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In 2015, the PHENIX collaboration has measured very forward (η > 6.8) single spin asymmetries of
inclusive neutrons in transversely polarized proton-proton and proton-nucleus collisions at a center of mass
energy of 200 GeV. A previous publication from this dataset concentrated on the nuclear dependence of
such asymmetries. In this measurement the explicit transverse momentum dependence of inclusive neutron
single spin asymmetries for proton-proton collisions is extracted using a bootstrapping unfolding technique
on the transverse momenta. This explicit transverse momentum dependence will help improve the
understanding of the mechanisms that create these asymmetries.

DOI: 10.1103/PhysRevD.103.032007

I. INTRODUCTION

At the beginning of the era of polarized proton collisions
at the relativistic heavy ion collider (RHIC), a dedicated
experiment based on a prototype zero-degree calorimeter
(ZDC) [1] was set up to initially study very forward neutral
pion asymmetries in transversely polarized proton colli-
sions in relation to earlier results that showed nonzero
results [2]. Instead of finding a neutral pion asymmetry,
which was only recently discovered at low transverse
momentum by the RHICf experiment [3], a sizable neutron
asymmetry was found in the forward direction of the
transversely polarized proton beam [4].
Earlier theoretical studies related very forward neutron

production to the one-pion-exchange (OPE) model [5–7] in
which the exchange of one pion between the proton and
another colliding particle can create the outgoing neutron.
Such a model was reasonably successful in describing
unpolarized, very forward neutron production as previously
observed at the ISR [8]. However, a simple pion exchange
model would not be able to describe any spin dependence
of the observed neutron distributions. To accommodate
that, an interference with another particle exchange would

be necessary to have helicity-flip and nonflip amplitudes
available that can create a single spin left-right asymmetry.
Within the general framework of Regge theory [9], such an
interference could be accomplished when adding also a
scalar meson exchange and the resulting pseudoscalar-
scalar meson interference would then create the asymmetry.
Recent calculations of such an OPE based description of
very forward neutron single spin asymmetries [10] are able
to qualitatively describe the RHIC measurements which, by
now, include transversely polarized proton-proton colli-
sions at

ffiffiffi

s
p ¼ 62, 200, as well as 500 GeV [11], although

the transverse momentum information enters only indi-
rectly via the different collision energies.
The very different asymmetries observed in proton-

nucleus collisions [12], with different sign and much larger
magnitude, indicate that at high impact parameters and at
least for high-Z nuclei ultraperipheral collisions (UPC) [13]
also contribute to these asymmetries in a very different way.
These data together with the recent very forward nonzero
neutral pion result [3] may provide crucial information to
the underlying mechanisms that create these asymmetries.
So far, none of these results have been extracted with an

explicit transverse momentum dependence while the differ-
ent collision energies provide some indirect information on
it. Obtaining it can directly test the proposed mechanism
and the dependence that results from its theory calculation
[10]. Therefore, extracting the actual transverse momentum
dependence is the focus of this publication. A substantial
understanding is required of the transverse momentum
smearing in the PHENIX ZDCs. Also needed are determi-
nations of systematic uncertainties in unfolding transverse
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momenta, which were studied via a Monte Carlo (MC)
bootstrap method as described later.
In the following sections, the detector description,

analyzed datasets and the forward neutron selection are
covered. Next are described the procedure for unfolding the
neutron single spin asymmetries as a function of the
reconstructed transverse momenta to obtain the true trans-
verse momentum dependence. Then, the final results are
presented before summarizing.

II. DATASETS

In 2015, the PHENIX experiment recorded polarized
proton-proton and proton-nucleus collision data at a center
of mass energy of 200 GeV. In the proton-proton collision
data, the beams were transversely polarized with the spin
direction pointing vertically up or down with respect to the
plane defined by the accelerator ring.
Inclusive neutrons were detected with the ZDC, which

comprise three modules of Cu-W alloy absorbers layered
with optical fibers of 1.7 nuclear interaction lengths each
(51 radiation lengths per module), covering a projected area
of 10 cm by 10 cm transverse to the beam direction. The
absorber layers of the ZDC are tilted 45 degrees upward to
maximize the light yield from Čerenkov light. The location
of the ZDCs is 18 m up and downstream of the PHENIX
beam interaction point, thus covering a range of pseudor-
apidity η > 6.8. The ZDC is used to measure the energy of
forward neutrons, and its energy resolution is about 20%
for neutron energies of 100 GeV. Between the first and the
second module, approximately at the position of the
maximal hadronic shower are located scintillator strip
detectors with a projected width of 15 mm horizontally
and vertically. This shower max detector (SMD) is used to
determine the position of the neutrons that are selected by
calculating the weighted average of the deposited energy for
all strip positions. The position resolution of the SMD for
neutrons is ≈1 cm. Additionally, the SMD is used for local
polarimetry of the polarized beams by making use of the
nonzeroneutron asymmetries in proton-proton collisions and
allowed to track the transverse spin orientation or confirm the
spin orientation to be rotated in the longitudinal direction.
See Ref. [14] for a more detailed detector description.
Collision events were selected for this result by a logical

OR of north and south ZDCs that require approximately an
energy deposit of more than 15 GeV on either detector.
Within the proton collisions were accumulated about 35M
neutron events that were triggered by the ZDCs.

III. EVENT AND PARTICLE
SELECTION CRITERIA

Neutron candidates in the north ZDC were selected by
requiring more than 3% of the total deposited energy to be
in the second ZDC module. This effectively rejects photon
candidates, that deposited their energy in the first module

due to being electromagnetic showers. Also nonzero hits in
both horizontal and vertical SMDs are required to reliably
estimate the neutron position and transverse momentum.
Furthermore, the reconstructed neutron energies were
selected between 40 and 120 GeV. The hit position as
defined by the SMDs has to be within 0.5 to 4 cm in radius
from the nominal beam position. Additionally, data under
stable running conditions with no problems in the polarized
beam diagnostics were selected. The transverse momentum
PT is reconstructed from the neutron energy E, the radius of
the average hit position r and the distance from the
interaction point zZDC:

PT ¼ r
zZDC

E: ð1Þ

The events that fulfill the above conditions are then binned in
four transverse momentum bins of [0.01, 0.06, 0.11, 0.16,
0.21] GeV/c and six equidistant azimuthal angular bins that
cover full azimuth around the polarized beam direction. The
two spin states are kept separated for the unfolding, but to
obtain the asymmetries needed in the bootstrap MCmethod,
they are also directly calculated here as

ANðϕÞ ¼
1

hPi
NþðϕÞ −RN−ðϕÞ
NþðϕÞ þRN−ðϕÞ ; ð2Þ

where hPi is the average beam polarization (for this running
period 52% [15]) andN� are the yields of neutrons in the up/
down spin state as a function of azimuthal angle ϕ that is
defined relative to the spin-up direction. R is the ratio of
accumulated luminosities for the down and up spin states,
and is close to unity in this analysis. The actual AN is then
calculated by fitting a sine modulation to it with magnitude
and phase as free parameters.
As systematic uncertainties, the amount of charged

particle background (dominated by protons) and the
uncertainty of the beam center position need to be evalu-
ated. Unlike other years, no charge veto counter in front of
the ZDC was installed in this running period. This resulted
in a rather asymmetric charged hadron background pre-
dominantly from protons that are swept into the ZDC by the
dipole magnet which joins and separates the two beams.
The fraction of charged hadron background was sta-
tistically subtracted on the spin dependent yield level by
applying the background fractions that were obtained in the
2008 running period when the charge veto counter was
installed. The statistical uncertainties on these background
fractions were then assigned as systematic uncertainties on
the resulting raw asymmetries.
The central beam position relative to the ZDC also

cannot be perfectly determined due to the large lever arm as
well as varying beam conditions. As such, the assigned
beam position was artificially varied by 1 cm horizontally
and 0.5 cm vertically around the nominal beam position,
respectively. All neutron positions, transverse momenta,
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and azimuthal angles were recalculated before evaluating
the asymmetries. These variations were motivated by the
uncertainties based on two independent methods of recon-
structing the beam center positions using the ZDCs. The
combined uncertainties on the asymmetries from charged
background and beam position are then used as a basis for
variation of the bootstrap MC method of unfolding the
asymmetries as discussed in the next section. The uncer-
tainties due to charged background and beam position
remain negligible compared to the large systematic uncer-
tainties this unfolding introduces.

IV. TRANSVERSE MOMENTUM UNFOLDING

As hadronic showers develop a substantial size and the
segmentation of the SMDs is limited, the reconstructed
neutron energy and in particular the transverse momentum
are smeared. The transverse momentum dependence of
the single spin asymmetries is however of much interest for
the understanding of the mechanism that creates these
asymmetries.
We have performed detailed MC simulations using five

different types of event generators as input to full GEANT3
[16] simulations of the forward region of PHENIX [17,18]
including the ZDCs, SMDs, the beampipe as well as the
dipole magnet that merges and separates the incoming and
outgoing beams and is responsible for an asymmetric spray
from charged particles. These GEANT simulations have been
shown to describe these effects, as well as differences
between top and bottom that originate from the light
collection and back scattering in the top part of the
ZDC. The composition, energy, and momentum distribu-
tions of particles in the far forward region are not very well
understood in general, and therefore different types of
generators were used to gauge the impact of these
differences on the unfolded asymmetries. The three full
generators PYTHIA6.1 [19], PYTHIA8.2 [20], and DPMJET3.1

[21] were applied, where in particular diffractive processes
are handled very differently.
Additionally, an empirical distribution of forward neu-

trons in longitudinal and transverse momentum was used to
mimic an OPE model. In this case, a pion that balances the
energy and momentum between the incoming proton and
the thrown neutron (i.e., p → πþ þ n) was collided with
the other beam using PYTHIA8 again (i.e., π þ p).
Moreover, as the forward pþ A results have indicated
[12], ultraperipheral collisions can also play a role in
forward neutron production although that will be more
prominent in proton-nucleus collisions. Therefore, the yield
and distribution of photons from the other beam was
simulated using STARLIGHT [22] and collided with the
proton beam using PYTHIA8 again.
As none of these generators is intrinsically spin depen-

dent, spin effects (w in the following expression) were
simulated by reweighting generated events as a function of
true transverse momentum and azimuthal angle where the

spin state was randomly assigned. Three different func-
tional forms were used in the reweighting to provide as
much flexibility as possible for the true transverse momen-
tum dependence of the single spin asymmetries. The most
general parametrization is a third order polynomial in the
transverse momentum with a vanishing constant term due
to the requirement for the asymmetry to vanish at zero
transverse momentum:

w ¼ ða · PT;g þ b · P2
T;g þ c · P3

T;gÞ sinðϕg þ λ · πÞ; ð3Þ

where PT;g and ϕg are the true transverse momenta and
azimuthal angles, respectively, and λ (�1) is the spin
state, while a, b, and c are free parameters that are varied.
A second functional form (with a and b > 0 free param-
eters) is based on a power-law behavior:

w ¼ ða · Pb
T;gÞ sinðϕg þ λ · πÞ; ð4Þ

and the last parametrization (with a and b free parameters)
follows an exponential form that eventually reaches an
asymptotic constant:

w ¼ að1 − eb·PT;gÞ sinðϕg þ λ · πÞ: ð5Þ

In the power law parametrization, only positive powers are
allowed to avoid unphysical nonzero asymmetries at zero
transverse momentum.
For each set of parameters, functional form, and MC

generator, the single spin asymmetries were extracted from
the reconstructed kinematic variables that included these
weights based on the true variables.
In a first step, the reconstructed asymmetries that were

obtained from the data are compared to the reconstructed
asymmetries from MC for a large number of variations of
the parameters. The quality of a set of parameters, func-
tional form and MC generator in reproducing the data
asymmetries was evaluated by calculating the χ2 between
the actual data points and the smeared asymmetry points.
While the MC statistics are generally large enough, many
functional forms can describe the data within the exper-
imentally measured uncertainties.
Figure 1 displays the functional forms probed for the

OPE motivated MC generator. The regions where a para-
metrization results in a χ2 below 10 units is also visualized
to highlight the range of reasonable parametrizations.
Despite the different transverse momentum distributions
of forward neutrons in the different MC generators, their
best asymmetry distributions are very similar for each set of
functional forms. In all functional forms, a rapidly rising
asymmetry is preferred at small PT , while at intermediate
transverse momentum (within the second and third data
points) no large variation in the asymmetries is visible.
The exponential function generally prefers the asymptotic
value to be reached already at these transverse momenta.
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At higher transverse momenta above 0.2 GeV=c, the
sensitivity is very limited for all functional forms despite
a nonzero smearing into the observed range. As such, the
slightly rising, constant or even diminishing asymmetries at
high transverse momenta can describe the measured data
reasonably well.
In a second step, the spin-dependent data yields that are

two-dimensional in reconstructed transverse momentum and
azimuthal angle are unfolded using the spin-dependent,
weighted smearing matrices obtained for each set of para-
meters, functional form and MC generator set. For the
unfolding itself, the TSVDUnfold package of ROOT [23]
based on a regularized singular value decomposition [24]
was used.After the unfolding, the asymmetries are calculated
from the unfolded yields as described above. The best
parametrization for each functional form and MC generator
is used to obtain the central point of the unfolded asymme-
tries and statistical uncertainties. The impact of the variation
of parameters is evaluated by obtaining the root mean square
(rms) of the spread of unfolded asymmetries which are
weighted by the inverse of their respective χ2 to take the
quality of a parameter set into account. These uncertainties
are also displayed in Fig. 1, together with the unfolded
asymmetries using the OPE generator.
The variation of the unfolded asymmetries is displayed

in Fig. 2 for each transverse momentum bin and para-
metrization, while spreads from the different MC gener-
ators had been combined equally. The central values from
these distributions have been taken as the final asymmetry
values while the rms value is taken as the uncertainty due to
the various parametrizations.
In addition to these uncertainties, further systematic

uncertainties are studied by varying the regularization
parameter in the TSVDUnfold method as well as the
uncertainties due to the statistical uncertainties on the
smearing matrices themselves. However, most of these

values are within the boundaries of the uncertainties
obtained from the variation of parameters and functional
forms. Only those systematic contributions that exceed
the aforementioned uncertainties have been added in
quadrature.

FIG. 1. True asymmetry parametrizations as a function of transverse momentum for (a) a third order polynomial dependence “Pol3,”
(b) a power-law dependence “Power Law,” and (c) an exponential dependence “Exponential.” The shaded regions represent the regions
where the χ2 between the smeared asymmetries related to this parametrization and the asymmetries reconstructed from data (solid [blue]
squares) is below 10 units. The dashed lines represent the best matching parametrizations. Also displayed are the unfolded asymmetries
(a) solid [dark green] squares, (b) solid [orange] circles, and (c) solid [red] hyphens, as obtained from the best parametrizations of the
OPE generator. The rms ranges of unfolded asymmetries are visualized as shaded boxes for the various MC generators.

FIG. 2. Relative likelihood distributions of unfolded asymme-
tries for each transverse momentum bin for all sets of parameters
of each functional form weighted by the inverse of its χ2. All
different MC generators distributions have been combined in
these panels. The distributions of the third order polynomial
parametrization (shaded [light green] area “Pol3”), power law
behavior (vertically hatched [light orange] area “Power Law”) and
exponential (horizontally hatched [light red] area “Exponential”)
have been stacked in these figures. The overall central and rms
values are also displayed.
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V. RESULTS

The inclusive neutron asymmetries obtained from the
average of all parametrizations and MC generators are
displayed in Fig. 3 as a function of the true transverse
momentum. The final results are tabulated in Table I.
The absolute values of the asymmetries are consistent

with an increase with transverse momentum but show an
indication of leveling off at higher transverse momenta.
A simple linear dependence as suggested by [10], as well
as the central values of transverse momentum integrated
asymmetries at different collision energies [4,18], seems
not necessarily to be preferred by the data. However, a
simple linear dependence cannot be excluded within uncer-
tainties either. From the MC reweighting exercise no
substantial differences between the different MC generators
have been seen.

Taking into account the indication of very different
asymmetries in ultraperipheral collisions in proton-nucleus
collisions [12,13] and in particular a different sign, it
appears that the UPC contribution to the proton-proton
collisions is limited in this pT region. This is expected
given the electromagnetic nature of the interaction being
proportional with Z2. However, in these inclusive results
some contribution from UPC events may remain, which
could alter the transverse momentum behavior in compari-
son to the purely hadronic theoretical calculations.

VI. SUMMARY

In summary, the PHENIX experiment has measured for
the first time the transverse momentum dependence of
very forward neutron single spin asymmetries in proton-
proton collisions at a center of mass energy of 200 GeV.
With these measurements the first reliable tests of the
suggested mechanisms producing such forward neutron
asymmetries can be performed. While the uncertainties
from the unfolding are very sizable, a simple linear trans-
verse momentum dependence as suggested in [10] is not
inconsistent; however, the asymmetries appear to level off
at higher transverse momenta. Instead, a much slower rise
of the asymmetries or even a turnaround at larger transverse
momenta is favored when considering the best parametri-
zations. To understand the mechanisms in even more detail,
the correlations with other detector activity will be useful.
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