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Abstract: The first measurement of the e+e− pair production at low lepton pair trans-
verse momentum (pT,ee) and low invariant mass (mee) in non-central Pb–Pb collisions at√
sNN = 5.02TeV at the LHC is presented. The dielectron production is studied with

the ALICE detector at midrapidity (|ηe| < 0.8) as a function of invariant mass (0.4
≤ mee < 2.7 GeV/c2) in the 50–70% and 70–90% centrality classes for pT,ee < 0.1 GeV/c,
and as a function of pT,ee in three mee intervals in the most peripheral Pb–Pb collisions.
Below a pT,ee of 0.1 GeV/c, a clear excess of e+e− pairs is found compared to the ex-
pectations from known hadronic sources and predictions of thermal radiation from the
medium. The mee excess spectra are reproduced, within uncertainties, by different predic-
tions of the photon–photon production of dielectrons, where the photons originate from
the extremely strong electromagnetic fields generated by the highly Lorentz-contracted Pb
nuclei. Lowest-order quantum electrodynamic (QED) calculations, as well as a model that
takes into account the impact-parameter dependence of the average transverse momentum
of the photons, also provide a good description of the pT,ee spectra. The measured

√
〈p2

T,ee〉
of the excess pT,ee spectrum in peripheral Pb–Pb collisions is found to be comparable to
the values observed previously at RHIC in a similar phase-space region.
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1 Introduction

Ultra-relativistic heavy-ion collisions produce the largest electromagnetic (EM) fields ex-
perimentally accessible in the universe. The magnetic field generated by the highly Lorentz-
contracted passing nuclei is predicted to reach up to 1015 Tesla [1]. Such strong EM fields
are predicted to produce various exotic phenomena [2–5]. Heavy-ion collisions have there-
fore, in the past decades, induced a large amount of experimental and theoretical interest
in the search for new aspects of quantum chromodynamics (QCD) and quantum electro-
dynamics (QED) [6–9].

The measurement of thermal dileptons from the quark–gluon plasma and the hot
hadron gas produced in heavy-ion collisions has been long recognized as a clean and pow-
erful probe to study the time evolution of the properties of the medium. Another important
dilepton production mechanism, in particular at very low lepton pair transverse momentum
(pT,ll), is the photon–photon fusion process (γγ → l+l−). The EM fields surrounding the
relativistic heavy ions with large charge number Z can be treated as a flux of quasi-real
photons generated coherently, i.e. the charges of the Z protons in the nucleus act coher-
ently leading to a Z2 dependence of the quasi-real photon flux. Such photons, triggered by
the EM fields of the two incoming nuclei, can interact via the Breit–Wheeler process [10]
to produce dileptons. Such an exclusive photon-mediated process was first measured in
ultra-peripheral heavy-ion collisions (UPC) by the STAR collaboration at RHIC [11]. Col-
lisions with impact parameters (b) between the passing nuclei large enough that no nuclear
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overlap occurs can be selected, excluding any hadronic interaction. Only recently, the
photon–photon production of dileptons has been observed in hadronic heavy-ion collisions
(HHIC) by the STAR [12] and ATLAS [13, 14] collaborations. STAR measures dielectrons
(e+e−) at midrapidity and small invariant mass mee (0.4 ≤ mee ≤ 2.6 GeV/c2) in non-
central Au–Au and U–U collisions at a center-of-mass energy per nucleon pair of √sNN
= 200GeV and 193GeV, respectively, whereas ATLAS reports results on dimuon (µ+µ−)
production at large mµµ ( 4 ≤ mµµ < 45 GeV/c2) in central, semi-central and peripheral
Pb–Pb collisions at √sNN = 5.02 TeV. The produced dileptons originate from quasi-real
photons with momenta predominantly in the beam direction, i.e. the transverse component
is of the order of ωγ/γL, where ωγ is the photon energy and γL is the Lorentz factor of
the colliding nuclei. Therefore the lepton pairs have a very small pT,ll and the two leptons
are nearly back-to-back. ATLAS quantifies the deviation from back-to-back in terms of
the acoplanarity (α) defined as 1− |ϕ

+−ϕ−|
π where ϕ+ and ϕ− are the azimuthal angles of

the two muons. Both experiments show a significant broadening of the pT,ee (STAR) or α
(ATLAS) distributions of the lepton pairs increasing for more central collisions in HHIC
compared to UPCs. Whereas STAR attributed it to the possible deflection of the leptons
by a magnetic field trapped in an electrically conducting QGP, ATLAS estimated that the
observed broadening is qualitatively consistent with potential electromagnetic scatterings
of the leptons with the hot and dense medium. Nevertheless, theoretical models tackling
the relationship between b and the transverse momentum of the quasi-real photons were
not readily available at the time of those results.

In the past, two main approaches have been used to calculate the photon–photon in-
teractions: the Equivalent Photon Approximation (EPA) [15–17] and lowest-order QED
calculations (LOQED) [18, 19]. In the EPA framework, the cross section of the two-
photon process in heavy-ion collisions is obtained as a folding of the equivalent number
of quasi-real photons n1(ωγ,1) and n2(ωγ,2) from the field of the nucleus 1 and 2, respec-
tively, and the elementary photoproduction cross section σγγ→l+l− . The latter is given
by the polarization-averaged cross section of the Breit–Wheeler process. Originally, the
kT-factorisation method as defined in refs. [20, 21] was used to calculate the transverse mo-
mentum (kT) of the quasi-real photons. In such an approach, the shape of the kT -photon
distribution is assumed to be independent of the collision impact parameter. Measurements
of photon–photon produced dileptons by ALICE [22], CMS [23] and ATLAS [24] in UPCs
are relatively well reproduced by calculations based on the EPA as implemented e.g. in
STARlight [25]. Nevertheless, more differential measurements in UPCs show a broadening
of the azimuthal back-to-back dilepton correlations or pT,ll distributions, as well as differ-
ences in the invariant mass spectra with increasing number of neutrons at forward rapidity
in the events [24, 26, 27]. The latter enables the selection of collisions occuring at small
b that contain exclusive dileptons in conjunction with the excitation and dissociation of
the passing nuclei. On one hand, ATLAS reported that their data can be described by
EPA calculations using the kT factorisation approach, as long as an additional, similarly
factorized, dissociative contribution is included. In these dissociative processes, one photon
is emitted by charged constituents of a nucleon, corresponding to an incoherent component
of the photon fluxes. Its contribution was estimated by ATLAS by fitting the measured
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acoplanarity distributions [24]. On the other hand, CMS showed that their results for small
α (α < 0.01−0.02) can be qualitatively reproduced by LOQED calculations neglecting such
dissociative processes but incorporating a b dependence of the shape of the initial photon
kT [27]. These calculations [28, 29] predict a kT hardening of the initial-state photons with
a decrease of b as a consequence of the spatial distribution of the EM fields. Attempts to
implement b dependences in a generalized EPA approach have been performed in refs. [28–
31]. Such calculations show strong impact parameter dependences of the dilepton pT,ll
distributions but produce an unphysical increase of the cross section at very low pT,ll [29],
related to neglected interference terms. Recently, an approach using the Wigner formalism
suggested in ref. [32] and performed in refs. [21, 33, 34], was shown to recover the full b
dependence of the lowest-order QED calculations.

After including the b dependence of the photon kT distribution in the calculations, the
existing results of STAR [11, 12, 26], ATLAS [13, 14, 24], and CMS [27] in UPC and HHIC
are reasonably well described by LOQED predictions and calculations based on the EPA
within the uncertainties of the data. As a consequence, room for any medium-induced
or final-state effect in HHIC is significantly reduced, whereas photon–photon interactions
turn out to be useful for mapping the EM fields generated by the highly Lorentz-contracted
nuclei. Further properties of the γγ → e+e− process were measured by STAR. In particular,
a cos(4∆ϕ) angular modulation, where ∆ϕ is the azimuthal angle in the laboratory frame
between the momentum of the e+e− pair and one of the electrons, was predicted due
to the initial linear photon polarization [32, 35]. This feature was confirmed by STAR
measurements in UPCs and peripheral Au–Au collisions with hadronic overlap at √sNN =
200 GeV/c [26] and is closely related to the phenomenon of birefringence [36].

Despite the overall good description of the data by the latest calculations, some points
deserve further theoretical and experimental investigation, see ref. [37] for an overview.
Among them, the effect of higher-order corrections in the QED predictions is unclear [38,
39]. Due to the large charge carried by the heavy ion, the parameter of the perturbative
expansion in such calculations is large. The large tails observed in the measured pT,ee and α
distributions could be related to next-leading-order contributions from final state radiation
as shown in [27]. With ALICE, the γγ → e+e− process can be studied in a similar region of
phase space as measured by STAR, but in collisions with a much larger Lorentz-boost factor
(γLHC

L ≈ 2700, γRHIC
L ≈ 100). The maximum electric field reached in heavy-ion collisions is

of the order of ZeγL/d2 [38], where d the distance from the ion’s center, and is consequently
about 30 times larger at the LHC compared to RHIC. The fields vary and act over a short
timescale of approximately d/(γLc), i.e. 10−25 (10−23) s at the LHC (RHIC). Therefore,
measurements of photon–photon production of dielectrons at the LHC would allow the
predicted photon kinematic distributions to be experimentally verified for larger expected
magnetic fields than at RHIC and could provide further constraints on the mapping of the
EM fields produced in heavy-ion collisions, as well as possible medium effects.

In this article, the first measurement of e+e− pairs at low pT,ee and mee at the LHC
is presented in peripheral (70–90%) and semi-peripheral (50–70%) Pb–Pb collisions at
√
sNN = 5.02 TeV. The dielectron production is measured with ALICE at midrapid-

ity (|ηe| < 0.8) and pT,ee < 0.1 GeV/c from an invariant mass of 2.7 GeV/c2 down to
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0.4 GeV/c2. The latter is determined by the minimum pT required to identify electrons
(pT,e > 0.2 GeV/c) in the central barrel. The data are compared with the expected di-
electron rate from known hadron decays, called the hadronic cocktail, with predictions for
thermal radiation from the medium and with recent predictions for coherent photoproduc-
tion of dielectrons as a function of mee. The pT,ee and p2

T,ee distributions are extracted
in three different mee ranges in peripheral Pb–Pb collisions and the extracted value of√
〈p2

T,ee〉 is compared with predictions and to measurements at lower √sNN.
The article is organized as follows. Section 2 contains a brief description of the ALICE

apparatus and the data sample used, whereas section 3 illustrates the analysis steps. In
section 4, the results on dielectron production yields at low pT,ee within the ALICE accep-
tance are presented and compared with theoretical calculations and previous measurements
at lower √sNN. Section 5 gives a summary and outlook.

2 Detector and data samples

A detailed description of the ALICE apparatus and its performance can be found in refs. [40,
41]. The main detectors used to track and identify electrons1 at midrapidity (|ηe| < 0.8)
are the Inner Tracking System (ITS) [42], the Time Projection Chamber (TPC) [43], and
the Time-Of-Flight (TOF) detector [44]. The ITS consists of six cylindrical layers of silicon
detectors, which provide tracking of the charged particles and, together with the TPC, the
reconstruction of the primary collision vertex. The innermost layer is installed at a radius
of 3.9 cm from the beam axis and is used to reject electrons from photon conversions in
the detector material. The TPC detector allows tracks to be reconstructed and charged
particles to be identified (PID) via the measurement of the specific energy loss dE/dx
while the TOF detector contributes to the PID via the measurement of the flight time of
the particles. These detectors are placed inside a uniform magnetic field of 0.5T parallel
to the beam direction, provided by a solenoid magnet.

The data samples used in this analysis were collected by ALICE in 2015 and 2018
during Pb–Pb runs at √sNN = 5.02 TeV. Minimum-bias collisions were triggered by
requiring the coincidence of signals in the two scintillator arrays of the V0 detectors [45],
covering the pseudorapidity ranges 2.8 ≤ η < 5.1 and −3.7 ≤ η < −1.7. The time
information from the V0 detectors and the neutron Zero Degree Calorimeters (ZDC) [46],
as well as the correlation between the number of hits in the ITS and in the TPC are used
offline to reduce the background from beam–gas interactions and pile-up collisions to a
negligible level. Only events with a primary vertex reconstructed close to the center of
ALICE along the beam direction (|z| < 10 cm) are considered in the analysis to assure
a uniform detector acceptance. The event sample was divided into centrality classes [47]
expressed in percentages of the total hadronic cross section using the amplitudes of the
signal in the V0 detector. The number of events in each centrality class considered in this
analysis, i.e. 50–70% and 70–90%, is about 34 million after the event selection criteria.

1Note that the term ‘electron’ is used for both electrons and positrons throughout this paper.
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3 Data analysis

3.1 Electron candidate selection

Electron candidates are selected from charged-particle tracks reconstructed in the ITS and
TPC in the kinematic range |ηe| < 0.8 and pT,e > 0.2 GeV/c. The track fits are required to
include at least 80 out of a maximum of 159 reconstructed space points in the TPC and a
hit in at least 4 of the 6 ITS detector layers. The χ2 per space point measured in the TPC
(ITS) must be less than 2.5 (5). In order to reduce the contribution of secondary tracks
arising from weak decays and interactions with the detector material, only tracks with a
distance-of-closest approach to the reconstructed primary vertex smaller than 1 cm in the
plane transverse to the colliding beams and 0.5 cm in the longitudinal direction are used in
the analysis. In addition, a hit in the first ITS layer is required to reject electrons originating
from real-photon conversions in the detector material of the subsequent ITS layers. Since
the electrons originating from the same photon conversion share the same cluster in the
ITS layer where they are produced, they can be further suppressed by requiring that a
maximum of one ITS cluster attached to the reconstructed track is shared with any other
track candidate and is not placed in the first ITS layer.

The electron identification is based on the complementary information provided by
the TPC and TOF. The detector PID signal, n(σDET

i ), is expressed in terms of the de-
viation between the measured and expected value of the specific ionisation energy loss in
the TPC or time-of-flight in the TOF for a given particle hypothesis i and momentum,
normalised to the respective detector resolution. In the TPC, electrons are selected in the
range |n(σTPC

e )| ≤ 3, whereas kaons, protons and pions are rejected with |n(σTPC
K )| ≥ 3,

|n(σTPC
p )| ≥ 3 and n(σTPC

π ) ≥ 3.5, respectively. Electrons with an energy loss in the TPC
in the range where the charged kaon and proton bands cross the one of electrons are re-
covered using the TOF information: tracks which fulfill only the TPC electron selection
and pion rejection but have an associated TOF signal with |n(σTOF

e )| ≤ 3 are accepted.
This PID strategy was used successfully in previous ALICE dielectron analyses in pp and
p–Pb collisions [48–50]. Averaged over pT, the hadron contamination in the single-electron
candidate sample is less than 5% for an electron efficiency of about 80%. The largest
hadron contamination, up to about 18% in the 50–70% centrality class, is observed where
kaons (pT ≈ 0.5 GeV/c), protons (pT ≈ 1 GeV/c), or charged pions (pT > 6 GeV/c) have
a similar dE/dx as electrons in the TPC. Pairs containing a misidentified hadron are fur-
ther removed during the subtraction of the combinatorial background, thus that the final
hadron contamination in the dielectron signal is expected to be negligible.

3.2 Signal extraction

Electron pairs originating from the same source cannot be identified unambiguously. There-
fore, a statistical approach is used to extract the yield of signal pairs (S), in which all
electrons and positrons in an event are combined to create an opposite charge-sign spec-
trum (OS). The combinatorial background (B) is estimated from same-event pairs with the
same charge sign (SS). In comparison to a mixed-event approach [51], the same charge-sign
approximation of the combinatorial background has the advantage to be self-normalized
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Figure 1. Left panel: raw pT,ee-differential yield (S) in peripheral (70–90%) Pb–Pb collisions at√
sNN = 5.02 TeV for 0.7 ≤ mee < 1.1 GeV/c2 overlaid with the opposite charge-sign distribution

(OS) and the same charge-sign spectrum multiplied by the acceptance correction factor Racc (B).
Right panel: signal over background as a function of pT,ee in peripheral (70–90%) Pb–Pb collisions
at √sNN = 5.02 TeV for 0.7 ≤ mee < 1.1 GeV/c2.

and to contain all residual correlations arising from charge-symmetric processes, such as
from conversions of correlated decay photons originating from the same and from decays
of different hadrons inside the same jets or in back-to-back jets. A different acceptance
for opposite charge-sign and same charge-sign pairs is observed arising from detector ge-
ometrical effects, i.e. non-uniformity of the detector performances in azimuthal angle ϕ.
The correction factor Racc, needed to account for this effect, is calculated with an event-
mixing technique detailed in ref. [52]. Events with similar global properties are grouped
together according to the z-position of the reconstructed primary vertex, the centrality of
the collision, and the event-plane angle estimated with the V0 detector. The factor Racc is
found to be consistent with unity above mee of 1 GeV/c2. The signal is then extracted as
S = OS −Racc × SS.

The opposite charge-sign spectrum, the combinatorial background, and the extracted
raw dielectron signal are shown in the left panel of figure 1 as a function of the pair trans-
verse momentum pT,ee for 0.7 ≤ mee < 1.1 GeV/c2 in 70–90% peripheral Pb–Pb collisions.
The corresponding signal-over-background ratio (S/B) is presented in the right panel of
figure 1. Towards very low pT,ee (pT,ee ≤ 0.1 GeV/c), the S/B ratio increases for both
centrality classes. However, the S/B ratio is about one order of magnitude lower in the
50–70% centrality class in this pT,ee region.

3.3 Efficiency correction

The raw signal is corrected for the finite dielectron reconstruction efficiency. To this end,
different Monte Carlo (MC) simulations are used, where a realistic detector response is
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Centrality Hit in the TPC–TOF ITS–TPC Shared Tracking Anchor Total
class first ITS layer matching matching ITS cluster and PID point
50–70% 2% 0–4% 5.4–7.4% 4% 16% 0% 18%
70–90% 2% 0–4% 5.4–7.4% 4% 6% 5% 10–12%

Table 1. Summary of the total systematic uncertainties of the measured dielectron yields for
pT,ee < 0.1GeV/c in semi-peripheral (50–70%) and peripheral (70–90%) Pb–Pb collisions at√
sNN = 5.02 TeV. The values presented as a range correspond to the smallest and largest

observed systematic uncertainties.

modelled using GEANT3 [53]. For very low pT,ee (pT,ee < 0.2 GeV/c), photoproduced
e+e− pairs are simulated with the event generator STARlight [25] and embedded into
hadronic collisions computed with HIJING [54]. At larger pT,ee, additional samples of
dielectron sources injected into HIJING simulated events are utilized. These include light-
flavour hadrons (π0, η, η′, ρ0, ω and φ) and J/ψ mesons, forced to decay into dielectrons
with the phenomenological EXODUS generator [51] and PHOTOS [55], respectively, and
produced in equal amounts with uniform pT distributions. In each centrality class (50–70%
or 70–90%), these input pT distributions are corrected with pT-dependent weights defined
as the ratio of the hadron pT spectra in the MC simulations and the expected hadron pT
distributions according to the hadronic cocktail explained in section 3.5. The weights are
passed to the decay electrons to produce a realistic mix of e+e− pairs from the various
sources considered. In addition, an enriched sample of heavy-flavour hadron sources with
enforced semileptonic decay channels generated with the Perugia 2011 tune of PYTHIA
6.4 [56, 57] is used. The final efficiency as a function of mee and pT,ee is the average of
the efficiencies of the different dielectron sources, weighted by their expected contribution,
for pT,ee ≥ 0.2 GeV/c. At lower pT,ee only the STARlight calculations are taken as input.
Other sources show dielectron efficiencies in agreement within statistical uncertainties with
the one extracted for e+e− pairs produced via photon–photon interactions.

3.4 Systematic uncertainties of measured dielectron spectra

The systematic uncertainties on the measured pT,ee- and mee-differential dielectron yields
in peripheral (70-90%) and semi-peripheral (50-70%) collisions originate from tracking,
electron identification and purity, and background subtraction. They are evaluated as
described in ref. [48] and summarised in table 1 for pT,ee < 0.1 GeV/c.

The systematic uncertainties related to the requirement of a hit in the innermost
ITS layer, the matching of the TPC track and the signal measured in the TOF, and the
matching of the track segments reconstructed in the ITS and the TPC are first estimated at
the single-track level. To this end, the efficiencies of these selection criteria are compared in
data and in MC as a function of pT for a pure sample of charged pions or electrons (TPC–
TOF matching). The latter is obtained by selecting electrons from photon conversions
in the detector material using topological requirements. A MC method is then used to
calculate the corresponding uncertainties for dielectrons, by generating particles in the full
mee and pT,ee phase space and forcing them to decay to e+e− pairs. The uncertainty for
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each e+e− pair is given by the sum of the uncertainties of the decay electrons, after applying
the fiducial selection (|ηe| < 0.8 and pT,e ≥ 0.2 GeV/c). The final systematic uncertainty is
obtained after averaging for a given mee and pT,ee over all generated particles. The TPC–
TOF matching efficiency is relevant only in the regions where the kaon and proton bands
cross the band of electrons in the TPC. The corresponding uncertainty varies between 0 and
4% for the e+e− pairs and is the largest for the invariant mass bin 1.1 ≤ mee < 2.7 GeV/c2

at low pT,ee (pT,ee < 0.1 GeV/c). The ITS–TPC matching efficiency is one of the dominant
sources of systematic uncertainties together with the particle identification and leads to
uncertainties between 5.4% and 7.4% increasing with mee. The systematic uncertainty
originating from the requirement of a hit in the first ITS layer is of the order of 2%.

The systematic uncertainty from the requirement on the number of ITS shared clusters
is estimated by varying the number of allowed shared ITS clusters for the selected electron
candidates and repeating the analysis steps. Releasing completely this selection criterion
increases significantly the amount of electrons from conversions in the detector material
and leads to a smaller S/B by a factor of about 0.6. Therefore the extracted systematic
uncertainty contains not only systematic effects from the signal efficiency, but also from
the background estimation. It is calculated from the maximum deviations of the efficiency-
corrected spectra variations, considered as statistically significant according to the Barlow
criterion [58] and found to be of the order of 4%.

In a similar way, the systematic uncertainty arising from the tracking and electron
identification and purity is evaluated by varying the remaining electron selection criteria
simultaneously, e.g. the requirement on the minimum number of reconstructed space points
in the TPC or |n(σTPC

e )|, to take into account possible correlations between them. In par-
ticular modifying the requirements on the TPC and TOF signals, i.e. |n(σTPC

e )|, |n(σTPC
π )|,

|n(σTPC
K )|, |n(σTPC

p )| and |n(σTOF
e )|, enables to probe possible biases due to differences in

the detector responses in data and MC and remaining hadron contamination in the electron
sample. The systematic uncertainty is computed as the root-mean-square of the variation
of the final data points and is found to be of the order of 16% (6%) in semi-peripheral
(peripheral) Pb–Pb collisions for pT,ee < 0.1 GeV/c. The main source of systematic un-
certainty in the 50–70% centrality class comes from the kaon and proton rejection in the
TPC and the non-perfect description of the measured particle energy loss in the TPC in
the simulations, which depends on the centrality of the collisions.

The systematic uncertainty originating from the correction factor Racc, estimated by
varying the event mixing pools used to calculate it, was found to be negligible at low pT,ee.

Finally, systematic uncertainties arise from the centrality class definition. The absolute
scale of the centrality is defined by the range of 0–90% centrality in which a Glauber-based
multiplicity model is fitted to the V0M distribution [47]. The lower centrality limit of 90%
of this range with its corresponding V0M signal is denoted the anchor point (AP). The AP
was shifted by ±1%, leading to a systematic uncertainty of 5% for the 70–90% centrality
class and negligible for the 50–70% centrality class.
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3.5 Expected yield from known hadronic sources

The expected dielectron yield from the decays of known hadrons produced in the hadronic
Pb–Pb collisions, called the hadronic cocktail, is calculated with a fast simulation of the
ALICE central barrel, including the angular and momentum resolution of the detector and
bremsstrahlung effects [59].

The Dalitz and dielectron decays of light neutral mesons are simulated following the
approach described in ref. [60]. The pT-differential production cross sections of η and ω

are estimated based on the ratio of their pT spectra to the one of π0 or π±, measured in
different collision systems and at different center-of-mass energies, whereas η′, ρ, and φ are
generated assuming mT-scaling over the full pT range or only at low pT [61–63]. The pT
spectra of π±, measured down to a pT of 0.1 GeV/c as a function of the collision centrality
in Pb–Pb collisions at √sNN = 5.02 TeV [64], are parametrized and extrapolated to pT = 0
using a two-component function [65, 66]. The difference between π0 and π± due to isospin-
violating decays is taken into account using an effective model that describes measured
hadron spectra (π±, K±, and p [64]) at low pT and includes strong and electromagnetic
decays [67], as described in ref. [49]. This leads to pT-dependent scaling factors applied to
the π± parametrizations of about 1.3 for pT→ 0 and consistent with unity within 2% for pT
> 1 GeV/c. The pT spectrum of η is computed as the average of the spectra obtained using
the parametrizations retrieved from the η/π0 ratio as a function of pT in pp collisions [49]
and from the K±/π± ratio as a function of pT measured down to pT = 0.3 GeV/c in Pb–Pb
collisions [64]. In all considered centrality classes (50–70% and 70–90%), the ratio of the
resulting pT distribution of η to the π0 parametrization at very low pT (pT ≤ 0.1 GeV/c)
was found to be in agreement within uncertainties with the η/π0 ratio in pp collisions. The
latter is constrained at low pT by the data from CERES/TAPS [68] and has a conservative
pT-dependent uncertainty of up to 40%, which is taken into account in the final uncertainty
of the hadronic cocktail. At mee around 0.782 GeV/c2, the dominant contribution to the
hadronic cocktail is given by the ω meson. A parametrization of the ω/π0 ratio as a function
of pT measured by ALICE in pp collisions at

√
s = 7 TeV [69] is performed and extended

to pT = 0 using data from PHENIX in pp collisions at
√
s = 200GeV [70]. It is used for

all centrality classes. Finally, the measured pT spectra of φ mesons in semi-central and
peripheral Pb–Pb collisions at √sNN = 5.02 TeV [71] are fitted and extrapolated down to
low pT (pT ≤ 0.4 GeV/c) using mT scaling to obtain the φ input parametrizations.

The contribution from correlated semileptonic decays of open charm and beauty
hadrons is computed with the next-to-leading order event generator POWHEG [72–75]
with PYTHIA 6 [56] to evolve the parton shower. The expected yield is normalized to the
cross sections dσcc̄/dy|y=0 and dσbb̄/dy|y=0 extracted with the same MC generator from
the e+e− spectra measured in pp collisions at

√
s = 5.02TeV [48] and scaled with the

nuclear overlap function. The resulting contribution from correlated open heavy-flavour
hadron decays dominates the hadronic cocktail yield for pT,ee < 0.1 GeV/c up to mee of
2.7 GeV/c2, except in the mass regions around 0.4, 0.78 and 1. GeV/c2, where the η, ω
and φ are the main sources of e+e− pairs, respectively. The uncertainties related to the
branching ratio of the semileptonic decays of the open heavy-flavour hadrons and the frag-
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mentation functions of charm and beauty quarks are omitted under the assumption that
these do not change from pp to peripheral and semi-peripheral Pb–Pb collisions.

The systematic uncertainties of the hadronic cocktail are computed by adding in
quadrature the uncertainties originating from the following sources: the π± and φ

parametrizations as a function of pT, the π0/π± correction factor, the η/π0 and ω/π0

ratios, the mT-scaling parameters used for η′, ρ and φ, the branching ratios of the differ-
ent light-flavour hadron decay channels, the heavy-flavour cross sections and the nuclear
overlap function. The final systematic uncertainty of the hadronic cocktail at very low
pT (pT,ee < 0.1 GeV/c) is between 14% in the intermediate mass range (1.1 ≤ mee <

2.7 GeV/c2) and about 30% in the mass regions dominated by η and ω decays.

4 Results

4.1 Invariant mass spectra

The efficiency-corrected e+e− invariant mass spectra at low pT,ee (pT,ee < 0.1 GeV/c) are
shown in figure 2 in peripheral (70–90%) and semi-peripheral (50–70%) Pb–Pb collisions
at √sNN = 5.02 TeV within the ALICE acceptance (|ηe| < 0.8 and pT,e > 0.2 GeV/c).
In this figure and the following ones, the upper limit at 90% C.L. using the Feldman and
Cousins methodology [76] is reported for the results which are found to be statistically
consistent with zero within one standard deviation. The data are compared with cocktails
of expected e+e− hadronic sources. The corresponding enhancement factors, expressed
as ratios of data over hadronic cocktail, are illustrated in the bottom panel of figure 2.
The total uncertainty of the cocktail is represented by a band. An excess of dielectrons
compared to the hadronic expectation is observed in both centrality classes, with a larger
significance in peripheral Pb–Pb collisions.

The hadronic cocktail contribution is subtracted from the inclusive e+e− pairs to ob-
tain the invariant mass distributions for excess e+e− pairs with pT,ee < 0.1 GeV/c presented
in the left and right panels of figure 3 for the 50–70% and 70–90% centrality classes, respec-
tively. The yield of excess e+e− pairs does not show a significant centrality dependence.
The expected contributions from thermal dielectrons from the partonic and hadronic phases
are also shown in the figure. They are estimated with an expanding thermal fireball model
including an in-medium broadened ρ spectral function [77–79]. Predictions from the same
model describe well the SPS [80, 81] and RHIC [82, 83] data. At pT,ee < 0.1 GeV/c, thermal
radiation from the medium is expected to be at least one order of magnitude smaller than
the measured e+e− excess in peripheral Pb–Pb collisions and have a different pT,ee shape
and centrality dependence [20]. The excess yield in the e+e− invariant mass spectra are
further compared with different calculations for photon–photon production of dielectrons.
A QED calculation at leading-order was performed by the authors of refs. [29, 37]. The
lowest-order two-photon interaction is a second-order process with two contributing Feyn-
man diagrams, as shown in figure 2 of ref. [18]. Higher-order contributions are ignored,
although the parameter of the perturbative expansion, the coupling Zα with α the fine
structure constant, is close to unity, i.e. 0.6, for lead ions. The straight-line approximation
for the incoming projectile and target nuclei is applied, as for the other calculations. The
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Figure 2. Dielectron mee-differential yields in semi-peripheral (50–70%) and peripheral (70–90%)
Pb–Pb collisions at√sNN = 5.02 TeV, compared with the expected e+e− contributions from known
hadronic decays. The error bars and boxes represent the statistical and systematic uncertainties of
the data, respectively, whereas the bands show the uncertainties of the hadronic cocktail. Arrows
indicate upper limits at 90% confidence level.

predictions from the authors of ref. [21] employ the Wigner formalism. The quasi-real pho-
ton fluxes originating from strong EM fields produced by the highly Lorentz-contracted
heavy ions passing each other can be written in terms of Wigner functions in momen-
tum and impact-parameter space. The cross section for the γγ → e+e− process is then
expressed as a convolution over impact parameters and transverse momenta. Realistic
charge form factors of the Pb nuclei, i.e Fourier transforms of the charge density, are taken
from ref. [84]. About 50% of the e+e− pairs are produced inside the nuclei for the centrality
class 70–90%. The model implemented in the STARlight MC generator uses the equiv-
alent photon approximation approach [25, 85]. The main difference between STARlight
and the two aforementioned calculations is related to the treatment of the b dependence in
the computations. STARlight utilizes the kT-factorisation method, where the one-photon
distribution is integrated over all transverse distances to obtain the shape of the kT dis-
tribution. For all models, the mee and pT,ee detector resolution, not corrected in the data,
are taken into account by folding the momentum and opening angle resolution, including
bremsstrahlung effects, in the calculations. As a result, the predicted mee distributions are
slightly softer than the ones computed with perfect detector resolution. The magnitude of
the effect is nevertheless below the sensitivity of the data. All models can reproduce the
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Figure 3. Excess dielectron mee-differential yields after subtraction of the cocktail of known
hadronic decay contributions in semi-peripheral (left) and peripheral (right) Pb–Pb collisions at√
sNN = 5.02 TeV, compared with calculations for coherent two-photon production of e+e− pairs

folded with the detector resolution [21, 25, 29, 37, 85]. For details see the text. The error bars
and boxes represent the statistical and systematic uncertainties of the data, respectively. Arrows
indicate upper limits at 90% confidence level.

measured mee excess spectra within their uncertainties. The ratios of the measured excess
yields to the different calculations, shown in the bottom panels of figure 3, are consistent
with unity within the statistical and systematic uncertainties of the data in both central-
ity classes. However, the STARlight predictions appear to be further away from the data
than the other calculations. The contributions from decays of vector mesons produced in
photo–nuclear collisions are expected to be very small for ρ, ω and φ [12, 26] and below 5%
based on ALICE results for photoproduced J/ψ at forward rapidity in Pb–Pb collisions
at √sNN = 5.02 TeV [86] extrapolated to midrapidity using the IIM model scenario 2 in
ref. [87].

4.2 Transverse momentum spectra

In order to further investigate the dielectrons produced via photon–photon interactions at
low pT,ee, the pT,ee spectra of inclusive e+e− pairs are shown in three different invariant mass
ranges in peripheral Pb–Pb collisions at √sNN = 5.02 TeV in figure 4. While the measured
yield at pT,ee ≥ 0.1 GeV/c can be described by the hadronic cocktail, a clear peak is seen
at pT,ee smaller than 0.1 GeV/c in all mee ranges. The latter is fairly well reproduced by
the aforementioned photon–photon models including the impact parameter dependence of
the photon kT distribution, i.e. the lowest-order QED calculations [29, 37] and calculations
using the Wigner formalism [21]. Both approaches predict very similar pT,ee distributions.
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Figure 4. Dielectron pT,ee-differential yields in peripheral (70–90%) Pb–Pb collisions at√
sNN = 5.02 TeV for three different mee ranges, i.e. 0.4 ≤ mee < 0.7 GeV/c2 (left),

0.7 ≤ mee < 1.1 GeV/c2 (middle), and 1.1 ≤ mee < 2.7 GeV/c2 (right), compared with the ex-
pected e+e− contributions from known hadronic decays and calculations for coherent two-photon
production of dielectrons folded with the detector resolution [21, 25, 29, 37, 85]. For details see the
text. The error bars and boxes represent the statistical and systematic uncertainties of the data,
respectively, whereas the bands show the uncertainties of the hadronic cocktail. Arrows indicate
upper limits at 90% confidence level.

On the contrary, all spectra computed with the STARlight model [25, 85] show a rise
towards pT,ee equal to zero, which is disfavored by the data. By integrating over all trans-
verse distances in the single-photon distribution, the kT-factorization approach employed
in STARlight leads to a pT,ee distribution whose shape is independent of the impact pa-
rameter. Such a treatment gives rise to uncertainties on the kT photon distribution of
the order of ωγ/γL, which is precisely the same order of magnitude as kT itself [18, 30].
Therefore the b dependence of kT, and as a consequence of pT,ee, needs to be taken into
account in the calculations in order to interpret the results correctly. The limited pT res-
olution of the detector has a negligible effect compared to the data uncertainties at low
mee (0.4 ≤ mee < 0.7 GeV/c2) but it affects more significantly the reconstructed pT,ee
distributions at large mee (1.1 ≤ mee < 2.7 GeV/c2). At large mee, where electrons have
larger pT, the detector resolution on pT worsens. The reconstructed pT,ee distributions
are pushed towards larger pT,ee values compared to the true pT,ee spectra. The maximum
of the spectra predicted with the Wigner formalism and lowest-order QED calculations is
reduced by about 35%.

The p2
T,ee distributions of the excess e+e− pairs after subtracting the hadronic cocktail

are shown in figure 5 for the three invariant mass regions in peripheral Pb–Pb collisions at
√
sNN = 5.02 TeV together with the different calculations for photon–photon production

of dielectrons [21, 25, 29, 37, 85]. The data can be reproduced by the lowest-order QED
predictions [29, 37] and computations from the authors of ref. [21], whereas the STARlight
calculation [25, 85] falls below the data points for p2

T,ee larger than 6.25×10−4 (GeV/c)2 and
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Mass region Data QED Wigner STARlight
(GeV/c2) [29, 37] [21] [25, 85]
0.4 ≤ mee ≤ 0.7 44 ± 28 (stat.) ± 6 (syst.) MeV/c 44MeV/c 45MeV/c 30MeV/c
0.7 ≤ mee ≤ 1.1 45 ± 36 (stat.) ± 8 (syst.) MeV/c 48MeV/c 48MeV/c 38MeV/c
1.1 ≤ mee ≤ 2.7 69 ± 36 (stat.) ± 8 (syst.) MeV/c 50MeV/c 50MeV/c 42MeV/c

Table 2. The measured
√
〈p2

T,ee〉 of excess yields in 70-90% peripheral Pb–Pb collisions at
√
sNN = 5.02 TeV compared with expectations from photon–photon calculations [21, 25, 29, 37, 85].

For details see text.

overshoots the measured spectra at low p2
T,ee. This observation is consistent with the results

shown as a function of pT,ee and is in line with previous experimental measurements [24, 26,
27] which have demonstrated that the photon kT-factorization approach used in STARlight
lacks b dependences clearly visible in the experimental measurements. The data support
the statement that the pT,ee broadening observed in HHICs in comparison to those in
UPCs originates predominantly from the initial EM field strength that varies significantly
with impact parameter. To quantify the spread of the pT,ee distributions, the

√
〈p2

T,ee〉 is
calculated for both the data and aforementioned photon–photon models in the measured
p2

T,ee range (0 ≤ p2
T,ee < 0.01 (GeV/c)2). The values are given in table 2. The measured√

〈p2
T,ee〉 are found to be in agreement with expectations from theory within uncertainties.

The lowest-order QED calculations and the predictions based on the Wigner formalism
predict similar

√
〈p2

T,ee〉 for the three different mee bins. The increase observed in table 2
is mostly due to detector pT resolution effects. The data are not yet precise enough to
conclude on a possible mee dependence of

√
〈p2

T,ee〉.
On the right panel of figure 5, the measured p2

T,ee spectrum for 0.4 ≤ mee < 0.7 GeV/c2

in peripheral Pb–Pb collisions is compared to the p2
T,ee distributions measured by the

STAR collaboration in a similar phase-space region in peripheral (60-80%) Au–Au and U–
U collisions at √sNN = 200GeV and 193GeV [12]. On the one hand, the √sNN dependence
of the cross section for the reaction γγ → e+e− is expected to be rather small from RHIC
to LHC energies in the low mee range and midrapidity region considered here [20]. On
the other hand, the Z of the different colliding ions are different (ZAu = 79, ZPb = 82,
ZU = 92) and the ηe, yee, and mee ranges used in the STAR and ALICE experiments are
not exactly the same. The results at LHC are found to be similar to the ones at RHIC
within large uncertainties. The measured

√
〈p2

T,ee〉 (see table 2) is comparable to the ones
observed in peripheral Au–Au (50.8 ± 2.51 (stat.+syst.) MeV/c) and U–U (43 ± 2.26
(stat.+syst.) MeV/c) collisions.

5 Summary and outlook

The first measurements of e+e− pairs at low pT,ee (pT,ee < 0.1 GeV/c) and mee (0.4 ≤
mee < 2.7 GeV/c2) at LHC energies are presented at midrapidity (|ηe| < 0.8) in peripheral
(70–90%) and semi-peripheral (50–70%) Pb–Pb collisions at √sNN = 5.02TeV. An excess
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Figure 5. Left: Excess dielectron p2
T,ee-differential yields after subtraction of the cocktail of known

hadronic decay contributions in peripheral (70–90%) Pb–Pb collisions at √sNN = 5.02 TeV for dif-
ferentmee ranges, i.e. 0.4 ≤mee < 0.7 GeV/c2, 0.7 ≤mee < 1.1 GeV/c2 and 1.1 ≤mee < 2.7 GeV/c2,
compared with calculations for coherent photon–photon production of dielectrons folded with the
detector resolution [21, 25, 29, 37, 85]. Right: Excess dielectron p2

T,ee-differential yields after sub-
traction of the cocktail of known hadronic decay contributions in peripheral Pb–Pb (70–90%),
Au–Au (60–80%) and U–U (60–80%) collisions at √sNN = 5.02, 0.2 and 0.193TeV [12], respec-
tively, in a similar mee range. The error bars and boxes represent the statistical and systematic
uncertainties of the data, respectively. Arrows indicate upper limits at 90% confidence level.

of dielectrons is observed at low pT,ee over the full measured mee range compared to the
expected e+e− yield from known hadronic sources and thermal radiation from the medium
in Pb–Pb collisions. The excess yields after subtraction of the hadronic cocktail do not
exhibit a significant centrality dependence and can be reproduced as a function of mee
by different calculations for photon–photon production of dielectrons in both centrality
classes. In peripheral Pb–Pb collisions the inclusive pT,ee spectra and the excess dielectron
p2

T,ee distributions are shown in three different mee intervals (0.4 ≤ mee < 0.7 GeV/c2,
0.7 ≤ mee < 1.1 GeV/c2, and 1.1 ≤ mee < 2.7 GeV/c2) and compared with the hadronic
cocktail and predictions for the γγ → e+e− process using the same models as for the mee
spectra. The results at pT,ee < 0.1 GeV/c (p2

T,ee < 0.01 (GeV/c)2) clearly disfavor the shape
of the spectra of photon–photon produced dielectrons computed with STARlight [25, 85],
whereas they are reproduced by lowest-order QED calculations [29, 37] and calculations
using the Wigner formalism [21]. STARlight does not contain any impact-parameter effects
on the shape of the transverse momentum distribution of the quasi-real photons and thus
on the one of the pT,ee and p2

T,ee distributions of the produced e+e− pairs. According
to the calculations [21, 25, 29, 37, 85], these impact-parameter dependencies cannot be
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neglected in theoretical models computing the γγ → l+l− process in non ultra-peripheral
heavy-ion collisions in order to interpret the data correctly. These results are in line with
the statement that the pT,ee broadening observed in HHICs in comparison to those in
UPCs originates predominantly from the initial electromagnetic field strength that varies
significantly with impact parameter. Therefore, determining precisely the magnitude of
possible final-state effects related to the creation of a hot and dense medium in HHICs
requires a very good understanding of the electromagnetic field produced in heavy-ion
collisions. Finally, the measured

√
〈p2

T,ee〉 in 0.4 ≤ mee < 0.7 GeV/c2 is compatible with
the values observed in non-central Au–Au and U–U collisions by STAR at RHIC [12].

A significant improvement in the measurement, as well as more differential studies,
are expected after the ALICE upgrades for the LHC Runs 3 and 4, where the number
of recorded collisions for the centrality classes considered in this article is expected to
increase by a factor greater than 50 [88–90]. The reduced material budget in front of
the first tracking layer, together with the improved resolution of the distance-of-closest
approach to the collision vertex, will help to suppress the combinatorial and heavy-flavour
backgrounds, relevant in such analyses.
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