤ 82 [34]. With
this procedure there are no unconstrained parameters in the model and we can continue with the
large-scale calculation. The FT-HBCS calculation is performed with 20 h.o. shells for both fermion
and boson states. At the FT-pnRQRPA level, two cut-offs are used to limit the total number of 2 q.p.
excitations: (i) a maximal 2 q.p. energy cutoff Ecut = 100 MeV, set for the sum of q.p. energies
Eπ +Eν and (ii) threshold on the product of FT-HBCS occupation factors for proton(neutron) states
uπ(ν), vπ(ν) as |uπvν | < 0.01 and |vπuν | < 0.01 which excludes pairs with small contributions to
the FT-pnRQRPA matrix. With these constraints, the FT-pnRQRPA matrix is limited to a size

75



Chapter 4. Stellar electron capture

0.0 20 40

0.5

1.0

1.5

2.0
uv

[M
eV

]
Ca chain

Sn chain
0.0

0.5

1.0

1.5

2.0

uv
[M

eV
]

Ni chain

Pb chain

60 80 100
N (neutron number)

0.0

0.5

1.0

1.5

uv
[M

eV
]

100 120 140
N (neutron number)

0.0

0.5

1.0

1.5

uv
[M

eV
]

BCS Vpair= 1.15
BCS Vpair =1.25
RHB Vpair= 1.15
5n exp.

20 40 60

Figure 4.7: The isotopic dependence of the pairing gaps ∆uv calculated using the HBCS and RHB
with the Gogy D1S pp interaction and D3C∗ EDF. The results for the HBCS are presented for the
pairing strength Vpair = 1.15 (blue) and Vpair = 1.25 (orange), while the RHB results are calculated
using the Vpair = 1.15 (green) as in Ref. [23]. The experimental data (black triangles) are obtained
by the 5-point formula with the binding energies from Ref [159].

10000 × 10000. Furthermore, the contribution of antiparticle states is neglected, which is a good
approximation for the charge-exchange transitions [162, 163].
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4.3.1 Numerical techniques

Themain object of the calculation is the EC rate in Eq. (4.17), which we can reformulate by defining
the neutrino distribution function n(Eν) so that the rate is defined as

λec =

∞∫
0

n(Eν)dEν , (4.24)

where the n(Eν) within the FT-pnRQRPA is calculated as

n(Eν) =
(mec

2)2

π2~3

∑
m

pWσmec(W )f(W,µe), (4.25)

the neutrino energy is Eν = (W −Wm
0 )mec

2 [cf. Eq. (4.8)], m is the FT-pnRQRPA eigenvalue
and σmec is the EC cross-section for them-th eigenvalue. The integration is changed from integrating
over the electron energy Ee to the neutrino energy Eν . The main reason for such substitution is
more convenient calculation of the neutrino energy loss (NEL) rate, which is defined as

λnl =

∞∫
0

Eνn(Eν)dEν . (4.26)

Therefore, once we obtain the neutrino distribution function from Eq. (4.25), we can easily calculate
both the EC and NEL rate. This is because both the EC and NEL rates are required as an input for
the CCSNe simulations [164]. A similar strategy was used for large-scale calculation of EC rates
in Refs. [165, 166].

To demonstrate the calculation of the neutrino distribution function we use 56Fe as an example
nucleus. We focus on T9 = 10 and ρYe = 108 g/cm3 and ρYe = 1011 g/cm3, latter being the
most sensitive point for the influence of the EC rates on CCSNe dynamics. Results for n(Eν) are
shown in Fig. 4.8, where we have displayed contributions from both allowed and first-forbidden
multipoles Jπ = 0±, 1±, 2−. Starting from ρYe = 108 g/cm3 in the left panel, we observe that n(Eν)

is dominated only by the Jπ = 1+ multipole (Gamow-Teller) other contributions being negligible.
This is a common result for most pf -shell nuclei where the EC rates are mostly dominated by the
GT transition strength [165,166]. The EC rate is given as the integral of the n(Eν) as in Eq. (4.24).
The distribution function has a simple singly-peaked form and is smooth. This implies that a simple
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Simpson’s integration should be sufficient. As the stellar density is increased to ρYe = 1011 g/cm3,
the first-forbidden transitions gain increasing importance. In fact, the distribution function (and
hence the EC rate) is dominated by the Jπ = 1−, closely followed by Jπ = 1+ and 2−. Unlike the
singly-peaked distribution function at ρYe = 108 g/cm3, we have a complicated energy dependence
spanning a large interval in the neutrino energy. The upper limit of the neutrino energy is close
to the electron chemical potential µe ≈ 111 MeV, smeared by the finite-temperature Fermi-Dirac
distribution. In this case, a simple Simpson’s integration would produce a large error and a better
numerical integration technique is needed. We employ the adaptive integration algorithm, which
is a part of the GSL numerical library [167]. It divides the integration domain in a maximum of
Nmax
int intervals, and performs a Gauss-Laguerre integration withNGL points on a given subinterval.

Initially starting from two intervals, it estimates the integration error of each subinterval. If the error
is larger than some threshold ε, it subdivides the interval, until a maximum number of subintervals
Nmax
int is reached. In this way, the algorithm is able to detect local jumps in the neutrino distribution

function quite efficiently. However, the calculation of n(Eν) can be very costly, so a trade-off
should be devised to determine the optimal Nmax

int and NGL. In our calculations we have found that
using the following prescription guarantees reasonable results: NGL = 15, and if the temperature
is T9 < 5 then Nmax

int = 4, while for temperatures above 5 GK we use Nmax
int = 3.

Finally, in Fig. 4.9, we present the results for calculation of EC rates in 56Fe using the above
prescription. The result is shown for the stellar density range log ρYe = 6–12 and temperatures on
the FFN mesh [168]. The set of stellar densities and temperatures was chosen to be convenient for
the CCSNe simulations. Apart from the rate itself we also plot the errors stemming from numerical
integration. We can observe that they are barely visible, whichmeans that the prescription introduced
above offers reliable integration of the neutrino distribution function. The neutrino distribution
function we calculate is stored and used to also compute the neutrino energy loss function λnl. A
set of λec and λnl on a FFN grid of temperatures and densities is suitable as an input for CCSNe
simulations.

4.3.2 EC rates of the nuclei near N = 50

In Ref. [164] a comprehensive study of the influence of the EC rates on the CCSNe was performed.
The rates were systematically varied using the Monte-Carlo sampling to determine which nuclei,
when their EC rate is changed, alter the CCSNe observables the most. A region of the nuclide
chart near the N = 50 shell closure, consisting of around 70 nuclei, displayed the most influence
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Figure 4.8: The neutrino spectrum distribution function n(Eν) for 56Fe at T9 = 10 with densities
ρYe = 108 g/cm3 (left panel) and ρYe = 1011 g/cm3 (right panel). Results are shown for different
multipoles Jπ.

on the CCSNe. Hereafter we refer to this area of the nuclide chart as the diamond region. It
was our motivation in Ref. [33] to provide a self-consistent microscopic calculation of the EC
rates for diamond region nuclei. To account for the systematic variations between the EDFs, we
employed two model calculations: (i) the relativistic FT-HBCS+FT-pnRQRPA based on the D3C∗

interaction (introduced in this Chapter) and (ii) the non-relativistic FT-HFB+FT-pnFAM using the
SkM∗ interaction [79]. The two approaches based on the EDF theory were benchmarked against
the shell-model calculation on 86Kr where the experimental data exists [102].

To compare the three calculations in Fig. 4.10(left panel) we show the GT+ strength in
86Kr as a function of the transition energy Eif at T9 = 0 and T9 = 10. The relativistic FT-
HBCS+FT-pnRQRPA is labeled as the FT-PNRQRPA, while the FT-QRPA stands for the non-
relativistic FT-HFB+FT-pnFAM. The shell-model strength is labelled as SM. The transition energy
is Eif = −(mec

2)W
(i,f)
0 , while the red dashed line indicates the threshold energy. Starting at

zero temperature we note that the relativistic calculation predicts the first peak at slightly higher
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Figure 4.9: The electron capture rates for 56Fe in the temperature range T9 = 0–10 and the stellar
densities log ρYe = 6–12. The error bars denote the numerical integration error. The results are
calculated using the FT-HBCS+FT-pnRQRPA with the D3C∗ interaction.

energies, compared to both the non-relativistic and SM calculations. Overall, the structure of the
GT+ strength between the calculations is similar, with both QRPA calculations unable to reproduce
the density of states in the SM. However, the SM calculations had to be cut for Eif ≤ 20 MeV due
to computational limits. At T9 = 10, a significant part of the total GT+ strength appears below the
threshold energy (∼ 8.1 MeV), stemming from de-excitations. The effect of the temperature on the
GT+ strength function is twofold, it allows for additional GT+ transitions which were previously
blocked at zero temperature, and leads to the appearance of strength below the ground-state threshold
(de-excitations). Combined, we should expect these two effects to significantly increase the EC rate
as the temperature raises.

In Figure 4.10(right panel) we show the temperature evolution of EC rates in 86Kr up to T9 = 100

at ρYe = 1011 g/cm3. First, we consider the allowed approximation which contains only the GT
transitions and compare the shell-model (SM) results together with two calculations based on the
QRPA (FT-PNRQRPA GT and FT-QRPA GT). For low temperatures, the SM EC rate is larger than
both QRPA rates by almost an order of magnitude. This comes as no surprise since the QRPA
calculations are unable to reproduce the density of states obtained within the SM calculations.
On the other hand, both QRPA calculations predict more consistent rates. The EC rates for all
calculations are almost constant up to 5 GK, above which we have a steep increase in the rate.
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Figure 4.10: (Left) The GT+ strength in 86Kr at T = 0 GK and T = 10 GK as a function
of the transition energy Eif calculated using the 3 theoretical models: (i) the relativistic FT-
HBCS+FT-pnRQRPA (FT-PNRQRPA), (ii) the non-relativistic FT-HFB+FT-pnFAM (FT-QRPA)
and the shell-model (SM). The red dashed line denotes the ground-state threshold energy. (Right)
The temperature dependence of EC rates in 86Kr at ρYe = 1011 g/cm3 as calculated using the
3 theoretical models. In addition, the FT-PNRQRPA containts both the allowed (GT) and first-
forbidden (GT+FF) transitions. The approx. and approx. mod refer to simple analitical expressions
for the EC rates [33]. The figures are adapted from Ref. [33].

At T = 5 GK the temperature is finally high enough to allow for thermal unblocking as well as
the appearance of de-excitations leading to an exponential increase in the EC rate. Again, both
the relativistic and non-relativistic QRPA calculations are consistent, especially as the temperature
increases. With higher temperature the EC rate becomes mostly independent of the details in the
GT+ strength function and agreement between the different models is expected. However, in the
case of 86Kr, the rate is comparable for all temperatures, indicating consistency for models based on
different EDFs. The SM rates have a lower slope of the EC rate temperature evolution signifying
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Figure 4.11: (a) The part of the nuclide chart showing ratio between the EC rates calculated with
the relativistic and non-relativistic QRPA calculations. (b) The ratio between the total EC rate
including both the GT and first-forbidden transitions (GT+FF) and the EC rate which includes only
the GT. The calulations are performed at T9 = 10 and ρYe = 1011 g/cm3. The figure is adopted
from Ref. [33].

that Eif ≤ 20 MeV was probably too low for a cut-off in the calculation.
For a neutron rich nucleus such as 86Kr, the first-forbidden (FF) transitions play an important role

in the total EC rate, even for low temperatures. Therefore, in Fig. 4.10(right panel) we also show
the relativistic FT-PNRQRPA rate which includes both the GT and FF transitions Jπ = 0±, 1±, 2−.
Clearly, for low temperatures, addition of FF transitions enhances the EC rate by more than an order
of magnitude. For temperatures T ≥ 10 GK, the GT transitions become increasingly unblocked
and "catch up" with the FF transitions. Above T ≥ 20 GK, both calculations are matching in their
predictions. In addition to microscopic calculations, we also show the results obtained using simple
analytical expressions for the EC rates (approx. and approx. mod) [3, 169]. They predict overall
correct trend for the EC temperature evolution, however they are underestimating the slope of the
EC rate increase for high temperatures.

Finally, we compare the EC rates for the diamond region nuclei at T9 = 10 and ρYe = 1011

g/cm3. For the allowed approximation (including only the GT transition) in Fig. 4.11(a) we compare
the EC rates for relativistic and non-relativistic calculations. Overall, we observe that the agreement
is well within one order of magnitude for all nuclei in the diamond region. The non-relativistic FT-
HFB+FT-pnFAM calculations assume axially-deformed shape of the nuclei, while the relativistic
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FT-HBCS+FT-pnRQRPA is based on the spherical symmetry. One would assume that a different
choice of the EDF formulation together with deformation effects would lead to large differences
between the model calculations. However, as the temperature is increased, nuclei tend to undergo
a shape transition from deformed to a spherical configuration (see Chapter 6), thereby decreasing
the differences between the models. In Fig. 4.11(b), for the relativistic QRPA we compare the rate
which includes both the GT and FF transitions and the rate with GT transitions only. It is observed
that differences can be up to 5 orders of magnitude. For most nuclei the ratio is around one order of
the magnitude (as we have seen for 86Kr), while for those which are more neutron-rich (lower right
part of the diamond region) the ratio is more substantial.

4.4 Implications for the core-collapse supernovae evolution

We have performed the CCSNe simulation using the spherically-symmetric 1D code GR1D [170].
It simulates the early stages of the post-bounce phase assuming general-relativistic hydrodynamics
and neutrino transport based on the NuLib library [33,164]. The simulations are performed with the
s15WW95 progenitor [171] and the SFHo equation of state [172]. We have performed 5 simulations
with different sets for the EC rates of the diamond region nuclei, as discussed previously. The results
are shown in Fig. 4.12(a)-(c).

The evolution of the electron-to-baryon ratio Ye with the central density ρ is shown in Fig.
4.12(a). The results for the calculations based on the QRPA match almost exactly, meaning that the
dfferences observed in the EC rates [cf. Fig. 4.11(a)] play almost no role in the evolution of Ye.
Addition of FF transitions changes the Ye trends mostly in the region between 1011 and 1012 g/cm3.
Indeed, the increased EC rates of diamond region nuclei (most abundant in these conditions) leads
to lower Ye as predicted by the GT only calculation. The approximations (approx. and approx. mod)
have overall reduced Ye due to higher overall EC rates compared to other microscopic calculations.
In addition, due to higher EC rates, inclusion of FF transitions produces slightly reduced peak for
electron-neutrino luminosity (∼ 3%) in Fig. 4.12(b) and the lower mass of the inner homologous
core (∼ 4%) in Fig. 4.12(c). The latter leads to a slightly less massive proto-neutron star once
the FF transitions are included in the calculations, while the former is a consequence of the slower
neutrino diffusion leading to the quenching of the peak neutrino luminosity, as noted in Ref. [164].
On the other hand, in the case of the allowed GT transitions there is almost no difference between the
relativistic and non-relativistic calculations based on the QRPA. Since the EC rates of the diamond
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Figure 4.12: The results for the main observables of the CCSNe simulations using the GR1D code
with NuLib [164, 170]. The different sets of EC rates for the diamond region nuclei are used (see
text) for (a) the electron-to-baryon ratio Ye as a function of the central density ρ, (b) the electron
neutrino luminosity Lν−e at radius of 500 km as a function of time after bounce, and (c) the central
velocity as a function of the enclosed mass. The figure is adopted from Ref. [33].

region nuclei are shown to impact the CCSNe dynamics the most, this observation leads us to the
conclusion that the theoretical models for EC rates are well constrained. Therefore, the uncertainties
in the CCSNe evolution due to EC rates are significantly reduced. However, even though the EC
rate uncertainties between different models have almost no influence on the CCSNe, they could have
significant impact to other astrophysical scenarios such as the thermal properties of the neutron star
crust [173] where the temperatures are much lower, and a state-by-state evaluation of the EC rates
becomes important.
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β-decay rates in stellar environment

The nuclear β-decay is the process mediated by the weak-nuclear force upon which the nucleus
decays either in the direction of increasing proton number

(Z,N)→ (Z + 1, N − 1) + e− + ν̄e, (5.1)

where an electron is emitted together with the electron anti-neutrino (ν̄e), which we call the β−-
decay, or by increasing the neutron number

(Z,N)→ (Z − 1, N + 1) + e+ + νe, (5.2)

where a positron is emitted, together with the electron neutrino, which is called the β+-decay. In this
work, we focus on the β−-decay, which is an important theoretical input for the nuclear r-process as
well as the s-process. Of course, since the s-process occurs near the stability valley, the half-lives
are much more constrained by the experimental data, unlike the r-process which extends to the
neutron drip line. We are again interested in stellar conditions characterized by high temperature
T and stellar density ρYe. The underlying theory describing the transition rate is the Fermi theory,
in a similar form as for the electron capture, differing only in the kinematics.

First, we present the theoretical formalism used for calculating the β-decay rates, based on the
theory of Behrens and Bühring in Ref. [154]. The lepton wavefunction is obtained by expanding the
radial Dirac equations, which introduces the so-called shape factors. It turns out that the β-decays
are rather sensitive to the charge distribution in the decaying nucleus. The problem is complicated
also by an outgoing neutrino which carries momentum, making the kinematics of the problem more

85



Chapter 5. β-decay rates in stellar environment

involving compared to the EC. This means that the electron spectrum is a distribution rather than a
delta function. This Chapter is based on the results published in Ref. [34]. We present our results for
β-decay rates of even-even nuclei in the temperature range T = 0–2 MeV and densities ρYe = 107

and 1010 g/cm3. All calculations performed in this section assume spherical symmetry. Our model
calculations are benchmarked against the experimental data at zero temperature and compared with
other theoretical models where the data exists.

5.1 Theoretical framework

The thermally averaged expression for the β-decay rate is [34, 98]

λβ =
ln2

K

1

Z

∑
i,f

e−βEi

W
(i,f)
th∫

1

C(W )i,fWp(W
(i,f)
0 −W )2F0(Z + 1,W )[1− fe(W,µe)]dW, (5.3)

where we have introduced the definition of the shape factor C(W )i,f , other expressions being
defined in Sec. (4.1). In the case of the allowed transitions, the shape factor has the form

C(W )if = g2
A|〈i|στ−|f〉|2, (5.4)

where gA = −1.0 is the quenched axial coupling constant (similar in Chapter 4) and the matrix ele-
ment corresponds to the GT− transitions. Note that the shape factor in the allowed approximation is
independent of lepton energy. The shape factor for the first-forbidden transitions (Jπ = 0−, 1−, 2−)

has the following form

C(W )i,f = ki,f + (ka)i,fW + (kb)i,f/W + (kc)i,fW
2, (5.5)

where the expressions for ki,f , (ka)i,f , (kb)i,f and (kc)i,f are listed in Appendix D and correspond
to those in Ref. [131].

As in the case for EC in Chapter 4, we have to evaluate the above matrix elements within the FT-
pnRQRPA, taking into account also the de-excitation strength (lying below the Q-value threshold).
We assume the allowed approximation since the expressions are easier to handle. The β-decay rate
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is obtained from Eq. (5.3)

λβ =
ln2

K

1

Z

∑
i,f

e−βEi|〈f |στ−|i〉|2f(W
(i,f)
0 ), (5.6)

where the phase-space factor is defined as

f(W
(i,f)
0 ) =

W
(i,f)
th∫

1

pW (W
(i,f)
0 −W )2F0(Z,W )[1− fe(W,µe)]dW. (5.7)

We are considering the β−-decay of the initial state of even-even (Z,N) nucleus, to a final state of
the odd-odd (Z + 1, N − 1) nucleus. The diagram explaining the decay is shown in Fig. 5.1. The
initial-final energy difference is written as

W
(i,f)
0 (mec

2) = E
(i,f)
0 = Ei − Ef , (5.8)

whereEi = E∗i +MNi andEf = E∗f +MNf . Looking at diagram in Fig. 5.1, this energy difference
can be written as E(i,f)

0 = Ei − E1+m
, where E1+m

is the energy of the m-th excited state in the
daughter nucleus (Ef ). We can then rewrite it as

E
(i,f)
0 = Ei − E1+m

= ∆B + ∆np − E∗1+m , (5.9)

where E∗
1+m

is the excitation energy of the m-th state, now measured with respect to the daughter.
Within the FT-pnRQRPA E∗

1+m
can be approximated as

E∗
1+m
≈ Em

QRPA + (λn − λp)−∆B, (5.10)

so that the initial-final energy difference reduces to

W
(i,f)
0 (mec

2) ≈ Wm
0 (mec

2) = ∆B+∆np−[Em
QRPA+(λn−λp)−∆B] = ∆np−Em

QRPA−(λn−λp).
(5.11)

Using the notation of the matrix FT-pnRQRPA [cf. Sec. 3.2] this means that the total rate in the
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Figure 5.1: The energy diagram for the β−-decay between the initial stateEi of the even-even parent
nucleus to the finalm-th excited state of the odd-odd daughter nucleus. See text for details.

allowed approximation is

λβ =
ln2

K

∑
m

Bm

W th,m
0∫

1

Wp
[
(∆np − Em

QRPA − λnp)/(mec
2)−W

]2
F0(Z,W ) [1− fe(W,µe)] dW,

(5.12)
where the thermally averaged matrix element is defined as

Bm ≡ B−m =
|〈[Γm,στ−]〉|2

1− e−βω , Em > 0,

Bm ≡ B+
m = −|〈[Γm,στ+]〉|2

1− e−βω , Em < 0,

(5.13)

in analogy with Eq. (4.13) but with the opposite direction of the isospin.
The phase space of the β-decay is much more constrained compared to the EC phase space. The

lowest value the initial-final state difference energy can assume is equal to the electron mass, so that

W
(i,f)
0 (mec

2) = mec
2 = ∆np − Eth,m

QRPA − λnp, (5.14)
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where we have defined the threshold QRPA eigenvalue Eth,m
QRPA for which the above condition is

fulfilled. This means that the following inequality should hold for the FT-pnRQRPA eigenvalues to
contribute to β-decay phase-space integral

Em
QRPA ≤ ∆nH − λnp, (5.15)

where ∆nH = ∆np−mec
2 = 0.782 MeV. Since for the excitation strengthEm

QRPA > 0, the strength
interval which contributes to the excitation β-decay strength is ∆nH + λnp. This is an intuitive
result since it confirms that more strength for β−-decay contributes to neutron-rich nuclei having
larger chemical potential difference λnp. On the other hand, for de-excitation strength, Em

QRPA < 0,
which always satisfies the threshold condition in Eq. (5.15). In the case of de-excitations, the limit
on Em

QRPA is determined by an exponential decrease of the detailed balance factor (1− e−βω)−1.

5.2 Results

Themodelwe employ in the calculation ofβ-decay rates is the FT-HBCS+FT-pnRQRPA in spherical
symmetry described in Sec. 4.3. It is based on the D3C∗ relativistic EDF, known for its success
in reproducing the experimental data of the β-decay rates at zero temperature [130, 131]. Here,
compared to the model in Sec. 4.3 the pp interaction in the FT-HBCS solver is different. We adopted
a monopole pairing characterized by strengthsGp(n) for proton(neutron) states. The pairing strength
is determined for each nucleus separately by reproducing the experimental pairing gaps calculated
using the 5-point formula [40]. First, we have to benchmark our model at zero temperature by
calculating the half-lives T1/2 = ln 2/λβ and comparing them to the available experimental data.
This is shown in Fig. 5.2(a)-(d) for the isotopic chains of titanium, iron, cadmium, and tin. Overall,
the experimental data are well reproduced for Ti and Cd chains. Our calculations underestimate
the results for the Fe chain. We note that the present calculation is spherical, while most of the
shown iron isotopes have axially deformed ground states. Later, in Chapter 7, we recalculate the
iron isotopic chain half-lives by also considering the deformation effects. For the tin isotopic
chain, calculations overestimate results for A < 134 and underestimate those for A ≥ 134. Such
discrepancy cannot be attributed to deformation effects since most of these nuclei are spherical. To
describe the half-life of these nuclei, one has to go beyond the QRPA, which considers only the 2
q.p. excitations and include coupling to more complex configurations. Examples are the particle-
vibration coupling (PVC) models based on either relativistic [135,150] or non-relativistic [132,133]
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Figure 5.2: Comparison between the calculated (black) and experimental [159] (red) half-lives T1/2

at zero temperature for titanium (a), iron (b), cadmium (c), and tin (d) isotopic chains. For Sn, we
also show the results calculated by lowering the Landau-Migdal parameter g′ to 0.5 (green). We
have adopted the figure from Ref. [34].

EDFs. Such models tend to better reproduce the half-lives of the doubly-magic and semi-magic
nuclei by inducing more transition strength in the β-decay kinematic window (also known as
the Qβ window). To partially remedy this issue within our model, we have artificially induced
more transitions in the Qβ window for Sn isotopes by lowering the strength of the Landau-Migdal
interaction to g′ = 0.5 [cf. Eq. (4.21)]. This is shown in Fig. 5.2(d) where we see that g′ is adjusted
to reproduce the half-life of 132Sn.

Now, we extend our calculations to finite temperatures and stellar densities. In Figure 5.3(a)-(d)
we present the temperature evolution of selected even-even isotopes of titanium, iron, cadmium,
and tin in the temperature range T = 0–1.5 MeV and at stellar density ρYe = 107 g/cm3. We
observe the following general trends: (i) half-lives tend to decrease with temperature, and (ii) this
decrease is more substantial for nuclei with initially higher half-lives at zero temperature. For
instance, compared to zero temperature, the half-life of 52Ti is reduced by almost two orders of
magnitude at T = 1.5 MeV. On the other hand, for more neutron-rich 60Ti, the half-life is almost
temperature independent. Similar trends are observed in other isotopic chains. For temperatures
below T = 0.3 MeV half-lives are temperature independent, after which they start to decrease.
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The reasons for decreasing half-lives are threefold. (i) As the temperature increases, previously
blocked transitions become possible. If those transitions are found within the Qβ window, they
will modify the half-life. (ii) With increasing temperature, the pairing correlations weaken until
the critical temperature where they vanish completely. For 52Ti, the FT-HBCS predicts critical
temperature for neutrons at around 0.6 MeV and around 0.9 MeV for protons. Therefore, above
0.9 MeV, the half-life is purely determined by the finite-temperature effects. With the temperature
approaching the critical temperature, significant changes occur to the low-lying strengths, which
is incidentally the most important for the half-lives. (iii) Since we are considering highly-excited
nuclei, transitions with negativeQ-value (de-excitations) also become possible. They are especially
important for pf -shell nuclei where the β−-strength is considerably lower than the corresponding
β+-strength. As the temperature increases, the detailed balance factor allows more de-excitation
strength to contribute to the total rate. Which of these three effects is more important depends on the
nucleus under consideration. For instance, de-excitations are the dominant contribution to half-lives
of 52,54Ti and 62Fe starting already at T ≥ 0.3 MeV. For more neutron-rich nuclei, their contribution
to the total rate is more moderate, up to 10% [34]. However, more neutron-rich nuclei already
display very short lifetimes, meaning that the temperature effects are moderate at most (showing
changes within an order of magnitude). In Fig. 5.3(d), we have compared the half-life of 132Sn
with calculations from Ref. [135], which employs the finite-temperature relativistic time-blocking
approximation (FT-RTBA). It is encouraging that the temperature dependence predicted by the two
models is similar. Our calculations show an initial decreasing trend in half-live ≈ 0.1 MeV below
the temperature for which it occurs for the FT-RTBA. As the temperature increases both models
agree at T = 1 MeV. Considering substantial differences between the model calculations, such as
consideration of complex configurations within the FT-RTBA and different underlying EDFs the
results are more than reasonable.

For a complete understanding of β-decay rates, we also have to consider first-forbidden (FF)
transitions. The temperature dependence of the total rate decomposed to individual multipoles
is shown in Fig. 5.3(e)-(h). For pf -shell nuclei such as 54Ti and 62Fe, Gamow-Teller is the
most dominant multipole. Although the contribution of FF transitions increases with increasing
temperature, their overall impact remains negligible. On the other hand, the FF transitions play a
more important role in heavier nuclei such as 120Cd and 132Sn. In 120Cd up to T = 0.6MeV, the most
dominant multipole is GT, above which 1− FF multipole gains more importance. At T ∼ 1.5 MeV,
the 1− FF multipole becomes comparable to the GT, eventually surpassing it in the contribution
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Figure 5.3: (a)-(d) The temperature evolution of β-decay half-lives in the temperature range T = 0–
1.5 MeV for selected even-even Ti, Fe, Cd and Sn isotopes. For 132Sn, the red triangles label the
FT-RTBA results from Ref. [135]. (e)-(h) Decomposition of the total rate λβ to contribution of
allowed (1+) and first-forbidden (0−, 1−, 2−) multipoles for selected nuclei in respective isotopic
chains. Calculations are performed at stellar density ρYe = 107 g/cm3. Figure is adapted with
permission from Ref. [34]. Copyrighted by the American Physical Society.

to the total rate. For 132Sn at low temperatures, GT competes with the 2− multipole. At higher
temperatures, the GT multipole starts increasing almost exponentially up to T ∼ 1 MeV, being
larger more than an order of magnitude compared to 2− at T = 1.5 MeV. The 1− FF transitions also
grow significantly with increasing temperature being within the same order of magnitude as GT at
T = 1.5 MeV.

In previous considerations, we have kept the density constant. What happens to β-decay rates as
the density increases? As the electron chemical potential increases with higher density, the lepton
phase space becomes significantly Pauli blocked, decreasing the β-decay rate and prolonging the
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Figure 5.4: (a) The GT− strength function in 62Fe at 5 GK (red bars) together with the corresponding
phase-space factors at ρYe = 107 g/cm3 (dark red) and 109 g/cm3 (blue). (b) The β-decay rate
dependence of 62Fe with respect to stellar density ρYe at T = 0, 5 and 10 GK.

half-lives. The conclusion is exactly the opposite of that fromEC, where the total rate is proportional
to electron Fermi-Dirac factor fe [cf. Eq. (4.3)], while the β-decay rate is proportional to 1− fe as
in Eq. (5.3). To illustrate how the stellar density ρYe influences the β-decay rate, in Fig. 5.4(a), we
plot the GT− strength in 62Fe at T = 5 GK (0.43 MeV) together with the corresponding phase-space
factors [cf. Eq. (5.7)] at ρYe = 107 g/cm3 and 109 g/cm3. The rate in the allowed approximation is
defined as the product of strength and phase-space factor at a given excitation energy. The strength
is independent of the ρYe, while the phase-space factor shows significant changes. As the density
increases due to the lepton phase-space blocking, the phase-space factor decreases significantly,
lowering the effective strength in the Qβ window. In Figure 5.4(b) we show the total β-decay rate
for 62Fe as a function of the density ρYe for temperatures T = 0.001 (effectively zero), 5 and 10 GK.
Notice that the rate is independent of ρYe up to ρYe = 107 g/cm3, after which it decreases abruptly.
Of course, since the temperature correlations induce additional transitions in the Qβ window, they
increase the rate for a given density. For instance, at ρYe = 109 g/cm3 the rate almost vanishes for
both T = 0 and 5 GK, while it is still significant for higher T = 10 GK. This illustration leads us
to the interesting conclusion that the interplay between the finite temperature and Pauli blocking
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Figure 5.5: Temperature dependence of the β-decay rates for selected pf -shell nuclei in the tem-
perature range T = 0–2 MeV at ρYe = 107 g/cm3 (upper panels) and ρYe = 109 g/cm3 (lower
panels). Results are calculated within the FT-HBCS+FT-pnRQRPA using the D3C∗ interaction
(black dashed) and DD-ME2 (blue dash-dotted). Results are compared to LSSM [114] and shell
model calculations based on the pf-GXPF1J interaction [126]. The figure is adopted from Ref. [34].

effects is crucial for understanding the β-decay rates in stellar environments.
We have calculated the β-decay rates of selected pf -shell nuclei using two relativistic EDFs:

D3C∗ and DD-ME2, and compared our results with the large-scale shell model (LSSM) calculations
from Ref. [114] and shell model calculations based on pf-GXPF1J interaction [126]. The results
are shown in Fig. 5.5 for ρYe = 107 g/cm3 (upper panels) and ρYe = 109 g/cm3 (lower panels),
in the temperature range T = 0–2 MeV. Since the shell model calculations omit FF transitions, in
our calculations we only consider the GT transitions. First, as the ρYe increases, the rates decrease,
as discussed previously. For T ≥ 0.3 MeV, the temperature effects are large enough for the decay
rate to increase abruptly. As we discussed, this is mostly due to an interplay between lowering
the pairing correlations and the introduction of de-excitations (especially for pf -shell nuclei). We
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note that results calculated with the D3C∗ and DD-ME2 interactions are comparable. In cases
where differences occur (such as 54Ti), the D3C∗ results predict a higher rate at lower temperatures.
This is expected since the main motivation behind developing the D3C∗ EDF was to induce more
strength in the Qβ window by increasing the effective Landau mass [130]. Our calculations tend to
agree with shell model calculations by predicting similar temperature and density dependence. For
lower temperatures, the discrepancy between the shell model calculations and our FT-pnRQRPA
calculations is larger than at higher temperatures. However, the respective shell model calculations
also show differences under these conditions in 52Ti. As the temperature increases, the rates tend
to agree within an order of magnitude. Unlike the EC, the Qβ window does not increase with
increasing temperature, but only the low-lying strength remains important. For these pf -shell
nuclei at temperatures above T ≥ 1 MeV, the de-excitations dominate the total rate. Thus, the
inclusion of de-excitations within our model is the key to reasonably reproduce the shell-model
results. To treat the transitions from highly-excited states, shell model calculations assume the
Brink hypothesis, which presupposes that the strength function for excited states has the same
form as for the ground state, only shifted by the excitation energy [174]. This assumption is a
consequence of prohibitively large configuration spaces that are required to perform shell model
calculations at finite temperature. It doesn’t help that the Brink hypothesis was shown to be invalid
under certain conditions [108,174]. On the other hand, the de-excitations within the FT-QRPA stem
from equating the physical strength function to the FT-QRPA strength function [31,34]. Of course,
at low temperatures where the rates depend only on a few transitions, relatively simple FT-QRPA
cannot reproduce the details of the strength function, and shell model calculations are advantageous.
However, considering the scalability of the FT-HBCS+FT-pnRQRPA calculations, both with the
temperature and system size, they are well suited to perform global β-decay calculations, not only
for a given temperature–density grid but also using different EDFs. Such insight can be useful for
an estimate of the systematic uncertainty in the rates.

Finally, we present the results for the large-scale calculation of β-decay half-lives in the range
8 ≤ Z ≤ 82 for which the half-lives are below 104 s. As previously mentioned, the pairing
strength of the monopole pairing in the FT-HBCS is adjusted for each nucleus using the 5-point
formula [40]. To compensate for overestimating the half-lives of doubly-magic nuclei, the Landau-
Migdal coupling g′ is adjusted to reproduce the experimental half-life for 78Ni and 132Sn, and the
optimal g′ value is used for the whole Ni and Sn chains. The particle-bound nuclei are determined
by the condition that the chemical potential of neutron states should be negative (λn < 0).
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Figure 5.6: The relative change (in %) of β-decay half-lives at T9 = 5 (a)-(c) and T9 = 10 (b)-(d)
with respect to zero temperature (T9 = 0.01) for ρYe = 107 g/cm3 (a)-(b) and ρYe = 109 g/cm3

(c)-(d). Only particle-bound even-even nuclei are shown in the range 8 ≤ Z ≤ 82.
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Results for β-decay half-lives are shown in Fig. 5.6 for temperatures T = 5 and 10 GK and
stellar densities ρYe = 107 g/cm3 and ρYe = 109 g/cm3. We display the results as a percentage
change in half-life with respect to zero temperature (T = 0.01 GK)1. Already at 5 GK, we observe
that temperature enhances the half-lives. The nuclei that are most influenced are those near the
valley of stability and shell-closure numbers. Nuclei that have longer half-lives at zero temperature
are more impacted by temperature effects. The change in half-lives is more pronounced for higher
density [Fig. 5.6(c)] compared to lower density [Fig. 5.6(a)]. This is related to the fact that the
half-life at higher density is more sensitive to changes in the phase-space integral since the lepton
phase-space is Pauli blocked. For a fixed density, as the temperature increases, the electron chemical
potential µe is slightly reduced, allowing more strength to contribute to the decay rate. Therefore,
if there is a temperature influence on the strength in the Qβ window, it will be more pronounced at
higher ρYe, even though the overall rate is reduced. At T = 10 GK, the half-lives decrease more
significantly, and the effects permeate deeper into the neutron-rich side of the nuclide chart. Again,
the changes are especially pronounced near magic and semi-magic shell closures together with those
close to the valley of stability. On the other hand, nuclei closer to the neutron drip line show mostly
a moderate decrease of half-lives, with some even slightly increasing with temperature. Therefore,
the effect of temperature on nuclei is to generally shorten the half-lives, especially those around
the shell closure and near the stability valley. However, precise details of this half-life decrease
mechanism depend on individual nuclear properties.

The r-process occurs at fairly low temperatures from the nuclear structure standpoint, being
around 1 GK at most [6,7]. We have shown that β-decays start to be influenced by the temperature
only above 3 GK. Therefore, it is unlikely that finite-temperature effects on β-decay half-lives play
a role in the nucleosynthesis of nuclei in the r-process. However, in collapsing cores of massive
stars temperatures and densities are high enough to influence the β-decay lifetimes. Indeed, it was
confirmed that in certain stages of collapse, the conditions are such that β-decays compete with the
EC [4]. The main aim of our work is to provide the astrophysics community with a reliable model
that describes the β-decay rates under such conditions. It remains to investigate how the dynamics
of CCSNe will change once our calculations are applied to astrophysics simulations. Since the
temperature in presupernova conditions is quite high (10 GK and above), deformation effects tend
to be less relevant — the spherical approximation of nuclear geometry assumed in this chapter
becomes applicable for all nuclei. Nevertheless, we steer the discussion of deformation effects in

1Note that a small non-vanishing temperature should be used to avoid divergences in the phase-space factor in Eq.
(5.7)
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excited states to Chapter 7 since they are crucial for zero temperature where the experimental data
is available.
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Chapter 6

Nuclear landscape at extreme temperatures

Nuclei in the universe appear at finite temperatures. Those temperatures can be either high or low
from the nuclear structure viewpoint. For instance, the temperatures inside most stars measure keVs
(millions of kelvins), much lower than the shell gaps in nuclei (measured in MeV). On the other
hand, in the late stages of CCSNe and neutron star mergers, temperatures are of the order of MeVs
(billions of kelvin) and thus able to alter the nuclear structure [1, 175]. Incidentally, those events
are responsible for the creation of exotic neutron-rich nuclei via the mechanism of rapid neutron
capture (r-process). Therefore, establishing a robust theoretical model that can describe nuclei in
such extreme conditions is a necessity, not only for nuclear physics but also for astrophysics.

It is a known fact that most nuclei in existence are deformed. Only those that appear near shell
closure numbers are spherical. Out of deformed nuclei, most show axial symmetry, while some
are triaxial [176]. Therefore, to successfully describe nuclei within our model, we have to consider
deformation effects. In this chapter, we consider axial deformation where the symmetry axis is the
z-axis. In these cases, the total angular momentum J is not a conserved quantum number in the
laboratory system, but its projectionΩ is, with the condition |Ω| ≤ J . In addition to axial symmetry,
we also assume reflection-symmetric shapes such that parity π is also a conserved quantum number.
Therefore, instead of coupling our equations to specific Jπ blocks, we can only perform coupling
to Ωπ blocks. However, the size of the Ωπ blocks is much larger than the corresponding Jπ blocks
meaning that the system of equations does not scale well with size. Indeed, solutions of both RHB
and QRPA equations in axial symmetry require advanced numerical methods and larger numerical
resources compared to spherical calculations. We start by describing the axially-deformed FT-RHB
equations and their solutions. It turns out that naively extending the RHB to finite temperatures
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leads to convergence problems. Namely, as nucleons start to increasingly populate the continuum
states, solutions start to depend on the box size in which the RHB equations are discretized. We
solve this convergence issue by adopting the method developed by Bonche, Levit, and Vautherin
(BLV) in Refs. [36, 37], where the continuum solutions are successfully isolated from the nuclear
bulk properties. The FT-RHB theory supplemented by the BLV subtraction procedure is then
employed to calculate nuclear properties at finite-temperature across the nuclide chart and applied
to determine the dependence of nuclear drip lines with temperature. We show that for a proper
description of nuclei in the vicinity of drip lines, the subtraction procedure becomes necessary
already at T = 1 MeV. Such a conclusion is in contrast to previous theoretical works where it
was stated that continuum becomes relevant only for temperatures above 4 MeV [36, 37, 177]. We
find that up to T = 0.5 MeV, the nuclear landscape is only moderately influenced by temperature
properties, related to the reduction of pairing interaction. As the temperature increases to T ≥ 1

MeV, the temperature has a significant effect on the nuclear structure, reducing both the deformation
and shell effects. Calculations are performed with three state-of-the-art relativistic EDFs: meson-
exchange DD-ME2, point-coupling DD-PC1, and DD-PCX. Multiple functionals are employed
to assess the systematic uncertainties stemming from different underlying interactions and fitting
protocols used to optimize the functionals.

6.1 The axially-deformed FT-RHB theory

For the axially-deformed nuclei, Jz component of total angular momentum J is a conserved quantity
that we usually denote asΩi, and that together with parity πi determines the nuclear spinor [138,146]

ψi(r, s, t) =


f+
i (r, z)eiΛ−φ

f−i (r, z)eiΛ+φ

ig+
i (r, z)eiΛ−φ

ig−i (r, z)eiΛ+φ

χ1/2ti , (6.1)

where Λ± = Ωi ± 1/2, {r, z, φ} are the usual cylindrical coordinates and χ1/2ti are the isospin
wave functions. Nuclear wave functions are expanded in terms of the axially deformed harmonic
oscillator wave functions in the potential defined as

Vosc(z, r) =
1

2
mω2

zz
2 +

1

2
mω2

⊥r
2, (6.2)
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with two parameters ~ω⊥ and ~ωz that can be expressed in terms of deformation parameter β0:

~ωz = ~ω0e
−
√

5
4π
β0 , ~ω⊥ = ~ω0e

1
2

√
5
4π
β0 . (6.3)

Corresponding oscillator length parameters for two directions are defined as

bz =

√
~

mωz
, b⊥ =

√
~

mω⊥
, (6.4)

with b2
⊥bz = b3

0 because of the volume conservation. The basis is fully determined by the ~ω0,
which is calculated from the mass number A as ~ω0 = 41A−1/3 MeV [138], in addition with the
basis deformation β0. Later, we verify the prescription to determine ~ω0. The eigenfunctions of the
axially deformed oscillator can be labeled as

|α〉 = |nznrΛms〉 , (6.5)

where nz and nr are the number of nodes in z and r directions. Λ andms are the projections of the
orbital angular momentum and spin on the intrinsic z−axis. Using the dimensionless variables

ξ = z/bz, η = r2/b2
⊥, (6.6)

the harmonic oscillator eigenfunctions read [138]

Φα(r, s) = φnz(z, bz)φ
Λ
nr(r, b⊥)

eiΛφ√
2π
χ1/2ms , (6.7)

where

φnz(z, bz) = b−1/2
z φnz(ξ) = b−1/2

z NnzHnz(ξ)e
−ξ2/2,

φΛ
nr(r, b⊥) = b−1

⊥ φ
Λ
nr(η) = b−1

⊥ N Λ
nr

√
2η|Λ|/2L|Λ|nr (η)e−η/2.

(6.8)

In the above,Hnz(ξ) and L
|Λ|
nr (η) denote Hermite and associated Laguerre polynomials respectively

[178], and χ1/2ms are the spin wavefunctions. The normalization factors are

Nnz = (
√
π2nznz!)

−1/2, N Λ
nr = (nr!/(nr + |Λ|)!)1/2. (6.9)
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Large and small components are expanded independently in terms of the oscillator eigenfunctions

fi(r, s, t) =
1√
2π

(
f+
i (r, z)eiΛ−φ

f−i (r, z)eiΛ+φ

)
=

αmax∑
α

f (i)
α Φα(r, s)χ1/2ti , (6.10)

gi(r, s, t) =
1√
2π

(
g+
i (r, z)eiΛ−φ

g−i (r, z)eiΛ+φ

)
=

α̃max∑
α

g
(i)
α̃ Φα̃(r, s)χ1/2ti , (6.11)

To avoid the appearance of spurious states, quantum numbers αmax and α̃max are chosen in a way
that the corresponding major quantum number N = 2nr + |Λ| + nz is not larger than Nmax and
Nmax + 1 for the large and small components respectively.

The single-particle Dirac equation derived from the mean-field Lagrangian can be represented
as in Sec. 2.1

{α(−i∇− V (r)) + βM∗(r) + V (r)}ψi(r) = εiψi(r), (6.12)

where the details of scalar and vector fields depend on specific EDFs under consideration (See
Chapter 2). In the following we assume even-even nuclei so that the space-like components vanish
V = 0. By inserting the definition of the spinor in the axially-deformed oscillator basis, we obtain
an eigenvalue problem as in Ref. [138]. Assuming the time-reversal symmetry, for each solution
with Ω > 0

ψi = {f+
i , f

−
i , g

+
i , g

−
i ,Ωi}, (6.13)

we have the time-reversed solution with the same energy and opposite Ω

ψi = T̂ψi = {−f−i , f+
i , g

−
i , g

+
i ,−Ωi}, (6.14)

with the time-reversal operator defined as T̂ = iσyK̂ (K̂ is the complex conjugation). For nuclei
with time-reversal symmetry, the contributions to the densities of the two time-reversed states i and
ī are identical. Therefore, the densities are defined as

ρs,v = 2
∑
i>0

ni((|f+
i |2 + |f−i |2)∓ (|g+

i |2 + |g−i |2)), (6.15)

where "+" corresponds to the scalar density ρs and "-" to the vector density ρv. Factor ni is the
occupation number of the state, and sum i > 0 runs only over the states with Ωi > 0. Similar
expressions are also obtained for other densities being bilinear covariants in Dirac fields.
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By addition of the nuclear pairing field into the consideration, we obtain the RHB equation as
defined in Sec. 2.2

∑
l′

(
hll′ − λ−M ∆ll′

−∆∗ll′ −h∗ll′ + λ+M

)(
Ul′k

Vl′k

)
= Ek

(
Ulk

Vlk

)
, (6.16)

where the single-particle Hamiltonian can be rewritten as

h = α · p+ V + β(M + S) =

(
0 σ · p

σ · p 0

)
+ V +

(
12×2 0

0 −12×2

)
(M + S)

=

(
V +M + S σ · p
σ · p V −M − S

)
.

Since we assume the axial symmetry, the product of the Pauli matrix σ and momentum operator p
is

σ · p = σρpρ + σzpz = −iσρ
d

dρ
− iσz

d

dz
, (6.17)

where σρ = σx cosφ+ σy sinφ and σ2
ρ = 1. The pairing field has the form as in Eq. 2.53. We can

simplify the calculations by imposing the time-reversal symmetry and setting the matrix elements
∆+−,∆−+,∆−− to zero [23]. The RHB equation has to be written in a basis represented by
states {|α〉, |ᾱ〉}, however, by using the time-reversal symmetry, it can be shown [23, 179] that the
equations decouple to a smaller dimension. Now the RHB equation assumes the following form in
the oscillator basis

Aαα′ Bαα̃′ (∆++)αᾱ′ 0

Dα̃α′ Cα̃α̃′ 0 0

(∆++)αᾱ′ 0 −Aαα′ −Bαᾱ′

0 0 −Dα̃α′ −Cα̃α̃′




fUα′

gUα̃′

fVᾱ′

gVα̃′

 = E(1)
α


fUα

gUα̃

fVᾱ

gV˜̄α

 , (6.18)

with matrix elements Aαα′ , Bαᾱ′ , Cᾱᾱ′ , and Dᾱα′ defined in Ref. [138]. Therefore, the RHB equa-
tions in the h.o. space reduce to a diagonalization problem with eigenvalues E(1)

α and eigenvectors(
fUα gUα̃ fVᾱ gV˜̄α

)
[138,146]. The RHB equations are simply extended to the FT-RHB equations

as presented in Sec. 2.3.
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For the pairing interaction, we employ the separable pairing force of Ref. [141] in the form

V pp(1, 2) = −Gδ(R−R′)P (r)P (r′), (6.19)

where R = 1
2
(r1 + r2) and r = r1 − r2 denote the center-of-mass and relative coordinate,

respectively, while P (r) has the form

P (r) =
1

(4πa2)3/2
e−r

2/4a2 , (6.20)

where parameters G and a can be found in Ref. [141].

6.2 Continuum subtraction method

Before presenting calculations obtained with the FT-RHB model, we have to handle the particle
continuum explicitly. As the temperature increases, nucleons scatter above the Fermi level. At large
enough temperatures, we would have a non-vanishing probability v2

i > 0 of finding particles with
positive single-particle energies εi > 0. To explicitly take into account the continuum states, we
define the subtracted grand-canonical potential as in Refs. [36, 37]

Ω̄ = Ω[R]− Ω[R̃] + EC [ρc, ρ̃c], (6.21)

where R stands for the generalized density of the Nucleus+Vapor system (Nucl+Vap) and R̃
corresponds to the vapor system (Vap). To account for the vapor-nucleus Coulomb interaction, the
BLV prescription proposes a form of the Coulomb term Ec[ρc, ρ̃c] which subtracts the long-range
vapor Coulomb repulsion [36,37]. Here, ρc, ρ̃c are the proton particle densities of the Nucl+Vap and
Vap systems, respectively. Variation of Ω̄ with R leads to the FT-RHB equation for the Nucl+Vap
system (

h− λ ∆

−∆∗ −h− λ

)(
U

V

)
= E

(
U

V

)
, (6.22)
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where (U, V ) is a set of q.p. wave functions with energy E. By performing variations of Ω̄ with R̃
we get the FT-RHB equations for the Vap system(

h̃− λ ∆̃

−∆̃∗ −h̃− λ

)(
Ũ

Ṽ

)
= Ẽ

(
Ũ

Ṽ

)
, (6.23)

with the corresponding set of wave functions (Ũ , Ṽ ) and energies Ẽ. The subsidiary condition for
the chemical potential λ is ∫

dr[ρ(r)− ρ̃(r)] = N, (6.24)

whereN stands for either neutron or proton particle number. The h̃ is the single particle Hamiltonian
of the Vap system, defined by the vapor vector and scalar fields Ṽ and S̃, respectively. The difference
between the Nucl+Vap Dirac field h and Vap fields h̃ is in the initialization of the scalar and vector
fields. For the Nucl+Vap system, we assume an initial Woods-Saxon form of the scalar and vector
potentials, while the Vap fields are only initialized with the Coulomb field. The Poisson equation
for the time-like component of the Coulomb field A0 of both Nucl+Vap and Vap systems has the
form

−∇2A0 = e[ρc(r)− ρ̃c(r)]. (6.25)

It results in a coupling between the Nucl+Vap and Vap FT-RHB equations. The pairing field is
calculated as

∆ll′ =
1

2

∑
kk′

V pp

ll̄′kk̄′
κkk̄′ , ∆̃ll′ =

1

2

∑
kk′

V pp

ll̄′kk̄′
κ̃kk̄′ , (6.26)

for Nucl+Vap and Vap systems, respectively. We initialize the Nucl+Vap pairing field with a
constant value, while the initial value of ∆̃ is zero. We have confirmed that irrespective of its initial
value, the pairing field of the Vap system always vanished as the convergence of the self-consistent
iteration scheme is reached.

6.2.1 Example calculations on a 1D model

To exemplify the BLVmethod demonstrated above for the FT-RHB we construct a simplified model
which displays the main results more clearly. To this aim, we neglect the pairing correlations and
assume spherical symmetry, and therefore solve the spherically-symmetric FT-RMF equations. The
wave functions of the spherical harmonic oscillator are unable to reproduce the asymptotic tail of
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Figure 6.1: Dependence of entropy S (left panel) and the RMS neutron radius
√
〈r2
n〉 on the box size

Rbox with (blue circles) and without (red squares) the continuum subtraction procedure. Results are
calculated for 202Sm at T = 1 MeV using the DD-ME2 interaction and the FT-RMFBSPL solver.

the nuclear density [180, 181]. Namely, instead of an exponential decrease of the density e−r, they
have a Gaussian tail of the form e−r

2 . In principle, this issue could be remedied by increasing the
number of h.o. shells Nosc to very large numbers, at significant expense of computational time.
Therefore, to omit the incorrect asymptotic behavior of the h.o. wavefunctions we constructed
an FT-RMF solver in the coordinate space (FT-RMFBSPL) based on the code in Ref. [182]. It
employs the finite-element method (FEM) by discretizing the wave functions on a B-spline mesh
in a coordinate space. Its basis is defined by: the number of finite elements Nfe, the order of
the B-splines Nord, and the box size Rbox. For weakly-bound nuclei, main observables do not
converge with increasing the box size Rbox. To test the BLV subtraction procedure we have chosen
a nucleus in the vicinity of the drip line, 202Sm at T = 1.0 MeV. Calculations are performed with
the FT-RMFBSPL code using the DD-ME2 interaction. We show the results in Fig. 6.1 for the
temperature dependence of entropy S (left panel) and RMS neutron radius

√
〈r2
n〉 (right panel)

on the box size Rbox. Calculations without the continuum subtraction procedure show an almost
exponential-like increase of both entropy and RMS neutron radius asRbox is increased. On the other
hand, with the BLV prescription of the continuum subtraction, the observables are independent of
the box size starting already fromRbox = 20 fm. This drastic example shows that a proper treatment
of continuum states is a necessity for nuclei in the vicinity of the drip line for calculations to be
meaningful.

The reason behind such behavior can be understood by inspecting Fig. 6.2 where we show

106



Chapter 6. Nuclear landscape at extreme temperatures

0 10 20 30 40
r [fm]

10 5

10 4

10 3

10 2

10 1
v [

fm
3 ]

Rbox = 30 fm

Rbox = 40 fm

Nucl+Vap
Vap
Total

Figure 6.2: The radial dependence of the total vector density ρv (black) decomposed to the con-
tribution of the Nucl+Vap system (red dashed) and Vap system (blue dotted), for Rbox = 30 fm
and 40 fm. Results are calculated for 202Sm at T = 1 MeV using the DD-ME2 interaction and the
FT-RMFBSPL solver.

the radial dependence of the vector density ρv. Results are shown for the total vector density of
the Nucl+Vap system with Rbox = 30 fm and 40 fm. Imposed box boundary conditions mean
that density vanishes at Rbox. From the figure, we observe that the total system consisting both of
nucleus and vapor (Nucl+Vap) displays a long tail in the density. As the box size is increased from
30 fm to 40 fm, so does the tail. Precisely this tail originates from the contribution of continuum
states and behaves as a vapor surrounding the nucleus. It is the culprit for box-size dependence of
observables such as entropy and the RMS radius. By employing the BLV subtraction procedure,
we can isolate the contribution of this vapor from a combined solution. By subtracting the vapor
density (ρ̃v) from the Nucl+Vap density (ρv) we obtain the subtracted density ρ̄v = ρv − ρ̃v that is
independent of the box-size.
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6.2.2 Comparison between the solvers based on the h.o. expansion and the
coordinate-space solvers

As already mentioned, our axially-deformed FT-RHB solver is based on the h.o. expansion, and is
limited by the improper boundary conditions of the density. Is the BLV subtraction procedure still
valid in such cases? To find an answer to this question we have to compare the results obtained with
the solver based on the h.o. expansion to the solver based on the discretization in the coordinate
space. To keep the discussion simple, we neglect the pairing and deformation effects, and therefore
solve the spherically-symmetric RMF equations. We label the h.o. solver as FT-RMFHO, and
compare its results to the coordinate-space FT-RMFBSPL.

First, we have to select an optimal number of h.o. shells Nosc and the oscillator length b0

in the FT-RMFHO. The box size within the h.o. based solvers is approximatelly determined as
Rbox ≈

√
2Noscb0 [24]. In principle, results should be independent of the oscillator length b0. To

determine the optimal b0 we fix the number of shells Nosc and minimize the free energy F . In this
case, we replace the free energy F by the subtracted free energy F̄ defined as

F̄ = FNucl+V ap − FV ap, (6.27)

where FNucl+V ap(V ap) is the free energy of the Nucl+Vap(Vap) system. In Fig. 6.3 we show the
(F̄ , b0) plot for Nosc = 20–36. Again we choose 202Sm at T = 1.0 MeV and DD-ME2 interaction.
Results are compared with the FT-RMFBSPL (black full line) with Rbox = 30 fm. We observe that
there exists an optimal interval in b0, within which the results of the FT-RMFHO are independent
of b0, and agree with the FT-RMFBSPL results. This interval seems to be larger as the number of
h.o. shells is increased, finally abruptly increasing if b0 is too large. Notice that above b0 > 3 fm the
free energy tends to show oscillations. These are purely artificial and stem from the anti-particle
contribution within the RMF theory. To obtain the optimal b0 =

√
~/(mω0) (where m is the

nucleon mass), we use the mass-dependent formula ~ω0 = 41A−1/3 fm as in Ref. [138]. Results
obtained using the formula are indicated by an arrow. We have verified that such a formula works
well across the Sm isotopic chain, even at higher temperatures. From this discussion, it seems
reasonable to expect good agreement between the FT-RMFHO and FT-RMFBSPL, once the b0 is
optimized.

Now, we select the samarium (Z = 62) isotopic chain and consider even-even nuclei for neutron
numbers N = 100–150 at a higher temperature of T = 2 MeV. Comparison is performed for
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Figure 6.3: Determining the optimal oscillator length b0 that minimizes the subtracted free energy
F̄ for a changing number of h.o. shells Nosc = 20–36. Also shown is the FT-RMFBSPL result
(black straight line), which is independent of b0. The arrow indicates the optimal b0 obtained from
~ω0 = 41A−1/3 MeV. Results are calculated for 202Sm at T = 1MeVusing the DD-ME2 interaction.

the FT-RMFHO with Nosc = 20 and the FT-RMFBSPL with Rbox = 30 fm, for the subtracted
free energy F̄ , entropy S̄ and neutron chemical potential λn in Fig. 6.4(a)-(c), respectively. The
agreement between the two solvers is excellent, even considering the fact that only 20 h.o. shells are
employed in the FT-RMFHO. Small differences are only visible in the entropy, however, when used
to calculate the free energy, they vanish. The neutron chemical potential shows very good agreement
across the whole isotopic chain. The latter two are very important in determining the drip lines at
finite temperatures. As we will clarify in the next section, at such a high temperature of T = 2 MeV,
most of these samarium isotopes are spherical and in a normal state (pairing correlations vanish).
Therefore, illustrative calculations performed here are not only for comparison purposes but should
also apply to the axially-deformed FT-RHB based on the h.o. expansion. This gives us confidence
that the global calculations presented in the next section are credible.

6.2.3 Continuum subtraction within the axially-deformed FT-RHB

Wewant to verify that the continuum subtraction procedure indeedworks once applied to the axially-
deformed FT-RHB. The optimal quadrupole deformation β2 is obtained by finding a minimum in
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Figure 6.4: The isotopic dependence of the subtracted free energy F̄ , entropy S̄, and neutron
chemical potential λn for samarium isotopes (Z = 62) at T = 2.0 MeV. Calculations are performed
using the FT-RMFHO with Nosc = 20 and FT-RMFBSPL with Rbox = 30 fm employing the
DD-ME2 interaction.

the potential energy surface (PES), defined as the (F, β2) dependence. We choose 210Gd, which
is predicted as a drip-line nucleus (DD-ME2 interaction), and calculate its PES at T = 0, 1 and
2 MeV. First, we show the results without the continuum subtraction. Results are shown in Fig.
6.5(a)-(c) for a different number of h.o. shells, Nosc = 20, 24 and 28. In Fig. 6.5(a) the minimum
configuration converges well already for 20 h.o. shells. The difference between the binding energy
of predicted minimum (β2 ∼ 0.35) between 28 and 20 shells is only around 50 keV. However, as
the temperature is increased to 1 MeV in Fig. 6.5(b) the PES does not converge. The minimum
is lowered around 1 MeV for additional 4 shells. At T = 2 MeV, in Fig. 6.5(c), the convergence
problem is even more obvious, where 4 additional shells shift the minimum by more than 6 MeV.

We obtain the converged results by the BLV prescription which isolates the continuum states
contributing to the nuclear vapor and subtracts them from the observable under consideration.
Results are shown in Fig. 6.6(a)-(b) and converge well with increasing basis size. As the number
of shells is increased from 10 to 28, the free energy is changed at most by 100 keV. Such a result is
enough precise to determine the drip lines with precision below that originating from the systematic
uncertainty.
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Figure 6.5: The potential energy surface of 210Gd at T = 0 (a), 1 (b) and 2 MeV (c) calculated using
the axially-deformed FT-RHB and Nosc = 20, 24 and 28 h.o. shells. No continuum subtraction is
considered to demonstrate the convergence issues. The DD-ME2 interaction is employed.
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Figure 6.6: Same as in Fig. 6.5 but with the subtracted free energy F̄ calculated using the BLV
continuum subtraction.
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6.3 Results

After properly implementing the continuum subtraction within our model, we perform global cal-
culations across the nuclide chart for different temperatures. In Ref. [35], we have presented
calculations for even-even 8 ≤ Z ≤ 104 nuclei for temperatures T = 0–2 MeV. Calculations are
performed assuming axially-deformed reflection-symmetric nuclei with time-reversal symmetry.
The optimal configuration is obtained by constrained FT-RHB calculation by minimizing the sub-
tracted free energy F̄ with respect to the quadrupole deformation β2. Calculations start by selecting
a mesh of 11 equidistant β2 points between β2 = −0.7 and β2 = 0.6. Constrained calculations
are then performed for the first 20 iterations after which the constraint is lifted, and calculations
converge to their local minimum in the PES. No proton-neutron mixing is assumed, meaning that
only the isovector pp interaction is considered. The fermion (and boson) wave functions are ex-
panded inNosc = 20 h.o. shells. Within one iteration the FT-RHB equations are solved twice, once
for the Nucl+Vap system and then for Vap system, coupled by the chemical potential subsidiary
condition in Eq. (6.24) and Coulomb field in Eq. (6.25). The nuclear landscape of even-even nuclei
is determined starting from the two-proton, and terminating at the two-neutron drip line. The drip
lines at finite temperature are defined as

S2n = F̄ (Z,N)− F̄ (Z,N − 2), S2p = F̄ (Z,N)− F̄ (Z − 2, N), (6.28)

where S2n(2p) is the two-neutron(proton) separation energy, and F̄ (Z,N) is the subtracted free
energy of a nucleus. Within the BLV subtraction procedure, the ensemble average of an observable
〈O[ρ̄]〉T at temperature T , is a function of the subtracted density ρ̄. For the relativistic EDFs, where
we can distinguish between the scalar (ρs) and vector (ρv) densities, the baryonic density is equal to
the vector density. Therefore, all observables of interest are expressed from the subtracted vector
density ρ̄v. First, we are interested in studying the temperature dependence of deformation. The
proton(neutron) quadrupole moment is defined as [158]

Q
p(n)
20 =

∫
d3rρ̄p(n)

v (r)(2z2 − r2), (6.29)
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Figure 6.7: The temperature dependence of the isoscalar quadrupole deformation βIS2 across the
nuclide chart at T = 0, 0.5, 1.0 and 2.0 MeV, calculated with DD-ME2, DD-PC1 and DD-PCX
relativistic EDFs.

where ρ̄p(n)
v is the proton(neutron) subtracted vector density. Instead of expressing the deformation

as Q20 we define the dimensionless variable βp(n)
2 as [138]

β
p(n)
2 =

1

2

√
5

4π

3

4π
Z(N)R2

0Q
p(n)
20 , (6.30)

where R0 = 1.2A1/3 fm. Using the above expression we can define either the isoscalar quadrupole
deformation as βIS2 = βp2 + βn2 1 and the isovector quadrupole deformation as βIV2 = βn2 − βp2 [158].
In Fig. 6.7 we show the isoscalar quadrupole deformation βIS2 across the nuclide chart for three
relativistic EDFs: DD-ME2, DD-PC1, and DD-PCX.

At zero temperature, we observe that most nuclei are deformed in their ground state. Only those

1When we write β2 without explicitly mentioning its isospin character, we always assume isoscalar βIS
2 .
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nuclei with a magic number of nucleons and those in their vicinity are spherical. Between the lines
denoting the shell closure numbers, the βIS2 gradually increases until it reaches mid-shell, after
which the βIS2 decreases until the magic numbers are reached again. Most nuclei in the nuclide
chart display prolate shapes defined as βIS2 > 0. Other, smaller number of nuclei, have oblate shape
with βIS2 < 0. We observe that the trends for βIS2 are similar across considered EDFs. At T = 0.5

MeV the deformation properties remain mostly unchanged. Such temperature is not high enough
to significantly alter the q.p. structure of most nuclei, apart from those near the neutron drip line.
At T = 1 MeV, changes in βIS2 start to be more pronounced, and a significant number of nuclei
show spherical shape. Those nuclei which present the shape change are those near the shell closure
number. Such shape changes propagate even to mid-shell nuclei where the βIS2 tends to decrease.
Islands of prolate shapes start to form, surrounded by spherical shapes and nuclei exhibiting oblate
deformation. Finally, at T = 2 MeV, most nuclei are spherical, except those located in mid-shells
with initially large deformations. Except for the lightest nuclei considered, we see that all three
functionals predict similar temperature evolution of βIS2 .

We conclude that, in general, nuclei transition to spherical configurations once the temperature
increases. To further investigate the mechanisms between these shape changes (called the shape
phase transitions), in Fig. 6.8(a), we display the temperature evolution of PES in 150Nd together
with the corresponding Nilsson diagram in Fig. 6.8(b), all calculated with the DD-ME2 interaction.
The subtracted free energy in Fig. 6.8(a) is calculated relative to the minimum configuration and
denoted as ∆F̄ . In most cases, the PES shows two distinct minima, one from the oblate side and the
other from the prolate side. However, for 150Nd, the PES at zero temperature shows a complicated
structure with multiple minima. The optimal β∗2 which minimizes the F̄ is found at β2 = 0.29.
Another minimum at the prolate side is close and located at β2 = 0.39. The prolate side displays
two minima, of which the lowest in energy is the one at β2 = −0.22. Increasing the temperature to
T = 0.5 MeV, no significant changes occur, except that two minima on the prolate side merge into
one at β∗2 = 0.31. At T = 1 MeV, both minima get closer to the spherical configuration, while at
T = 2MeV, the PES converges to a spherical minimum, slightly flat around β∗2 = 0.0. In Fig. 6.8(b),
we show the temperature evolution of the lowest occupied single-particle Nilsson states for optimal
β∗2 up to ε = −30 MeV. The single-particle energies are obtained by the canonical transformation
of the q.p. basis [24]2. The Nilsson basis is written in the form Ωπ[nznrΛ], where the angular

2We note that canonical transformation is only an approximation of the q.p. basis at finite temperature. This is
because one can not talk about independent q.p. states once the temperature is introduced and the Bloch-Messiah
theorem is invalid [58].
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Figure 6.8: (a) The temperature evolution of the potential energy surface (PES) in 150Nd in the
temperature range T = 0–2 MeV, calculated with the DD-ME2 interaction. The ∆F̄ represents the
relative subtracted free energy with respect to the minimum configuration. (b) The lowest occupied
Nilsson states in 150Nd for the optimal configuration β∗2 for different temperatures, together with the
spherical states at T = 2 MeV.

momentum projection Ω and parity π were introduced earlier. The nz and nr represent the quantum
numbers in the z and radial directions, respectively, while Λ is the orbital angular momentum
projection. These numbers are not independent, the parity is defined as (−)π = (−)nz+2nr+Λ, and
the angular momentum projection is Ω = ms + Λ, where ms is the spin projection. The principal
quantum number is N = nz + 2nr + Λ. At T = 0.5 MeV, we see that the single-particle spectrum
is dense. One state in the spherical basis written in the form (n, l, j) splits into multiple Nilsson
states. For instance, the lowest state 1/2+[000] corresponds to the spherical state 1s1/2. Since
l = 0, Ω = ±1/2, because Λ = 0. We consider only Ω > 0 components due to the time-reversal
symmetry. Since l = 0 we have π = +1 and only one state 1/2+[000]. For the principal quantum
number N = 1, we have two spherical orbitals 1p3/2 and 1p1/2. Possible projections assuming
Ω > 0 are: (i) Λ = 0, 1, (ii) Ω = 1/2, 3/2, and (iii) since N = 1, (nz, nr,Λ) ∈ {(1, 0, 0), (0, 0, 1)},
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Table 6.1: Comparison between the spherical and Nilsson basis numbers for a given principal
number N . Degeneracy of each shell in spherical basis is 2j + 1, while the degeneracy in Nilsson
basis is 2. Number of nucleons contained in each shell is equal.

Principal number spherical basis (n, l, j) Nilsson basis Ωπ[nznrΛ]
N = 0 1s1/2 1/2+[000]
N = 1 1p3/2, 1p1/2 1/2−[100], 1/2−[001], 3/2−[001]
N = 2 1d5/2, 2s1/2, 1d5/2 1/2+[200], 1/2+[010], 1/2+[101]

3/2+[101], 3/2+[002], 5/2+[002]
N = 3 1f7/2, 2p3/2, 1f5/2 1/2−[110], 1/2−[300], 1/2−[011]

2p1/2 1/2−[201], 3/2−[011], 3/2−[201]
3/2−[102], 5/2−[102], 5/2−[003]

7/2−[003]

giving us three possible states in the Nilsson basis 1/2−[100], 3/2−[001] and 1/2−[001]. Following
the same procedure, other states can be constructed, each having degeneracy 2. For convenience,
we have tabulated the Nilsson levels up to N = 3 in table 6.1. From Fig. 6.8(b), we observe that
deformation breaks the degeneracy between different Nilsson states. As the temperature increases,
the separation between the Nilsson levels decreases, and they seem to be more attracted to each
other. Finally, at T = 2 MeV, the degeneracy is restored, and the states in the Nilsson basis
converge to those in the spherical basis. Therefore, a shape phase transition is related to degeneracy
restoration between the Nilsson levels of the axially-deformed oscillator. Such a description gives
a microscopic justification of observations in Fig. 6.8(a) and Fig. 6.7.

An insightful way to visualize the deformation is by showing the total subtracted vector density
ρv at different temperatures. To this aim, we select 180Gd that has an oblate shape in its ground
state, and 210Gd with a prolate shape. The density plots for the optimal deformation β∗2 are shown
in Fig. 6.9 at T = 0.5, 1 and 2 MeV. In addition, we also show the PES constrained with respect to
βIS2 with the optimal deformation β∗2 indicated. We know that at T = 0.5 MeV temperature does
not influence PES significantly, while the PES of 210Gd is relatively simple, displaying one distinct
minimum from the oblate, and the other from the prolate side, 180Gd shows more complicated
behavior, with prolate configuration minimizing the subtracted free energy F̄ . As the temperature
increases, the PES smooths out in both cases, with shapes being reduced to slightly more spherical.
At T = 2 MeV, 180Gd attains a spherical shape with a relatively flat minimum configuration. On the
other hand, 210Gd still has an oblate shape with β∗2 ≈ 0.15. However, the energy difference between
the prolate, spherical, and oblate configurations is quite small because the PES flattens out as the

116



Chapter 6. Nuclear landscape at extreme temperatures

Figure 6.9: The total subtracted vector density ρ̄v for 180Gd and 210Gd at T = 0.5, 1 and 2 MeV
for optimal β∗2 . Insets show the potential energy surfaces constrained with respect to the isoscalar
quadrupole deformation βIS2 for each density plot.

temperature increases.
The quantity which demonstrates finite temperature and deformation effects on nuclei is entropy.

It is not an observable attainable from experiments, and its study is of theoretical significance. The
entropy measures the occupation of single-(quasi)particle orbitals and strongly correlates with the
underlying microscopic structure. Within the FT-RHB it is calculated as [25]

S = −2
∑
i

gi[fi ln fi + (1− fi) ln(1− fi)], (6.31)
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Figure 6.10: The isotopic dependence of entropy forZ = 20, 60 and 100 for temperaturesT = 0.5, 1
and 2 MeV. The solid line denotes calculations with the axially-deformed FT-RHB, while the dotted
line represents spherical FT-RHB (only shown for T = 1 and 2 MeV).

where fi = (1 + eβEi) are the Fermi-Dirac factors, from which we observe that it is maximized
for mid-shell nuclei and minimized for the closed-shell fully occupied nuclei. For axially-deformed
nuclei gi = 2. In Fig. 6.10(a)-(c), we demonstrate the isotopic dependence of entropy for even-
even nuclei in the selected chains at T = 0.5, 1 and 2 MeV. The full line represents calculations
with axially-deformed FT-RHB, while the dotted line stands for spherical FT-RHB calculations.
At T = 0.5, we observe that for all isotopic chains, the entropy has an irregular temperature
dependence with noticeable dips corresponding toN = 20, 28, and 40 in calcium,N = 82, and 126
in neodymium and N = 186 in fermium. Of course, these numbers correspond to shell closure. At
T = 1 MeV, the entropy increases for all isotopic chains, mainly due to finite-temperature scattering
above the Fermi level. The dips corresponding to shell closure are clearly visible. For the calcium
chain, the difference between the spherical and deformed calculations is almost negligible owing to
the fact that at T = 1 MeV, most calcium isotopes are spherical. On the other hand, we observe a
large discrepancy between themid-shell nuclei results for neodymium. The results obtainedwith the
spherical calculations follow a simple structure where the entropy is maximal for mid-shell nuclei
and overestimate the deformed calculations. Since the deformation effects induce the degeneracy
splitting between different Nilsson states, there are more states amongwhich the occupation scatters.
This scattering leads to the reduction of entropy compared to the spherical calculation. A similar
trend is also noticed for the fermium chain. By increasing the temperature to T = 2 MeV, the
differences between the spherical and deformed calculations are significantly reduced. The entropy
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Figure 6.11: The temperature evolution of entropy S (red) and excitation energy E∗ (blue) for
150Nd (a) and 126Sn (b). The dotted lines show the fitting result of T ≥ 1.5 MeV points on the
Fermi gas model. Calculations are performed with the axially-deformed FT-RHBwith the DD-ME2
interaction.

increases, and the dips stemming from the shell closure reduce. This reduction relates to the fact
that the energy supplied by the environment is high enough to bridge the shell gaps, and shell effects
diminish. For instance, the shell gap at N = 40 in calcium nearly vanishes, while the fermium
isotopes show almost no dips in the isotopic entropy dependence. In conclusion, we demonstrated
that entropy probes the underlying microscopic structure of the nuclei.

Unlike entropy, the excitation energy E∗ is an observable directly attainable from experiments
[177]. It is defined as the total energy difference of the nucleus at temperature T and zero
temperature, E∗ = E(T ) − E(T = 0). The previous discussion on entropy is closely related to
the discussion on excitation energy. In Fig. 6.11(a)-(b), we study the temperature dependence
of entropy and excitation energy in 150Nd (mid-shell) and 126Sn (shell closure). We observe that
both entropy and excitation energy increase with temperature, however, with different functional
dependence. Furthermore, they both display visible kinks for certain temperatures. For 150Nd,
two such kinks are visible, first at T pc ≈ 1.1 MeV and second at T sc ≈ 1.4 MeV, corresponding
to the critical temperature of pairing and shape phase transitions. On the other hand, 126Sn shows
only a pairing phase transition at T pc ≈ 0.7 MeV. Namely, due to its proton shell closure, it is
predicted as spherical at all temperatures and has no phase shape transition. We observe that for
temperatures above the phase transitions, entropy and excitation energy behave rather regularly. It
is interesting to compare their behavior to that of an idealized Fermi gas. The Fermi gas model of a
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Figure 6.12: Temperature evolution of the two-neutron and two-proton drip lines for even-even
8 ≤ Z ≤ 104 nuclei for temperatures T = 0–2MeV. Results are calculated with the relativistic DD-
ME2 EDF. Black squares denote the even-even stable nuclei [159]. Proton and neutron shell closure
numbers are explicitly denoted. Inserted figure shows two-neutron separation energy S2n with
increasing neutron number N for cerium isotopic chain (Z = 58) at temperatures T = 0, 0.5, 1.0
and 2.0 MeV (using same color labels as in the main plot). Black dashed line denotes the drip-line
condition S2n = 0.

nucleus predicts linear dependence of entropy, S = 2aT , and for excitation energyE∗ = aT 2 [177],
where the proportionality constant a depends on the density of states as well as the number of
nucleons [183, 184]. In Fig. 6.11(a)-(b), we show the corresponding fit to Fermi gas model
dependence for T ≥ 1.5 MeV. The fitted values of the level density parameter a, both for entropy
and excitation energy, agree within 10%. Such a result indicates that a simple Fermi gas model
reasonably describes nuclei at high temperatures. It confirms the fact that shell effects diminish as
the temperature increases.

Finally, we turn our discussion to the temperature dependence of the nuclear drip lines. How
much is the nuclear landscape influenced by the finite-temperature effects? In Figure 6.12 we
display the two-neutron(proton) drip lines defined by Eq. (6.28) for temperatures T = 0, 0.5, 1.0

and 2.0 MeV. Calculations are performed with the DD-ME2 relativistic EDF. One immediately
observes that the temperature has an effect on predicted drip lines. Two-neutron drip line is more
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influenced by the finite-temperature effects compared to the two-proton drip line, as one would
expect. Nuclei in the vicinity of the neutron drip line populate higher-energy levels and are more
easily coupled with the states in the particle continuum. On the other hand, such coupling is reduced
for proton states due to the increasing height of the Coulomb barrier with increasing proton number.
Already at T = 0.5 MeV temperature has a slight effect on drip lines, mainly near neutron shell
closures around N = 126 and N = 184. Although a temperature of 0.5 MeV is low from the
nuclear structure standpoint, it is enough to create a tail in the density profile for weakly-bound
nuclei, which causes results to diverge with increasing basis size. This is where a prescription to
treat the continuum within the FT-RHB theory becomes necessary. As the temperature increases
to T = 1 MeV, changes in drip lines become more pronounced. At this temperature most nuclei
transition from the superfluid to the normal state due to the pairing collapse, which removes pairing
correlations. Furthermore, nuclear deformation tends to decrease with temperature, leading to a
transition from the deformed to the spherical state [cf. Fig. 6.7]. However, at T = 1 MeV we find
a significant number of nuclei still exhibiting the deformation effects. Shell effects at N = 126 and
N = 184 shell closure are washed out since with additional energy in the environment nucleons
can bridge the gaps between the neutron shells. At T = 2 MeV shell effects are completely washed
out and drip lines are well described by a straight line. Since the shell effects are absent, the free
energy takes the form of F ∼ aT 2, where a is the level density parameter that can be estimated
with the use of Bethe’s formula [177]. This leads to qualitative agreement of our results at T = 2

MeV with calculations obtained from simpler models such as the hot liquid-drop model [185]. To
investigate the details behind the finite-temperature effects on two-neutron drip line in the inset of
Fig. 6.12 we show the two-neutron separation energy S2n [cf. Eq. (6.28)] for even-even isotopes
of cerium (Z = 58). Calculations with the DD-ME2 interaction predict 184Ce to be a drip-line
nucleus. Due to shell closure at N = 126 we observe a sharp increase in S2n at T = 0 (blue line)
and T = 0.5 MeV (green line). As the temperature increases and nucleons bridge the shell gap, a
sharp decrease in S2n is mediated, and S2n becomes almost linear, leading to the extension of the
drip line. Consequently, at T = 1 MeV 186Ce is a drip-line nucleus and at T = 2 MeV it is 190Ce.
Such a result leads us to the conclusion that the neutron drip line tends to extend towards increasing
neutron number at higher temperatures. The same result was obtained in Refs. [185, 186], albeit
with a much simplified model.

To estimate the systematic uncertainties in predicting the two-nucleon drip lines at finite temper-
ature it is instructive to compare results obtained using various EDF parametrizations. In Figure 6.13
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Figure 6.13: (a)-(d) Two-neutron and two-proton drip lines calculated at T = 0, 0.5, 1.0 and 2.0
MeV using three different parameterizations of the relativistic EDF: DD-ME2 (blue), DD-PC1 (red)
and DD-PCX (orange).

Table 6.2: Number of even-even nuclei between the two-proton and two-neutron drip line in the range
8 ≤ Z ≤ 104, for DD-ME2, DD-PC1 and DD-PCX functionals at temperatures T = 0, 0.5, 1.0 and
2.0 MeV.

T [MeV] DD-ME2 DD-PC1 DD-PCX
0.0 1623 1671 1565
0.5 1618 1673 1562
1.0 1655 1695 1572
2.0 1681 1716 1588

(a)-(d) we show the two-nucleon drip lines calculated with three relativistic EDFs: DD-ME2 (blue),
DD-PC1 (red) and DD-PCX (orange) at T = 0, 0.5, 1.0 and 2.0 MeV. Results for the two-proton
drip line agree reasonably well between different functionals, therefore, we focus on the differences
in the two-neutron drip line. In Fig. 6.13(a), at zero-temperature, moderate differences are visible
between the employed functionals. In general, the DD-PCX tends to predict the two-neutron drip
line at a lower number of neutronsN . The two-neutron drip lines calculated with the DD-ME2 and
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DD-PC1 functionals tend to be similar up to Z ∼ 82. For Z > 82 two-neutron drip line predicted
by the DD-PCX and DD-ME2 is consistent, while the DD-PC1 predicts more neutron-rich nuclei
within the drip line. As the pairing interaction decreases in strength in Fig. 6.13(b) at T = 0.5

MeV, differences in the two-neutron drip line tend to be more related to the particle-hole channel
of the mean-field Hamiltonian. Furthermore, the two-neutron drip line becomes smoother around
the neutron shell closure. At T = 1 MeV in Fig. 6.13(c), pairing correlations have mostly vanished
and shell structure around N = 126 and N = 184 is almost washed out. A distinction between, on
one hand, the DD-PCX, and on the other hand, DD-PC1 and DD-ME2 is now more pronounced.
Two-neutron drip line predicted by the DD-PCX interaction is, for almost all Z, less neutron-rich
compared to the DD-PC1 and DD-ME2 two-neutron drip lines. In Fig. 6.13(d) at T = 2.0 MeV,
neutron drip line with all three functionals assumes almost a linear form. However, the slopes of
these lines are different, due to the different structure of the mean-field among functionals. The
DD-PCX two-neutron drip line is again less neutron-rich compared to the DD-ME2 and DD-PC1
drip lines, which predict a more consistent drip line. To further elaborate on the differences between
functionals, in Tab. 6.2 we show number of even-even nuclei within the drip lines for temperatures
shown in Fig. 6.13. If Nnucl denotes the number of even-even nuclei between the drip lines, then
it can be inferred that Nnucl(DD-PC1) > Nnucl(DD-ME2) > Nnucl(DD-PCX), for all studied tem-
peratures. This means that at T = 2 MeV, the DD-ME2 functional predicts roughly 100 even-even
nuclei more compared to the DD-PCX, which will decay by the equilibrated nucleon evaporation
(nuclei between the drip lines). Overall, the number of even-even nuclei between the drip lines at
T = 2 MeV, compared to zero-temperature, increases by 58 for DD-ME2, 45 for DD-PC1, and 23
for DD-PCX functional. It is important to stress that finite-temperature effects on the two-neutron
drip line are larger than the corresponding systematic uncertainties. In Ref. [35], in addition to the
systematic, we have also studied the statistical uncertainties and demonstrated that their influence
of the drip line is at most equal to that of systematic uncertainties.
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Chapter 7

The axially-deformed pnRQRPA

In Chapter 3, we demonstrated the basics of the pnRQRPA equations assuming spherical symmetry.
It is advantageous to use the fact that equations decouple based on the angular momentum and
parity Jπ blocks once the proper angularmomentum coupling is performed. The angularmomentum
coupling leads to a reasonable dimension of the model space requiring only moderate computational
resources. We have applied spherical pnRQRPA to study spin-isospin excitations in tin isotopes
in Ref. [30]. Since these nuclei have proton shell closed at Z = 50 and are located near the
N = 82 neutron magic number, they are spherical or near spherical in their ground state. However,
most nuclei discovered so far are axially deformed [159], requiring an extension of the model. The
calculations in the axial geometry are significantly more complicated than the spherical calculations.
First of all, the dimension of the model space is much larger in comparison to the spherical
geometry, since no angular momentum coupling to Jπ blocks can be performed. However, in axial
deformation, the angular momentum projection K is still a good quantum number, and if we also
consider reflection-symmetric shapes, the pnRQRPA equations can be decoupled to Kπ blocks.
Instead of diagonalizing the pnRQRPA matrix for all 2 q.p. excitations, we employ the linear
response formalism. In combination with the point-coupling functionals, which have a separable
form of the residual interaction, together with the separable pairing interaction, one can achieve a
better scalability of the linear response equations. Therefore, the linear response equations can be
solved in the reduced space determined by the number of separable terms as demonstrated in Sec.
3.1.

Due to high computational costs, most calculations performed up to date for deformed nuclei
assume schematic models, usually with simple separable interactions. Such models have been
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applied to study the rotational excitations [75], spin-isospin excitations, and subsequent calculations
of β-decay half-lives [144, 187, 188], including the double β-decay in both 2ν [189, 190] and
neutrinoless modes [191]. Although based on relatively simple interactions, such calculations lead
to important discoveries concerning the impact of deformation on observables of interest. As
computing power and numerical techniques were improved, more sophisticated implementations
of the pnRQRPA based on the EDF theory could be developed. On the one hand, we have
approaches based on the matrix pnRQRPA equations, which require diagonalizing large matrices
[80, 81, 192–194]. On the other hand, implementations based on the finite-amplitude method
(FAM), where one avoids the diagonalization, and solves the equations of motion for each excitation
energy, were presented in Refs. [195,196]. The FAM method has been also applied to spin-isospin
excitations but only with non-relativistic EDFs in Refs. [77–79]. Concerning the relativistic EDFs,
approaches based on the FAM were developed in Refs. [197, 198] and used to obtain the electric
response of axially-defomed nuclei [199]. To date, there are no calculations with relativistic EDFs
applied to spin-isospin excitations in deformed nuclei. Therefore, our motivation in this chapter is
to develop a pnRQRPA solver in axial geometry based on the relativistic EDFs.

This chapter is organized as follows. First, we introduce the axially-deformed pnRQRPA
formalism and present the calculation techniques both for external field and residual interaction
matrix elements in Sec. 7.1. A proper transformation from the single-particle space to the q.p.
space is performed without angular momentum coupling. We present a numerical method to obtain
the reduced response used to calculate the strength function in Sec. 7.1.4. Secondly, we perform
numerical tests of our axially-deformed pnRQRPA by comparing it to the spherical pnRQRPA from
Sec. 3.1, both at zero and finite temperature. After properly testing the model calculations and
determining the optimal basis size for the nuclei of interest, we present the calculation of theGamow-
Teller and Fermi transitions of particular even-even pf -shell nuclei in Sec. 7.3. Calculations are then
benchmarked against existing experimental data. In Sec. 7.4, we also performmodel calculations of
GT+ strength in 56Fe by including finite-temperature effects up to T = 2 MeV. Finally, in Sec. 7.5,
we study the influence of deformation on the β-decay half-lives, assuming allowed approximation,
and compare the results with the available experimental data.
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7.1 Theoretical formalism

The basics of the pnRQRPA with spherical symmetry are introduced in Chapter 3. Here, we
provide the extensions to the axially-deformed nuclei. The pnRQRPA equations keep the same
structure, however, the underlying expressions have to be changed. The work presented here is
established on the axially-deformed RHB solver in the h.o. basis from Ref. [138]. The theory
presented in Chapter 3 is based on wave functions in the coordinate space, therefore, at some point,
we have to transform from the h.o. basis to the coordinate space basis. Working in the proton-
neutron basis, the set of indices {π, ν} correspond to the q.p. basis, while the set {p, n} is in the
single-particle basis. Indices π(p) label the proton states, while the ν(n) label the neutron states.
The single-particle basis is the basis of the axially-deformed harmonic oscillator. We abbreviate
k ≡ {nz, nr,Λ,ms}, corresponding to the quantum numbers of the axially-deformed oscillator [cf.
Sec. 6.1]. To distinguish between proton and neutron states, we label the single-particle basis as
k ≡ {nkz , nkr ,Λk,mk}, where k ∈ {n, p}. The single-particle wave function is therefore given by

Φk(r, z, φ,mp) = φnkz (z)φΛk

nkr
(r)︸ ︷︷ ︸

Rk(r,z)

1√
2π
eiφ(Ωk−mk)χ1/2mk , (7.1)

where we have introduced Rk(r, z) ≡ φnkz (z)φΛk

nkr
(r). The z-projection of the angular momentum

operator is Ωk, the orbital angular momentum projection is Λk and mk is the spin projection,
with Λk = Ωk −mk. By assuming the time-reversal symmetry, the time-reversed single-particle
oscillator wave function is

Φk̄ = Rk(r, z)
1√
2π
e−i(Ωk−mk)φ(−)1/2−mkχ1/2−mk , (7.2)

where Φk̄ = T̂Φk, T̂ being the time-reversal operator defined in Sec. 6.1. Since we are working in
the relativistic formalism, we also have to introduce in the wave function the lower components of
the single-particle wave functions

Ψk ≡
(

Φk(r, z)

iΦk̃(r, z)

)
=

(
Rk(r, z) 1√

2π
eiφ(Ωk−mk)

iRk̃(r, z) 1√
2π
eiφ(Ωk−mk)

)
χ1/2mk , (7.3)
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where k̃ labels the h.o. quantum numbers of the lower components. The corresponding time-
reversed wave function is

Ψk̄ =

(
Φk̄(r, z)

−iΦ¯̃
k
(r, z)

)
=

(
Rk(r, z) 1√

2π
e−iφ(Ωk−mk)

−iRk̃(r, z) 1√
2π
eiφ(Ωk−mk)

)
(−)1/2−mkχ1/2−mk . (7.4)

In the axial geometry, the pnRQRPA equations cannot be organized according to Jπ blocks,
defined by the total angularmomentum J and parity π. However, since theK ≡ Jz component of the
angular momentum still commutes with the nuclear Hamiltonian, one can show that the pnRQRPA
equations are block diagonal in differentK blocks. Furthermore, if we assume reflection-invariance
so that the nuclear Hamiltonian commutes with the parity operator Π̂, the pnRQRPA equations
separate intoKπ blocks [200]. Therefore, the q.p. pairs within the axially-deformed pnRQRPA are
selected based on

K = Ωp − Ωn, π = πp × πn, (7.5)

where both the states k (Ωk > 0) and the time-reversed states k̄ (Ωk < 0) have to be explicitly
considered. Of course, the dimension of the pnRQRPA equation stemming from condition (7.5)
is much larger than the spherical pnRQRPA equation. Furthermore, explicit consideration of the
time-reversed states is required, which complicates the expressions for matrix elements.

We consider either the Fermi (Jπ = 0+) or theGamow-Teller (Jπ = 1+) external field operators.
For the Fermi transitions the K = 0 mode is only possible, while for the Gamow-Teller we have
K = 0,±1. The modes K = 1 and K = −1 are degenerate and therefore it is enough to calculate
only the K = 1 mode.

In the following, we separately discuss how to calculate the matrix elements of the external field
operator, particle-hole residual interaction, and the particle-particle residual interaction. Lastly, we
transform from the single-particle to the q.p. basis and make a connection with the linear response
formalism of Sec. 3.1.

7.1.1 External field matrix elements

The external field matrix element is defined as

〈p|FJK |n〉 =
∑
mp,mn

∫
rdrdzdφ[Ψ†pFJKΨn], (7.6)
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where due to the time-reversal symmetrywe have to consider 4 combinations of pairs: pn, pn̄, p̄n and
p̄n̄. In the following, let’s assume the Gamow-Teller form of the external field operator F1K ≡ σ1K

so that the pn matrix element is

〈p|F1K |n〉 = Ψ†pσ1KΨn =
(

Φ†p − iΦ†p̃
)(σ1K 0

0 σ1K

)(
Φn

iΦñ

)
= Φ†pσ1KΦn + Φ†p̃σ1KΦñ. (7.7)

The single-particle matrix elements can be evaluated as

Φ†pσ1KΦn =
√

3C
1/2mp
1/2mn1K︸ ︷︷ ︸

spin part

δΩp−Ωn,K︸ ︷︷ ︸
φ integral

∫
rdrdzRp(r, z)Rn(r, z)︸ ︷︷ ︸

radial part

, (7.8)

which is decomposed into the spin part, angular part, and radial integral. Notice that the φ-integral
part is nothing but the pair selection condition in Eq. (7.5). The analogous expression applies for
Φ†p̃σ1KΦñ. The radial integral reduces to the orthonormality condition and the matrix element is

〈p|F1K |n〉 =
√

3C
1/2mp
1/2mn1KδΩp−Ωn,K(δnpz ,nnz δnpr ,nnr + δñpz ,ñnz δñpr ,ñnr ). (7.9)

Using the time-reversal property from Eq. (7.4) we can evaluate external field matrix elements for
pn, pn̄ and p̄n̄ transition

〈p|F1K |n̄〉 =
√

3C
1/2mp
1/2−mn1KδΩp+Ωn,K(−)1/2−mn(δnpz ,nnz δnpr ,nnr − δñpz ,ñnz δñpr ,ñnr ),

〈p̄|F1K |n〉 =
√

3C
1/2−mp
1/2mn1KδΩp+Ωn,−K(−)1/2−mp(δnpz ,nnz δnpr ,nnr − δñpz ,ñnz δñpr ,ñnr ),

〈p̄|F1K |n̄〉 =
√

3C
1/2−mp
1/2−mn1KδΩp−Ωn,−K(−)1/2−mn(−)1/2−mp(δnpz ,nnz δnpr ,nnr + δñpz ,ñnz δñpr ,ñnr ).

(7.10)

We can now group matrix elements based on the fact that for GT transitions K = 0, 1. The results
are shown in table 7.1. Some elements will vanish since the time-reversed states are explicitly
treated. This means that Ωp,n > 0 and Ωp + Ωn > 0 so that some selection rules cannot be fulfilled.
Indeed, we conclude that possible pairs for K = 0 are of the form pn and p̄n̄, while those of the
K = 1 mode are pn, pn̄ and p̄n̄.

The implications of the selection rule are shown in Fig. 7.1(a)-(b). Starting in Fig. 7.1(a) for
the K = 0 mode, on the left side we have the proton Ωp blocks, while on the right side we have
neutron Ωn blocks. There is a one-to-one correspondence between each proton and neutron block,
satisfying the selection rule Ωp = Ωn. Only equal states with respect to time reversal are coupled.
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Table 7.1: The matrix elements of the external field Gamow-Teller operator in the basis of the
axially-deformed harmonic oscillator for K = 0 and K = 1.

Jπ = 1+, K = 0
pn (δmp,1/2δmn,1/2 − δmp,−1/2δmn,−1/2)δΩp,Ωn(δnpz ,nnz δnpr ,nnr + δñpz ,ñnz δñpr ,ñnr )
pn̄ 0
p̄n 0
p̄n̄ (−δmp,1/2δmn,1/2 + δmp,−1/2δmn,−1/2)δΩp,Ωn(δnpz ,nnz δnpr ,nnr + δñpz ,ñnz δñpr ,ñnr )

Jπ = 1+, K = 1

pn −
√

2δΩp−Ωn,1δmp,1/2δmn,−1/2(δnpz ,nnz δnpr ,nnr + δñpz ,ñnz δñpr ,ñnr )

pn̄ −
√

2δΩp+Ωn,1δmp,1/2δmn,1/2(δnpz ,nnz δnpr ,nnr − δñpz ,ñnz δñpr ,ñnr )
p̄n 0
p̄n̄

√
2δ−Ωp+Ωn,1δmp,−1/2δmn,1/2(δnpz ,nnz δnpr ,nnr + δñpz ,ñnz δñpr ,ñnr )

Figure 7.1: Schematic pair selection for the Gamow-Teller transitions (Jπ = 1+) for K = 0 (a)
and K = ±1 (b). The angular momentum projections blocks Ω are separated for proton (Ωp) and
neutron (Ωn) states.

On the other hand, for theK = 1 mode in Fig. 7.1(b) we have the selection rule Ωp−Ωn = 1. This
means that there will be a transition where Ωp = 1/2 and Ωn = −1/2, satisfying the selection rule
and of the form pn̄.
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Finally, the matrix elements in the single-particle space have to be transformed to the q.p. space.
This is analogous to the discussion in Sec. 3.1.3 for spherical pnRQRPA, with the difference that
no coupling to J is performed. In the q.p. basis the GT external field operator assumes the form

F̂1K =
∑
pn

〈p|F1K |n〉c†pcn

=
∑
πν

∑
pn

(U †F1KU)πνα
†
παν + (U †F1KV

∗)πνα
†
πα
†
ν + (V TF1KU)πναπαν + (V TF1KV

∗)πναπα
†
ν

=
∑
πν

∑
pn

(
(U †F1KU)πν (U †F1KV

∗)πν

(V TF1KU)πν (V TF1KV
∗)πν

)
=
∑
πνkk′

F
(pn)
kk′ akπak′ν ,

(7.11)

where the notation introduced in Sec. 3.1 is used.

7.1.2 Particle-hole matrix elements

The underlying relativistic EDF employed in this section is the point-coupling DD-PC1 or DD-
PCX. As we showed in Sec. 3.1 by using the point-coupling functionals, we can write the residual
interaction as a sum of a product of separable terms. The linear response formalism based on
separable interaction has a significantly reduced dimension compared to the same problem in the
configuration space. Due to the isospin selection rules, two terms of the Lagrangian density can
contribute to the charge-exchange linear response equations. The first is the isovector-vector (TV)
term with the matrix element

V TV
pnn′p′ = −

∫
d3r1d

3r2αTV [ρv]
[
Ψ̄p(r1)γ(1)

µ ~τ (1)Ψn(r1)
] [

Ψ̄n′(r2)γµ(2)~τ (2)Ψp′(r2)
]
δ(r1 − r2),

(7.12)
where αTV is a function of the vector density ρv, and the isovector-pseudovector (TPV) term

V TPV
pnn′p′ = g0

∫
d3r1d

3r2

[
Ψ̄p(r1)γ

(1)
5 γ(1)

µ ~τ (1)Ψn(r1)
] [

Ψ̄n′(r2)γ
(2)
5 γµ(2)~τ (2)Ψp′(r2)

]
δ(r1 − r2),

(7.13)
where Ψ̄ = Ψ†γ0. In the case of spherical symmetry, these were already introduced in Chapter
3. The TV residual interaction term can be separated into time-like and space-like components,
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respectively,

V
TV (t)
pnn′p′ = −2

∫
rdrdzdφαTV [ρv]

[
Ψ†p(r)Ψn(r)

] [
Ψ†n′(r)Ψp′(r)

]
,

V
TV (s)
pnn′p′ = −2

∫
rdrdzdφαTV [ρv]

∑
µ

(−)µ

[
Ψ†p(r)

(
0 σµ

σµ 0

)
Ψn(r)

]

×
[

Ψ†n′(r)

(
0 σ−µ

σ−µ 0

)
Ψp′(r)

]
,

(7.14)

where factor 2 originates from the isospin matrix element. We see that interaction can be written in
the separable form, where the separable channels are defined as

QTV (t)
pn (r, z) = Ψ†p(r, z)Ψn(r, z), QTV (s),µ

pn = Ψ†p(r, z)

(
0 σµ

σµ 0

)
Ψn(r, z). (7.15)

The integration over φ angle is performed implicitly since it will only give the selection rule for the
angular momentum projections. The total number of the separable channels for the TV interaction
term is 4 × NGH

z × NGL
r , where NGH

z and NGL
r is the number of Gauss-Hermite and Gauss-

Laguerre integration mesh-points in the z- and r-directions, respectively. Instead of writing the
matrix elements in the basis of the axially-deformed h.o., we transform the oscillator wave functions
to the coordinate-space wave functions as in Eq. (6.1). The transformation according to Eqs. (6.10)
and (6.11) can be written as

f±i (r) =
∑

nznrΛ,ms=±1/2

f
(i)
[nz ,nr,Λ,±1/2]Φ[nz ,nr,Λ](r,ms = ±1/2),

g±i (r) =
∑

ñzñrΛ̃,m̃s=±1/2

g
(i)

[ñz ,ñr,Λ̃,±1/2]
Φ[ñz ,ñr,Λ̃](r,ms = ±1/2),

(7.16)

for upper and lower components, respectively. In table 7.2 we show the separable channels of the
TV interaction for pn and p̄n̄ types of the transitions in the coordinate-space basis.
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Table 7.2: Separable matrix elements of the isovector-vector (TV) interaction in the coordinate-
space representation [cf. Eq. (7.18)]. We show the matrix elements for pn and p̄n̄ types of
transitions.

pn p̄n̄

Q
TV (t)
pn (r, z) f+

p f
+
n + f−p f

−
n + g+

p g
+
n + g−p g

−
n f+

p f
+
n + f−p f

−
n + g+

p g
+
n + g−p g

−
n

Q
TV (s),+1
pn (r, z) i

√
2[g+

p f
−
n − f+

p g
−
n ] (+)i

√
2[g−p f

+
n − f−p g+

n ]

Q
TV (s),0
pn (r, z) −i[g+

p f
+
n − g−p f−n − f+

p g
+
n + f−p g

−
n ] −i[g+

p f
+
n − g−p f−n − f+

p g
+
n + f−p g

−
n ]

Q
TV (s),−1
pn (r, z) −i

√
2[g−p f

+
n − f−p g+

n ] (−)i
√

2[g+
p f
−
n − f+

p g
−
n ]

Table 7.3: Same as in table 7.2 but for the TPV interaction.

pn p̄n̄

Q
TPV (t)
pn (r, z) i[f+

p g
+
n + f−p g

−
n − g+

p f
+
n − g−p g−n ] (−i)[f+

p g
+
n + f−p g

−
n − g+

p f
+
n − g−p f−n ]

Q
TPV (s),+1
pn (r, z) −

√
2[f+

p f
−
n + g+

p g
−
n ]

√
2[f−p f

+
n + g−p g

+
n ]

Q
TPV (s),0
pn (r, z) f+

p f
+
n + g+

p g
+
n − f−p f−n − g−p g−n (−)[f+

p f
+
n + g+

p g
+
n − f−p f−n − g−p g−n ]

Q
TPV (s),−1
pn (r, z)

√
2[f−p f

+
n + g−p g

+
n ] −

√
2[f+

p f
−
n + g+

p g
−
n ]

Analogously, the isovector-pseudovector (TPV) residual interaction can be written as

V
TPV (t)
pnn′p′ = 2g0

∫
rdrdzdφ

[
Ψ†p(r)

(
0 1

1 0

)
Ψn(r)

][
Ψ†n′(r)

(
0 1

1 0

)
Ψp′(r)

]
,

V
TPV (s)
pnn′p′ = 2g0

∫
rdrdzdφ

∑
µ

(−)µ

[
Ψ†p(r)

(
σµ 0

0 σµ

)
Ψn(r)

][
Ψ†n′(r)

(
σ−µ 0

0 σ−µ

)
Ψp′(r)

]
,

(7.17)

for time-like and space-like components, respectively. The separable channels are defined as

QTPV (t)
pn (r, z) = Ψ†p(r, z)

(
0 1

1 0

)
Ψn(r, z), QTV (s),µ

pn = Ψ†p(r, z)

(
σµ 0

0 σµ

)
Ψn(r, z). (7.18)

Therefore, the total dimension of the TPV interaction terms separable channels is also 4×NGL
z ×

NGL
r . The corresponding matrix elements in the coordinate-space basis are shown in table 7.3.
The separable matrix elements are transformed to the q.p. basis analogously to the external field
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matrix elements in Eq. (7.34)

Q̂cc′ =
∑
πν

∑
pn

(
(U †Qcc′U)πν (U †Qcc′V

∗)πν

(V TQcc′U)πν (V TQcc′V
∗)πν

)
=
∑
πνkk′

Q
(pn)
cc′,kk′akπak′ν , (7.19)

where (c, c′) label the separable interaction channels.

7.1.3 Particle-particle matrix elements

For the particle-particle (pp) interaction we assume the separable pairing given already in Eq.
(3.65). It is convenient to calculate the matrix element in the axially-deformed h.o. basis

〈12|V |1′2′〉 = 〈nz1nr1Λ1ms1mt1 ;nz2nr2Λ2ms2mt2|V ′(1− P rP σP τ )

× |nz′1nr′1Λ1′ms′1
mt′1

;nz′2nr′2Λ2′ms′2
mt′2
〉,

(7.20)

where each state is denoted with the h.o. quantum numbers |1〉 ≡ |nz1nr1Λ1ms1mt1〉, where mt1

denotes the isospin projection. The projector operators exchange the position, spin, and isospin of
two nucleons such as

P r|r1r2〉 = |r2r1〉, P σ|SMS〉 = (−)S−1|SMS〉, |TMT 〉 = (−)T−1|TMT 〉, (7.21)

where S and T denote the coupled spin and isospin of two states. It is convenient to couple the
wave function to S and T as

|12〉 = φnz1 (z1, bz)φ
Λ1
nr1

(r1, b⊥)φnz2 (z2, bz)φ
Λ2
nr2

(r2, b⊥)
1

2π
eiφ1Λ1eiφ2Λ2

×
∑
SMS

CSMS

1/2ms11/2ms2
|SMS〉

∑
TMT

CTMT

1/2mt11/2mt2
|TMT 〉.

(7.22)

The separable pairing interaction has the form [201]

V ′(r1, r2, r
′
1, r
′
2) = −Gδ(R−R′)P (r, z)P (r′, z′), (7.23)

whereR = 1
2
(r1+r2) is the center-of-mass and r = r1−r2 is the relative coordinate. Analogously,

for the z-component we have Z = 1
2
(z1 + z2) and z = z1 − z2. The form factor has the form of a
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Gaussian
P (r, z) =

1

(4πa2)3/2
e−

z2+r2

4a2 , (7.24)

where G and a are interaction parameters [201]. Therefore, in the first step, we have to transform
the h.o. wave functions from the laboratory to the center-of-mass frame. First, the product of
z-component wave functions can be written as [197]

φnz1 (z1)φnz2 (z2) =
∑
Nznz

M
nz1nz2
Nznz

φNz(Z, b̃Z)φnz(z, b̃z)(−)nz , (7.25)

where b̃Z =
√

2bz and b̃z = bz/
√

2, andMnz1nz2
Nznz

is the 1-dimensional Talmi-Moshinsky coefficient
[202]. Next, we apply the same transformation to the radial wave functions [197]

φΛ1
nr1

(r1)φΛ2
nr2

(r2) =
∑
NrΛ

∑
nrλ

M
nr1Λ1nr2Λ2

NrΛnrλ
φΛ
Nr(R, b̃R)φλnr(r, b̃r)(−)λ, (7.26)

where b̃R =
√

2br and b̃r = br/
√

2, where Mnr1Λ1nr2Λ2

NrΛnrλ
is the 2-dimensional Talmi-Moshinsky

coefficient [202]. The Talmi-Moshinsky coefficients imply the following selection rule that connects
quantum numbers in the intrinsic and laboratory frame [197]

nz1 +nz2 = Nz+nz, nr+Nr = nr1 +nr2 +
|Λ1|+ |Λ2|+ |Λ1 + Λ2|

2
, Λ1+Λ2 = Λ+λ. (7.27)

The total matrix element in the coupled basis is

〈12̄|V |1′2̄′〉 = −Gδλ0δλ′0δΛΛ′
1

bzb2
r

∑
NzNr

WNz
12̄
WNr

12̄
WNz

1′2̄′W
Nz
1′2̄′

×
∑
SMS

∑
TMT

1

2
[(−)nz+n′z − (−)nz(−)S+T ](−)1/2−ms2 (−)1/2−m′s2

× CSMS

1/2ms11/2−ms2
CSMS

1/2m′s11/2−m′s2
CTMT

1/2m′t1
1/2m′t2

CTMT

1/2mt11/2mt2
,

(7.28)

where we have defined the separable terms analogously to Ref. [138]:

WNz
12 =

1√
bz
MNznz

nz1nz2
δnz ,even

(−)nz/2

(2π)1/4

√
nz!

2nz/2(nz/2)!

(
b2
z

a2 + b2
z

)1/2(
b2
z − a2

b2
z + a2

)nz/2
, (7.29)

WNr
12 =

1

br
MNrΛnr0

nr1Λ1nr2Λ2

1

(2π)1/2

b2
r

b2
r + a2

(
b2
r − a2

b2
r + a2

)nr
, (7.30)

134



Chapter 7. The axially-deformed pnRQRPA

from which we see that nz can only assume even values. This means that the spin+isospin part has
the form∑

SMS

∑
TMT

1

2
[1− (−)S+T ](−)1/2−ms2 (−)1/2−m′s2CSMS

1/2ms11/2−ms2
CSMS

1/2m′s11/2−m′s2

× CTMT

1/2m′t1
1/2m′t2

CTMT

1/2mt11/2mt2
,

(7.31)

from which it follows that S + T = odd. Two cases can be distinguished corresponding to either
isovector (T = 1, S = 0) or isoscalar (T = 0, S = 1) pairing interaction. Considering first the
isovector pairing, the separable matrix element is characterized by Nr, Nz quantum numbers and
has the form

W T=1,S=0
Nr,Nz

=
1√
2
WNz

12̄
WNr

12̄
(−)1/2−ms2C00

1/2ms11/2−ms2
, (7.32)

where 1/
√

2 stems from the isospin part, C10
1/2−1/21/2+1/2 = 1/

√
2. On the other hand, the isoscalar

matrix element is determined byMS in addition to Nr, Nz

W T=0,S=1
Nr,Nz ,MS

= − 1√
2
WNz

12̄
WNr

12̄
(−)1/2−ms2C1MS

1/2ms11/2−ms2
. (7.33)

The total pp residual interaction matrix element can be written in the following form

V pp
pnp′n′ = 〈pn̄|V |p′n̄′〉c†pc†n̄cn̄′cp′ =

∑
NzNrMS

(
WNzNrMS
pn

)∗
WNzNrMS

p′n′ c†pc
†
n̄cn̄′cp′

=
∑

NzNrMS

(
WNzNrMS
pn

)∗
c†pc
†
n̄W

NzNrMS

p′n′ cn̄′cp′ =
∑

NzNrMS

(
D̂NzNrMS
pn

)†
D̂NzNrMS

p′n′ ,

where we have defined a separable term as
(
D̂NzNrMS
pn

)†
=
(
WNzNrMS
pn

)∗
c†pc
†
n̄. The total number of

separable matrix elements for the isovector interaction isNr×Nz, while for the isoscalar interaction,
it is 3×Nz ×Nr (factor 3 comes from projections of spin S = 1). Next, we have to transform the
pp separable matrix elements from the single-particle to the q.p. basis. One here has to be careful
to correctly account for transformation properties of time-reversed state so that we get [58]

Ŵcc′ =
∑
πν

∑
pn

(
−(UTWcc′V

∗)πν (U †Wcc′U)πν

−(V TWcc′V
∗)πν (V TWcc′U

∗)πν

)
=
∑
πνkk′

W
(pn)
cc′,kk′akπak′ν , (7.34)
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where (c, c′) label the separable pp residual interaction channels.

7.1.4 Calculating the reduced response function Rcc′

To give a sense of the dimension of matrices involved, we present details of the axially-deformed
linear response equations. First, the most numerically involved part is the construction of the
unperturbed reduced response defined in Eq. (3.41). The equation can be recast into the matrix
form as

R0(ω)︸ ︷︷ ︸
Nchannel×Nchannel

=
∑
j=1,4

QT
j︸︷︷︸

Nchannel×Npair

N(ω)j︸ ︷︷ ︸
Npair×Npair

× Qj︸︷︷︸
Npair×Nchannel

, (7.35)

whereNchannel = Nph +Npp is the total number of channels that can be written as a sum of ph and
pp channels, Nph and Npp, respectively, while Npair is the total number of q.p. pairs. The matrix
Qj consists of separable channels of the residual interaction Hamiltonian and has the form

Qj =


Q1,j
i1

. . . Q
Nph,j
i1

W 1,j
i1

. . . W
Npp,j
i1

... . . . ... ... . . . ...
Q1,j
iNpair

. . . Q
Nph,j
iNpair

W 1,j
iNpair

. . . W
Npp,j
iNpair

 , (7.36)

where j = 1, 4 stands for the q.p. component. For instance, the separable ph matrix elements for
the pair i1 will have the following form

Q1,j=1
i1

= (U †Q(r1, z1)U)i1 , Q1,j=2
i1

= (U †Q(r1, z1)V ∗)i1 ,

Q1,j=3
i1

= (V TQ(r1, z1)U)i1 , Q1,j=4
i1

= (V TQ(r1, z1)V ∗)i1 ,
(7.37)

where channel 1 is represented as (r1, z1) in the coordinate space. The total number of ph channels
is Nph = 2× 8×NGL

z ×NGL
r . Therefore, the Qj matrix for j = 1 is

Q
1...Nph
j=1 =

(
QTPV
j=1︸ ︷︷ ︸

4×NGH
z ×NGL

r

QTV
j=1︸︷︷︸

4×NGH
z ×NGL

r

QTPV
j=4 QTV

j=4

)
, (7.38)

whereQTPV corresponds to the TPV andQTV is the TV separable interaction matrix, respectively.
Note that for j = 1 we also have a mixing of the j = 4 q.p. components. This is a peculiarity of
the charge-exchange formalism stemming from the second component of the interaction matrix in
Eq. (3.27). Therefore, the total number of ph channels is given by Nph = 8 × NGH

z × NGL
r . The
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pp part of the Q matrix has a similar structure

Q
Nph+1...Nph+Npp
j=1 =

(
Wj=1︸ ︷︷ ︸

(3−2T )×Nr×Nz

Wj=4

)
, (7.39)

whereNz andNr are number of shells in z- and r-directions [cf. Sec. 7.1.3], while the number of pp
channels is given byNpp = (3−2T )×Nr×Nz, meaning that for isovector pairingNpp = Nr×Nz

and for isoscalar pairing Npp = 3×Nr ×Nz. This means that the total number of channels is

Nchannel = 8×NGH
z ×NGL

r + 2× (3− 2T )×Nr ×Nz. (7.40)

The N(ω) matrix is diagonal and has the form

N(ω)j=1 = diag
(

fν1−fπ1
ω−Eπ1+Eν1+iη

, . . . ,
fνNpair

−fπNpair
ω−EπNpair+EνNpair

+iη

)
, (7.41)

N(ω)j=2 = diag
(

1−fν1−fπ1
ω−Eπ1−Eν1+iη

, . . . ,
1−fνNpair−fπNpair

ω−EπNpair−EνNpair+iη

)
, (7.42)

N(ω)j=3 = diag
(

fν1+fπ1−1

ω+Eπ1+Eν1+iη
, . . . ,

fνNpair
+fπNpair

−1

ω+EπNpair
+EνNpair

+iη

)
, (7.43)

N(ω)j=4 = diag
(

−fν1+fπ1
ω+Eπ1−Eν1+iη

, . . . ,
−fνNpair+fπNpair

ω+EπNpair
−EνNpair+iη

)
, (7.44)

where i1 ≡ (π1, ν1) and iNpair ≡ (πNpair , νNpair). Next, we have to calculate the R0
FF response,

defined as
R0
FF (ω)︸ ︷︷ ︸
NF×NF

=
∑
j=1,4

F T
j︸︷︷︸

NF×Npair

× N(ω)︸ ︷︷ ︸
Npair×Npair

× Fj︸︷︷︸
Npair×NF

, (7.45)

where NF is the dimension of the external field matrix element. Its structure has a similar form as
the ph matrix element in Eq. (7.38)

F 1...NF
j=1 =

(
Fj=1︸︷︷︸

NGH
z ×NGL

r

)
, (7.46)
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from where we see that the dimension of the external field matrix is NF = NGH
z × NGL

r . Finally,
we define the R0

cF reduced response matrix as

R0(ω)cF︸ ︷︷ ︸
Nchannel×NF

=
∑
j=1,4

QT
j︸︷︷︸

Nchannel×Npair

N(ω)j︸ ︷︷ ︸
Npair×Npair

× Fj︸︷︷︸
Npair×NF

, (7.47)

of the dimension Nchannel ×NF , mixing both the residual interaction and the external field matrix
element. The vcc′ interaction matrix in Eq. (3.27) is diagonal (since we consider no derivative terms
in the residual interaction) and is given by

vcc′ = diag

 +
g0

2π︸︷︷︸
NGH
z ×NGL

r

− g0

2π︸︷︷︸
3×NGH

z ×NGL
r

+
αTV
2π︸ ︷︷ ︸

NGH
z ×NGL

r

−αTV
2π︸ ︷︷ ︸

3×NGH
z ×NGL

r

G︸︷︷︸
(3−2T )×Nz×Nr

, . . .︸︷︷︸
repeat same cycle

 ,

(7.48)
where one has to be careful about the signs of the time-like and space-like components of TV and
TPV interaction. The . . . denote the repeating of the same terms due to the second term in Eq.
(3.27). After all the necessary matrices are calculated, we first invert the matrix δcc′ −

∑
c′′
R0
cc′′vc′′c′

and then calculate the RcF response

RcF (ω) =
∑
c′

[δcc′ −
∑
c′′

R0
cc′′(ω)vc′′′c]

−1R0
c′F (ω). (7.49)

Finally, the response function is obtained as

RFF (ω) =
∑
cc′

R0
cF (ω)vcc′Rc′F (ω), (7.50)

its imaginary part giving the strength function [see Eq. (3.33)].
Therefore, from the computational perspective, for a given energyω, one has tomultiplymatrices

of the size Nchannel × Npair in Eq. (7.35), NF × Npair in Eq. (7.45) and their cross-term in Eq.
(7.47), all for j = 1, 4. After that, the square matrix R0

cc′ of the size Nchannel has to be inverted
and multiplied with R0

cF in Eq. (7.49), other operations being less computationally expensive.
To illustrate, if we use Nosc = 16 h.o. shells, then NGH

z = NGL
r ∼ 16 for the radial mesh and

Nz = Nr ∼ 16 for the pairing interaction. Therefore, Nph ∼ 4096 and Npp ∼ 1500 for the more
expensive isoscalar pairing (500 for isovector). The total number of channels is Nchannel ∼ 5600.
The number of pairs for the K = 0 mode of the GT transitions is Npair ∼ 50000, meaning that the
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largest matrix size for the multiplication is on the order of 5600 × 50000 and for matrix inversion
5600× 5600, easily manageable on a moderate computer cluster.

7.2 Numerical tests

For the first numerical test, we choose 28O which is a doubly-magic nucleus. However, to introduce
non-vanishing pairing correlations, we artificially increase the pairing strength of the DD-PC1
interaction from Gp,n = −728 MeV fm−3 to Gp,n = −1500 MeV fm−3. Such large pairing
interaction breaks the shell closure in 28O. For initial numerical tests, we employ a small basis
space of Nosc = 8 h.o. shells without any additional cut-off on the 2 q.p. basis. We employ a
smearing parameter η = 0.25 MeV to better distinguish differences between individual peaks. As
a rule of thumb, we found that using NGL

z = NGL
r ∼ Nosc provides reasonable convergence of

the radial integrals. Results calculated with the axially-deformed pnRQRPA are compared with the
spherical pnRQRPA from Sec. 3.1. To make the comparison possible, the axially-deformed RHB
calculations are constrained to a spherical shape. In Fig. 7.2(a) we show the comparison between
the Fermi strength function in the β− direction (IAS−). In this case, we have a total ofNpair ∼ 5000

2 q.p. pairs contributing to the linear response equations (only K = 0 projection). The agreement
of the strength function between the deformed and spherical pnRQRPA is excellent. In Fig. 7.3(b)
we show the comparison for the GT− strength function for bothK = 0 andK = 1 modes. Note that
K = ±1 modes are degenerate and that the total strength is Stot = 3×S(K = 0) = 3×S(K = 1),
where S(K = 0, 1) is the strength function for the K = 0, 1 mode. The degeneracy between the
K = 0 and K = 1 in the spherical limit is well reproduced, in addition to the overall comparison
with the spherical pnRQRPA. The total number of pairs for K = 0 mode is Npair ∼ 5000 and
Npair ∼ 8500 for the K = 1 mode.

Next, we generalize our tests to also include the finite-temperature effects. The FT-pnRQRPA
response function in 28O with Nosc = 8 is shown in Fig. 7.3(a) at T = 1 MeV and 7.3(b) at T = 3

MeV. Due to the degeneracy mentioned previously, only the K = 0 results are shown and the total
strength of the deformed FT-pnRQRPA is multiplied with the degeneracy factor, 3 × S(K = 0).
We observe that the agreement between two different FT-pnRQRPA codes is excellent. Since the
pairing interaction has been artificially increased, the pairing is present even at T = 3 MeV, where
the smearing due to the Fermi-Dirac distribution of the q.p. states is significant. Therefore, this
test presents the most general verification of our axially-deformed FT-pnRQRPA implementation,
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Figure 7.2: Comparison between the spherical and axially-deformed pnRQRPA results for 28O for
the IAS− (a) and GT− (b) strength function, with Nosc = 8 oscillator shells. The strength function
calculated with the spherical pnRQRPA is represented with red circles, while the solid line shows
different components of the axially-deformed response: K = 0 mode is represented with solid blue
and K = 1 mode with dashed green. The response function of the deformed FT-pnRQRPA is
multiplied by 3 to account for degeneracy.

which includes both pairing and temperature effects. We note that the spherical FT-pnRQRPA
was already benchmarked against the corresponding matrix FT-pnRQRPA in Ref. [30]. Such tests
confirm the consistency between different theoretical approaches and codes.

Finally, it is instructive to find the optimal basis size for realistic calculations of spin-isospin
response. To this aim, we select 70Fe, which is a rather neutron-rich isotope of iron, and calculate
its GT− response for a varying number of h.o. shells, Nosc. The RHB ground state is constrained
to β2 = +0.3 and the calculations are performed at zero temperature. Results are shown in Fig. 7.4
forNosc = 8–16 with a step of 2, for bothK = 0 (a) andK = 1 (b) projections. From the figure, we
infer that the reasonable convergence for the GT− strength is achieved onceNosc = 12. The strength
function for Nosc = 14 and Nosc = 16 is almost indistinguishable. We note that the conclusion
from this work is in agreement with Ref. [194], based on non-relativistic EDF calculations, where
good convergence for A ∼ 70 nuclei is obtained with Nosc = 13.

Therefore, in the following calculations, we use Nosc = 16 which guarantees good convergence
for pf -shell nuclei considered in this chapter. However, the number of 2 q.p. pairs at Nosc = 16

and without any cut-off becomes very large. In table 7.4 we show the total number of 2 q.p.
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Figure 7.3: Comparison between the spherical and axially-deformed FT-pnRQRPA results at T = 1
MeV (a) and 3 MeV (b). Results are calculated for 28O with Nosc = 8 and a modified pairing
strength.

0 5 10 15 20
 [MeV]

0

1

2

3

S(
GT

) [
1/

M
eV

] a)

K = 0

Nosc = 8
Nosc = 10
Nosc = 12

Nosc = 14
Nosc = 16

0 5 10 15 20
 [MeV]

0

1

2

3

4
b)

K = 1

Figure 7.4: Convergence tests of the GT− strength for 70Fe with β2 = +0.3 for a varying number of
oscillator shells Nosc and no additional cut-off to the 2 q.p. basis. Results are shown for theK = 0
(a) and K = 1 (b) projections.

pairs Npair for K = 0 and K = 1 modes for 70Fe with β2 = +0.3. Therefore, solving for one
projection with Nosc = 16 would correspond to diagonalizing a square matrix with a dimension
180000. Here, our linear response formalism based on the reduced response function for separable
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Table 7.4: Number of proton-neutron 2 q.p. pairs Npair for K = 0 and K = 1 projections of the
Gamow-Teller response for an increasing number of oscillator shells Nosc.

Nosc Npair(K = 0) Npair(K = 1)
8 5002 4857
10 12444 12188
12 26894 26481
14 52432 51808
16 94482 93585

interaction is advantageous. We have to perform a sum over Npair and invert a matrix with a size
of 5400× 5400. The sum over the 2 q.p. pairs can be easily parallelized. However, we can further
limit the basis size by introducing a cut-off on the sum of 2 q.p. configuration energiesEcut, defined
as E2qp = Eπ + Eν so that E2qp ≤ Ecut. In Fig. 7.5 we show calculations of the K = 0 projection
in 70Fe with β2 = +0.3 and Nosc = 16, where Ecut = 50, 100 and 150 MeV. Results by employing
Ecut are compared with results calculated in Fig. 7.4 with no cut-off on q.p. configuration energies.
We observe that Ecut = 100 MeV yields a response function practically indistinguishable from that
without any cut-off. The number of 2 q.p. pairs is almost halved compared to that without the
cut-off, providing a significant speed-up of the calculation. Even the result with Ecut = 50 MeV
provides a reasonable convergence because calculation time is almost 10 times faster compared to
no cut-off. Therefore, in the following calculations, we employ Ecut = 100 MeV.

7.3 Spin-isospin excitations in axially-deformed nuclei

In Section 3.4 we have presented results with the pnRQRPA assuming spherical symmetry, for the
Fermi (Jπ = 0+) and the GT (Jπ = 1+) strength function. Here, we generalize the discussion
of spin-isospin excitations to deformed nuclei. The optimal quadrupole deformation β∗2 is the one
which minimizes the binding energy (or free energy at finite temperature). Therefore, at the RHB
level, we have to construct a PES and find optimal β∗2 that determines the ground-state shape of the
nucleus. It is interesting to study how the shape and excitation energy of the resonance is influenced
by the deformation effects. First, we investigate the Gamow-Teller strength function in selected
pf -shell nuclei, for which experimental data is available. Model calculations are performed with
the DD-PC1 and DD-PCX relativistic EDFs. In addition, we also investigate the GT− strength
in 58,60,62Fe, providing a much richer structure of the strength function. We decompose the total
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Figure 7.5: Convergence tests of the K = 0 GT− strength for 70Fe with β2 = +0.3 for Nosc = 16
and varying cut-off on 2 q.p. configuration energy Ecut.

strength function to K = 0 and K = 1 projections and study their behavior for oblate and prolate
configurations. On the example of even-even iron isotopes we also investigate the IAS− strength
function and compare it with the available experimental data. Lastly, we generalize our discussion
to finite temperature and study the temperature evolution of the GT+ strength in 56Fe. An interesting
competition between the pairing, temperature, and deformation effects occurs which determines
the total strength function. All calculations are performed with Nosc = 16 h.o. shells and 2
q.p. energy cutoff Ecut = 100 MeV, unless not explicitly mentioned otherwise. We have verified
that such a basis size is enough to obtain good convergence of the strength function for nuclei of
interest. We neglect the contribution of anti-particle transitions, being a good approximation for
the charge-exchange case [203]. The strength functions are smeared with η = 1 MeV.

7.3.1 The Gamow-Teller resonance

The external field operator in the GT case has the form F̂J=1,K = σ1Kτ±, where K = 0,±1.
Due to the Pauli spin matrix σ1K it has a selection rule for the spin part ∆S = 1, giving it a
significantly richer structure compared to the simpler Fermi transitions. The calculations are also
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more computationally intensive since one has to perform them twice, for K = 0 and K = 1

projections. The total strength is calculated as

S(GT±, ω) = S(K = 0, ω) + 2× S(K = 1, ω). (7.51)

For the GT external field, only the isoscalar pairing (S = 1, T = 0) is present in the pp residual
interaction channel. Based on the study of β-decay rates (presented in Sec. 7.5) and GT+ strength
function in comparison with the available experimental data in Sec. 7.3, we adopt a value V is = 0.8.
It is interesting to study if the deformation effects play any role in the GT transition strength. To
this aim, we select 60Ni, and study its GT strength in the β+ direction (GT+). To determine
the optimal shape, we perform a constrained RHB calculation in Fig. 7.6 with respect to the
quadrupole deformation β2. We observe that PES has three stationary points: oblate minimum
at β∗2 = −0.19 corresponding to the optimal configuration, a spherical maximum, and prolate
minimum β2 = 0.13. For these three stationary points in the PES, we have performed the pnRQRPA
calculation for theGT+ response in Fig. 7.6(b). We observe that spherical and prolate configurations
lead to considerably different strength functions. Furthermore, both deformed configurations are
significantly different compared to the spherical ones. We observe that the spherical GT+ strength
function for 60Ni consists of a single peak (smeared with 1MeV) at ω = 2.3MeV. On the other hand,
both prolate and oblate configurations show more fragmentation of the GT+ strength function and
reduced strength of the main peak. We notice that the prolate configuration has more fragmentation
and overall reduced strength compared to the prolate one. This is related to the fact that the oblate
shape has a larger value of the quadrupole moment, thus deformation plays a bigger role. Note that
for the prolate shape, which has a lower quadrupole moment, the main peak is split only into two
peaks. Of course, the fragmentation strength in the deformed pnRQRPA results from the degeneracy
breaking of the Nilsson q.p. orbitals.

It is imperative to perform a comparison of the GT+ strength function with the available data.
Unfortunately, the GT strength function has been measured only for a handful of nuclei in the
pf -shell and a limited excitation energy range [93, 94, 99, 103]. This means that only a part of the
total strength function is covered by the experiment, and usually, it is not the part containing the
main resonance peak. The experiments are often performed by some type of a charge-exchange
reaction such as (n, p) or (3He, t), which can excite, among others, GT excitations. In the following,
we compare the axially-deformed pnRQRPAGT+ strength function with the available experimental
data. In Ref. [93], the GT+ strength function in 56Fe is excited by a (n, p) reaction, while the
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Figure 7.6: (a) The PES for 60Ni as calculated with the axially-deformed RHB with the DD-PC1
interaction. Three stationary points (marked with an X) correspond to the oblate (blue), spherical
(green), and prolate (red) configurations. (b) The GT+ strength calculated from the corresponding
stationary points in PES as a function of the excitation energy in the parent nucleus ω.

strength function is measured up to 10 MeV for 56Mn. Also with a (n, p) type of reaction the
strength function was measured for even-even nickel isotopes 60,62,64Ni in Ref. [94]. More recently,
the GT+ strength was also measured for 46Ti in Ref. [103] and 64Zn in Ref. [99], nuclei whose
EC rates are of importance for the evolution of late-stage CCSNe. In Fig. 7.7(a)-(f) we compare
the measured GT+ strength function for the previously mentioned nuclei, to calculations obtained
with the axially-deformed pnRQRPA, by employing DD-PC1 and DD-PCX relativistic EDFs. In
addition to the axially-deformed calculations we also show the results calculated with the spherical
pnRQRPA using the DD-PC1 interaction. First, we note that all presented nuclei display axially-
deformed shapes, either prolate (like 56Fe and 46Ti) or oblate (60,62,64Ni and 64Zn), results being
consistent between both DD-PC1 and DD-PCX interaction. We have summarized the optimal
quadrupole deformations β∗2 for considered nuclei using both interactions in table 7.5.

FromFig. 7.7 one can infer a large discrepancy between the spherical and deformed calculations.
By inspecting the spherical strength function (green dashed line) calculated with the DD-PC1
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Figure 7.7: The GT+ strength function for particular pf -shell nuclei shown with respect to the
excitation energy in parent nucleus ω. The calculations are performed with the axially-deformed
pnRQRPA with DD-PC1 (blue) and DD-PCX (orange) interactions and the spherical pnRQRPA for
the DD-PC1 interaction (green dashed). The results are compared with the available experimental
data from Refs. [93,94,99,103] (black circles). The isoscalar pairing strength is set to V is = 0.8 in
all calculations.

interaction, we notice that it is mostly concentrated in a one resonance peak. Only a slightly
more proton-rich system such as 46Ti displays more structure in the spherical GT+ response. Of
course, a direct comparison between the spherical strength function and experimental strength
is not possible. We can only compare the position of the experimental centroid energy to the
corresponding resonance energy in spherical GT+ strength function. We see that the main peak in
the spherical strength function matches with the corresponding peak in the experimental strength
for all considered nuclei within 1 MeV. This is an expected result considering the simplicity of the
spherical pnRQRPA and its lower density of states in the RHB ground state. However, agreement in
the excitation energy of the main peak suggests that if additional correlations are included, maybe
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a more direct comparison between the strength functions is possible. The first step is taking into
account that all considered nuclei are deformed and comparing the experimental distribution with
the axially-deformed pnRQRPA calculations. Due to the larger density of states calculated with the
axially-deformed pnRQRPA and degeneracy splitting between the q.p. Nillson orbitals once the
deformation is non-vanishing, the strength function will be significantly more fragmented compared
to spherical calculations. We observe that the deformed pnRQRPA results (solid blue line) with
the DD-PC1 interaction lead to a significant reduction of strength and fragmentation of the main
resonance peak, compared to the spherical calculations. Overall, the calculated strength function
compares better to experimental data. The comparison is improved for all considered nuclei. For
instance, deformation effects lead to very good agreement with experimental data for 60Ni and 62Ni,
both having oblate ground states. In 64Ni the deformation effects lead to a splitting of the main
resonance peak and a slight shift of the strength function to higher excitation energies, in better
agreement with the experimental data. Although the deformed pnRQRPA still overestimates the
experimental strength in oblate-deformed 64Zn, we observe a shift to higher excitation energies,
resulting in better agreement with the main peak of experimental strength. In both 56Fe and
46Ti, which have a prolate shape in the ground state, the inclusion of deformation effects leads
to better agreement with the experimental data. Although, there are some peaks predicted by the
deformed pnRQRPA calculation not present in the experimental data, especially at lower excitation
energies. Since the deformation effects are included, we expect that the differences between
the experimental data and our calculations is mainly attributable to coupling with higher-order
configurations. Namely, the relatively simple pnRQRPA theory includes only the contribution
of 2 q.p. excitations to the response function. In our calculations η = 1 MeV, providing a
smearing of the strength function, thus the width is not microscopically determined. Expanding
the present formalism by including the coupling of 2 q.p. excitations to the phonons (QPVC)
would lead to more fragmentation of the strength function, and possibly a better agreement with
the experimental data [132, 133, 135, 150]. However, we note that the deformed QPVC at the level
of the residual interaction is at present far from the implementation and its numerical realization,
due to significant complications in the model. The first steps in this direction were only recently
applied to the calculation of the ground-state properties [204]. Furthermore, Eq. (7.51) is only
an approximation valid for large deformations (so-called needle approximation). The problem is
that the transformation from the intrinsic system of the nucleus to the laboratory system has to
be performed, which mixes contributions of different angular momenta J . Therefore, a proper
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Table 7.5: The optimal quadrupole deformation β∗2 for particular pf -shell nuclei using both the
DD-PC1 and DD-PCX interactions.

nucleus β∗2(DD-PC1) β∗2(DD-PCX)
60Ni -0.19 - 0.16
62Ni -0.22 -0.18
64Ni -0.13 -0.09
64Zn -0.24 -0.13
56Fe 0.24 0.21
46Ti 0.24 0.22

projection method for the response of the deformed nuclei should be implemented as discussed in
Refs. [192, 205].

To assess the possible systematic uncertainties within our calculations, we also perform the
deformed pnRQRPA calculations by employing the DD-PCX interaction (solid orange line). The
DD-PCX relativistic EDF was fitted not only using the ground-state properties of nuclei but also
considering the excitations [21]. From Fig. 7.7 we observe that results calculated with the DD-PCX
lead to visible differences for some nuclei, compared to the DD-PC1 calculations. For instance, the
agreement with experimental data is slightly worsened for 60,62Ni, as the strength function for the
DD-PCX is pushed to slightly higher excitation energies. On the other hand, although the strength
is overestimated, the DD-PCX leads to better agreement with the experimental centroid in 64Ni.
For other considered nuclei we also observe a slight shift to higher excitation energies. In 56Fe,
the strength function is more collected around the main resonance peak, which better describes the
excitation energy of the main peak in the experimental distribution. For 64Zn and 46Ti the strength
function retains a similar shape when compared to the DD-PC1, just ∼ 0.5 MeV shifted to higher
energies. Therefore, based on our calculations with two different functionals we can conclude that
considering deformation effects leads to a better overall agreement between the theoretical and
experimental GT+ strength function.

In the following, we turn our attention to theGT− strength function. Nuclei displaying significant
GT− strength are often neutron-rich, thus obtaining the experimental data is much more difficult.
In fact, most of the experimental data exist for nuclei with (or around) the shell closure, such as tin
isotopes [95]. Due to the proximity of shell closure, those nuclei mainly have a spherical shape,
therefore considering the deformation effects is of no importance for the strength function. We
have compared the results of our spherical pnRQRPAwith the DD-PC1 interaction for particular tin
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Figure 7.8: The GT− strength function in selected even-even isotopes of iron, shown for the prolate
(a)-(c), and oblate (d)-(f) configuration. The total strength function (solid black) is decomposed to
theK = 0 (solid blue) andK = 1 (solid orange) projections of the total angular momentum J = 1.
Excitation energy ω is shown with respect to the ground state of the parent nucleus.

isotopes in Ref. [30]. The low-lying GT− strength function is especially important for calculating
the β-decay half-lives (see Sec. 7.5). We have investigated the GT− strength function for 58Fe, 60Fe
and 62Fe, with the deformed pnRQRPA using the DD-PC1 interaction. Considered nuclei present
both an oblate and prolate minima, therefore, we are interested in studying how the shape of the
nucleus influences its strength function. To this aim, in Fig. 7.8(a)-(f) we show the GT− strength
function for selected iron isotopes but decomposed to contributions of specific angular momentum
projections, K = 0 and K = 1, for both prolate shapes in Fig. 7.8(a)-(c), and oblate shapes in
Fig. 7.8(d)-(f). The total strength is calculated as in Eq. (7.51). We observe that the GT− strength
function consists of the low-lying peak and a resonance peak (GTR) located at higher excitation
energies. A similar structure was also inferred for spherical calculations in Fig. 3.5. However,
unlike the spherical calculation presented in Sec. 3.4, the deformed GT− response function has
a richer structure. The following interesting structure is observed depending on the shape of the
nucleus; for prolate shapes (β2 > 0), the low-lying strength is dominated by theK = 0 component,
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Figure 7.9: The total GT− strength function in 58Fe, 60Fe and 62Fe, shown for the prolate (solid red),
oblate (solid blue) and spherical (dashed green) configuration. Excitation energy ω is shown with
respect to the ground state of the parent nucleus.

while the GTR strength is dominated by the K = 1 component. On the other hand, the opposite
is true for the oblate shape (β2 < 0), where the low-lying strength is dominated by the K = 1

mode. In the case of spherical nuclei, both K = 0 and K = 1 modes are degenerate, however, in
deformed nuclei, the degeneracy is broken and they are split. For the oblate shape, theK = 0 mode
is pushed to lower excitation energies andK = 1 to higher, while the opposite is true for the prolate
shape. The amount of splitting between the modes is proportional to the magnitude of β2. Such
interesting degeneracy splitting was already observed in Refs. [81, 192, 193] for the like-particle
response function and Refs. [77, 80] in the charge-exchange case.

Finally, in Fig. 7.9(a)-(c) we show the total GT− strength function for the prolate, oblate,
and spherical configurations. We note that the shape of the nucleus in its ground state significantly
influences the strength function. Compared to the spherical strength function, which consists mainly
of two peaks, the deformed strength function displays much more structure. For nuclei with larger
quadrupole deformations, 58Fe and 60Fe, we observe a larger difference compared to the spherical
strength function. For the corresponding nuclei, oblate configurations show more fragmentation in
the GTR region in comparison to the prolate ones, where the GTR is more collective. By inspecting
Fig. 7.8(d)-(f) we observe that a large splitting of the GTR strength originates for theK = 0 mode,
which is more dominant at higher excitation energies. On the other hand, 62Fe has a lower value
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Figure 7.10: The IAS− strength function in selected even-even isotopes of iron, shown for the
prolate, oblate, and spherical configuration. Excitation energy ω is shown with respect to the
ground state of the parent nucleus. The experimental centroid energy from Ref. [206] is denoted
with a black arrow.

of β2 compared to 58,60Fe, thus its strength function between the prolate and oblate shapes is more
similar. Furthermore, the differences between the spherical and both deformed configurations are
reduced. Overall, a significantly richer structure predicted by deformed pnRQRPA follows from a
higher density of states for axially-deformed nuclei compared to the spherical ones. Therefore, we
expect that deformed calculations have more strength contributing to the Qβ window and therefore
they could significantly alter β-decay half-lives compared to spherical nuclei.

7.3.2 The Isobaric Analog Resonance

In the following, we study the Fermi (Jπ = 0+) strength function within the axially-deformed
pnRQRPA. Its relatively simple structure F̂J=0,K=0 = τ±, allows only transitions with the same
quantum numbers in the Nilsson basis. This means that the Fermi strength function has a much
simpler structure compared to the GT. Furthermore, only the K = 0 component of the angular
momentum projection is allowed. From previous calculations based on spherical pnRQRPA in
Ref. [30], we know that the Fermi strength function is indeed located in one peak, at excitation
energy corresponding to the Coulomb energy difference between the even-even parent and odd-odd
daughter nucleus, corrected by the residual interaction. However, this is only the case if both the ph
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and pp residual interaction terms are derived self-consistently from the underlying relativistic EDF.
This is exactly the case for our calculations since only the isovector (T = 1, S = 0) component of
the pp interaction contributes, the same as in the ground state. Furthermore, we can safely omit the
TPV term from the ph residual interaction since its contribution is negligible, with TV being the
dominant component. Calculations are performed using the DD-PC1 interaction with Nosc = 16

and no other cut-off for the 2 q.p. basis. In Fig. 7.10(a)-(d) we show the Fermi strength function
for 56,58,60,62Fe for prolate, oblate, and spherical configurations. As noted previously, 56,58,60Fe
are predicted as prolate, while 62Fe is oblate, although with almost a flat minimum. We observe
that deformation has almost no influence on the Fermi strength function, with differences between
the prolate and oblate configurations being at most 0.05 MeV in 56Fe. The experimental centroid
energy from Ref. [206] is denoted by a black arrow, obtained from the (3He,t) charge-exchange
reaction. The strong IAS state was extracted at ω ≈ 8.9 MeV, being 0.5 MeV higher compared
to our calculations. We have also performed calculations with the DD-PCX interaction for 56Fe
and found that the strength is shifted around 0.13 MeV to higher energies, slightly closer to the
experimental data. Although we found that the Fermi strength function is almost independent of
the deformation, it still provides a reliable test of our numerical implementation.

7.4 Finite-temperature effects

It is interesting to investigatewhat happenswith theGT strengthwith increasing temperature. Unlike
the calculations performed in Sec. 3.4, here we generalize the discussion by also considering the
deformation. Therefore, calculations presented in this section include: (i) pairing correlations,
(ii) finite-temperature effects, and (iii) deformation effects. As an illustrative example, we study
the temperature evolution of the GT+ strength in 56Fe in the temperature interval T = 0–2 MeV.
Since 56Fe is a nucleus found in abundance in the core of massive stars just before the collapse,
understanding itsGT strength function and subsequent implications for theEC rate are of importance.
From the previous discussion in Chapter 6 we know that a nucleus undergoes a pairing collapse
at T pc and a shape phase-transition at T sc . Therefore, at high enough temperatures, nuclei are
spherical and in a normal state. Results are shown in Fig. 7.11. In Fig. 7.11(a)–(d) we show the
temperature evolution of the PES in 56Fe together with the optimal β∗2 , while in Fig. 7.11(e)–(h)
we display the temperature evolution of the GT+ response. Calculations are performed with the
axially-deformed FT-pnRQRPA for optimal β∗2 and also with the spherical FT-pnRQRPA (β∗2 = 0).
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As already discussed in Sec. 7.3.1, 56Fe has a prolate shape in the ground state at zero temperature.
The strength function is substantially more fragmented compared with the corresponding spherical
calculation, which consists of just one peak. The main peak in spherical calculations is determined
by the (π1f7/2, ν1f5/2) 2 q.p. transition. In the axially-deformed calculations, this 2 q.p. excitation
corresponds to multiple transitions due to the degeneracy splitting of the Nilsson quantum numbers.
Here we will not attempt to list all those transitions, but they can be inferred from table 6.1 for
N = 3 principal quantum number. By increasing the temperature to T = 0.5 MeV, in Fig. 7.11(b)
we observe that the PES is almost unchanged, as well as the spherical GT+ strength function in
Fig. 7.11(f). We have only a slight reduction of the total strength, in addition to a shift of ≈ 0.1

MeV to lower excitation energies. However, we can observe that the deformed strength function
is visibly altered, with low-lying strength at ≈ 1.3 MeV being redistributed to higher energies.
Since the PES is only slightly changed at T = 0.5 MeV, the observed effect is mainly influenced
by a reduction in pairing correlations. Namely, at optimal ground state with β∗2 = 0.23 pairing
vanishes for both neutron and proton states, while it is still present in the spherical state. This
sudden pairing collapse is related to the grand-canonical treatment of the FT-RHB. By taking into
account both thermal and quantal fluctuations we would get a non-vanishing pairing even at higher
temperatures [207]. However, such considerations would further complicate our calculations, and
our aim in this section is to study the general effects of temperature on deformed nuclei. Of course,
due to the higher density of states for the deformed nucleus, even small temperatures can alter the
underlying Nilsson q.p. states. The effect is more pronounced compared to the spherical nucleus
with higher degeneracy of states. At T = 1 MeV in Fig. 7.11(c) we observe that the PES starts
to "flatten", meaning that the free energy difference between the oblate and prolate configurations
reduces, however, β∗2 = 0.21 is still the state which minimizes the total energy. In Fig. 7.11(g) we
observe that the spherical GT+ strength is still contained in only one peak, shifted by further 0.5
MeV to lower energies. The pairing interaction now vanishes both for proton and neutron states.
On the other hand, the deformed strength function shows more pronounced changes. The strength
starts being collected to the main resonance peak, which has similar excitation energy as the main
peak of the spherical calculation. At T = 2 MeV the optimal configuration is spherical, while the
PES is relatively "flat", as shown in Fig. 7.11(d), meaning that we have an agreement between the
GT+ strength function corresponding to spherical and deformed calculations in Fig. 7.11(h). The
GT+ strength is shifted by ≈ 0.8 MeV compared to the zero temperature spherical GTR, with its
strength also slightly reduced. Therefore, by inspecting the temperature evolution of the spherical

153



Chapter 7. The axially-deformed pnRQRPA

GT+ strength, we would conclude that it is almost unchanged. On the other hand, taking a look
at the deformed response, we observe significant changes as the nucleus undergoes both pairing
and shape phase transitions and eventually agrees with the spherical strength function at T = 2

MeV. Therefore, the temperature dependence of the GT+ strength function depends on the interplay
between pairing, deformation, and finite-temperature effects. As we have seen, in the case of 56Fe,
temperature primarily reduces the nucleus to a spherical shape, thereby restoring the collectivity of
the GTR. The effect of pairing collapse is primarily amplified by the increased density of states in
the deformed nucleus, while in the spherical case, it almost does not affect 56Fe.
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Figure 7.11: (a)–(d) The potential energy surface in 56Fe for temperatures T = 0–2 MeV. The
optimal deformation β∗2 which minimizes the binding energy E is denoted by a red circle. (e)–
(h) Temperature evolution of the GT+ strength distribution in 56Fe calculated for optimal β∗2 and
temperatures T = 0–2 MeV with the axially-deformed (solid blue) and spherical (dashed green)
FT-pnRQRPA. Calculations are performed with the DD-PC1 interaction. The gray line in panels
(e)-(h) is shown to guide the eye.
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7.5 Influence of deformation on β-decay half-lives

Finally, we want to study the effect of deformation on the β-decay half-lives. As we have seen in Sec.
7.3.1, the deformation effects can significantly affect the GT− strength function, which determines
the β-decay lifetimes in the allowed approximation. We only consider the zero-temperature results.
Since the deformation effects tend to decrease with temperature, results will be most influenced
by deformation at zero temperature. Furthermore, the model has to be first benchmarked against
the available experimental data before extending it to other calculations. Starting from the general
expression in Eq. (5.3) at zero temperature, and reducing it to the allowed approximation, we can
write the expression for the β-decay rate as

λβ1+ =
ln 2

κ

1

2πi

∮
C
dωf (∆nH − ω)SF (ω), (7.52)

where the rate is calculated by multiplying the strength function SF (ω) for the GT− external field
with the phase-space factor f(W0). The initial-final energy can be expressed in terms of the
excitation energy with respect to the parent nucleus ω as W (i,f)

0 (mec
2) = ∆nH − ω. The above

integral is calculated in the complex plane around a suitably chosen contour C that encloses the
Qβ window with Re[ω] ∈ [−λnp,∆nH ], where the difference between the neutron and proton
chemical potential is λnp = λn−λp. The phase-space factor at zero temperature and in the allowed
approximation is simply given by

f (W0) =

∫ W0

1

dWpW (W0 −W )2 L0F0(Z + 1,W ), (7.53)

where the Fermi function F0(Z,W0) is defined as [77, 79, 154]

F0(Z,W ) = 4(2pR)−2(1−γ1) |Γ (γ1 + iy)|2

Γ (2γ1 + 1)2 e
πy, (7.54)

where γ1 =
√

1− (αZ)2, y = αZW/p and R = 1.2A1/3 fm is the nuclear radius. The Coulomb
wave function L0 is approximated as L0 = 1

2
(1 + γ1), with other quantities defined in Sec. 5.1. The

problem with calculating the rate using Eq. (7.52) is that the Fermi function is not analytical in the
complex domain. Therefore, in Ref. [77] it is proposed to replace the exact phase-space integral
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f(W0) with its polynomial expansion fpoly(W0) in the form

fpoly (W0) =
N∑
n=0

anW
n
0 =

N∑
n=0

an (∆nH − ω)n , (7.55)

where N is the order of the polynomial. In Fig. 7.12(a) we show an example of the fit to the
phase-space integral of 42S to a N = 10 polynomial. Such a function agrees with the phase-space
factor on the real axis, which is only important for calculating the contour integral.

The circular contour C in the complex plane is shown in Fig. 7.12(b). The radius of the circle
is R = (λnp + ∆nH)/2 ≡ ωmax , and the contour is parameterized with

ω(t) =
ωmax

2
eit − λnp

2
+

∆nH

2
, t ∈ [0, 2π〉. (7.56)

The integral in Eq. (7.52) can be rewritten as

λ1+ =
ln 2

κ

ωmax

2

∫ 2π

0

dteitfpoly [ω(t)]S[ω(t)]. (7.57)

We see that its imaginary part should be vanishing, only the real part contributing to the rate. Later,
we will use this fact as a numerical check for our calculation. To demonstrate calculation of β-decay
half-lives using Eq. (7.52) we perform an example calculation on 42S. In Fig. 7.12(c) we show the
GT− strength in 42S within the Qβ window for which ω ∈ [λnp,∆nH ]. As demonstrated previously
in Sec. 3.1, the GT− strength is proportional to the residues of integration around the singularities
of the response function shown in Fig. 7.12(c). According to Eq. (7.52) the strength has to be
multiplied by the phase-space factor fpoly(∆nH − ω), which decreases exponentially towards the
upper limit of the Qβ window ω = ∆nH . Therefore, the most contribution to the strength function
is going to come from the part of the strength function closer to the lower limit of the Qβ window
ω = λnp. In the following calculation, we employ Nosc = 14 while in the pnRQRPA we use
Ecut = 100 MeV. By performing the constrained RHB calculation we have determined that 42S is
prolate in its ground state with β∗2 = 0.30. The GT− strength function for 42S in Fig. 7.12(c) is
decomposed toK = 0 andK = 1 projections. In addition, the results are also shown as calculated
with the spherical pnRQRPA. We observe that the deformed pnRQRPA calculation yields more
strength in the Qβ window, especially at lower energies which contribute more to the rate integral.
Therefore, just based on studying the GT− strength function we can infer that deformed pnRQRPA

157



Chapter 7. The axially-deformed pnRQRPA

2 4 6 8 10
W0(mec2) [MeV]

10 1

101

103

105

f(W
0) 42S, allowed phase-space factor

a)

N = 10 polyfit
calculated values

b)

8 6 4 2 0
 [MeV]

0

5

10

15

S(
) [

1/
M

eV
]

42S, Nosc = 14, Ecut = 100 MeV

c)
K = 0
K = 1
total def.
spherical

0 0.5 1 1.5 2 
t

100

0

100

200

300

Re
[d dt

f(
)S

(
) ] 

[s
1 ] d) K = 0

K = 1

Figure 7.12: (a) The calculated values of the phase-space integral in Eq. (7.53) (red circles) together
with a N = 10 polynomial fit (solid blue). (b) The circular contour for the complex integration of
the rate integral in Eq. (7.52). (c) The GT− strength function in 44S calculated with the axially-
deformed pnRQRPA (solid black) decomposed to contributions of K = 0 (solid blue) and K = 1
(solid orange) projections. Also shown are the spherical pnRQRPA results (dashed green). (d) The
real part of the integrand in Eq. (7.57) is calculated for K = 0 (blue circles) and K = 1 (orange
circles). The solid lines denote the cubic spline interpolation of the calculated points.

calculations predict shorter half-lives compared to the spherical in 42S. In Fig. 7.12(d) we show the
integrand in Eq. (7.57) both forK = 0 andK = 1 modes. We observe that the integrand is smooth
enough to perform a spline interpolation and integration with any simple quadrature rule such as
Simpson’s. Indeed, such a result was also found in Ref. [77].

At this point, we calculate the β-decay half-life for the whole sulfur isotopic chain (Z = 16).
The q.p. basis is determined by Nosc = 16 and Ecut = 100 MeV, this range is more than enough
to yield converged low-lying strength function for all considered nuclei. First, we perform the
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Figure 7.13: (a) The isotopic dependence of the β-decay half-lives T1/2 for sulfur calculated with
the axially-deformed (green) and spherical (blue) pnRQRPA, compared to the experimental data
from Ref. [159]. Calculations are performed with the DD-PC1 interaction with isoscalar pairing
strength V is = 1.0. (b) The axially-deformed pnRQRPA half-lives for different values of the
isoscalar pairing strength V is in the range 0–1.2. The indicated area of the main plot is enlarged in
the inserted axis for better visualization.

calculations with the isoscalar pairing set to V is = 1.0 (same as isovector) and compare the results
with the spherical pnRQRPA calculations in Fig. 7.13(a). All the results are obtained by using the
DD-PC1 interaction. For the axially-deformed pnRQRPA, only the optimal β∗2 is used to calculate
the half-life. We observe that, apart from 38S, the half-lives calculated with the axially-deformed
pnRQRPA are significantly reduced compared to the spherical calculations. For 44S, this reduction
is more than an order of magnitude. Therefore, we can see that deformation effects lead to important
changes in β-decay half-lives. Compared to the available experimental data, results for 38S, 40S,
42S, and 44S agree better once the deformation is included in the model. Note that for 54,56S
both spherical and deformed calculations agree, since β∗2 ∼ 0.0 for those nuclei. This agreement
further validates the implementation of our model, since the half-lives are calculated based on two
independent pnRQRPA implementations. It is interesting to study what happens when we vary the
isoscalar pairing strength V is. Based on the results presented in sections 3.1 and 5.2, we know
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that an increase in the isoscalar pairing strength leads to a reduction of β-decay half-lives. In
Ref. [208], employing a large-scale fitting procedure of isoscalar pairing strength on experimental
β-decay half-lives with the spherical pnRQRPA, we have deduced that for the DD-PC1 functional
the isoscalar pairing strength should be V is ≈ 1.8 for 38S and decrease to V is ≈ 1.0 for 56S. Such
large isoscalar pairing strength is caused by spherical calculations overestimating the experimental
half-lives. On the other hand, we have demonstrated that deformation provides another mechanism
for the reduction of half-lives. This means that isoscalar pairing strength for axially-deformed nuclei
should be lower. To investigate how the isoscalar pairing alters the half-lives of deformed nuclei, in
Fig. 7.13(b) we present the calculations for V is = 0.0, 0.5, 0.8 and 1.2, in the range from vanishing
residual pp interaction to being slightly larger than the corresponding isovector pairing at the RHB
level.

We observe that increasing V is leads to the shortening of half-lives. However, the effect of
changing V is on sulfur isotopes has a more moderate effect compared to the deformation effect
in Fig. 7.13(a). The effect of the isoscalar pairing on half-lives is most pronounced for mid-
shell nuclei. Note that isotopes with N = 28, 34, and 40 are independent of the variation of
V is due to shell closures. The magic numbers N = 28 and 40 are known and well studied,
while N = 34 is an emerging shell number recently studied in lighter nuclei [209]. Since our
calculations with deformation effects included tend to underestimate the experimental half-lives,
except for 30S and 40S, a lower value of isoscalar pairing strength is needed, compared to spherical
pnRQRPA calculation. Based on results shown in Fig. 7.13(b) we employ V is = 0.8 in the
following calculations. Note that determining V is using the results only for one isotopic chain is
not enough to generalize our results. Most studies done so far have found an isotopic dependence
of the isoscalar pairing strength [34, 131, 161, 208]. A global study, similar to the one performed
in Refs. [208, 210], will have to be performed for the axially-deformed pnRQRPA before making
systematic calculations. As the main purpose of this work is to explain the influence of deformation
of β-decay half-lives, we take a single value V is = 0.8, for all considered nuclei.

To generalize our conclusions, that deformation effects are important in determining the β-decay
half-lives, we extend our calculations to even-even nuclei in Ti, Cr, Fe, and Zn isotopic chains. Note
that we have omitted Ca and Ni isotopic chains with shell closure numbers, Z = 20 and Z = 28,
respectively, since most of the considered nuclei are spherical. By setting the isoscalar pairing
strength to V is = 0.8, there are no free-parameters in the model. The results are shown in Fig.
7.14(a)-(e). First, in Fig. 7.14(a) we display the isotopic dependence of the optimal quadrupole
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Figure 7.14: (a) Isotopic dependence of the quadrupole deformation β∗2 for even-even nuclei in Ti,
Cr, Fe, and Zn isotopic chains. The β-decay half-lives calculated with the axially-deformed (green)
and spherical pnRQRPA (blue), compared to the experimental data from Ref. [159] for Ti (b), Cr
(c), Fe (d) and Zn (e) isotopic chains.
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deformation β∗2 . Most considered nuclei display prolate shapes, while fewer are either spherical
or prolate-deformed. In Fig. 7.14(b) the half-lives for the titanium isotopic chain are shown. The
deformation effects have a large role in reducing the half-lives for 52Ti and 54Ti, being both prolate in
their ground state. For 58Tiwe have a shape change fromprolate to oblate configurations, however, its
impact on the half-life is negligible compared to the spherical calculation. Even thoughwe have non-
vanishing deformation for some heavier Ti isotopes, its effect on the half-life seems to be negligible.
Apart from 52Ti, it seems that spherical pnRQRPA is in better agreement with the experimental
data. In Fig. 7.14(c) we show the results for the chromium chain, where it seems that deformation
tends to reduce the half-lives more significantly but in a turn, underestimates the experimental data.
For the iron chain in Fig. 7.14(d) the deformation effects also reduce the half-lives. The spherical
pnRQRPA compares slightly better with experiment up to 72Fe. Notice that deformation effects
bring the half-life of 74Fe within experimental uncertainty. Due to N = 50 shell closure in 76Fe
the nucleus is spherical, with heavier isotopes assuming prolate shape and significantly reducing
the half-lives up to 86Fe. Up to now, we can conclude that spherical calculations performed better
in reproducing the experimental data than the deformed pnRQRPA. However, in Fig. 7.14(e) for
zinc isotopes, we see that there exists a significant difference between experimental half-lives and
those obtained in spherical calculations. The reduction of half-lives induced by deformation effects
seems to bring the calculations to better agreement with the experiment. We observe a "kink" in
isotopic dependence of half-lives for 80Zn due to shell closure, making the nucleus more stable. As
can be seen in Fig. 7.14(a) 80Zn is indeed spherical, thus both deformed and spherical pnRQRPA
agree in their results. However, beyond the shell closure, 82Zn has a prolate shape, bringing the half-
lives closer to the experimental data. Therefore, we conclude that the main effect of deformation
is to reduce the β-decay half-lives. This is because more states contribute to the Qβ window in
the deformed nucleus due to a larger density of states. Furthermore, the value of the isoscalar
pairing V is should be reduced, compared to the isovector pairing in the RHB ground-state, to better
reproduce the experimental data. In the calculations above, we see that V is = 0.8 is probably too
large for lighter systems, while it does well for zinc.

The deformation effects have a sizeable influence on half-lives. Based on the limited set of
nuclei for which we have presented our results, it is certain that the V is parameterization should
be improved. Namely, both the deformation and V is act to decrease the half-lives. Therefore,
employing the V is determined from spherical calculations leads to underestimating the experimental
half-lives with the deformed calculations. Certainly, the deformed pnRQRPA is a more general
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version of the spherical pnRQRPA since most nuclei are known to be deformed in their ground state.
Furthermore, the effect of reducing the half-lives can be more than an order of magnitude. However,
more details should be considered within the model to grasp all the mechanisms that contribute to
half-lives. First of all, in this work we have only considered the allowed GT transitions, omitting the
first forbidden. For most of the pf -shell nuclei this is an excellent approximation, as demonstrated
in Ref. [78], where it is seen that first-forbidden transitions start to contribute for Z > 60. Second, a
more precise treatment of V is should be implemented, instead of adopting a constant value. Third,
the rotational invariance of the nucleus should be restored, which would influence the strength
function, and thereby the half-lives. In Ref. [77] it was found that such corrections can be on the
order of 10%. Finally, going beyond the scope of this thesis, one should consider the coupling of
the 2 q.p. excitations to higher correlations, for instance, within the QPVC model [132, 150, 161].
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Chapter 8

Conclusion

The main goal of this thesis is to establish a robust theoretical framework for studying nuclear
charge-exchange excitations and the weak interaction rates in extreme astrophysical environments
such as supernovae and neutron star mergers. Examples of such processes investigated within this
thesis include electron capture and β-decays. We have developed a novel theoretical framework
to improve the description of the underlying microscopic effects required for the rate calculations.
The framework encompasses finite-temperature correlations, particle continuum contributions, de-
excitations, and effects such as pairing and deformation. The framework allows performing large-
scale calculations of high interest for nuclear astrophysics.

In Chapter 3, we have introduced the linear response FT-pnRQRPA based on the FT-RHB in
spherical symmetry. Themodel is based on the point-coupling functionals DD-PC1 andDD-PCX in
the ph channel, while in the pp channel, we assume the separable pairing interaction. The same form
of the pp interaction was used both in the isoscalar and isovector channels. After benchmarking the
implementation against the matrix FT-pnRQRPA, model calculations of the temperature evolution
of spin-isospin excitations were performed for the even-even tin isotopes at temperatures T = 0–1.5
MeV. First, it is shown that the Fermi strength function is almost temperature independent and
collected within a single resonance peak for all considered temperatures. The zero temperature IAS
excitation energies compare well with the available experimental data, with results within 1MeV for
DD-PC1 and DD-PCX functionals. The GT strength function, having a more complicated structure,
displays significant changes with increasing temperature. The temperature effect is especially
pronounced for 120Sn and 124Sn, where the GTR energy is fragmented at zero temperature. As
the temperature is increased, the degeneracy in the GTR is restored already at T = 0.9 MeV.
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The main effect of temperature in tin isotopes is to reduce the influence of pairing correlations,
which eventually vanish at critical temperature T pc at T ∼ 1 MeV. Furthermore, the repulsive
residual interaction softens with increasing temperature, slightly shifting the strength function to
lower excitation energies. We have compared our results with the experimental centroid energies in
112Sn, 116Sn, and 132Sn and found an agreement within 2 MeV. Consideration of the higher-order
correlations, going beyond the RPA, is neccessary to provide a more detailed comparison with the
experimental strength function.

A detailed investigation of electron capture rates within the FT-pnRQRPA is given in Chapter 4.
We start by establishing a theoretical formalism based on the FT-HBCS+FT-pnRQRPA [32]. Model
calculations are performed on particular pf -shell nuclei where we found that the inclusion of pairing
correlations canmodify the EC rates by a significant amount. Pairing and temperature effects should
be included for a complete description of the rates. We also generalized our results by extending
the theoretical calculations to include transitions with negative energy (de-excitations) [31]. The
de-excitations fully determine the EC rates above T > 0.5 MeV for neutron-rich nuclei, found
in abundance during the late stages of CCSNe explosions. To improve the performance of our
numerical implementation, we used an integration technique based on calculating the neutrino
distribution function. The predictive power of the FT-HBCS theory is improved by adjusting the
pairing strength across the nuclide chart. The isoscalar pairing strength V is is constrained by the
experimental data on β-decay half-lives. Therefore, no free parameters are present within themodel.
We have benchmarked our calculations of EC rates on nuclei near theN = 50 shell-closure against
the non-relativistic FT-HFB+FT-pnFAM and shell-model (for 86Kr) [33]. Agreement between the
model calculations is satisfying, especially at higher temperatures. The EC rate sets obtained with
our relativistic model and the non-relativistic FT-FHB+FT-pnFAM are used to perform 1D core-
collapse simulations. Important observables, such as the density evolution of electron-to-baryon
ratio Ye, peak neutrino luminosity, and the enclosed mass at core bounce, are consistent between
the two rate sets. Such a result leads us to conclude that the main correlations in the EC rates
important for the CCSNe simulations are well constrained within the current theoretical models,
and theoretical uncertainties are negligible. Our relativistic calculation includes the first-forbidden
0−, 1−, and 2− multipoles, in addition to the allowed GT. Including the first-forbidden transitions
leads to more noticeable differences in observables, mainly by increasing the overall rate.

We have applied the FT-HBCS+FTpnRQRPA framework to calculate β-decay half-lives in
Chapter 5. By benchmarking our model with the experimental half-lives at zero temperature,
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as well as the shell-model calculations at finite temperature, we have obtained excellent results.
Our model includes allowed and first-forbidden transitions, temperature, and stellar density effects.
Using an example calculation of temperature evolution of the half-lives in pf -shell nuclei up to
T = 1.5 MeV, we found that nuclei with initially longer half-lives are altered the most. These
are nuclei found close to the stability valley and the vicinity of closed shells. On the other hand,
neutron-rich nuclei with short half-lives at zero temperature show only moderate temperature
effects. To obtain reasonable agreement with the shell-model calculations, we found that including
de-excitations is crucial, especially for nuclei with strong β+ strength. As the temperature increases,
the contribution of first-forbidden transitions becomes more important. Furthermore, by increasing
the stellar density, we confirmed that it leads to a considerable reduction of the rates (an increase of
half-lives) for ρYe ≥ 107 g/cm3. A large-scale calculation of half-lives of even-even 8 ≤ Z ≤ 82

nuclei is performed at T = 5 GK and T = 10 GK for densities ρYe = 107 g/cm3 and 1010 g/cm3.
The calculated data set is of high interest to the nuclear astrophysics community.

Up to Chapter 6 all results have assumed spherical symmetry. In Chapter 6, we present results
for global bulk properties of even-even 8 ≤ Z ≤ 104 nuclei at finite temperature using the
three state-of-the-art relativistic EDFs [35]. Calculations are performed with the FT-RHB theory
supplemented with the continuum subtraction procedure using the BLV prescription. First, the
importance of the continuum subtraction in weakly-bound nuclei is demonstrated, on an example of
1D coordinate-space solver and then extended to the axially-deformed FT-RHB calculation of 210Gd.
Without the subtraction procedure, potential energy surfaces with quadrupole constraint at finite
temperature show considerable dependence on the size of the basis in which the FT-RHB equations
are discretized. By subtracting the contribution of the nucleon vapor, results become independent
of the basis size. The applicability of calculations in the h.o. basis is verified by benchmarking
it against the corresponding coordinate-space solver, having an excellent agreement of subtracted
free energy F̄ , entropy S̄ and the neutron chemical potential λn at high temperatures. The bulk
properties of nuclei with increasing temperature are mainly influenced by: (i) a decrease of the
pairing gaps, leading to a transition from a superfluid to a normal state, (ii) a shape-phase transition
from axially deformed to spherical configuration, (iii) vanishing of magic nucleon numbers around
shell closures. Since the nuclear shell effects tend to diminish with increasing temperature, more
bound nuclei exist within the drip lines. This is especially pronounced around N = 126 and
N = 184 shell closure.

We also account for nuclear deformation in the excited states by extending the FT-pnRQRPA
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developed in Chapter 3 to axially-deformed nuclei in Chapter 7. The implementation is based
on the linear response formalism with point-coupling relativistic EDFs and a separable pairing
interaction. Considering excitations in axial geometry requires extensions of the model resulting
in a significantly larger dimension of the model space. After verifying our implementation and
convergence properties, we calculated Fermi and GT strength. The Fermi strength function is
not influenced by the deformation effects, while the GT strength function shows considerable
fragmentation. We compared the calculated GT+ strength with available experimental data in
pf -shell nuclei, confirming that the agreement is better once the deformation is included. Unlike
the spherical calculations, which show mostly GT+ strength located in one peak, the deformation
effects tend to fragment the strength function and bring it closer to the shape of the experimental
distribution. By calculating the GT− strength in 58,60,62Fe for both oblate and prolate configurations,
we demonstrate considerable changes in the strength function compared to the spherical calculations.
The temperature evolution of the GT+ strength function shows almost no changes up to T = 2 MeV.
However, by including deformation effects, the first changes in the strength function are visible
already at T = 0.5 MeV. Therefore, the newly developed FT-pnRQRPA considers nuclear pairing,
finite-temperature effects, and deformation, providing numerous enticing applications. As one
such application, we have considered the influence of deformation on β-decay half-lives at zero
temperature. Calculation of half-lives in the sulfur isotopic chain demonstrates that the axially-
deformed pnRQRPA leads to a considerable reduction of half-lives compared to the spherical
pnRQRPA by more than an order of magnitude. By performing calculations for Ti, Cr, Fe, and Zn
isotopic chains, with isoscalar pairing strength V is = 0.8, we found a systematic reduction of the
half-lives by the deformation effects.

With the newly developed theoretical frameworks, we aim to further extend our study to nuclear
astrophysics. The research of EC rates at finite temperature performed in Ref. [33] on diamond
region nuclei has to be broadened to calculations throughout the nuclide chart by considering
the deformation effects. The same applies to the β-decay rates at zero and finite temperature.
At zero temperatures, a systematic calculation of β-decay rates is underway, which will serve as
an input for r-process simulations, with exciting implications for modeling nuclear abundances.
With improved theoretical considerations accomplished in this thesis, we can calculate both EC
and β-decay rates throughout the nuclide chart of high interest to the entire nuclear astrophysics
community. Furthermore, considering hot nuclei, and exploring the limits of the nuclear landscape
at high temperatures can unveil the intriguing dynamics of neutron star mergers and supernovae.
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Appendix A

Linear response theory derivations

In this Appendix we derive some of the important expressions used throughout Chapters 3 and 7.

A.1 Deriving the time-dependentHartree-Fock-Bogoliubov equa-
tions

First, we have to derive the time-dependent HFB (TDHFB) equation (3.12), starting from the q.p.
operators in the Heisenberg picture as defined in Eq. (3.11). The time derivative of the generalized
density matrix yields

Ṙ(t)µµ′ = 〈ȧ†(t)µ′a(t)µ〉T + 〈a†(t)µ′ ȧ(t)µ〉T , (A.1)

which together with the Heisenberg equations of motion for the q.p. operators

iȧ(t)µ = [a(t)µ, H], iȧ†(t)µ = [a†(t)µ, H], (A.2)

gives:
Ṙµµ′ = −i〈[a†µ′ , H]aµ〉T − i〈a†µ′ [aµ, H]〉T . (A.3)
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The commutators appearing in the above expression can be reduced to

[a†µ′ , H] =
1

2

∑
νν′

Hνν′ [a
†
µ′ , a

†
νaν′ ] =

1

2

∑
νν′

Hνν′
(
δµ′ν̄aν′ − a†νδµ′ν′

)
,

[aµ, H] =
1

2

∑
νν′

Hνν′ [aµ, a
†
νaν′ ] =

1

2

∑
νν′

Hνν′
(
δµ′νaν′ − a†νδµ′ν̄′

)
,

(A.4)

where Hµµ′ label the matrix elements of the Hamiltonian H in the q.p. configuration space. The
time derivative of the density matrix becomes

Ṙµµ′ = −i1
2

∑
νν′

Hνν′

(
〈δµ′ν̄aν′aµ − δµ′ν′a†νaµ〉+ 〈δµνa†µ′aν′ − δνν̄′a†µ′a†ν〉

)
= −i1

2

∑
νν′

Hνν′ (δµ′ν̄Rµν̄′ − δµ′ν′Rµν + δµνRν′µ′ − δµν̄′Rν̄µ′)

= − i
2

(∑
ν′

Hµ̄′ν′Rµν̄′ −
∑
ν

Hνµ′Rµν +
∑
ν′

Hµν′Rν′µ −
∑
ν

Hνµ̄Rν̄µ′

)

= − i
2

(
−
∑
ν′

Rµν̄′Hν̄′µ′ −
∑
ν

RµνHνµ′ +
∑
ν′

Hµν′Rν′µ′ +
∑
ν

Hµν̄Rν̄µ′

)
= −i[H,R]µµ′ .

(A.5)

We have used the anti-commutation property of the q.p. operators from Eq. (3.9). Again, we
have linearized the Hamiltonian by keeping only the terms that appear in the usual RHB equation,
consisting only of the product of two q.p. operators

Hµµ′ =

(
H11 H20

−H20∗ −H11∗

)
W†HW
=⇒

(
h ∆

−∆∗ −h∗

)
, (A.6)

whereW denotes the Bogoliubov transformation [58].

A.2 Linear response equation in the proton-neutron basis

The super-matrix formulation of the generalized density and Hamiltonian is introduced in Eqs.
(3.18) and (3.19). Here we start from the TDHFB equation in the proton-neutron super-matrix
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space
iδṘ(t) = [H0, δR(t)] + [δH(t) + F(t),R0], (A.7)

and explicitly write the corresponding proton and neutron blocks to get the following form:

i

(
0 δṘ(pn)

δṘ(np) 0

)
=

[(
H(p)

0 0

0 H(n)
0

)
,

(
0 δR(pn)

δR(np) 0

)]

+

[(
δH(p) δH(pn)

δH(np) δH(n)

)
+ F(t),

(
0 δR(pn)

δR(np) 0

)]
,

(A.8)

which reduces to

i

(
0 δṘ(pn)

δṘ(np) 0

)
=

(
0 H(p)

0 δR(pn)

H(n)
0 δR(np) 0

)
−
(

0 δR(pn)H(n)
0

δR(np)H(p)
0 0

)

+

(
(δH(p) + F(p))R(p)

0 − R(p)
0 (δH(p) + F(p)) (δH(pn) + F(pn))R(n)

0 − R(p)
0 (δH(pn) + F(pn))

(δH(np) + F(np))R(p)
0 − R(n)

0 (δH(np) + F(np)) (δH(n) + F(n))R(n)
0 − R(n)

0 (δH(n) + F(n))

)
.

(A.9)

Now we can take only the upper right block (i.e. the pn component) from the above equation to get
the linearized TDHFB equation in the reduced space

iδṘ(pn)(t) = H(p)
0 δR(pn) − δR(pn)H(n)

0 + (δH(pn) + F(pn))R(n)
0 − R(p)

0 (δH(pn) + F(pn)). (A.10)

By writing the time-dependence of above equation as in Eq. (3.21) and introducing the q.p. basis
we get

− ωδRπν = H0ππ′δRπ′ν − δRπν′H0ν′ν + (δH + F )πν′R0ν′ν −R0ππ′(δH + F )π′ν , (A.11)

thus lowering the dimension of our problem by half. Using the fact that the static part of the
generalized matrix and the mean-field Hamiltonian in the q.p. basis are diagonal used as the
starting point for the section 3.1

R0µµ′ = fµδµµ′ , H0µµ′ = Eµδµµ′ , (A.12)
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with fµ̄ = 1− fµ, Eµ̄ = −Eµ, we have derived the linear response equation

− ωδRπν = (Eπ − Eν)δRπν − (fπ − fν)(δHπν + Fπν). (A.13)

In the above, π denotes the proton q.p. and ν neutron q.p. states. We have written the linear
response equation in the proton-neutron notation.

A.3 Derivation of the interaction term W

Here we show the derivation of the expression for the interaction matrix W in Eq. (3.27) in the
proton-neutron basis. We mostly follow Ref. [107], deriving the equations in more details where
necessary, and extending the approach to charge-exchange 2 q.p. excitations. We start by the
variation of Bogoliubov transformation between the proton-neutron states

(
ā†π

āπ

)
=

[
1 +

(
h∗ g∗

−g −h

)]
πν

(
a†ν

aν

)
=⇒

ā†π = a†π + i
∑
ν′

(h∗πν′(t)a
†
ν′ + g∗πν′(t)aν′),

āπ = aπ − i
∑
ν′

(hπν′(t)aν′ + gπν′(t)a
†
ν′),

(A.14)

where h(t) = h(t)† and g(t) = −g(t)T since the transformation needs to be unitary. The causal
equation of motion for the density operator can be written as

R(t) = U(t, t0)R(t0)U †(t, t0), (A.15)

where the time evolution operator is defined by the Schrödinger equation

i(d/dt)R(t) = [H,R(t)]. (A.16)

The thermal equilibrium is obtained by setting (d/dt)R(t) = 0 thus

[H,R(t0)] = 0, (A.17)

obtaining the FT-RHB equation. In the presence of the time-dependent external field F (t) we get

i(d/dt)R(t) = [H + F (t),R(t)]. (A.18)
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If the external field couples weakly to the system we can writeR(t) = R0 +R1(t) and inserting in
the above equation

i(d/dt)R1(t) + [R1(t), H] = −[R0, F (t)]. (A.19)

A general unitary transformation can be expressed through the Hermitian operatorW (t, t0) as

U(t) = eiW (t), (A.20)

and if the external perturbation is weak we can expand the exponential in a Taylor series

U(t) = 1 + iW (t) +
i2

2
W (t)2 + . . . , U †(t) = 1− iW (t) +

i2

2
W (t)2 + . . . . (A.21)

Thus the density operatorR(t) = R0(t) +R1(t) + . . . can be expressed as

R0(t) = R(t0), R1(t) = i[W (t),R(t0)], . . . (A.22)

Time evolution of quasiparticle creation and annihilation operators is now given by

ā†π = U(t)a†πU
†(t) = a†π + i[W (t), a†π] + . . . (A.23)

āπ = U(t)aπU
†(t) = aπ + i[W (t), aπ] + . . . (A.24)

Also, we can vary the quasiparticle transformation as in Eq. (A.14):

ā†π = a†π + i
∑
ν′

(h∗πν′(t)a
†
ν′ + g∗πν′(t)aν′)

āπ = aπ − i
∑
ν′

(hπν′(t)aν′ + gπν′(t)a
†
ν′)

. (A.25)

Comparing these two equations, the following form of theW (t) operator can be deduced

W (t) =
∑
πν

(
h −g∗
g −h∗

)
a†πaν ≡

∑
πν

δRπν(t)a
†
πaν , (A.26)
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where we are using the notation of Eq. (3.8) in the doubled q.p. space. The external field operator
has a periodic time dependence

F (t) =
∑
πν

Fπνa
†
πaνe

−iωt + h.c. , (A.27)

inducing the periodic oscillations of induced density

δR(t) =
∑
πν

δRπνa
†
πaνe

−iωt + h.c. . (A.28)

We now insert this into the time-dependent equation (A.19), multiply from the right side by a†νaπ
and take the trace to project the response function

iTr(Ṙ1a
†
νaπ) + Tr([R1(t), H]a†νaπ) = −Tr([R0, F (t)]a†νaπ). (A.29)

Since there is no mixing in time, we can just collect the terms with e−iωt to get

iTr(Ṙ1a
†
νaπ) = iTr

{
i

[
(−iω)

∑
π′ν′

δRπ′ν′a
†
π′aν′e

−iωt,R0

]
a†νaπ

}
= iω

∑
π′ν′

δRπ′ν′Tr
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a†π′aν′ ,R0

]
a†νaπ

}
e−iωt

= iω
∑
π′ν′
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a†π′aν′R0a

†
νaπ −R0a

†
π′aν′a

†
νaπ

}
e−iωt

= iω
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δRπ′ν′Tr
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†
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†
π′aν′ −R0a

†
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†
νaπ

}
e−iωt

= iω
∑
π′ν′

δRπ′ν′

{
〈a†νaπa†π′aν′〉 − 〈a†π′aν′a†νaπ〉

}
e−iωt

= iω
∑
π′ν′

δRπ′ν′

{
〈[a†νaπ, a†π′aν′ ]〉

}
e−iωt,

(A.30)
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where we have used the cyclic property of the trace and Tr(R0 . . .) = 〈. . .〉. For the second term
we have

Tr
{

[R1(t), H]a†νaπ
}

= Tr
{

[i[W (t),R0], H]] a†νaπ
}

= iTr
{
W (t)R0Ha

†
νaπ −R0W (t)Ha†νaπ −HW (t)R0a

†
νaπ +HR0W (t)a†νaπ

}
= i〈Ha†νaπW (t)〉 − 〈W (t)Ha†νaπ〉 − 〈a†νaπHW (t)〉+ 〈W (t)a†νaπH〉
= i〈

[
[H, a†νaπ],W (t)

]
〉.

(A.31)

The third term is
Tr
{

[R0, F (t)]a†νaπ
}

= 〈[F (t), a†νaπ]〉. (A.32)

Thus the linear response equation is obtained as

iω
∑
π′ν′

δRπ′ν′

{
〈[a†νaπ, a†π′aν′ ]〉

}
+ δRπ′ν′i〈

[
[H, a†νaπ], a†π′aν′

]
〉 =

−
∑
π′ν′

Fπ′ν′〈[a†π′aν′ , a†νaπ]〉.
(A.33)

The Hamiltonian operator has the separable form in the single-particle basis

Ĥ =
∑
p

εpc
†
pcp +

∑
n

εnc
†
ncn + χ

∑
pnp′n′

D∗pnDp′n′c
†
ncpc

†
p′cn′ , (A.34)

where the first two terms correspond to the diagonal single-particle part (mean-field), and the third
term respesents the separable residual interaction, where vpnp′n′ = χD∗pnDpn. By transforming in
the quasiparticle basis we get

Ĥ =
∑
π

Eπα
†
παπ +

∑
ν

Eνα
†
ναν︸ ︷︷ ︸

Ĥ0

+χ
∑
πνπ′ν′

D∗πνDπ′ν′a†νaπa†π′aν′ , (A.35)
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Appendix A. Linear response theory derivations

where Ĥ0 is the mean-field Hamiltonian (Notice α instead of a in Eπ, Eν parts). We can now
evaluate the commutators using the generalized Wick theorem

〈[a†νaπ, a†π′aν′ ]〉 = δππ′δνν′(fν − fπ),

〈
[
[H0, a†νaπ], a†π′aν′

]
〉 = (Eν − Eπ)(fν − fπ)δνν′δππ′ ,

〈
[
[H, a†νaπ], a†π′aν′

]
〉 = (fπ − fν)(fν′ − fπ′) (D∗π′ν′Dπν +D∗π̄′ν̄′Dπ̄ν̄ + Fock terms) ,

(A.36)

where we keep the direct terms. By inserting in the linear response equation we get (neglecting
Fock terms)

iωδRπ′ν′δππ′δνν′(fν − fπ) + δRπ′ν′i(Eν − Eπ)(fν − fπ)δνν′δππ′

+
∑
π′ν′

δRπ′ν′i(fπ − fν)(fν′ − fπ′) (D∗π′ν′Dπν +D∗π̄′ν̄′Dπ̄ν̄) = +Fπ′ν′δππ′δνν′(fν − fπ).
(A.37)

To get the linear response equation we need to redefine

δR̃πν = iδRπν(fν − fπ), (A.38)

so that the linear response equation is rewritten as

(ω − Eπ + Eν)δR̃πν = +Fπν(fν − fπ)δππ′δνν′ +
∑
π′ν′

δR̃π′ν′(fν − fπ) (D∗π′ν′Dπν +D∗π̄′ν̄′Dπ̄ν̄)

= (fν − fπ) (Fπν + δHπν) ,

(A.39)

where the factor i was included in the definition (A.38). The above equation is in agreement with
Eq. (3.20) and with the following definition of the induced Hamiltonian

δHπν =
∑
π′ν′

R̃π′ν′ (D∗π′ν′Dπν +D∗π̄′ν̄′Dπ̄ν̄) ≡
∑
π′ν′

Wπνπ′ν′R̃π′ν′ . (A.40)

This proves form of the interaction term in Eq. (3.27).
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Appendix B

Interpretation of the FT-pnRQRPA strength
function

In this Appendix, we demonstrate the origins of the detailed balance factor, first appearing in Eq.
(3.33). The exact response function Re

FF is obtained from the expression [75]

Re
FF =

1

Z

∑
i,f

e−βωi

[
|〈f |F̂ |i〉|2
ω − ωfi

− |〈f |F̂
†|i〉|2

ω + ωfi

]
, (B.1)

where |i(f)〉 is the initial(final) state with the energy ωi(f) and ωfi = ωf − ωi. The external field
operator is F̂ (for which we assume F̂ 6= F̂ †), and Z is the partition function defined in Sec. 2.3.
Taking the imaginary part of the exact response function we get

Im[Re
FF ] =

1

Z

∑
i,f

e−βωi
[
|〈f |F̂ |i〉|2δ(ω − ωfi)− |〈f |F̂ |i〉|2δ(ω + ωfi)

]
, (B.2)

defined both for positive and negative excitation energies ω. The double summation in above
expression implies two types of transitions: (i) excitations i → f , in addition to (ii) de-excitations
f → i. This is clear in the case when F̂ is the like particle operator, so that both i and f are within
the same nucleus. However, if we suppose that F̂ is the charge-exchange operator, then the states i
and f connect different nuclei. It is not clear that the daughter nucleus will have excited states at
exactly matching energies as the parent. However, if the density of states is high, which is certainly
true for highly excited nuclei, one can imagine the situation shown in Fig. B.1. This means that the
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parent nucleus daughter nucleus

| i⟩

| f⟩ | f′⟩

| i′⟩
de-excitation |⟨ f | F̂ †| i′⟩ | 2ex

cit
at
ion

|⟨i
|

̂F |
f′⟩ |

2

Figure B.1: The schematic energy diagram concerning the transitions between the states in the
parent nucleus (i, f ) and those in the daughter nucleus (i′, f ′). Both the excitation transition i→ f ′

dictated by the charge-exchange external field operator F̂ and de-excitation transition f → i′ dictated
by F̂ † are shown.

transition i → f ′ with energy ωif will correspond to transition f ′ → i with energy ωif = −|ωfi|,
where the states i′, f ′ are found in the daughter nucleus.

To make the analogy complete, we drop the primes in the following. We rewrite Eq. (B.2) as

Im[Re
FF ] =

1

Z

∑
i<f

e−βωi
[
|〈f |F̂ |i〉|2δ(ω − ωfi)− |〈f |F̂ |i〉|2δ(ω + ωfi)

]
+

1

Z

∑
i<f

e−βωf
[
|〈i|F̂ |f〉|2δ(ω − ωif )− |〈i|F̂ |f〉|2δ(ω + ωif )

]
,

(B.3)

by explicitly considering the terms in the double summation. Now, we fix excitation energy to
ω = ωfi, so that the imaginary part of the response function becomes

Im[Re
FF ]|ω=ωfi

=
1

Z

∑
i<f

{
e−βωi|〈f |F̂ |i〉|2 − e−βωf |〈i|F̂ †|f〉|2

}
δ(ω − ωfi)

=
1

Z

∑
i<f

e−βωi|〈f |F̂ |i〉|2[1− e−βω]δ(ω − ωfi),
(B.4)
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where in the second term we have used |〈f |F̂ |i〉|2 = |〈i|F̂ †|f〉|2. The physical strength function at
finite temperature is given by [75]

SphysF =
1

Z

∑
i,f

e−βωi|〈f |F̂ |i〉|2δ(ω − ωfi). (B.5)

Therefore, by inspecting expression derived in Eq. (B.4), we notice that the factor (1− e−βω)−1 has
to be divided from the exact response function, so that

SphysF = − 1

π
Im
[

Re
FF

1− e−βω
]
. (B.6)

Since the FT-pnRQRPA provides the approximation of the exact response function, the same
conclusions should apply [31].
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Appendix C

Low-momentum transfer limit of the
Walecka model

In this section we present some of the calculation details within the Walecka model of the weak-
interaction. Expression that we use to calculate the EC cross sections is derived in Refs. [152,153]

dσec
dΩ

=
G2
Fg

2
V cos2 θC
2π

F (Z,Ee)

2Ji + 1{∑
J≥1

W(Ee, Eν)
{

(1− (ν̂ · q̂)(β · q̂))
[
|〈Jf ||T̂ magJ ||Ji〉|2 + |〈Jf ||T̂ elJ ||Ji〉|2

]
−2q̂ · (ν̂ − β)Re〈Jf ||T̂ magJ ||Ji〉〈Jf ||T̂ elJ ||Ji〉∗

}
+
∑
J≥0

W(Ee, Eν)
{

(1− ν̂ · β + 2(ν̂ · q̂)(β · q̂))|〈Jf ||L̂J ||Ji〉|2 + (q + ν̂ · β)|〈Jf ||M̂J ||Ji〉|2

− 2 q̂ · (ν̂ + β)Re〈Jf ||L̂J ||Ji〉〈Jf ||M̂J ||Ji〉∗
}
,

(C.1)

where the momentum transfer q = ν−k is difference between the electron and neutrino momenta,
q̂ and ν̂ are the corresponding unit vectors, and β = k/Ee. Neutrino energy is denoted byEν while
the electron energy is Ee. The Fermi function F (Z,Ee) corrects cross section for the distortion
of the electron wave function by the Coulomb field of the nucleus [154]. The Fermi constant is
G2 = G2

Fg
2
V cos2 θc, where gV is the vector coupling constant and θC Cabbibo angle. We also
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Appendix C. Low-momentum transfer limit of the Walecka model

include the recoil term
W(Ee, Eν) =

E2
ν

(1 + Ee/MT (1− ν̂ · β))
, (C.2)

whereMT is the mass of target nucleus. The nuclear transition matrix elements are taken between
the initial state |Ji〉 and final state |Jf〉, corresponding to charge M̂J , longitudinal L̂J , transverse
electric T̂ elJ andmagnetic T̂ magJ operators defined inRefs. [152,153]. In thisAppendixwe investigate
the reduction of Eq. (C.1) in the Gamow-Teller (Jπ = 1+), q → 0 limit. Out of the four mentioned
spherical tensor operators, only non-vanishing in this limit is T̂ elJ . It has the form

T̂ elJ =
q

MN

[
F V

1 ∆′JM(r) +
1

2
µV ΣJM(r)

]
+ iFAΣ′JM(r), (C.3)

where form-factors F V
1 , µ

V , FA and operators ∆′JM ,ΣJM ,Σ
′
JM are defined in Ref. [152, 153].

Obviously, for q → 0 the first term that contains the ratio q/MN , where MN is the nucleon mass
can be neglected. Therefore, we are left with T̂ elJ ≈ iFAΣ′JM(r) which is given by [152,153]

Σ′JM(r) =

[
−
√

J

2J + 1
MM

JJ+1(r) +

√
J + 1

2J + 1
MM

JJ−1(r)

]
· σ, (C.4)

whereMM
JL = jJ(qr)YM

JL1(Ωr), jJ(qr) is the spherical Bessel function of rank J and YM
JL1(Ωr)

is the vector spherical harmonic [211]. In the limit q → 0 we can use the expansion of spherical
Bessel functions [178]

jJ(qr)→ (qr)J

(2J + 1)!!
, (C.5)

so that for J = 1 in the low-momentum transfer limit we have

T̂ elJ =
iFA√

6π
σ1M . (C.6)

Now let’s turn back to Eq. (C.1) and include only the term with the reduced matrix element
|〈Jf ||T̂ elJ ||Ji〉|2

dσec
dΩ

=
G2
Fg

2
V cos2 θC
2π

F (Z,Ee)

2Ji + 1
W(Eν , Ee)(1− (ν̂ · q̂)(β · q̂))|〈Jf ||T̂ elJ ||Ji〉|2, (C.7)

(C.8)
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and furthermore, near the threshold β → 0, the recoil factor reduces toW(Eν , Ee) ≈ E2
ν , so that

the total cross section is

σec = 4π
G2
Fg

2
V cos2 θC
2π

F (Z,Ee)

2Ji + 1
E2
ν

g2
A

6π
|〈Jf ||σ~τ+||Ji〉|2

(
×3

2

)
=

(GFgV cos θC)2

2π
F (Z,Ee)(E

(i,f)
0 − Ee)2B(GT+),

where E(i,f)
0 = Ei + MNic

2 − Ef −MNf c
2 is difference between initial and final nuclear state

energy and B(GT+) =
g2A

2Ji+1
|〈Jf ||στ+||Ji〉|2 is the Gamow-Teller matrix element. Factor in red

comes from the reduced isospin matrix element. Therefore, the low-energy long-wavelength limit
β → 0, q → 0 of the Walecka model corresponds to a simple expression in Eq. (4.2), known as the
allowed approximation.
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Appendix D

Shape factor for first-forbidden transitions

We present the expressions for the first-forbidden transitions Jπ = 0−, 1− and 2−, by following
the derivations presented in Refs. [154, 212, 213]. To correctly assess the β-decay half-lives it
is important to use good expressions for the electron radial wave functions. They correspond
to the solutions of the radial Dirac equations for the outgoing electron in a Coulomb field of
a nucleus [213]. The expressions for the shape-factor are given in terms of lepton functions
MK(ke, kν) and mK(kE, kν), which include combination of nuclear matrix elements and energy
dependent phase-space factors. They are spherical tensors of rank K, while ke and kν are the
angular momentum quantum numbers of electron and neutrino, respectively. In this Appendix
we consider only the spherical symmetry, meaning that expressions presented are valid in both
laboratory and intrinsic system. The extension to axial-geometry can be found in Ref. [77]. The
matrix elements are expressed in terms of the vector V FN

KLs and axial AFN
KLs form factors, whereL is

the multipolarity, s is the spin, and the radial dependence is rL+2N . The radial expansion of electron
wave functions leads to factors I(ke,m, n, ρ; r), denoting the expansion coefficients in the powers
of (αZ) [154]. The numbersm,n and ρ denote the expansion powers, tabulated in Ref. [154]. The
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Appendix D. Shape factor for first-forbidden transitions

general expression for the shape-factor C(W ) [cf. Eq. (5.3)] is calculated from [212]

C (W ) =
∑
ke,kν

ke+kν=L+1

λke

{
M2

L (ke, kν) +m2
L (ke, kν)−

2µkeγke
keW

ML (ke, kν)mL (ke, kν)

}

+
∑
kk,kν

ke+kν=L+2

λke

{
M2

L (ke, kν)−
2µkeγke
keW

ML (ke, kν)mL (ke, kν) +M2
L+1 (ke, kν)

−2µkeγke
keW

ML+1 (ke, kν)mL+1 (ke, kν)

}
+ δ∆J,0

{
M2

0 (1, 1) +m2
0(1, 1)− 2µ1γ1

W
M0(1, 1)m0(1, 1)

}
,

(D.1)

where γke =
√
k2
e − (αZ)2, µke = keW

γke
. The definition of λke is expressed through the Coulomb

amplitudes αke , and can be found in Refs. [154, 212, 213]. In this work, we set λ2 = 1 and µ1 = 1

as in Ref. [131].
The shape factor C(W ) of the 0− transition can be calculated from Eq. (D.1) as

C(W ) = M2
0 (1, 1) +m2

0(1, 1)− 2
µ1γ1

W
M0(1, 1)m0(1, 1), (D.2)

whereM0(1, 1) is expressed through the form factors as

M0(1, 1) = AF 0
000 −

1

3
αZAF 0

011(1, 1, 1, 1)− 1

3
W0R

AF 0
011, (D.3)

W0 is the end-point energy determined from W0 = (Mi − Mf )/(mec
2), where Mi(f) are the

initial(final) nuclear masses, and R is the nuclear radius. The form factor F 0
011(1, 1, 1, 1) contains

the radial function I(1, 1, 1, 1; r). As in Ref. [131], we assume the uniform spherical distribution.
The expressions for the form factors can be found in Ref. [212]

AF 0
000 = gAM0

000 = gA

∫
γ5T000,

−AF 0
011(1, 1, 1, 1) = gAM0

011(1, 1, 1, 1) = gA

∫ ( r
R

)
I(1, 1, 1, 1; r)γ5T011,

−AF 0
011 = gAM0

011 = gA

∫ ( r
R

)
γ5T011,

(D.4)
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where gA is the axial coupling constant, and MN
KLs the corresponding matrix element. The

integration in the above expressions is abbreviated as in Refs. [154, 212, 213]. For instance∫ ( r
R

)
γ5T011 ≡ 〈Jπff || (r/R) γ5T011τ∓||Jπii 〉, (D.5)

where Ji(f) is the initial(final) angular momentum and πi(f) initial(final) parity. For simplicity, in
the following we label |i(f)〉 ≡ |Jπi(f)i(f) 〉. For β∓-decay, the isospin operator is τ∓. In the following,
we assume that the proton-neutron basis is arranged in the β∓ direction, so that the isospin matrix
element gives unity. The final expression forM0(1, 1) is therefore

M0(1, 1) = gA

∫
γ5T000 +

1

3
αZgA

∫ ( r
R

)
I(1, 1, 1, 1; r)γ5T011 +

1

3
W0RgA

∫ ( r
R

)
γ5T011,

(D.6)

and form0(1, 1)

m0(1, 1) = −1

3
meR

AF 0
011 = −1

3
meRgA

∫ ( r
R

)
γ5T011. (D.7)

The angular matrix elements are defined in Ref. [154] as

TMLL0 = iLYLM , TMKL1 =
∑
µ

CKM
1µLM−µi

Lγ5σ
µYLM−µ, (D.8)

where the second part is just coupling of [αYL]KM . Note that in Ref. [154] they employ the
Biedenharn-Rose (BR) phase convention for the spherical harmonics, unlike the Condon-Shortley
(CS) employed in this thesis. The two phase conventions in the spherical basis are defined as [58]

CS: |nljm〉 =
∑
ml,ms

Cjm
lml1/2ms

Rnl(r)Ylml(θ, φ)χ1/2ms ,

BR: |nljm〉 =
∑
ml,ms

Cjm
lml1/2ms

Rnl(r)Ỹlml(θ, φ)χ1/2ms ,
(D.9)

where Ỹlml = ilYlml . Also, we note that the coupling order in Eq. (D.8) is opposite from the one
we employ to evaluate the pnRQRPA matrix elements, where L is first coupled to S. By applying
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the Wigner-Eckart theorem to Eq. (D.6) and reverting to notation of Eq. (D.5) we get

M0(1, 1) =
√

4πgA
〈f ||[γ5Ỹ ]0||i〉√

2Ji + 1
+
√

4π
1

3
αZgA

〈f ||
(
r
R

)
I(1, 1, 1, 1; r)[σ ⊗ Ỹ1]0||i〉√

2Ji + 1

+
√

4π
1

3
W0RgA

〈f ||
(
r
R

)
[σ ⊗ Ỹ1]0||i〉√

2Ji + 1
,

(D.10)

and correspondingly

m0(1, 1) = −
√

4π
1

3
meRgA

〈f ||
(
r
R

)
[σ ⊗ Ỹ1]0||i〉√

2Ji + 1
. (D.11)

Now, the matrix element for the 0− multipole can be rewritten in the notation of Ref. [131]. To this
aim, we introduce the following changes; ξ = αZ/2R and redefinition of the spherical harmonics

CLM =

√
4π

2L+ 1
YLM . (D.12)

The above expressions can be rewritten as

M0(1, 1) = gA
〈f ||γ5||i〉√

2Ji + 1
+

2√
3
ξgA
〈f ||rI(1, 1, 1, 1; r)[σ ⊗C1]0||i〉√

2Ji + 1

+
1

3
W0

√
3gA
〈f ||r[σ ⊗C1]0||i〉√

2Ji + 1
,

(D.13)

and

m0(1, 1) = −1

3

√
3gA
〈f ||r[σ ⊗C1]0||i〉√

2Ji + 1
. (D.14)

Let us now define the following abbreviations guided by Ref. [131]

ξ′v = −gA
〈f ||γ5||i〉√

2Ji + 1
, w′ = − 2√

3
gA
〈f ||rI(1, 1, 1, 1; r)[σ ⊗C1]0||i〉√

2Ji + 1
,

w = −
√

3gA
〈f ||r[σ ⊗C1]0||i〉√

2Ji + 1
,

(D.15)
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so that the above terms reduce to

M0(1, 1) = −ξ′v − ξw′ − 1

3
W0w, (D.16)

and

m0(1, 1) = −1

3
w. (D.17)

By defining V = ξ′v + ξw′ and ζ0 = V + 1/3wW0, we finally get

C(W ) = ζ2
0 +

1

9
w2 − 2µ1γ1

W
(−ζ0)

(
−1

3
w

)
= ζ2

0 +
1

9
w2 − 2µ1γ1

3W
ζ0w. (D.18)

This result is in the agreement with expressions listed in Ref. [131], apart from keeping gA in the
matrix element. The shape-factor can be expressed as in Eq. (5.5), through the coefficients k, ka,
kb, and kc as

k = ζ2
0 +

1

9
w2,

kb = −2µ1γ1

3
ζ0w,

(D.19)

others being zero.
The shape-factor for the Jπ = 1− multipole is given by Eq. (D.1) as

C(W ) = M2
1 (1, 1) +m2

1(1, 1)− 2µ1γ1

W
M1(1, 1)m1(1, 1) +M2

1 (1, 2) + λ2M
2
1 (2, 1). (D.20)

The functions MK and mk can be found in Ref. [154]. First, we start by expressing the M1(1, 1)

through the vector and axial form factors as

M1(1, 1) = −V F 0
101 −

1

3
αZ

√
1

3
V F 0

110(1, 1, 1, 1)− 1

3
W0R

√
1

3
V F 0

110

− 1

3
αZ

√
2

3
AF 0

111(1, 1, 1, 1)− 1

3
(W − q)R

√
2

3
AF 0

111.

(D.21)

In the above, q is the neutrino momentum related to neutrino energy Wν . The form factors are
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defined through the spherical tensor operators from Eq. (D.8)

M1(1, 1) = g2
V

∫
T101 −

1

3
αZ

√
1

3
g2
V

∫ ( r
R

)
T110I(1, 1, 1, 1; r)− 1

3
W0R

√
1

3
g2
V

∫ ( r
R

)
T110

− 1

3
αZ

√
2

3
gA

∫ ( r
R

)
I(1, 1, 1, 1; r)γ5T111 −

1

3
(W − q)R

√
2

3
gA

∫ ( r
R

)
γ5T111.

(D.22)

The vector coupling gV = 1.0, and is omitted from the following expressions. The other lepton
functions appearing in Eq. (D.20) have the form

m1(1, 1) = −1

3
meR

[√
1

3
V F 0

110 +

√
2

3
AF 0

111

]

= −1

3
meR

[√
1

3

∫ ( r
R

)
T110 +

√
2

3
gA

∫ ( r
R

)
T111

]
,

(D.23)

M1(1, 2) =
1

3
qR

[√
2

3
V F 0

110 +

√
1

3
AF 0

111

]

=
1

3
qR

[√
2

3

∫ ( r
R

)
T110 +

√
1

3
gA

∫ ( r
R

)
T111

]
,

(D.24)

M1(2, 1) =
1

3
pR

[√
2

3
V F 0

110 −
√

1

3
AF 0

111

]

=
1

3
pR

[√
2

3

∫ ( r
R

)
T110 −

√
1

3
gA

∫ ( r
R

)
T111

]
,

(D.25)

where p =
√
W 2 − 1 is the electronmomentum. Introducing the redefinition of spherical harmonics
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from Eq. (D.12) and applying the Wigner-Eckart theorem we get forM1(1, 1)

M1(1, 1) =
〈f ||α||i〉√

2Ji + 1
− 2

3
ξ
〈f ||rI(1, 1, 1, 1; r)C1||i〉√

2Ji + 1
− 1

3
W0
〈f ||rC1||i〉√

2Ji + 1

− 2
√

2

3
ξgA
〈f ||rI(1, 1, 1, 1; r)[σ ⊗C1]1||i〉√

2Ji + 1
−
√

2

3
(W − q)gA

〈f ||r[σ ⊗C1]1||i〉√
2Ji + 1

.

(D.26)

While the other expressions appearing in Eq. (D.20) are

m1(1, 1) = −1

3

〈f ||rC1||i〉√
2Ji + 1

−
√

2

3
gA
〈f ||r[σ ⊗C1]1||i〉√

2Ji + 1
, (D.27)

M1(1, 2) =

√
2

3
q
〈f ||rC1||i〉√

2Ji + 1
+

1

3
qgA
〈f ||r[σ ⊗C1]1||i〉√

2Ji + 1
, (D.28)

M1(2, 1) =

√
2

3
p
〈f ||rC1||i〉√

2Ji + 1
− 1

3
pgA
〈f ||r[σ ⊗C1]1||i〉√

2Ji + 1
. (D.29)

Now, we introduce the notation from Ref. [131], and define the following abbreviations

ξ′y = − 〈f ||α||i〉√
2Ji + 1

, x′ = −2

3

〈f ||rI(1, 1, 1, 1; r)C1||i〉√
2Ji + 1

,

x = −〈f ||rC1||i〉√
2Ji + 1

, u′ = −2
√

2

3
gA
〈f ||rI(1, 1, 1, 1; r)[σ ⊗C1]1||i〉√

2Ji + 1
,

u = −
√

2gA
〈f ||r[σ ⊗C1]1||i〉√

2Ji + 1
.

(D.30)

Note that the matrix element ξ′y (in addition to ξ′v) occurs only as the relativistic correction, and
couples upper to lower components of wave functions. Using the abbreviations from Ref. [131];
Y = ξ′y − ξ(u′ + x′) and ζ1 = Y + 1

3
(u− x)W0, above terms can be rewritten as

M1(1, 1) = −ξ′y + ξx′ +
1

3
W0x+ ξu′ +

1

3
(W − q)u

= −ξ′y + ξ(x′ + u′) +
1

3
W0(x− u) +

2

3
Wu = −ζ1 +

2

3
Wu,

(D.31)
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m1(1, 1) =
1

3
x+

1

3
u =

1

3
(x+ u),

M1(1, 2) = −
√

2

3
qx− 1

3

1√
2
qu = − q

3
√

2
(2x+ u),

M1(2, 1) = −
√

2

3
px+

1

3
√

2
pu =

1

3
√

2
p(2x− u).

(D.32)

The shape-factor C(W ) is now

C(W ) =

[
−ζ1 +

2

3
Wu

]2

+
1

9
(x+ u)2 − 2µ1γ1

W

[
−ζ1 +

2

3
Wu

]
1

3
(x+ u)

+
q2

18
(2x+ u)2 +

p2

18
(2x− u)2

= ζ2
1 +

4

9
W 2u2 − 4

3
Wuζ1 +

1

9
(x+ u)2 − 2µ1γ1

3W

[
−ζ1 +

2

3
Wu

]
(x+ u)

+
(W0 −W )2

18
(2x+ u)2 +

W 2 − 1

18
(2x− u)2

= ζ2
1 +

1

9
(x+ u)2 − 4

9
µ1γ1u(x+ u) +

W 2
0

18
(2x+ u)− λ2

18
(2x− u)2

+W 2

[
4

9
u2 +

1

18
(2x+ u)2 +

λ2

18
(2x− u)2

]
+

1

W

2µ1γ1

3
ζ1(x+ u)

+W

[
−4

3
uζ1 −

1

9
W0(2x+ u)2

]
.

(D.33)

We can further simplify the last term in the above expression for the shape-factor

−4

3
uζ1 −

1

9
W0(2x+ u)2 = −4

3
u

(
Y +

1

3
(u− x)W0

)
− 1

9
W0(2x+ u)2

= −4

3
uY − 4

9
uW0(u− x)− 1

9
W0(4x2 + 4xu+ u2)

= −4

3
uY − 1

9
W0

[
5u2 + 4x2

]
.

(D.34)

By writing the shape factor as C(W ) = k + kaW + kb/W + kcW 2 [cf. Eq. (5.5)] we can group
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the terms as

k = ζ2
1 +

1

9
(x+ u)2 − 4

9
µ1γ1u(x+ u) +

W 2
0

18
(2x+ u)− λ2

18
(2x− u)2,

ka = −4

3
uY − 1

9
W0

[
5u2 + 4x2

]
,

kb =
2µ1γ1

3
ζ1(x+ u),

kc =

[
4

9
u2 +

1

18
(2x+ u)2 +

λ2

18
(2x− u)2

]
.

(D.35)

The shape-factor for the Jπ = 2− multipole is given by Eq. (D.1) as

C(W ) = M2
2 (1, 2) + λ2M

2
2 (2, 1). (D.36)

The lepton functionM2(1, 2) can be expressed through the tensor operators defined in Eq. (D.8) as
in Ref. [154]

M2(1, 2) = −1

3
qRAF 0

211 =
1

3
qRgA

∫ ( r
R

)
γ5T211 =

√
3

3
qgA
〈f ||r[σ ⊗C1]2||i〉√

2Ji + 1
, (D.37)

where we have applied the Wigner-Eckart theorem to obtain the reduced matrix element in the last
equality. Similarly, the expression forM2(2, 1) is [154]

M2(2, 1) = −1

3
pRAF 0

211 =
1

3
pRgA

∫ ( r
R

)
γ5T211 =

√
3

3
pgA
〈f ||r[σ ⊗C1]2||i〉√

2Ji + 1
. (D.38)

Now, we abbreviate the matrix element appearing in above expressions [131]

z = 2gA
〈f ||r[σ ⊗C1]2||i〉√

2Ji + 1
, (D.39)

so that the lepton functions are considerably simplified

M2(1, 2) =

√
3

6
qz, M2(2, 1) =

√
3

6
pz. (D.40)
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The shape-factor is finally given by

C(W ) =
3z2

36
(q2 + λ2p

2) =
3z2

36
[(W0 −W )2 + λ2W

2 − λ2
2]

=
1

12
z2[−2W + (W 2

0 − λ2
2) +W 2(1 + λ2

2)].

(D.41)

By writing the shape-factor as C(W ) = k + kaW + kb/W + kcW 2 we can group the terms as

k =
1

12
z2(W 2

0 − λ2
2),

ka = −1

6
z2W0,

kc =
1

12
z2(1 + λ2

2).

(D.42)

Now, we can combine all the results for first-forbidden multipoles obtained for the shape-factor,
and group the terms as in Eq. (5.5)

k =
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9
w2

]
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+
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+
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+
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[
2µ1γ1

3
ζ1(x+ u)
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+
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(1)

+

[
1

12
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(D.43)

Numbers after the square brackets indicate the rank of the operators. Results presented in this
Appendix agree with those from Ref. [131].

Finally, it is interesting to write down the shape-factor in the allowed approximation using the
formalism of Ref. [154]. It is decomposed into two terms

C(W ) = (V F 0
000)2 + (AF 0

101)2 =

(∫
T000

)2

+

(
gA

∫
γ5T101

)2

, (D.44)
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where by expressing the form factors from Ref. [154] we get

C(W ) = 1︸︷︷︸
Fermi

+ g2
A

(〈f ||[σ ⊗C0]1||i〉√
2Ji + 1

)2

︸ ︷︷ ︸
Gamow-Teller

, (D.45)

the first one corresponds to the Fermi, and the second to Gamow-Teller reduced matrix elements.
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