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Spectroscopic properties that characterize the shape phase transitions in krypton isotopes with the mass A ≈ 80
region are investigated within the framework of the nuclear density functional theory. Triaxial quadrupole
constrained self-consistent mean-field calculations that employ relativistic energy density functionals and a
pairing interaction are carried out for the even-even nuclei 76−86Kr. The spectroscopic properties are computed
by solving the triaxial quadrupole collective Hamiltonian, with the ingredients, i.e., the deformation-dependent
moments of inertia and mass parameters, and the collective potential, determined by using the SCMF solutions as
microscopic inputs. Systematic behaviors of the SCMF potential energy surfaces, the corresponding low-energy
spectra, electric quadrupole and monopole transition probabilities, and the fluctuations in the triaxial quadrupole
deformations indicate evolution of the underlying nuclear structure as functions of the neutron number, that is
characterized by a considerable degree of shape mixing. A special attention is paid to the transitional nucleus
82Kr, which has been recently identified experimentally as an empirical realization of the E(5) critical-point
symmetry.

DOI: 10.1103/PhysRevC.105.064310

I. INTRODUCTION

Quantum phase transitions (QPTs) are prominent phenom-
ena in many areas of physics and chemistry. In the atomic
nucleus, a class of QPT is suggested to occur between dif-
ferent intrinsic shapes in the ground state [1–6], which has
been empirically identified as an abrupt change of observables
along a given isotopic or isotonic chain with the addition or
subtraction of only a few nucleons. A typical example is the
phase transition from vibrational to rotational energy spectra
around the neutron number N = 90 in the rare-earth region.
The nuclear shape QPTs take place as functions of a discrete
control parameter, i.e., nucleon number, hence an important
question arises, as to how one can identify a particular nu-
cleus as the critical point of the phase transitions. In addition,
since the nuclei are finite quantum systems, the shape phase
transitions are more or less smeared out in most of the realistic
cases, which in turn points to another important question as to
which physical observables can be regarded as the quantum
order parameters of the phase transitions.

In the language of the interacting boson model (IBM)
[7], the nuclear shape QPTs can be interpreted in terms of
the transitions between different dynamical symmetries that
emerge from the bosonic algebras, i.e., U(5), SU(3), and
O(6) limits, which are associated with the spherical vibra-
tional, deformed rotational, and γ -unstable rotational states,
respectively. A different class of symmetry, referred to as the
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critical-point symmetry (CPS) was introduced in Refs. [8,9],
which provides a criterion to classify and interpret the nature
of the collective states in transitional regions. This symmetry
consists in exact solutions of the geometric collective model
that employs a potential appropriate for modeling the phase
transition of interest. In particular, the E(5) CPS [8] corre-
sponds to the transitional nuclei between the U(5) and O(6)
limits, and is obtained analytically by solving the collective
Schrödinger equation with a flat-bottomed potential charac-
teristic of the U(5)-O(6) phase transition. The first empirical
evidence for the CPS was suggested in the nucleus 134Ba [10],
where the low-energy spectrum and selection rules of the elec-
tric quadrupole transitions exhibit patterns predicted by the
exact E(5) CPS. Numerous experimental investigations have
been made to identify further evidence for the shape QPTs
and the corresponding CPSs in wider ranges of the nuclear
mass table, thus aiming to clarify whether the shape QPTs are
ubiquitous phenomena in nuclear many-body systems. (see,
e.g., Refs. [2,11], and references are therein).

More recently, experimental evidence for the E(5) CPS
has been suggested for the nucleus 82Kr [12]. This would
present a first empirical realization of the E(5) symmetry in
the mass region A ≈ 80, and extend the region of the critical-
point phenomena to lighter mass regions that were hitherto
not as extensively pursued as in the case of heavier nuclei.
Empirically, the mass A ≈ 80 nuclei around the Kr chain
have also been suggested to demonstrate a rich variety of
the nuclear structure phenomena, including the emergence of
shape coexistence around the neutron sub-shell gap N = 40
[13–16]. Apart from the nuclear-structure point of view, the
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nucleus 82Kr is also of particular interest, since it corresponds
to the final-state nucleus of the possible neutrinoless double-
β decay of 82Se, and an accurate theoretical calculation for
its low-lying states is useful for a reliable prediction of the
nuclear matrix element of this decay process.

On the theoretical side, the nuclear shape QPTs and the
related spectroscopic properties have been extensively stud-
ied from various approaches, including the algebraic models
[2,4,6,17,18], the geometrical collective models [2,6], the
large-scale shell model [19–22], and the methods based on the
nuclear density functional theory (DFT) [23–28]. In particu-
lar, the nuclear DFT framework has demonstrated an ability
to provide an accurate, global, and computationally econom-
ical description of nuclear structure and dynamics [29]. Both
relativistic [30,31] and nonrelativistic [27,32] energy density
functionals (EDFs) have been successfully applied in the
global description of the bulk nuclear matter and ground-
state properties, as well as collective excitations, over the
entire region of the nuclear mass chart. The EDF framework
is basically implemented in the self-consistent mean-field
(SCMF) calculations [33], in which an EDF is constructed
as a functional of one-body nucleon density matrices that
correspond to a single product state. To access spectroscopic
properties, the EDF framework should be extended to take
into account the dynamical correlations arising from the
restoration of broken symmetries and fluctuations around the
mean-field minima. A straightforward approach is the genera-
tor coordinate method (GCM) with symmetry projections and
configuration mixing [27,31–33]. In practical applications,
the full GCM calculation in general becomes computation-
ally demanding, especially in the case of heavy nuclei or
when the large number of collective coordinates need to be
taken into account. Alternative approaches to GCM have been
provided, e.g., by the collective Hamiltonian [31,34–36] and
the mapped IBM [37,38]. The EDF-based calculations both
within the static and beyond SCMF approximations have also
been extensively carried out to study the neutron-deficient Kr
isotopes around the neutron sub-shell gap N = 40 (see, e.g.,
Refs. [39–46]).

Based on the relativistic EDF framework, here we in-
vestigate the evolution of the shape and low-lying states in
the even-even Kr isotopes in the mass range 76 � A � 86,
particularly focusing on the proposed E(5) CPS around the
transitional nucleus 82Kr. The starting point is the triax-
ial quadrupole constrained SCMF calculations for the above
Kr nuclei within the relativistic Hartree-Bogoliubov (RHB)
framework [30,31] using two representative classes of the
relativistic EDF, i.e., the density-dependent meson-exchange
(DD-ME2) [47] and point-coupling (DD-PC1) [48] inter-
actions, and a separable pairing force of finite range [49].
Spectroscopic properties that can be considered signatures of
the QPTs are computed by solving the collective Schrödinger
equation with triaxial quadrupole shape degrees of freedom.
The ingredients of the quadrupole collective Hamiltonian
(QCH), that is, the deformation-dependent moments of in-
ertia and mass parameters, and the collective potential, are
determined by using the SCMF solutions as the microscopic
inputs. Diagonalization of the QCH yields excitation spectra

of low-energy positive-parity states and electric quadrupole
and monopole transition rates. The RHB method that is com-
bined with the QCH (denoted hereafter as RHB + QCH) has
been employed in a number of previous theoretical investi-
gations to predict and describe a variety of nuclear structure
phenomena [24,31,34,41,50–53].

The paper is organized as follows. In Sec. II, we outline the
RHB + QCH approach. In Sec. III we present the SCMF re-
sults on the triaxial quadrupole potential energy surfaces, and
the spectroscopic results on the low-energy excitation spectra,
and E2 and E0 transition strengths. In the same section, we
also show fluctuations of the β and γ deformations as another
indicator of the phase transition. A special attention is given to
the nucleus 82Kr, recently suggested to be an empirical real-
ization of the E(5) symmetry, and a detailed comparison with
the experimental and E(5) spectra is made. Finally, Sec. IV
gives a summary of the main results and conclusions.

II. THEORETICAL FRAMEWORK

In this section, we give a brief description of the RHB +
QCH approach adopted for the present theoretical analysis.
For the detailed account of the formalism and numerical
machinery in the constrained RHB framework, the reader is
referred to Refs. [30,31,54,55], while the procedure to build
the QCH from the SCMF solutions within the RHB is well
documented, e.g., in Refs. [31,34].

The constraints imposed in the present SCMF calculations
are on the expectation values of the mass quadrupole operators

Q̂20 = 2z2 − x2 − y2 and Q̂22 = x2 − y2, (1)

which are related to the axially-symmetric deformation β and
triaxiality γ [56], i.e.,

β =
√

5

16π

4π

3

1

A(r0A1/3)2

√
〈Q̂20〉2 + 2〈Q̂22〉2, (2)

γ = arctan
√

2
〈Q̂22〉
〈Q̂20〉

, (3)

with r0 = 1.2 fm. The calculations are carried out in a har-
monic oscillator basis, with the number of oscillator shells
equal to 20. The separable pairing force of finite range, origi-
nally developed in Ref. [49], includes two sets of parameters
that are determined so as to reproduce the pairing gaps re-
sulting from the Gogny D1 and D1S effective interactions.
Throughout this paper, the parametrization associated with
the D1S force is employed, that is, the pairing strength V0 =
728 MeV fm3 and the parameter a = 0.644 fm of the Gaussian
function entering the separable interaction, for both the proton
and neutron pairings. The constrained RHB calculations pro-
vide the potential energy surfaces (see Fig. 1) and the SCMF
single-particle solutions, which are subsequently used as the
microscopic inputs to specify the collective Hamiltonian by
the procedure described below.
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FIG. 1. Triaxial quadrupole potential energy surfaces for the even-even nuclei 76−86Kr in terms of the β and γ deformation variables,
computed by the constrained SCMF calculations within the RHB framework based on the relativistic functional DD-ME2 and the separable
pairing force of finite range. The total SCMF energies are plotted up to 10 MeV from the global minimum, and the energy difference between
neighboring contours is 250 keV.

Quadrupole collective states are provided as the solutions
of the triaxial QCH, with the deformation-dependent param-
eters determined by the constrained SCMF calculation within
the RHB framework. The QCH is given by

Ĥcoll = T̂vib + T̂rot + Vcoll, (4)

with the vibrational kinetic energy:

T̂vib = − h̄2

2
√

wr

[
1

β4

(
∂

∂β

√
r

w
β4Bγ γ

∂

∂β

− ∂

∂β

√
r

w
β3Bβγ

∂

∂γ

)
+ 1

β sin 3γ

(
− ∂

∂γ

√
r

w
sin 3γ

× Bβγ

∂

∂β
+ 1

β

∂

∂γ

√
r

w
sin 3γ Bββ

∂

∂γ

)]
, (5)

and rotational kinetic energy:

T̂rot = 1

2

3∑
k=1

Ĵ2
k

Ik
, (6)

where Ĵk denotes the components of the angular momentum in
the body-fixed frame of a nucleus. The moments of inertia Ik ,
as well as the mass parameters Bββ , Bβγ , and Bγ γ , depend on
the quadrupole deformation variables β and γ in such a way
that Ik = 4Bkβ

2 sin2(γ − 2kπ/3). Two additional quantities

that appear in the expression for the vibrational energy, i.e.,
r = B1B2B3, and w = BββBγ γ − B2

βγ , determine the volume
element in the collective space. The moments of inertia are
computed using the Inglis-Belyaev (IB) formula [57,58], and
the mass parameters associated with the two quadrupole col-
lective coordinates q0 = 〈Q̂20〉 and q2 = 〈Q̂22〉 are calculated
in the cranking approximation. The collective potential Vcoll

in Eq. (4) is obtained by subtracting the zero-point energy
corrections from the total RHB deformation energy.

The corresponding eigenvalue problem is solved using an
expansion of eigenfunctions in terms of a complete set of basis
functions that depend on the deformation variables β and γ ,
and the Euler angles � = (φ, θ, ψ ). The diagonalization of
the Hamiltonian yields the excitation energies and collective
wave functions for each value of the total angular momentum
and parity, that are used to calculate observables. Note that the
present QCH approach is limited up to those spins at which the
first band crossing takes place. The higher-spin states can be
described by alternative approaches, e.g., by cranking models.
Illustrative examples are found in Ref. [59], dealing with the
72,74,76Kr nuclei.

An important advantage of using the collective model
based on SCMF single-(quasi)particle solutions is the fact
that physical observables, such as transition probabilities
and spectroscopic quadrupole moments, are calculated in the
full configuration space and there is no need for effective
charges. Using the bare value of the proton charge in the
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FIG. 2. Evolution of calculated and experimental low-energy spectra for the (a) 2+
1 , (b) 4+

1 , (c) 0+
2 , and (d) 2+

2 states for the even-even
76−86Kr isotopes as functions of the neutron number N . The calculated results with both the DD-ME2 and DD-PC1 functionals are shown. The
experimental data are taken from Refs. [12,60].

electric quadrupole operator, the transition probabilities be-
tween eigenvectors of the collective Hamiltonian can be
directly compared with data.

III. RESULTS AND DISCUSSION

A. Potential energy surfaces

Figure 1 shows contour plots of the triaxial quadrupole
potential energy surfaces for the 76−86Kr nuclei defined in
terms of the axial deformation β and triaxiality γ . Only the
results obtained by using the functional DD-ME2 are shown
in the figure, because there is essentially no striking difference
between the topology of the energy surfaces for the DD-
ME2 and DD-PC1 EDFs. In Fig. 1, for 76,78Kr, we observe
that in addition to a (nearly) spherical global minimum there
is also an oblate local minimum around β ≈ 0.2 on their
energy surfaces. The spherical global minimum for 76Kr is
separated distinctly from the oblate minimum, and reflects
the neutron N = 40 subshell closure. There occurs a third
minimum around β = 0.5 on the prolate axis. For 78Kr, the
potential looks softer along the oblate γ = 60◦ axis, on which
the global minimum is identified at β ≈ 0.05 and the oblate
local minimum at β ≈ 0.2. For 80Kr, the potential becomes
almost completely flat in γ deformation, characteristic of the
γ -unstable O(6) symmetry of the IBM [7]. Both for 80Kr and
82Kr, a weakly prolate deformed shape is suggested, for which
the potential is still considerably flat in γ direction and is
soft also in the β deformation. The softness implies that the
fluctuations are large and that a significant degree of shape
mixing is present in the vicinity of the ground state. Finally,
an approximate harmonic oscillator potential with the global
minimum at β = 0 is obtained for 86Kr. This is expected,

since this nucleus corresponds to the neutron magic number
N = 50.

B. Systematics of low-energy spectra

The discussion so far about the variation of the potential
energy surface gives an approximate description of the shape
QPT at the SCMF level, in analogy to the Landau theory of
phase transitions. A more quantitative discussion about the
QPTs should, therefore, involve the direct calculations of the
spectroscopic properties that can be considered quantum order
parameters. In the following, we consider overall behaviors
of the excitation spectra and electric transition probabilities
along the studied Kr chain.

Figure 2 shows the calculated excitation spectra for the
low-lying quadrupole collective states of the 76−86Kr nuclei,
obtained within the RHB + QCH method. The results ob-
tained with both functionals, DD-ME2 and DD-PC1 EDFs,
are shown, while there appears to be no significant qualitative
or quantitative difference between the two functionals in the
prediction of energy spectra. For comparison, the figure also
includes the corresponding experimental data [12,60]. The
RHB + QCH calculation provides a reasonable description
of the experimental excitation energies of the 2+

1 , 4+
1 , 0+

2 ,
and 2+

2 states for the Kr isotopes with the neutron numbers
40 � N � 44. Both the calculated and observed 0+

2 excitation
energy for the N ≈ 40 nuclei is so low as to be about the
same order of magnitude as the first excited state 2+

1 . The
calculation slightly underestimates the experimental 0+

2 level.
The low-lying 0+

2 state near the neutron subshell gap N = 40
is often considered a signature of shape coexistence [14].
In our model calculation, a competition between a nearly
spherical global, an oblate and an prolate local minima is
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FIG. 3. Distributions of the collective wave functions for the 0+
1 , 2+

1 , 4+
1 , 0+

2 , 2+
2 , and 0+

3 states of 76Kr in the β − γ plane obtained from
the diagonalization of the QCH. The functional DD-ME2 is used.

suggested to occur in the SCMF triaxial quadrupole energy
maps for 76Kr and 78Kr (see Fig. 1). For all those states shown
in Fig. 2, the predicted excitation energies turn to increase
abruptly from N = 44 to 46, and overestimate the data. As
we approach the neutron major shell gap N = 50, both the
calculated and experimental energy levels become higher with
N . The energy levels of the non-yrast states 0+

2 and 2+
2 are

here predicted to be particularly higher than the experimental
ones for N = 48 and 50. Since the collective Hamiltonian
gives purely collective states, the description of those nuclei
close to the magic numbers becomes worse, in which nuclei
single-particle excitations play a more relevant role.

The collective wave function, resulting from the diagonal-
ization of the QCH, provides an insight into the nature of a
given low-lying state. Of particular interest is 76Kr, for which

three competing mean-field minima occur in the potential
energy surface (see Fig. 1). Figure 3 shows contour plots of
the collective wave functions in the β − γ deformation plane
corresponding to the 0+

1 , 2+
1 , 4+

1 , 0+
2 , 2+

2 , and 0+
3 states. The

0+
1 wave function is spread over an area from the oblate to

prolate sides, and exhibits a peak that is close to the oblate
axis. The 2+

1 wave function is, on the other hand, more sharply
peaked on the prolate side with the deformation β ≈ 0.5,
around which the prolate local minimum occurs in the po-
tential energy surface. The same is true for the 4+

1 state and
those with higher spin, I > 4, of the ground-state band. This
result implies a transition from the nearly oblate to prolate
configurations at low spin within the ground-state band, and
thus the higher-spin members of the band are supposed to be
made mainly of the strongly deformed prolate configurations.
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TABLE I. Calculated and experimental energy and B(E2) ratios
for low-lying states of the transitional nuclei 82Kr and 80Kr, and the
corresponding E(5) limits. The states are labeled by the E(5) quantum
numbers ξ and τ . The DD-ME2 EDF is used for the calculation. The
experimental data for 82Kr and 80Kr are taken from Refs. [12] and
[60], respectively, while the E(5) values are taken from [8].

82Kr 80Kr

Ratio Experiment DD-ME2 Experiment DD-ME2 E(5)

E (4+
1,2)/E (2+

1,1) 2.34 2.33 2.33 2.28 2.20

E (0+
2,0)/E (2+

1,1) 2.80 2.16 2.14 2.01 3.03

E (0+
1,3)/E (2+

1,1) 3.2 3.07 3.63 3.59

E (0+
2,0)/E (0+

1,3) 0.9 0.70 0.55 0.84

E (2+
1,2)/E (2+

1,1) 1.90 2.00 2.04 1.82 2.20
B(E2;4+

1,2→2+
1,1 )

B(E2;2+
1,1→0+

1,0 )
1.48 ± 0.16 1.81 1.88 ± 0.29 1.82 1.68

B(E2;2+
1,2→2+

1,1 )

B(E2;2+
1,1→0+

1,0 )
1.67 ± 0.30 1.09 0.67 ± 0.14 1.75 1.68

B(E2;0+
2,0→2+

1,1 )

B(E2;2+
1,1→0+

1,0 )
0.57 ± 0.10 0.80 1.38 0.86

B(E2;0+
2,0→2+

1,2 )

B(E2;0+
2,0→2+

1,1 )
0.2 ± 0.3 2.98 0.0020 0

B(E2;0+
1,3→2+

1,1 )

B(E2;0+
1,3→2+

1,2 )
0.1 ± 0.1 0.22 0.036 0

This finding is consistent with the conclusion drawn from the
earlier cranking RHB calculation of Ref. [59]. The distribu-
tion of the 0+

2 wave function in the β − γ surface indicates
a distinct coexistence between the oblate and prolate shapes.
The 2+

2 state is suggested to be made largely of the triax-
ial configurations around γ = 30◦. One observes essentially
three peaks in the 0+

3 wave function distribution, which are

associated with the weakly triaxially deformed, and the nearly
oblate and prolate deformed configurations.

In addition, it is meaningful to study the sensitivity of the
predicted excitation spectra to the pairing strength. A global
study of the separable pairing force within the covariant den-
sity functional framework in Ref. [61] indicated that, in order
to account for the empirical odd-even mass staggering, the
strength of the separable pairing force needs to be modified so
that it is scaled by particle-number dependent factors. We have
then carried out the RHB + QCH calculation in which both
the proton and neutron pairing strengths are scaled with the
factors introduced in Eqs. (13)–(17) of Ref. [61]. For the 76Kr
and 82Kr isotopes, for example, this modification gives rise to
an increase of the pairing strengths by approximately 15%, if
the parameters listed in Table I in that reference are adopted.
For both of these nuclei, the RHB + QCH calculation employ-
ing the increased pairing strengths gives excitation spectra
for all the states that are systematically larger than those
obtained when the original pairing strength V0 = 728 MeV
fm3 is employed. Thus, in this particular case, the use of the
pairing strength that is increased according to the prescription
of Ref. [61] does not appear to improve the description of the
excitation energies.

C. Systematics of B(E2) transition rates

In Fig. 4 we show the results for the B(E2) rates for
the electric quadrupole transitions between the low-lying
states, i.e., B(E2; 2+

1 → 0+
1 ), B(E2; 4+

1 → 2+
1 ), B(E2; 0+

2 →
2+

1 ), and B(E2; 2+
2 → 2+

1 ). The RHB + QCH calculation re-
produces the experimental data for the B(E2; 2+

1 → 0+
1 ) and

B(E2; 4+
1 → 2+

1 ) rates fairly well. The decreasing pattern of
the B(E2; 2+

1 → 0+
1 ) and B(E2; 4+

1 → 2+
1 ) values suggests
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FIG. 4. Evolution of calculated and experimental B(E2) strengths in Weisskopf units (W.u.) for the transitions (a) 2+
1 → 0+

1 , (b) 4+
1 → 2+

1 ,
(c) 0+

2 → 2+
1 , and (d) 2+

2 → 2+
1 for the even-even 76−86Kr isotopes as functions of N . Theoretical results based on the DD-ME2 and DD-PC1

EDFs are shown. The experimental data are taken from Ref. [12] for 82Kr and from Ref. [60] otherwise.
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the weakening of the quadrupole collectivity towards the neu-
tron magic number N = 50. For those nuclei with 40 � N �
44, the present calculation suggests much stronger interband
E2 transitions 0+

2 → 2+
1 and 2+

2 → 2+
1 than the experimental

data. This result further confirms that a high degree of shape
mixing is present near the ground state of these nuclei, es-
pecially 76Kr and 78Kr: the corresponding SCMF potential
energy surfaces are notably soft in both the β and γ defor-
mations, and indicate the coexistence of the three minima (see
Fig. 1). While the energy levels of the 0+

2 [Fig. 2(c)] and 2+
2

[Fig. 2(d)] states are reasonably described, the interband E2
transitions appear to be rather sensitive to the relevant wave
functions. One can see in Fig. 3, for instance, a substantial
overlap between the 2+

1 and 2+
2 collective wave functions in

76Kr, which can result in the too enhanced 2+
2 → 2+

1 transi-
tion as compared to the experimental value. For the N � 46
nuclei, on the other hand, we observe that the calculated
B(E2; 0+

2 → 2+
1 ) and B(E2; 2+

2 → 2+
1 ) values [Figs. 4(c) and

4(d)] rapidly decrease from N = 44 to 46, and are consistent
with the experimental values. Note, however, that the decrease
of the interband B(E2) rates is also considered a consequence
of the fact that the quadrupole collectivity becomes weaker as
the neutron major shell closure N = 50 is approached.

The calculated results for the B(E2) transition rates based
on the two EDFs, DD-ME2 and DD-PC1, are basically similar
to each other both at the qualitative and quantitative levels.
A notable difference, however, arises in the prediction of the
B(E2; 0+

2 → 2+
1 ) values at N = 40, for which the DD-PC1

EDF leads to about twice as large a value as the DD-ME2
EDF.

D. E0 transitions

Let us consider the monopole transition properties of the
studied Kr nuclei. Figure 5 shows the calculated ρ2(E0)
values for the E0 transitions 0+

2 → 0+
1 and 0+

3 → 0+
1 .

The ρ2(E0; 0+
2 → 0+

1 ) values are here calculated to be

considerably larger than the experimental values [62], while
the observed decreasing pattern from N = 42 to 46 is re-
produced by our model calculation. The large E0 transition
strengths, especially for the Kr nuclei with N = 40 − 44, cor-
roborates the strong shape mixing between the wave functions
of the low-lying 0+ states. See in Fig. 3 a significant overlap
between the 0+

1 and 0+
2 collective functions for 76Kr. It is

worth noticing that there appears a sudden decrease of the
calculated ρ2(E0; 0+

2 → 0+
1 ) value from N = 44 to 46, imply-

ing a rapid nuclear structure change. As seen in Fig. 5(b), in
the present calculation the ρ2(E0; 0+

3 → 0+
1 ) value is by more

than two orders of magnitude smaller than the ρ2(E0; 0+
2 →

0+
1 ) one, and hence no large overlap between the 0+

3 and the 0+
1

ground state is expected to be present. Similarly to the B(E2)
results, the most notable difference between the theoretical
ρ2(E0; 0+

3 → 0+
1 ) values obtained from the two EDFs appears

at N = 40.

E. Signatures of shape phase transitions

We have seen in the previous sections that the RHB +
QCH calculation provides a fairly reasonable description of
the observed low-energy spectra, B(E2), and ρ2(E0) values.
Let us now turn to analyze several spectroscopic properties
that can serve as a more distinct signature of the QPT, espe-
cially, in comparison with various symmetry limits of the IBM
and E(5). Such an analysis also presents a sensitive test of the
employed model.

1. Energy ratios

Figure 6 shows ratios of the calculated excitation energies
of low-lying states for the considered 76−86Kr nuclei. The ratio
R4/2 ≡ E (4+

1 )/E (2+
1 ) is a typical indicator that distinguishes

among various geometrical limits for the nuclear shapes. In
Fig. 6(a) the calculated ratio R4/2 exhibits a weak parabolic
dependence on N , with a minimum value at N = 44. In most
of the nuclei, the calculated R4/2 ratio is approximately in
between the E(5) limit, R4/2 = 2.20, and the γ -unstable O(6)
limit of the IBM, R4/2 = 2.5 [7]. For both EDFs, the R4/2 val-
ues for 80Kr and 82Kr in the RHB + QCH calculation appear
to be close to the E(5) limit R4/2 = 2.20.

In Fig. 6(b) the observed energy ratio R6/0 ≡ E (6+
1 )/E (0+

2 )
gradually decreases with N , approaching the E(5) limit 1.19.
The calculated values with both EDFs show a similar, but
a more rapid change with N . This trend also conforms to
the shape evolution into γ -soft deformation in the studied Kr
nuclei.

In Fig. 6(c), the energy ratio R0/2 ≡ E (0+
3 )/E (2+

1 ) is
shown. For most of the nuclei the RHB + QCH calculation
provides smaller values than the E(5) limit R0/2 = 3.59. The
calculation with the DD-ME2 EDF gives larger R0/2 ratios for
40 � N � 44. The calculation, however, suggests an irregular
behavior of R0/2 from N = 46 to 50. This is mostly because
both the 2+

1 and 0+
3 excitation energies are here overestimated,

especially as the neutron number increases towards the N =
50 neutron magic number [see Fig. 2(a)].

Figure 6(d) shows the ratio R0/0 ≡ E (0+
2 )/E (0+

3 ), which
provides information about relative locations of the first and
second excited 0+ levels. The calculated ratio R0/0 = 0.704
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FIG. 6. Evolution of calculated and experimental energy ratios (a) E (4+
1 )/E (2+

1 ), (b) E (6+
1 )/E (0+

2 ), (c) E (0+
3 )/E (2+

1 ), (d) E (0+
2 )/E (0+

3 ),
and (e) E (2+

2 )/E (2+
1 ) for the even-even 76−86Kr isotopes as functions of N . The calculated results with both the DD-ME2 and DD-PC1

functionals are shown, in comparison to the limits of the E(5) symmetry and three dynamical symmetries of the IBM.

(or 0.721) in the case of the DD-ME2 (or DD-PC1) EDF for
82Kr is in a fair agreement with the E(5) limit, R0/0 = 0.84,
and with the experimental data, 0.9 [12]. From Fig. 6(d) the
calculated R0/0 values for 84Kr and 86Kr are also close to the
E(5) limit. However, this is simply because the 0+

2,3 excitation
energies for these nearly spherical nuclei are not satisfactorily
described by the collective Hamiltonian, and should not be
considered a signature of the E(5) symmetry.

The energy ratio R2/2 ≡ E (2+
2 )/E (2+

1 ) indicates the lo-
cation of the γ -vibrational band, with the 2+

2 state being
the bandhead, relative to the ground-state K = 0+

1 band. As
shown in Fig. 6(e), the calculated R2/2 ratios underestimate
the experimental data for the region 40 � N � 44, while the
isotopic dependence looks more or less similar between the
theory and experiment. The predicted value R2/2 = 2.00 (or
1.97) with the DD-ME2 (or DD-PC1) EDF is close to both
the experimental data, 1.90, and the E(5) limit, 2.20.

2. B(E2) ratios

Next, we consider the ratios of the calculated B(E2) tran-
sition rates:

R1 = B(E2; 4+
1 → 2+

1 )/B(E2; 2+
1 → 0+

1 ), (7)

R2 = B(E2; 0+
2 → 2+

1 )/B(E2; 2+
1 → 0+

1 ), (8)

R3 = B(E2; 2+
2 → 2+

1 )/B(E2; 2+
1 → 0+

1 ), (9)

R4 = B(E2; 2+
2 → 0+

1 )/B(E2; 2+
2 → 2+

1 ). (10)

The corresponding results are shown in Fig. 7, and are com-
pared with the U(5), SU(3), and O(6) limits of the IBM, and

the E(5) [8] limit. Note that the three IBM limits shown in the
figure are obtained in the large-boson-number limit [7].

As seen in Fig. 7(a), the R1 ratios obtained here are approx-
imately in between the U(5) vibrational limit, R1 = 2.0, and
the E(5) limit, R1 = 1.68. Both functionals lead to system-
atically larger R1 values than the experimental ones, except
for 80Kr in the case of the DD-ME2 result. The calculation
with DD-ME2 EDF generally produces the R1 values closer
to the data than with the DD-PC1. The systematic trend of
the R1 ratio with N in the DD-ME2 case also looks more or
less similar to the experimental one, i.e., an inverse parabolic
dependence on N centered around N = 44.

The calculated R2 ratios are shown in Fig. 7(b). The ex-
perimental data are available only for the 78Kr and 82Kr
nuclei. As anticipated by the strong 0+

2 → 2+
1 transitions [cf.

Fig. 4(c)], the present RHB + QCH calculation overestimates
the experimental R2 ratios by several factors for these nuclei.
The ratio R2 also seems to be quite sensitive to the choice of
the EDFs for 40 � N � 44. In particular, the calculation with
the DD-ME2 EDF generally yields a smaller R2 ratio, hence
closer to the experimental value, than with the DD-PC1. Both
EDFs produce rather small R2 values for 82Kr and 84Kr. Espe-
cially for the former nucleus, our calculation gives R2 = 1.01
(or 1.20) with the DD-ME2 (or DD-PC1) functional, while
the experimental and E(5) values are R2 = 0.57 ± 0.10 and
R2 = 0.68, respectively.

Figure 7(c) shows the results for the R3 ratio. Experimen-
tally, this quantity appears to reflect the structural evolution
from the SU(3) rotational limit at N = 40 and 42 to the
γ -unstable O(6) or E(5) limit at N = 46. Concerning the
76−80Kr nuclei, the calculated R3 ratios are much larger than
the data, and are also quite far from the SU(3) limit R3 = 0.
The large finite R3 ratios for these nuclei further confirm the
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1 ), for

the 76−86Kr isotopes. The values predicted by the dynamical symmetries of the IBM [U(5), SU(3), and O(6)] and the E(5) CPS are also
indicated. The experimental data are taken from Ref. [12,60].

enhanced shape mixing in the present theoretical framework,
as is shown in Fig. 1 that the SCMF potential energy surfaces
have coexisting mean-field minima for 76,78Kr and are totally
flat in the γ direction for 80Kr. As a consequence, the overlap
between the resultant wave functions for the low-spin states
is supposed to be large, leading to the unexpectedly strong
2+

2 → 2+
1 E2 transitions for the 76−80Kr nuclei. Probably the

low-lying structures of these nuclei are so complicated that
the simple QCH approach combined with a particular choice
of the underlying EDF and pairing interaction may not nec-
essarily give a reasonable agreement with the empirical data.
For those nuclei with N � 46, however, the predicted R3 ratios
agree rather well with the experimental data. Note that the
value for 82Kr has a large error bar.

The R4 ratio particularly distinguishes the deformed rotor
limit SU(3) from the O(6) and U(5) ones. As seen in Fig. 6(d),
the present calculation provides, for most of the Kr nuclei,
nearly vanishing values of R4. Our results agree with the
data for 80,82,84Kr, but not for 78Kr. For the latter nucleus,
a large finite value R4 = 0.30 ± 0.14 has been observed ex-
perimentally [60]. The vanishing R4 ratio obtained by our
calculation for the N � 44 nuclei reflects that the correspond-
ing B(E2; 2+

2 → 2+
1 ) rates are calculated to be considerably

large due to the strong configuration mixing [see Fig. 4(d)].

3. Fluctuations in shape variables

As yet another signature of the QPT in the Kr isotopes, we
consider the fluctuations for the β and γ deformations, defined
respectively as δβ/〈β〉 and δγ /〈γ 〉. Here,

δβ =
√

〈β4〉 − 〈β2〉2

2〈β〉 , (11)

δγ =
(√

〈β6 cos2 3γ 〉
〈β6〉 −

√
〈β3 cos 3γ 〉2

〈β4〉〈β2〉
)

× (3 sin 3〈γ 〉)−1, (12)

stand for the deviation, and

〈β〉 =
√

〈β2〉, (13)

〈γ 〉 = arccos (〈β3 cos 3γ 〉/
√

〈β4〉〈β2〉)/3, (14)

are the average values of the β and γ deformations, respec-
tively. The above quantities are computed by using the wave
function for the 0+

1 ground state. The fluctuations in the de-
formation variables have also been considered in previous
EDF-based calculations for the studies, e.g., of the spherical
to γ -soft shape transitions in Ba and Xe nuclei in the mass
A ≈ 130 region [24], and of the quadrupole-octupole shape
phase transitions in a wider mass region [46]. A discontinuity
of the fluctuations when plotted as functions of the nucleon
number is considered a signature of the QPT.

Figure 8 shows the corresponding results obtained from
both the DD-ME2 and DD-PC1 EDFs. We see that, regardless
of the choice of the EDF, the fluctuation in the γ deformation
δγ /〈γ 〉 exhibits a notable kink at N = 46, signaling the oc-
currence of the QPT. There also appears a significant decrease
of the γ fluctuation from N = 40 to 42, indicating the effect of
the neutron sub-shell closure N = 40. According to the SCMF
results presented in Fig. 1, the potential energy surface for
80Kr is almost completely flat in the γ deformation, while
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the global prolate minimum at β ≈ 0.15 appears for 82Kr.
In Fig. 8 the fluctuation in the axial deformation β, δβ/〈β〉,
shows a minor kink at N = 46, when the DD-ME2 EDF
is chosen. In general, however, the fluctuation in the axial
deformation δβ/〈β〉 shows only a gradual variation with N ,
and is not considered as distinct a signature as the one for the
triaxial deformation δγ /〈γ 〉.

4. Detailed level structure

Let us look into a more detailed energy-level structure of
individual nuclei. Here we specifically consider the transi-
tional nuclei 82Kr and 80Kr, since particularly the former has
been suggested [12] to be a candidate for the E(5) critical-
point nucleus. The triaxial RHB energy surface for the nucleus
82Kr indeed exhibits a flat-bottomed potential that weakly
depends on the γ deformation (see Fig. 1), and that most
closely resembles the E(5) potential.

A well-known fact is that the moments of inertia computed
by using the IB formula are considerably smaller than the
empirical values. In order to effectively take into account
this deficiency, the IB moments of inertia have often been
increased by ≈30 − 40% in many of the previous calculations

using collective Hamiltonian (see, e.g., Ref. [24]). In the same
spirit, and in order to make a meaningful comparison between
the theoretical and experimental energy spectra, we show, in
this particular section, the spectroscopic results for 82Kr and
80Kr obtained from the QCH calculation with the IB moment
of inertia increased by 40%. The effect of the increase is such
that excitation energies for all the states, except for the 0+
ones, are lowered by approximately 10 − 30%.

Note also that the 2+
ξ=1,τ=1 energy level and

B(E2; 2+
ξ=1,τ=1 → 0+

ξ=1,τ=0) value in the E(5) spectrum
are normalized to the experimental [12,60] 2+

1 levels and
B(E2; 2+

1 → 0+
1 ) values, respectively, where ξ and τ are

quantum numbers of E(5) [8].
Figure 9 shows the computed excitation spectra and B(E2)

transition strengths for 82Kr, obtained from the RHB + QCH
method that uses the DD-ME2 EDF, in comparison to the
corresponding experimental and E(5) energy spectra. One
notices that the present calculation reproduces the overall
feature of the experimental energy spectrum. The calculated
B(E2) transition rates within the ground-state, K = 0+

1 band
are generally larger than the experimental values. Especially,
the calculation gives increasing inband E2 transition strength
as a function of the angular momentum within the K = 0+

1
band, and this systematic trend disagrees with the data but
agrees with E(5).

The quasi-γ , or K = 2+
γ band here comprises the 2+

2 , 3+
1 ,

4+
2 , 5+

1 , and 6+
2 states. The energy level of the 2+

2 bandhead
state is predicted to be below that of the 4+

1 state, which is
a typical feature of the γ -soft nucleus and is also consistent
with the empirical trend. The RHB + QCH result, however,
indicates a staggering pattern that is characterized by the
near degeneracy of the even- and odd-spin members of the
band, i.e., (3+

γ , 4+
γ ), (5+

γ , 6+
γ ), .... This energy-level pattern is

consistent with the E(5) symmetry, and is characteristic of the
γ -unstable rotor model [63], or, equivalently, the O(6) sym-
metry of the IBM. In addition, the calculated K = 2+

γ band
exhibits the E2 selection rule for the interband transitions to
the K = 0+

1 band in agreement with the experimental data and
E(5).

The 0+
3 state in the present RHB + QCH calculation is here

associated with the 0+
1,3 state of E(5). The calculated 0+

3 exci-
tation energy is close to the experimental data, but is rather
lower than the corresponding 0+

1,3 level of E(5). The nearly
vanishing B(E2; 0+

3 → 2+
2 )/B(E2; 0+

3 → 2+
1 ) branching ratio

is here obtained, consistently with the experimental data and
with the selection rule of E(5).

Our model further predicts the K = 0+
2 band consisting of

the 0+
2 , 2+

3 , 4+
3 , ...states, which is associated with part of the

ξ = 2 family in the E(5) spectrum. An overall feature of the
calculated K = 0+

2 looks similar to that of the experimental
counterpart. The B(E2; 0+

2 → 2+
1 ) value is here computed to

be 18 W.u., in a fair agreement with both the experimental
value and B(E2; 0+

2,0 → 2+
1,1) rate of E(5). However, the cal-

culated K = 0+
2 band is considerably lower in energy than the

observed one and ξ = 2 band of E(5). Especially, the energy
level of the bandhead state 0+

2 is here predicted to be below the
2+

2 level, which disagrees with the data and E(5). A previous
five-dimensional collective Hamiltonian calculation based on
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the HFB method using the Gogny D1S EDF [36] obtained
the 0+

2 excitation energy for the 82Kr isotopes, that is slightly
lower than the 2+

2 one. In the symmetry-projected triaxial
GCM calculation also using the Gogny-D1S EDF [42], the
0+

2 energy level was predicted to be lower than the 2+
2 one for

82Kr.

In Fig. 10 we make a similar comparison for the adjacent
nucleus 80Kr. As we can see in Fig. 1, the corresponding
SCMF energy surface for 80Kr is almost flat in the γ direction,
which is a manifestation of the O(6) symmetry. Figure 10
shows that the energy spectrum calculated for 80Kr by the
RHB + QCH model is, qualitatively, in a better agreement
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with the experimental data than in the case of 82Kr. The
calculated spectrum is, however, generally more compressed
than the experimental one. As compared to the E(5) spectrum,
both the calculated and experimental 0+

2 energy levels are
much lower than the corresponding 0+

2,0 one. In contrast to
82Kr, we obtain for 80Kr a weak E2 transition, B(E2; 0+

2 →
2+

2 ) = 0.11 W.u. This conforms to the E(5) selection rule,
which forbids the E2 transition 0+

2,0 → 2+
1,2.

In the third column of Table I the calculated energy and
B(E2) ratios of low-lying states of the 82Kr nucleus, ob-
tained with the DD-ME2 EDF, are shown. The results are
compared with the corresponding experimental values [12]
(the second column) and E(5) limits [8] (last column). In the
table, the states are labeled by the E(5) quantum numbers as
0+

1,0, 2+
1,1, 4+

1,2, 2+
1,2, 0+

2,0, and 0+
1,3, which are, respectively,

associated with the 0+
1 , 2+

1 , 4+
1 , 2+

2 , 0+
2 , and 0+

3 states in the
calculation as well as the experiment. Of particular interest
are the properties of the excited 0+ states. We notice that
the ratio E (0+

2,0)/E (2+
1,1) in our calculation is considerably

smaller than the E(5) value, 3.03. The E2 selection rule for

the 0+
1,3 state of E(5), i.e.,

B(E2;0+
1,3→2+

1,1 )

B(E2;0+
1,3→2+

1,2 )
= 0 is reasonably ac-

counted for in our model. On the other hand, we obtain a large

branching ratio
B(E2;0+

2,0→2+
1,2 )

B(E2;0+
2,0→2+

1,1 )
= 2.98, which disagree with the

data and with E(5). Note that the 0+
2,0 → 2+

1,2 transition is here
predicted to be particularly strong, i.e., B(E2; 0+

2 → 2+
2 ) =

55 W.u..
The results for 80Kr are shown in the fifth column of Ta-

ble I. Both the theoretical and experimental E (0+
2,0)/E (2+

1,1)
ratios are considerably smaller than the E(5) value. The pre-
dicted ratio E (0+

1,3)/E (2+
1,1) = 3.63 for 80Kr is here suggested

to be closer to the E(5) value, 3.59, than for 82Kr. It is
worthwhile to remark that, in accordance with the E(5) se-
lection rules for the E2 transitions, the present calculation

gives nearly vanishing values for both the
B(E2;0+

2,0→2+
1,2 )

B(E2;0+
2,0→2+

1,1 )
and

B(E2;0+
1,3→2+

1,1 )

B(E2;0+
1,3→2+

1,2 )
ratios. The result for the former branching ratio

is in a marked contrast to the one for 82Kr. Nevertheless, since
the experimental information about the low-lying states of
80Kr is not as abundant as for 82Kr, an extensive comparison
between the RHB + QCH result and experiment is difficult.

IV. CONCLUDING REMARKS

Based on the framework of the nuclear density functional
theory, we have investigated the spectroscopic properties that
signal the shape-phase transitions in the chain of the Kr iso-
topes in the mass A ≈ 80 region, with a particular focus on
the 82Kr nucleus, which was recently identified as empirical
evidence for the E(5) CPS. The constrained SCMF calcula-
tions within the RHB method using two representative classes
of the relativistic EDF and a pairing interaction have been per-
formed for the even-even nuclei 76−86Kr. The SCMF solutions
have been then used as the microscopic inputs to determine
the ingredients of the five-dimensional quadrupole collective
Hamiltonian, that is, the deformation-dependent moments of
inertia and mass parameters, and the collective potential. The

diagonalization of the QCH has yielded excitation spectra and
transition probabilities of the considered Kr nuclei.

The resultant triaxial quadrupole deformation energy sur-
faces have indicated an evolution of the equilibrium shape
as a function of the nucleon number (Fig. 1): a competition
among a nearly spherical global, an oblate, and a strongly
prolate deformed local minima in 76,78Kr, a notable γ -softness
in 80Kr, a weakly-deformed prolate shape characterized by
a flat-bottomed potential that is soft both in the β and γ

deformations for 82,84Kr, and a nearly spherical shape for
86Kr, corresponding to the neutron major shell closure N =
50. The RHB + QCH calculation has provided a reasonable
description of the experimental low-energy spectra (Fig. 2)
for N � 44, but overestimates the data for N � 46 as the neu-
tron magic number N = 50 is approached. Around the shell
closure, the QCH approach, which produces purely collective
states, is not expected to give a very good description of the
empirical data. The calculated B(E2) rates (Fig. 4) have been
shown to be generally in agreement with the data, whereas
particularly the 2+

2 → 2+
1 transition strengths for N � 44 have

been overestimated, due to the strong shape mixing.
The behaviors of the calculated energy and B(E2) ratios,

and fluctuations in β and γ deformations along the isotopic
chain have indicated the underlying nuclear structural change
around 82Kr, characterized by the significant amount of shape
mixing. The detailed analyses of the calculated low-energy
spectra of the transitional nuclei 82Kr and 80Kr have been
made in comparison to the experimental and E(5) spectra (cf.
Figs. 9 and 10). Particularly for 82Kr, the predicted quasi-γ ,
K = 2+

γ band has been shown to be higher than the experi-
mental one, in such a way that the bandhead 2+

2 level is close
in energy to the 4+

1 one in the ground-state band. Another
notable deviation from the experiment as well as from the E(5)
symmetry appears in the description of the 0+

2 energy level,
which is here calculated to be so low as to be below the 2+

2 one
for 82Kr, and which shows the E2 branching ratio that is quite
at variance with the experimental data and E(5). The deviation
from the data has arisen in part from the particular choice of
the EDFs, which may further point to some deficiencies of
the model when it is applied to this particular mass region.
Another possibility consists in the fact that the employed
RHB + QCH approach in its current version presents a rel-
atively simple model, which is built on the triaxial quadrupole
shape degrees of freedom only, and thus the inclusions of
some additional collective degrees of freedom in the Hamil-
tonian, in a similar spirit, e.g., to Refs. [64–66], may improve
the description of the data. It is an interesting future study to
investigate these possibilities.

In conclusion, the RHB + QCH method has demonstrated
an ability to provide the spectroscopic observables that can
be directly comparable to the experimental data, based solely
on a choice of the universal EDF and pairing interaction. The
approach allows for a timely, systematic and computationally
feasible theoretical prediction for the nuclear shape-related
phenomena that are experimentally of much interest, such as
the shape QPTs and coexistence, and is expected to serve
as a useful benchmark for more complicated microscopic
calculations.
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[31] T. Nikšić, D. Vretenar, and P. Ring, Prog. Part. Nucl. Phys. 66,
519 (2011).

[32] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys.
75, 121 (2003).

[33] P. Ring and P. Schuck, The Nuclear Many-Body Problem
(Springer-Verlag, Berlin, 1980).
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[50] V. Prassa, T. Nikšić, G. A. Lalazissis, and D. Vretenar, Phys.

Rev. C 86, 024317 (2012).
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