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In addition to shape oscillations, low-energy excitation spectra of deformed nuclei are also influenced by
pairing vibrations. The simultaneous description of these collective modes and their coupling has been a
long-standing problem in nuclear structure theory. Here we address the problem in terms of self-consistent
mean-field calculations of collective deformation-energy surfaces, and the framework of the interacting boson
approximation. In addition to quadrupole shape vibrations and rotations, the explicit coupling to pairing vibra-
tions is taken into account by a boson-number nonconserving Hamiltonian, specified by a choice of a universal
density functional and pairing interaction. An illustrative calculation for 128Xe and 130Xe shows the importance
of dynamical pairing degrees of freedom, especially for structures built on low-energy 0+ excited states, in γ -soft
and triaxial nuclei.
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I. INTRODUCTION

An accurate description of the structure of deformed nu-
clei that cannot be characterized by axially symmetric shapes
presents a challenge for low-energy nuclear theory [1,2].
Quadrupole shape deformations, in particular, can be de-
scribed in terms of the polar variables β and γ . The axial
variable β is proportional to the intrinsic quadrupole moment,
and the angular variable 0 < γ < π/3 specifies the degree
of triaxiality. Two limiting cases for nonaxial nuclei corre-
spond to (i) a collective potential with a stable minimum
at a particular value of γ (the rigid-triaxial rotor model of
Davydov and Filippov [3]) and, (ii) a collective potential that
is virtually independent of the angular variable (the γ -unstable
rotor model of Wilets and Jean [4]). Numerous studies of
the emergence of γ softness have shown that neither of the
two limiting geometrical pictures is realized in actual nuclei.
Most nonaxial medium-heavy and heavy nuclei lie between
the limits of rigid-triaxiality and γ -unstable rotors [5–9].

An additional level of complexity is introduced by consid-
ering dynamical pairing in addition to shape collective degrees
of freedom [10–14]. The interplay between pairing and tri-
axial quadrupole deformations has been a central subject in
nuclear structure since the 1960s [15–18]. The effect of cou-
pling between shape and pairing vibrations is evident in the
excitation spectra, especially in the energies of bands based
on excited 0+ states, and the E0 transition strengths [1,19–23].
The dynamical pairing degree of freedom has been taken into
account schematically in a number of studies that, however,
did not explicitly consider the coupling between shape and
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pairing vibrations (see, for instance, Refs. [24–26]). In two
recent articles we have extended the quadrupole collective
Hamiltonian [27] and the interacting boson model (IBM) [28]
to include pairing vibrations and the coupling between shape
and pairing degrees of freedom. It has been shown that the
coupling to pairing vibrations produces low-energy spectra
in much better agreement with experimental results. Both
studies, however, have been restricted to axially symmetric
shapes. As noted in Ref. [27], the effect of pairing vibrations
will be particularly important for γ -soft nuclei characterized
by shape coexistence [29] and, therefore, it is important to
develop a model that allows for the coupling between pairing
and triaxial (β, γ ) shape degrees of freedom. In this work we
develop such a model based on nuclear density functional the-
ory and the IBM and report the first microscopic calculation
of pairing and triaxial shape vibrations in collective states of
γ -soft nuclei.

II. METHOD

To map the energy of a nucleus as function of intrinsic
deformations, constrained self-consistent mean-field (SCMF)
calculations [2,30–33] are performed for a specific choice of
the universal energy density functional and pairing force. In
this work we employ the self-consistent relativistic mean-
field plus BCS (RMF + BCS) model [34], based on the
density functional PC-PK1 [35] and a separable pairing in-
teraction [36]. The constraints imposed in the present SCMF
calculation are the expectation values of the quadrupole mo-
ments Q̂20 and Q̂22, and the monopole pairing operator P̂. The
expectation values of Q̂20 = 2z2 − x2 − y2 and Q̂22 = x2 −
y2 determine the deformation parameters β and γ , respec-
tively. The expectation value of the monopole pairing operator
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FIG. 1. Potential-energy surfaces of 128,130Xe computed using the RMF + BCS model based on the functional PC-PK1 and a separable
pairing interaction, and the interacting boson model (IBM) Hamiltonian determined by the microscopic SCMF energy maps (see text for the
description). The two-dimensional projections of the PESs are shown as functions of the axial quadrupole and triaxial (β, γ ), axial quadrupole
and pairing (β, α), and triaxial quadrupole and pairing (γ , α) deformations. The fixed values of α = 10 (12) in the (β, γ ), γ = 18◦ (0◦) in the
(β, α), and β = 0.2 (0.15) in the (γ , α) plot correspond to the global minimum of the (α, β, γ ) PES of 128Xe (130Xe).

P̂ = 1/2
∑

k>0(ckck̄ + c†
k̄
c†

k ) in a BCS state, where k and k̄ de-
note the single-nucleon and the corresponding time-reversed
states, respectively, defines the intrinsic pairing deformation
parameter α, which can be related to the pairing gap �. To
reduce the computational complexity, no distinction is made
between proton and neutron pairing degrees of freedom, even
though, in principle, they should be treated separately.

The three-dimensional potential-energy surfaces (PESs) of
128Xe and 130Xe, obtained in the (α, β, γ )-constrained micro-
scopic SCMF calculation, are projected onto two-dimensional
planes in the first and third column of Fig. 1, respectively.
The PESs are plotted as functions of the axial quadrupole
and triaxial (β, γ ), axial quadrupole and pairing (β, α), and
triaxial quadrupole and pairing (γ , α) deformations. The fixed
values of α = 10 (12) in the (β, γ ) plot, γ = 18◦ (0◦) for
the (β, α) surface and, finally, β = 0.2 (0.15) in the (γ , α)
map, correspond to the global minimum in the entire (α, β, γ )
parameter space of 128Xe (130Xe). While both nuclei appear to
be γ -soft (first row of Fig. 1), the SCMF-(β, γ ) PES of 128Xe
actually displays a shallow triaxial minimum at γ = 18◦. For
γ = 18◦ (0◦), the (α, β ) surfaces of 128Xe (130Xe) exhibit
shallow minima at α = 10 (12), respectively, and are rather
soft with respect to the intrinsic pairing deformation param-
eter. As one can already infer from the first two maps, the
(γ , α)-energy surfaces at the minimum β are soft with respect
to both collective coordinates. Softness, of course, implies

large fluctuations and, therefore, both the triaxial γ and pair-
ing α degrees of freedom will be important for spectroscopic
properties of these two nuclei.

To calculate excitation spectra and transition rates, one
must extend the mean-field framework to include dynamical
correlations that arise from restoration of broken symmetries
and fluctuations of collective coordinates [2]. Physical quan-
tities determined by collective dynamics are here computed
by mapping the SCMF results onto a system of interacting
bosons [37]. The boson model space consists of the monopole
s and quadrupole d bosons that are associated with correlated
J = 0+ and 2+ pairs of valence nucleons, respectively. To
take into account pairing vibrations, the number of bosons
n0 which, by construction equals half the number of valence
nucleons [38], is not conserved. Here we use a model with
a Hilbert space expressed as a direct sum of three subspaces
comprising n = n0 − 1, n0, and n0 + 1 bosons:

(sd )n0−1 ⊕ (sd )n0 ⊕ (sd )n0+1. (1)

The IBM Hamiltonian in general consists of boson-number-
conserving Ĥcons and -nonconserving Ĥnon-cons interactions:

ĤIBM = Ĥcons + Ĥnon-cons. (2)

For a quantitative description of γ -soft nuclei, the Hamilto-
nian must include not only one- and two-body boson terms,
but also three-body terms [5,8,39–41]. It has been shown that
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already a minimal choice for a three-body boson interaction of
the type (d†d†d†)(3) · (d̃ d̃ d̃ )(3) produces a triaxial minimum
on the deformation-energy surface and provides a correct
description of the structure of γ bands [5,8,40,41]. The boson-
number-nonconserving Hamiltonian Ĥnon-cons is expressed in
terms of a monopole pair-transfer operator (s† + s) that either
adds or removes an s boson [28].

The bosonic PES in the (α, β, γ ) space is computed by
taking the expectation value of the IBM Hamiltonian in the
boson condensate state |�(�α)〉 [42,43]:

|�(�α)〉 = ∣∣�n0−1(�α)
〉 ⊕ ∣∣�n0 (�α)

〉 ⊕ ∣∣�n0+1(�α)
〉
, (3)

where, for a given subspace comprising n bosons (n = n0 −
1, n0, n0 + 1), |�n(�α)〉 is defined by

|�n(�α)〉 =
[
αss

† +
+2∑

m=−2

αmd†
m

]n

|0〉 , (4)

up to a normalization factor. The vector �α denotes the ampli-
tudes αs and αm, and |0〉 is the boson vacuum. The bosonic
energy surface is expressed as a 3 × 3 matrix E(�α) [44]:

En,n′ (�α) = 〈�n(�α)|Ĥcons|�n(�α)〉 δn,n′

+ 〈�n′ (�α)|Ĥnon-cons|�n(�α)〉 δn,n′±1, (5)

with the three indices n0 and n0 ± 1.
The amplitudes αs and αm in Eq. (4) can be related to

the pairing and triaxial deformation parameters of the SCMF
calculations, respectively [28]. The boson Hamiltonian (2) is
determined by using the method of Ref. [28]. The parame-
ters of the boson-number-conserving Hamiltonian Ĥcons are
specified by mapping the (β, γ ) SCMF PES at α = αmin onto
the diagonal matrix element En0,n0 (α = αmin, β, γ ). We note
that only the strength of the rotational term L̂ · L̂ in Ĥcons is
determined separately [45] by adjusting the moment of inertia
of the yrast band to the empirical value. For 128,130Xe this
value is ≈40% larger than the corresponding Inglis-Belyaev
value [46,47], computed using the SCMF single-nucleon
quasiparticle states at the equilibrium minimum. The strength
parameter of the number nonconserving Hamiltonian Ĥnon-cons

is chosen in such a way that the (α, β ) SCMF PES at γ = γmin

is reproduced by the lowest eigenvalue of the matrix E(�α).
The details of the formalism for the two-dimensional (2D)
space (α, β ) in the case of axial symmetry can be found in
Ref. [28], and the expressions used in the extension to the
triaxial case will be included in a forthcoming presentation.

The three projections of the IBM PESs on the (β, γ ),
(α, β ), and (γ , α) planes are shown in the second and fourth
column of Fig. 1 for 128Xe and 130Xe, respectively. They
are displayed next to the corresponding microscopic energy
surfaces so that one can assess the mapping from the SCMF
space of nucleon degrees of freedom to the boson space of the
IBM.

We note that, in a more traditional microscopic approach
to large-amplitude collective motion, such as the collective
Hamiltonian model [32,48], the dynamics is governed by the
collective potential, the mass parameters, and moments of
inertia, all defined as functions of the intrinsic deformation
parameters. The single-nucleon wave functions, energies, and

occupation factors, generated from constrained SCMF cal-
culations, provide the microscopic input for the parameters
of the collective Hamiltonian. In the present approach, the
collective dynamics is determined by the choice of the boson
space (s and d bosons) and the IBM Hamiltonian that includes
not only one-body but also two-body and three-body boson
interaction terms. Even though the parameters of this Hamil-
tonian do not explicitly depend on the intrinsic deformation
parameters, the mapping of the entire SCMF energy surface
on the expectation value of the IBM Hamiltonian in the boson
condensate state introduces an effective deformation depen-
dence of the boson Hamiltonian. Of course, at very large
deformations, intruder orbitals become important, and the
mapping to the limited boson space that corresponds to half
the number of valence nucleons is too restrictive. However,
in the vicinity of the equilibrium minimum the mapping is
quite accurate (cf. Fig. 1), and generally produces a boson
Hamiltonian that can describe low-energy excitation spectra
at a quantitative level.

III. EFFECT OF DYNAMICAL PAIRING AND TRIAXIAL
DEFORMATION ON EXCITATION SPECTRA

Having determined the parameters of the IBM Hamilto-
nian, we next consider spectroscopic properties and discuss
the importance of simultaneously incorporating dynamical
pairing and triaxial degrees of freedom in the model space.
As already shown in Ref. [28] for axially symmetric calcula-
tions of 122Xe and rare-earth N = 92 isotones, the coupling
between shape and pairing collective degrees of freedom has
hardly any effect on states of the yrast band, either on exci-
tation energies or transition rates. In contrast, the inclusion of
dynamical pairing significantly lowers the energies of bands
based on excited 0+ states. Figure 2 displays the excitation
energies of the second, third, and fourth 0+ states in 128Xe
and 130Xe. We plot the energies calculated with the IBM
including one-dimensional (1D) axial quadrupole (β), 2D
triaxial quadrupole (β, γ ) and pairing plus axial quadrupole
(α, β), and, finally, three-dimensional (3D) pairing plus tri-
axial quadrupole (α, β, γ ) degrees of freedom. The lines are
to guide the eye, and the experimental values are denoted
by filled red symbols on the right-hand side of each panel.
Because of configuration mixing it is not possible to uniquely
separate the effects of triaxial deformations and pairing vi-
brations on each 0+ state. However, the inclusion of these
degrees of freedom generally lowers the 0+ states, bringing
the excitation energies in a quantitatively better agreement
with experiment. In the particular examples considered here,
it appears that the energies of 0+

2 are not sensitive to the
inclusion of triaxial deformations, whereas both γ deforma-
tion and dynamical pairing have an effect on the excitation
energies of 0+

3 and 0+
4 . One should keep in mind that these

model calculations are performed in the collective monopole
and quadrupole boson space. In actual nuclei, however, two-
or four-quasiparticle states play a role at higher excitation en-
ergies, e.g., above ≈3 MeV, but these degrees of freedom are
not included in our model space. Even though a mixing with
these states would, of course, affect the calculated excitation
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FIG. 2. Excitation energies of the second, third, and fourth 0+

states in 128Xe and 130Xe. Results obtained with the IBM includ-
ing one-dimensional axial quadrupole (β), two-dimensional triaxial
quadrupole (β, γ ) and pairing plus axial quadrupole (α, β), and
three-dimensional pairing plus triaxial quadrupole (α, β, γ ) degrees
of freedom are compared with experimental values (filled red sym-
bols on the right-hand side of each panel).

energies, the qualitative effect of dynamical pairing would still
be the lowering of excited 0+ states.

A similar analysis is performed for the excitation energies
of the members of the γ bands of 128Xe and 130Xe, and
illustrated in the top panels of Fig. 3. As one would expect, in
this case the effect of the inclusion of triaxial deformations is
important to reproduce the experimental excitation energies of
the members of the γ band. One notes, however, that the cou-
pling with pairing vibrations increases the excitation energy
of the γ band. This is somewhat at variance with the experi-
mental data, the deviation attributed to the level repulsion due
to the configuration mixing between the subspaces (1) of the
IBM.

We have further analyzed two quantities that character-
ize the level of γ softness. The limiting cases are described
by two geometrical models: the rigid-triaxial-rotor model
of Davydov and Filippov (D-F), and the γ -unstable rotor
model of Wilets and Jean (W-J). The latter is equivalent
to the O(6) dynamical symmetry of the IBM [49,53]. To
distinguish between rigidity and softness in γ , we con-
sider the ratios E2γ = E (2+

γ )/E (2+
g ) and R3γ = B(E2; 3+

γ →
2+

γ )/B(E2; 2+
g → 0+

g ). They are plotted in the middle and
lower rows of Fig. 3, respectively. Note that, for the B(E2)
values, because three-body boson terms are included in the
Hamiltonian, calculations with triaxial degree of freedom
should in principle contain higher-order terms in the E2
transition operator [40]. Both calculated quantities exhibit a

FIG. 3. (a), (b) Excitation spectra of the states belonging to the
γ -band, (c), (d) the energy ratio E2γ = E (2+

γ )/E (2+
g ), and (e), (f)

the ratio R3γ = B(E2; 3+
γ → 2+

γ )/B(E2; 2+
g → 0+

g ), obtained by four
different IBM calculations of 128Xe and 130Xe: axially deformed,
axially deformed + dynamical pairing, triaxially deformed, and tri-
axially deformed + dynamical pairing. In panels (c)–(f), the values
predicted by the triaxial rotor model of Davydov and Filippov (D-F)
at γ = 30◦ [3] (E2γ = 2.00 and R3γ = 1.78), and by the γ -unstable-
rotor model of Wilets and Jean (W-J) or O(6) symmetry [4,49]
(E2γ = 2.50 and R3γ = 1.19) are also indicated by dotted horizontal
lines. Available experimental values from Refs. [50–52] are shown
by filled red symbols on the right-hand side of each panel.

pronounced dependence on the triaxial degree of freedom.
The results of the full calculation for E2γ are closer to the
W-J limit, while the R3γ values trend towards the D-F limit.

Finally, we demonstrate that the model is also capable of
describing detailed structure properties of γ -soft nuclei. In
Fig. 4 the low-energy excitation spectra of 128Xe and 130Xe,
obtained with the IBM that includes the dynamical pairing
and triaxial deformation degrees of freedom, are compared
with the corresponding experimental energy spectra [50–52].
On closer inspection it is seen that the present IBM calcula-
tion reproduces the available low-energy data. Characteristic
features of γ -soft nuclei emerge in the calculated excitation
spectra: the low energy of the bandhead of γ band (2+

γ ),
the level spacing between the states of the γ band, and the
excitation energy of the 0+

2 state relative to the γ band.
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FIG. 4. Low-energy excitation spectra of 128,130Xe obtained with
the IBM that includes dynamical pairing and triaxial deformation
degrees of freedom. The levels are grouped into bands according
to the dominant transitions, and the B(E2) values are in Weisskopf
units. The results of model calculation are compared with the corre-
sponding experimental energy spectra [50–52].

For 128Xe the present calculation predicts the γ band at
somewhat higher excitation energy compared with its ex-
perimental counterpart. The 0+

2 state is slightly lower than
the corresponding experimental level, while the calculated
0+

3 is at considerably higher excitation energy. The 0+
2 wave

function is dominated by components that are almost equally
distributed between the [n0 − 1] and [n0 + 1] subspaces (more
than 90%), that is, the structure corresponds to a pairing vibra-
tional state. In contrast, the boson distribution of 0+

3 is very
similar to that of the ground-state band, with predominant
components in the [n0] subspace. This is reflected in the strong
E2 transition to the state 2+

1 (2+
g ), with a B(E2) value an order

of magnitude larger than in experiment. The observed E2
transition strengths [50,51] are, in general, reproduced by the

model calculation, except for the weak transition 4+
2 → 2+

1 .
The calculated B(E2) value is, in fact, larger than that of
the corresponding 4+

γ → 4+
g transition, which reproduces the

experimental value.
The calculated spectrum of 130Xe reproduces the data

equally well and, in fact, the excitation energies of the states
0+

2 and 0+
3 are in better agreement with experiment compared

with the previous case. Here both 0+
2 and 0+

3 exhibit a struc-
ture that can be interpreted as pairing vibrations, while the
largest component of the wave function of 0+

4 is that of the
[n0] subspace. Just as in the case of 128Xe, the γ band is
calculated at somewhat higher excitation energy with respect
to experiment. The predicted transition rates are consistent
with the available data even though, except for yrast band, the
latter are dominated by large error bars.

IV. CONCLUSION

Based on self-consistent mean-field calculations of
deformation-energy surfaces, and the framework of the in-
teracting boson approximation, a new method has been
developed that allows for the coupling between pairing
and triaxial (β, γ ) shape degrees of freedom. In addition
to quadrupole shape vibrations and rotations, the explicit
coupling to pairing vibrations is taken into account by a
boson-number-nonconserving IBM Hamiltonian. The param-
eters of the Hamiltonian are specified by SCMF calculations
for a specific choice of a universal energy density functional
and pairing interaction, with constraints on quadrupole shape
and pairing intrinsic deformations. The illustrative calculation
of low-energy excitation spectra of 128Xe and 130Xe indicates
the importance of the dynamical pairing degree of freedom,
especially for low-energy 0+ excited states and bands based
on them. The findings of the present study will pave the way
for more detailed explorations of pairing vibrations in various
regions of γ -soft and triaxial nuclei.
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