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We present a phenomenological study of the most minimal realistic SUð5Þ model that owns its
predictivity solely to the gauge symmetry and the representational content. The model is built entirely out
of the fields residing in the first five lowest dimensional representations that transform nontrivially under
the SUð5Þ gauge group. It has 18 real parameters and 14 phases, all in all, to address experimental
observables of the Standard Model fermions and accomplishes that via simultaneous use of three different
mass generation mechanisms. Furthermore, it inextricably links the origin of the neutrino mass to the
experimentally observed difference between the down-type quark and charged lepton masses. The main
predictions of the model are that (i) the neutrinos are Majorana particles, (ii) one neutrino is massless,
(iii) the neutrinos have normal mass ordering, and (iv) there are four new scalar multiplets at or below a
120 TeV mass scale. A one-loop analysis demonstrates that an improvement of the current p → π0eþ

partial lifetime limit by a factor of 2, 15, and 96 would require these four scalar multiplets to reside at or
below the 100, 10, and 1 TeV mass scales, respectively.

DOI: 10.1103/PhysRevD.104.015023

I. INTRODUCTION

One of the recurring themes within the elementary
particle physics model building community is a quest for
simplicity of the proposed scenarios. The premise behind
this approach to the model building is that the simpler the
scenario is the more predictive and thus testable it becomes.
We put to the test this expectation by studying the
predictions of the most minimal renormalizable SUð5Þ
model in the literature to date that is still viable [1]. We
survey the entire parameter space of this model in order to
spell out accurate predictions and phenomenological sig-
natures that originate solely from its structure without
referral to any additional symmetries and/or assumptions
whatsoever.
The main predictions of the model are that (i) the

neutrinos are Majorana particles, (ii) one neutrino is
massless, (iii) the neutrino mass ordering corresponds to

the normal hierarchy, and (iv) there exists a direct link
between experimental bound on the proton decay lifetime,
as provided by the measurement of the p → π0eþ channel,
and the upper bound on the most easily accessible mass
scale of new physics. Namely, a one-loop analysis stipu-
lates the existence of four new scalar multiplets at or below
a 120 TeV mass scale. In fact, an improvement of the
current p → π0eþ partial lifetime limit by a factor of 2, 15,
and 96 would require these four scalar multiplets to reside
below the 100, 10, and 1 TeV mass scales, respectively.
Other notable virtues of the model are as follows. The

model has 18 real parameters and 14 phases, all in all, to
address experimentally accessible properties associated
with the Standard Model fermions such as masses, mixing
angles, CP violating phases, and Majorana phases. It is
entirely built out of the first five nontrivial SUð5Þ repre-
sentations of the lowest lying dimensionalities. It has only
one multiplet that can be identified as the Standard Model
Higgs doublet while the proton decay mediating fields are
exactly the ones as in the original Georgi-Glashow
model [2].
A simplicity of the model can also be observed from the

fact that the neutrino mass matrix is built out of two rank-
one matrices whereas the mismatch between the masses of
the down-type quarks and charged leptons is given by a
single rank-one matrix, where these three matrices have one
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row matrix in common. It is not only that both the neutrino
masses and the observed difference between the masses of
the down-type quarks and charged leptons are generated in
the most minimal way possible but that they are inextri-
cably linked to each other. This places significant con-
straints on the model parameters as we discuss in detail
later on. It also limits a range of viable values for the CP
phase in the neutrino sector.
The manuscript should be seen as a comprehensive

extension of the previous analysis of this model [1] and
is organized as follows. In Sec. II we discuss the specifics
of the model, such as the particle content and the associated
interactions, symmetry breaking effects pertinent to gauge
coupling unification, and mass generation mechanisms, to
set the stage for the numerical analysis. The procedures
behind the numerical study are subsequently discussed and
the main results presented in Sec. III. We finally conclude
in Sec. IV.

II. THE MODEL DESCRIPTION

A. Particle content and notation

The model is built out of 5H, 24H, 35H, 5̄Fi, 10Fi,
15F, 15F, and 24V , where subscripts H, F, and V denote
representations comprising scalars, fermions, and
gauge bosons, respectively, and ið¼ 1; 2; 3Þ is the gen-
eration index. This model extends the particle content of

the original Georgi-Glashow model [2] with one
scalar representation, i.e., 35H, and one vectorlike
fermion representation comprising 15F and 15F.
These two additions overcome three shortcomings of
the original Georgi-Glashow model. Namely, these
representations (a) generate realistic neutrino masses,
(b) create experimentally observed mismatch between
the masses of the down-type quarks and charged
leptons, and (c) provide viable gauge coupling unifica-
tion. That is, in a nutshell, the main source of pre-
dictivity of this model.
We summarize the particle content and symbolic nota-

tion for the aforementioned irreducible representations and
their decompositions under the Standard Model gauge
group SUð3Þ × SUð2Þ ×Uð1Þ in Table I.
The symmetry breaking chain is the same as in the

original Georgi-Glashow model, i.e., SUð5Þ→ SUð3Þ×
SUð2Þ×Uð1Þ→ SUð3Þ×Uð1Þem, and the relevant vacuum
expectation values are h24Hi¼v24=

ffiffiffiffiffi
15

p
diagð1;1;1;−3=2;

−3=2Þ and h5Hi¼ ð0000v5ÞT , where v5ð¼ 174.104 GeVÞ
is the Standard Model vacuum expectation value. (The
effects associated with vacuum expectation values of the
electrically neutral components of ϕ1 and Φ1 scalars are
considered to be negligible.)
The Lagrangian of the model, apart from the kinetic

terms, is

L⊃fþYu
ijT

αβ
i Tγδ

j ΛρϵαβγδρþYd
ijT

αβ
i FαjΛ�

βþYa
i ΣαβFαiΛ�

βþYb
i Σ̄βγFαiΦ�αβγþYc

i T
αβ
i Σ̄βγϕ

γ
αþH:c:gþMΣΣ̄αβΣαβþyΣ̄αβΣβγϕα

γ

−μ2ΛðΛ�
αΛαÞþλΛ0 ðΛ�

αΛαÞ2þμ1Λ�
αΛβϕα

βþλΛ1 ðΛ�
αΛαÞðϕβ

γϕ
γ
βÞþλΛ2Λ�

αΛβϕγ
βϕ

α
γ −μ2ϕðϕβ

γϕ
γ
βÞþμ2ϕ

α
βϕ

β
γϕ

γ
αþλϕ0 ðϕβ

γϕ
γ
βÞ2

þλϕ1ϕ
α
βϕ

β
γϕ

γ
δϕ

δ
αþμ2ΦðΦ�αβγΦαβγÞþλΦ0 ðΦ�αβγΦαβγÞ2þλΦ1 Φ�αβγΦαβδΦ�δρσΦρσγþλ0ðΦ�αβγΦαβγÞðϕδ

ρϕ
ρ
δÞ

þλ00ðΦ�αβγΦαβγÞðΛ�
ρΛρÞþλ000Φ�αβγΦβγδΛδΛ�

αþμ3Φ�αβγΦβγδϕ
δ
α

þλ1Φ�αβγΦαδρϕ
δ
βϕ

ρ
γ þλ2Φ�αβρΦαβδϕ

γ
ρϕδ

γþfλ0ΛαΛβΛγΦαβγþH:c:g; ð2:1Þ

TABLE I. The field content, β-function coefficients, and the associated nomenclature at both the SUð5Þ and the Standard Model levels.
ið¼ 1; 2; 3Þ is a generation index.

SUð5Þ Standard Model ðb3; b2; b1Þ SUð5Þ Standard Model ðb3; b2; b1Þ

5H ≡ Λ
Λ1ð1; 2; 12Þ ð0; 1

6
; 1
10
Þ

5̄Fi
≡ Fi

Lið1; 2;− 1
2
Þ ð0; 1; 3

5
Þ

Λ3ð3; 1;− 1
3
Þ ð1

6
; 0; 1

15
Þ dci ð3̄; 1; 13Þ ð1; 0; 2

5
Þ

24H ≡ ϕ

ϕ0ð1; 1; 0Þ (0,0,0)

10Fi ≡ Ti

Qið3; 2; 16Þ ð2; 3; 1
5
Þ

ϕ1ð1; 3; 0Þ ð0; 1
3
; 0Þ dci ð3̄; 1;− 2

3
Þ ð1; 0; 8

5
Þ

ϕ3ð3; 2;− 5
6
Þ ð1

6
; 1
4
; 5
12
Þ eci ð1; 1; 1Þ ð0; 0; 6

5
Þ

ϕ3̄ð3̄; 2; 56Þ ð1
6
; 1
4
; 5
12
Þ

15F ≡ Σ
Σ1ð1; 3; 1Þ ð0; 4

3
; 6
5
Þ

ϕ8ð8; 1; 0Þ ð1
2
; 0; 0Þ Σ3ð3; 2; 16Þ ð2

3
; 1; 1

15
Þ

35H ≡Φ

Φ1ð1; 4;− 3
2
Þ ð0; 5

3
; 9
5
Þ Σ6ð6; 1;− 2

3
Þ ð5

3
; 0; 16

15
Þ

Φ3ð3̄; 3;− 2
3
Þ ð1

2
; 2; 4

5
Þ

15F ≡ Σ̄
Σ̄1ð1; 3;−1Þ ð0; 4

3
; 6
5
Þ

Φ6ð6̄; 2; 16Þ ð5
3
; 1; 1

15
Þ Σ̄3ð3̄; 2;− 1

6
Þ ð2

3
; 1; 1

15
Þ

Φ10ð10; 1; 1Þ ð5
2
; 0; 2Þ Σ̄6ð6̄; 1; 23Þ ð5

3
; 0; 16

15
Þ
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where the first two lines contain two 3 × 3 matrices, three
1 × 3matrices, and a real number that, together, completely
govern the fermion interactions. The relevant matrix
elements are denoted with Yu

ij, Y
d
ij, Y

a
i , Y

b
i , Y

c
i , and y,

where i, j ¼ 1; 2; 3. The Greek alphabet indices
α; β; γ; δ; ρ; σ ¼ 1;…; 5 stand for the SUð5Þ contractions.
It is possible to freely rotate SUð5Þ representations,

prior to the breaking of SUð5Þ down to the Standard
Model gauge group, in order to choose a suitable basis
for the parameter counting. It is thus convenient to
simultaneously redefine 5̄Fi and 10Fi in such a way as
to render Yd in the second contraction of the first line of
Eq. (2.1) diagonal and real. (In fact, the entries in Yd

will represent the actual Yukawa couplings of the
charged leptons, as we describe in Sec. II D.) It is also
convenient to rotate 15F to remove one phase in a
complex matrix Yc. We choose this phase to be the one
in the Yc

3 element. This exhausts available redefinitions
of the SUð5Þ representations.
The up-type quark mass matrix is proportional to the

symmetric combination given by Yu þ YuT, whereas the
neutrino mass matrix is proportional to the sum of two
rank-one matrices with elements Ya

i Y
b
j and Yb

i Y
a
j ,

respectively, where Ya and Yb are complex row matri-
ces. The down-type quark mass matrix, on the other
hand, is a linear combination of the diagonal matrix Yd

and one rank-one matrix with elements Yc
i Y

a
j . Finally, y

is simply a real number and since it contributes only to
the mass splitting of the vectorlike fermions in 15F and
15F, we do not count it as the relevant parameter
towards the Standard Model fermion mass input.
There are thus eighteen real parameters and fourteen
phases available, in the Yukawa sector of the model, to
address experimentally accessible properties of the
Standard Model fermions.
As we will expand upon later, the up-type quarks and

charged leptons get the mass purely from the usual Higgs
mechanism, neutrinos get the mass at the one-loop level
through an exchange of the vectorlike fermions comprising
15F and 15F, whereas the down-type quarks get the masses
from the Higgs mechanism and the interactions with the
aforementioned vectorlike fermions.
We will now briefly outline the most essential sym-

metry breaking effects one needs to take into account
when discussing the gauge coupling unification within
this model.

B. Symmetry breaking and unification

The relevant degrees of freedom that are a priori not
known and that can enter the gauge coupling unification
analysis within our model are the masses of Φ1, Φ3, Φ6,
Φ10 ∈ 35H, Σ1, Σ3, Σ6 ∈ 15F, ϕ1, ϕ8 ∈ 24H, and Λ3 ∈ 5H.
Scalar fields ϕ3 and ϕ3̄ from 24H, on the other hand,
provide necessary degrees of freedom to the proton

mediating gauge bosons in 24V , during the SUð5Þ sym-
metry breaking process, and are thus only indirectly
featured in the unification study. (See Table I for the
relevant notation and the field transformation properties.)
There are, however, two particular mass relations

induced by the SUð5Þ symmetry breaking that need to
be satisfied within this model. The first one concerns three
Standard Model vectorlike fermion multiplets comprising
15F and 15F. Namely, it is the last two terms in the first line
of Eq. (2.1) that generate mass contributions for these three
fermion multiplets thus creating one mass relation that
reads

MΣ6
¼ 2MΣ3

−MΣ1
: ð2:2Þ

Analogously, there are only three linearly independent
contractions in Eq. (2.1) that generate masses for four
multiplets in 35H. This yields the second mass relation of
the form

M2
Φ10

¼ M2
Φ1

− 3M2
Φ3

þ 3M2
Φ6
: ð2:3Þ

The gauge coupling unification analysis, as we demon-
strate later in Sec. III A, requires Φ1 to be very heavy, i.e.,
MΦ1

≫ v5, whereas Φ3 and Φ6 prefer to be light if the
unification scale MGUT is to be sufficiently large in view of
the proton decay constraints. This simply means, through
the use of Eq. (2.3), that Φ1 and Φ10 are consequently
heavy, and of the same mass, whereas the fields Φ3 and Φ6

are mass degenerate and light within a viable parameter
space. In other words, there are only two mass scales
associated with the fields residing in 35H. Moreover, in the
regime of interest, i.e., when the model can accommodate
neutrino masses and provide gauge coupling unification,
the fields Σ1, Σ6, and Σ3 tend to be mass degenerate with
MΣ1

, MΣ6
, MΣ3

≫ v5. This, again, means that there is only
one mass scale associated with the vectorlike fermions that
reside in 15F and 15F. This common scale for the full
SUð5Þ multiplet will not affect the value of the unification
scale MGUT but will leave an imprint on the value of the
SUð5Þ gauge coupling constant αGUT instead. After we
include ϕ1, ϕ8, and Λ3 into this parameter counting there
are effectively only six mass scales that govern the gauge
coupling unification in this model. (One also needs to
ensure that a proton does not decay too rapidly. To that end,
we observe that one needs to have MΛ3

≥ 3 × 1011 GeV in
order for the scalar induced proton decay to be under
control [3].) We will later show that if one aims to find the
largest possible value ofMGUT one effectively ends up with
only three relevant mass scales. We finally note that the
masses of the proton decay mediating gauge bosons in 24V
are equal to the unification scale MGUT, where

M2
GUT ¼ 5π

6
αGUTv224: ð2:4Þ
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With this in mind, we turn our attention to the issue of the
fermion mass generation.

C. Neutrino mass generation

The neutrino masses, in our model, are of the Majorana
nature. The leading order contribution is generated at the
one-loop level via the d ¼ 5 operator [4,5]. The relevant
Feynman diagrams, both at the SUð5Þ and the Standard
Model levels, are shown in Fig. 1.
The neutrino mass matrix MN , in the regime of interest

when MΣ1
, MΦ1

≫ v5, reads

ðMNÞij ≈
λ0v25
8π2

ðYa
i Y

b
j þ Yb

i Y
a
j Þ

MΣ1

M2
Σ1
−M2

Φ1

ln

�
M2

Σ1

M2
Φ1

�

¼ m0ðYa
i Y

b
j þ Yb

i Y
a
j Þ: ð2:5Þ

Clearly, MN is constructed out of two rank-one matrices
with elements Ya

i Y
b
j and Yb

i Y
a
j in the most minimal way

imaginable. Moreover, all additional contributions towards
neutrino mass matrix, although heavily suppressed and thus
completely irrelevant, are also proportional to the same
combination of the Yukawa couplings. These facts guar-
antee with certainty that one of the neutrinos is a massless
particle.
A viable explanation of the neutrino mass scale roughly

requires that m0 ≥
ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

p
=2, where Δm2

31 is the largest of
the two neutrino mass squared differences, as measured in
the neutrino oscillation experiments. This requirement
places an additional constraint on the parameter space
spanned by MΦ1

and MΣ1
that will be explored later on in

Sec. III. In fact, we can be even more accurate in assessing
the available parameter space to address the neutrino
masses in this model. We describe this procedure only
for the normal ordering of the neutrino masses in what
follows.
The neutrino mass matrix elements, in this model, are

ðMNÞij ¼ m0ðYa
i Y

b
j þ Yb

i Y
a
j Þ

¼ ðNdiagð0; m2; m3ÞNTÞij; ð2:6Þ

where m2 and m3 are neutrino mass eigenstates and N is a
unitary matrix. Since we work in the basis where the

charged leptons are already in the mass eigenstate basis we
can write N as

N ¼

0
B@

eiγ1 0

0 eiγ2 0

0 0 eiγ3

1
CAV�

PMNS; ð2:7Þ

where VPMNS is the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) unitary mixing matrix with three mixing angles,
one CP violating Dirac phase, and two Majorana phases.
One can invert Eq. (2.6) using results of Refs. [6,7] to
obtain appropriate forms of Ya and Yb. Namely, the normal
ordering yields

YaT ¼ 1ffiffiffi
2

p

0
B@

ir2N12 þ r3N13

ir2N22 þ r3N23

ir2N32 þ r3N33

1
CA;

YbT ¼ 1ffiffiffi
2

p

0
B@

−ir2N12 þ r3N13

−ir2N22 þ r3N23

−ir2N32 þ r3N33

1
CA; ð2:8Þ

where r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2=m0

p
and r3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3=m0

p
. There are cur-

rently six phases in Eq. (2.8) that one can freely vary for the
given MΦ1

, MΣ1
, and λ0 to check the perturbativity of the

Yukawa coupling elements in Ya and Yb. These phases are
γ1, γ2, γ3, one CP violating phase (δPMNS), and two
Majorana phases in VPMNS. We defer the outcome of this
analysis to Sec. III. Here we only note that the fact that
there are six arbitrary phases in Eq. (2.8) is expected since
the six real parameters in Ya and Yb have been traded for
three PMNS angles and three neutrino masses during the
inversion procedure.

D. Charged fermion masses

A presence of the vectorlike fermions comprising 15F
and 15F induces experimentally observed mismatch
between the masses of the charged leptons and the
down-type quarks. The mismatch itself is due to the
physical mixing between the vectorlike fermions and
fermions in 10Fi. [The effect of this type of mixing on
the charged fermion masses has been studied in Ref. [8]

15F 15F 5F j5F i

35H5H

5H5H

Yi
a Yj

b

**

**

1 1 L jL i

11

11

Yi
a Yj

b

**

**

FIG. 1. The Feynman diagrams of the leading order contribution towards Majorana neutrino masses at the SUð5Þ (left panel) and the
Standard Model (right panel) levels.
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within the context of a supersymmetric SUð5Þ framework.]
Namely, since the quark doublets Qi in 10Fi and Σ3 in 15F
transform in the same way under the Standard Model gauge
group, as can be seen from Table I, these states interact at
the SUð5Þ symmetry breaking level, where the relevant
mixing term explicitly reads

L ⊃
1

4

ffiffiffiffiffi
10

3

r
v24Yc

iQiΣ̄3: ð2:9Þ

The electroweak symmetry breaking induces additional
mixing terms between the vectorlike fermions and fermions
in 5̄Fi and 10Fi whenever these fermions transform
in the exact same way under SUð3Þ ×Uð1Þem, where the
induced terms are all proportional to v5. The relevant
decomposition under the SUð3Þ ×Uð1Þem gauge group is
Qi ¼ uið3; 2=3Þ þ dið3;−1=3Þ, Li ¼ eið1;−1Þ þ νið1; 0Þ,
Σ3 ¼ Σuð3; 2=3Þ þ Σdð3;−1=3Þ, and Σ1 ¼ Σνð1; 0Þ þ
Σecð1; 1Þ þ Σececð1; 2Þ, where the second number in the
parentheses represents electric charge in units of absolute
value of the electron charge. The aforementioned symmetry
breaking effects thus yield the following mass terms for the
charged fermions:

L ⊃ ð ui Σu Þ
 
4v5ðYu

ij þ Yu
jiÞ 1

4

ffiffiffiffi
10
3

q
v24Yc

i

0 MΣ3

!� ucj

Σ̄u

�

þ ð di Σd Þ
 
v5Yd

ij
1
4

ffiffiffiffi
10
3

q
v24Yc

i

v5Ya
j MΣ3

!� dcj

Σ̄d

�

þ ð ei Σ̄ec Þ
�
v5Yd

ji v5Ya
i

0 MΣ1

�� ecj

Σec

�
: ð2:10Þ

The gauge coupling unification considerations, coupled
with the need to generate correct neutrino mass scale,
require states Σu;d;ec to be very heavy and we can safely
integrate them out. We accordingly find, in the limit when
v24Yc, MΣ1

, MΣ3
≫ v5, that the mass matrices for the up-

type quarks (MU), down-type quarks (MD), and charged
leptons (ME) are

MU ¼ ðI þ δ02YcYc†Þ−1
24v5ðYu þ YuTÞ; ð2:11Þ

MD ¼ ðI þ δ02YcYc†Þ−1
2v5ðYd þ δ0YcYaÞ; ð2:12Þ

ME ¼ v5YdT; ð2:13Þ

where δ0 ≡ ffiffiffiffiffiffiffiffiffiffi
10=3

p
v24=ð4MΣ3

Þ is a dimensionless param-
eter and I is the 3 × 3 identity matrix. It turns out that the
contributions proportional to δ02YcYc† are completely
negligible in the parameter space of interest. This allows
us to write that

MU ¼ 4v5ðYu þ YuTÞ; ð2:14Þ

MD ¼ v5ðYd þ δ0YcYaÞ; ð2:15Þ

ME ¼ v5YdT; ð2:16Þ

while the masses of the heavy vectorlike fermions are

MΣu ¼ MΣd ¼ MΣ3
ð1þ δ02Yc†YcÞ12 ≈MΣ3

;

MΣec ¼ MΣecec ¼ MΣν ¼ MΣ1
: ð2:17Þ

Note that the masses of vectorlike fermions are not affected
by the interaction with the Standard Model fermions, thus
preserving the mass relation of Eq. (2.2).
To summarize, the model uses one vectorlike set of

fermions in 15F and 15F together with 35H to simulta-
neously (a) generate neutrino masses, (b) create viable
mismatch between the down-type quark and charged lepton
masses, and (c) provide gauge coupling unification.
We are finally in a position to discuss the numerical

analysis of the model in view of these requirements.

III. NUMERICAL ANALYSIS

Our numerical exploration of the entire parameter space
of the model comprises three distinct steps. We briefly
outline each of these steps in what follows before we
provide an in-depth description in subsequent sections.
We first look at a viable gauge coupling unification at the

one-loop level. To that end, we freely vary the masses of
Φ1, Φ3, Φ6, Φ10 ∈ 35H, Σ1, Σ3, Σ6 ∈ 15F, ϕ1, ϕ8 ∈ 24H,
and Λ3 ∈ 5H, while taking into account additional con-
straints discussed in Sec. II B, to find the largest possible
value of MGUT. This approach gives the most conservative
representation of the available parameter space since the
largest possible unification scale corresponds to the largest
possible nucleon lifetimes one would need to probe to test
the model. We always set a lower limit on the mass(es) of
the new physics state(s), before we numerically look for the
viable unification points, to explore the possible connection
between the most accessible scale of new physics and
MGUT. To that end, we introduce a mass parameter
M≡minðMJÞ, where J ¼ Φ1, Φ3, Φ6, Φ10, Σ1, Σ3, Σ6,
ϕ1, ϕ8, Λ3, and present our findings when M ≥ 1 TeV,
M ≥ 10 TeV, and M ≥ 100 TeV. It is already at this stage
that the part of potentially viable parameter space can be
discarded. Namely, since the neutrino mass scale explicitly
depends onMΦ1

andMΣ1
via the m0 parameter of Eq. (2.5)

it is easy to construct a two-dimensional parameter space
spanned by MΦ1

and MΣ1
where one could, at least in

principle, hope for realistic explanation of neutrino masses,
with perturbative couplings, within this model.
Once we find all the unification points that also allow for

generation of viable neutrino mass scale we implement the
second step of our numerical analysis. Namely, we run the
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masses and mixing parameters of the Standard Model
charged fermions to MGUT using the factual new physics
mass spectrum associated with a given unification point to
account for all the threshold corrections between the low
scale andMGUT and then perform an accurate numerical fit
of the Standard Model observables. (We do not run the
neutrino observables due to the fact that the running effect
is not very significant and use the associated low-energy
input for the fitting procedure instead.) The charged
fermion mass renormalization group running is performed
at the one-loop level [9]. We note that one can separate the
gauge coupling unification study from the running of the
Standard Model charged fermion parameters, at this level
of accuracy, since the latter provides feedback to the former
only at the two-loop level whereas the former impacts the
latter already at the one-loop level.
The third step of our analysis begins upon completion

of the numerical fit of the Standard Model fermion
observables for all viable unification points. Namely,
we look into constraints due to the proton decay signa-
tures for every single point that corresponds to realistic
gauge coupling unification and viable description of the
Standard Model fermion observables. This allows us to
produce accurate constraint since we have, at our disposal,
all the relevant input parameters for such an analysis
including MGUT, αGUT, unitary transformations of the
Standard Model fermions, Yukawa couplings, short-dis-
tance coefficients, etc. We find that the most stringent
experimental limit, i.e., the limit on the p → π0eþ partial
lifetime, provides the best constraint on the available
parameter space through the predictions for the gauge
boson mediated proton decay.
What we are left with, at the end of these three steps, is a

viable set of unification points that is in agreement with all
currently accessible experimental results and that is what
we present in the left panels of Fig. 3. (We explain the
details related to Fig. 3 in Secs. III A–III D.) It is important
to note that any further improvement in experimental
determination of the Standard Model parameters, such as
the actual determination of the neutrino masses, measure-
ment of the CP phase in the leptonic sector, or an input on
Majorana phases, will add to the precision of the model’s
predictions.

A. Unification analysis

To find the unification scale MGUT of the Standard
Model gauge couplings α1, α2, and α3, associated with
Uð1Þ, SUð2Þ, and SUð3Þ, respectively, and the mass
spectrum of the SUð5Þ model for a corresponding uni-
fication point we proceed as follows. We first define
coefficients Bij through Bij ¼

P
JðbJi − bJj ÞrJ, where bJi

are the β-function coefficients of a particle J with massMJ,
rJ ¼ lnðMGUT=MJÞ= lnðMGUT=MZÞ, and J ¼ Φ1, Φ3, Φ6,
Φ10, Σ1, Σ3, Σ6, ϕ1, ϕ8, Λ3. (The relevant β-function
coefficients bi, where i ¼ 1; 2; 3, are given in Table I.)

We then simultaneously solve the following two
equations [10]:

B23

B12

¼ 5

8

sin2θW − αðMZÞ=αSðMZÞ
3=8 − sin2θW

; ð3:1Þ

ln
MGUT

MZ
¼ 16π

5αðMZÞ
3=8 − sin2θW

B12

: ð3:2Þ

To that end, we freely vary the masses of Φ1, Φ3, Φ6,
Φ10 ∈ 35H, Σ1, Σ3, Σ6 ∈ 15F, ϕ1, ϕ8 ∈ 24H, and Λ3 ∈ 5H,
while taking into account additional constraints discussed
in Sec. II B, to find the largest possible value of MGUT,
where we use MZ¼91.1876 GeV, αSðMZÞ¼ 0.1193�
0.0016, α−1ðMZÞ ¼ 127.906� 0.019, and sin2 θW ¼
0.23126� 0.00005 as our input parameters [11].
We always set a lower limit on the mass(es) MJ of

the new physics state(s), before we numerically look
for the viable unification points. We accordingly present
our findings for M ≥ 1 TeV, M ≥ 10 TeV, and M ≥
100 TeV in the first, second, and third row of Fig. 2,
respectively. In the left three panels of Fig. 2 we show the
contours of constant value ofMGUT and αGUT in theMΦ1

−
MΣ1

plane, where the contours for MGUT are given in units
of 1015 GeV and are shown as the vertical solid lines while
the αGUT contours are given as dot-dashed lines that run
horizontally. We discard the parameter space that corre-
sponds to MGUT ≤ 6 × 1015 GeV for the subsequent
numerical study in all three instances since our preliminary
analysis has shown that such a low MGUT is certainly not
realistic with regard to the experimental input on the proton
decay lifetimes.
There are two dashed curves in all three panels in the left

column of Fig. 2. The outermost one represents the
boundary after which it is not possible to generate the
correct mass scale for neutrinos with perturbative cou-
plings. We generate that curve by setting λ0 to one and
freely varyingMΦ1

,MΣ1
, and six phases in Eq. (2.8) to find

the region where the product maxðjYa
i jÞmaxðjYb

j jÞ, i,
j ¼ 1; 2; 3, does not exceed 1. If the product exceeds 1
we discard that part of parameter space since it can never
produce satisfactory neutrino mass fit with perturbative
couplings with utmost certainty. The region between the
two dashed lines corresponds to the parameter space where
it is sometimes possible, for some special choice of the six
phases, to find a perturbative solution to the neutrino mass
fit. Finally, the region to the left of the innermost dashed
line yields correct neutrino mass fit for arbitrary choices of
the six phases. We also plot the naive bound on the correct
neutrino mass scale using green solid contours. These are
generated by setting 2m0=

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

p
to 1, 10, and 100, as

indicated in the left panels of Fig. 2, for λ0 ¼ 1. One can see
that this naive estimate slightly undershoots the exact result
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FIG. 2. Experimentally viable parameter space of the model (left panels) and the gauge coupling unification for the unification points
A, A0, and A00 (right panels) when M ≥ 1, 10, 100 TeV, as indicated. For additional details see the text.
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for normal ordering but, still, describes rather accurately the
region with the acceptable neutrino mass scale.
In the three panels in the right column of Fig. 2 we

explicitly present the running of the gauge couplings for
one specific unification point, i.e., when MΦ1

¼ MΣ1
¼

1013.19 GeV, for the M ≥ 1 TeV, M ≥ 10 TeV, and M ≥
100 TeV scenarios in the first, second, and third row,
respectively, where, again, M ≡minðMJÞ for J ¼ Φ1, Φ3,
Φ6, Φ10, Σ1, Σ3, Σ6, ϕ1, ϕ8, Λ3. The locations of the
corresponding unification points in the left panels of Fig. 2
are denoted with A, A0, and A00.
To clearly demonstrate that MGUT does not depend on

MΣ1
due to the fact that the three multiplets in 15F and 15F

remain mass degenerate when maximizing MGUT, we
present in Fig. 3 the running of the gauge couplings for
three specific points in theMΦ1

−MΣ1
plane corresponding

to Oð1011.5 GeV; 1014.3 GeVÞ, Pð1011.5 GeV; 1011.5 GeVÞ,
and Qð1011.5 GeV; 108.7 GeVÞ, that are clearly marked on
the M ≥ 1 TeV plot of Fig. 2.
What one can clearly observe from Fig. 2 is that αGUT

grows with a decrease inMΣ1
whileMGUT remains constant

for fixed MΦ1
. This simply means that the proton decay

bound on the model parameter space in the MΦ1
−MΣ1

plane is expected to be more stringent as the value of MΣ1

decreases.

FIG. 3. The gauge coupling unification for points O, P, and Q (left panels) and the associated renormalization group running of the
τðyτÞ, b ðybÞ, and t ðytÞ Yukawa couplings (right panels). For additional details see the text.
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The parameter space that we further investigate is shown
in the left three panels of Fig. 2. It is bounded from the left
by the vertical line that corresponds to MGUT ¼
6 × 1015 GeV and from the right by the outermost dashed
line after which it is not possible to (re)produce the neutrino
mass scale with perturbative couplings. We create a grid
of equidistant points within this parameter space in the
MΦ1

−MΣ1
plane, where the spacing along both axes is 0.1

in units of log10ðMΦ1;Σ1
=1 GeVÞ, and then proceed with

steps two and three of our numerical analysis of these
points as we describe next in more detail.

B. Fermion mass fit

The Standard Model fermion masses in our model can be
read off from

L ⊃ −uTMUuc − dTMDdc − eTMEec

−
1

2
νTMNνþ H:c:; ð3:3Þ

where MU, MD, ME, and MN are given in Eqs. (2.14)–
(2.16), and (2.6), respectively. The fermion mass eigenstate
basis, in the most general scenario, is defined through

MU ¼ ULM
diag
U U†

R; ð3:4Þ

MD ¼ DLM
diag
D D†

R; ð3:5Þ

ME ≡ ELM
diag
E E†

R; ð3:6Þ

MN ¼ NMdiag
N NT; ð3:7Þ

where UL, UR, DL, DR, EL, ER, and N are the associated
unitary transformations. The model stipulates that

UL ¼ DLdiagð1; eiκ4 ; eiκ5ÞVT
CKMdiagðeiκ1 ; eiκ2 ; eiκ3Þ; ð3:8Þ

UR ¼ U�
Ldiagðeiξ1 ; eiξ2 ; eiξ3Þ; ð3:9Þ

EL ¼ I; ð3:10Þ

ER ¼ I; ð3:11Þ

N ¼ diagðeiγ1 ; eiγ2 ; eiγ3ÞV�
PMNS; ð3:12Þ

where VCKM is the Cabibbo-Kobayashi-Maskawa (CKM)
mixing matrix with one CP violating phase (δCKM) and,
again, VPMNS is the PMNS mixing matrix with one CP
violating phase and two Majorana phases. The connection
between UL and UR in Eq. (3.9) is due to the fact
that MU ¼ MT

U.
To perform the numerical analysis we first take the low-

scale experimental values of the charged fermion sector
observables and run them up from MZ to MGUT via the
relevant one-loop level renormalization group equations

[9]. During this process, we appropriately take into account
all the threshold corrections to these observables due to the
presence of the new physics states that reside between the
low scale and the unification scale. The mass spectrum of
the relevant states is determined by the procedure that is
described in Sec. III A. We repeat the one-loop level
renormalization group running for all viable unification
points that are presented in the three left panels of Fig. 2.
[Again, the region of interest is bounded from the left by the
vertical line that corresponds to MGUT ¼ 6 × 1015 GeV
and from the right by the outermost dashed line while the
spacing between the neighboring points is 0.1 in units of
log10ðMΦ1;Σ1

=1 GeVÞ along both axes.] We then use these
evolved quantities associated with a given unification point
in our fitting procedure. We present, as an example, the
result of the renormalization group running of the τðyτÞ, b
ðybÞ, and t ðytÞ Yukawa couplings in the right panels of
Fig. 3 for points O, P, and Q, where the new physics mass
spectra associated with these unification points are explic-
itly given in the left panels. Note that the position of the
unification points O, P, and Q in the Φ1 − Σ1 plane can be
read off from the left uppermost panel of Fig. 2. Even
though the unification scale is the same for points O, P, and
Q, one can observe a 10% fluctuation in the values of
aforementioned Yukawa couplings at MGUT.
Since the running of the neutrino observables produces a

very small effect, we fit the corresponding low-scale values.
We summarize experimentally measured observables with
the associated 1σ uncertainties of both the charged and
neutral fermion sectors at low scale in Table II. [We use
v5ðMZÞ ¼ 174 GeV.] We also present in Table III the
ranges of values that we find, within the region of interest,
for yτ, yb, and yt at the unification scale MGUT after we
implement the renormalization group running procedure of
the central values of these quantities as given in Table II.
In the numerical fit we use charged lepton masses at

MGUT as an input to determine Yd in a straightforward
fashion since v5Yd ¼ Mdiag

E ¼ diagðme;mμ; mτÞ. The
model thus addresses charged lepton masses exactly. The
down-type quark mass matrix of Eq. (2.15) and the neutrino
mass matrix of Eq. (2.5) share a common Yukawa coupling
row matrix Ya. We accordingly perform a combined fit to
data for these two sectors. To that end, we minimize a χ2

function which is defined as

χ2 ¼
X
k

P2
k; Pk ¼

Tk −Ok

Ek
; ð3:13Þ

where Tk, Ok, and Ek represent theoretical prediction,
measured central value, and experimental 1σ error for the
observable k, respectively. k runs over the neutrino sector
observables and the down-type quark masses. Clearly, in
our fitting approach, the Yukawa coupling matrices Ya, Yb,
and Yc are determined against three down-type quark
masses, two neutrino mass-squared differences and three
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mixing angles in the neutrino sector. (The CP violating
phase and the two Majorana phases in the neutrino sector
have not been experimentally measured.) We scan over all
viable unification points demanding perturbativity of the
relevant couplings, i.e., maxðjYa

i jÞ, maxðjYb
i jÞ, maxðjYc

i jÞ,
jλ0j ≤ 1, and utilize the criteria χ2=n ≤ 1 to be considered
as a good fit, where nð¼ 8Þ is the number of fitted
observables. (Note that not all the unification points that
allow for a good numerical fit pass the proton decay test, to
be detailed in Sec. III C.)
We point out that our combined numerical fit of the

down-type quark and neutrino sectors demonstrates that
this model cannot accommodate the inverted neutrino mass
ordering. Note that Yd is a hierarchical diagonal matrix,
where its entries are completely determined by the charged
lepton Yukawa couplings. Since the matrix elements
ðMDÞij are proportional to the linear combination of
ðYdÞij and Yc

i Y
a
j it is obvious that Ya and Yc should both

be hierarchical row matrices to produce a good fit to data.
This, however, is impossible to achieve for the inverted
ordering of the neutrino masses. Namely, for the inverted
scenario the entries in the first row and the first column of
the neutrino mass matrix MN are typically of the same
order, whereas the lower 2 × 2 block is required to be

somewhat smaller in magnitude. (Note that we work in the
mass eigenstate basis for the charged leptons.) This require-
ment forces all entries in Ya to be of the same order which is
in direct conflict with what is needed in the down-type
quark sector. This tension is a direct consequence of the
simplicity of the model which, in turn, leads to a prediction
that neutrinos must have the normal mass ordering.
The fitting procedure, for the normal ordering of

neutrino masses, allows us to numerically determine three
unitary rotation matrices DL, DR, and N, as well as the
Yukawa couplings of the charged leptons and the down-
type quarks. To fully compute partial lifetimes for different
proton decay modes, due to both the gauge boson and
scalar mediations, one also needs to know the unitary
matrices UL and UR that diagonalize the up-type quark
mass matrix and the associated Yukawa couplings. The nice
feature of our approach is that the former can be expressed
in terms of DL and VCKM, as given in Eqs. (3.8) and (3.9),
and eight additional phases. The latter can also be found
since

MU ¼ 4v5ðYu þ YuTÞ ¼ ULdiagðmu;mc;mtÞU†
R; ð3:14Þ

where UL and UR, again, are connected via Eq. (3.9).
To summarize, the model accommodates charged lepton

masses, the up-type quark masses, and the CKM param-
eters exactly. We furthermore perform a combined numeri-
cal fit of the neutrino mass parameters, the down-type
quark masses, and the PMNS parameters since these are
inextricably linked. The most important outcome of the fit
for the proton decay considerations is the unitary trans-
formations UL, UR, DL, and DR, where the first two
matrices feature five and three unknown phases, respec-
tively. We will show next that the analysis of the leading
source of proton decay requires knowledge of only two of
these phases, i.e., κ4 and κ5 of Eq. (3.8), which reside inUL.

TABLE II. Experimental observables associated with charged fermions [12] and neutrinos for normal ordering [13] with 1σ
uncertainties (except for charged leptons).

mðMZÞ (GeV) Fit input θCKM;PMNS
ij & δCKM & Δm2

ij (eV
2) Fit input

mu=10−3 1.158� 0.392 sin θCKM12
0.2254� 0.00072

mc 0.627� 0.019 sin θCKM23 =10−2 4.207� 0.064

mt 171.675� 1.506 sin θCKM13 =10−3 3.640� 0.130

md=10−3 2.864� 0.286 δCKM 1.208� 0.054

ms=10−3 54.407� 2.873 Δm2
21=10

−5 7.425� 0.205

mb 2.854� 0.026 Δm2
3l=10

−3 2.515� 0.028

me=10−3 0.486576 sin2θPMNS
12 =10−1 3.045� 0.125

mμ 0.102719 sin2θPMNS
23

0.554� 0.021

mτ 1.74618 sin2θPMNS
13 =10−2 2.224� 0.065

TABLE III. The ranges of values of Yukawa couplings of the
third generation Standard Model fermions after the one-loop
running of the central values fromMZ toMGUT for the unification
points that reside within the regions of interest shown in the left
three panels of Fig. 2.

M ≡minðMJÞ yτðMGUTÞ=10−3 ybðMGUTÞ=10−3 ytðMGUTÞ
M ≥ 1 TeV (8.36, 9.05) (3.68, 4.70) (0.263, 0.342)
M ≥ 10 TeV (8.70, 9.27) (4.23, 5.08) (0.306, 0.372)
M ≥ 100 TeV (9.20, 9.43) (5.04, 5.36) (0.371, 0.396)
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C. Proton decay analysis

The main constraint on the otherwise viable parameter
space of the model originates from the experimental limit
on the partial lifetime of the p → π0eþ process. Since the
maximal possible value of MGUT and the associated mass
spectrum of the new physics states are known for every
unification point, with MGUT being the mass of the proton
decay mediating gauge bosons in 24V , we can set an
accurate lower bound on MGUT due to the proton decay
lifetime measurements through the use of the numerical
output of the fermion sector fit from the previous section.
The result of our study is presented in the left panels of
Fig. 2, where the region to the left of the boundary that is
marked with “proton decay bound” wording, in the Φ1 −
Σ1 plane, is already excluded with the current data. We
stress that we have looked at all two-body proton decay
signatures to find that it is the p → π0eþ partial lifetime
limit that is the most constraining. We present, in what
follows, the procedure that we use to produce the proton
decay bounds of the left panels of Fig. 2.
The relevant proton decay width for the p → π0eþ

process is [14]

Γðp → π0eþÞ ¼ mpπ

2

�
1 −

m2
π

m2
p

�
2

A2
L
α2GUT
M4

GUT

× ðA2
SLjcðec; dÞhπ0jðudÞLuLjpij2

þ A2
SRjcðe; dcÞhπ0jðudÞRuLjpij2Þ;

where the relevant matrix elements are hπ0jðudÞLuLjpi ¼
0.134ð5Þð16Þ GeV2 and hπ0jðudÞRuLjpi ¼
−0.131ð4Þð13Þ GeV2 [15], ALð¼ 1.2Þ captures the
QCD running of the proton decay operators below the
MZ scale [16], mpð¼ 0.9393 GeV) is the proton mass, and
mπð¼ 0.134 GeV) is the pion mass. The running of the
proton decay operators from the unification scale MGUT
down to MZ is given by ASL and ASR, where these
coefficients are [17–19]

ASLðRÞ ¼
Y

i¼1;2;3

YMZ≤MI≤MGUT

I

�
αiðMIþ1Þ
αiðMIÞ

� γLðRÞiP
MZ≤MJ≤MI
J

bJ
i ;

γLðRÞi ¼ ð23ð11Þ=20; 9=4; 2Þ:

Indices I and J run through all the new physics states
that reside below the unification scale. We evaluate ASL and
ASR for every point that provides satisfactory unification as
well as a viable fit of the fermion observables using the
associated mass spectrum.
The coefficients cðec; dÞ and cðe; dcÞ, in our model, are

cðecα; dβÞ ¼ e−iξ1ððD�
LÞ11 þ ðUT

LD
�
LÞ11ðU�

LÞ11Þ; ð3:15Þ

cðe; dcÞ ¼ e−iξ1ðD†
RÞ11: ð3:16Þ

One can observe that the phase ξ1 of Eq. (3.9) does not
enter the predictions for the p → π0eþ decay width.
Moreover, out of the five phases in UL, as given in
Eq. (3.8), only κ4 and κ5 affect the value of cðecα; dβÞ in
Eq. (3.15). Since the matrix elements of DL and DR are
obtained during the numerical fitting procedure andUL can
be expressed in terms of the CKM matrix via Eq. (3.8), all
we need to do is to vary κ4 and κ5 to find the smallest
possible value for jcðecα; dβÞj and hence the most
conservative bound on the parameter space of the model
due to the experimental limit on the partial proton lifetime
for the p → π0eþ channel. To produce the bounds in the
left panels of Fig. 2 we use τexp

p→π0eþ > 2.4 × 1034 years, as

given by the Super-Kamiokande collaboration [20]. [The
Hyper-Kamiokande [21] detector has the potential to
significantly reduce the allowed parameter space of our
model. The expected 90% confidence level on the p →
π0eþ channel for 10 years (20 years) of operation is 7.8 ×
1034 (1.3 × 1035) years, whereas the 3σ discovery potential
reach is 6.3 × 1034 ð1.0 × 1035Þ years.]
Note that the proton decay bound in the left panels of

Fig. 2 slopes slightly to the right as the mass of Σ1

decreases. The main reason for that is the fact that αGUT
grows with a decrease in the Σ1 mass for a fixed value of
MΦ1

whereasMGUT remains constant. Also, we can predict
the extent to which one needs to experimentally improve
the limit on the p → π0eþ partial lifetime in order to
completely rule out currently available parameter space. An
improvement of the current p → π0eþ lifetime limit by a
factor of 2, 15, and 96 would completely rule out the
M ≥ 100 TeV, M ≥ 10 TeV, and M ≥ 1 TeV scenarios,
respectively. The last point to be eliminated in the Φ1 − Σ1

plane, in all three left panels of Fig. 2, by such an
improvement is ðMΦ1

¼ 1013.2 GeV;MΣ1
¼ 1013.6 GeVÞ.

In fact, the scenario where the lower bound on the masses
of the new physics states is set at 120 TeV is already
completely ruled out by the proton decay constraints. The
states that prefer to be light, in order to maximize the
unification scale, are scalars ϕ1, ϕ8, Φ3, and Φ6.

D. Results

In this section we succinctly summarize our numerical
findings.
The viable parameter space of the model is given in the

three left panels of Fig. 2 in the MΦ1
−MΣ1

plane, where
we show the contours of constant MGUT, αGUT, and m0 for
jλ0j ¼ 1. The unification scale contours are given in units of
1015 GeV and appear as vertical solid lines while the αGUT
contours are given as dot-dashed lines that run horizontally.
The contours of constant m0, for jλ0j ¼ 1, are shown as
green solid curves. The unification scale is maximized by
freely varying massesMJ, where J ¼ Φ1, Φ3, Φ6, Φ10, Σ1,
Σ3, Σ6, ϕ1, ϕ8, Λ3, while taking into account additional
constraints discussed in Sec. II B and imposing a condition
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thatM ≡minðMJÞ is greater or equal to 1, 10, and 100 TeV
in the panels of the first, second, and third row of the left
column of Fig. 2, respectively.
In the right panels of Fig. 2 we present the running of the

gauge couplings for one particular unification point, i.e.,
when MΦ1

¼ MΣ1
¼ 1013.19 GeV, for the M ≥ 1 TeV,

M ≥ 10 TeV, and M ≥ 100 TeV scenarios in the first,
second, and third row, respectively. The unification points
that correspond to these new physics mass spectra are
denoted with A, A0, and A00 in the left panels of Fig. 2.
The parameter space that is viable with respect to the

experimental input, for the three cases at hand, can be read
off from the left panels of Fig. 2. Namely, it is bounded from
the left by the proton decay bound, as discussed in Sec. III C,
and from the right by the outermost dashed curve. The
outermost dashed curve delineates the region afterwhich it is
not possible to address phenomenologically viable neutrino
mass scale with perturbative couplings.
The proton decay bound in Fig. 2 is generated by the

current experimental limit on the partial lifetime for
the p → π0eþ process. We find that an improvement of
the current p → π0eþ lifetime limit by a factor of 2, 15, and
96 would completely rule out the M ≥ 100 TeV,
M ≥ 10 TeV, and M ≥ 1 TeV scenarios, respectively.
The last viable point to be eliminated by the aforemen-
tioned improvement, in all three left panels of Fig. 2, is
ðMΦ1

;MΣ1
Þ¼ ð1013.2 GeV;1013.6 GeVÞ. This is to be ex-

pected since αGUT grows with a decrease in the Σ1 mass for
a fixed value of MΦ1

, whereas MGUT remains constant. To
demonstrate the latter we present unification for points O,
P, and Q in the left panels of Fig. 3, whereas the associated
renormalization group running of the τðyτÞ, b ðybÞ, and t
ðytÞ Yukawa couplings is shown in the right panels.
Our numerical fit explicitly yields all unitary trans-

formations and Yukawa couplings except for eight phases
associated with the up-type quarks sector. As we do not use
the CP phase in the neutrino sector as an input for our
numerical fit we find, within the viable parameter space
that is shown in the left panels of Fig. 2, that
δPMNS ∈ ð−35.6°;þ29.9°Þ for M ≥ 1 TeV, δPMNS ∈

ð−43.06°;þ40.18°Þ for M ≥ 10 TeV, and δPMNS ∈
ð−47.6°;þ53.0°Þ for M ≥ 100 TeV.

IV. CONCLUSION

We present a phenomenological study of the viable
parameter space of the most minimal realistic SUð5Þ
model. The structure of the model is built entirely out of
the fields residing in the first five lowest lying representa-
tions in terms of dimensionality that transform nontrivially
under the SUð5Þ gauge group. The model has 18 real
parameters and 14 phases to address experimental observ-
ables of the Standard Model fermions and accomplishes
that via simultaneous use of three different mass gener-
ation mechanisms. It inextricably links the origin of the
neutrino mass to the experimentally observed difference
between the down-type quark and charged lepton masses.
The main predictions of the model are that (i) the
neutrinos are Majorana particles, (ii) one neutrino is
massless, (iii) the neutrinos have normal mass ordering,
and (iv) there are four new scalar multiplets at or below a
120 TeV mass scale. An improvement of the current p →
π0eþ lifetime limit by a factor of 2, 15, and 96 would
require these four scalar multiplets to reside at or below
the 100, 10, and 1 TeV mass scales, respectively. The
numerical analysis of the model also yields a range of
viable values for δPMNS, i.e., the CP phase in the PMNS
matrix, as a function of the lower limit M≡minðMJÞ on
the masses MJ of the new physics states J, where J ¼ Φ1,
Φ3, Φ6, Φ10, Σ1, Σ3, Σ6, ϕ1, ϕ8, Λ3. These ranges are
δPMNS ∈ ð−35.6°;þ29.9°Þ for M ≥ 1 TeV, δPMNS ∈
ð−43.06°;þ40.18°Þ for M ≥ 10 TeV, and δPMNS ∈
ð−47.6°;þ53.0°Þ for M ≥ 100 TeV.

ACKNOWLEDGMENTS

I. D. would like to thank the CERN Theory Department
for hospitality and support through the Corresponding
Associates program. The work of S. S. has been supported
by the Swiss National Science Foundation.

[1] I. Doršner and S. Saad, Towards minimal SUð5Þ, Phys. Rev.
D 101, 015009 (2020).

[2] H. Georgi and S. L. Glashow, Unity of All Elementary
Particle Forces, Phys. Rev. Lett. 32, 438 (1974).

[3] I. Dorsner, A scalar leptoquark in SU(5), Phys. Rev. D 86,
055009 (2012).

[4] K. S. Babu, S. Nandi, and Z. Tavartkiladze, New mecha-
nism for neutrino mass generation and triply charged
Higgs bosons at the LHC, Phys. Rev. D 80, 071702
(2009).

[5] G. Bambhaniya, J. Chakrabortty, S. Goswami, and P. Konar,
Generation of neutrino mass from new physics at TeV scale
and multilepton signatures at the LHC, Phys. Rev. D 88,
075006 (2013).

[6] I. Cordero-Carrión, M. Hirsch, and A. Vicente, Master
Majorana neutrino mass parametrization, Phys. Rev. D 99,
075019 (2019).

[7] I. Cordero-Carrión, M. Hirsch, and A. Vicente, General
parametrization of Majorana neutrino mass models, Phys.
Rev. D 101, 075032 (2020).

DORŠNER, DŽAFEROVIĆ-MAŠIĆ, and SAAD PHYS. REV. D 104, 015023 (2021)

015023-12

https://doi.org/10.1103/PhysRevD.101.015009
https://doi.org/10.1103/PhysRevD.101.015009
https://doi.org/10.1103/PhysRevLett.32.438
https://doi.org/10.1103/PhysRevD.86.055009
https://doi.org/10.1103/PhysRevD.86.055009
https://doi.org/10.1103/PhysRevD.80.071702
https://doi.org/10.1103/PhysRevD.80.071702
https://doi.org/10.1103/PhysRevD.88.075006
https://doi.org/10.1103/PhysRevD.88.075006
https://doi.org/10.1103/PhysRevD.99.075019
https://doi.org/10.1103/PhysRevD.99.075019
https://doi.org/10.1103/PhysRevD.101.075032
https://doi.org/10.1103/PhysRevD.101.075032


[8] N. Oshimo, Realistic model for SU(5) grand unification,
Phys. Rev. D 80, 075011 (2009).

[9] H. Arason, D. J. Castano, B. Keszthelyi, S. Mikaelian, E. J.
Piard, P. Ramond, and B. D. Wright, Renormalization group
study of the standard model and its extensions. 1. The
Standard model, Phys. Rev. D 46, 3945 (1992).

[10] A. Giveon, L. J. Hall, and U. Sarid, SU(5) unification
revisited, Phys. Lett. B 271, 138 (1991).

[11] K. A. Olive et al. (Particle Data Group Collaboration),
Review of particle physics, Chin. Phys. C 38, 090001
(2014).

[12] S. Antusch and V. Maurer, Running quark and lepton
parameters at various scales, J. High Energy Phys. 11
(2013) 115.

[13] I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz,
and A. Zhou, The fate of hints: Updated global analysis of
three-flavor neutrino oscillations, J. High Energy Phys. 09
(2020) 178.

[14] P. Nath and P. Fileviez Perez, Proton stability in grand
unified theories, in strings and in branes, Phys. Rep. 441,
191 (2007).

[15] Y. Aoki, T. Izubuchi, E. Shintani, and A. Soni, Improved
lattice computation of proton decay matrix elements, Phys.
Rev. D 96, 014506 (2017).

[16] T. Nihei and J. Arafune, The two loop long range effect on
the proton decay effective Lagrangian, Prog. Theor. Phys.
93, 665 (1995).

[17] A. J. Buras, J. R. Ellis, M. K. Gaillard, and D. V.
Nanopoulos, Aspects of the grand unification of strong,
weak and electromagnetic interactions, Nucl. Phys. B135,
66 (1978).

[18] J. R. Ellis, M. K. Gaillard, and D. V. Nanopoulos, On the
effective Lagrangian for baryon decay, Phys. Lett. 88B, 320
(1979).

[19] F. Wilczek and A. Zee, Operator Analysis of Nucleon
Decay, Phys. Rev. Lett. 43, 1571 (1979).

[20] A. Takenaka et al. (Super-Kamiokande Collaboration),
Search for proton decay via p → eþπ0 and p → μþπ0 with
an enlarged fiducial volume in Super-Kamiokande I-IV,
Phys. Rev. D 102, 112011 (2020).

[21] K. Abe et al. (Hyper-Kamiokande Collaboration), Hyper-
Kamiokande design report, arXiv:1805.04163.

PARAMETER SPACE EXPLORATION OF THE MINIMAL … PHYS. REV. D 104, 015023 (2021)

015023-13

https://doi.org/10.1103/PhysRevD.80.075011
https://doi.org/10.1103/PhysRevD.46.3945
https://doi.org/10.1016/0370-2693(91)91289-8
https://doi.org/10.1088/1674-1137/38/9/090001
https://doi.org/10.1088/1674-1137/38/9/090001
https://doi.org/10.1007/JHEP11(2013)115
https://doi.org/10.1007/JHEP11(2013)115
https://doi.org/10.1007/JHEP09(2020)178
https://doi.org/10.1007/JHEP09(2020)178
https://doi.org/10.1016/j.physrep.2007.02.010
https://doi.org/10.1016/j.physrep.2007.02.010
https://doi.org/10.1103/PhysRevD.96.014506
https://doi.org/10.1103/PhysRevD.96.014506
https://doi.org/10.1143/ptp/93.3.665
https://doi.org/10.1143/ptp/93.3.665
https://doi.org/10.1016/0550-3213(78)90214-6
https://doi.org/10.1016/0550-3213(78)90214-6
https://doi.org/10.1016/0370-2693(79)90477-5
https://doi.org/10.1016/0370-2693(79)90477-5
https://doi.org/10.1103/PhysRevLett.43.1571
https://doi.org/10.1103/PhysRevD.102.112011
https://arXiv.org/abs/1805.04163

