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Article
Oblique circle method for measuring the curvature
and twist of mitotic spindle microtubule bundles
Arian Ivec,1,* Monika Trupini�c,2 Iva M. Toli�c,2 and Nenad Pavin1,*
1Department of Physics, Faculty of Science, University of Zagreb and 2Division of Molecular Biology, RuCer Bo�skovi�c Institute, Zagreb, Croatia
ABSTRACT The highly ordered spatial organization of microtubule bundles in the mitotic spindle is crucial for its proper func-
tioning. The recent discovery of twisted shapes of microtubule bundles and spindle chirality suggests that the bundles extend
along curved paths in three dimensions, rather than being confined to a plane. This, in turn, implies that rotational forces,
i.e., torques, exist in the spindle in addition to the widely studied linear forces. However, studies of spindle architecture and
forces are impeded by a lack of a robust method for the geometric quantification of microtubule bundles in the spindle. In this
work, we describe a simple method for measuring and evaluating the shapes of microtubule bundles by characterizing them
in terms of their curvature and twist. By using confocal microscopy, we obtain three-dimensional images of spindles, which al-
lows us to trace the entire microtubule bundle. For each traced bundle, we first fit a plane and then fit a circle lying in that plane.
With this robust method, we extract the curvature and twist, which represent the geometric information characteristic for each
bundle. As the bundle shapes reflect the forces within them, this method is valuable for the understanding of forces that act on
chromosomes during mitosis.
SIGNIFICANCE During cell division, the mitotic spindle divides the genetic material of the mother cell into two equal
parts. Precisely regulated forces within the spindle are required for the proper movement of chromosomes and the
functional spindle shape. The focus of most research in the field is on tension forces acting on kinetochores, whereas
forces that regulate spatial organization of the whole spindle remain poorly understood. The recent discovery of twisted
shapes of microtubule bundles suggests that the bundles extend along curved paths in three dimensions, meaning that
rotational forces, in addition to linear forces, exist in the spindle. We develop a robust method to measure the curvature and
twist of microtubule bundles, which represent information characteristic for each bundle.
INTRODUCTION

Equal division of the genetic material into two newly
formed daughter cells is performed by the mitotic spindle,
a complex microstructure that consists of two poles, micro-
tubule bundles extending between the poles, and a large
number of associated proteins (1–3). The spindle is a me-
chanical assembly that generates and regulates the forces
required for the segregation of chromosomes. The mechan-
ical properties of the spindle arise from the mechanical
properties of its basic building blocks, the microtubule bun-
dles. Microtubules are thin elastic filaments that generate
and balance the forces acting on chromosomes, which
arise from the activity of motor proteins, as well as from
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polymerization and depolymerization of the microtubule
bundles (4).

It is feasible to directly measure the forces exerted on
microtubule bundles (5); however, it is rather challenging
because of the small scales involved. To complement such
experiments, it is possible to measure the forces indirectly
by inferring them from the shape of the microtubule bundle
(6–8). This approach is based on the fact that microtubules
are inherently straight but can obtain different shapes de-
pending on the forces acting upon them. This approach was
used to quantify the bending rigidity of single microtubules
(8) and microtubule polymerization forces (7). Similarly,
methods to characterize the shape of cytoskeletal filaments
such as actin andmicrotubule bundles, together with the rele-
vant forces, have been developed based on open active con-
tours (9–11) or calculating the Frenet frame (12).

An approach for the quantification of forces based on
shapes can also be used onmicrotubule bundles in the spindle.
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The shapes of individual microtubule bundles give the entire
spindle its characteristic shape, such as mitotic spindles in
human cells. Similar spindle shapes can be found in most
metazoans (13). Interestingly, even in spindles without cen-
trosomes, e.g., in someprotozoanorganisms such as amoebas,
a similar spindle shape is present (14). The same is the case for
plant spindles (15). In some lower eukaryotes, e.g., yeasts, this
type of spindle shape is absent because their spindles consist
of a single straight microtubule bundle (16). Given that the
spindle shape reflects the forces within it, accurate measure-
ment and characterization of the shapes of microtubule bun-
dles are highly important for the understanding of forces
that act on chromosomes during mitosis.

We have recently shown that the spindle in human cells is
a chiral object, as bundles follow a left-handed helical path
(17,18). Chirality is also present in the spindles of amoeba
Naegleria gruberi, though the twist is right-handed (19).
The chirality of the spindle is best visualized by looking
at the spindle end on, i.e., along the pole-to-pole axis, to
observe the three-dimensional shapes with a helical twist
(Fig. 1). This view allows for visualization of microtubule
bundles as flower petals. By following the bundles in the di-
rection toward the observer, the petals rotate clockwise if the
bundles follow a left-handed helical path, which corre-
sponds to negative values of twist (Fig. 1, end-on view).
Vice versa, the petals rotate counterclockwise and have a
positive value of twist if the bundles follow a right-handed
helical path. The reason for this chirality may be the action
of the motor proteins that exert rotational forces on the mi-
crotubules, such as kinesin-5 (Kif11/Eg5) (20), whose inhi-
bition leads to the abolishment of left-handed twist (17).
FIGURE 1 End-on view and side view of a human mitotic spindle. (Top)

Projections of confocal images, color coded for the position along the pole-

to-pole axis (see color bar), of the metaphase spindle in a live HeLa cell

expressing PRC1-GFP shown in the end-on view (left) and side view (right).

Scale bars, 1 mm. (Bottom) Schematic representations of spindle microtu-

bule bundles shown in the end-on view (left) and side view (right). The ar-

rows show the direction of the bundle twist along the pole-to-pole axis when

looking toward the observer. The clockwise direction of the arrows indi-

cates left-handed twist. To see this figure in color, go online.
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Motor proteins generate these forces by ‘‘walking’’ along
a microtubule and performing side steps while switching
protofilaments along the same microtubule (21–23).

In this work, we develop a method for the analysis and
measurement of the geometrical properties of microtubule
bundles within the spindle. To extract information about
the shape of a microtubule bundle from experimental data
containing a small number of points per bundle, we intro-
duce a robust approach, in which we consider the bundle
as a part of a circular arc, leading to two parameters charac-
terizing the bundle. This description allows us to faithfully
represent the microtubule bundle and extract the relevant
geometrical information, i.e., the curvature and the twist,
but it is also simple enough to be done systematically on a
wide variety of microtubule bundles.
MATERIALS AND METHODS

Cell lines and microtubule visualization

Twist can be measured in every cell line that has labeled microtubule bun-

dles. This label can be a fluorescent protein tag on a microtubule bundle

(e.g., on tubulin) or on proteins that are associated with microtubule bundles

in a way that they cover most of the length of the bundle (e.g., PRC1, see

Fig. 1). Tags can be inserted into the cells on a plasmid by transfection or

endogenously expressed after CRISPR/Cas-9 manipulation. The chosen

tags should also allow for the visualization of the spindle poles. It is

possible to measure twist both in live and fixed cells. In fixed cells, it is

important to perform an appropriate fixation method. Fixation with meth-

anol can often cause spindles to shrink along the z direction, yielding mea-

surements that are not relevant for live cells; thus, care should be taken that

the shapes of spindles in fixed cells closely resemble spindles in live cells.

In fixed cells, fluorescently labeled antibodies can also be used for tubulin

visualization. The spindle in Fig. 1 was imaged as described in Trupini�c
et al. (18). Further examples of imaging both live and fixed cells for purpose

of measuring twist can be found in Novak et al. (17).
Confocal microscopy

Tomeasure twist, whether in live or fixed cells, imaging of the entire spindle

needs to be performed. This means that the imaged z-stack needs to be big

enough to encompass the spindle from the bottom of the dish to the top of

the spindle. Spindles that are oriented horizontally (spindle pole-to-pole

axis is parallel with the imaging plane) or vertically (spindle pole-to-pole

axis is perpendicular to the imaging plane) are the most appropriate for the

analysis. Also, it is important to note the direction of the imaging. It is conve-

nient to image starting from the coverslip and moving upwards because the

coverslip is usually easy to determine because of the surrounding cells in

interphase that are attached there. The direction of the imaging is important

for determining handedness of the twist (right- or left-handed twist). Exam-

ples of microscope settings for the purpose of imaging spindles for

measuring twist can be found in Novak et al. (17) and Trupini�c et al. (18).
RESULTS

Image analysis and data tracking

Individual microtubule bundles need to be tracked to ac-
quire their x, y, and z coordinates in each z plane of the entire
z-stack. Examples of such microtubule tracking can be
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found in (17). Each spindle has two poles positioned along
the pole-to-pole axis, along with N microtubule bundles de-
noted by index i ¼ 1, ., N. The i-th bundle is represented
by set of ni tracked points Tij ¼ (xj, yj, zj)i where j¼ 1,., ni
is the index of individual points (Fig. 2 A). Each bundle is
tracked through all z planes in the direction from left centro-
some toward the right centrosome (the left centrosome rep-
resents the bottom z plane, and the right centrosome
represents the highest tracked z plane in the stack). The po-
sitions of the centrosomes are the starting and end points of
the spindle, so we include this information by extending the
coordinates of each single bundle with the centrosome coor-
dinates, with the left centrosome as the starting data point,
Ti0, and the right centrosome as the ending data point,
Tiniþ1 (sample data for the spindle from Fig. 1 are given in
Table S1), and thus, coordinates of the i-th bundle are in-
dexed j ¼ 0, ., ni þ 1. The z plane refers to the imaging
plane, which we convert to its corresponding z-coordinate
by multiplying with the distance between successive planes
set during image acquisition and by a factor of 0.81 to cor-
A

B

FIGURE 2 Overview of method. (A) The spindle, along with the centro-

somes and the marked traced bundle point Tij, is positioned at an arbitrary

angle and distance from the origin of the coordinate system (left). The spin-

dle is translated so that the left centrosome is located at the origin of the

coordinate system (middle). The spindle is rotated so that the pole-to-

pole axis, along with the right centrosome, aligns with the z axis of the co-

ordinate system (right). (B) A view of the spindle from an arbitrary angle

(left) where the eyes show the viewing angle for the side view (1) and the

end-on view (2), which are shown in the middle and on the right, respec-

tively. A microtubule bundle (orange curved line) is fitted by a circle of

radius rc. The angle between the central spindle axis (solid line) and the

plane in which the fitted circle lies (dashed parallelogram) is denoted.

The parameters used to calculate the twist and curvature are named at the

bottom of the scheme. To see this figure in color, go online.
rect for the refractive index mismatch (17). In the example
case in Fig. 1, the distance between z planes is equal to
405 nm after correction, and other details of sample prepa-
ration are provided in the Materials and methods.
Choosing a coordinate system

During imaging, spindles have an arbitrary location and
orientation with respect to the laboratory coordinate system.
To make tracks of microtubule bundles suitable for analysis,
we transform the laboratory coordinate system so that the
left centrosome is positioned at the origin of the new coor-
dinate system and the right centrosome is positioned on the z
axis (Fig. 2 A), which we term the spindle coordinate sys-
tem. The spindle coordinate system is obtained by two trans-
formations: 1) translation T0

ij ¼ Tij � T0, where T0
ij is the

transformed coordinate and T0 is position of the left centro-
some (T0 is given by the first row of Table S1), and 2) sub-
sequent rotation T00

ij ¼MT0
ij, where T

00
ij are coordinates in the

spindle coordinate system and M is the rotation matrix that
aligns the pole-to-pole axis with the z axis of the spindle co-
ordinate system and the unit vector bz ¼ (0, 0, 1). The rota-
tion matrix is a textbook problem, and it can be calculated,
e.g., as the Rodrigues rotation (24) matrix. A Python imple-
mentation is provided in Data S1. Finally, it is convenient to
parameterize points by using cylindrical coordinates,
T00
ij ¼ (djcosfj, djsinfj, zj)i, where dj, fj, and zj are, respec-

tively, the radius, azimuth, and axial position.
Fitting a circular arc to the microtubule bundle
shapes

To characterize complex three-dimensional shapes of
microtubule bundles from noisy experimental data requires
a robust approach. In our method, curvature and twist, which
measure the extent the bundles extend along curved paths in
three dimensions, are the geometrical quantities that repre-
sent the information about the bundle shapes. To obtain
these quantities from the experimental traces, we fit a circu-
lar arc extending through three dimensions to these data.

To fit a circular arc in an easily reproducible way, we
first fit a plane, and then fit a circle that lies in this plane
(Fig. 2 B). In the rest of this section, we focus on one micro-
tubule bundle only, thus we omit the bundle index i.

In the first step, we fit the best-fitting least-squares dis-
tance plane Ax þ By þ Cz þ D ¼ 0, where A, B, C, and
D are the parameters of the general form equation of the
plane, which we term the bundle plane, to the traced data.
We solve the total least-squares problem by using the singu-
lar value decomposition method (25). The normal unit vec-
tor of the bundle plane is given by m ¼ (A, B, C)/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2 þ C2

p
. We denote the angle of vector m with

respect to the pole-to-pole axis as a, which we calculate
from the scalar product cosa ¼ m $ bz.
Biophysical Journal 120, 3641–3648, September 7, 2021 3643
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In the second step, we fit a circle to the data by choosing
only from those circles that lie in the bundle plane. We
calculate the projection of the traced bundle points onto
the bundle plane and fit a circular arc to them. Here, we
use the HyperLS algorithm (26) because fitting a circle
with standard methods (27) is not suitable for straight bun-
dles. The fitting parameters are the radius of the circle, rc,
and the position of the circle center, Tc ¼ (xc, yc, zc). These
parameters, together with the normal vector of the bundle
plane, determine the geometry of our traced bundle.
Calculation of the curvature and twist from the
fitting parameters

Based on the fitting parameters, we can infer the curvature and
twist of the microtubule bundle. The curvature of the bundle
can be directly calculated from the radius of the fitted circle,

k ¼ 1

rc
: (1)

The twist, however, cannot be calculated in a straightfor-

ward manner. We introduce the twist value, u, as a change
of the azimuthal angle with respect to the axial position

u ¼ df

dz
: (2)

Please note that this value corresponds to the reciprocal

value of the helical pitch multiplied by 2p. The right-hand
side of Eq. 2 can be calculated from the slope of the microtu-
bule bundlewith respect to the pole-to-pole axis as tan(p/2�
a) ¼ d � (df/dz), where we utilized the fact that the bundle
plane vector m, which defines the angle a, is perpendicular
to the tangent of themicrotubule bundle. Here, d corresponds
to the radial coordinate in the spindle coordinate system (see
Fig. 2B, end-onview). For our case of discrete tracked bundle

data points, we average the radius over all traced points CdD ¼
1
ni

Pni
j¼1

dj, and thus, Eq. 2 can be written as

u ¼ f
cot a

CdD
; (3)

where f is a dimensionless corrective factor, which we intro-

duce to consider the approximative approach of the method
because of fitting a circular arc to the bundle segment. The
corrective factor depends on the geometry of the bundle, but
for bundle segments significantly shorter than the spindle
length one can use f ¼ 1, as shown in the Error analysis.
A Python implementation is provided in Data S2.
Detailed worked example: synthetic spindle

To demonstrate the workings of our method, we provide a
detailed worked example on a made-up mitotic spindle in
3644 Biophysical Journal 120, 3641–3648, September 7, 2021
a spindle coordinate system, which mimics the one shown
in the schematic in Fig. 2 B but also includes noise to
make it closer to experimental data. We construct a syn-
thetic spindle as a series of mathematically defined curves,
which are evenly distributed around the z axis. Furthermore,
to mimic discrete imaging planes, we choose to assign to
the z coordinates discrete values of zj ¼ L0 þ jDL, where
j¼ 1,., n. Here, L0þ DL and L0þ nDL denote the starting
point and ending z coordinates of the synthetic bundle seg-
ments. Because all bundles are composed of the same num-
ber of points, parameter n has the same value for all bundles.
To do this, we first define a bundle as a twisted circular arc:

B
�
zj
�
h

2664 cos
�
u0zj

�
sin

�
u0zj

�
0

�sin
�
u0zj

�
cos

�
u0zj

�
0

0 0 1

3775

�

0BBB@
shx

�
zj
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
0 �

�
zj � L

�
2
�2q

þ y0 þ shy

�
zj
�

zj

1CCCA: (4)

The first term is a matrix that twists the bundle by twist
parameter u0 around the z axis. The second term is a vector
that defines the bundle as a circular arc with added noise,
where R0 ¼ 1/k0 is radius of the circular arc, k0 is the corre-
sponding curvature, L is the pole-to-pole length of the spin-

dle, and constant y0¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
0 � ðL=2Þ2

q
is chosen so that that

the circular arc extends from one pole to the other. The two
independent components of noise, hx(zj) and hy(zj), are unit
Gaussian white noises, and s is the intensity of the noise.

To obtain a spindle, we evenly arrange the N bundles
around the pole-to-pole axis so that the i-th bundle, Ti, is
given by

Ti zj
� �

h

cos
2pi

N

� �
sin

2pi

N

� �
0

�sin
2pi

N

� �
cos

2pi

N

� �
0

0 0 1

26666664

37777775B zj
� �

: (5)

The first term represents a matrix that rotates the i-th
bundle to obtain a spatial configuration of bundles distrib-
uted around the z axis.

Finally, positions of spindle poles are given by

Ti;0 ¼
0

0

0

0@ 1A; Ti;nþ1 ¼
0

0

L

0@ 1A: (6)

Our method will determine the defined twist of this curve
u, as well as its curvature k.



Curvature and twist of spindle MTs
Fitting circular arcs to the bundles of the
synthetic spindle

We fit a circular arc to the synthetic bundles by using the
approach described in the Fitting a circular arc to the micro-
tubule bundle shapes. In the first step, we obtain parameters
of the bundle plane, A, B, C, and D. In the second step, we fit
the circular arc that lies in the bundle plane and the corre-
sponding radius rc.

To test our method, we apply the method to four different
synthetic spindles shown in Fig. 3. The first and second spin-
dles have short bundle segments with and without noise,
whereas the third and fourth spindles have long bundle seg-
ments, also with and without noise. In the case with short
bundle segments, the twist and curvature obtained from
the method closely matches the parameters that define the
synthetic spindle, both with and without noise (Fig. 3, A
A

B

C

D

FIGURE 3 Application of method to four synthetic spindles. Synthetic

spindles (colored circles) are shown together with poles (black points),

fits to them (colored lines) in the side view (left) and in the end-on view

(middle), and corresponding values of twist and curvature (right). The first

two spindles have short bundle segments, in which 40% of central bundles

were calculated, both with noise (A) and without noise (B). The last two

spindles have long bundle segments, in which 80% of central bundles

were calculated, with noise (C) and without noise (D). Short segments

are composed of n ¼ 12 points, with noise s ¼ 0.25 mm in (A) and

s ¼ 0 mm in (B). Long segments are composed of n ¼ 24 points, with noise

s ¼ 0.25 mm in (C) and s ¼ 0 mm in (D). For all spindles, the values of

the other parameters are DL ¼ 0.33 mm, u0 ¼ 3�/mm, L ¼ 10 mm, and

R0 ¼ 6 mm, which corresponds to the curvature of k0 ¼ 0.188 mm�1. Twist

and curvature are shown with individual points and box and whisker plots

(median and interquartile range, whiskers extending to 1.5 of the interquar-

tile range). Black arrowheads show the values of parameters u0 and k0. To

see this figure in color, go online.
and B). This agreement is expected because the fitting curve
closely follows the synthetic bundle segments in the case
without noise. In the case with long bundle segments, the
obtained twist is slightly smaller than the defined one, and
the difference between the fitted curve and the synthetic
bundle segments becomes visible (Fig. 3, C and D).
Error analysis

Because in the case of long bundle segments, the twist we
obtain from our method underestimates the value of the
twist parameter (Fig. 3, C and D), we explored how the
discrepancy changes with the length of the bundle segment,
normalized by the length of the spindle ‘¼ nDL/L, for noise
intensity set to zero, s ¼ 0 mm. We determine the twist of
synthetic spindles by our method for segment lengths
ranging from 0.2 to 10 mm and plot the value of the twist
u obtained from our method divided by the twist parameter,
as shown in Fig. 4, A and B. The other parameters have a
smaller influence on the method. In particular, varying the
value of u0 from 0 to 9�/mm (Fig. 4 A) and R0/L from 0.6
to 4 (Fig. 4 B), we find that the difference in the twist ratios
A B

DC

FIGURE 4 Error analysis for twist and curvature of synthetic spindles.

(A) The dots show the dependence of the twist ratio for a spindle with

u0 ¼ 3�/mm and five different values of R0, shown in the legend, as a func-

tion of the normalized bundle segment length. The values for R0 ¼ 20 mm

are not visible because they overlap with values for R0 ¼ 40 mm. (B) The

dots show the dependence of the twist ratio for a spindle with R0 ¼ 6 mm

and five different values of u0, shown in the legend, as a function of the

normalized bundle segment length: In both (A) and (B), the thick black

line shows the function fð‘Þ from Eq. 7 and there is no noise, s ¼ 0 mm.

(C) The lines show the relative dispersion of the curvature, for a spindle

with u0 ¼ 3�/mm and five different values of R0, shown in the legend, as

a function of the noise intensity. (D) The lines show the relative dispersion

of the method for twist, for a spindle with R0 ¼ 6 mm and five different

values of u0, shown in the legend, as a function of the noise intensity. In

both (C) and (D), ‘ ¼ 0.6, the undetectable region is shaded gray, and black

arrowheads denote s¼ 0.08 mm. In all panels, L¼ 10 mm, N¼ 20,000, and

n ¼ 18. To see this figure in color, go online.

Biophysical Journal 120, 3641–3648, September 7, 2021 3645
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for different values of R0 does not exceed 5% and that the
difference in the twist ratio for different values of u0 does
not exceed 4.5%. In real spindles, the twist of bundle ranges
from 0 to 20�/mm and the width/length ratio R/L from 0.6 to
0.8 (18), making it possible to treat the error solely as a
function of the bundle segment length ‘.

The value of the twist obtained by our method systemat-
ically underestimates the exact value for longer bundle seg-
ments, which we can use to remedy this discrepancy. To
obtain, by our method, a value of the twist close to the actual
value, we need to calculate the corrective factor f in Eq. 3.
Approximatively, this function is given by

f ð‘Þ ¼ 1� 0:178 ‘2 � 0:178 ‘4: (7)
Because the synthetic spindle is similar to spindles found
in HeLa cells, this phenomenological function can be used
for all bundles in HeLa spindles and also for spindles that
have shapes similar to HeLa cells. For the majority of bun-
dles, this correction will be less than 5% (18,19).

To explore whether we can use our method to detect twist
and curvature in noisy experimental data, we apply our
method to the synthetic spindle and estimate for which noise
intensity values twist and curvature are detectable. Here, we
calculate the relative dispersion of a measured twist as

RSDu0
¼ 1

u0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1

ðui � u0Þ2
s

for different values of the

noise intensity and twist (Fig. 4 C). We found that for a
broad range of noise intensity values around 80 nm, which
is equivalent to the pixel size of the confocal microscope,
and twist values around 3�/mm, the relative dispersion was
significantly below 1. A value of RSD below 1 signifies
that the twist is detectable, i.e., RSD ¼ 1 is the detection
limit. Similarly, we calculate the relative dispersion of the

curvature as RSDk0 ¼ R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1

ð1=Ri � 1=R0Þ2
s

. We have

found that for a broad range of values typical for spindles,
the curvature was detectable (Fig. 4 D). Based on these re-
sults, we conclude that the method can reliably detect twist
and curvature in noisy experimental data.
3646 Biophysical Journal 120, 3641–3648, September 7, 2021
Application of the oblique circle method to real
spindles

To apply our method to real spindles and compare the results
with the method from (17), we first analyzed the HeLa cell
spindle from Fig. 1 (Table S2) and obtained fits and values
for the curvature and twist (Fig. 5; Table S3). The resulting
twist is u ¼ �2.35 0.3�/mm (mean 5 standard error), and
the curvature is k ¼ 0.08 5 0.01�/mm. The value of twist is
consistent with the value of obtained by using the method
from Novak et al. (17), u ¼ �2.3 5 0.4�/mm. The value
of curvature is similar to the value obtained from the pro-
gram SOAX (10), which is based on stretching open active
contours, k ¼ 0.07 5 0.01�/mm, with SOAX parameters
chosen in such a way that number of converged snakes is
similar to the number of tracked bundles (Data S3).

Furthermore, to explore how the oblique circle method
performs on a wide range of test cases, we applied it to spin-
dles from the HeLa cell line, including live and fixed cells
stained with different methods and with applied STLC (S-
trityl-L-cysteine) and Lat A (Latrunculin A) treatments,
from Novak et al. (17). The obtained results are similar to
those from Novak et al. (17), even though the obtained
values were slightly lower (Fig. 6).
DISCUSSION

Curvature and twist providegeometrical information about the
shape of the bundle. Based on these geometrical parameters,
we can infer information about rotational forces, i.e., bending
and twisting moments. Curvature can provide an estimate of
the bending moment acting upon the bundle Mbend ¼ EI/rc,
where rc is the radius of curvature measured for a microtubule
bundle andEI is its flexural rigidity given as Young’s modulus
times the secondmoment of inertia of the cross section. In the
case of bundles with multiple microtubules, the flexural rigid-
ity depends on the number of microtubules in microtubule
bundles and how tightly they are linked (28). From fluores-
cence analysis, the number of microtubules in bundles was
estimated to be between 14 and 21 k-fibers (29,30).

Twist characterizes to what extent bundles rotate around
the spindle pole-to-pole axis. Intuitively, one can expect
FIGURE 5 Application of the oblique circle

method to the HeLa cell mitotic spindle from

Fig. 1. Tracked microtubule bundles are shown in

the end-on view (left) and side view (right). Each

bundle is represented by a different color, thin cir-

cles mark the manually traced points along the

bundle, and thick lines show circular arcs of the

fitted circles. The spindle poles are represented as

black dots in the side view. Box and whisker plots

(median and interquartile range, whiskers extend-

ing to 1.5 of the interquartile range) of the twist

and curvature of each bundle are given. This

HeLa cell spindle shows a strong left-handed twist.

To see this figure in color, go online.



FIGURE 6 Calculation of the twist of spindles in HeLa cells from Novak

et al. (17). The average twist of spindles in different conditions, including

vertical and horizontal spindles, fixed and live cells, untreated and treated

cells, is analyzed with the oblique circle method (top) and reproduced

from Novak et al. (17) (bottom). Error bars, mean 5 standard error. Cell

lines were HeLa cells expressing PRC1-GFP (first, second, fourth, fifth,

sixth, and seventh bars) and unlabeled HeLa cells immunostained for

PRC1 (third bar). Numbers below the bars represent the number of cells

(top) and bundles (bottom). Note that the number of bundles is larger for

twist measured by the oblique circle method because the method includes

all bundles. Bottom graph was reproduced with permission from Novak

et al. (17), from Figs. 1 and 2. To see this figure in color, go online.

Curvature and twist of spindle MTs
that twist is related to twisting moment within these bundles.
This is indeed the case for spindles described by the model
from (17), in which microtubule bundles that are intrinsi-
cally straight extend radially from spindle poles. In this
case, we can obtain an estimate for the twisting moment
acting upon the microtubule bundle Mtwist ¼ ut, where u

is the measured twist and t is the torsional rigidity of the
microtubule bundle (17,31).

In the study of Novak et al. (17), twist was calculated for
short bundles, calculating twist for finite segments Dz using
only the starting and ending points of the bundle, whereas
we excluded bundle data points close to the poles and entire
bundles close to the pole-to-pole axis. With the oblique cir-
cle method, we calculated u by utilizing all data points,
including those with longer bundle segments and bundles
closer to the pole-to-pole axis. By doing this, we replicated
all key findings, though the obtained twist was slightly
lower. The oblique circle method has the advantage of being
more robust and applicable to a greater variety of microtu-
bule bundles.

Fitting the simple shape of a circular arc is a straightfor-
ward approach to extract the most important geometrical pa-
rameters from the data obtained from confocal microscopy,
namely from microtubule bundles that have a low number of
data points and make less than one helical turn. The oblique
circle method cannot be applied to microtubule bundles that
make several helical turns because such shapes cannot be
approximated by a circular arc. The usual techniques of
signal processing are designed for working with microtu-
bule bundles that make several helical turns (32,33), but
for the same reason, they are less suitable for fitting micro-
tubule bundles in spindles.

Our method could also be applied to the data of bundle
shapes obtained from super-resolution or electron micro-
scopy and provides more accurate information about the
curvature and twist of microtubule bundles. High-resolution
microscopy data might also allow for the use of more com-
plex fitting techniques (9–12), making it possible to obtain
not only the twist and curvature but also other geometric pa-
rameters. Further comparison of different fitting methods
would be necessary to identify an optimal approach for spin-
dle microtubule bundle characterization.

The discovery that microtubule bundles in the mitotic
spindle are twisted in a helical manner opens an exciting
area of research on the potential biological roles of spindle
chirality and the mechanisms generating this curious type of
asymmetry, which is why we developed a method to mea-
sure the twist and the curvature of microtubule bundles to
characterize the shape of the spindle. The method allows
for easy extraction of information about the relevant aspects
of microtubule bundle geometry. By utilizing the character-
istic shape of microtubule bundles in the spindle, it is
possible to characterize them in a reproducible manner.
This approach opens up new lines of studies, allowing for
efficient mapping of the similarities and differences be-
tween shapes of spindles in various cell types and organ-
isms. Because the spindle shapes reflect the forces within
them, this method will be instrumental for the understanding
of forces that act on chromosomes during cell division.
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