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Here we study the single-particle, electronic transport, and optical properties of a gapped system described by
a simple two-band Hamiltonian with inverted valence bands. We analyze its properties in the three-dimensional
(3D) and the two-dimensional (2D) case. The insulating phase changes into a metallic phase when the band gap is
set to zero. The metallic phase in the 3D case is characterized by a nodal surface. This nodal surface is equivalent
to a nodal ring in two dimensions. Within a simple theoretical framework, we calculate the density of states, the
total and effective charge carrier concentration, the Hall concentration, and the Hall coefficient, for both 2D and
3D cases. The main result is that the three concentrations always differ from one another in the present model.
These concentrations can then be used to resolve the nature of the electronic ground state. Similarly, the optical
conductivity is calculated and discussed for the insulating phase. We show that there are no optical excitations
in the metallic phase. Finally, we compare the calculated optical conductivity with the rule-of-thumb derivation
using the joint density of states.

DOI: 10.1103/PhysRevB.104.075108

I. INTRODUCTION

The topological quest within solid state physics is to iden-
tify properties that originate from the so called nontrivial
topology of the Bloch bands [1,2]. Many systems have been
explored. Most familiar are the Dirac and Weyl semimetals,
which contain a whole array of candidate materials [3]. Their
common underlying feature is that the valence and conduction
bands touch in one or more isolated points in the Brillouin
zone [4–6]. A natural extension of the band point-touch is
a band line-touch. Such materials are known as nodal-line
semimetals [7–9]. Analogously, extending the idea of the
nodal-line semimetal leads to the nodal-surface semimetal
(NSSM), in which the bands touch over a surface spanned in
the Brillouin zone [10]. This surface is equivalent to a line in
the 2D case [11].

In this article, we address the simplest case of NSSMs
in 3D and 2D. We also explore their gapped phase, which
we refer to as the gapped semimetal phase (GSM). We
analyze the single-particle intraband and interband proper-
ties of the system described by a two-band Hamiltonian.
The Hamiltonian contains three free parameters and it de-
scribes the gapped (GSM) and the metallic (NSSM) phase.
The energy bands’ main feature is the inverted shape up to
some critical energy [12,13] and a parabolic free-electron-like
dispersion at energies beyond the band inversion. Initially
the Fermi energy is assumed to be located in the mid-
dle of the band gap in the GSM phase or at the band
touching in the NSSM phase. The Fermi energy is further
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manipulated by doping of the system, by filing it up with
electrons for example. Our intention is twofold. First, we
want to answer the question, Can the experiments such as
the electronic transport and optical measurements resolve the
two possible ground states, gapped (GSM) and semimetallic
(NSSM)? This tackles the main problem inherent to nearly all
topological materials. Their intrinsic energy scales—energy
intervals within the Bloch bands—where their topological
properties can be observed is small, often not more than
several milli-electron-volts. This makes it challenging to ex-
perimentally distinguish between different possible ground
states.

Second, we want to show how the DC and optical prop-
erties differ in the 3D and 2D cases of such semimetals. The
DC quantities include the density of states per unit volume,
the total and the effective concentration of the charge carriers,
the Hall concentration, and the Hall coefficient. We show that
very generally those concentrations differ for both GSM and
NSSM phases, in 2D and in 3D. Therefore, by comparing
the Drude weight and the Hall concentration with the total
concentration, we can determine the nature of the ground
state. The discrepancies between the GSM and NSSM phases
are even more evident in the optical conductivity. The NSSM
phase has no optical excitations since the amplitude of the
interband current matrix element is proportional to the energy
gap �. In the GSM case, we calculate the real part of the
optical conductivity within the vanishing and finite interband
relaxation constant approximation.

Without interband relaxation, the optical conductivity has
the same shape for 3D and 2D when incident photon energy
is just above the band gap. It has a square-root singularity
Re σ (�) ∝ (� − �)−1/2. For large energies, the conductivity
scales with the dimension D as Re σ (�) ∝ �D/2−3.
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Knowing the specific Bloch momentum dependence of the
interband current vertex, we show when one can use the joint
density of states rule-of-thumb calculation [14] to estimate the
real part of the optical conductivity.

While the present work focuses on simple charge transport
properties, the usefulness and the possible new theoretical
insight from our two-band model need not stop here. As an
example, the concentric Fermi surfaces may lead to a resonant
electron-phonon scattering that could occur for certain carrier
dopings. This would certainly have an impact on the intraband
dynamical conductivity. Moreover, the question of the exciton
energies in this system might lead to interesting results. The
inverted bands do not provide grounds for a simple effective
Schrödinger-like approach similar to the standard insulators.
Another interesting aspect to investigate would be the effect of
the concentric Fermi surface arising in the superconductivity.
Finally, the present model might provide a playground for the
Mott physics and strong correlations [15], due to the diverging
single-particle density of states.

This paper is structured as follows: In the first part of the
article we specify the model Hamiltonian for the GSM and
NSSM phase. We then define and calculate for the 3D case the
density of states, the three concentrations of charge carriers
(total, effective, and Hall), and the real part of the optical
conductivity. Finally, we calculate all these quantities for the
2D case.

II. TWO-BAND HAMILTONIAN

As a starting point, we define a continuum 2 × 2 isotropic
Hamiltonian matrix that describes the general form of GSM
and consequently the NSSM phase [16–18]. The Hamiltonian
is

Ĥ = (A − Bk2)σz + Cσx, (2.1)

where σx and σz are the Pauli matrices and A and C are positive
constants representing the gap parameters. The A − Bk2 is the
“inverted part.” It is the simplest isotropic form of a nodal
surface, with k2 being the square of the total Bloch wave
vector. The positive parameter B can be written in a more
familiar way as B = h̄2/(2m∗). The effective mass m∗ will
come in handy when the DC properties are discussed in the
next section. The Hamiltonian (2.1) is invariant under spatial
inversion, and since it is a real matrix it is also invariant under
time reversal. The latter also implies vanishing Berry cur-
vature [19,20] making this system topologically trivial. This
Hamiltonian is a simplified variant of the Bernevig-Hughes-
Zhang Hamiltonian [21,22], with a constant electron-hole
coupling described by the parameter C.

The diagonalization of Eq. (2.1) is straightforward. It gives
electron-hole symmetric eigenvalues

εc,v
k = ±

√
(A − Bk2)2 + C2. (2.2)

The indices c and v stand for conduction band (plus sign) and
valence band (minus sign), respectively.

To make the analysis of the electron properties originating
from Eq. (2.1) as general as possible, we scale the eigenvalues
Eq. (2.2) to the gap parameter A and introduce dimension-
less substitutions. These substitutions are a dimensionless gap
� = C/A and a dimensionless wave vector κ2 = k2B/A. In

(c)

(b)(a)

FIG. 1. (a) Valence bands Eq. (2.3) of the GSM case in 1D. The
inverted conduction band (orange) spans the energy range between
ωb (green) and ωt (red). The dashed line indicates the Fermi energy
ωF . In the NSSM phase, the bands touch on the surface of a circle
of radius κ0, while in the GSM phase κ0 is the position of minimum
(maximum) of the conduction (valence) band. (b) Analogous valence
bands in 2D. (c) The Fermi surface of the 3D system in the case of
a partially filled conduction band with the Fermi energy in the range
ωb < ωF < ωt as depicted by the black level in panel (a).

this way, the eigenvalues above become much simpler:

ωκ = ±
√

(1 − κ2)2 + �2, (2.3)

with the definition ωκ = εc,v
k /A.

The dispersions given by Eq. (2.3) are shown in Fig. 1.
Bands for the 1D k = (kx, 0, 0) and 2D case are shown,
together with the Fermi surface in 3D. The height of the
band inversion is described by the parameter A, while C
gives the minimum band separation. In dimensionless units
this differentiates the two phases, GSM and NSSM. From
Eq. (2.3) for GSM we have � > 0, and for NSSM � = 0. In
the three-dimensional NSSM case the two bands touch along
the spherical surface of radius κ0 = 1. The sphere becomes a
circle in 2D. In the 1D case we can depict 2κ0 in Fig. 1(a), as
the distance between the two points where the bands touch.

If the value of the Fermi energy ωF is restricted to ωb <

ωF < ωt , the Fermi surface consists of two concentric spheres
in 3D or concentric circles in 2D. With

ωb = �, ωt =
√

1 + �2, (2.4)

we designate the energy belonging to the bottom (b) and the
top (t) of the inverted band as shown in Figs. 1(a) and 1(b).
Energies (2.4) to a great extent determine the specific behavior
of the DC concentrations and the optical response, as will be
shown in the following sections. These energies, ωb and ωt ,
define the energy interval where the inverted bands directly
influence the electronic transport.

III. 3D CASE: DENSITY OF STATES

Here we derive the density of states (DOS) per unit vol-
ume for the energy dispersion Eq. (2.2). The calculation is
performed for the 3D case. The same procedure is applied for
the 2D case later on (Sec. VI). By definition, the DOS per unit
volume is

N (ε) = 2

V

∑
k

δ(ε − εk ). (3.1)
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We use the dimensionless variables defined in the previous
section for carrying out the calculation. We change the sum in
Eq. (3.1) into the integral in spherical coordinates

N (ω) = 1

π2

√
A

B3

∫
κ2 dκ δ

(
ω −

√
(1 − κ2)2 + �2

)
. (3.2)

The delta function in Eq. (3.2) is evaluated by decomposing it
into a sum

δ(...) =
∑
κ0

δ(κ − κ0)

∣∣∣∣ ω

2κ0(1 − κ2
0 )

∣∣∣∣, (3.3)

where κ0 are the positive roots of the δ-function argument

κ±
0 =

√
1 ±

√
ω2 − ω2

b, (3.4)

written with the help of a substitution � = ωb, defined in
Eq. (2.4). Inserting Eq. (3.3) back into Eq. (3.2), we obtain
almost the final expression for DOS in 3D

N (ω) = 1

π2

√
A

B3

|ω|
2

∑
κ0

κ0

|1 − κ2
0 | . (3.5)

To make roots κ±
0 real, the sub-root-function in Eq. (3.4) has

to be positive. This depends on the value of ω. It is easy to
check that if ωb < ω < ωt , then both κ+

0 and κ−
0 are real, since

the sub-root-expression always remains positive. On the other
hand, for ω > ωt only κ+

0 is real. All of these restrictions on
the allowed intervals of ω and on the sum over any function
of κ0 can be encoded into f (κ0) with the help of the Heaviside
step function 
(ω),∑

κ0

f (κ0) = 
(ω − ωb)
(ωt − ω)[ f (κ+
0 ) + f (κ−

0 )]

+
(ω − ωt ) f (κ+
0 ). (3.6)

Using the recipe Eq. (3.6) on Eq. (3.5) we obtain the final
result for the 3D DOS, which after some trivial rearrangement
of the step functions is

N (ω) = N (3)
0

|ω|√
ω2 − ω2

b


(|ω| − ωb)
[(

1 +
√

ω2 − ω2
b

) 1
2

+
(ωt − |ω|)(1 −
√

ω2 − ω2
b

) 1
2
]
. (3.7)

Equation (3.7) is plotted in Fig. 2 for different values of
the parameter ωb in the units of N (3)

0 = √
A/(2π2B3/2). In

the NSSM case (ωb = 0), Eq. (3.7) gives the DOS with a
domelike shape between the points ω = ±ωt = ±1, as seen
from definition (2.4). For a finite value of ωb we obtain the
GSM case where DOS has a square-root singularity at ωb.
Expanding Eq. (3.7), we get

N (ω) ≈ N (3)
0

√
2ωb

ω − ωb
, ω � ωb,

N (ω) ≈ N (3)
0

√
ω, ω � ωb. (3.8)

This divergence of the DOS in the GSM phase for energies
equal to the bottom of the band ωb can be easily understood
by counting the energy states and comparing their number
to the 3D parabolic band insulator, where DOS ∝ √

ω − ωb.

-10 -5 0 5 10 15 20
 ω

0

1

2

3

4

5

6

Ν
(ω

) /
 Ν

0

Δ = 4
Δ = 2
Δ = 0.1
Δ = 0

FIG. 2. The density of states Eq. (3.7) of the 3D system derived
from the energy dispersion Eq. (2.2). DOS is a function of a dimen-
sionless parameter ω and is plotted for several values of the gap
parameter, ωb = �. For the case of � = 0 (NSSM), the dome in
DOS is clearly visible between the energies (−1, 1) (black line) with
a maximum height of 2N (3)

0 . For � > 0 at the energy ω = ωb, DOS
has a square-root singularity, and the value at ω = ωt is given by red
circles. For energies ω � ωt , DOS is ∝ √

ω, just like in the case of
the 3D free electron gas.

In the latter case, as we decrease the Fermi level, the number
of states (the area of the Fermi surface) decreases to zero at
ωb and leads to a vanishing DOS. This is not so in the GSM
case of the presented model. As we decrease the Fermi energy
to ωb, the Fermi surface remains a spherical shell Fig. 1, but
with a huge number of states at its lowest energy. Thus the
DOS diverges. Similar reasoning applies for 2D.

Figure 2 also shows the value of N (ωt ) designated by the
red circles. This shows how fast ωt → ωb as we increase
�. While ωb determines the DOS onset, nothing spectacular
happens at ωt . In the high-energy limit we obtain the same
DOS as for the 3D free electron gas.

IV. THE T = 0 DC TRANSPORT QUANTITIES IN 3D

We calculate the DC properties of the system originally
in the ground state, whose Fermi energy is initially located
between the valence bands, but is shifted due to the finite
charge doping.

There are three concentrations of the charge carriers, for
example electrons, usually associated with the DC transport.
These are the total concentration n, the effective concentration
nαα , and the Hall concentration nH . All the three concentra-
tions are functions of the Fermi energy ωF .

In the trivial case of a free electron gas, these three con-
centrations are identical. As soon as the dispersion becomes
more complex, they begin to deviate from one another. This
is because these charge concentrations are each associated
with a different transport concept. The simplest of them is a
measure of the total charge added into the system, n, and it is
temperature-independent. The second and the third one, nαα

and nH , are temperature-dependent. However, in the T = 0
limit, we can give each of them a simple interpretation. In that
limit, nαα becomes the average electron kinetic energy at the
Fermi level. Physically, from the classical Hall experiment,
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FIG. 3. The total concentration n (blue dashed line), the effective
concentration nαα (orange line), and the Hall concentration nH (green
line) are plotted in units of n(3)

0 as functions of Fermi energy ωF ,
at several values of the gap parameter �. The positions of � are
designated by vertical dotted lines. It is assumed that m∗ = me. The
red circle is the value of n(ωt ), the green circle is the value of nH (ωm ),
while the violet circles represent the values of nαα (ωt ).

one measures the ratio of transversal voltage and longitudinal
current, in the limit of a vanishing magnetic field. This ratio
is called the Hall coefficient, RH , and has the dimension of in-
verse concentration. Only in the simplest version—parabolic
free electron dispersion—can we trivially connect RH with
the total carrier concentration. For any more complex band
dispersion, RH can only be calculated through semiclassical
Boltzmann transport equations, and the resulting concentra-
tion is called the Hall concentration nH .

A. Total charge carrier concentration n

The total carrier concentration n is accessible immediately
from the DOS. Using the integral representation we have

n(ωF ) = A
∫ ωF

0
N (ω) dω. (4.1)

The total concentration of the intrinsic system can be con-
trolled by chemical doping or through electrostatic doping
depending on the dimension of the system. In this analysis
we further neglect any influence the donor impurities have on
the electronic band structure. Inserting Eq. (3.7) in the above
expression we obtain

n(ωF ) = n(3)
0 
(ωF − ωb) × [(

1 +
√

ω2
F − ω2

b

) 3
2

−
(ωt − ωF )
(
1 −

√
ω2

F − ω2
b

) 3
2
]
, (4.2)

where we have introduced a constant for this 3D case

n(3)
0 = 1

3π2

A

B

√
A

B
. (4.3)

The total concentration n is plotted in Fig. 3 (blue dashed line)
for several values of the parameter �. To show some of the
properties of n as a function of the Fermi level ωF , Eq. (4.2)

is approximated in several interesting limits of ωF :

n(ωF ≈ 0) ≈ 3n(3)
0 ωF , ωb = 0,

n(ωF ) ≈ 3n(3)
0

√
2ωb(ωF − ωb), ωF � ωb,

n(ωF ) ≈ n(3)
0 ω

3/2
F , ωF � ωb. (4.4)

The concentration which corresponds to the filling of the band
up to the top of the inverted parabola is nt = n(ωF = ωt ) =
23/2n(3)

0 and is indicated in Fig. 3 by the red circle.

B. Effective charge carrier concentration nαα

The effective concentration nαα defines the Drude weight.
At T = 0 it is given by [23,24]

nαα (εF ) = 2

V

∑
k

mevαkvαkδ(εF − εk ). (4.5)

Here α is a Cartesian component, me is the bare electron mass,
and vαk = (1/h̄)∂εk/∂kα is the electron group velocity. The
derivative of Eq. (2.2) is taken over α = x (the remaining
spatial components give the same result), and inserted into
Eq. (4.5). The summation is changed into integration over the
dimensionless variables κ and ω. The evaluation of Eq. (4.5)
is similar to the procedure outlined in the previous subsection.
The result is

nαα (ωF ) = n(3)
0

me

m∗

√
ω2

F − ω2
b

ωF

(ωF − ωb)

× [(
1 +

√
ω2

F − ω2
b

) 3
2

+
(ωt − ωF )
(
1 −

√
ω2

F − ω2
b

) 3
2
]
. (4.6)

In writing Eq. (4.6) we used the definition of the effective
mass m∗ from Sec. II. The resulting expression is relatively
similar to Eq. (4.2). Apart from the me/m∗ and the additional
prefactor, there is also a sign difference within the brackets.
Comparison of nαα (ωF ) and n(ωF ) is shown in Fig. 3. The
differences and similarities between the two carrier concen-
trations are most noticeable in the following limits:

nαα (ωF ≈ 0) ≈ 2n(3)
0

me

m∗

(
1 + 3

8
ω2

F

)
, ωb = 0,

nαα (ωF ) ≈ 2n(3)
0

me

m∗
√

2(ωF − ωb)/ωb, ωF � ωb,

nαα (ωF ) ≈ n(3)
0

me

m∗ ω
3/2
F , ωF � ωb. (4.7)

Within the energy range ωF ∈ (0, 1) the difference between
the n and the nαα (ωF ) gives a fingerprint of the NSSM phase.
The former has a linear-like dependence on the Fermi en-
ergy while the later is nearly constant. The GSM phase is
characterized by (n, nαα ) ∝ √

ωF − ωb for ωF just above ωb.
However, there is a subtle difference between the square-root
amplitude of the two concentrations. From Fig. 3 we see a
large square-root amplitude in nαα , while n is nearly a straight
line for small �. This behavior is flipped for bigger �. The
value of the effective concentration at the band peak nαα (ωt )
is diminishing as we increase �. This is seen by the position of
the violet circles in Fig. 3. In the high-energy limit ωF � ωt ,
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the bands (2.2) are free-electron-like with the effective mass
m∗. In this limit we recover a well known property nαα/n =
me/m∗ [25].

C. Hall concentration nH and coefficient RH

Hall concentration nH of conducting electrons has a fun-
damental role in the transport equations in the presence of a
weak external magnetic field. nH changes sign at the energies
where the electrons make way for holes as the dominant
charge carriers. This can be accomplished either by dop-
ing [26,27] or by changing the temperature [28,29]. The exact
derivation of nH from the semiclassical transport equations is
rather complicated and can be found in [30–33]. Here we only
recall the limiting low-field value of nH for a magnetic field
pointing in the z direction and when T = 0:

nH = nxxnyy/nxy, (4.8)

where the concentrations nxx and nyy are given by Eq. (4.5).
For our specific model, we have nxxnyy = n2

αα from Eq. (4.6),
while nxy is defined as

nxy = 2

V

∑
k

me
(
vxkvykMyx

k − vxkvxkMyy
k

)
δ(εF − εk ). (4.9)

Mαβ

k is a reciprocal effective mass tensor

Mαβ

k = me

h̄2

∂2εk

∂kα∂kβ

. (4.10)

The Hall coefficient is RH = 1/(enH ) where e = −|e| is the
charge of an electron. Taking the first and second derivatives
of the dispersion Eq. (2.2) it is straightforward to show, Ap-
pendix A, that

nxy = 16

V

m2
e

h̄4 B3
∑

k

k2
x

(A − Bk2)3

ε3
k

δ(εF − εk ). (4.11)

After a direct evaluation of Eq. (4.11) by the procedure out-
lined in Sec. III and as shown in Appendix A, we obtain an
interesting result:

nxy(ωF ) = n(ωF )
m2

e

m∗2

ω2
F − ω2

b

ω2
F

. (4.12)

Now we have all the ingredients to calculate the Hall concen-
tration nH (ωF ) from Eq. (4.8):

nH (ωF )/n(3)
0 = 
(ωF − ωb)
(ωt − ωF )

×
[(

1+
√

ω2
F − ω2

b

) 3
2 + (

1−
√

ω2
F − ω2

b

) 3
2
]2

(
1+

√
ω2

F − ω2
b

) 3
2 − (

1 −
√

ω2
F − ω2

b

) 3
2

+ (
1 +

√
ω2

F − ω2
b

) 3
2 
(ωF − ωt ). (4.13)

nH as a function of Fermi energy ωF is shown in Fig. 3 (green
line). To clarify the main features of nH we expand Eq. (4.13)
for specific limits of ωF as we did in the case of n and nαα:

FIG. 4. The Hall coefficient RH for a 3D (green line) and 2D (red
dashed line) system as a function of concentration n. The concen-
tration is given in units of concentration needed to fill up the dome
of the inverted band nt . In 3D nt = 23/2n(3)

0 while in 2D nt = 2n0.
Correspondingly, RH is given in units of (ent )−1. The two regions
n < nt and n > nt are divided by a vertical dotted line. Below the
critical ratio of 1 (orange circle) for both 3D and 2D RH ∼ n, while
above RH ∝ 1/n.

nH (ωF ≈ 0) ≈ n(3)
0

4

3ωF
, ωb = 0,

nH (ωF ) ≈ n(3)
0

4

3
√

2ωb(ωF − ωb)
, ωF � ωb,

nH (ωF ) = n(ωF ), ωF � ωt . (4.14)

As seen from Fig. 3, unlike n and nαα , nH is not a monotonic
function of ωF . It diverges in both NSSM and GSM phases
when ωF is zero or just above the bottom energy ωb. Then as
ωF is increased it drops to a minimal value only to continue
to grow again. The energy ωF = ωm which corresponds to the
minimum of nH is determined by equating the first deriva-
tive of Eq. (4.13) to zero. This can be done analytically and

it gives ωm =
√

ω2
b + η, where η = (3

√
17 − 11)/2 ≈ 0.685.

Correspondingly nH (ωm) ≈ 2.694n(3)
0 , a value designated by

the green circle on the y axes in Fig. 3. Clearly, the energy
range in which nH decreases and exhibits a minimum is within
the range [ωb, ωt ] and is associated with the inverted part
of the conduction band. Above ωt , nH is equal to the total
concentration n and increases with ωF .

Usually the Hall coefficient RH is expressed as a function
of total concentration n. To do so, we invert Eq. (4.2) and find
ωF as function of n. We then insert ωF (n) into Eq. (4.13).
For the 3D case, this procedure is done numerically, yielding
nH (n) and consequently RH = 1/[enH (n)], shown in Fig. 4
in green. RH is plotted as a function of scaled concentration
n/nt where, as noted before, nt = n(ωt ) = 23/2n(3)

0 . If the
concentration is small enough, then we have RH ∼ n. Above
n/nt = 1, RH ∝ 1/n. The maximum of RH is located at the
same point as the minimum of nH . In scaled units this point is
located at n/nt = n(ωm)/nt ≈ 0.848, and gives the height of
the peak RH ≈ 1.05 (ent )−1 as indicated by the green circle in
Fig. 4. This shows again that the Hall coefficient is a function
of total electron concentration, above the critical doping nt ,
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just as we expect it should be for a free electron gas. However,
below this critical concentration, it has an unexpected linear-
like decrease.

Finally, Eq. (4.13) applies only at T = 0. For finite tem-
peratures the Fermi-Dirac distribution derivative replaces the
delta function. This alters the end result, because of the tem-
perature dependence of the electron chemical potential.

The results in this section clearly show that in this system
all three carrier concentrations are mutually different. The
intrinsic NSSM case is characterized by a zero value of n,
a constant value of nαα , and a diverging nH . The intrinsic
GSM phase, on the on the other hand, has a zero value of
n and nαα , while nH diverges again. This difference between
the concentrations is even more evident once we step down a
dimension, moving from 3D to 2D.

V. OPTICAL CONDUCTIVITY

A. General optical conductivity formula

In a two-band model we can write the complex interband
conductivity tensor [24,34]

σα (E ) = 2ih̄

V

∑
s 
=s′=(c,v)

∑
k

∣∣Jss′
αk

∣∣2

εs
k − εs′

k

f s′
k − f s

k

E − εs
k + εs′

k + i�
,

(5.1)
where � is a phenomenological interband relaxation rate, and
the Cartesian component α of the interband conductivity ten-
sor is a function of the incident photon energy E . In Eq. (5.1)
the α-dependent interband current vertices Jvc

αk are calculated
from the Hamiltonian (2.1) in Appendix B. We analytically
evaluate the real part of the conductivity tensor (5.1) in the
� → 0 limit for the two-band model Eq. (2.1). The result is

Re σα (E ) = 2h̄π

V

∑
k

∣∣Jvc
αk

∣∣2 f v
k − f c

k

εc
k − εv

k

δ
(
E − εc

k + εv
k

)
.

(5.2)

The Fermi-Dirac distributions in the above expression are
simplified by taking into account the symmetry of the bands
εc

k = −εv
k and the fact that the expression Eq. (5.2) is finite

only for E = εc
k − εv

k = 2εc
k. We define

F (E ) = f v
k − f c

k = sinh(βE /2)

cosh(βμ) + cosh(βE /2)
. (5.3)

In the T = 0 case, the above expression simplifies to 
(E −
2εF ), which describes the suppression of the interband transi-
tions due to the Pauli blocking. Finally we arrive at a simple
expression for the real part of the optical conductivity

Re σα (E ) = F (E )

E

2h̄π

V

∑
k

∣∣Jvc
αk

∣∣2
δ
(
E − 2εc

k

)
. (5.4)

B. Optical conductivity of the 3D case

We now calculate the real part of the interband conductivity
Re σα (E ) defined from expression Eq. (5.4). The interband
current vertex is derived in Appendix B and it is

Jvc
αk = 2

e

h̄
BC

kα

εk
. (5.5)

In our model, Jvc
αk is a real quantity proportional to the band

gap parameter. By inspecting the Hamiltonian (2.1) we see
that by setting the off-diagonal elements (C) to zero, there is
nothing that could induce the transition between the diagonal
elements. Here this is demonstrated by the shape of Jvc

xk which
states the same thing. We conclude that in the NSSM phase
there are no optical excitations.

In the GSM phase, we insert the current vertex Eq. (5.5)
into Eq. (5.4) and change the summation to the integral as we
did in Sec. III. Once again, we make use of the dimensionless
variables κ and � which we now define as � = E /(2A). With
this choice of scaling, � and ω become equal. This is best seen
by looking at the delta function argument within the integral
form of the conductivity in Eq. (5.4),

Re σα (�) = 4σ0

3π

√
A

B
F (�)

�2
b

�3

×
∫

κ4dκ δ(� −
√

(1 − κ2)2 + �2). (5.6)

The aforementioned substitutions enable us to retain the en-
ergy scales ωb and ωt , which we had defined in Sec. II, and
which are for this purpose renamed to �b and �t . The con-
ductivity constant has been defined in the previous expression
σ0 = e2/(4h̄). Omitting the index α in the conductivity from
now on, the δ function in Eq. (5.6) is solved by a decompo-
sition into a sum of roots Eq. (3.4). Using the recipe (3.6) we
get

Re σ (�) = σ
(3)
0

�2
b

�2

F (�)√
�2 − �2

b


(� − �b)

× [(
1 −

√
�2 − �2

b

) 3
2

+
(�t − �)
(
1 +

√
�2 − �2

b

) 3
2
]
. (5.7)

Conductivity Eq. (5.7) is shown for the GSM case in Fig. 5
for several values of the gap parameter � in units of σ

(3)
0 =

(2σ0/3π )
√

A/B. From the expression Eq. (5.7) we immedi-
ately see that the amplitude of Re σ (�) depends on the gap
value �b, which implies that the optical conductivity vanishes
in the NSSM case as stated earlier. However, the most striking
feature is the divergence of Re σ (�) at the energy �b. This
divergence is of the square-root type as can be seen from the
expansion of Eq. (5.7) for � just above �b:

Re σ (�) ≈ 2σ
(3)
0√

2�b(� − �b)
, � � �b,

Re σ (�) ≈ σ
(3)
0 �2

b�
−3/2, � � �b. (5.8)

The divergence in the optical response for the energy �b is
seen only in the intrinsic case, when the Fermi energy is zero
and F (�) = 1. As soon as the doping becomes finite, the
Pauli blockade removes this divergence from the interval of
accessible excitation energies (red dashed line in Fig. 5). In
the intrinsic case of a simple 3D Schrödinger-like direct-gap
insulator, the onset of the optical transitions is connected with
a transition between two points [35]. These two points are
the top of the valence band and the bottom of the conduction
band. The onset of the optical transitions of the GSM case is
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FIG. 5. The real part of the optical conductivity calculated from
the two-band model (2.1) in units of σ

(3)
0 . Re σ (�) is plotted for

several values of the parameter � as a function of a dimensionless
parameter � = E /(2A). The solid lines depict the intrinsic case
[ωF = 0 → F (�) = 1] while the dashed red line gives a doped case
with ωF = 5 → F (�) = 
(� − ωF ). All the curves represent the
situation of zero interband relaxation as given by Eq. (5.7). For the
specific case of � = 2, a finite interband relaxation in Eq. (5.1) was
used (green line). Orange circles represent Re σ (�t ).

characterized by the excitations of the entire surface of points
from −ωb to ωb. This leads to the divergent response in the
optical conductivity. The “amplitude” of the divergence in the
real part of the conductivity is also governed by �b. The lower
this energy is, the more profound the singularity, as seen from
Eq. (5.8) and as shown in Fig. 5 from comparing the blue
curves of different shades.

A finite doping removes the divergence in the optical spec-
trum. Similarly, this divergence is lifted by taking a finite
interband relaxation � in the calculation of Re σ (�). This
leads to the removal of the singularity since at the �b we
have Re σ (�b) ∝ 1/�. For even larger values of �, the optical
response of the intrinsic case is entirely smeared, as seen in
Fig. 5.

On the other hand, the high-� limit is proportional to �2
b

and dies off quickly as we lower the value of �b; see Fig. 5.
The upper dome energy �t bears no significance in Re σ (�t ).
Its position is depicted by the orange circles in Fig. 5. The lim-
iting value of these orange circles approaches σ

(3)
0 23/2 (shown

by the red circle) when � increases. The distance between �b

and �t determines the width of the conductivity peak which
is located between these two points. From the definition of
ωb and ωt in Eq. (2.4), it is evident that the width decreases
with increasing �. A final note about Eq. (5.7): the optical
conductivity as a function of the photon energy E and the
three parameters of the Hamiltonian (2.1) A, B, and C can
be easily obtained. In Eq. (5.7) we simply need to change
� → E /(2A) and �b → C/A.

VI. 2D CASE

A. DOS and the charge concentrations

So far, we have described the single-particle transport and
optical properties of the 3D GSM and NSSM phases. In this

FIG. 6. The DOS of the 2D system described by the energy
dispersion εc,v

k = ±
√

(A − Bk2)2 + C2 [Eq. (2.2)] as a function of
ω, plotted for several values of the parameter �. For the metallic
NSSM case (� = 0), DOS has a steplike shape (black line), while
for the gapped GSM case (� > 0) the divergences appear at ωb = �.
The step feature remains visible for ωb < 1. The red circles indicate
N (ωt ). In the high-ω limit, DOS becomes constant.

section we repeat a similar analysis for the two-dimensional
version of the system described in Sec. II. Hence, the main
difference is the dimension of the integral which needs to be
evaluated for various quantities. We start with writing the end
result for DOS

N (ω) = N0
|ω|√

ω2 − ω2
b


(|ω| − ωb)[1 + 
(ωt − |ω|)],

(6.1)
where a helpful variable N0 = 1/(2πB) has been introduced.
The DOS in Eq. (6.1) is shown in Fig. 6. The differences are
apparent, when compared to its 3D analog in Fig. 2. For the
NSSM case a round dome is replaced by a steplike structure
spanning between ω ∈ (−1, 1). It has an amplitude of 2N0

within the ω ∈ (−1, 1) interval and the height of N0 outside
these boundaries. The finite gap in the GSM phase, like in its
3D analog, introduces a square-root divergence at ωb [36]. The
DOS for the NSSM case is consistent with the result obtained
in [37].

The total concentration n is given as a function of the Fermi
energy for the electron-doped case (ωF > 0). It follows from
Eq. (4.1) with DOS given by Eq. (6.1):

n(ωF ) = n0 
(ωF − ωb) × [
1 +

√
ω2

F − ω2
b

−
(ωt − ωF )
(
1 −

√
ω2

F − ω2
b

)]
. (6.2)

Once again we introduced a useful constant for 2D concen-
tration n0 = A/(2πB). The total concentration n is shown
in Fig. 7(a) as a dashed blue line. In the NSSM case as
inherited from the DOS, n ∝ ωF below and above ωF = 1
but with different slopes. At this specific energy, which in the
GSM case corresponds to ωt , the concentration has a value of
nt = n(ωt ) = 2n0 and a kink in its first derivative over ω.

The effective concentration follows in the same way as
in Sec. IV B. After inserting the electron velocities in the
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FIG. 7. (a) The total concentrations n Eq. (6.2) (blue dashed
line), effective concentration nαα Eq. (6.3) (orange line), and the
Hall concentration nH Eq. (6.4) (green line), as a function of Fermi
energy ωF in units of n0 for the case me = m∗. The concentrations are
plotted for several values of the ωb = � whose positions are denoted
by the vertical dotted lines. Particularly interesting is the NSSM
case (ωb = 0), where the difference between the concentrations is
the most profound. All three concentrations have a kink at the ωt .
For n and nH the value at ωt is 2n0 as indicated by the red dot.
(b) n (blue dashed line), nαα from Eq. (6.6) (orange line), and nH

from Eq. (6.5) (green line) are shown as a function of n for several
values of �, for the case when me = m∗. The arrow indicates the
direction of increasing � in nαα . n and nH do not depend explicitly
on ωb while nαα does. Vertical dotted line designates 2n0, which is
the concentration needed to fill the system to the top of the dome in
Fig. 1(b).

Eq. (4.5) and changing it into a 2D integral, we obtain

nαα (ωF ) = n0
me

m∗

√
ω2

F − ω2
b

ωF

(ωF − ωb)

× [
1 +

√
ω2

F − ω2
b

+
(ωt − ωF )
(
1 −

√
ω2

F − ω2
b

)]
. (6.3)

In the NSSM case, nαα (ωF ) has a constant value up to ωt and
a linear dependence above ωt , as seen from Fig. 7(a) where

it is depicted with an orange line. The discrepancies between
n and nαα remain visible over the whole range of values of
gap parameter �. For small values of ωF just above the ωb,
nαα (ωF ) has a square-root dependence on ωF , while in the
high-energy limit it goes linearly with ωF .

The final concentration to consider is Hall concentration
nH . Since there is a small subtlety in the derivation procedure,
we detail it in Appendix A using the recipe from Sec. IV C. It
leads to

nH (ωF ) = n0

⎡
⎣ 2√

ω2
F − ω2

b


(ωF − ωb)
(ωt − ωF )

+ (
1 +

√
ω2

F − ω2
b

)

(ωF − ωt )

⎤
⎦. (6.4)

Here nH is drawn as a green line in Fig. 7(a), and it has a
∝ 1/n dependence below ωt . Equivalently, it has a square-root
type of divergence as a function of ωF when ωF ≈ ωb (dotted
vertical lines). On the other hand, for ω > ωt , it is equal to
nH = n. Furthermore, inverting Eq. (6.2) to get ωF (n) and
inserting it in Eq. (6.4) we derive the Hall coefficient as a
function of n:

nH (n) = (2n0)2

n

(2n0 − n) + n 
(n − 2n0). (6.5)

2n0 is the total concentration of electrons when the conduction
band is filled to the top of the dome of the inverted band (nt =
2n0). Although not in a simple fashion like (6.5), by the same
procedure nαα too can be written as a function of n:

nαα (n) = me

m∗

⎡
⎣ n√

[n/(2n0)]2 + ω2
b


(2n0 − n)

+ n(n/n0 − 1)√
(n/n0 − 1)2 + ω2

b


(n − 2n0)

⎤
⎦. (6.6)

The dependence of nH and nαα on n is depicted in Fig. 7(b).
The three concentrations of the 2D system differ from one
another for energies ωF < ωt , or for total concentration n <

2n0. The differentiation between the two ground state NSSM
and GSM phases now becomes easy to make. By carefully
changing the doping and reading out the Drude weight (nαα),
one should obtain a constant in the NSSM phase for n < 2n0.
Another valid fingerprint of the band structure (2.1) in the 2D
transport is the nH , which diverges as 1/n for n < 2n0. Unlike
in the 3D case, the minimum value of nH is now located at the
energy ωt .

In the highly doped limit, where the Fermi energy over-
shoots the top of the dome ωt , or equivalently where n > 2n0,
we expect all three concentrations to be roughly the same,
nH ≈ nαα ≈ n. This is to be expected since the energy dis-
persion (2.2) high above the dome is free-electron-like. From
Eq. (6.5) we see this is true for n and nH for the GSM and
NSSM cases. But in this doping regime, nαα = n only in
the NSSM phase, while in the GSM phase it approaches n
asymptotically as the doping increases.
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The Hall coefficient as a function of n is reciprocal to
Eq. (6.5):

RH = n

n2
t e


(nt − n) + 1

ne

(n − nt ), (6.7)

and it is shown in Fig. 4 (red dashed line) as a function of
n/nt , in units of (ent )−1. As in the 3D case, RH grows linearly
with n until it reaches a sharp maximum at nt with a height
of RH = 1. Beyond this maximum, RH has the same 1/n
dependence as its 3D analog. Previously, we could find the
3D RH (n) only numerically. Fortunately, in the 2D case, we
can obtain an analytical result for RH ,. This is why the two-
dimensional case provides a valuable insight into the signature
of the inverted bands in the T = 0 magnetotransport [27].

B. Optical conductivity of the 2D system

We obtain the integral expression for the 2D GSM optical
conductivity by inserting the interband current vertex Eq. (5.5)
in the real part of the interband conductivity formula Eq. (5.4).
In units of � and dimensionless κ , it reads

Re σ (�) = e2

2h̄

F (�)

�

�2
b

�2

∫
κ3dκ δ(� −

√
(1 − κ2)2 + �2).

(6.8)

Evaluating the above integral in the same way as in Sec. III,
we get

Re σ (�) = σ0
�2

b

�2

F (�)√
�2 − �2

b


(� − �b)

× [
1 +

√
�2 − �2

b

+
(�t − �)
(
1 −

√
�2 − �2

b

)]
. (6.9)

As in the 3D case, we can make use of the conductivity
constant σ0. For a simple expression like (6.9), two limiting
regimes in � are easily found:

Re σ (�) ≈ 2σ0√
2�b(� − �b)

, � � �b,

Re σ (�) ≈ σ0�
2
b�

−2, � � �b. (6.10)

The conductivity Eq. (6.9) is plotted in Fig. 8 in units of σ0

for several values of the gap parameter � in the intrinsic case,
F (�) = 1. The high-energy tail decreases stronger than in
3D, apart from the rootlike divergence near the gap energy,
which has the same shape as in the 3D case. Such a weak
response would be difficult to set apart from the background,
if multiple bands are present as they usually are in real sys-
tems. Re σ (�t ) is indicated by orange dots and it approaches
the red dot 2σ0 as � → ∞. The impact of the finite interband
relaxation � on the Re σ (�) is depicted in Fig. 8 with a green
line.

VII. Re σ(�) AND THE JDOS ARGUMENT

Usually in a system with linear band dispersion the shape
of the interband conductivity can be be determined by the

FIG. 8. Real part of the optical conductivity of the 2D system
described by the two-band model (2.1) in units of σ0. Re σ (�) is plot-
ted for several values of parameter � as a function of � = E /(2A)
for the intrinsic case [F (�) = 1]. The green curve (with a finite �)
is calculated using Eq. (5.1) with � = 0.05 eV, while the rest are
given by Eq. (6.9). The steplike feature in the DOS is not visible in
the conductivity. Re σ (�t ) is depicted by orange circles. The circles
approach 2σ0 as � → ∞ (red circle).

rule-of-thumb argument involving the joint density of states
(JDOS) [14]. To show how this works, we look at Eq. (5.4) in
the general two-band case:

Re σα (E ) = F (E )

E

2h̄π

V

∑
k

∣∣Jvc
αk

∣∣2
δ
(
E − (

εc
k − εv

k

))
. (7.1)

If we assume that the interband current vertex does not depend
explicitly on k, and that Jvc

αk = Jvc
α , then Jvc

α can be taken
outside the sum in Eq. (7.1). The remaining sum over the δ

function is the definition of JDOS. If the bands have electron-
hole symmetry, JDOS is equivalent to DOS such that Eq. (7.1)
becomes

Re σα (E ) = h̄π

2

∣∣Jvc
α

∣∣2 F (E )

E
N (E /2), (7.2)

where we have used the definition of DOS (3.1). For the 3D
and 2D Dirac systems [38,39] Jvc

αk = ev, where v is the Dirac
velocity and hence (7.2) applies.

For the model studied in this article, the JDOS approach
does not apply for small photon energies E ∼ C. It is only
in the high-energy limit that Eq. (7.2) can be safely applied.
The obvious reason for this is the strong k dependence of
the current vertex (5.5). A way around it is to notice that
in the high-energy limit (εk � C) the dispersion Eq. (2.2)
is parabolic, εk ≈ Bk2, and isotropic. Also in this limit the
inverse function k(ε) is single valued, which is not the case
when εk <

√
A2 + C2; see Sec. III. Hence in D dimensions

the mean square of the component is 〈k2
α〉 = k2/D = εk/(DB)

and the square of the D-dimensional interband current vertex
is

∣∣Jvc
αk

∣∣2 → 8e2

h̄2

C2B

D

1

E
, (7.3)

where we have used E = 2εk. Inserting (7.3) into Eq. (7.2)
we get the same expressions, once we change E = 2A�, as
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we did for the high-� expansion in 2D Eq. (6.10) and 3D
Eq. (5.8).

This line of reasoning for the JDOS rule of thumb is
not new and can be demonstrated on the example of the
massive 2D Dirac system, where, if we designate the band
gap by C, we have |Jvc

αk|2 ∝ e2v2(1 + C2/E 2) [40]. Since
the DOS of the massive 2D Dirac system is linear in E ,
in this case Eq. (7.2) gives an exact result for the optical
conductivity.

VIII. CONCLUSIONS

We have addressed the static and dynamic transport prop-
erties of the nodal-surface semimetals and their gapped phase.
The properties of these systems in three and two dimensions
are described by the two-band model of the valence electrons.
The main feature of this model is the inversion of the valence
bands below the certain energy and parabolic-like shape for
energies above it. The main question we answer is, Can we
determine the electronic ground state, GSM or NSSM, by
comparing the experimental and the calculated transport and
optical properties?

The band inversion is responsible for a specific shape of
the NSSM density of states. In the 3D case it is a domelike
structure, while in the 2D case it has a steplike feature. In the
GSM phase a square-root divergence occurs in the DOS at the
band gap energies.

We have studied three different concentrations of the
charge carriers. These are the total, effective, and Hall con-
centrations. We have shown that by controlling the doping and
comparing the three concentrations we can conclude whether
the ground state is gapped or not. This is due to the fact that
both in 3D and in 2D these three concentrations differ from
one another. Only for high doping (Fermi energy much larger
than the band gap) do they become equal. The differences
between the transport properties are more profound in 2D than
in the 3D case. Still, the Hall coefficient shows remarkable
similarities between 3D and 2D when plotted as a function of
total concentration. It is difficult to determine the total carrier
concentration of the doped system. However, as shown in
this paper, the total concentration can be deduced from the
plasmon edge measurements (effective concentration) and the
Hall coefficient (Hall concentration), which are more experi-
mentally accessible.

The optical properties give a definitive proof of the ground
state. There are no optical excitations in the NSSM phase,
since the conductivity amplitude is proportional to the band
gap. The optical response of the GSM phase has a square-root
divergence above the band gap threshold for both 3D and 2D
with a σ ∝ �−2 tail dependence in the 2D and a σ ∝ �−3/2

tail in the 3D case.
Finally, the JDOS rule-of-thumb derivation of the optical

conductivity is elaborated in detail. For the GSM phase it is
shown to work only in the high-energy limit.
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APPENDIX A: 3D AND 2D nH

The electron velocities for the α = x, y components are

vαk = −1

h̄

2Bkα (A − Bk2)

εk
. (A1)

The mass tensor components Eq. (4.10) are

h̄2

me
Myy

k = 4B2k2
y

εk
− 2B(A − Bk2)

εk
− 4B2k2

y (A − Bk2)2

ε3
k

,

(A2)
and

h̄2

me
Myx

k = 4B2k2
x k2

y

εk
− 4B2kxky(A − Bk2)2

ε3
k

. (A3)

The velocity and mass tensor product within Eq. (4.9) is

vxkvykMyx
k − vxkvxkMyy

k = me

h̄4

8B3k2
x (A − Bk2)3

ε3
k

. (A4)

First the 3D case is solved. Equation (A4) is inserted in
Eq. (4.9) and the sum converted to integral with dimensionless
variables. This integral contains the δ function which again is
decomposed as

nxy(ωF ) = m2
e

h̄4

16

3(2π )2

AB

ω2
F

√
A

B

∑
κ0

κ4
0 (1 − κ0)3

|κ0(1 − κ0)| . (A5)

The zeros κ0 as defined in Sec. III are carefully implemented
in (A5) with particular care on the ± sign of 1 − κ2

0 =
±

√
ω2

F − ω2
b. This sign is preserved once taken to the power

of 3. We get

nxy(ωF ) = n(3)
0

m2
e

m∗2

ω2
F − ω2

b

ω2
F

{

(ωF − ωb)
(ωt − ωF )

× [(
1 +

√
ω2

F − ω2
b

) 3
2 − (

1 −
√

ω2
F − ω2

b

) 3
2
]

+
(ωF − ωt )
(
1 −

√
ω2

F − ω2
b

) 3
2
}
, (A6)

or after we rearrange the 
 functions

nxy(ωF ) = n(3)
0

m2
e

m∗2

ω2
F − ω2

b

ω2
F


(ωF − ωb)

× [(
1 +

√
ω2

F − ω2
b

) 3
2

−
(ωt − ωF )
(
1 −

√
ω2

F − ω2
b

) 3
2
]
. (A7)

Comparing (A7) with Eq. (4.2) we conclude

nxy(ωF ) = n(ωF )
m2

e

m∗2

ω2
F − ω2

b

ω2
F

. (A8)

In deriving Eq. (A7) we have used the definition of con-
stant (4.3)

n(3)
0 = 1

3π2

A

B

√
A

B
, (A9)

as well as B = h̄2/(2m∗). Finally the Hall concentration
follows from the definition nH (ωF ) = n2

αα (ωF )/nxy(ωF ) as
written in main text.
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The same procedure applies for the 2D case. First we
reorganize the 
 functions within the effective concentration
nxx = nyy = nαα Eq. (6.3):

nαα (ωF ) = n0
me

m∗

√
ω2

F − ω2
b

ωF

[
2 
(ωF − ωb)
(ωt − ωF )

+ (
1 +

√
ω2

F − ω2
b

)

(ωF − ωt )

]
. (A10)

Next we calculate nxy using Eq. (4.9) and Eq. (A4):

nxy(ωF ) = 4

π

m2
e

h̄4

AB

ω3
F

×
∫

κ3(1 − κ2)3dκ δ
(
ωF −

√
(1 − κ2)2 + �2

)

= 4

π

m2
e

h̄4

AB

ω3
F

ωF

2

∑
κ0

κ3
0

(
1 − κ2

0

)3∣∣κ0
(
1 − κ2

0

)∣∣ . (A11)

Again, the zeros κ0 as defined in Sec. III are inserted in (A11).
We obtain

nxy(ωF ) = n0
m2

e

m∗2

ω2
F − ω2

b

ω2
F

× [
2
√

ω2
F − ω2

b 
(ωF − ωb)
(ωt − ωF )

+ (
1 +

√
ω2

F − ω2
b

)

(ωF − ωt )

]
. (A12)

In writing (A12) we have used B = h̄2/(2m∗) and the defini-
tion of n0 = A/(2πB). Using Eqs. (A10) and (A12) we get

nH (ωF ) = n2
αα

nxy

= n0

⎡
⎣ 2√

ω2
F − ω2

b


(ωF − ωb)
(ωt − ωF )

+ (
1 +

√
ω2

F − ω2
b

)

(ωF − ωt )

⎤
⎦. (A13)

APPENDIX B: CURRENT VERTICES

We start with the general form of the 2 × 2 Hamiltonian
matrix in nondiagonal representation,

H =
(

bk ak
a∗

k dk

)
. (B1)

The matrix elements are labeled by Hk(�, �′) where (�, �′)
are the row and column indices of Eq. (B1). If we label the

two Bloch energies by (s, s′) = (c, v) we can define the α

component of the current vertex

Jss′
αk =

∑
��′

e

h̄

∂Hk(�, �′)
∂kα

Uk(�, s)U ∗
k (�′, s′), (B2)

where Uk(�, s) are the elements of unitary matrix. This matrix
transforms the Hamiltonian to its diagonal form by definition
UHU−1 = E, where E is the eigenvalue matrix. After a te-
dious derivation U is shown to be

Uk(�, s) =
(

eiϕk cos(ϑk/2) eiϕk sin(ϑk/2)

− sin(ϑk/2) cos(ϑk/2)

)
, (B3)

where

ak = |ak|eiϕk , tan ϕk = Im ak

Re ak
, tan ϑk = 2|ak|

dk − bk
.

(B4)
Therefore Eq. (B1) and Eq. (B2) give after some trigonometric
manipulation the intraband (s = s′ = c) current vertex

h̄

e
Jcc
αk = cos ϑk

1

2

∂ (bk − dk )

∂kα

+ sin ϑk
∂|ak|
∂kα

, (B5)

and for the interband case (c = s 
= s′ = v)

h̄

e
Jvc
αk = sin ϑk

1

2

∂ (bk − dk )

∂kα

+ i|ak|∂ϕk

∂kα

+ cos ϑk
∂|ak|
∂kα

.

(B6)

For the model (2.1) ak = C and tan ϕk = 0 and

∂|ak|
∂kα

= 0,
∂ϕk

∂kα

= 0. (B7)

The only nonvanishing element is the first part on the
right-hand side of (B6) and (B5). For the specific case of
Hamiltonian Eq. (2.1),

∂ (bk − dk )

∂kα

= −2Bkα. (B8)

This in turn gives the final expression for the interband current
vertex

Jvc
αk = e

h̄
2BC

kα√
(A − Bk2)2 + C2

. (B9)

In limits k = 0 and k → ∞ (B9) is

Jvc
αk ≈ e

h̄
2Bkα

C√
A2 + C2

, Jvc
αk ≈ e

h̄
2C

kα

k2
. (B10)
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