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The effect of coupling between pairing and quadrupole triaxial shape vibrations on the low-energy collective
states of γ -soft nuclei is investigated using a model based on the framework of nuclear energy density functionals
(EDFs). Employing a constrained self-consistent mean-field (SCMF) method that uses universal EDFs and
pairing interactions, potential energy surfaces of characteristic γ -soft Os and Pt nuclei with A ≈ 190 are
calculated as functions of the pairing and triaxial quadrupole deformations. Collective spectroscopic properties
are computed using a number-nonconserving interacting boson model (IBM) Hamiltonian, with parameters
determined by mapping the SCMF energy surface onto the expectation value of the Hamiltonian in the boson
condensate state. It is shown that, by simultaneously considering both the shape and pairing collective degrees
of freedom, the EDF-based IBM successfully reproduces data on collective structures based on low-energy 0+

states, as well as γ -vibrational bands.

DOI: 10.1103/PhysRevC.104.024323

I. INTRODUCTION

Ground-state deformations of most medium-mass and
heavy nuclei are of quadrupole type, parametrized by the
axially symmetric deformation β (elongation along the sym-
metry axis of the intrinsic frame), and the degree of triaxiality
γ [1]. Quadrupole collectivity is a prominent feature of nu-
clei, and gives rise to interesting structure phenomena that
include (i) quantum (shape) phase transitions [2] that corre-
spond to sudden changes from nearly spherical vibrational
to well-deformed rotational nuclear systems by addition or
subtraction of just a few nucleons, and (ii) shape coexistence
[3] of two or more intrinsic shapes near the ground state in a
single nucleus. For an accurate theoretical description of such
phenomena, nonaxial γ deformations plays a crucial role. In
this context, numerous theoretical studies have been carried
out from various perspectives [1–9].

In addition to shape degrees of freedom, pairing vibrations
play an important role for the structure of heavy nuclei; in
particular, for spectroscopic properties of excited 0+ states
and the bands built on them, and for electric monopole
(E0) transitions [1,10–14]. The relevance of the dynami-
cal pairing degree of freedom in nuclear structure has been
recognized since the development of the BCS theory for
nuclei in the early 1960s [15–18]. The effect of dynamical
pairing and its coupling to the (triaxial) quadrupole shape
degrees of freedom has been studied using schematic mod-
els (see, e.g., [19–21]). Microscopic models, including those
based on the self-consistent mean-field (SCMF) approaches,
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have also been employed to study the effects of pairing vi-
brations in various low-energy nuclear structure phenomena
and fundamental nuclear processes such as the neutrinoless
double-β decay [22] and spontaneous fission [23–26]. All
these microscopic studies have been, however, limited to ax-
ially symmetric shapes, that is, calculations were performed
within a two-dimensional (2D), pairing-plus-axial-quadrupole
deformation space. A simultaneous quantitative treatment of
pairing and triaxial quadrupole shape deformations, and their
explicit coupling in realistic applications, has remained an
unsolved problem for nearly sixty years.

In two recent studies we have introduced pairing vibrations
as additional building blocks in the quadrupole collective
model [27], and the interacting boson model (IBM) [28],
based on the framework of nuclear energy density functionals
(EDF). It was shown that the inclusion of the dynami-
cal pairing significantly lowers the energies of excited 0+
states in deformed rare-earth nuclei [27,28]. In Ref. [29] we
have extended this framework to include both the triaxial
quadrupole shape vibrations and pairing vibrations within the
IBM. The method consists of two essential procedures. First,
constrained SCMF calculations have been performed using
the relativistic mean-field plus BCS (RMF+BCS) method
[30] based on the PC-PK1 energy density functional [31],
to construct the potential energy surface (PES) as a func-
tion of the three-dimensional (3D) quadrupole triaxial and
pairing deformations (hereafter denoted as SCMF-PES). In
a second step that takes into account both pairing vibrations
and triaxiality in spectroscopic calculations, a boson-number-
nonconserving Hamiltonian consisting of up to three-body
boson terms has been introduced. The parameters of the IBM
Hamiltonian are determined in such a way that the SCMF-PES
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in the vicinity of the global minimum in the 3D-deformation
space is mapped onto the expectation value of the Hamiltonian
in the boson condensate state (hereafter called IBM-PES).
The diagonalization of the mapped IBM Hamiltonian in the
Hilbert space, that consists of three subspaces that differ in
boson number by 1, produces excitation spectra and transition
rates. The method has been demonstrated in an illustrative
application to the γ -soft nuclei 128Xe and 130Xe.

The aim of this work is to investigate in more detail the
influence of simultaneously including the pairing and triaxial
quadrupole shape vibrations on spectroscopic properties of
γ -soft nuclei. Specifically, we give the formulation of the
IBM framework within the 3D-deformation space and, in
addition to the two cases already considered in Ref. [29] (i.e.,
128,130Xe), extend the analysis to the mass A ≈ 190 nuclei:
188,190,192Os and 192,194,196Pt. The latter is another representa-
tive region in which nonaxial deformations play an important
role. Previous studies within the IBM, based on the relativis-
tic DD-PC1 [32] EDF [33,34] and the Gogny-D1S [35] and
D1M [36] EDFs [37–39], as well as with the five-dimensional
collective Hamiltonian based on the relativistic PC-PK1 [40],
have shown the importance of triaxiality in the mass A ≈ 190
region. An early empirical study [41] presented evidence for
a rotor-to-O(6) transition in the Os-Pt region and, in particu-
lar, the 196Pt nucleus was shown to exhibit spectral features
predicted in the O(6) dynamical symmetry limit of the IBM
[42]. In addition to the PC-PK1 density functional, employed
in Refs. [28,29], here we also consider the DD-PC1 functional
for the calculations of the Os and Pt isotopes. By comparing
the results obtained with two representative EDFs, we exam-
ine the robustness of our method.

The paper is organized as follows. In Sec. II we outline
the theoretical method employed in the analysis of spectro-
scopic properties. The SCMF-PESs and IBM-PESs in the
3D-deformation space are discussed in Sec. III. In Sec. IV we
analyze the calculated spectroscopic properties for the nuclei
128,130Xe, 188,190,192Os, and 192,194,196Pt, including low-energy
excitation spectra, the effect of coupling pairing and triaxial
deformations on excited 0+ states and γ -vibrational bands,
a comparison between the PC-PK1 and DD-PC1 functionals,
and the E2 and E0 transition rates. Section V contains a
summary of the main results and an outline of future research.

II. METHOD

The SCMF-PESs are computed as functions of the 3D
deformations by using the RMF+BCS method [30], with
constraints on the mass quadrupole moments and intrinsic
pairing deformation. The expectation values of the quadrupole
operators Q̂20 = 2z2 − x2 − y2 and Q̂22 = x2 − y2 define the
dimensionless polar deformation parameters β and γ :

β =
√

5

16π

4π

3

1

A(r0A1/3)2

√
〈Q̂20〉2 + 2 〈Q̂22〉2

, (1)

γ = arctan
√

2
〈Q̂22〉
〈Q̂20〉

, (2)

with r0 = 1.2 fm. The expectation value of the monopole
pairing operator P̂ = (1/2)

∑
k>0(ckck̄ + c†

k̄
c†

k ) in a BCS

state (without pairing rotation), where k and k̄ denote
the single-nucleon and the corresponding time-reversed
states, respectively, defines the intrinsic pairing deformation
parameter α:

α =
∑

τ=π,ν

∑
k>0

uτ
k v

τ
k , (3)

which can be related to the pairing gap �. To reduce the
computational complexity, no distinction is made between
proton and neutron pairing degrees of freedom even though, in
principle, they should be treated separately. The particle-hole
interactions are modeled by the relativistic energy density
functionals PC-PK1 [31] and DD-PC1 [32]. For the particle-
particle channel, a separable pairing force of finite range [43]
is used.

Having computed the 3D SCMF-PES for a given nucleus,
in the next step the deformation energy surface is mapped onto
the corresponding interacting-boson system [44,45], using the
procedure described below. Here the boson system consists
of the monopole s and quadrupole d bosons, which, from
a microscopic point of view [5,46], are associated with the
correlated L = 0+ and 2+ pairs of valence nucleons, respec-
tively. To take into account pairing vibrations, the number of
bosons n, which equals half the number of valence nucleons
[46], is not conserved, but is allowed to vary by one unit,
n = n0, n0 ± 1. The boson Hilbert space is then expressed as a
direct sum of the three subspaces comprising n = n0 − 1, n0,
and n0 + 1 sd bosons:

(sd )n0−1 ⊕ (sd )n0 ⊕ (sd )n0+1. (4)

In the following, the three subspaces are simply denoted
by [n0 − 1], [n0], and [n0 + 1]. The corresponding IBM
Hamiltonian consists of the boson-number conserving (or un-
perturbed) Ĥcons and nonconserving Ĥnoncons interactions:

Ĥ = Ĥcons + Ĥnoncons. (5)

To describe structures based on triaxial mean-field minima,
it has been shown [34,47,48] that it is necessary for the
unperturbed Hamiltonian Ĥcons to contain not only one- and
two-body, but also three-body boson terms,

Ĥcons = Ĥ1b + Ĥ2b + Ĥ3b, (6)

where

Ĥ1b = εd n̂d + δ̂, (7a)

Ĥ2b = κQ̂ · Q̂ + ρL̂ · L̂, (7b)

Ĥ3b = η
∑
λ=2,4

((d†d†)(λ)d†)(3) · ((d̃ d̃ )(λ)d̃ )(3), (7c)

with the d-boson number operator n̂d = ∑
m(−1)md†

m ·
d̃−m [d̃−m = (−1)mdm], the quadrupole operator Q̂ = s†d̃ +
d†s + χ (d†d̃ )(2), and the angular momentum operator L̂ =√

10(d†d̃ )(1). The three-body boson interaction of the form
(7c) is shown to be particularly important to produce triaxial
minima [34,47,48]. We note that for three d bosons there is
only one state with angular momentum L = 3 and, indeed,
the terms with λ = 2 and λ = 4 in Eq. (7c) are proportional
to each other. The term δ̂ = ε0n̂ [= ε0(s†s + d† · d̃ )] in Ĥ1b
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(7a) determines the relative energies between the three un-
perturbed 0+ ground states, but does not contribute to the
excitation energies within each unperturbed boson subspace.
The number-nonconserving Hamiltonian Ĥnoncons (5) is repre-
sented by a monopole-pair transfer operator:

Ĥnoncons = θ 1
2 (s† + s), (8)

where θ denotes the strength parameter. The independent pa-
rameters of the total boson Hamiltonian (5) are εd , κ , χ , ρ, η,
θ , and ε0.

The IBM-PES within the (α, β, γ ) 3D-deformation space
is obtained by taking the expectation value of the Hamiltonian
in the boson condensate state |�(�α)〉 [49–51]:

|�(�α)〉 = ∣∣�n0−1(�α)
〉 ⊕ ∣∣�n0 (�α)

〉 ⊕ ∣∣�n0+1(�α)
〉
. (9)

The state |�n(�α)〉 for a given subspace comprising n bosons
(n = n0 − 1, n0, n0 + 1) is given by

|�n(�α)〉 = 1√
n!

(b†
c )n |0〉 , (10)

where

b†
c = 1√N

[
αss

† + β̃ cos γ d†
0 + 1√

2
β̃ sin γ (d†

+2 + d†
−2)

]

(11)

with a normalization factor N = α2
s + β̃2. The vector �α repre-

sents the three amplitudes {αs, β̃, γ }. |0〉 is the boson vacuum,
that is, the inert core. The IBM-PES is expressed [52] as a
3 × 3 matrix E(�α), with

En,n(�α) = 〈�n(�α)|Hcons|�n(�α)〉
= a0n + n(a1 + a2β̃

2)N−1

+ n(n − 1)
[
b1α

2
s β̃

2 + b2αsβ̃
3� + b3β̃

4]N−2

+ dn(n − 1)(n − 2)N−3β̃6(1 − �2) (12a)

for the diagonal elements, and

En,n′ (�α) = En′,n(�α) = 〈�n′ (�α)|Hnoncons|�n(�α)〉
= θαs

√
n + 1N−1/2 (12b)

for the off-diagonal ones. Here the shorthand notations � ≡
cos 3γ , a0 = ε0, a1 = 5κ , a2 = εd + 6ρ + κ (1 + χ2), b1 =
4κ , b2 = −4

√
2/7κχ , b3 = 2κχ2/7, and d = −η/7 are used.

At each (αs, β̃, γ ) coordinate, the matrix E(�α) is diagonalized,
resulting in three energy surfaces. However, as is often the
case with configuration-mixing IBM calculations that deal
with shape coexistence (e.g., Refs. [53–56]), only the lowest
eigenvalue at each deformation is considered.

The amplitude β̃ is the IBM analog of the axially symmet-
ric deformation β, while γ represents the degree of triaxiality
as usual. The following transformation of the variable αs was
introduced in [28]:

αs = cosh (α̃ − α̃min). (13)

The new coordinate α̃ is now considered the equivalent quan-
tity to the pairing deformation α, and α̃min corresponds to the
global minimum on the SCMF-PES. The β̃ and α̃ variables

in the boson system can be associated with the deformation
parameters in the SCMF model through the relations [28,29]

α̃ = Cαα, β̃ = Cββ, (14)

where the constants of proportionality Cα and Cβ are taken
as additional parameters to be determined by the mapping.
A well-known feature of the IBM is that the energy surface
calculated in the condensate state is rather flat for large de-
formations far from the global minimum, i.e., β 
 βmin and
α 
 αmin. This is a consequence of the fact that the IBM
is built on the restricted model space of valence nucleons,
whereas the SCMF model considers all nucleons. This differ-
ence is partly taken into account by the rescaling relations in
(14). The scaling parameters Cα and Cβ should, in principle,
be functions of deformations [5], hence we assume that they
have the following α and β dependencies:

C′
β = Cβ

[
θ (−β∗) + θ (β∗)epβ2

∗
][

θ (−α∗) + θ (α∗)eqα2
∗
]
,

(15a)

C′
α = Cα

[
θ (−α∗) + θ (α∗)erα2

∗
]
, (15b)

with α∗ = α̃ − α̃min and β∗ = β̃ − β̃min, and the step function
θ (x) (= 1 if x � 0 and = 0 if x < 0). The idea behind the
above formulas (15a) and (15b) is that the IBM-PES can be
made steeper for large deformations α 
 αmin and β 
 βmin,
so that it reproduces the SCMF deformation surface while,
for relatively small deformations α � αmin and β � βmin, the
relations in (14) hold, that is, C′

α and C′
β are constant (C′

α = Cα

and C′
β = Cβ). Fixed values are used for the dimensionless

coefficients: p = 6, q = 1, and r = 0.1.
The boson Hamiltonian (5) is determined by applying

the procedure of Refs. [28,29]. First, the parameters of the
number-conserving Hamiltonian (6) {εd , κ, χ, η,Cβ} are fixed
by mapping the SCMF-PES in the 2D (β, γ ) space with
α = αmin onto the diagonal matrix element associated with
the normal [n0] configuration En0,n0 (αmin, β, γ ). Second, the
strength parameter ρ of the term L̂ · L̂ is determined separately
[57], by equating the bosonic cranking moment of inertia in
the intrinsic frame at the global minimum (αmin, βmin, γmin)
to the corresponding Inglis-Belyaev (IB) value [58,59] com-
puted using the SCMF quasiparticle states and energies. We
note that the IB moment of inertia must be increased by 40%
for Xe and Os nuclei both for the PC-PK1 and DD-PC1 EDFs.
This is to take into account the well-known fact that the IB for-
mula underestimates the empirical moments of inertia. Third,
the number-nonconserving Hamiltonian (8) is determined in
such a way that the SCMF-PES in the 2D (α, β ) space with
γ = γmin is reproduced by the lowest eigenvalue of the matrix
E(�α).

Having thus determined the boson interaction parameters,
the mapped IBM Hamiltonian (5) is diagonalized in the model
space defined by Eq. (4).

III. POTENTIAL ENERGY SURFACES

A. 2D projections of SCMF-PESs

The 3D energy surfaces for the Os and Pt isotopes,
calculated using the self-consistent RMF+BCS model, are
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FIG. 1. The SCMF-PESs of 188,190,192Os and 192,194,196Pt, projected onto the two-dimensional (β, γ ) [top], (α, β ) [middle], and (γ , α)
[bottom] planes (see text for the description). The fixed values of α in the (β, γ ), γ in the (α, β ), and β in the (γ , α) plots, correspond to the
global minimum in the entire three-dimensional (α, β, γ ) PES (cf. Table I). The PC-PK1 density functional and a separable pairing interaction
have been used in the constrained SCMF calculation.

projected onto the 2D (β, γ ), (α, β ), and (γ , α) deformation
spaces in Fig. 1 (PC-PK1) and Fig. 2 (DD-PC1), respectively.
The 2D projections of the PESs are shown as functions of the
axial quadrupole and triaxial deformations (β, γ ) with fixed
αmin, axial quadrupole and pairing deformations (α, β ) with
fixed γmin, and triaxial quadrupole and pairing deformations

(γ , α) with fixed βmin. On each surface the fixed values of the
deformation parameters correspond to the global minimum
in the entire three-dimensional (α, β, γ ) PES (cf. Table I).
Similar contour plots for the nuclei 128,130Xe can be found in
Ref. [29]. The αmin, βmin, and γmin values for the considered
nuclei are listed in Table I. Below we mainly discuss promi-

FIG. 2. Same as in the caption to Fig. 1 but for the functional DD-PC1.
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TABLE I. The values (αmin, βmin, γmin) of the deformation pa-
rameters at which global minima occurs on the 3D energy surfaces,
for constrained SCMF calculations based in the functionals PC-PK1
and DD-PC1.

PC-PK1 DD-PC1

128Xe (10, 0.20, 18◦)
130Xe (12, 0.15, 0◦)
188Os (15, 0.20, 30◦) (9, 0.25, 0◦)
190Os (12, 0.20, 30◦) (6, 0.20, 30◦)
192Os (9, 0.20, 30◦) (6, 0.20, 30◦)
192Pt (18, 0.15, 60◦) (12, 0.20, 36◦)
194Pt (15, 0.15, 42◦) (12, 0.15, 36◦)
196Pt (15, 0.15, 36◦) (12, 0.15, 42◦)

nent features of the SCMF-PESs calculated with the energy
density functional PC-PK1 plus separable pairing, noting the
very similar topology of the energy surfaces obtained using
the DD-PC1 EDF.

Considering first the (β, γ ) surfaces, shown in the top row
of Fig. 1, the isotopes 188,190Os appear to be γ -soft in the
interval 0◦ � γ � 40◦ and rigid in β deformation. Remark-
ably, a rigid triaxial minimum is obtained near γ = 30◦ for
the nucleus 190Os. The three Pt nuclei also exhibit a degree of
γ softness, but are predominantly oblate in shape. The (α, β )
energy surfaces, depicted in the middle row of Fig. 1, are
notably soft in α deformation, while rather rigid in the axial
β deformation. The α softness indicates pronounced pairing
fluctuations. The αmin values for the Pt nuclei are generally
larger than those for the Os isotopes. In both Os and Pt nuclei,
the equilibrium minimum αmin in the (α, β ) plane gradually
decreases with neutron number. In the bottom row of Fig. 1,
we note that the SCMF-PESs in the (γ , α) plane show more
variation with nucleon number. As one can already infer from
the two top rows, the (γ , α) surfaces are soft in both coor-
dinates. Generally, the Os nuclei are more soft in α, while γ

softness on the oblate side (γ ≈ 60◦) is more pronounced in
the Pt isotopes.

At the quantitative level, there are certain differences in
the topology of the SCMF-PESs obtained using the two
functionals. First, in all the 2D-deformation subspaces, the
SCMF-PESs calculated with the PC-PK1 EDF are generally
softer than those corresponding to the DD-PC1 EDF. For the
(α, β ) energy surfaces, the PC-PK1 EDF predicts larger equi-
librium values αmin of pairing deformation (see also Table I).
A pronounced difference between the two EDFs is also seen
in the (γ , α) plane for the Pt isotopes. It is of interest that
the DD-PC1 (γ , α) PESs for the 194,196Pt nuclei are softer
in γ deformation than those obtained with the PC-PK1 EDF.
For 192Pt, the PC-PK1 SCMF-PES is γ soft, while the one
calculated with the DD-PC1 EDF is soft in α and more rigid
in γ .

B. 2D SCMF-PESs as functions of the third collective coordinate

It is also of interest to consider, for individual nuclei, the
variations of the 2D SCMF-PESs as functions of the third
deformation variable. As illustrative examples, we plot in

Figs. 3, 4, and 5 the SCMF-PESs for the nuclei 128Xe, 188Os,
and 194Pt, respectively. Here only the results obtained with the
functional PC-PK1 are shown. The DD-PC1 results are very
similar.

We note some general features of the SCMF-PESs. (i)
The (β, γ )-PESs for each nucleus become considerably softer
as the intrinsic pairing deformation α is increased. This is
particularly pronounced for 128Xe (Fig. 3). (ii) The (α, β )
SCMF-PESs are less sensitive to the variation of the γ de-
formation, but appear markedly soft near the global minimum
corresponding to γ = γmin. (iii) The topology of the (γ , α)
SCMF-PESs varies most rapidly with increasing β values. For
small values of β, these 2D surfaces exhibit pronounced γ

softness, and become softer in α with increasing β deforma-
tion. Especially near the β = βmin equilibrium values, we note
a transitional feature, that is, the surfaces are particularly soft
with respect to both α and γ .

C. Mapped IBM-PESs

From the fourth to the sixth columns of Figs. 3, 4, and 5,
we also depict the corresponding IBM-PESs. The variations
of these energy surfaces as functions of the parameters α, γ ,
and β on each of the 2D (β, γ ), (α, β ), and (γ , α) defor-
mation spaces, respectively, reproduce those observed for the
SCMF-PESs. A notable difference between the SCMF- and
IBM-PESs in each 2D space is that the latter are considerably
softer with respect to β and γ deformations. As explained
in the previous section, such a difference arises because of
the restricted (valence) model space of the IBM, compared
to that of the SCMF model. Another reason is, apparently,
the limited analytical form of the IBM-PES (12a) and (12b),
which does not provide enough variability to accurately repro-
duce the topology of the SCMF-PES. For example, for general
three-body boson terms the energy surface can have a more
complicated γ dependence, consisting of terms proportional
to β̃3�, β̃5�, and β̃6�2, with � = cos 3γ . These would imply
additional parameters, and thus we use the specific three-body
term of the type (7c). On each 2D (β, γ ) and (γ , α) surface,
the difference between the SCMF- and IBM-PESs becomes
more pronounced as one moves away from the global mini-
mum, because the mapping is considered only in the vicinity
of the global minimum. However, these differences should
not significantly affect the calculated spectroscopic properties
of low-energy collective states. The parameters of the IBM
Hamiltonian (5), as well as the proportionality coefficients Cβ

and Cα , for the Xe, Os, and Pt nuclei, obtained using the map-
ping procedure described in the previous section, are listed
in Table II. For both EDFs, most of the parameters appear
to be constant or vary only gradually with neutron number
in each isotopic chain. It is satisfying that the parameters
are only weakly dependent on the nucleon number, because
this indicates the consistency of the method and supports the
model predictions. The very small values of the parameter χ

in the quadrupole operator are characteristic for γ -soft nuclei.
To simplify the calculation, the mixing strength θ is constant
(θ = 360 keV) for all Os and Pt nuclei.
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FIG. 3. The SCMF-PESs of 128Xe projected onto the (β, γ ) [first column], (α, β ) [second column], and (γ , α) planes [third column], as
functions of the α, γ , and β deformations, respectively. The PC-PK1 density functional and a separable pairing interaction have been used in
the constrained SCMF calculation. The corresponding mapped IBM-PESs are plotted on the right hand side (columns 4–6).

FIG. 4. Same as in the caption to Fig. 3 but for 188Os.
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FIG. 5. Same as in the caption to Fig. 3 but for 194Pt.

IV. SPECTROSCOPIC PROPERTIES

In the remainder of this paper, we will present selected
spectroscopic results. Section IV A contains a discussion of
low-energy band structure of Os and Pt isotopes, obtained
from the 3D-IBM calculations that take into account both the
pairing and triaxial degrees of freedom. In Secs. IV B and
IV C, we specifically analyze the effect of including dynam-
ical pairing and triaxiality on the excited 0+ states, and the
γ -vibrational band, respectively. Section IV D compares the
excitation spectra calculated with the PC-PK1 and DD-PC1
energy density functionals. Electric transition properties are
discussed in Sec. IV E.

A. Low-energy excitation spectra

Figures 6 and 7 display the low-energy excitation level
schemes of the 188,190,192Os and 192,194,196Pt isotopes, calcu-
lated with the 3D-IBM based on the PC-PK1 and DD-PC1
EDFs, respectively. In general, the theoretical excitation
spectra are in a good agreement with their experimental coun-
terparts [60]. Of particular interest here are the excitation
energies of the second 0+ states, which for most of the con-
sidered nuclei are predicted very close to the experimental
values. In the Os and Pt nuclei analyzed in the present study,
as also shown below, the 0+

2 state exhibits a pairing vibrational
structure, namely, the principal contributions to this state are
from the [n0 ± 1] boson subspaces. The model also predicts

TABLE II. The values of the IBM Hamiltonian parameters, as well as the constants of proportionality (14), for 128,130Xe, 188,190,192Os, and
192,194,196Pt, determined by the mapping of the PC-PK1 plus separable-pairing self-consistent mean-field results. The corresponding parameters
obtained with the DD-PC1 EDF are shown in parentheses.

128Xe 130Xe 188Os 190Os 192Os 192Pt 194Pt 196Pt

εd (keV) 236.5 218.4 117.8 (178.7) 127.4 (191.5) 111.7 (156.8) 200 (249.6) 150 (249.1) 150 (251.5)
−κ (keV) 102 102 65 (80) 65 (80) 65 (80) 65 (80) 65 (80) 65 (80)
χ −0.08 −0.14 −0.1 (−0.2) −0.02 (−0.025) −0.02 (−0.05) 0.2 (0.03) 0.03 (0.03) 0.03 (0.08)
−ρ (keV) 15.1 16.1 6.3 (16.4) 7.9 (15.3) 5.3 (9.5) 0.0 (8.3) 0.0 (8.2) 0.0 (8.6)
η (keV) 70 100 25 (30) 25 (30) 30 (40) 35 (30) 40 (45) 40 (60)
ε0 (MeV) 1.35 1.3 1.55 (1.95) 1.4 (1.7) 1.3 (1.55) 1.25 (1.5) 1.1 (1.35) 1.0 (1.2)
θ (keV) 540 740 360 (360) 360 (360) 360 (360) 360 (360) 360 (360) 360 (360)
Cβ 4.0 4.3 4.0 (3.9) 4.1 (4.1) 4.4 (4.4) 5.2 (4.2) 5.0 (4.6) 4.8 (5.0)
Cα 0.09 0.095 0.07 (0.07) 0.05 (0.05) 0.07 (0.05) 0.085 (0.06) 0.08 (0.05) 0.09 (0.08)
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FIG. 6. Comparison of the experimental [60] and theoretical excitation spectra of 188,190,192Os and 192,194,196Pt, obtained using the IBM with
the triaxial quadrupole (β, γ ) plus pairing α degrees of freedom, and based on the PC-PK1 microscopic energy density functional.

the third 0+ levels in agreement with the data, in particular
for the calculation based on the PC-PK1 EDF. In many cases
one notices that the energy gap between the calculated 0+

3 and
0+

4 levels is much larger than the one observed in experiment,
and this strong repulsion between the two 0+ states indicates
a high degree of mixing of their wave functions.

The γ -vibrational band, built on the second 2+ state, is
overall reproduced in agreement with data, even though the
bandhead 2+

2 energy is slightly overestimated. Consistent with

the experimental sequence, in most cases the levels of the γ

band are almost equidistant. As discussed in more detail in
Sec. IV C, this energy-level systematics is characteristic for
structures that lie in between those predicted by the rigid-
triaxial and γ -unstable rotor geometric models.

By comparing the results shown in Figs. 6 and 7, one
notices that the rotational features of the IBM spectra resulting
from the DD-PC1 EDF are more pronounced than for those
obtained with PC-PK1. For the functional DD-PC1, the γ

FIG. 7. Same as in the caption to Fig. 6, but the DD-PC1 functional is used to determine the parameters of the IBM Hamiltonian.
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FIG. 8. Excitation energies of the three lowest 0+ excited states
in 188,190,192Os and 192,194,196Pt, obtained from IBM calculations that
include the 2D [triaxial quadrupole (β, γ )], 2D (axial quadrupole β

plus pairing α), and 3D [triaxial quadrupole (β, γ ) and pairing α]
degrees of freedom, in comparison with the corresponding experi-
mental levels.

band is predicted to be higher with respect to the ground-state
band, while the 0+

2 band for most of the nuclei is close to or
lower than the experimental levels. In the IBM framework,
the bandhead energies and the moments of inertia of the γ -
vibrational band and the band built on the 0+

2 state are to a
large extent determined by the magnitude of the quadrupole-
quadrupole interaction strength κ [see Eq. (7b)]. As noted
from Table II, the value of κ that is used in the case of the DD-
PC1 EDF is more than 20% larger than for the PC-PK1 case.
The different IBM parameters, in turn, reflect the differences
in the SCMF-PESs calculated with the two EDFs.

The energy spectra for the Os and Pt nuclei shown in
Figs. 6 and 7, are also in better agreement with the data when
compared to previous IBM calculations in the Os-Pt region,
based either on the Gogny EDFs [37,38], or the DD-PC1 EDF
[33]. In those studies only the two-body IBM Hamiltonian
was considered, which resulted in the γ band that exhibits a
staggering pattern 2+

γ , (3+
γ , 4+

γ ), (5+
γ , 6+

γ ), . . ., characteristic
of the γ -unstable O(6) limit.

B. Effect of dynamical pairing

Figure 8 displays the excitation energies for the second,
third, and fourth 0+ states, obtained from IBM calculations
that take into account the 2D axial+pairing (αβ), 2D triaxial

FIG. 9. Fractions of the [n0 − 1], [n0], and [n0 + 1] boson-space
components in the wave functions of the four lowest 0+ excited
states in 188,190,192Os and 192,194,196Pt. These values correspond to the
IBM calculations based on the PC-PK1 EDF, and include the 2D
(axial quadrupole β plus pairing α) (left column), and 3D [triaxial
quadrupole (β, γ ) and pairing α] (right column) degrees of freedom.

(βγ ), and 3D triaxial+pairing (αβγ ) degrees of freedom,
respectively. For both Os and Pt isotopes, the 0+

2 energy
levels are lowered by a factor of 1.3–1.5 with the inclusion
of dynamical pairing. The pairing degree of freedom is also
relevant for the description of the 0+

3 states in Os isotopes,
while for the Pt isotopes it is less significant. Particularly with
the PC-PK1 functional, the inclusion of dynamical pairing
does not necessarily improve the description of the 0+

4 exci-
tation energies. In the calculation based on the DD-PC1 EDF,
dynamical pairing also significantly reduces the 0+

4 excitation
energies. In general, it appears that dynamical pairing effects
are more pronounced for the case in which the functional
DD-PC1 is used as a basis of IBM calculations.

To analyze the structure of 0+ states, we plot in Fig. 9
the percentage of the normal [n0] (half the number of va-
lence nucleons), and pair-vibrational [n0 ± 1] components in
the IBM wave functions of the four lowest 0+ states. The
2D-αβ and 3D-αβγ IBM results are compared in the left
and right columns, respectively. For all the Os and Pt nuclei,
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approximately 50% of the wave function of the 0+
1 ground

state belongs to the [n0] boson space, while the other half is
equally shared by the [n0 ± 1] components. For the 0+

2 state,
as already noted above, the pair vibrational configurations
[n0 ± 1] dominate the corresponding wave function, while
the contribution from the [n0] space is negligibly small. This
conclusion is robust, in the sense that there is no notable
difference between the IBM calculations with (3D-αβγ ) and
without (2D-αβ) the triaxiality. The same conclusion was
drawn for the 128,130Xe nuclei in [29], and for the axially
deformed rare-earth nuclei in [28]. In Figs. 9(e) to 9(h), the
third and fourth 0+ states exhibit structures similar to that of
the ground state. Some exceptions occur in the 3D calcula-
tion [Figs. 9(f) and 9(h)], for instance, the 0+

3 state of 192Pt
and the 0+

4 state of 192Os. The irregular behavior reflects the
complexity of the 3D calculation that involves both triaxial
and pairing deformations. A similar conclusion applies to the
DD-PC1 results.

C. Effect of triaxiality

In Fig. 10, the excitation energies of members of the
γ -vibrational band of the Os and Pt nuclei are depicted.
The theoretical values correspond to the 2D-αβ, 2D-βγ , and
3D-αβγ IBM calculations, respectively, and are shown in
comparison to the corresponding experimental levels. As one
would expect, the pronounced effect of triaxiality is to lower
the excitation energies of the γ -band states, especially the
odd-spin ones. The energy levels of the γ band obtained in
the 2D-βγ and 3D-αβγ calculations are considerably lower
than those resulting from the calculation that includes only
axial β and pairing α deformations. However, it appears that
the effect of including dynamical pairing is to slightly raise
the γ -band levels, worsening the agreement with available
data. The γ -band energies computed with the 3D-αβγ IBM
are systematically higher than those obtained with the 2D-βγ

calculation.
Two limiting geometrical pictures of nonaxial nuclei are

provided by (i) the rigid-triaxial-rotor model of Davydov and
Filippov [61] that corresponds to a collective potential with
a stable minimum at a particular value of γ , and (ii) the
γ -unstable-rotor model of Wilets and Jean [62] that describes
a collective potential that is independent of γ . To distinguish
between the energy-level structure of γ -vibrational bands in
the two geometrical limits, we consider the quantity S(I ),
defined in terms of the excitation energies of the members of
a γ band:

S(Iγ ) = [E (Iγ ) − E (Iγ − 1)] − [E (Iγ − 1) − E (Iγ − 2)]

E (2+
1 )

.

(16)

In the ideal γ -unstable-rotor case, its values for Iγ = 4
and Iγ = 5 are S(4) = −2.00 and S(5) = 2.50, respectively.
These values reflect an approximate grouping pattern 2+

γ ,
(3+

γ , 4+
γ ), (5+

γ , 6+
γ ), etc. In the rigid-triaxial-rotor limit, the

S(I ) values are: S(4) = 1.67 and S(5) = −2.33, correspond-
ing to the staggering (2+

γ , 3+
γ ), (4+

γ , 5+
γ ), etc.

Figure 11 depicts the values of S(4) and S(5) for the Os
and Pt nuclei considered in the present study. The 2D-αβ IBM

FIG. 10. Excitation energies of γ -band levels of 188,190,192Os
and 192,194,196Pt, obtained with the IBM that includes the triaxial
quadrupole (βγ ), axial+pairing (αβ), and triaxial+pairing (αβγ )
degrees of freedom, in comparison with the corresponding experi-
mental states. The results based on the functional PC-PK1 are shown.

calculation in all cases predicts the S(4) and S(5) values close
to the γ -unstable-rotor limit or the O(6) limit of the IBM
[5]. This is because any IBM-1 Hamiltonian that includes
only two-body boson terms does not give rise to a triaxial
minimum, and the resulting γ band is always that of the
γ -unstable rotor. When triaxiality is taken into account in the
2D-βγ and 3D-αβγ calculations, and the three-body boson
term (7c) is included, both S(4) ≈ S(5) ≈ 0, a value that is
almost halfway between the two geometrical limits. We note
that the calculated S(4) and S(5) values in the 2D-βγ and
3D-αβγ calculations are in very good agreement with the
corresponding experimental values. The same conclusion was
reached in our previous study of 128,130Xe [29]. The results for
the γ band obtained with the DD-PC1 EDF are quantitatively
similar to those shown in Figs. 10 and 11.

D. The DD-PC1 and PC-PK1 excitation spectra

Figure 12 compares the low-energy excitation spectra, cal-
culated using the DD-PC1 and PC-PK1 EDFs to determine
the parameters of the IBM Hamiltonian. As examples, we
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FIG. 11. S(4) and S(5) values for the γ -band states of Os
(left) and Pt (right) isotopes. The Wilets-Jean limit, S(4) = −2.00
and S(5) = 2.50, and the Davydov-Filippov limit, S(4) = 1.67 and
S(5) = −2.33, are indicated by dashed horizontal lines. The func-
tional PC-PK1 is used in the IBM calculation.

consider the nuclei 188Os and 196Pt. A common feature of the
two EDFs is that, by the inclusion of dynamical pairing, the
excited 0+ states are considerably lowered. Also, when the
triaxial degree of freedom is taken into account (that is, the
three-body boson interaction is included), states belonging to
the γ band, especially the odd-spin members, are predicted at
significantly lower excitation energies. On a closer inspection,
it appears that the 3D-IBM calculation based on the PC-PK1
EDF produces results in better quantitative agreement with
experiment. As already noted in Sec. IV A, the IBM calcula-
tion based on the DD-PC1 functional generally lead to energy
spectra that are stretched compared to the PC-PK1 model
calculation.

E. Transition rates

1. The E2 and E0 operators

The electric quadrupole (E2) and monopole (E0) transition
rates will also be influenced by the simultaneous inclusion of
the quadrupole triaxial and pairing degrees of freedom. An
accurate description of these transition rates thus provides a
stringent test of the model. The general (one-body) E2 and
E0 operators are defined by the following relations:

T̂ (E2) = eBQ̂, (17)

T̂ (E0) = ξ n̂d + ζ n̂, (18)

where eB is the E2 boson effective charge, Q̂ is the same
quadrupole operator that appears in the boson Hamiltonian
(7b), and ξ and ζ in the E0 operators denote parameters. The

FIG. 12. The low-energy excitation spectra of (a) 188Os and
(b) 196Pt, obtained from IBM calculations based on the DD-PC1
and PC-PK1 functionals. For each nucleus, results of calculations
that include the axial+pairing (αβ), triaxial quadrupole (βγ ), and
triaxial+pairing (αβγ ) deformation degrees of freedom are com-
pared with experiment.

B(E2) and ρ2(E0) transition rates are calculated using the
expressions

B(E2; Ii → I f ) = 1

2Ii + 1
| 〈I f ‖T̂ (E2)‖Ii〉 |2, (19)

ρ2(E0; Ii → I f ) = Z2

e2r4
0A4/3

1

2Ii + 1
| 〈I f ‖T̂ (E0)‖Ii〉 |2. (20)

The boson charge eB = 0.145 eb is adjusted and kept constant
for all the Os and Pt isotopes, and for both the PC-PK1 and
DD-PC1 EDFs. This choice for the boson charge ensures
that the experimental B(E2; 2+

1 → 0+
1 ) values are reasonably

reproduced. In the lighter mass region, eB = 0.12 eb is used
for 128,130Xe. The E0 parameters ξ = 0.112 (0.093) and ζ =
−0.09 (−0.062) fm2 are used for Xe, Os, and Pt nuclei, in cal-
culations with the PC-PK1 (DD-PC1) EDF. These values are
determined to reproduce the experimental ρ2(E0; 0+

2 → 0+
1 )

values of 188Os and 194Pt in the 3D-IBM calculation.
It must be noted that, since the boson Hamiltonian con-

sists of up to three-body boson terms, in the calculations
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that include triaxial degrees of freedom, i.e., the (β, γ )- and
(α, β, γ )-IBM, the E2 operator should also contain higher-
order terms:

T̂ (E2) = esd (s†d̃ + d†s) + edd (d†d̃ )(2)

+ esddd

∑
L=0,2,4

{[(s†d̃ )(d†d̃ )(L)](2) + (H.c.)}

+ edddd

∑
L,L′=0,2,4

[(d†d†)(L)(d̃ d̃ )(L′ )](2). (21)

with additional boson effective charges esd , edd , esddd , and
edddd . The B(E2) transition rates calculated by using the two-
body E2 operator for the 128,130Xe can be found in Fig. 4 of
Ref. [29]. The E2 charges for the operator (21) chosen for
128Xe (130Xe) in [29] were esd = 0.078 (0.09), edd = 0.034
(0.086), esddd = 0.016 (0.015), and edddd = 0.009 (0) eb. To
keep the calculation and discussion as simple as possible, in
this work we use the standard E2 operator in (17) for all
considered nuclei.

In addition, the E2 effective boson charge eB and the
parameters ξ and ζ in the E0 operator could, in principle,
differ in the three boson subspaces [n0] and [n0 ± 1]. Again,
for simplicity, we use the same values of these parameters
for the three configuration spaces, just as in the case of the
Hamiltonian parameters.

2. E2 transition properties

For the Xe, Os, and Pt nuclei considered in this study,
a wealth of experimental information on E2 transition rates
is available. Tables III, IV, and V compare the experimental
[60] and theoretical B(E2) reduced transition probabilities
(in Weisskopf units) for the Xe, Os, and Pt isotopes, respec-
tively. In the tables the theoretical values correspond to IBM
calculations that include triaxial quadrupole (βγ ), axial plus
dynamical pairing (αβ), and triaxial plus dynamical pairing
(αβγ ) degrees of freedom.

In Table III, it is interesting to note that the inclusion of the
pairing degree of freedom has the effect of slightly increasing
the B(E2; 0+

2 → 2+
1 ) values for both 128Xe and 130Xe. This is

seen from the comparison of the 2D-βγ and the 3D-αβγ re-
sults. This increase in the E2 transition rates is a consequence
of configuration mixing between the three boson subspaces,
resulting in a larger overlap between initial and final state
wave functions. By comparing the 2D-αβ results with those
obtained from the 2D-βγ or 3D-αβγ IBM calculations, one
notices that the inclusion of the triaxial degree of freedom
has a marked effect on the E2 rates that involve members of
the γ band. The most prominent example is the increase of
the B(E2; 3+

1 → 2+
2 ) values. Note that, in the 3D-αβγ IBM

results for 130Xe, the low-spin members of the γ band are the
2+

2 , 3+
1 , 4+

3 , and 5+
1 levels. Thus in Table III the experimental

B(E2; 4+
2 → I f ) are actually compared with the theoretical

B(E2; 4+
3 → I f ) values. For the ground-state band, neither

triaxiality nor dynamical pairing degree of freedom has any
effect on the in-band E2 transition rates.

For 128,130Xe, the B(E2) values for the 2D-βγ and 3D-αβγ

IBM calculations that employ the two-body E2 operator (21)
are also included (values in parentheses in Table III). These

TABLE III. Comparison of experimental [60] and theoretical
B(E2; Ii → If ) values (in Weisskopf units) for 128,130Xe. The theoret-
ical values are obtained from IBM calculations that include triaxial
quadrupole (denoted by βγ ), axial plus dynamical pairing (αβ),
and triaxial plus dynamical pairing (αβγ ) degrees of freedom. The
numbers in parentheses for the 2D-βγ and 3D-αβγ calculations
denote values that are obtained using the two-body E2 operator in
Eq. (21). The IBM calculations are based on the PC-PK1 energy
density functional.

Ii I f Expt. βγ αβ αβγ

128Xe 2+
1 0+

1 42.6 ± 6.4 45 (50) 44 46 (49)
4+

1 2+
1 63.5 ± 5.2 59 (85) 60 61 (82)

6+
1 4+

1 106 ± 13 60 (95) 62 65 (96)
2+

2 2+
1 50.1 ± 9.7 54 (48) 25 57 (52)

0+
1 0.65 ± 0.08 0.29 (11) 2.6 0.22 (9.8)

3+
1 4+

1 31.8 ± 5.9 20 (19) 11 23 (23)
2+

2 91 ± 16 49 (63) 12 57 (75)
2+

1 1.45 ± 0.26 0.39 (8.1) 37 0.33 (9.6)
4+

2 4+
1 30.2 ± 3.2 23 (31) 6.5 21 (30)

2+
2 29.6 ± 2.9 28 (23) 21 27 (28)

2+
1 0.52 ± 0.06 0.0056 (54) 0.042 0.020 (47)

0+
2 2+

2 52.8 ± 0.7.6 40 (40) 30 0.19 (19)
2+

1 3.69 ± 0.58 0.37 (115) 4.0 3.8 (16)
0+

3 2+
2 22.2 ± 4.6 0.37 (73) 33 35 (38)

2+
1 10.4 ± 2.3 0.28 (12) 0.62 0.30 (101)

130Xe 2+
1 0+

1 33.2 ± 2.6 33 (42) 32 33 (35)
4+

1 2+
1 46.4 ± 4.6 42 (70) 43 42 (60)

6+
1 4+

1 69 ± 9 41 (78) 43 42 (73)
2+

2 2+
1 40+10

−7 35 (39) 16 38 (42)
0+

1 0.27+0.07
−0.05 0.34 (4.1) 1.8 0.18 (3.4)

3+
1 4+

1 <270 13 (16) 7.5 14 (19)
2+

2 57+59
−42 33 (56) 22 37 (61)

2+
1 1.0+1.0

−0.7 0.43 (2.4) 3.4 0.26 (2.0)
4+

2 4+
1 42+48

−35 14 (25) 5.1 14 (26)
2+

2 69+65
−57 17 (21) 17 18 (15)

2+
1 2.1+2.0

−1.7 0.016 (21) 0.024 0.029 (22)
0+

2 2+
2 120+110

−70 23 (48) 36 0.39 (19)
2+

1 18+17
−11 0.65 (78) 4.5 2.7 (19)

0+
3 2+

2 55+37
−33 2.5 (6.1) 5.6 0.45 (1.3)

2+
1 0.17 (6.1) 0.024 1.5 (7.2)

values are from Ref. [29]. With the inclusion of the higher-
order terms and hence additional adjustable parameters, the
B(E2) values calculated with the two-body E2 operator (21),
in some cases agree better with the data, compared to those
obtained with only the one-body E2 operator (17), e.g., the
3D-IBM results for the E2 transitions of the 0+

2 states in both
128Xe and 130Xe. Nevertheless, it appears that the two-body
E2 operator does not improve dramatically the overall de-
scription of B(E2) transition probabilities. One should also
note that the experimental results for these transitions have
very large error bars.

Similar observations can be made for the Os (Table IV) and
Pt (Table V) nuclei. That is, the inclusion of dynamical pairing
has a major effect on those B(E2) values that are related to
the 0+

2 state, while triaxiality leads to a better description
of the E2 rates for γ -band states. For all Os and Pt nuclei
except 194Pt, in the 3D-IBM calculations the second 4+ state
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TABLE IV. Same as in the caption to Table III but for the Os
nuclei. Only results calculated with the one-body E2 operator are
shown.

Ii I f Expt. βγ αβ αβγ

188Os 2+
1 0+

1 77.5 ± 1.0 88 89 89
4+

1 2+
1 133 ± 8 123 125 125

6+
1 4+

1 138 ± 8 139 139 142
2+

2 2+
1 16.2 ± 1.8 80 81 85

0+
1 5.0 ± 0.6 3.1 3.0 2.9

3+
1 4+

1 52 32 51
2+

2 129 97 130
2+

1 5.0 4.6 4.7
4+

2 6+
1 15 ± 6 2.0 1.0 1.1

4+
1 19 ± 3 35 49 22

3+
1 27 11 14

2+
2 47 ± 8 45 72 29

2+
1 1.31 ± 0.19 0.4 0.03 0.14

0+
2 2+

2 4.8 ± 0.3 36 5.4 7.0 × 10−4

2+
1 0.96 ± 0.05 1.5 2.9 2.6

0+
3 2+

2 2.3 × 10−5 125 46
2+

1 0.016 2.2 1.4
190Os 2+

1 0+
1 72.9 ± 1.6 75 75 75

4+
1 2+

1 99+5
−3 102 103 103

6+
1 4+

1 113 ± 7 114 113 115
4+

2 5.6+4.5
−3.6 0.051 0.023 0.041

2+
2 2+

1 32.6 ± 3.4 99 101 101
0+

1 6.0 ± 0.6 0.12 0.10 0.10
3+

1 4+
1 46 32 44

2+
2 103 80 103

2+
1 0.19 0.15 0.16

4+
2 6+

1 0.074 0.033 0.060
4+

1 31 ± 5 36 53 40
3+

1 54+24
−19 0.93 0.33 0.72

2+
2 52.3 ± 4.3 47 59 50

2+
1 0.69 ± 0.06 0.018 0.0002 0.009

0+
2 2+

2 24+10
−7 47 0.20 0.012

2+
1 2.4+0.8

−0.6 0.078 2.0 2.5
0+

3 2+
2 2.2 0.016 0.0007

2+
1 125 2.3 × 10−5 2.6

192Os 2+
1 0+

1 62.1 ± 0.7 61 60 61
4+

1 2+
1 75.6 ± 2.0 81 82 82

6+
1 4+

1 100+5
−3 89 88 90

2+
2 2+

1 46.0+2.6
−1.2 79 81 81

0+
1 5.62+0.21

−0.12 0.072 0.055 0.056
3+

1 4+
1 36 25 34

2+
2 81 63 80

2+
1 0.11 0.079 0.085

4+
2 6+

1 0.043 0.015 0.032
4+

1 30.9+3.6
−1.8 28 42 32

3+
1 0.61 0.16 0.44

2+
2 45.2+1.4

−1.8 36 46 39
2+

1 0.29 ± 0.03 0.013 2.0 × 10−5 0.0053
0+

2 2+
2 30.4+3.0

−2.3 37 0.097 0.010
2+

1 0.57 ± 0.12 0.050 2.0 2.5
0+

3 2+
2 0.0017 88 45

2+
1 0.24 ± 0.09 3.3 × 10−5 0.052 0.038

TABLE V. Same as in the caption to Table IV but for the Pt nuclei.

Ii I f Expt. βγ αβ αβγ

192Pt 2+
1 0+

1 57.2 ± 1.2 59 59 60
4+

1 2+
1 89 ± 5 82 83 83

6+
1 4+

1 70 ± 30 89 90 91
2+

2 2+
1 109 ± 7 39 44 44

0+
1 0.55 ± 0.04 2.7 2.2 2.4

3+
1 4+

1 38 ± 10 25 18 25
2+

2 102 ± 10 80 61 79
2+

1 0.68 ± 0.07 4.1 3.5 3.6
4+

2 4+
1 21 27 24

2+
2 29 44 33

2+
1 0.097 0.0021 0.054

0+
2 2+

2 26 6.4 0.45
2+

1 1.8 3.3 3.0
0+

3 2+
2 0.47 74 0.002

2+
1 0.14 2.2 0.40

194Pt 2+
1 0+

1 49.2 ± 0.8 48 48 48
4+

1 2+
1 85 ± 5 63 64 65

6+
1 4+

1 67 ± 21 67 68 70
2+

2 2+
1 89 ± 11 61 64 63

0+
1 0.29 ± 0.04 0.072 0.052 0.056

3+
1 4+

1 27 19 27
2+

2 62 49 63
2+

1 0.11 0.077 0.084
4+

2 4+
1 14 15 32 23

2+
2 21 ± 4 20 36 29

2+
1 0.36 ± 0.07 0.0044 1.1 × 10−5 0.0036

0+
2 2+

2 8.4 ± 1.9 27 0.12 0.016
2+

1 0.63 ± 0.14 0.060 2.2 2.8
0+

3 2+
2 0.11 68 34

2+
1 0.0082 0.065 0.052

0+
4 2+

2 14.3 ± 1.4 0.015 0.056 0.0043
2+

1 14.1 ± 1.2 0.44 0.21 0.042
196Pt 2+

1 0+
1 40.60 ± 0.20 37 36 37

4+
1 2+

1 60.0 ± 0.9 48 48 48
6+

1 4+
1 73+4

−73 50 50 51
2+

2 2+
1 47 48 48

0+
1 (4 ± 4) × 10−6 0.036 0.021 0.023

3+
1 4+

1 18 14 17
2+

2 43 35 43
2+

1 0.049 0.031 0.034
4+

2 4+
1 17 ± 6 18 23 20

2+
2 29+6

−29 22 26 23
2+

1 0.56+0.12
−0.17 0.0042 5.0 × 10−4 0.0020

0+
2 2+

2 18 ± 10 28 0.078 0.032
2+

1 2.8 ± 1.5 0.044 2.4 2.8
0+

3 2+
2 <0.41 0.011 49 33

2+
1 <5.0 0.0073 0.043 0.040

corresponds to the I = 4+ member of the γ -vibrational band.
Therefore, for the nucleus 194Pt, in Table V the 3D results
for the B(E2; 4+

3 → I f ) transition rates are compared with the
experimental B(E2; 4+

2 → I f ) values.
An empirical fact for γ -soft nuclei is that the B(E2; 2+

2 →
2+

1 ) value is large and of the same order of magnitude
as the B(E2; 2+

1 → 0+
1 ). For the Os isotopes, all three

IBM calculations considerably overestimate the experimental
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B(E2; 2+
2 → 2+

1 ) values. For the Pt isotopes, in turn, the cor-
responding B(E2; 2+

2 → 2+
1 ) values are considerably smaller

than those predicted for the Os nuclei. This discrepancy can be
related to the result for the excitation spectra shown in Fig. 6,
namely, that the 2+

2 bandhead of the γ band is systematically
overestimated in Pt. In addition, there is no significant dif-
ference in the B(E2; 2+

2 → 2+
1 ) values predicted by the three

IBM calculations, because the calculation suggests that both
the ground state and γ bands predominantly belong to the
normal [n0] configuration.

In the O(6) limit of the IBM, the 0+
2 state is interpreted

to belong to the same σ = n0 family as the ground-state
band, with the O(5) quantum number τ = 3. Especially for
the heavier nuclei considered, e.g., 192Os and 196Pt, the mea-
sured E2 transition rates show the pattern that is close to
the O(6) prediction, characterized by the large B(E2; 0+

2 →
2+

2 )/B(E2; 0+
2 → 2+

1 ) ratio. As seen from Tables IV and V,
the 2D-βγ calculations for these nuclei provide results that
exhibit this E2 selection rule and that are in agreement with
data. However, by the inclusion of the pairing the B(E2; 0+

2 →
2+

2 ) transition rates are lowered by two orders of magnitude in
most of the Os and Pt nuclei, while the B(E2; 0+

2 → 2+
1 ) rates

are increased, leading to the almost vanishing B(E2; 0+
2 →

2+
2 )/B(E2; 0+

2 → 2+
1 ) ratio. In the 2D-αβ and 3D-αβγ cal-

culations the 0+
2 states are dominated by the pair vibrational

configurations (see Fig. 9) for all the nuclei and, consequently,
do not follow the E2 selection rule that is expected by the O(6)
symmetry. It appears, therefore, that the 0+

2 states obtained
by the present calculations that involve the pairing degree of
freedom should not be associated with the 0+

2 state in the
O(6) limit. In fact, the 0+

3 states for 192Os and 196Pt obtained
from the 3D-αβγ as well as 2D-αβ calculation, which are
mainly composed of the normal configuration (Fig. 9), in turn,
exhibit large B(E2; 0+

3 → 2+
2 )/B(E2; 0+

3 → 2+
1 ) ratio, which

is expected in the O(6) symmetry for the 0+
2 state.

Some B(E2) values can be used as quantitative mea-
sures that differentiate between various limits of dynamical
symmetries of the IBM and/or of the geometrical mod-
els of γ -soft nuclei. Figure 13 depicts the calculated
B(E2) ratios (a) R2γ ≡ B(E2; 2+

γ → 2+
g )/B(E2; 2+

g → 0+
g ),

(b) R02 ≡ B(E2; 0+
2 → 2+

g )/B(E2; 2+
g → 0+

g ), and (c) R3γ ≡
B(E2; 3+

γ → 2+
g )/B(E2; 2+

g → 0+
g ) for Os and Pt nuclei. In

Fig. 13(a), the computed ratios R2γ from all the three IBM cal-
culations are close to the γ -unstable O(6) limit R2γ = 10/7,
both for Os and Pt. One notices that, in fact, for the Os
nuclei this is at variance with the data, which are closer to the
rotational SU(3) limit R2γ = 0. This can be attributed to the
fact that the SCMF-PESs suggest pronounced γ softness in
the Os chain. The values of the calculated ratio R02, depicted
in Fig. 13(b), are relatively small, <0.1. In particular, this
is the case for the 2D-βγ IBM results that are close to the
experimental values and the O(6) limit R02 = 0. The inclusion
of the pairing degree of freedom does not seem to improve the
description of this quantity. The ratio R3γ differentiates be-
tween the rigid-triaxial-rotor and γ -unstable-rotor [equivalent
to O(6) limit of the IBM] limits. With the restriction to axial
symmetry in the 2D-αβ calculations, this ratio is below the
Wilets-Jean limit of R3γ = 1.19. The inclusion of triaxiality in

FIG. 13. The B(E2) ratios (a) R2γ ≡ B(E2; 2+
γ →

2+
g )/B(E2; 2+

g → 0+
g ), (b) R02 ≡ B(E2; 0+

2 → 2+
g )/B(E2; 2+

g →
0+

g ), and (c) R3γ ≡ B(E2; 3+
γ → 2+

g )/B(E2; 2+
g → 0+

g ) for
188,190,182Os and 192,194,196Pt. The IBM calculation is based on
the PC-PK1 functional. The dynamical symmetry limits are
indicated in panels (a) and (b). In panel (c), the geometrical limits
of the Wilets-Jean R3γ = 1.19, and the Davydov-Filippov models
R3γ = 1.78 are denoted by dashed lines. Experimental results are
taken from [60], and are represented by the open symbols.

the 2D-βγ and 3D-αβγ IBM calculations leads to an increase
of the R3γ ratio, such that it lies between the two geometrical
limits.

3. E0 transition properties

Table VI lists the ρ2(E0) values for 188Os, 194Pt, and 196Pt,
for which limited experimental results are available. The the-
oretical values are the results of IBM calculations including
triaxial quadrupole (βγ ), axial plus dynamical pairing (αβ),
and triaxial plus dynamical pairing (αβγ ) degrees of freedom.
As one notices from the 2D-αβ, and the 3D-αβγ results,
the inclusion of triaxiality generally decreases the ρ2(E0)
values. The 2D-αβ results are in better agreement with the
experimental values, compared to the (β, γ ) ones. Thus the
pairing degree of freedom appears to be more important than
triaxiality in describing E0 transitions. However, because of
a complex interplay between both degrees of freedom and
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TABLE VI. Comparison between the experimental [63] and the-
oretical ρ2(E0; Ii → If ) × 103 values. The theoretical values are
obtained from IBM calculations that include triaxial quadrupole (de-
noted by βγ ), axial plus dynamical pairing (αβ), and triaxial plus
dynamical pairing (αβγ ) degrees of freedom. The IBM calculations
are based on the PC-PK1 energy density functional.

Ii → If Expt. βγ αβ αβγ

188Os 0+
2 → 0+

1 0.013 ± 0.005 0.00027 0.30 0.013
2+

2 → 2+
1 0.7 ± 0.6 0.027 0.48 0.056

194Pt 0+
2 → 0+

1 0.16 ± 0.08 0.0052 0.45 0.16
0+

4 → 0+
1 11 ± 4 47 42 36

2+
2 → 2+

1 0.46 ± 0.16 0.011 0.036 0.018
196Pt 0+

2 → 0+
1 <0.07 0.34 0.47 0.31

0+
3 → 0+

1 <18 17 0.61 0.61
0+

3 → 0+
2 <39 0.069 0.0048 0.00025

2+
2 → 2+

1 1.0 ± 0.6 0.022 0.025 0.019

also due to the presence of adjustable parameters in the E0
operator, it is not straightforward to draw a generic conclusion
about the relevance of considering both triaxial and pairing
deformations in the calculation of the E0 properties. For
similar reasons, and also because of the present assignment
of the 0+

2 states to be mainly of pair-vibrational nature, the
ρ2(E0; 0+

2 → 0+
1 ) value for 196Pt, which should vanish in the

O(6) limit, is calculated to be much larger than the upper limit
of the corresponding experimental value.

Figure 14 displays the ρ2(E0; 0+
2 → 0+

1 ) × 103 values and
the X (E0/E2) ratios for the 0+

2 → 0+
1 and 0+

3 → 0+
1 transi-

tions. The mixing ratio X (E0/E2) reads

X (E0/E2) = ρ2(E0; 0+
i → 0+

f )e2R4

B(E2; 0+
i → 2+

1 )
(22)

with R = 1.2A1/3 fm. As shown in Fig. 14, the considered
E0 transition properties are quite sensitive to the nature of
the 0+ states, and hence can differ by orders of magnitude
between neighboring isotopes. For the X (E0/E2) ratios, in
particular, the B(E2; 0+

i → 2+
1 ) value in the denominator is,

in some cases, negligible, resulting in an unusually large mix-
ing ratio. The simultaneous inclusion of triaxial and pairing
deformations tends to result in a ρ2(E0; 0+

2 → 0+
1 ) value that

is the smallest among the three types of IBM calculations,
except for 192Pt. From both Figs. 14(b) and 14(c), one notices
that the X (E0/E2) results obtained with the 3D-αβγ IBM are
the smallest among the three different calculations. The same
trend is observed in the X (E0/E2) results obtained with the
DD-PC1 EDF.

V. CONCLUSIONS

Based on the framework of nuclear EDFs, the effects of
coupling between quadrupole triaxial shape and dynamical
pairing degrees of freedom have been investigated in spectro-
scopic calculations of low-energy collective states of γ -soft
nuclei. Constrained SCMF calculations have been performed
using the RMF+BCS method with a choice of universal EDF
and pairing interaction, resulting in potential energy surfaces

FIG. 14. The ρ2(E0; 0+
2 → 0+

1 ) values and X (E0/E2) ratios
for the 0+

2 → 0+
1 and 0+

3 → 0+
1 transitions, for 188,190,182Os and

192,194,196Pt. The PC-PK1 functional is used in the IBM calculations.
The experimental values are taken from [60,64] for the X (E0/E2)
ratios, and are represented by the open symbols.

as functions of the triaxial quadrupole (β, γ ) and pairing α

degrees of freedom (the coordinate α is proportional to the
pairing gap �) for typical γ -soft nuclei in the mass A ≈
130 (128,130Xe) and A ≈ 190 (188,190,192Os and 192,194,196Pt)
regions.

The SCMF deformation energy surfaces for all considered
nuclei exhibit notable softness in α and γ , thus pointing
to the importance of correlations that arise from fluctu-
ations of triaxial and pairing deformations. Spectroscopic
properties have been computed by employing the boson-
number-nonconserving IBM Hamiltonian, consisting of up to
three-body boson terms. The parameters of the IBM Hamil-
tonian have been determined by mapping the SCMF-PES
onto the expectation value of the Hamiltonian in the boson
condensate state. The mapped IBM framework that simultane-
ously takes into account the dynamical pairing and quadrupole
triaxial degrees of freedom has shown that (i) the inclu-
sion of dynamical pairing significantly lowers the energies
of the excited 0+ states and structures built on them, in good
agreement with experimental results; (ii) the description of γ -
vibrational bands and the related B(E2) rates is considerably
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improved by the effect of triaxiality; and (iii) the princi-
pal results are not particularly sensitive to the choice of the
microscopic EDF.

The results of the present work, together with those of
the exploratory study for 128,130Xe [29], clearly demonstrate
the importance of simultaneously including the dynamical
pairing and quadrupole triaxial shape degrees of freedom,
and their explicit coupling, for a quantitative description of
low-energy collective states of medium-mass and heavy nu-
clei. The method developed here and in the previous work
can be used to explore interesting structure phenomena,
such as shape phase transitions and shape coexistence in
γ -soft and triaxial nuclei, in which cases both pairing vi-
brations and triaxial deformations are expected to play a
significant role.
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