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Abstract: Nuclear equation of state is often described in the framework of energy density functional.
However, the isovector channel in most functionals has been poorly constrained, mainly due to
rather limited available experimental data to probe it. Only recently, the relativistic nuclear energy
density functional with an effective point-coupling interaction was constrained by supplementing the
ground-state properties of nuclei with the experimental data on dipole polarizability and isoscalar
monopole resonance energy in 208Pb, resulting in DD-PCX parameterization. In this work, we
pursue a complementary approach by introducing a family of 8 relativistic point-coupling functionals
that reproduce the same nuclear ground-state properties, including binding energies and charge
radii, but in addition have a constrained value of symmetry energy at saturation density in the
range J = 29, 30, . . . , 36 MeV. In the next step, this family of functionals is employed in studies of
excitation properties such as dipole polarizability and magnetic dipole transitions, and the respective
experimental data are used to validate the optimal choice of functional as well as to assess reliable
values of the symmetry energy and slope of the symmetry energy at saturation.

Keywords: nuclear energy density functional; equation of state; symmetry energy; nuclear excitations

1. Introduction

The construction of a universal energy density functional (EDF) that can make precise
predictions on the properties of finite nuclei and can provide a reasonable description of
nuclear matter properties is one of the major challenges in nuclear physics, and it is also
relevant for nuclear astrophysics applications. The equation of state (EoS) of nuclear matter
represents an essential ingredient for understanding many astrophysical phenomena, such
as supernovae and neutron stars, as well as for the description of various nuclear processes
in a stellar environment (for more details, see reviews [1,2]). In order to provide improved
and universal nuclear energy density functionals as well as to improve their predictive
power, many studies have been performed, e.g., see References [3–9]. The EoS around
saturation density is often constrained by the ground-state properties of finite nuclei, and
the nuclear excitation properties provide valuable information to optimize the EDFs used
in the description of the EoS. More details about constraining the EoS from ground and
collective excited states are given in an extensive review in Reference [10].

The general strategy in optimization of the functionals is to constrain their parame-
ters in χ2 minimization using nuclear ground-state properties such as binding energies,
charge radii, spin-orbit splittings, etc. The properties of symmetric nuclear matter around
saturation are rather well-constrained by fitting the model parameters to the ground-state
observables of nuclei. However, these observables are not able to constrain well the isovec-
tor channel of the functionals, which in turn leads to poorly constrained symmetry energy
parameters of the EoS, and additional constraints on the pseudo-observables on the nuclear
matter are introduced to cure this deficiency. Constraining the isovector channel of the
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EDFs with appropriate tools or observables is one of the principal aims of the nuclear
physics community to obtain reliable information about the symmetry energy parameters
around the saturation density as well as the properties of neutron-rich nuclei. In recent
years, many works have been devoted to determining reliable values for the symmetry
energy J, the slope of the symmetry energy L, and incompressibility of nuclear matter K0
around the saturation density (see Reference [10] and the references therein) as well as
finding possible observables to constrain their values [11–15]. These studies have shown
that the symmetry energy parameter J is expected between 31 and 32 MeV while the slope
of the symmetry energy L is obtained between 30 and 90 MeV, and it is subject to larger
uncertainties than the J value. Moreover, the incompressibility parameter K0, which is
known as the curvature of the nuclear matter EoS, is predicted to be between 210 and
250 MeV [10,15]. There are also studies indicating larger incompressibilities if the ratio
of the surface and volume coefficients c = Ksur f /Kvol from leptodermous expansion in
powers of A−1/3 of the incompressibility of finite nuclei KA is allowed to vary [16]. The
decription of the EoS at higher densities represents a great challenge for ongoing research.
Heavy-ion collisions can compress nuclear matter to densities present in neutron stars and
core-collapse supernovae and, thus, can provide additional constraints of the EoS at higher
densities [17].

Recent studies have shown that the isovector channel of the EDFs is strongly correlated
with the neutron skin thickness, neutron star mass-radii, and isovector dipole excitation
properties of nuclei and that these observables can be used to constrain the isovector chan-
nel of the functionals (see References [10,12,18] and the references therein). There are recent
experimental constraints on the neutron skin thickness, obtained from the parity violating
elastic electron scattering on 208Pb (PREX) [19]; however, the experimental uncertainties
despite recent improvements remain rather large [20]. Among relevant observables, the
isovector dipole excitations of nuclei have been known for a long time and represent a
very useful constraint for optimization of the functionals. The dipole polarizability of
nuclei, which is calculated from the isovector dipole excitation spectra, can also be used as
a reliable observable to constrain the isovector channel and symmetry energy parameters
of the nuclear EoS around the saturation density [21]. Charge-exchange transitions in
nuclei also provide useful constraints for the isovector channel and the symmetry energy
of the EDFs, in particular isobaric analog states [22], Gamow–Teller resonances [23], and
anti-analog giant dipole resonances [24,25].

Recently, a new parameterization for the relativistic point-coupling interaction, de-
noted as DD-PCX [26], was optimized directly in χ2 minimization using the isovector dipole
and isoscalar monopole excitation properties of 208Pb along with the nuclear ground-
state properties of a set of nuclei. To this aim, a unified framework of the relativistic
Hartree–Bogoliubov (RHB) model and self-consistent relativistic quasiparticle random
phase approximation (R(Q)RPA) was used in the optimization procedure and further
analysis [26,27]. Using the collective excitation properties of 208Pb, both the isoscalar and
isovector channels of the EDF were constrained in a unique way, in which the symme-
try energy and the slope of the symmetry energy around the saturation density were
obtained as J = 31.12 ± 0.32 MeV and L = 46.32 ± 1.68 MeV, respectively. These values
are also consistent with the model predictions from various approaches given in Refer-
ences [10,18]. Including the constrained isoscalar giant monopole resonance (ISGMR)
energy in the optimization of the DD-PCX functional, the incompressibility of nuclear
matter was also obtained as K0 = 213.03 ± 3.54 MeV, which is also consistent with the
predictions of previous studies [10,15].

The aim of this work is to introduce a complementary approach to constrain the
symmetry energy parameters using relativistic EDFs with point-coupling interactions.
First, a family of 8 functionals was established, which reproduced the same nuclear ground-
state properties for a given set of nuclei, whereas the symmetry energy at the saturation
density of the EoS was constrained to the values in the range of J = 29, 30, . . . , 36 MeV in the
χ2 minimization procedure. Furthermore, this family of functionals was used in studies of
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excitation properties such as dipole polarizability and magnetic dipole transitions, and by
using respective experimental data, the optimal choice of the functional is discussed. In this
way, insights into the values of the symmetry energy and slope of the symmetry energy at
saturation are obtained. The results of the present study are also analyzed in comparison
to the existing point-coupling functionals, DD-PC1 and DD-PCX, as well as with previous
studies based on different EDFs [21,28]. Various families of the functionals have already
been established both in the nonrelativistic and relativistic framework. [10,21,28]. Since the
respective results are subject to considerable model dependence, it is important to provide
several independent families of the EDFs. The isovector properties of the EDFs are also
closely related to the size of the neutron skin thickness ∆Rnp. Thus, the relation of the
excitation properties with the ∆Rnp values is also explored in the present study.

This paper is organized in the following way. In Section 2, the basic formalism of
the effective relativistic point-coupling interaction is introduced. Section 3 includes the
results of the present analysis of the neutron skin thickness as well as the electric and
magnetic dipole transitions and their relation to the symmetry energy properties. Finally,
in Section 4, the conclusions of the present study are given.

2. Relativistic Point-Coupling Functionals for Studies of the Symmetry Energy

Among the variety of EDFs currently used in the description of static and dynamic
properties of finite nuclei along the nuclide map as well as the nuclear EoS [10], the rela-
tivistic EDF represents one of successful frameworks [29]. It has already been employed
in the description of various nuclear excitation properties [30–36] and astrophysically
relevant weak interaction processes [27,37–41]. The theoretical framework used in this
work is based on a self-consistent relativistic mean-field model with density dependent
point-coupling interaction. It is derived from the effective Lagrangian density including
the isoscalar–scalar, isoscalar–vector, and isovector–vector four-fermion interactions [4,29]:

L = ψ̄(iγ · ∂−m)ψ

− 1
2

aS(ρ̂)(ψ̄ψ)(ψ̄ψ)− 1
2

aV(ρ̂)(ψ̄γµψ)(ψ̄γµψ)− 1
2

aTV(ρ̂)(ψ̄~τγµψ)(ψ̄~τγµψ)

− 1
2

δS(∂νψ̄ψ)(∂νψ̄ψ)− eψ̄γ · A (1− τ3)

2
ψ . (1)

In addition to the free-nucleon terms, the Lagrangian density includes point-coupling
interaction terms and coupling of protons to the electromagnetic field. The derivative
term accounting for the leading effects of finite-range interactions is also necessary for a
quantitative description of nuclear density distribution and radii. The couplings of the
interaction terms as, av, and aTV are functionals of the vector density ρv =

√
jµ jµ with the

nucleon four-current jµ = ψ̄γµψ [29]. The Dirac equation for the nucleons is obtained from
the variation of the Lagrangian density (1) with respect to ψ̄ [29]:[

γµ(i∂µ − Σµ − Σµ
R −~τΣµ

TV)− (m + ΣS)
]
ψ = 0 , (2)

with the nucleon self-energies defined by the following:

Σµ = aV(ρv)jµ + e
(1− τ3)

2
Aµ (3)

ΣS = aS(ρv)ρs − δS�ρs (4)

Σµ
R =

1
2

jµ

ρv

{
∂aS
∂ρ

ρ2
s +

∂aV
∂ρ

jµ jµ +
∂aTV

∂ρ
~jµ~jµ

}
(5)

Σµ
TV = aTV(ρv)~jµ, (6)

where Σµ, ΣS, and Σµ
TV denote the isoscalar–vector, isoscalar–scalar, and isovector–vector

self-energies, respectively. The isoscalar–vector self-energy Σµ also includes the “rear-
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rangement” terms Σµ
R, which are essential for energy-momentum conservation and the

thermodynamical consistency of the model [42]. The currents and densities are given in
more details in Reference [29].

For the functional form of the couplings, the following practical ansatz is chosen [4,29]:

ai(ρ) = ai + (bi + cix)e−dix (i ≡ S, V, TV) , (7)

with x = ρ/ρsat and ρsat denoting the nucleon density at saturation in symmetric nuclear
matter. The point-coupling model has ten parameters: aS, bS, cS, dS, aV , bV , dV , bTV , dTV ,
and δS. Following Reference [29], the parameters cV , aTV , and cTV are set to zero. In order
to describe the properties of open-shell nuclei, the relativistic Hartree–Bogoliubov (RHB)
model [29] is used. The pairing field is formulated using separable pairing force, which
also includes two parameters for the pairing strength (Gp and Gn) [43].

In addition to the nuclear ground-state and excitation properties, the relativistic EDF
can also be employed in the description of nuclear matter properties. In the translationally
invariant infinite nuclear matter, the derivative term in Equation (1) drop out and the
electromagnetic field is neglected [44]. More details about the implementation of the
density dependent point-coupling interaction in nuclear matter description are given in
Reference [44].

The binding energy per particle around the saturation density can be expanded as
power series around δ→ 0 [10],

E
A
(ρ, δ) =

E
A
(ρ, 0) + S(ρ)δ2 +O[δ4] (8)

where the isospin asymmetry term is δ = (ρn− ρp)/(ρn + ρp). The first term of Equation (8)
is the EoS of symmetric nuclear matter, given by

E(ρ, 0)
A

=
E(ρ0, 0)

A
+

1
2

K0

(
ρ− ρ0

3ρ0

)2
+O[(ρ− ρ0)

3], (9)

where K0 represents the incompressibility of symmetric nuclear matter and is given by

K0 ≡ 9ρ2
0

∂2 E
A (ρ,0)
∂ρ2 |ρ=ρ0 . The second term of Equation (8) corresponds to the symmetry

energy and can be expanded in terms of the density,

S(ρ) = J + L
(

ρ− ρ0

3ρ0

)
+

1
2

Ksym

(
ρ− ρ0

3ρ0

)2
+O[(ρ− ρ0)

3], (10)

where J ≡ S(ρ0) corresponds to the symmetry energy at saturation density, L ≡ 3ρ0
S(ρ)
∂ρ |ρ=ρ0

is the slope of the symmetry energy at saturation, and Ksym ≡ 9ρ2
0

S(ρ)
∂ρ2 |ρ=ρ0 is the incom-

pressibility of the symmetry energy at saturation. The symmetry energy properties will
be discussed in the following section in relation to electric and magnetic excitations in
finite nuclei.

In Reference [26] the relativistic point-coupling interaction DD-PCX has been con-
strained using the properties of isoscalar giant monopole resonance (ISGMR) energy and
dipole polarizability of 208Pb along with the nuclear ground-state properties: binding
energies (34 nuclei), charge radii (26 nuclei), and mean pairing gaps (15 nuclei) of the se-
lected open-shell nuclei. In addition to the ground-state properties of nuclei, the excitation
data have been used as an additional constraint for the relevant properties of the nuclear
matter, incompressibility parameter (K0), symmetry energy (J), and slope of the symmetry
energy (L) at saturation. In this work, a complementary approach is used, i.e., a set of
8 density-dependent point-coupling functionals is established by χ2 minimization, using
not only the given ground-state properties of nuclei but also an additional constraint on the
symmetry energy at the saturation in the range of values, J = 29–36 MeV. In optimization of
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the interaction, the average neutron and proton pairing gap values are calculated using [45]

〈uv∆〉p,n =
∑k ukvk∆k

∑k ukvk
, (11)

where v and u are occupation factors of the single-particle states and ∆k is the state de-
pendent single-particle gap. On the other side, the pairing gaps were extracted from the
experimental data on binding energies using a five-point formula [28].

In constraining the model parameters of the DD-PC family of functionals, the follow-
ing experimental data on nuclear ground-state properties from light to heavy nuclei were
used: binding energies (72 nuclei), charge radii (36 nuclei), diffraction radii (22 nuclei),
surface thickness (18 nuclei), neutron pairing gaps (15 nuclei), and proton pairing gaps
(14 nuclei) [28]. In Table 1, the selected nuclei are presented alongside the relevant data
used in the fitting of the functionals. A similar choice of observables and the set of ex-
perimental data were adopted in adjusting the model parameters of Skyrme functionals
in Reference [28]. In the present calculation, the adopted errors for the binding energies,
charge radii, diffraction radii, surface thickness, and pairing gaps were taken as 1.0 MeV,
0.02 fm, 0.05 fm, 0.05 fm, and 0.15 MeV, respectively. In addition, nuclear matter properties
were constrained with the given adopted errors: saturation density ρsat = 0.152 fm−3 (10%),
binding energy at saturation E/A = −16.14 MeV (10%), effective mass m∗/m = 0.58 (10%),
and incompressibility parameter K0 = 230 MeV (1%), as used in Reference [4]. For each
member of the DD-PC interaction family, an additional constraint was imposed on the
values of J = 29, 30, . . . , 36 MeV. The value of the proton (neutron) mass was taken as
939.565379 (938.272046) MeV/c2.

Table 1. The experimental data for the binding energies (B.E.) (72 nuclei) [46,47] and charge radii rc (36 nuclei) [48] are used
alongside with the neutron (15 nuclei) and proton (14 nuclei) mean gap values ∆n(p), diffraction radius rdi f f r (22 nuclei),
and surface thickness σ (18 nuclei) values for the selected nuclei [28] in the fitting of the DD-PC (J = 29, 30, . . . , 36 MeV)
functionals. In the second line, we display the adopted errors for each observable. The adopted error is also multiplied by a
further integer weight factor that is given in the parentheses next to each observable.

Nucleus ∆n ∆p B.E. rc rdi f f r σ

(±0.15 MeV) (±0.15 MeV) (±1 MeV) (±0.02 fm) (±0.05 fm) (±0.05 fm)
16O −127.619 (2) 2.777 (1)
18O −139.807 (1)
20O −151.371 (1)
22O −162.026 (1)

18Ne −132.142 (1)
20Mg −134.479 (1)
34Si −283.428 (1)
36S 1.52 (1) −308.714 (1) 3.299 (1) 3.577 (1) 0.994 (2)

38Ar 1.44 (1) −327.342 (1) 3.404 (1)
36Ca −281.371 (1)
38Ca −313.121 (1)
40Ca −342.052 (2) 3.485 (2) 3.831 (2) 0.978 (2)
42Ca 1.68 (1) −361.895 (1) 3.513 (2) 3.876 (2) 0.999 (2)
44Ca 1.70 (1) −380.959 (1) 3.523 (3) 3.912 (1) 0.975 (2)
46Ca 1.49 (1) −398.772 (1) 3.502 (1)
48Ca −416.001 (1) 3.484 (1) 3.936 (1) 0.881 (1)
50Ca −427.508 (1)
42Ti −346.888 (1)
50Ti −437.784 (1)
52Cr −456.350 (1) 3.642 (1) 4.173 (1) 0.924 (1)
54Fe −471.763 (1) 3.693 (5) 4.258 (5) 0.900 (5)
56Ni −483.994 (1)
68Ni −590.407 (1)
72Ni −613.455 (1)
84Se −727.338 (1)
86Kr −749.234 (1)
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Table 1. Cont.

Nucleus ∆n ∆p B.E. rc rdi f f r σ

(±0.15 MeV) (±0.15 MeV) (±1 MeV) (±0.02 fm) (±0.05 fm) (±0.05 fm)
88Sr −768.468 (1) 4.220 (1) 4.994 (1) 0.923 (1)
90Zr −783.898 (1) 4.272 (1) 5.040 (1) 0.957 (1)

92Mo 1.40 (1) −796.510 (1) 4.315 (1) 5.104 (1) 0.950 (1)
94Ru −806.864 (1)
96Pd −815.040 (1)
98Cd −821.072 (1)
100Sn −825.297 (2)
106Sn −893.795 (1)
108Sn −914.654 (1)
112Sn 1.41 (1) −953.526 (1) 4.596 (1) 5.477 (2)
114Sn 1.26 (3) −971.570 (1) 4.610 (1) 5.509 (2) 0.948 (2)
116Sn 1.21 (3) −988.681 (1) 4.626 (1) 5.541 (1) 0.945 (1)
118Sn 1.34 (1) −1004.951 (1) 4.640 (1) 5.571 (1) 0.931 (1)
120Sn 1.39 (1) −1020.539 (1) 5.591 (1)
122Sn 1.37 (1) −1035.524 (1)
124Sn 1.31 (1) −1049.960 (1) 4.674 (1) 5.640 (1)
126Sn 1.26 (1) −1063.883 (1)
128Sn 1.22 (1) −1077.373 (1)
130Sn 1.17 (3) −1090.286 (1)
132Sn −1102.840 (1)
134Sn −1108.871 (1)
134Te 0.81 (1) −1123.410 (1)
136Xe 0.98 (1) −1141.881 (1)
138Ba 1.12 (1) −1158.292 (1) 4.834 (1) 5.868 (2) 0.900 (1)
140Ce 1.21 (1) −1172.687 (1) 4.877 (1)
142Nd 1.23 (1) −1185.136 (1) 4.915 (1) 5.876 (3) 0.989 (3)
144Sm 1.25 (1) −1195.729 (1)
146Gd 1.42 (1) −1204.427 (1) 4.984 (1)
148Dy 1.49 (1) −1210.773 (1) 5.046 (1)
150Er −1215.329 (1) 5.076 (2)
152Yb −1218.396 (1)
206Hg −1621.048 (1) 5.485 (1)
198Pb −1560.018 (1) 5.450 (2)
200Pb −1576.361 (1) 5.459 (2)
202Pb −1592.193 (1) 5.474 (1)
204Pb −1607.505 (1) 5.483 (1) 6.749 (1) 0.918 (1)
206Pb 0.59 (1) −1622.323 (1) 5.494 (1) 6.766 (1) 0.921 (1)
208Pb −1636.429 (1) 5.505 (1) 6.806 (1) 0.900 (1)
210Pb 0.66 (1) −1645.552 (1) 5.523 (1)
212Pb −1654.514 (1) 5.542 (1)
214Pb −1663.290 (1) 5.562 (1)
210Po 0.81 (1) −1645.212 (1) 5.534 (1)
212Rn 0.88 (1) −1652.496 (1) 5.555 (2)
214Ra 0.96 (1) −1658.322 (1) 5.571 (3)
216Th −1662.694 (1)
218U −1665.659 (1)

Although the same ground-state data were used systematically in the fitting protocol,
the DD-PC functionals can accommodate a broad range of J values for the symmetry
energy while providing similar quality in the description of binding energies and radii.
Table 2 shows the resulting parameter sets of 8 functionals from the DD-PC family with
J = 29, 30, . . . , 36 MeV. In the next step, this set of functionals will be examined by using
nuclear excitation data and the possibility to constrain the optimal range of the symmetry
energy parameters will be investigated.
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Table 2. Parameters of the DD-PC interactions with different values of the symmetry energy at the saturation J, given in units of MeV.

Parameters J = 29 J = 30 J = 31 J = 32 J = 33 J = 34 J = 35 J = 36

aS (fm2) −10.418334630 −10.384498639 −10.390657606 −10.389488800 −10.387142700 −10.386956740 −10.384414509 −10.387781497
bS (fm2) −9.163612956 −9.202629009 −9.189174805 −9.197715907 −9.215314920 −9.208074838 −9.215072973 −9.218990127
cS (fm2) −4.968064171 −5.014345965 −5.031326770 −5.030638408 −5.021597419 −5.023220520 −5.012403311 −5.019048957

dS 1.348374834 1.351382727 1.352967739 1.352329476 1.351064617 1.352262229 1.350836047 1.352173708
aV (fm2) 6.591051202 6.583857817 6.584374904 6.584425799 6.584907238 6.587404662 6.583350394 6.585576629
bV (fm2) 8.366192199 8.380745134 8.363054275 8.358949669 8.366666526 8.350225226 8.361167422 8.359267286

dV 0.737531721 0.742903470 0.740865993 0.739885318 0.740096759 0.740274812 0.740322161 0.740857140
bTV (fm2) 4.370433886 3.630253620 3.017651110 2.581533741 2.200070930 1.913161650 1.654675062 1.474609051

dTV 1.845561631 1.570350651 1.301516924 1.067071385 0.836496499 0.629569428 0.426269288 0.252072712
δS (fm4) −0.823980938 −0.828843122 −0.835583928 −0.841884906 −0.846057419 −0.849721556 −0.849999864 −0.859856552

Gn (MeV.fm3) −829.99300 −829.32779 −826.75466 −825.97419 −820.16793 −820.80162 −818.64718 −818.82887
Gp (MeV.fm3) −770.15586 −769.51970 −769.92950 −769.75826 −771.71259 −771.63793 −772.34643 −773.77497
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3. Results

In this section, we present the results for the nuclear matter properties in relation
to the electric and magnetic dipole excitation properties using the new family of point-
coupling functionals spanning the range of values for the symmetry energy at saturation
J = 29, 30, . . . , 36 MeV. Thus, we can analyze the effects of varying the symmetry energy in
a systematic way.

3.1. Nuclear Matter Properties and Equation of State

In Table 3, the nuclear matter properties at saturation density are listed for the family of
point-coupling functionals introduced in this work, DD-PC-J29, . . . , DD-PC-J36, including
energy per nucleon E/A; incompressibility modulus K0, spanning the range of values of
the symmetry energy J = 29, 30, . . . , 36 MeV; and the slope of the symmetry energy at
saturation density L. In addition, the respective values are also shown for the DD-PC1 [4]
and DD-PCX [26] functionals. Except for the DD-PCX functional, the incompressibility
parameters K0 is limited to the same value K0 = 230 MeV. As mentioned above, the DD-
PCX functional was optimized using the isoscalar monopole resonance energy of 208Pb
to constrain the value of K0 , which in turn leads to a lower incompressibility parameter
around the saturation densities. Because of the strong correlation between the J and L
values [49], it is also seen that the L values increase with increasing J values for the DD-PC
family of interactions.

Table 3. The nuclear matter saturation properties for the DD-PC family of interactions spanning
the range of symmetry energy J and L values. In addition, the properties for the DD-PC1 [4] and
DD-PCX [26] functionals are shown.

E/A (MeV) K0 (MeV) J (MeV) L (MeV)

DD-PC-J29 −16.019 230.0 29.0 29.0
DD-PC-J30 −16.043 230.0 30.0 35.6
DD-PC-J31 −16.055 230.0 31.0 43.8
DD-PC-J32 −16.067 230.0 32.0 52.3
DD-PC-J33 −16.076 230.0 33.0 62.0
DD-PC-J34 −16.087 230.0 34.0 72.1
DD-PC-J35 −16.096 230.0 35.0 83.2
DD-PC-J36 −16.123 230.0 36.0 94.1

DD-PC1 −16.061 230.0 33.0 70.0
DD-PCX −16.026 213.0 31.1 46.3

In Figure 1, the EoS of symmetric nuclear matter (panels (a) and (c)) and pure neutron
matter (panels (b) and (d)) are displayed for the introduced family of point-coupling
functionals together with the ones for the DD-PC1 and DD-PCX interactions. Considering
Figure 1a, the results are the same for the densities below 0.3 fm−3 for symmetric nuclear
matter. Only when moving toward higher densities, differences are obtained in the values
of the energy per nucleon. The divergence of the nuclear matter EoS at high-density regions,
obtained when using different functionals, is a well-known problem in nuclear physics.
Although some probes have been found to constrain this region [1,17,50], the model
predictions are quite different and the high-density behavior of the EoS still remains
unknown. It is also seen that the DD-PC functionals, which are obtained by varying the
symmetry energy parameters, give the same results for the symmetric nuclear matter at
each density. In other words, the EoS of symmetric nuclear matter is not sensitive to the
changes only in the symmetry energy parameters of the DD-PC functionals. In Figure 1c,
the results are presented up to twice the nuclear saturation density 0.34 fm−3, and we also
compare our results with the order-by-order chiral effective-field theory (χEFT) predictions,
with NN and 3N interactions up to N3LO (see Reference [51] for more details). Considering
the LO and NLO predictions for the symmetric nuclear matter, binding energy per nucleon
E/A decreases smoothly with increasing density, i.e., their behavior is not compatible
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with all other model predictions. However, the behavior of the EoS with the higher-order
predictions of the χEFT theory, i.e, N2LO and especially N3LO, appears in qualitative
agreement with the DD-PC results.

The results for the energy per nucleon of pure neutron matter are presented in
Figure 1b,d. In contrast to the symmetric nuclear matter, neutron matter appears rather
sensitive to the choice of symmetry energy parameters for the DD-PC family of functionals.
As it is known, the symmetry energy is stiffer (softer) for functionals with larger (lower)
values of J and L. Increasing the value of the symmetry energy at saturation J, the energy
per nucleon value increases at a faster rate at higher densities, as expected. In Figure 1d,
we also compare our results for the pure neutron matter with those from the χEFT theory.
The respective EoS of the DD-PC functionals are found to be in agreement with the N2LO
and N3LO results. In particular, the DD-PCX functional appears in remarkable agreement
with the N3LO results. Among the family of DD-PC functionals, the DD-PC-J31 fits best to
the N3LO neutron matter EoS.
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Figure 1. Equation of state of symmetric nuclear matter (a) and pure neutron matter (b) using
the family of point-coupling functionals spanning the range of symmetry energy at saturation
J = 29–36 MeV. The results are also presented using the DD-PC1 and DD-PCX functionals, and the
symmetry energy values of the functionals are given within the square brackets in units of MeV.
Panels (c,d) are the same, but the results are displayed up to the density 0.34 fm−3 to compare with
the predictions from chiral effective field theory (χEFT) (see Reference [51]).

The dependence of the symmetry energy on the density is presented in Figure 2a,
for the same family of point-coupling functionals with J = 29, 30, . . . , 36 MeV alongside
the DD-PCX and DD-PC1 functionals. Below the saturation density, the symmetry energy
values do not change around ρ0 ≈ 0.1 fm−3; the results are the same for all the functionals.
By increasing the density, the symmetry energy values also start to change in accordance
with their different values for J and L. The symmetry energy as a function of density is
higher (lower) for the functionals with larger (lower) values of the symmetry energy param-
eters, as expected [10]. In Figure 2b, we also display the symmetry energy of other models
at lower densities to compare our results. Apart from the χEFT theory results (LO, NLO,
N2LO, and N3LO), we also present the symmetry energy limits obtained using the Isobaric
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analog state (IAS) and neutron skin (∆Rnp) constraints (see Reference [22]). It is known that
the IAS can be used to constrain the isovector channel of the nuclear energy density func-
tionals. In this work, we find that almost all models predict increasing symmetry energy
with increasing density, except for N2LO, which decreases slightly after ρ > 0.25 fm−3. We
find that the predictions and behavior of the symmetry energy using the point-coupling
DD-PCX and DD-PC-J31 functionals are in good agreement with the results of the NLO
and N3LO. Using the χEFT theory, the symmetry energy and its slope was constrained
to J = 31.7 ± 1.1 MeV and L = 59.8 ± 4.1 MeV around the nuclear saturation density [51].
Moreover, the symmetry energy was constrained between 0.04 ≤ ρ ≤ 0.13 fm−3 using the
IAS + ∆Rnp information, and the J and L values were obtained between 30.2–33.7 MeV and
35–70 MeV around the saturation densities [22], respectively. Considering the predictions
in the low density region and around the saturation densities, we find that point-coupling
DD-PCX (J = 31.12± 0.32 MeV) and DD-PC-J31 functionals appear very compatible with
the results from the χEFT theory and the IAS + ∆Rnp constraints on the symmetry energy.
In the following section the family of DD-PC functionals will also be tested with the dipole
polarizability data on finite nuclei.
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Figure 2. (a) Symmetry energy as a function of density using a family of point-coupling functionals
with J = 29, 30, . . . , 36 MeV alongside the DD-PC1 and DD-PCX functionals. For the DD-PCX and
DD-PC1 functionals, the symmetry energy values around the saturation densities are given within
the square brackets in units of MeV. (b) The same but for densities up to 0.34 fm−3, with the results
of the chiral effective field theory (χEFT) (see Reference [51]). The isobaric analog state (IAS) and
neutron skin (∆Rnp) constraints on the symmetry energy (see Reference [22] for more details) are
also presented.
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3.2. Dipole Polarizability and Neutron Skin

The dipole polarizability αD was recently established as a useful additional constraint
for the isovector channel in EDFs [21]. It is defined as

αD =
8πe2

9

∫ ∞

0
E−1SE1(E)dE =

8πe2

9
m−1(E1), (12)

where E is the excitation energy and m−1(E1) is the inverse energy weight sum of the
isovector dipole transition strength. The strength function is given by

SE1(E) = ∑
i

∣∣∣〈ωi

∣∣∣ Q̂(IV−E1)
∣∣∣Φ
〉∣∣∣2δ(h̄ωi − E), (13)

where |Φ〉 denotes the ground-state of nucleus and Q̂(IV−E1) is the isovector transition
dipole operator [27]. The transition matrix elements can be calculated using the quasiparti-
cle random phase approximation [27,52].

In numerous studies both relativistic and nonrelativistic EDFs have been tested using
the experimental data on αD for 48Ca, 68Ni, 120Sn, and 208Pb (see [10] and the references
therein). Another useful isovector quantity to be considered in probing the isovector
sector of the EDFs is the neutron-skin thickness [49]. However, its data are still rather
limited, often model dependent, or have large uncertainties such as in the case of parity
violating electron scattering experiment (PREX) [19]. Therefore, for any novel functional, it
is interesting to explore both the dipole polarizability and neutron-skin thickness, and when
possible, to compare the results of model calculations with the experimental data.

We start our analysis with the neutron-skin thickness ∆Rnp for the point-coupling
functionals DD-PC1 and DD-PCX. The neutron skin thickness of a nucleus is defined
as ∆Rnp =

〈
r2

n
〉1/2 − 〈r2

p〉1/2, and
〈
r2

n
〉1/2 and 〈r2

p〉1/2 represent the neutron and proton
root-mean-square radii, respectively. In Figure 3, we display the available results from
antiprotonic atom experiments [53,54] along with the DD-PC1 and DD-PCX results. We
also display the experimental and theoretical results for the Sn chain in Figure 4. As can
be seen in Figure 3, the experimental data have large error bars for most of the nuclei.
Comparing the experimental results with the DD-PC1 and DD-PCX ones, it is seen that
both functionals provide reasonable results and that the predictions are generally within
the experimental error bars. It is known that the symmetry energy (J) and slope of the
symmetry energy (L) at saturation are strongly correlated with the neutron skin thickness
in finite nuclei [49]. Since the J and L values are lower for the DD-PCX functional than it
is for DD-PC1, in the former case, smaller neutron skin radii are predicted for all nuclei,
as expected.

As discussed above, the symmetry energy parameters are strongly correlated with
the dipole polarizability as well as with the neutron skin thickness of nuclei. In Figure 5,
we display the relationship between the dipole polarizability and neutron skin thickness
results using the previously introduced family of point-coupling functionals obtained for
48Ca, 68Ni, 120Sn and 208Pb. An increase in the symmetry energy parameters leads to an
increase in the neutron skin thickness of nuclei. As shown in figure, by increasing the J
value of the functional, both the neutron thickness and dipole polarizability predictions
increase linearly. The horizontal violet bands represent the measured dipole polarizability
values of nuclei with error bars from References [55–60]. The vertical green bands denote
the neutron skin thickness values obtained from model-averaged results (see Reference [60]).
The overlap between the two bands defines an area denoted by red rectangle, which
restricts the original family of DD-PC interactions to those that can simultaneously describe
the dipole polarizability and neutron-skin thickness predictions. For the nuclei considered
in the analysis, the results of the DD-PC functional with J = 31 MeV are in good agreement
with all the predictions for αD and ∆Rnp. In addition, we can observe that the DD-PCX
interaction for all nuclei fits into the restricted range of αD and ∆Rnp values. As can be seen
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from Figure 5, the DD-PC1 functional predicts higher values for dipole polarizability and
neutron skin thickness compared to DD-PCX. In addition, the DD-PC1 results are outside
of the ranges given by the experiment and model calculations.
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Figure 3. The neutron skin thickness as a function of the neutron excess for the DD-PC1 and DD-
PCX functionals. The experimental data are taken from References [53,54] in which the proton
distributions were obtained from electron scattering data for Sn nuclei [61] and from muonic atom
data for others [62–64].
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Figure 4. The neutron skin thickness for Sn isotopes as a function of the mass number. The experi-
mental data are taken from References [53,65–69].
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Figure 5. Dipole polarizability as a function of neutron skin thickness for 48Ca, 68Ni, 120Sn and 208Pb
using the relativistic point-coupling functionals. The experimental data for the dipole polarizability
values are taken from References [55–60]. The recent experimental data for 120Sn is taken from
Reference [58] and displayed (αD = 8.08± 0.6 fm3) with the violet shaded sphere. The band for the
neutron radii represents the model-averaged results using many functionals (see Reference [60] for
more information).

Since the DD-PCX is optimized using the αD data for 208Pb, the results for this nucleus
are found in the middle of the intersection point of the experimental data for dipole
polarizability and model-averaged results for neutron skin thickness. Although we only used
the dipole polarizability of 208Pb in the optimization of the DD-PCX functional, it is clear
that it can successfully predict the dipole polarizabilities and neutron-skin thicknesses
of other nuclei. The predictions of the DD-PCX for αD and ∆Rnp also indicate that the
isovector channel of the respective relativistic EDF is constrained successfully.

In Figure 6, the dipole polarizability results of the 208Pb is presented along with the
results of the 48Ca, 68Ni, and 120Sn. We present our calculations using the DD-PC family
of functionals varying the J value as well as the DD-PC1 and DD-PCX ones, and the
theoretical results using the other functionals were taken from Reference [60]. The ranges
of experimental data are also denoted with vertical and horizontal bands for the considered
nuclei. The band overlap area, denoted by the red line, reduces a large set of nonrelativistic
and relativistic functionals to only a few that successfully reproduce the experimental data
on αD for all nuclei under consideration. The most reliable functionals that can predict
the dipole polarizability of all nuclei are the DD-PC functional with J = 31 MeV and the
DD-PCX functional. The results show that the approach based on construction of a family
of point-coupling interactions spanning the range of values of J and its restriction by the
αD data provides a similar constraint on the symmetry energy as that of the DD-PCX
functional obtained by including αD value for 208Pb directly in minimizing the χ2 function
to determine the model parameters. Both strategies result in successful optimization of the
isovector channel of the relativistic EDF.
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Figure 6. Comparison of the theoretical results for the dipole polarizability with the experimental
data for 48Ca-208Pb, 68Ni-208Pb, and 120Sn-208Pb. The theoretical results for the KDE0-J, DD-ME,
Skyrme, SAMI-J, NL3Λ, and FSU functionals are taken from Reference [60]. The experimental data
with the error bars are shown as the shaded regions over the graph. The experimental data for
48Ca (αD = 2.07± 0.22 fm3), 68Ni (αD = 3.88± 0.31 fm3), and 208Pb (αD = 19.6± 0.6 fm3) are
taken from References [55], [56,60], and [59,60], respectively. For 120Sn, the experimental value from
References [57,60] (αD = 8.59± 0.37 fm3) is also shown using the shaded regions, and the recent data
from Reference [58] (αD = 8.08± 0.6 fm3) is displayed with a green shaded sphere.

3.3. Sensitivity of Magnetic-Dipole Excitation to Symmetry Energy

In the following, we investigate the sensitivity of magnetic dipole (M1) excitation
properties on the symmetry energy parameters by using the same family of the relativistic
point-coupling functionals as discussed in previous sections. Thus, the RRPA calculations
for the isovector (IV) M1 excitations in 48Ca and 208Pb nuclei are performed by using the
DD-PC functionals with J = 29–36 MeV. In References [36,70], the relativistic EDF with
point-coupling interaction has been for the first time employed in the description of IV-M1
excitations by employing the RHB + R(Q)RPA model. The same framework and model
parameters from Reference [36] were used in the present study, except that its DD-PC
parameterization was replaced to account for different values of the symmetry energy at
the saturation density, J ≡ S(ρ = ρ0). In the case of 48Ca and 208Pb, our quasiparticle
random phase approximation (QRPA) method reduces to the normal Random Phase
Approximation (RPA).

Up to the one-body-RPA level, the IV-M1 operator, which depends on the spin ŝν and
orbital angular momentum l̂ν, is given as

Q̂(IV−M1)
ν =

√
3

4π
µN ∑

k∈A

(
g(IV)

l l̂ν(k) + g(IV)
s ŝν(k)

)
τ̂3(k), (14)

where µN is the nuclear magneton, τ̂3 = 1 (−1) for protons (neutrons), and g coefficients
are given as g(IV)

l = 0.5 and g(IV)
s = 4.706 [71,72]. For simplicity, we neglect the quenching

effect in g coefficients [73–75]. Then, the M1-excitation strength is computed as
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dBM1

dE
= ∑

i
δ(E− h̄ωi)∑

ν

∣∣∣〈ωi

∣∣∣ Q̂(IV−M1)
ν

∣∣∣Φ
〉∣∣∣2. (15)

For demonstration purposes, instead of δ(E − h̄ωi), we smear the strength with a
Cauchy–Lorenz profile, for which the full width at half maximum (FWHM) is 1.0 MeV.

In Figure 7, the transition strength distributions for M1 excitations are presented for
the family of DD-PC interactions spanning the symmetry energy in the range J = 29–36 MeV.
One can observe a systematic dependence of the M1 excitation energy on the J value of the
effective interaction used in the calculation. Namely, the small (large) symmetry energy
coincides with the high (low) excitation energy obtained for the M1 transition. However,
when considering the corresponding transition strengths, no remarkable change is obtained
among J = 29–36 results.
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Figure 7. The M1 transition strength distribution for 48Ca and 208Pb obtained by the family of DD-PC
interactions with the symmetry energy at the saturation, J = 29, 30, . . . , 36 MeV.

Next, we consider the moments of M1 transitions, that is,

mK(M1) ≡
∫

EK dBM1

dE
dE, (16)

where K = 0 and K = 1 indicate the non-energy-weighted and energy-weighted sum of
the B (M1) transition strength, respectively. Similar to that in Section 3.2, here, we consider
the relationship between the M1 excitation properties and the neutron-skin thickness for
the family of DD-PC interactions. In Figure 8, the energy-weighted sum of B (M1) strength
for 48Ca is presented as a function of the neutron-skin thickness ∆Rnp, obtained by using
the DD-PC functionals spanning the range of J values as denoted in the figure. In the lower
panel, the dependence of the M1 transition centroid energy on ∆Rnp is shown. Figure 9
shows the same analysis but for 208Pb. Both for the 48Ca and 208Pb nuclei, the m1(M1)
value becomes reduced (enhanced) for the larger (smaller) neutron-skin thickness ∆Rnp
or equivalently larger (smaller) J value. This is consistent with the sensitivity found in
Figure 7. Thus, the M1 transitions may also be used as an additional constraint for the
symmetry energy properties. Notice also that, for the 208Pb nucleus, since the dBM1/dE
distribution includes two major peaks, its m1(M1) value does not simply indicate the major
excitation energy, in contrast to the 48Ca nucleus. For the non-energy-weighted sum of
the M1 strength m0(M1), no significant sensitivity to J is obtained. Therefore, as shown
in Figure 8, the centroid energy, Ē ≡ m1(M1)/m0(M1), displays the same tendency as the
m1(M1) value. This constant m0(M1) value is in agreement with previous studies [70,76],
where the non-energy-weighted sum rule does not change for the M1 mode in considering
the case when the pairing correlation is negligible.
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Figure 8. (Top) Energy-weighted M1-summation results for 48Ca obtained with the present DD-PC
interactions. (Bottom) Centroid energy of M1 transition, Ē ≡ m1(M1)/m0(M1).
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Figure 9. The same as Figure 8 but for 208Pb.

We note that, in this work, we performed the first investigation of the relation be-
tween M1 excitation and symmetry energy parameters. On the other hand, for further
applications, there remain several tasks. Especially in theoretical calculations, the isovector-
pseudovector (IV-PV) interaction plays an important role in the description of M1-excitation
energy [36,70]. Its coupling parameter, however, still has a finite ambiguity [36,70]. Be-
cause of this ambiguity, the present RPA calculations have not completely reproduced the
experimental data on M1 centroid energies, that is, Ēexp. = 10.2 MeV for 48Ca [77–80]
and Ēexp. = 7.3 MeV for 208Pb [81]. We are planning more systematic optimization of
theoretical parameters to remedy this gap. Nevertheless, we emphasize that the results
of the present analysis display the sensitivity of M1 excitations to symmetry energy at
saturation density.
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4. Conclusions

Constraining the isovector channel of the EDFs, which is of paramount importance for
description of the symmetry energy of the nuclear EoS, represents a continuous challenge
for the nuclear physics and astrophysics community. In this work, we investigated the
possible constraints to symmetry energy by exploiting the properties of dipole electric and
magnetic excitations in finite nuclei. For this purpose, a novel family of 8 relativistic density-
dependent point-coupling interactions is established, which varies the symmetry energy at
saturation in the range of values J = 29–36 MeV. We exploited this family of functionals in
the analysis of possible isovector constraints, in particular, the dipole polarizability and
magnetic dipole excitation energy in nuclei. It is shown that, in this way, the symmetry
energy can be further restricted by using available experimental data on electric and
magnetic excitation properties. Through this analysis, we also validated the isovector
properties of the DD-PCX functional, which was recently established not only using the
nuclear ground-state properties of nuclei but also using additional constraints from the
experimental data on dipole polarizability and isoscalar monopole resonance energy in
208Pb directly in χ2 optimization. The DD-PCX functional, together with the family of DD-
PC functionals introduced in this work that cover a range of values for the symmetry energy
at the saturation density, represent useful tools for further studies necessary to constrain the
properties of nuclear EoS. The new set of functionals also provides an interesting possibility
to establish EoS for supernovae and compact stars [2] in order to explore the sensitivity
of their properties on variations in the EoS in a systematic way. Available information
on the neutron star mass–radius relationship can also provide useful constraints on the
DD-PC functionals.
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54. Świątecki, W.J.; Trzcińska, A.; Jastrzębski, J. Difference of the root-mean-square sizes of neutron and proton distributions in
nuclei: Comparison of theory with data. Phys. Rev. C 2005, 71, 047301. [CrossRef]

55. Birkhan, J.; Miorelli, M.; Bacca, S.; Bassauer, S.; Bertulani, C.A.; Hagen, G.; Matsubara, H.; von Neumann-Cosel, P.; Papenbrock, T.;
Pietralla, N.; et al. Electric Dipole Polarizability of 48Ca and Implications for the Neutron Skin. Phys. Rev. Lett. 2017, 118, 252501.
[CrossRef]

56. Rossi, D.M.; Adrich, P.; Aksouh, F.; Alvarez-Pol, H.; Aumann, T.; Benlliure, J.; Böhmer, M.; Boretzky, K.; Casarejos, E.; Chartier,
M.; et al. Measurement of the Dipole Polarizability of the Unstable Neutron-Rich Nucleus 68Ni. Phys. Rev. Lett. 2013, 111, 242503.
[CrossRef]

57. Hashimoto, T.; Krumbholz, A.M.; Reinhard, P.G.; Tamii, A.; von Neumann-Cosel, P.; Adachi, T.; Aoi, N.; Bertulani, C.A.; Fujita,
H.; Fujita, Y.; et al. Dipole polarizability of 120Sn and nuclear energy density functionals. Phys. Rev. C 2015, 92, 031305. [CrossRef]

58. Bassauer, S.; von Neumann-Cosel, P.; Reinhard, P.G.; Tamii, A.; Adachi, S.; Bertulani, C.; Chan, P.; Colò, G.; DÁlessio, A.; Fujioka,
H.; et al. Evolution of the dipole polarizability in the stable tin isotope chain. Phys. Lett. B 2020, 810, 135804. [CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.103.032502
http://www.ncbi.nlm.nih.gov/pubmed/19659271
http://dx.doi.org/10.1103/PhysRevC.88.034308
http://dx.doi.org/10.1016/j.physletb.2009.10.046
http://dx.doi.org/10.1103/PhysRevC.84.051301
http://dx.doi.org/10.1103/PhysRevC.101.044305
http://dx.doi.org/10.1103/PhysRevC.102.044315
http://dx.doi.org/10.1103/PhysRevC.77.024608
http://dx.doi.org/10.1103/PhysRevC.83.024303
http://dx.doi.org/10.1103/PhysRevC.86.035805
http://dx.doi.org/10.1088/1475-7516/2016/02/007
http://dx.doi.org/10.1088/1361-6471/ab28f5
http://dx.doi.org/10.1103/PhysRevC.66.024306
http://dx.doi.org/10.1103/PhysRevC.80.024313
http://dx.doi.org/10.1016/j.nuclphysa.2004.02.001
http://dx.doi.org/10.1007/s10050-000-4504-z
http://dx.doi.org/10.1088/1674-1137/41/3/030002
http://dx.doi.org/10.1088/1674-1137/41/3/030003
http://dx.doi.org/10.1016/j.adt.2011.12.006
http://dx.doi.org/10.1088/0954-3899/42/3/034033
http://dx.doi.org/10.1103/PhysRevC.74.035802
http://dx.doi.org/10.1103/PhysRevLett.125.202702
http://www.ncbi.nlm.nih.gov/pubmed/33258658
http://dx.doi.org/10.1088/0034-4885/70/5/R02
http://dx.doi.org/10.1103/PhysRevLett.87.082501
http://www.ncbi.nlm.nih.gov/pubmed/11497938
http://dx.doi.org/10.1103/PhysRevC.71.047301
http://dx.doi.org/10.1103/PhysRevLett.118.252501
http://dx.doi.org/10.1103/PhysRevLett.111.242503
http://dx.doi.org/10.1103/PhysRevC.92.031305
http://dx.doi.org/10.1016/j.physletb.2020.135804


Universe 2021, 7, 71 20 of 20

59. Tamii, A.; Poltoratska, I.; von Neumann-Cosel, P.; Fujita, Y.; Adachi, T.; Bertulani, C.A.; Carter, J.; Dozono, M.; Fujita, H.; Fujita, K.;
et al. Complete Electric Dipole Response and the Neutron Skin in 208Pb. Phys. Rev. Lett. 2011, 107, 062502. [CrossRef]

60. Roca-Maza, X.; Viñas, X.; Centelles, M.; Agrawal, B.K.; Colò, G.; Paar, N.; Piekarewicz, J.; Vretenar, D. Neutron skin thickness
from the measured electric dipole polarizability in 68Ni, 120Sn, and 208Pb. Phys. Rev. C 2015, 92, 064304. [CrossRef]

61. De Vries, H.; De Jager, C.; De Vries, C. Nuclear charge-density-distribution parameters from elastic electron scattering. At. Data
Nucl. Data Tables 1987, 36, 495–536. [CrossRef]

62. Fricke, G.; Bernhardt, C.; Heilig, K.; Schaller, L.; Schellenberg, L.; Shera, E.; Dejager, C. Nuclear Ground State Charge Radii from
Electromagnetic Interactions. At. Data Nucl. Data Tables 1995, 60, 177–285. [CrossRef]

63. Zumbro, J.D.; Shera, E.B.; Tanaka, Y.; Bemis, C.E.; Naumann, R.A.; Hoehn, M.V.; Reuter, W.; Steffen, R.M. E2 and E4 Deformations
in 233,234,235,238U. Phys. Rev. Lett. 1984, 53, 1888–1892. [CrossRef]

64. Zumbro, J.; Naumann, R.; Hoehn, M.; Reuter, W.; Shera, E.; Bemis, C.; Tanaka, Y. E2 and E4 deformations in 232Th and
239,240,242Pu. Phys. Lett. B 1986, 167, 383–387. [CrossRef]

65. Ray, L. Neutron isotopic density differences deduced from 0.8 GeV polarized proton elastic scattering. Phys. Rev. C 1979,
19, 1855–1872. [CrossRef]

66. Krasznahorkay, A.; Akimune, H.; van den Berg, A.; Blasi, N.; Brandenburg, S.; Csatloś, M.; Fujiwara, M.; Gulyaś, J.; Harakeh, M.;
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