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Abstract: We report an investigation of the conductivity sum rule in the two-dimensional system of
free electrons in a weak uniaxial potential. The sum rule is defined through the integration of a real
part of a multiband conductivity tensor and separates between the intraband and interband charge
transport concentrations. It is shown how the relative direction of the electric field and the uniaxial
potential defines the transport concentrations of the nearly free electron system and why the sum
rule is obeyed.

Keywords: multiband conductivity tensor; sum rule; Drude conductivity; optical conductivity; two
dimensions; nearly free electron gas; uniaxial potential

1. Introduction

The conductivity sum rule is an important tool in the analysis of the dynamical charge
transport properties in the strongly correlated systems [1,2]. In this paper, we show, by
using the simple electron gas model exposed to periodic potential on the atomic scale, how
the electron transport concentrations (which are of fundamental importance in experimental
data analysis), depend on doping under conditions of the pseudogap formation. Due to the
presence of multiple electron-scattering channels and a significant number of bands around
Fermi level, it is a challenge to separate intraband from interband contributions in the
dynamical conductivity measurements. We demonstrate the sum rule connection with the
charge conservation in the two-dimensional (2D) system of nearly free electrons (NFE) in an
additional weak periodic potential. We assume that the weak periodic potential is uniaxial,
having a single Fourier component with amplitude ∆ and the modulation wave vector
Q, and that the Fermi energy can be easily changed. A possible onset of such potential
in the real system is stabilization of the charge density wave (CDW). Hence, we call this
model by abbreviation UniAxNFE. The conservation of charge that participates in electric
transport, or the sum rule, amounts to evaluating the contributions from partial spectral
weights which originate from the real parts of the intraband and interband conductivity.
The general form of the multiband conductivity tensor [3] is approximated by an expression
consisting of a bare single-particle electron-hole energies and a phenomenological electron-
hole scattering constant. This approximate form of the multiband conductivity tensor
is then divided into its intra- and interband parts, which are then evaluated in the long
wavelength limit of a perturbating electric field. In this way, we obtain a simple form of
the intraband part of the multiband conductivity tensor, known as the Drude conductivity
formula [4], whereas the contributions to the conductivity originating from the interband
excitations, will be referred to as optical conductivity [5]. In the limit of the vanishing intra-
and interband relaxation constant, the expressions for the real parts of intra- and interband
conductivity become simplified and, for the particular model of the electron ground state
used in this work, they are given in a closed form. The sum rule is defined in Ref. [6]
as well as the way by which it connects the real part of the conductivity and the various
types of electron transport concentrations. The latter depends on the direction in which the
macroscopic electric field is pointing.
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The electron energies of the resulting two-band UniAxNFE model [4,7] retain, to some
extent, the free electron-like properties in the direction perpendicular to Q, whereas in the
parallel direction, the bands are strongly influenced by the potential; hence, as a result a
pseudogap is opened. The pseudogap position and its width is defined by two of the four
characteristic energy points of the electron bands. These points also define the intervals
of different energy dependence of the transport concentrations. Finally, we explicitly
show how we can identify the intraband and interband effective electron concentration of
the UniAxNFE model, which when added together, yield the total charge concentration.
Moreover, we demonstrate a different energy dependence of these effective transport
concentrations when measured in the direction parallel to the wave vector Q, and direction
perpendicular to it.

2. Multiband Conductivity Tensor

Here we give a simple overview of the general form of the conductivity tensor in a
simple cubic type of crystal without the infrared active phonons. The conductivity tensor
includes contributions from all types of single-particle excitation in a multiband system.
Within the linear response theory, the conductivity tensor σtot

α (q, ω) [3] is defined as a
connection between the Cartesian component α of the induced current density Jind

α (q, ω)
with respect to the same α component of the macroscopic electric field,

Jind
α (q, ω) = σtot

α (q, ω)Eα(q, ω), (1)

where (q, ω) are the wave vector and frequency of the macroscopic electric field E(q, ω).
In its general form, as shown in Figure 1, the conductivity tensor is in fact a current-
dipole correlation function. This object is too complicated to be used as a tool for a
simple analysis of the dynamical transport properties, so a simplified version has to be
introduced. In this simplification of the conductivity tensor [8], the electron and hole
self-energy renormalisation is neglected and electron-hole scattering is approximated by
the phenomenological constant γ, which depends on the band index s,

σtot
α (q, ω) =

2ih̄
V ∑

ss′
∑
k

|λss′
αk|

2

Es
k − Es′

k+q

f s′
k+q − f s

k

h̄ω + Es
k − Es′

k+q + ih̄γss′
. (2)

Figure 1. Diagrammatic representation of the fully dressed irreducible current-dipole correlation
function, or the conductivity tensor [3,9]. The wiggly line represents the incoming photon with
impulse q and frequency ω. Double lines represent the fully dressed electron and hole propagators.
The orange and green circle represent the current and the dipole matrix elements respectively.
The red part is the vertex function which represents all contributions to the electron-hole scattering
originating from the various scattering mechanism like the electron-phonon, electron-impurity etc..
In a simplified expression, the dressed electron and hole propagators are approximated with the bare
ones, and the vertex part is approximated by a phenomenological relaxation constant.

In (2), Es
k is the s-band energy with the corresponding Fermi–Dirac distribution f s

k,
V is the volume (area) of the crystal. The first term within the ∑k-summation, which
extends over the first Brillouin zone in (2), is a product of current and dipole matrix
elements, which are connected via continuity equation [10]. This is why the product of
current and dipole matrix elements is written by using just the current elements (λss′

αk) and
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the single-particle energies. Thus, λss′
αk is the ss′ matrix element of an α-dependent matrix

λα, which is derived by using the unitary matrix U needed to diagonalize the electron
Hamiltonian and the derivative of the Hamiltonian matrix [7,8,11],

λα =
e
h̄

U
∂H
∂kα

U−1. (3)

In general, the intraband (s = s′) current matrix elements are model-independent and
given by

λss
αk =

e
h̄

∂Es
k

∂kα
, (4)

whereas the interband (s 6= s′) current matrix elements are model-dependent. Taking the
q → 0 limit in the Equation (2) and dividing it in the intraband (s = s′) and interband
(s 6= s′) channel and assuming that the intraband phenomenological relaxation constants
are equal to γ we get

σtot
α (ω) = σintra

α (ω) + σinter
α (ω)

=
ie2nintra

α

me(ω + iγ)
+

2ih̄
V ∑

s 6=s′
∑
k

|λss′
αk|

2

Es
k − Es′

k

f s′
k − f s

k

h̄ω + Es
k − Es′

k + ih̄γss′
. (5)

In Equation (5), we have introduced the effective concentrations of electrons nintra
α that

participate in the intraband transport [12]. There are two equivalent forms of nintra
α [13]

obtainable from one another by partial integration,

nintra
α (EF) = −

2
V

me

h̄2 ∑
s

∑
k

(
∂Es

k
∂kα

)2 ∂ f s
k

∂Es
k

, (6a)

=
2
V

me

h̄2 ∑
s

∑
k

∂2Es
k

∂k2
α

f s
k. (6b)

We now turn to the real part of the total conductivity tensor (5) in the limit of a
vanishing relaxation constants (γ, γss′)→ 0. For the intraband conductivity, we obtain

Re σintra
α (ω) =

πe2nintra
α

me
δ(ω), (7)

and, correspondingly, for the interband conductivity,

Re σinter
α (ω) =

πe2

me

2
V ∑

s 6=s′
∑
k

me

e2 |λ
ss′
αk|

2 f s′
k − f s

k

Es
k − Es′

k
δ

(
ω +

Es
k − Es′

k
h̄

)
. (8)

The sum rule states that by integrating the real part of the conductivity (7) and (8),
which are even function of ω, the conserved quantity called the spectral weight is
obtained [6,12,14], ∫ ∞

0
Re σtot

α (ω)dω =
πe2nintra

α

2me
+

πe2ninter
α

2me
=

πe2nα

2me
, (9)

where we have defined, analogously to the intraband effective concentration of electrons (6),
an interband effective concentration of electrons

ninter
α =

2
V ∑

s 6=s′
∑
k

me

e2 |λ
ss′
αk|

2 f s′
k − f s

k

Es
k − Es′

k
. (10)
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For any multiband system, the sum rule (9) states that the concentration of electrons
nα engaged in the dynamical charge transport is distributed among electrons participating
in the intraband, and those participating in the interband excitations,

nα = nintra
α + ninter

α . (11)

Here, we stress that nα can be different from the total concentration of electrons ntot

needed to fill the bands up to the Fermi energy. Whether or not nα and ntot are equal,
depends on the electron model in question. We will show that for the UniAxNFE model
indeed nα = ntot. This, however, does not apply for the systems with linear electron

dispersions like the d-dimensional Dirac systems [3,15,16] where nα ∝
(
ntot) d−1

d . Moreover,
evaluating the relation (6a) for the single-band system described by Ek ∝ |k|ν, we can
easily obtain the following general relation:

nintra
α ∝

(
ntot) d+ν−2

d . (12)

Thus, we see that only for the parabolic-like electron dispersion (ν = 2), nα and ntot

might be equal. We now turn our attention to the example of the two-band system in
which (11) is conserved.

3. Two-Dimensional UniAxNFE Model

As a testing ground for the sum rule (9), we analyze the charge transport properties
of the two-dimensional, nearly free electron gas in the presence of weak periodic uniaxial
potential. The crystal potential is of the form 2∆ cos(r·Q) with the wave vector Q, thus
becoming the new reciprocal lattice vector. The electronic two-band Hamiltonian in its
matrix form in the basis of |k〉 and |k−Q〉, where the latter are the states near a single
Bragg’s plane defined by Q, is

H =

(
εk ∆
∆ εk−Q

)
, (13)

where εk = ck2 where c = h̄2/2me, k is electron wave vector, me is the bare electron mass [4].
The diagonalisation of Equation (13) gives two electron bands labeled by index s ∈ {+,−}
within the newly defined Brillouin zone with the periodicity determined by Q,

Es
k =

1
2
(
εk−Q + εk

)
+ s

1
2

√(
εk−Q − εk

)2
+ 4∆2. (14)

In the electron dispersion Equation (14), k is defined relatively to Q by decompo-
sition k = (k⊥, k‖) where k‖ is parallel to the Q-direction. Moreover, the origin of the
newly formed Brillouin zone is shifted by k→ k + Q/2. Implementing these changes in
Equation (14), we get

Es
k = ck2

⊥ + ck2
‖ + c(Q/2)2 + s

√
c2k2
‖Q

2 + ∆2. (15)

The two electron dispersions (15) are shown in Figure 2 (left) and are scaled with
the εQ = c(Q/2)2, the electron energy at the Bragg’s plane, where the dispersions cross,
prior to the pseudogap opening. In addition, a dimensionless gap parameter η = ∆/εQ is
introduced as a dimensionless order parameter, i.e., the measure of strength of the periodic
potential. In the weak periodic potential approach we expect η � 1. The Brillioun zone,
over which Equation (15) is spanned, resembles an infinitely long stripe in k⊥ ∈ [−∞, ∞]
direction of total width k‖ ∈ [−Q/2, Q/2]. Four characteristic energy points related to the
bands (15) are identified and designated by the yellow circle in Figure 2. The bottom (B)
energy of the s = − band and the top (T) energy of the s = + band, within the k⊥ = 0
cross-section of the Brillouin zone, are located at k‖ = Q/2 (see Figure 2 (left)). We have

εT,B = ET,B/εQ = 2±
√

4 + η2. (16)
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0 1 2 3 4
0

1

2

3

4

Figure 2. (Left) The electron energies (15) as functions of k‖ and k⊥ scaled with εQ. The positions
of four characteristic energy points (16) and (17) are indicated with yellow circles. The pseudogap
region is located between εL and εU . (Right) Various charge concentrations as functions of scaled
Fermi energy εF in units of concentration n0. For both figures, the dimensionless gap parameter
η = 0.2.

In addition, the extent of the pseudogap region at k = 0 is determined by the upper
(U) and lower (L) energy

εU,L = EU,L/εQ = 1± η. (17)

Calculated properties related to the charge transport will be presented as functions of
the scaled Fermi energy εF = EF/εQ.

4. Charge Transport Concentrations of the 2D UniAxNFE Model

Dispersion (15) implies different response to the dynamical electric field pointing
parallel, or perpendicular to the direction of the vector Q. To demonstrate this, we calculate
the intraband concentration nintra

α (6), for electrons described by the bands (15), filed up to
the scaled Fermi energy εF at zero temperature for two distinct directions α ∈ (‖,⊥).

Let us inspect the⊥ direction first. It is easy to check from (15) that ∂2Es
k/∂k2

⊥ = h̄2/me,
and thus Equation (6b) reduces to the standard definition of the total concentration of
electrons ntot,

nintra
⊥ = ntot, (18)

which is shown in Figure 2 (right) in green as a function of εF in units of concentration
n0 = Q2/(8π). ntot should be compared to the total concentration of 2D free electrons
which is

n2D = n0εF, (19)

and is shown as a red dashed line in Figure 2 (right). We see a small deviation between
the two concentrations (18) and (19) within the pseudogap region and for high εF values.
This illustrates a small but observable influence of the uniaxial potential on the transport in
the perpendicular direction. Moreover, from the Hamiltonian (13) and from the definition
of the current matrix elements (4), we can derive [7] the interband current matrix elements

λ+−
‖k = 2

e
h̄

Qc
∆

E+
k − E−k

, λ+−
⊥k = 0. (20)

The only Cartesian component α, for which (20) is finite, is α =‖. By inspecting
Equation (10), we conclude that the interband concentration of electrons is

ninter
⊥ = 0. (21)
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Therefore, the interband conductivity in the electron model derived in Section 3 is
finite only when the macroscopic electric field is applied in the direction parallel to the
vector Q. Comparing expressions (21), (18) and (11), we get

n⊥ = ntot. (22)

If the macroscopic electric field is oriented parallel to Q, the calculated nintra
‖ is shown

in Figure 2 (right) in blue. As is seen for εF < εL, the two concentrations ntot and nintra
‖

nearly coincide. The biggest difference between them is when εF is within the pseudogap
region εL < εF < εU . The ninter

‖ is calculated by inserting (20) into Equation (10). The result

is also shown in Figure 2 (right) in orange. The main feature of ninter
‖ (εF) is that it is nearly

zero for εF < εL and that it has a maximum at εF = εU . Furthermore, by inspecting the
Figure 2 (right), we observe that

nintra
‖ + ninter

‖ = ntot. (23)

The above expression can be shown explicitly by adding the terms in (6b) and (10)
with (20) together under the same ∑k.

Another way of showing that a simple two-band model (15) obeys the sum rule (23) is
by integrating the real part of the optical conductivity. To demonstrate this, we plot the
parallel component of the real part of the interband conductivity which for the present
model, has been derived in [7],

Re σinter
‖ (Ω) =

σ0

Θ(Ω− 2η)Θ
(

2
√

4 + η2 −Ω
)

Ω2
√

Ω2 − (2η)2

[√
16εF − (Ω− 4)2 + (2η)2 Θ(εF − εL)

+
√

16εF − (Ω− 4)2 + (2η)2 Θ(εL − εF)Θ
(

Ω− 4 +
√

16εF + (2η)2
)

+
√

16εF − (Ω + 4)2 + (2η)2 Θ
(√

16εF + (2η)2 − 4−Ω
)

Θ(εF − εU)

]
. (24)

In the above expression, Ω is the scaled photon energy Ω = h̄ω/εQ, and Θ is the
Heaviside unit step function and σ0 = (2eη)2/(πh̄) is the two-dimensional conductivity
constant. Equation (24) is plotted in Figure 3 (left) for three values of εF whose positions are
indicated by correspondingly colored arrows on the right part of Figure 3. Expression (24) is
finite only for frequencies within the interval εU − εL = 2η ≤ Ω ≤ 2

√
4 + η2 = εT − εB as

shown in Figure 3. These limits originate from the energy conservation (8) with bands (15)
that are spanned between the endpoints (16). Moreover, if εF < εL, then Re σinter

‖ (Ω) (blue

curve) is finite, whereas if εF > εL, then Re σinter
‖ (Ω) develops a one-over a square-root

type of divergence (red and dashed green line Figure 3 (left)). The common feature of the
Equation (24) is the ∼ Ω−3 decay as we increase Ω. Using Ω as the new frequency variable,
Equation (9) gives

ninter
‖ =

2meεQ

πh̄e2

∫ ∞

0
Re σinter

‖ (Ω)dΩ. (25)

Because of the Ω-restrictions in the Re σinter
‖ (Ω), the upper limit in the integral is set

to ∞ → 2
√

4 + η2 ≈ 4. After finding the area under the conductivity curve numerically,
as noted by the shaded region of the blue curve in Figure 3 (left), we obtain ninter

‖ (εF) as
shown in the Figure 2 (right).

As mentioned, the approach where we simply equate nα ≡ ntot, does not apply
for the 2D or 3D Dirac system [16,17] where the interband current matrix elements (20)
are constant for any α, and correspondingly, Re σinter(Ω) ∝ Ωd−2. In order to apply the
sum rule (9) with nα = ntot, a cutoff frequency Ωc has to be introduced in the upper
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boundary of the integral in (25) to prevent ninter from diverging. This will in turn lead
to a self-consistency problem in which the parameters, like the Fermi energy EF, will be
tied to Ωc.

0 1 2 3 4
0

2

4

6

8

Figure 3. (Left) Real part of the interband conductivity component parallel to Q in units of σ0,
as a function of scaled incoming photon energy Ω plotted for several values of εF. The extent
of the Ω-domain, where the optical conductivity is finite, is indicated by yellow arrows for the
dimensionless gap parameter η = 0.2. The area under the blue curve for εF = 0.7 is proportional to
ninter
‖ (εF = 0.7) shown in Figure 2. (Right) Positions of the three values of εF are indicated by colored

arrows. Yellow lines indicate the with of the pseudogap and the maximal energy extent of the bands
within the Brillouin zone, consistent with the extent of the allowed Ω-values.

5. Conclusions

We have identified main parts of the multiband conductivity tensor within the single
loop approximation and with a constant electron-hole scattering constant. After dividing
the real part of the conductivity tensor to the intraband and interband parts we have
applied the sum rule and obtained the intraband and interband charge concentrations.
These charge concentrations that depend on the direction of an applied electric field where
calculated for a simple two-dimensional, nearly free electron gas in a weak uniaxial crystal
potential described by a two-band model. One possible way to introduce such a periodic
potential, varying on an atomic scale, into the nearly free electron system is an onset
of the charge density wave, for which several mechanisms has been proposed [18–20].
All aspects of eventual coherent CDW dynamics are neglected in this consideration. A
fundamentally different Fermi energy dependence of intra- and interband concentrations is
shown for this model when the direction of the electric field is parallel and perpendicular
to uniaxial vector. In both cases the sum rule transport concentration is equal to the total
concentration of electrons, but only for the case of electric field parallel to uniaxial potential,
total concentration is divided between the inter- and intraband contributions. In this case,
the conservation of total concentration is demonstrated directly by adding the expressions
for inter- and intraband concentrations and by numerically integrating the real part of the
interband conductivity.
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