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We employ the phenomenological Lawrence-Doniach model to compute the contributions of the supercon-
ducting fluctuations to the third-harmonic magnetic response, denoted here by M3, which can be measured in
a precise way using ac magnetic fields and lock-in techniques. We show that, in an intermediate temperature
regime, this quantity behaves as the third-order nonlinear susceptibility, which shows a power-law dependence
with the reduced temperature ε = T −Tc

Tc
as ε−5/2. Very close to Tc, however, M3 saturates due to the nonzero

amplitude of the ac field. We compare our theoretical results with experimental data for three conventional
superconductors—lead, niobium, and vanadium—and for the unconventional superconductor Sr2RuO4 (SRO).
We find good agreement between theory and experiment for the elemental superconductors, although the
theoretical values for the critical field systematically deviate from the experimental ones. In the case of SRO,
however, the phenomenological model completely fails to describe the data, as the third-harmonic response
remains sizable over a much wider reduced temperature range compared to Pb, Nb, and V. We show that an
inhomogeneous distribution of Tc across the sample can partially account for this discrepancy, since regions
with a locally higher Tc contribute to the fluctuation M3 significantly more than regions with the “nominal”
Tc of the clean system. However, the exponential temperature dependence of M3 first reported by Pelc et al.
[Nat. Commun. 10, 2729 (2019)] is not captured by the model with inhomogeneity. We conclude that, while
inhomogeneity is an important ingredient to understand the superconducting fluctuations of SRO and other
perovskite superconductors, additional effects may be at play, such as non-Gaussian fluctuations or rare-region
effects.

DOI: 10.1103/PhysRevB.104.064502

I. INTRODUCTION

In unconventional superconductors, not only the gap
function but also the superconducting fluctuations can be
quite different from their conventional counterparts (for
reviews, see Refs. [1–3]). Indeed, several high-Tc super-
conductors have strongly anisotropic properties and small
coherence lengths, suggestive of a wider temperature range
in which fluctuations are important. Moreover, the magnitude
of these fluctuations as well as their temperature depen-
dence can also display unusual behaviors [4]. Signatures
of superconducting fluctuations have been widely probed in
both conventional and unconventional superconductors, in
observables as diverse as specific heat [5–7], linear and non-
linear conductivity [8–15], microwave and terahertz response
[15–19], susceptibility [20–25], and the Nernst coefficient
[26–30].

Experimentally, one of the main difficulties is to un-
ambiguously identify contributions that can be uniquely
attributed to superconducting fluctuations, since these are usu-
ally small compared to the regular normal-state contributions
[20]. Theoretically, modeling contributions of superconduct-
ing fluctuations to the magnetic susceptibility and to the
conductivity, both phenomenologically and microscopically,
dates back several decades [31–39]. More recent studies on

superconducting fluctuations have focused on the role of
phase fluctuations [40], on disordered two-dimensional (2D)
superconductors [41], and on thermal and electric transport
properties above Tc in cuprates [42–48].

Recently, a method to probe superconducting fluctuations
based on the third-harmonic magnetic response was put for-
ward in Ref. [4]. Specifically, an ac magnetic field H (t ) =
H0 cos(ωt ) is applied and the magnetization is measured at
a frequency 3ω. This observable, which we hereafter de-
note by M3, is related to, but not identical to, the standard
nonlinear susceptibility χ3. The key point is that the third-
harmonic response M3 is vanishingly small in the normal
state. This is indeed reflected in the data for the conventional
superconductors reported in this work: in all cases studied
here, the signal decreases sharply above Tc, and becomes
essentially undetectable in the normal state. In contrast, the
linear susceptibility is known to remain sizable well above
Tc. As a result, its magnitude and temperature dependence
near the superconducting transition temperature Tc should be
dominated by superconducting fluctuations. In Ref. [4], it was
empirically found that M3 displays an unusual exponential
temperature dependence in perovskite-based superconduc-
tors such as cuprates, Sr2RuO4 (SRO), and SrTiO3, as
opposed to a power-law temperature dependence in standard
electron-phonon superconductors. However, the implications
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of these observations for the nature of superconduct-
ing fluctuations in unconventional superconductors remain
unsettled.

In this paper, we employ a phenomenological approach
based on the Lawrence-Doniach (LD) [49] free energy to
compute the contributions to the experimentally measured
quantity M3 of Ref. [4] arising from Gaussian supercon-
ducting fluctuations. The main appeal of such an approach
is that, being phenomenological, it is potentially applicable
to both conventional and unconventional superconductors. In
particular, we perform a quantitative comparison between the
theoretical results predicted by the LD formalism and the data
on several elemental superconductors (Pb, Nb, and V) and on
the unconventional superconductor SRO. We find that the LD
result provides a good description of the data for elemental
superconductors over a wide range of reduced temperature
values, ε ≡ T −Tc

Tc
, and correctly captures the observed 5/2

power-law behavior of M3 for intermediate values of ε. The
theoretically extracted values for the zero-temperature upper
critical field Hc2(0) differ by factors of 2 to 6 from the ex-
perimental ones; we argue that this difference could be an
artifact of the LD model, which was developed for layered
superconductors rather than cubic systems. Overall, the results
demonstrate that measurements of the third-harmonic mag-
netic response are indeed a powerful probe of superconducting
fluctuations.

However, in the case of Sr2RuO4, we find a sharp dis-
agreement between the LD theoretical results and the data
for M3. Both the temperature dependence and the mag-
nitude of M3 near Tc are not captured by the theoretical
model. Motivated by the evidence for significant inhomogene-
ity in several perovskite-based superconductors [4,15,50],
we modify our LD model for M3 and include a distri-
bution of Tc values. We find that even a modest width
of this Tc distribution is capable of capturing the typical
values of M3 observed experimentally. However, this modifi-
cation is not sufficient to explain the exponential temperature
dependence reported in Ref. [4]. We thus conclude that
while inhomogeneity at the mean-field level is important
to elucidate the behavior of superconducting fluctuations in
Sr2RuO4, it is likely not the sole reason for the observed
exponential temperature dependence. One possibility is that
such behavior arises from rare-region contributions [4,50,51]
(i.e., large-volume regions of the sample devoid of defects,
which have an exponentially small probability of emerg-
ing in a randomly disordered system) or from non-Gaussian
fluctuations, which are absent in the LD model employed
here.

The paper is organized as follows: In Sec. II, we employ the
LD model to derive an expression for the third-harmonic mag-
netic response M3, and discuss the temperature dependence of
this quantity in different regimes. Section III presents a quan-
titative comparison between the theoretical and experimental
results for three conventional superconductors (Pb, Nb, and
V) and the unconventional superconductor Sr2RuO4. We note
that some of the data were previously published in Ref. [4].
An extension of the model presented in Sec. II that includes
the role of inhomogeneity is also introduced. Our conclusions
are presented in Sec. IV.

II. PHENOMENOLOGICAL MODEL FOR THE
THIRD-HARMONIC MAGNETIC RESPONSE

In this section, we derive an expression for the third-
harmonic magnetic response M3, measured in the experiments
of Ref. [4], based on the LD approach. We first review
the contribution of the superconducting fluctuations to the
magnetization in the presence of a static magnetic field
within the LD approach. Here we only quote the LD results,
which are well known from the literature (for their deriva-
tions, see, for instance, Refs. [2,52]). Using the LD results,
we then proceed to include an ac field to explicitly calcu-
late M3, and discuss its temperature dependence in different
regimes.

A. Linear and nonlinear susceptibilities in the
Lawrence-Doniach model

Fluctuations of a superconductor in the presence of an
external magnetic field can be modeled within the phe-
nomenological Ginzburg-Landau framework. In a regime
close to Tc, the general superconducting Ginzburg-Landau
free-energy functional takes the form

�F[�(x)] =
∫

dd x

(
a|�|2 + b

2
|�|4

+ 1

4m

∣∣∣∣
(∇

i
− 2eA

)
�

∣∣∣∣
2

+ 1

8π
|∇ × A|2

)
. (1)

Here, �(x) is the superconducting order parameter, 2m and
2e are the effective mass and charge of a Cooper pair, A is the
vector potential, and b > 0 is a Ginzburg-Landau parameter.
The coefficient a is parametrized as a = α(T − Tc) = αTcε,
where ε = T −Tc

Tc
is the reduced temperature and α a positive

constant. Near Tc, but above the temperature range where
critical fluctuations become important, as set by the Ginzburg-
Levanyuk parameter, one assumes that the order parameter
is small and slowly varying. As a result, the quartic term in
Eq. (1) can be neglected, and only Gaussian fluctuations are
considered:

�F[�(x)] =
∫

dd x

(
a|�|2 + 1

4m

∣∣∣∣
(∇

i
− 2eA

)
�

∣∣∣∣
2)

. (2)

To obtain the LD free-energy expression, one assumes
a layered superconductor and considers a magnetic field H
applied perpendicular to the layers. A detailed derivation can
be found in standard textbooks and review papers (see, for
instance, Refs. [2,52]). For completeness, we only highlight
the main steps of the derivation and quote the results from
Ref. [2]. Because of the layered nature of the system, there is
a difference between in-plane and out-of-plane kinetic terms.
While the former assumes the same form as in Eq. (1), the
latter is described by δz|�l+1 − �l |2, where δz is the interlayer
coupling constant and the subscript l is a layer index. It is also
convenient to introduce two dimensionless quantities, h and
r. By using the result Hc2(0) = 2mαTc

e for the zero-temperature
critical field, we define the dimensionless applied field h ≡

H
Hc2(0) . Moreover, we define the dimensionless anisotropy pa-

rameter r ≡ 2δz

αTc
, which can also be expressed in terms of

the ratio between the correlation length along the z direction,
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FIG. 1. Magnetization (red curve, in units of M∞) induced by superconducting fluctuations, in the presence of a dc field h, as a function of
the reduced temperature ε according to Eq. (4). We also include for comparison the asymptotic expressions for M(ε � r) (green dashed curve)
and M(ε � r) (blue dotted curve), Eqs. (6) and (7), respectively. A crossover clearly takes place when ε ∼ r. The dimensionless parameters
chosen here were h = 0.01, r = 0.5. The insets are zooms on different temperature ranges.

ξz(0), and the interlayer separation s, r = 4ξ 2
z (0)
s2 . Writing the

order parameter in a product form between in-plane Landau-
level wave functions and plane waves propagating along

the z direction, one can evaluate the partition function Z =∫
D�D�∗e− �F [�(x)]

T and then obtain the LD free-energy ex-
pression (up to a constant) [2,52]:

F (ε)

M∞Hc2(0)
= −2(ε + 1)h

ln 2

[(
ε + r

2

) ln h

2h
− 1

2
ln 2π +

∫ π/2

0

dφ

π/2
ln �

(
1

2
+ ε + r sin2 φ

2h

)]
. (3)

Here, �(x) is the gamma function, the integration over the variable φ effectively sums over the layers, v is the volume, and
M∞ ≡ Tc

0s
ln 2
2 is the absolute value of the saturation magnetization at Tc, with 0 denoting the flux quantum. Similarly, the LD

expression for the magnetization is given by [2,52]

M(ε)

M∞
= −2(ε + 1)

ln 2

∫ π/2

0

dφ

π/2

{
ε + r sin2 φ

2h

[
ψ

(
ε + r sin2 φ

2h
+ 1

2

)
− 1

]
− ln �

(
ε + r sin2 φ

2h
+ 1

2

)
+ 1

2
ln 2π

}
, (4)

where ψ (x) = d ln �(x)
dx is the digamma function. By taking h � ε, r in Eq. (4), the right-hand side gives −1 at ε = 0, confirming

that M∞ is the saturation magnetization at Tc. Note that this expression is valid for h > 0; in the case of h < 0, symmetry implies
F (−h) = F (h) and M(−h) = −M(h). For future reference, we list the three dimensionless parameters that will be employed
throughout this work:

ε = T − Tc

Tc
, r =

[
2ξz(0)

s

]2

, h = H

Hc2(0)
. (5)

While the anisotropy parameter r is fixed, its impact on the magnetization depends on the temperature range probed. In a
regime sufficiently far from Tc, r � ε, the system essentially behaves as decoupled layers (r → 0) and Eq. (4) becomes [2,52]

M(ε � r)

M∞
= −2(ε + 1)

ln 2

{
ε

2h

[
ψ

(
1

2
+ ε

2h

)
− 1

]
− ln

�
(

1
2 + ε

2h

)
√

2π

}
. (6)

On the other hand, as Tc is approached, the system will eventually cross over to the regime r � ε. Then, the three-dimensional
nature of the system cannot be neglected, and the magnetization becomes [2,38,52]

M(ε � r)

M∞
= −6(ε + 1)

ln 2

(
2

r

)1/2√
h

[
ζ

(
−1

2
,

1

2
+ ε

2h

)
− 1

3
ζ

(
1

2
,

1

2
+ ε

2h

)
ε

2h

]
, (7)

where ζ (ν, x) is the Hurwitz zeta function.
Therefore, as Tc is approached from above, we expect a crossover of the temperature-dependent magnetization from 2D-like

behavior to three-dimensional (3D)-like behavior, with the crossover temperature corresponding to ε ∼ r. This general behavior
is illustrated in Fig. 1, where M given by Eq. (4) is plotted as a function of the reduced temperature ε together with the asymptotic
expressions in Eqs. (6) and (7) for a fixed field value. As expected, the contribution of the superconducting fluctuations to the
magnetization is negative.
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It will be useful later to contrast the temperature dependence of the third-harmonic response M3 with that of the nonlinear
magnetic susceptibility. To derive the latter, we consider the limit of small fields, i.e., when the dimensionless magnetic field
is the smallest parameter of the problem, h � ε, r. Going back to the main expression for the magnetization in Eq. (4), it is
convenient to define y = ε+r sin2 φ

2h . Since h � ε, r, it follows that y � 1 and the integrand can be expanded as

y

[
ψ

(
y + 1

2

)
− 1

]
− ln �

(
y + 1

2

)
+ 1

2
ln(2π ) = 1

12y
− 7

720y3
+ 31

6720y5
+ O(x−7). (8)

The integrals over φ can be analytically evaluated. Expanding the magnetization in odd powers of h,

M

M∞
= χ1h + χ3h3 + χ5h5 + O(h7), (9)

we find the following expressions for the linear and nonlinear susceptibilities (see also Refs. [52,53]):

χ1 = − (1 + ε)

3 ln 2

1

ε1/2
√

ε + r
, (10)

χ3 = 7(1 + ε)

360 ln 2

(3r2 + 8rε + 8ε2)

ε5/2(ε + r)5/2 , (11)

χ5 = − 31(1 + ε)

13440 ln 2

(35r4 + 160r3ε + 288r2ε2 + 256rε3 + 128ε4)

ε9/2(ε + r)9/2 . (12)

Close enough to Tc, when ε � r, we find the following
power-law behaviors:

χ1 ∼ −ε−1/2

√
r

, (13)

χ3 ∼ ε−5/2

√
r

, (14)

χ5 ∼ −ε−9/2

√
r

. (15)

B. The third-harmonic magnetic response M3: Experimental
setup and theory

One of the most common experimental probes of super-
conducting fluctuations is to apply a dc magnetic field and
measure the magnetic response [see Eq. (9)]. The key issue
with measuring the linear susceptibility χ1 is that the diamag-
netic contribution due to the superconducting fluctuations is
typically much smaller than the paramagnetic contributions
from other normal-state degrees of freedom. For the nonlin-
ear susceptibility χ3, however, one generally expects that the
intrinsic normal-state contribution is negligible in most cases,
which could in principle allow one to assess the contribution
from the superconducting fluctuations in a more unambiguous
fashion. Note that, while in principle the susceptibilities χ1

and χ3 are tensor quantities, our experimental setup is de-
signed in such a way that both the excitation and detection
coils are along the same axis. We therefore only measure
in-plane diagonal components, which are equivalent for a
tetragonal or cubic system. Hereafter we refer only to a scalar
χ3.

Instead of applying a dc magnetic field, the experimental
technique presented in Ref. [4] and utilized here employs
an ac field (of the form H0 cos ωt) and a system of coils
to measure the oscillating sample magnetization. In order to
determine the third-order response, a lock-in amplifier is used
at the third harmonic of the fundamental frequency ω, which is

typically in the kilohertz range. If the fifth-order susceptibility
is significantly smaller than the third-order susceptibility, the
third-harmonic response is a good measure of the third-order
susceptibility. This condition was experimentally verified by
measuring at the fifth harmonic, where the signal was found
to be vanishingly small except for extremely close to Tc,
where it was still an order of magnitude smaller than the
third harmonic. We can thus safely ignore the higher-order
contributions. Most of the data presented here were published
in Ref. [4], and were obtained in two separate experimental
setups. Low-temperature measurements on strontium ruthen-
ate were performed in a 3He evaporation refrigerator with
a custom-made set of coils. Samples of conventional super-
conductors were measured in a modified Quantum Design
magnetic property management system (MPMS), where we
used the built-in ac susceptibility coil to generate the exci-
tation magnetic field, and a custom-made probe with small
detection coils to maximize the filling factor. We estimate that
the magnetization sensitivity of both setups is better than 1
nanoemu, an improvement of one to two orders of magnitude
over standard superconducting quantum interference device
(SQUID)-based instruments. This is made possible by lock-
in detection, matching the impedance of the detection coils
and lock-in amplifier inputs, and large filling factors of the
detection coils [54].

Although we expect the third-harmonic response to exhibit
behavior similar to the third-order nonlinear susceptibility χ3,
there are important differences, since the amplitude of the
oscillating field, albeit small (H0 ∼ 1 Oe), is nonzero. Thus,
to provide a more direct comparison between the LD model
and experiments, we directly compute the third-harmonic re-
sponse, which we denote by M3. In our experimental setup,
the signal corresponds to the Fourier transform of ∂M

∂t at 3ω,

M3(ε) =
∫ π

ω

− π
ω

∂M(ε, h(t ))

∂t
e3iωt dt, (16)
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FIG. 2. Absolute value of the third-harmonic response, |M3| in
Eq. (17), in units of M∞, as a function of the reduced temperature
ε ≡ T −Tc

Tc
, plotted on a log-log scale (red curve). The dashed black

line corresponds to the analytical approximation in Eq. (19), which
gives an ε−5/2 power-law behavior. The dimensionless parameters
used here are h0 = 10−3 and r = 1.

where M(ε, h(t )) is obtained from Eq. (4) by sub-
stituting h = h0 cos ωt . Integration by parts gives
M3(ε) = −3i

∫ π

−π
M(ε, h0 cos θ )e3iθ dθ with θ = ωt .

Using the fact that M(ε,−h) = −M(ε, h), we have∫ −π/2
−π

M(ε, h0 cos θ )ei3θ dθ = ∫ π/2
0 M(ε, h0 cos θ )ei3θ dθ

and
∫ π

π/2 M(ε, h0 cos θ )ei3θ dθ = ∫ 0
−π/2 M(ε, h0 cos θ )ei3θ dθ ,

which yields

M3(ε) = −6i
∫ π/2

−π/2
dθ M(ε, h0 cos θ ) cos 3θ, (17)

where the field h0 cos θ remains positive between the inte-
gration limits. Experimentally, both the imaginary and real
parts can be measured. However, due to issues with lock-in
phase determination in third-harmonic measurements [54], we
simply use the absolute value of M3 for comparison between
the experimental and theoretical results.

In the temperature range where h0 � ε, we can substitute
the series expansion (9) in Eq. (17) and find∣∣M3

∣∣
M∞

≈ 3π

4
χ3h3

0 + 15π

16
χ5h5

0. (18)

Now, in the relevant regime r � ε, according to Eqs. (14),
we have χ3 ∼ ε−5/2 and χ5 ∼ ε−9/2. Therefore, as long as
we remain in the regime h0 � ε, the contribution from the
fifth-order nonlinear susceptibility χ5 can be neglected. Using
Eq. (11) we obtain∣∣M3

∣∣
M∞

≈
(

7π

160 ln 2

)
h3

0(1 + ε)ε−5/2

√
r

. (19)

Therefore, we expect that, in the temperature range h0 �
ε � r, the third-harmonic response |M3| displays the power-
law behavior (T − Tc)−5/2 characteristic of the third-order
nonlinear susceptibility χ3. To verify this behavior explicitly,
in Fig. 2 we present the numerically calculated |M3| for h0 =
10−3 and r = 1, and compare it with the analytical approx-
imation in Eq. (19). It is clear that the expected power-law

10-6 10-4 10-2 100
10-15

10-10

10-5

100

(a)

10-6 10-4 10-2 100
10-10

10-5

100 (b)

FIG. 3. Absolute value of the third-harmonic response |M3| (in
units of M∞) as a function of the reduced temperature ε for (a) vary-
ing h0 values (fixed r = 1) and (b) varying r values (fixed h0 =
10−3). The dashed lines mark the power-law behavior ε−5/2 displayed
by the curves with larger values of r.

behavior appears over a rather wide temperature range. As one
approaches Tc from above and reaches the temperature scale
ε ∼ h0, deviations from the power-law are observed, and |M3|
saturates to a constant value. This is a direct consequence of
the fact that we are not computing the dc susceptibility, but
the ac third-harmonic response at a fixed field amplitude h0.
Figures 3(a) and 3(b) depict how the temperature window in
which power-law behavior is observed is affected by changing
r and h0. As expected, increasing h0 significantly suppresses
the window of power-law behavior, as the temperature scale
ε ∼ h0 is moved up. On the other hand, the anisotropy param-
eter r has a rather minor impact on the temperature range in
which ε−5/2 behavior is observed.

III. COMPARISON WITH EXPERIMENTAL DATA

A. Conventional superconductors (Pb, Nb, and V)

In order to validate the LD approach for the third-harmonic
response, we first compare the theoretical results for M3 from
Eq. (17) with the experimental third-harmonic data for three
conventional elemental superconductors: lead (Pb), niobium
(Nb), and vanadium (V). Besides an overall prefactor, there
are three fitting parameters in our formalism: the upper crit-
ical field Hc2, the critical temperature Tc, and the anisotropy
ratio r. The field H0 is 1.3 Oe as generated by the excitation
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FIG. 4. Comparison between the measured third-harmonic re-
sponse |M3| (circle and square black symbols, in arbitrary units) for
Pb and the theoretical results obtained from Eq. (17) (dashed and
solid red lines). Data shown in (a, c) linear and (b, d) logarithmic
scales. Fit parameters are shown in Table I. In (a) and (b), the fit
parameter is the critical field H̃c2 in Table I, whereas the critical
temperature is set to its experimental value T (expt)

c . In (c) and (d),
the fit parameters are Hc2 and Tc. The anisotropy parameter is set to
r = 10.

coil, but the true value could be modified by demagnetization
factors (especially very close and below Tc) by up to a factor of
∼2. Hereafter, for concreteness, we will use H0 = 1.3 Oe for
all cases. Since these materials are rather three dimensional,
we expect the z-axis correlation length ξz to be larger than the
layer distance s in the LD model, i.e., r > 4. Thus, because the
reduced temperatures probed are very small (εmax ∼ 10−2),
the precise value of r does not significantly affect the tem-
perature dependence of |M3| in the experimentally relevant
temperature regime [as shown in Fig. 3(b)]. Therefore, to
minimize the number of fitting parameters, we set r = 10 in
all cases. This leaves only two free parameters, Hc2 and Tc.

The comparison between theoretical and experimental re-
sults is shown Figs. 4, 5, and 6 for Pb, Nb, and V, respectively.

TABLE I. Experimental critical temperature and critical field
values, T (expt)

c and H (expt)
c2 , compared to the theoretical fitting pa-

rameters Tc, H̃c2, and Hc2. H̃c2 corresponds to the fits in Figs. 4(a),
4(b), 5(a), 5(b), 6(a), and 6(b), where Tc is forced to be equal to
the temperature where the experimental third-harmonic response
displays a maximum (denoted here by T (expt )

c ). On the other hand,
Hc2 corresponds to the fits in Figs. 4(c), 4(d), 5(c), 5(d), 6(c), and
6(d), where Tc is allowed to be different from the experimental value.
The H (expt)

c2 values for Nb and V are the smallest ones reported in
Ref. [55], whereas H (expt)

c2 for Pb was estimated as explained in the
text.

T (expt)
c (K) H (expt)

c2 (G) H̃c2 (G) Hc2 (G) T (expt)
c /Tc

Pb 7.18 273 2170 1083 0.9996
Nb 9.31 1710 166 371 0.9955
V 5.29 1200 1300 520 0.9980

FIG. 5. Comparison between the measured third-harmonic re-
sponse |M3| (circle and square blue symbols, in arbitrary units) for
Nb and the theoretical results obtained from Eq. (17) (dashed and
solid red lines). Data shown in (a, c) linear and (b, d) logarithmic
scales. Fit parameters are shown in Table I. In (a) and (b), the fit
parameter is the critical field H̃c2 in Table I, whereas the critical
temperature is set to its experimental value T (expt)

c . In (c) and (d),
the fitting parameters are Hc2 and Tc. The anisotropy parameter is set
to r = 10.

In all figures, the circle and square symbols correspond to
data, whereas dashed and solid lines correspond to theo-
retical results. Experimental measurements of |M3| become
challenging below ε ∼ 10−4 due to thermometry resolution
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(b)
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(c)
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FIG. 6. Comparison between the measured third-harmonic re-
sponse |M3| (circle and square green symbols, in arbitrary units)
for V and the theoretical results obtained from Eq. (17) (dashed and
solid red lines). Data from two different samples are presented (light
green and dark green symbols). Data shown in (a, c) linear and (b,
d) logarithmic scales. Fit parameters are shown in Table I. In (a) and
(b), the fit parameter is the critical field H̃c2 in Table I, whereas the
critical temperature is set to its experimental value T (expt)

c . In (c) and
(d), the fit parameters are Hc2 and Tc. The anisotropy parameter is set
to r = 10.
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issues, and the signal typically decays below the noise level
around ε ∼ 10−2, indicating a small temperature regime of
significant superconducting fluctuations. In the case of V, a
kink is observed in one sample (light green symbols), which
is possibly a spurious signal due to solder superconductivity
or the result of a slight macroscopic sample inhomogeneity.
For this reason, we also include results from a second sample
(dark green symbols). Because the overall magnitude of the
experimental |M3| is arbitrary and changes with modifications
of the setup, we rescaled the |M3| values of the second sample
(dark green symbols) by an overall constant to better match
the behavior of |M3| of the first sample (light green symbols)
at larger ε values.

In order to obtain the best fit, we considered two slightly
different procedures. In Figs. 4(a), 4(b), 5(a), 5(b), 6(a), and
6(b) (dashed lines), we fixed Tc to be the temperature at which
the third-harmonic response displays a maximum; we refer
to this value as T (expt)

c . It is important to note, however, that
this value is not necessarily the exact temperature of zero
resistance onset. For this reason, and given the intrinsic ex-
perimental uncertainties in the precise absolute determination
of Tc, in Figs. 4(c), 4(d), 5(c), 5(d), 6(c), and 6(d) (solid
lines) we allowed Tc to vary from T (expt)

c , but by no more
than 0.5%. The fit parameters are shown in Table I, together
with the experimental values for T (expt)

c and H (expt)
c2 , the latter

taken from Ref. [55]. Note that, to distinguish between the
two fitting procedures, we denote by H̃c2 the value used in
Figs. 4(a), 4(b), 5(a), 5(b), 6(a), and 6(b). Moreover, since
Pb is a type-I superconductor, H (expt)

c2 was estimated through√
2κHc [56], with κ = 0.24 [57,58] and Hc = 803 Oe [57,59].
Figures 4(a), 4(b), 5(a), 5(b), 6(a), and 6(b) show that the

theoretical curves obtained by fixing Tc = T (expt)
c provide a

reasonable description of the third-harmonic data in the region
not too close to Tc for Pb and V (Figs. 4 and 6), and in the
region close to Tc for Nb (Fig. 5). In particular, the latter does
not seem to display the characteristic ε−5/2 power-law behav-
ior observed in the former two in the regime of intermediate ε

values. However, because of the definition of the reduced tem-
perature, ε = T −Tc

Tc
, even small changes in Tc within typical

experimental uncertainty could account for these deviations
between theory and experiment. As noted above, to address
this issue we performed a second fit procedure allowing Tc to
be slightly different than T (expt)

c . As shown in Figs. 4(c), 4(d),
5(c), 5(d), 6(c), and 6(d), we find a better agreement between
the theoretical and experimental results over a wider temper-
ature range, including in the case of Nb in the intermediate ε

range. Comparing the theoretical Tc values in Table I with the
T (expt)

c values, we note that in all cases Tc is slightly larger than
T (expt)

c . This is the reason why in Figs. 4(c), 4(d), 5(c), 5(d),
6(c), and 6(d) the theoretical curves stop at ε = 0 whereas the
data extend to the region ε < 0.

On the other hand, there is a more significant difference
between Hc2 and the experimental value H (expt)

c2 taken from the
literature, with the former being a factor of approximately 2
to 6 smaller or larger than the latter. We note that the intrinsic
uncertainty in the precise value of H0 in our experiment may
explain at least part of this discrepancy. Moreover, the value
of H (expt)

c2 strongly depends on material preparation details, es-
pecially for polycrystalline samples where significant internal

0 0.1 0.2 0.3 0.4
0

0.5

1
(a)

10-5 10-4 10-3 10-2 10-1 100
10-5

10-3

10-1 (b)

0 0.1 0.2 0.3 0.4
10-5

10-3

10-1 (c)

FIG. 7. Comparison between the experimentally measured third-
harmonic response |M3| (orange symbols, in arbitrary units) for SRO
and the theoretical results obtained from Eq. (17) (dashed and dotted
red lines). Data shown in (a) linear, (b) logarithmic, and (c) semilog-
arithmic scales. For the theoretical curves, the critical temperature is
set to its experimental value T (expt)

c whereas the critical field is set to
H (expt)

c2 (dashed lines) and to 0.01H (expt)
c2 (dotted lines). The anisotropy

parameter is set to r = 10.

strains can be present [60]. In principle, the critical fields are
lower in more pristine materials, and it is therefore meaningful
to take the lowest known experimental values (taken from
Ref. [55]) for our comparison. Finally, while the LD model
employed here to calculate |M3| assumes a layered system,
the bulk elemental superconductors are cubic. On top of that,
the LD approach of including only Gaussian fluctuations is
expected to break down below a very small εcrit , whose precise
value is likely different for distinct materials. Despite these
drawbacks, this comparison shows that the LD model for the
third-harmonic response |M3| due to contributions from super-
conducting fluctuations provides a satisfactory description of
the experimental results.

B. Strontium ruthenate (Sr2RuO4)

Having validated our theoretical approach to compute the
third-harmonic response |M3| by comparison with data for
elemental superconductors, we now perform the same com-
parison with the lamellar perovskite-derived superconductor
Sr2RuO4 (SRO). The main advantage of our LD calcula-
tion of |M3| is that it is entirely phenomenological and
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FIG. 8. Comparison between the normalized third-harmonic re-
sponse data and the theoretical |M3| results for Pb, Nb, V, and SRO
on a logarithmic scale. The solid lines correspond to the best fits in
Figs. 4, 5, and 6, which refer to the conventional superconductors,
whereas the dashed and dotted lines correspond to the fits for SRO in
Fig. 7.

independent of microscopic details. In fact, the main assump-
tion is that the superconducting fluctuations can be described
by a Gaussian approximation. Consequently, the calculation
could in principle be applicable to unconventional supercon-
ductors as well.

SRO is believed to host an unconventional superconducting
state that breaks time-reversal symmetry [61–63]. Whereas for
a long time SRO was considered a promising candidate for
p-wave triplet superconductivity [64,65], recent experiments
have revealed problems with this interpretation [66–68]. This
has motivated alternative proposals involving, e.g., d-wave
and g-wave superconductivity [69–74]. As mentioned above,
the data presented here are the same as in Ref. [4]. As shown
there, the third-harmonic response of other perovskite-based
superconductors like strontium titanate and the cuprates dis-
play a similar unusual temperature dependence.

The data for SRO are shown by the orange symbols in
Fig. 7 on linear scale [Fig. 7(a)], logarithmic scale [Fig. 7(b)],
and semilogarithmic scale [Fig. 7(c)]. The theoretical results
for |M3| are plotted in the same panels using the ex-
perimental critical temperature value, Tc = 1.51 K = T (expt)

c ,
and two different critical field values: Hc2 = 750 G = H (expt)

c2

(dashed lines) and Hc2 = 7.6 G ≈ 0.01H (expt)
c2 (dotted lines).

Here, T (expt)
c corresponds to the temperature at which the

third-harmonic response is maximum, and H (expt)
c2 is the ex-

perimental value reported in the literature [64,75]. The key
observation is that the theoretical |M3| curve with Hc2 =
H (expt)

c2 grossly underestimates the data. It is necessary to re-
duce Hc2 by two orders of magnitude to obtain values that
are comparable between theory and experiment. In contrast,
for the elemental superconductors, the difference in the the-
oretical and experimental Hc2 values was at most a factor
of 6. More importantly, even by changing Hc2 by such a
large amount, the temperature dependence of the data is not
captured by the theoretical |M3| curve, in contrast again to the
case of conventional superconductors. Indeed, while the theo-

FIG. 9. (a) Normalized probability distribution function of the
critical temperature tc for different values of the parameter σ

in Eq. (20). Here, the parameter μ is fixed by the condition
vF (T (expt)

c ) = 0.3, with T (expt)
c = 1.51 K (indicated by the dashed

gray vertical line) and the temperature-dependent superconducting
volume fraction vF defined by Eq. (22). (b) Averaged third-harmonic
response 〈|M3|〉 calculated from the distribution functions of (a),
compared to the data for SRO, as a function of ε = T

Tc
− 1. In this

calculation, we used the experimental values T (expt)
c = 1.51 K and

H (expt)
c2 = 750 G, and set r = 10.

retical |M3| curve shows a power-law for intermediate reduced
temperatures, the data display an accurately exponential tem-
perature dependence, as discussed in Ref. [4] and shown in
Fig. 7(c). We note that the experimental Hc2 value depends
very strongly on the orientation of the field with respect to
the crystalline c axis, such that a small misalignment can lead
to sizable variation [75]. However, the discrepancy between
the theoretical and experimental results cannot be explained
by sample misalignment, since the critical field increases with
increasing angle between the field direction and the crystalline
c axis, whereas our theoretical results require smaller Hc2

values.
Figure 8 summarizes the third-harmonic response |M3| of

the three conventional superconductors studied here (Pb, Nb,
and V), as well as of the unconventional superconductor SRO.
The differences between SRO and the conventional supercon-
ductors are not only on the temperature dependence of |M3|,
but also on the fact that |M3| is larger and extends over a
much wider relative temperature range in SRO. Indeed, while
superconducting fluctuations are detected up to ε ∼ 10−2 in
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conventional superconductors, they extend all the way up to
ε ∼ 1 in SRO.

To attempt to address the discrepancy between the the-
oretical and experimental results for SRO, we revisit the
assumptions behind the LD model, from which we derived
the expression for |M3|. As discussed above, the LD model
makes no reference to the microscopic pairing mechanism.
However, it does assume a homogeneous system. In con-
trast, perovskites are known for their intrinsic inhomogeneity,
arising from, e.g., oxygen vacancies and local structural dis-
tortions that deviate strongly from the average lattice structure
(see Ref. [50] and references therein). Indeed, the experiments
of Ref. [4] indicate that universal structural inhomogeneity
is present in perovskite-based superconductors such as SRO.
It has also been argued that dislocations can have a strong
impact on the superconducting state properties of several
perovskites [74,76,77]. In the particular case of SRO, muon
spin-rotation measurements find a rather inhomogeneous sig-
nature of time-reversal-symmetry breaking below Tc [63]. It is
also known that the Tc of SRO is strongly dependent on stress
[63,78], implying that inhomogeneous internal stresses would
lead to regions with locally modified Tc. Simple point disor-
der also leads to a variation of the local critical temperature
[79]. Indeed, scanning SQUID measurements have directly
detected Tc inhomogeneity on the micron scale [80].

The impact of inhomogeneity on superconducting proper-
ties has been studied by a variety of approaches [15,51,81–
83]. Here, we consider a phenomenological approach that
introduces a probability distribution of the local Tc (see
also Ref. [84]). Such an inhomogeneous Tc distribution may
explain why the superconducting fluctuations in SRO are
stronger and extend to higher reduced temperatures as com-
pared to conventional superconductors, since regions with a
locally higher Tc are expected to result in a much larger con-
tribution to |M3| than that arising from the rest of the sample.
To test this idea, we include a distribution function for Tc into
our LD-based phenomenological model. We denote the “tran-
sition temperature variable” as tc, and reserve the notation Tc

for the actual transition temperature of the system to avoid
confusion. The form of the distribution function P(tc) depends
on several sources of inhomogeneity in the system (see, for
instance, Ref. [51]). A microscopic derivation is thus very
challenging, and beyond the scope of this work. Instead, here
we opt for a simple phenomenological modeling of P(tc). In
particular, we employ a normalized log-normal distribution:

P(tc) = 1

tc
√

2πσ 2
exp

[
−

(
ln tc

μ

)2

2σ 2

]
, (20)

where μ and σ are positive parameters that determine the
mean value and variance of the distribution. The choice of

this distribution is motivated by its properties of only al-
lowing nonzero values of tc and of having long tails toward
larger values of tc. We note that a log-normal distribution
for the local gap—and consequently of the local Tc—was
previously derived theoretically in Ref. [84] for disordered
quasi-two-dimensional superconductors in the limit of weak
multifractality, and observed experimentally in weakly dis-
ordered monolayer NbSe2 [85]. The averaged fluctuation
magnetization in Eq. (4) acquires the following form:

〈M〉(ε) =
∫ T

0

dtc

tc
√

2πσ 2
exp

[
−

(
ln tc

μ

)2

2σ 2

]
M

(
T

tc
− 1

)
(21)

with M(ε) given by Eq. (4). We can then compute the av-
eraged third-harmonic response 〈|M3|〉 from Eq. (17). We
assume that 〈|M3|〉 is dominated by superconducting fluc-
tuation contributions, which appear only in regions that are
locally nonsuperconducting (i.e., for which ε = T

tc
− 1 is pos-

itive). For this reason, the limits of the tc integration are such
that 0 < tc < T .

The two parameters characterizing the distribution func-
tion, μ and σ , are not independent, since they are related by
the value of Tc. To see that, we first define the temperature-
dependent superconducting volume fraction vF (T ), which is
given by

vF (T ) = 1 −
∫ T

0
P(tc)dtc = 1

2
− 1

2
erf

(
ln tc

μ√
2σ

)
, (22)

since the integral on the right-hand side gives the non-
superconducting volume fraction (T > tc). When the volume
fraction becomes larger than a threshold value v∗

F , the local
superconducting regions are expected to percolate and the
whole sample becomes superconducting. Note that a similar
criterion was used in the analysis of Ref. [84]. Tc is then
obtained by solving the equation vF (Tc) = v∗

F ,

μ

Tc
= exp[−

√
2σerf−1(1 − 2v∗

F )], (23)

where erf−1(x) is the inverse error function. For simplicity,
we use for v∗

F the site percolation threshold value for a cubic
lattice, v∗

F = 0.3. While v∗
F itself could be considered a free

parameter, we opt to fix it to avoid increasing the number of
fitting parameters. As a result, the only additional parameter
needed to compute 〈|M3|〉, as compared to the “clean” system
|M3|, is the dimensionless σ , which determines the width of
the distribution. In Fig. 9(a), we illustrate the profile of P(tc)
for different values of σ under the constraint vF (T (expt)

c ) =
0.3. The full expression for 〈|M3|〉 then becomes

〈|M3|〉(ε)

M∞
= 24(ε + 1)

π ln 2

∫ 1

0

dx

x
√

2πσ 2
exp

{
−

[
ln (xε + x)√

2σ
+ erf−1(1 − 2v∗

F )

]2} ∫ π/2

−π/2
M(x, h0 cos θ ) cos 3θ dθ (24)

with

M(x, h) = −
∫ π

2

0
dφ

{ 1
x − 1 + r sin2 φ

2h

[
ψ

( 1
x − 1 + r sin2 φ

2h
+ 1

2

)
− 1

]
− ln �

( 1
x − 1 + r sin2 φ

2h
+ 1

2

)
+ 1

2
ln (2π )

}
.

(25)
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FIG. 10. Averaged third-harmonic response 〈|M3|〉 as a function
of the reduced temperature ε = T

Tc
− 1 calculated using the parame-

ters Tc = 1.41 K ≈ 0.93T (expt)
c and σ = 0.08, while keeping Hc2 =

H (expt)
c2 = 750 G and r = 10 (solid red line). The orange symbols

are the experimental results, and the dashed red line reproduces the
theoretical third-harmonic response |M3| of the clean system with
Tc = T (expt)

c and Hc2 = H (expt)
c2 .

Using the distribution functions of Fig. 9(a), in Fig. 9(b)
we present the calculated averaged third-harmonic response
〈|M3|〉 (solid red line) using the experimentally determined
values for Tc and Hc2. The comparison with the data shows
that even a relatively mild width of the distribution of tc
values, with σ � 0.1, is capable of capturing the extended
temperature window for which the third-harmonic response
is sizable. As anticipated, this behavior is a consequence of
the fact that regions with a local higher Tc value, although
occupying a small volume, provide a sizable contribution to
the third-harmonic response.

The temperature dependence of the third-harmonic re-
sponse data, however, is not very well captured by the
theoretical curves in Fig. 9(b). To try to address this issue,
we promote Tc to a free parameter and allow it to devi-
ate slightly from the experimental value T (expt)

c = 1.51 K.
Figure 10 shows the results for 〈|M3|〉 in the case of Tc =
1.41 K ≈ 0.93T (expt)

c and σ = 0.08. Clearly, the temperature
dependence of the calculated 〈|M3|〉 becomes more similar
to the experimentally measured one, but still fails to capture
it completely. Thus, our conclusion is that while Tc inhomo-
geneity may explain the extended temperature range where
the third-harmonic response is sizable, it is unlikely to ex-
plain the exponential tail of |M3| observed experimentally in
Ref. [4].

IV. CONCLUDING REMARKS

In this work, we used the LD model to compute the
third-harmonic magnetic response |M3| due to Gaussian
superconducting fluctuations. Due to its phenomenological
nature, the LD model could in principle be applicable to
both conventional and unconventional superconductors. Our
detailed comparison with measurements of |M3| found that
the theoretical modeling provides a good description of the

data in the case of Pb, Nb, and V—provided that the critical
field is properly modified from its experimental value—but
a rather poor account of the data for SRO. Inclusion of Tc

inhomogeneity, which is intrinsically present in SRO, im-
proved significantly the agreement between theoretical model
and experimental data, although the model could not properly
capture the experimentally observed exponential temperature
dependence of |M3| (see Ref. [4]).

Further investigation is thus required to elucidate the origin
of this exponential behavior of |M3|, which was also seen in
other perovskite superconductors such as SrTiO3 (STO) and
the cuprates, and appears to be quite robust [4]. One cannot
completely discard simple Tc inhomogeneity as the source
of this effect, since here we only focused on a very specific
and particularly simple distribution function for Tc. While this
choice allowed us to argue on a more quantitative basis that
Tc inhomogeneity can explain why |M3| remains large over a
wide temperature window in SRO, the actual Tc distribution
is certainly more complicated and likely material dependent.
A phenomenological Tc distribution will likely require fine
tuning to give an exponential temperature dependence of
the third-harmonic response. Nevertheless, if rare regions are
present, they might give rise to specific tails in the distri-
bution function that may be common to different materials;
these types of effects have been explored in more detail in
Refs. [50,51]. We also note that, in the particular case of the
cuprates, an exponential temperature-dependent behavior as-
sociated with superconducting fluctuations was also observed
in other observables such as linear and nonlinear conductiv-
ity and specific heat, and described in terms of a Gaussian
Tc distribution [14,15]. It would be interesting to investigate
whether the exponential temperature dependence observed in
the third-harmonic response of SRO is also manifested in
these other observables in the case of SRO. In fact, as shown
in Ref. [4], prior specific heat data [86] are consistent with this
possibility.

Different effects could be the root of the remaining
discrepancy between the SRO data and the model with inho-
mogeneities. One effect specific to SRO is that, if this system
is indeed a time-reversal symmetry-breaking (TRSB) two-
component superconductor, as proposed by different models
[71–74], the superconducting fluctuation spectrum will likely
be more complicated than that of the LD model. However, the
fact that the same exponential temperature dependence of |M3|
is seen in STO and cuprates, the latter being single-component
superconductors, renders this scenario less likely. Moreover,
TRSB likely manifests itself primarily in the second-harmonic
response, and only below Tc. Another potential reason for the
discrepancy is the central approximation of the LD model of
solely Gaussian superconducting fluctuations. This raises the
interesting question whether non-Gaussian fluctuations, such
as those associated with the long tail in the distribution of Tc of
disordered superconductors discussed in Ref. [51], might also
play an important role in the fluctuation spectra of perovskite
superconductors.
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