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A model is developed, based on the density functional perturbation theory and the inverse Kohn-Sham method,
that can be used to improve relativistic nuclear energy density functionals towards an exact but unknown
Kohn-Sham Hartree-exchange-correlation functional. The improved functional is determined by empirical exact
ground-state densities of finite systems. A test of the model and an illustrative calculation are performed, starting
from two different approximate functionals, to reproduce the parameters and density dependence of a target
functional, using exact ground-state densities of symmetric N = Z systems.
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I. INTRODUCTION

Nuclear energy density functionals (EDFs) have been de-
veloped, more or less systematically, over the last two decades
into a universal theoretical framework for the analysis of
ground-state properties, low-energy collective excitations, and
reaction dynamics of medium-heavy and heavy nuclei [1,2].
At present no other theoretical approach can be used to consis-
tently describe diverse emergent nuclear phenomena with the
same level of simplicity and accuracy, and at a comparable
computational cost. Based on universal EDFs, a number of
microscopic models, such as the random phase approximation
[3–5], the interacting boson model [6,7], and the generator
coordinate method [8–10], have also been designed to explore
low-energy spectroscopy and large-amplitude dynamics on a
quantitative level, and to calculate various details for astro-
physical applications.

The exact but unknown nuclear EDF must be approximated
by functionals of powers and gradients of ground-state nu-
cleon densities and currents. Even though a great number of
studies have been devoted to the microscopic formulation of a
universal EDF framework (for a recent review, see Ref. [11]),
the most successful nuclear EDFs are either semiempirical or
completely phenomenological. In a semiempirical approach,
one starts from a microscopically motivated ansatz for the nu-
cleon density dependence of the energy of a system of protons
and neutrons. Part of the parameters of such a functional can
be determined, at least qualitatively, by microscopic calcu-
lations of the energy of isospin symmetric and asymmetric
infinite nuclear matter as a function of the nucleon density
(or Fermi momentum). The remaining parameters are usually
adjusted to selected ground-state data, e.g., masses and charge
radii, of an arbitrarily large set of nuclei. Fully phenomeno-
logical EDFs, for instance Skyrme, Gogny, and relativistic
ones, usually take into account some empirical properties of

nuclear matter at saturation, but all parameters are adjusted to
ground-state data of finite nuclei.

The question we address in this work is how to improve a
given functional towards the exact but unknown nuclear EDF.
One could start, for instance, from a general expansion in
powers of densities and currents and retain all terms allowed
by symmetries up to a given order. Such a functional could be
derived, in principle, from a microscopic theory (low-energy
QCD) that describes the underlying many-body dynamics.
The problem, however, is that available low-energy nuclear
data can only constrain a relatively small subset of terms and
determine the corresponding parameters. Moreover, nuclear
EDFs are “sloppy”, that is, they generally exhibit an exponen-
tial range of sensitivity to parameter variations, and one finds
many soft linear combinations of bare model parameters that
are poorly constrained by data. This often indicates the pres-
ence of low-dimensional effective functionals associated with
the relevant (stiff) parameter combinations. In Refs. [12,13],
we considered, in the context of nuclear structure, the in-
teresting problem of a systematic construction of reduced
low-dimensional functionals from a more complete but sloppy
framework. Using methods of information geometry, it has
been shown how to systematically construct effective EDFs of
successively lower dimension in parameter space until slop-
piness is eventually eliminated and the resulting functional
contains only stiff combinations of parameters.

Instead of using low-energy data to reduce the complexity
of a very general functional, one could also start from a rela-
tively simple functional form and improve it towards the exact
but unknown EDF. Such an expansion must, of course, be con-
strained by available data. In the spirit of density functional
theory (DFT) [14–16], the empirical (exact) ground-state den-
sities should determine the improved EDF. In fact, the inverse
problem of DFT is formulated as a density-to-potential inver-
sion that, starting from a given exact ground-state density,
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determines the true Kohn-Sham (KS) Hartree-exchange-
correlation potential [17–25]. The first application of the
inverse KS method to nuclear EDFs has recently been re-
ported in Ref. [26]. The inverse Kohn-Sham (IKS) method is
often used to benchmark and test the accuracy of various ap-
proximate Hartree-exchange-correlation functionals but, since
its implementation depends on the exact density of a spe-
cific system, it does not provide direct information on the
universal EDF.

The problem of improving the functional starting from
exact ground-state densities has recently been addressed in
Ref. [27], where a model was introduced based on a combina-
tion of the IKS method and the density functional perturbation
theory (DFPT). The idea is to consider the difference, suppos-
edly small, between the known functional and the exact but
unknown EDF as a first-order perturbation. In Ref. [27], the
method was successfully tested in benchmark calculations of
systems of noble-gas atoms.

In this work, we apply the novel approach to atomic nuclei
and, in particular, to relativistic nuclear EDFs. The principal
reason for considering relativistic functionals is the fact that
they automatically take into account the spin-orbit potential.
The strong coupling between the orbital angular momentum
and nucleon spin accounts for the empirical magic numbers
and shell gaps. While in atomic systems the effect of the
spin-orbit coupling is perturbative, in nuclei the energy spac-
ings between spin-orbit partner single-nucleon states can be
as large as the gaps between major shells. However, because
the spin-orbit potential is a completely phenomenological
addition to the nonrelativistic KS potential, it cannot be de-
termined from the ground-state density using the IKS method
[26]. For relativistic EDFs, the spin-orbit potential emerges
automatically with the proper strength as the constructive
combination of the scalar and vector nucleon self-energies.

In Sec. II, we introduce the formalism of DFPT and IKS,
and develop the model that will be used in this work. In
Sec. III, a test case is discussed, and Sec. IV presents an
illustrative calculation. Section V contains a brief summary
and outlook for future studies.

II. NUCLEAR ENERGY DENSITY FUNCTIONALS
IMPROVED BY EXACT GROUND-STATE DENSITIES

A. Density functional perturbation theory

Here, we apply the method of Ref. [27] to improve a
relativistic nuclear EDF, starting from a given empirical

ground-state density. It is assumed that the unknown exact
Hartree-exchange-correlation (interaction) functional can be
written in the following form:

Eint[ρ] = E (0)
int [ρ] + λE (1)

int [ρ] + O(λ2), (1)

where E (0)
int [ρ] denotes the known functional that we wish to

make better and λ is a small parameter. The main premise
of this method, therefore, is that the difference between the
exact functional Eint[ρ] and the starting functional E (0)

int [ρ] is
small enough to be treated perturbatively. The correction will
be determined by the exact ground-state density, using the IKS
approach.

The Dirac KS single-nucleon equation, derived from the
relativistic EDF, reads

[α · p + β(m + S(r)) + V (r)]ψ j (r) = ε jψ j (r), (2)

with the scalar and vector KS potentials, respectively,

S(r) = δE [ρV, ρS]

δρS

∣∣∣∣
gs

and V (r) = δE [ρV, ρS]

δρV

∣∣∣∣
gs

. (3)

The corresponding scalar and vector densities

ρS,gs(r) =
∑
j∈occ

ψ
†
j (r)βψ j (r), (4a)

ρV,gs(r) =
∑
j∈occ

ψ
†
j (r)ψ j (r) (4b)

are obtained from the self-consistent solutions of the single-
nucleon Dirac KS equation in the no-sea approximation,
which omits explicit contributions of negative-energy states
to densities and currents [28–30] and, thus, the sums run only
over the occupied positive-energy single-nucleon orbitals.

The exact Dirac spinors, that is, the solutions of Eq. (2) for
the exact EDF, can also be expanded to the first order in λ:

ψ j (r) = ψ
(0)
j (r) + λψ

(1)
j (r) + O(λ2), (5)

where the first-order correction is orthogonal to the zeroth-
order spinor ∫

ψ
(0)†
j (r)ψ (1)

j (r) dr = 0. (6)

The exact ground-state scalar and vector densities

ρS,gs(r) =
∑
j∈occ

ψ
(0)†
j (r)βψ

(0)
j (r) + λ

( ∑
j∈occ

ψ
(1)†
j (r)βψ

(0)
j (r) +

∑
j∈occ

ψ
(0)†
j (r)βψ

(1)
j (r)

)
+ O(λ2), (7a)

ρV,gs(r) =
∑
j∈occ

ψ
(0)†
j (r)ψ (0)

j (r) + λ

(∑
j∈occ

ψ
(1)†
j (r)ψ (0)

j (r) +
∑
j∈occ

ψ
(0)†
j (r)ψ (1)

j (r)

)
+ O(λ2), (7b)

take the form:

ρV(S),gs(r) = ρ
(0)
V(S)(r) + λρ

(1)
V(S)(r) + O(λ2), (8)

where the first term on the right-hand side denotes the densities derived by the known functional. We will assume that, given the
exact densities ρV(S),gs(r), one can use the IKS method to calculate the exact single-nucleon Dirac spinors ψ j (r) and energies ε j .
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The ground-state energy can also be decomposed as follows:

Egs = Ekin + E (0)
int [ρV,gs, ρS,gs] + λE (1)

int [ρV,gs, ρS,gs], (9)

where the KS kinetic energy reads

Ekin =
∑
j∈occ

∫
ψ

†
j (r)t̂ψ j (r) dr, (10)

and t̂ = α · p + βm. By expanding the Dirac spinors as in Eq. (5) and retaining only terms linear in λ, we obtain the following
expression for the kinetic energy:

Ekin =
∑
j∈occ

∫
ψ

(0)†
j (r)t̂ψ (0)

j (r) dr + λ
∑
j∈occ

∫
ψ

(1)†
j (r)t̂ψ (0)

j (r) dr + λ
∑
j∈occ

∫
ψ

(0)†
j (r)t̂ψ (1)

j (r) dr + O(λ2). (11)

The second and third terms on the right-hand side of Eq. (9) denote the interaction (Hartree-exchange-correlation) contribution
to the total energy. Using the expansion [Eq. (8)] for the ground-state densities up to terms linear in λ, one derives:

E (0)
int [ρV,gs, ρS,gs] = E (0)

int

[
ρ

(0)
V,gs, ρ

(0)
S,gs

] + λ

∫
δE (0)

int [ρV, ρS]

δρV

∣∣∣∣
gs(0)

ρ
(1)
V,gs(r) dr + λ

∫
δE (0)

int [ρV, ρS]

δρS

∣∣∣∣
gs(0)

ρ
(1)
S,gs(r) dr + O(λ2), (12a)

λE (1)
int [ρV,gs, ρS,gs] = λE (1)

int

[
ρ

(0)
V,gs, ρ

(0)
S,gs

] + O(λ2). (12b)

Inserting the expressions Eqs. (7b) and (7a) for the first-order density corrections ρ
(1)
V,gs and ρ

(1)
S,gs, respectively, into the

expansion for the interaction energy Eqs. (12a) and (12b), together with the expression for the kinetic energy Eq. (11), the
ground-state energy reads

Egs = E (0)
kin + E (0)

int

[
ρ

(0)
V,gs, ρ

(0)
S,gs

] + λ
∑
j∈occ

∫
ψ

(1)†
j (r)

[
t̂ + δE (0)

int [ρV, ρS]

δρV

∣∣∣∣∣
gs(0)

+ β
δE (0)

int [ρV, ρS]

δρS

∣∣∣∣∣
gs(0)

]
ψ

(0)
j (r) dr

+ λ
∑
j∈occ

∫
ψ

(0)†
j (r)

[
t̂ + δE (0)

int [ρV, ρS]

δρV

∣∣∣∣∣
gs(0)

+ β
δE (0)

int [ρV, ρS]

δρS

∣∣∣∣∣
gs(0)

]
ψ

(1)
j (r) dr + λE (1)

int

[
ρ

(0)
V,gs, ρ

(0)
S,gs

] + O(λ2). (13)

One notices that the expression in square brackets represent the zeroth-order (unperturbed) Dirac Hamiltonian, that is[
t̂ + δE (0)

int [ρV, ρS]

δρV

∣∣∣∣∣
gs(0)

+ β
δE (0)

int [ρV, ρS]

δρS

∣∣∣∣∣
gs(0)

]
ψ

(0)
j = ε

(0)
j ψ

(0)
j . (14)

The corresponding terms in Eq. (13) vanish because of the orthogonality relation [Eq. (6)] and, thus, a much simpler relation for
the ground-state energy reads

Egs = E (0)
kin + E (0)

int

[
ρ

(0)
V,gs, ρ

(0)
S,gs

] + λE (1)
int

[
ρ

(0)
V,gs, ρ

(0)
S,gs

] + O(λ2). (15)

On the other hand, the ground-state energy Egs = Ekin + Eint[ρgs], can be written in the following form:

Egs =
∑
j∈occ

ε j + Eint[ρV,gs, ρS,gs] −
∫

δEint[ρV, ρs]

δρV

∣∣∣∣
gs

ρV,gs(r) dr −
∫

δEint[ρV, ρs]

δρS

∣∣∣∣
gs

ρS,gs(r) dr, (16)

where the Dirac KS equation has been used to eliminate the explicit contribution of the kinetic energy term, and ε j are the exact
single-particle energies with the summation over occupied states. If we separate the zeroth-order and first-order terms of the
exact interaction functional Eint[ρgs], then

Egs =
∑
j∈occ

ε j + E (0)
int [ρV,gs, ρS,gs] −

∫
δE (0)

int [ρV, ρs]

δρV

∣∣∣∣∣
gs

ρV,gs(r) dr −
∫

δE (0)
int [ρV, ρs]

δρS

∣∣∣∣∣
gs

ρS,gs(r) dr

+ λE (1)
int [ρV,gs, ρS,gs] − λ

∫
δE (1)

int [ρV, ρs]

δρV

∣∣∣∣∣
gs

ρV,gs(r) dr − λ

∫
δE (1)

int [ρV, ρs]

δρS

∣∣∣∣∣
gs

ρS,gs(r) dr. (17)

From Eq. (15), we can express the first-order correction to the interaction energy as a function of the zeroth-order ground-state
densities

λE (1)
int

[
ρ

(0)
V,gs, ρ

(0)
S,gs

] = Egs − E (0)
kin − E (0)

int

[
ρ

(0)
V,gs, ρ

(0)
S,gs

] = Egs − E (0)
gs , (18)

where obviously E (0)
gs denotes the ground-state energy calculated with the known functional.
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Next, Eq. (17) for Egs is inserted in this expression and the following relation is obtained,

λE (1)
int

[
ρ

(0)
V,gs, ρ

(0)
S,gs

] =
∑
j∈occ

ε j + E (0)
int [ρV,gs, ρS,gs] −

∫
δE (0)

int [ρV, ρs]

δρV

∣∣∣∣∣
gs

ρV,gs(r) dr −
∫

δE (0)
int [ρV, ρs]

δρS

∣∣∣∣∣
gs

ρS,gs(r) dr

+ λE (1)
int [ρV,gs, ρS,gs] − λ

∫
δE (1)

int [ρV, ρs]

δρV

∣∣∣∣∣
gs

ρV,gs(r) dr − λ

∫
δE (1)

int [ρV, ρs]

δρS

∣∣∣∣∣
gs

ρS,gs(r) dr − E (0)
gs . (19)

Equation (19) is now rearranged so that all terms linear in λ (first-order corrections to the interaction functional) are collected
on the left-hand side

λE (1)
int

[
ρ

(0)
V,gs, ρ

(0)
S,gs

] − λE (1)
int [ρV,gs, ρS,gs] + λ

∫
δE (1)

int [ρV, ρS]

δρV

∣∣∣∣∣
gs

ρV,gs(r) dr + λ

∫
δE (1)

int [ρV, ρS]

δρS

∣∣∣∣∣
gs

ρS,gs(r) dr

=
∑
j∈occ

ε j + E (0)
int [ρV,gs, ρS,gs] −

∫
δE (0)

int [ρV, ρS]

δρV

∣∣∣∣∣
gs

ρV,gs(r) dr −
∫

δE (0)
int [ρV, ρS]

δρS

∣∣∣∣∣
gs

ρS,gs(r) dr − E (0)
gs . (20)

The right-hand side of this equation depends only on the
exact ground-state densities and the known functional E (0)

int .
For given ground-state empirical densities, therefore, we can
calculate all terms on the right-hand side, except the first
term, which is a sum of the exact single-particle energies.
These energies are, of course, implicit functionals of the exact
ground-state densities. One can, therefore, use the IKS method
to calculate the single-particle energies starting from given
ground-state densities, a procedure that we describe in the
following section.

In practical terms, one must assume a certain ansatz for
the functional E (1)

int [ρ], that will also include parameters to be
determined from Eq. (20) for a choice of empirical ground-
state densities. There is no guarantee, especially in the case of
several undetermined parameters for the first-order correction,
that the improved functional will reproduce the exact densities
to a desired level of accuracy. The solution is an iterative
procedure [27], in which the functional improved in the first
iteration step is considered as the known functional for the
next iteration, i.e.,

En-th
int [ρV, ρS] = E (0)

int [ρV, ρS] +
n∑

k=1

λE (1), k-th
int [ρV, ρS], (21)

and the operation is repeated until the exact densities are re-
produced by the solutions of the resulting n-th iteration Dirac
KS equation to a desired accuracy.

B. Inverse Kohn-Sham method

Determining the KS potential for a given density presents
an inverse problem. According to the Hohenberg-Kohn the-
orem, this inverse problem has a solution and the KS
Hartree-exchange-correlation potential for a given system
of interacting particles can be calculated starting from
its ground-state density. Here, we perform the density-to-
potential inversion in order to determine the single-particle
energies that appear on the right-hand side Eq. (20). Starting
from the single-nucleon Dirac KS equation (2), we rewrite the
KS potentials: V+(r) = V (r) + S(r) and V−(r) = V (r) − S(r),

so that Eq. (2) takes the form[
α · p+ 1

2
(β − 1)(m −V−(r)) + 1

2
(β + 1)(m +V+(r))

]
ψ j (r)

= ε jψ j (r). (22)

By multiplying Eq. (22) with ψ
†
j (r) from the left and summing

over the occupied positive-energy states, one obtains

∑
j∈occ

ψ
†
j (r)(α · p − ε j )ψ j (r) + 1

2
(m − V−(r))

×
∑
j∈occ

ψ
†
j (r)(β − 1)ψ j (r) + 1

2
[m + V+(r)]

×
∑
j∈occ

ψ
†
j (r)(β + 1)ψ j (r) = 0. (23)

The scalar and vector densities that appear in this expression

ρS,gs(r) =
∑
j∈occ

ψ
†
j (r)βψ j (r), (24a)

ρV,gs(r) =
∑
j∈occ

ψ
†
j (r)ψ j (r) (24b)

can also be combined in the following form: ρ+(r) =
ρV,gs(r) + ρS,gs(r) and ρ−(r) = ρV,gs(r) − ρS,gs(r), so that

∑
j∈occ

ψ
†
j (r)(α · p − ε j )ψ j (r) − 1

2
[m − V−(r)]ρ−(r)

+ 1

2
[m + V+(r)]ρ+(r) = 0. (25)

If Eq. (22) is multiplied with ψ̄ j = ψ
†
j β, the following expres-

sion is obtained:∑
j∈occ

ψ̄ j (r)(α · p − ε j )ψ j (r) + 1

2
[m − V−(r)]ρ−(r)

+ 1

2
[m + V+(r)]ρ+(r) = 0. (26)
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Finally, by adding and subtracting Eqs. (25) and (26), we
derive ∑

j∈occ

(ψ†
j (r) + ψ̄ j (r))(α · p − ε j )ψ j (r)

+ [m + V+(r)]ρ+(r) = 0, (27a)∑
j∈occ

(ψ†
j (r) − ψ̄ j (r))(α · p − ε j )ψ j (r)

− [m − V−(r)]ρ−(r) = 0, (27b)

from which the KS potentials V+ and V− are expressed

V+(r) = −m − 1

ρ+(r)

∑
j∈occ

(ψ†
j (r) + ψ̄ j (r))(α · p − ε j )ψ j (r),

(28a)

V−(r) = +m − 1

ρ−(r)

∑
j∈occ

(ψ†
j (r) − ψ̄ j (r))(α · p − ε j )ψ j (r).

(28b)

The set of IKS equations (28a) and (28b) can be solved itera-
tively. If we assume that the densities in the denominator are
the exact (target) densities, and use Eqs. (27a) and (27b) in
the numerator to define the densities and potentials for the nth
step, the resulting potentials in the (n + 1)th step read

V (n+1)
+ (r) = ρ

(n)
+ (r)

ρ+(r)
V (n)

+ (r) + m
ρ

(n)
+ (r) − ρ+(r)

ρ+(r)
, (29)

V (n+1)
− (r) = ρ

(n)
− (r)

ρ−(r)
V (n)

− (r) − m
ρ

(n)
− (r) − ρ−(r)

ρ−(r)
. (30)

In actual IKS calculations, we have modified an algorithm
proposed in Ref. [21], and replaced Eqs. (29) and (30) with

V (n)
+ (r) = V (n−1)

+ (r) + γ+
ρ

(n−1)
+ (r) − ρ+(r)

ρ+(r)
, (31)

V (n)
− (r) = V (n−1)

− (r) + γ−
ρ

(n−1)
− (r) − ρ−(r)

ρ−(r)
. (32)

This algorithm was also used in the first nuclear IKS cal-
culation with nonrelativistic EDFs [26], and justified by the
following argument. Equation (29) for the potential V+(r) =
V (r) + S(r), which is the equivalent of the nonrelativistic KS
potential, has a simple interpretation: the potential is enhanced
in absolute value in those regions where the density is larger
than the target density, and reduced in regions where the
density is smaller than the target density. However, this is what
one expects for repulsive potentials (e.g., the Coulomb poten-
tial for electrons), whereas in the case of attractive potentials
(e.g., the nuclear potential for nucleons) the opposite should
happen. In Ref. [26], it has been shown that this issue can be
avoided by adopting the modified algorithm of Eqs. (31) and
(32). Following Ref. [26], here we use the value of 1 MeV
for both parameters γ+ and γ−. In actual calculations we have
encountered some stability issues for large values of the radial
coordinate, due to small values of denominators in Eqs. (31)
and (32) beyond the nuclear radius. This problem can be
simply solved by introducing a cutoff radius rcut, and setting
the potentials to zero for r > rcut. For the initial KS potential, a

realistic Woods-Saxon potential [31] is used, and the Broyden
mixing procedure [32] is employed to solve Eqs. (31) and
(32). The convergence criterion used to halt the iterative IKS
algorithm is defined in terms of the absolute variation of the
potential, i.e.,

	V (n)
± ≡ max

r
[V (n+1)

± (r) − V (n)
± (r)] < α±. (33)

III. A TEST CASE

The atomic nucleus is a complex quantum mechanical sys-
tem with two types of constituent particles of spin one-half
and, therefore, a general EDF will be a functional of isoscalar,
isovector, and spin densities, as well as corresponding cur-
rents. Even in the simplest case of spin-saturated even-even
nuclei, the EDF will depend on isoscalar and isovector den-
sities. The problem, of course, is that accurate data exists
only on charge (proton) densities and, thus, adjusting a gen-
eral functional to empirical densities is not a straightforward
procedure. In the particular case of relativistic EDFs that we
consider here, the functional depends also on the Lorentz
scalar single-nucleon density, which is not an observable. In
the final section, we will discuss a possible approach that
can be used to determine the scalar and isovector densities
in an indirect way, but, for the purpose of testing the proposed
method, here only N = Z systems without Coulomb interac-
tion are considered. For such artificial nuclei, to demonstrate
the relativistic IKS method with DFPT, we will use an existing
relativistic EDF as the exact target functional, and apply the
method developed in the previous section to improve different
approximate functionals towards the target functional. In real
nuclei, the exact functional is, of course, unknown and we will
need more than ground-state data to determine the functional
dependence on various nuclear densities.

For the exact target EDF, we will use the relativistic EDF
DD-PC1 [33], for which the single-nucleon Hamiltonian reads

ĥ = α · p + β(m + S(r)) + V (r) + �R(r), (34)

where the scalar potential, vector potential, and rearrangement
terms are, respectively, defined by

S = αS(ρ)ρS + δS�ρS,

V = αV(ρ)ρV + αTV(ρ)�ρTV · �τ + e
1 − τ3

2
A0,

�R = 1

2

∂αS

∂ρ
ρ2

S + 1

2

∂αV

∂ρ
ρ2

V + 1

2

∂αTV

∂ρ
ρ2

TV. (35)

In these expressions, m is the nucleon mass, αS(ρ), αV(ρ),
and αTV(ρ) are density-dependent couplings for different
space-isospace channels, δS is the coupling constant of the
derivative term, e is the electric charge, 1−τ3

2 A0 corresponds
to the Coulomb interaction, and the single-nucleon densities
ρS (scalar-isoscalar density), ρV (timelike component of the
isoscalar current), and ρTV (timelike component of the isovec-
tor current).

In addition to contributions from the isoscalar-vector four-
fermion interaction and the electromagnetic interaction, the
isoscalar-vector self-energy includes the rearrangement terms
in �R that arise from the variation of the vertex functionals
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αS, αV, and αTV with respect to the nucleon fields in the vector
density operator ρ̂V.

In a phenomenological construction of a relativistic EDF,
one starts from an assumed ansatz for the medium depen-
dence of the mean-field nucleon self-energies, and adjusts the
free parameters directly to ground-state data of finite nuclei.
Guided by the microscopic density dependence of the vector
and scalar self-energies, the following practical ansatz for the
functional form of the couplings was adopted in Ref. [33]:

αS(ρV) = as + (bs + csx)e−dsx,

αV(ρV) = av + bve−dvx,

αTV(ρV) = btve−dtvx, (36)

with x = ρV/ρsat, where ρsat denotes the nucleon density at
saturation in symmetric nuclear matter. The set of ten param-
eters was adjusted in a χ2 fit to the experimental masses of
64 axially deformed nuclei in the mass regions A ≈ 150–180
and A ≈ 230–250. The resulting functional DD-PC1 [33] has
been further tested in calculations of binding energies, charge
radii, deformation parameters, neutron-skin thickness, and ex-
citation energies of giant monopole and dipole resonances.
During the last decade the functional DD-PC1 has success-
fully been applied in a number of studies of various nuclear
phenomena, from ground-state properties to the description of
collective spectra, giant resonances, shape-phase transitions,
and the dynamics of nuclear fission.

In the simplified case of N = Z doubly closed-shell nuclei
without Coulomb interaction, there is no contribution of the
isovector channel either. We will use four N = Z systems:
8
816, 20

2040, 28
2856, and 50

50100 to improve, starting from the exact
ground-state densities, the approximate zeroth-order function-
als towards DD-PC1. First, we illustrate the accuracy of the
IKS scheme, described in the previous section, in determining
the KS potentials for given scalar and vector densities of the
N = Z = 8 system. The densities-to-potentials inversion en-
ables the calculation of the single-particle energies that appear
on the right-hand side Eq. (20).

Figure 1 compares the densities obtained in the inverse KS
scheme to the target DD-PC1 densities. We plot four different
neutron densities: the sum of the scalar and vector density
ρ+(r) = ρV(r) + ρS(r) [Fig. 1(a)], the difference between the
vector and scalar density ρ−(r) = ρV(r) − ρS(r) [Fig. 1(b)],
and separately the vector ρV(r) [Fig. 1(c)] and scalar ρS(r)
densities [Fig. 1(d)]. Without Coulomb interaction the proton
densities are, of course, identical to the neutron ones. In all
four panels the dot-dashed green curves denote the target
densities calculated with the DD-PC1 functional, the dashed
red curves are the initial densities that correspond to Woods-
Saxon potentials and, finally, the solid black curves represent
the final densities obtained by the inversion method. The cor-
responding results for the potentials are shown in Fig. 2: the
sum of the vector and scalar potentials V+(r) = V (r) + S(r)
[Fig. 2(a)], the difference between the vector and scalar poten-
tial V−(r) = V (r) − S(r) [Fig. 2(b)], and separately the vector
V (r) [Fig. 2(c)] and scalar S(r) [Fig. 2(d)] potentials. Again,
the dot-dashed green curves denote the target potentials, the
dashed red curves are the initial Woods-Saxon potentials, and
the solid black curves are the final potentials obtained by the
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FIG. 1. (a) The sum of neutron vector and scalar densities in the
N = Z = 8 system as a function of the radial coordinate. The target
density obtained using the DD-PC1 functional (dot-dashed green
curve) is compared to the the density calculated in the initial step of
the inversion method (dashed red) with a Woods-Saxon potential, and
to the final IKS density (solid black). (b) Same as in (a) but for the
difference between the neutron vector and scalar densities. (c) Same
as in (a) but for the neutron vector density. (d) Same as in (a) but for
the neutron scalar density.

inversion method. Obviously, the result is that one cannot
distinguish between the target and final IKS densities and
potentials. The latter can, therefore, be used to calculate the
single-particle energies that are needed in the application of
the DFPT method.

In the test case, we will assume for the known functional
E (0)

int [ρV, ρS] a simple form that is actually a part of the
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FIG. 2. (a) The sum of neutron vector and scalar potentials in the
N = Z = 8 system as a function of the radial coordinate. The target
DD-PC1 Kohn-Sham potential (dot-dashed green curve) is compared
to the initial Woods-Saxon potential (dashed red), and to the final
IKS potential (solid black). (b) Same as in (a) but for the difference
between the neutron vector and scalar potentials. (c) Same as in
(a) but for the neutron vector potential. (d) Same as in (a) but for
the neutron scalar potential.
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DD-PC1 functional

E (0)
int [ρV, ρS] = 1

2α(0)
s ρ2

S + 1
2α(0)

v ρ2
V + δsρs�ρs, (37)

The values for the a(0)
s and a(0)

v constants are those used
in the DD-PC1 functional: a(0)

s = as = −10.4602 fm−2 and
a(0)

v = av = 5.9195 fm−2, and the same choice is made for the
derivative term: δs = −0.8149. Note that the first two terms of
this functional coincide with the simple Walecka mean-field
model [29], which, with only two parameters, produces a
realistic equation of state of symmetric nuclear matter. Such
a model, in fact, corresponds to a local density approximation
(LDA) for the EDF. The derivative term is used in modeling
finite systems and takes into account the rapid variations of
the density in the surface region. The strength parameter of
this term can be determined, at least qualitatively, from mi-
croscopic calculations of inhomogeneous nuclear matter.

For the remaining unknown part of the functional
E (1)

int [ρV, ρS] we choose

E (1)
int [ρV, ρS] = 1

2α(1)
s (ρV)ρ2

S + 1
2α(1)

v (ρV)ρ2
V, (38)

where α(1)
s (ρV) and α(1)

v (ρV) have the functional form of the
density-dependent parts of the DD-PC1 couplings:

α(1)
s (ρV) = (

b(1)
s + c(1)

s x
)
e−dsx and α(1)

v (ρV) = b(1)
v e−dvx,

(39)

with x = ρV/ρsat, and ρsat = 0.152 fm−3. As explained above,
the parameters of the functional DD-PC1 were adjusted to
reproduce the nuclear matter equation of state and the experi-
mental masses of 64 deformed nuclei. The test of the method
proposed in this work consists in trying to determine the
parameters of E (1)

int [ρV, ρS] shown in Eq. (38) (i.e., b(1)
s , c(1)

s ,
and b(1)

v ) by using density functional perturbation theory and
the IKS scheme, that is, using Eq. (20). Because the right-hand
side of this equation is just a number that can be evaluated
provided the exact single-particle energies and vector and
scalar densities are known, a different finite system is needed
for each parameter of the unknown functional. Since this is
an illustrative test, we will employ three N = Z systems: 8

816,
28
2856 and 50

50100 to determine the constants b(1)
s , c(1)

s and b(1)
v ,

while ds and dv are again fixed to the DD-PC1 values. Note
that, even though the problem has been simplified to a certain
extent, nevertheless the test is far from being trivial. Namely,
only three artificial systems are used to reproduce the values of
parameters that were originally adjusted to the experimental
masses of a large number of nuclei. Moreover, since our
choice for the unperturbed functional is obviously not close
to the exact target functional, it is far from obvious that a
first-order perturbation method will determine the unknown
parameters with sufficient accuracy. Hence, we repeat the cal-
culation in several iterative steps, as described in the previous
section [Eq. (21)], and at each step improve the values of b(1)

s ,
c(1)

s , and b(1)
v . Note that, because of the functional form of E (1)

int
expressed in Eq. (38),

E (1), n-th
int [ρV, ρS] =

n∑
k=1

[
1

2

(
b(1), k-th

s + c(1), k-th
s x

)

× e−dsxρ2
S + 1

2
b(1), k-th

v ρ2
V

]
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FIG. 3. Values of the constants (b(1)
s )i, (c(1)

s )i, and (b(1)
v )i at dif-

ferent iteration steps. The dashed lines denote the target values that
correspond to the functional DD-PC1.

= 1

2

({
n∑

k=1

b(1), k-th
s

}
+

{
n∑

k=1

c(1), k-th
s

}
x

)

× e−dsxρ2
S + 1

2

{
n∑

k=1

b(1), k-th
v

}
ρ2

V (40)

holds. Hence, hereafter, (b(1)
s )i, (c(1)

s )i, and (b(1)
v )i simply

denote {∑i
k=1 b(1), k-th

s }, {∑i
k=1 c(1), k-th

s }, and {∑i
k=1 b(1), k-th

v },
respectively.

Figure 3 displays the values of (b(1)
s )i, (c(1)

s )i, and (b(1)
v )i at

each iteration step i. Assuming that nothing is known about
these parameters, we start with zero values. After some initial
oscillations in the first few steps, especially between c(1)

s and
b(1)

v , the parameters converge to the values that correspond to
the DD-PC1 target functional, denoted by the horizontal lines
in Fig. 3. The results of this test demonstrate not only the
feasibility of the IKS+DFPT method for nuclear densities, but
also the convergence and accuracy of the iteration scheme.

IV. AN ILLUSTRATIVE CALCULATION

In the second example, we again use DD-PC1 as the
unknown target functional, and the corresponding exact
single-particle energies that appear on the right-hand side
of Eq. (20) are obtained by the IKS method as described
in Sec. II B. Also for the known functional E (0)

int [ρV, ρS] the
simple form of Eq. (37) is adopted, that is

E (0)
int [ρV, ρS] = 1

2 asρ
2
S + 1

2 avρ
2
V + δsρs�ρs, (41)

with the DD-PC1 values of the three parameters. For the
remaining unknown part of the functional

E (1)
int [ρV, ρS] = 1

2α(1)
s (ρV)ρ2

S + 1
2α(1)

v (ρV)ρ2
V,

we choose a polynomial form of the couplings α(1)
s (ρV) and

α(1)
v (ρV):

α(1)
s (ρV) = b(1)

s (x − 1) + c(1)
s (x − 1)2 and

α(1)
v (ρV) = b(1)

v (x − 1) + c(1)
v (x − 1)2, (42)
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FIG. 4. Values of the constants (b(1)
s )i, (c(1)

s )i [(a)], (b(1)
v )i and

(c(1)
v )i [(b)] at different iteration steps of the IKS+DFPT calculation.

The dashed lines denote the corresponding parameters of the linear
and quadratic term in the Taylor expansion of the DD-PC1 couplings.

with x = ρV/ρsat, and ρsat = 0.152 fm−3. Therefore, we will
examine whether the known functional E (0)

int [ρ] can be im-
proved towards the exact target functional DD-PC1, by
assuming a polynomial density dependence of the coupling
parameters of E (1)

int [ρ].
Since the values of four parameters have to be determined,

Eq. (20) requires the input from four finite systems. Here
we choose: N = Z = 8, N = Z = 20, N = Z = 28, and N =
Z = 50. In Fig. 4 the parameters (b(1)

s )i, (c(1)
s )i, (b(1)

v )i, and
(c(1)

v )i are shown at each iteration step of the IKS+DFPT pro-
cedure. They are compared with the parameters of the linear
and quadratic term in the Taylor expansion of the DD-PC1
couplings:

αDD-PC1
s,v (ρV) ≈ αs,v(ρsat ) + dαDD-PC1

s,v

dρV

∣∣∣∣
ρV=ρsat

(ρV − ρsat )

+ 1

2

d2αDD-PC1
s,v

dρ2
V

∣∣∣∣
ρV=ρsat

(ρV − ρsat )
2, (43)

or expressed in terms of x = ρV/ρsat:

αDD-PC1
s,v (ρV) ≈ αs,v(ρsat ) + ρsat

dαDD-PC1
s,v

dρV

∣∣∣∣
ρV=ρsat

(x − 1)

+ 1

2
ρ2

sat

d2αDD-PC1
s,v

dρ2
V

∣∣∣∣
ρV=ρsat

(x − 1)2. (44)

Even though we start with zero initial values, after only
a few iterations the parameters of the linear and quadratic
couplings of the unknown functional reach values that are
very close to the corresponding parameters of the Taylor
expansion of the target DD-PC1 couplings. Using the final
values of the parameters, we calculate the total scalar and
vector couplings αS(ρV) and αV(ρV) as functions of the vector
density, and compare them with the corresponding couplings
of the functional DD-PC1 in Fig. 5. While the couplings of the
unknown functional E (1)

int have been approximated by simple
quadratic functions of the vector density, nevertheless the final
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FIG. 5. (a) Scalar and (b) vector IKS+DFPT couplings as func-
tions of vector density, compared to the corresponding DD-PC1
target coupling functions.

IKS+DFPT scalar and vector couplings accurately reproduce
the DD-PC1 target couplings over a broad range of densities.

Finally, in Fig. 6 we compare the vector densities for the
four symmetric systems: N = Z = 8, N = Z = 20, N = Z =
28, and N = Z = 50, calculated with the IKS+DFPT method
and the target functional DD-PC1. The red curves denote the
densities that correspond to the unperturbed initial functional
E (0)

int and they are, of course, very different from those ob-
tained with the target functional. However, even when the
unknown part of the functional is approximated by the simple
expressions of Eq. (42), the IKS+DFPT method produces
ground-state densities that are virtually identical to the exact
target densities.
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FIG. 6. The vector densities of the four symmetric systems:
N = Z = 8, N = Z = 20, N = Z = 28, and N = Z = 50. The
dashed red curves are the densities that correspond to the unperturbed
initial functional E (0)

int shown in Eq. (41). The dot-dashed green and
solid black curves denote the densities obtained with the target func-
tional DD-PC1 and the final results of the IKS+DFPT calculation,
respectively.
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V. SUMMARY

In this study we have considered an interesting problem in
the framework of nuclear energy density functionals, namely,
how to improve a given functional towards an exact but un-
known Kohn-Sham Hartree-exchange-correlation functional.
Based on the density functional perturbation theory and in-
verse Kohn-Sham method, a model has been developed that
can be used to improve an approximate relativistic EDF.

Using the method introduced in Ref. [27] for nonrel-
ativistic functionals, and based on the density functional
perturbation theory, we have derived Eq. (20) that is used to
compute the first-order correction to an approximate zeroth-
order functional. The input to this equation are the exact
ground-state densities and the known functional, as well as
the exact single-particle energies that are also implicit func-
tionals of the densities. We then use the inverse Kohn-Sham
(IKS) method to calculate these single-particle energies start-
ing from given ground-state densities.

In practice, one must assume a certain ansatz for the
first-order correction to the Kohn-Sham Hartree-exchange-
correlation functional, and use empirical exact ground-state
densities of finite systems to determine the corresponding phe-
nomenological parameters. In case the first-order functional
does not reproduce the exact densities to a desired level of
accuracy, the functional can be further improved in an iterative
procedure, in which the first-order functional obtained in each
iteration is considered as the known functional for the next
iteration.

The model has been tested using the relativistic functional
DD-PC1 as the exact target functional. A simplified form
of DD-PC1 has been employed for the known functional.
Assuming for the first-order correction the same functional
form as in the remaining part of DD-PC1, the method
described above has been applied to determine three
parameters. By employing only three finite N = Z systems,
and with less than ten iterations, the resulting parameters of
the first-order correction are found in excellent agreement
with the original parameters of the functional. In a further
illustrative calculation the target functional has been approx-
imated by a different functional form, namely, a quadratic
polynomial in the densities, determined by four parameters of
the scalar and vector KS potentials. Even though the assumed

density dependence differs from that of the target functional
DD-PC1, nevertheless the model accurately reproduces the
density-dependent coupling functions, as well as the target
densities of four N = Z systems.

As noted in Sec. I, the reason for considering relativistic
functionals is that they automatically take into account the
nuclear spin-orbit potential. The inclusion of this term in the
nuclear KS potential is crucial to reproduce the empirical
magic numbers and shell gaps, and yet in the nonrelativistic
case the spin-orbit term cannot be determined by the IKS
method because there is no information on the corresponding
density. The relativistic formulation does not provide a direct
solution though. The reason is that the spin-orbital potential
emerges as a constructive combination of the scalar and vector
nucleon potentials, but the corresponding scalar density does
not represent an observable. This brings us to the fact that
accurate data exist only for charge (proton) densities, while
in the IKS construction of the potential we need not only the
isoscalar vector and scalar, but also the isovector densities. A
possible solution would be to combine the model developed
in this work, which utilizes empirical exact densities of fi-
nite nuclei, with the equations of state of isospin symmetric
and isospin asymmetric nuclear matter. Namely, data on the
proton vector densities in finite nuclei can be used together
with the (microscopic) equations of state of nuclear matter to
determine the isoscalar-scalar and isovector channels of the
Kohn-Sham potential. Work along these lines is in progress.
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