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Plasma echo is a dramatic manifestation of plasma damping process reversibility. In this paper we calculate
temporal and spatial plasma echoes in graphene in the acoustic plasmon regime when echoes dominate over
plasmon emission. We show an extremely strong spatial echo response and discuss how electron collisions reduce
the echo. We also discuss differences between various electron dispersions and differences between semiclassical
and quantum model of echoes.
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I. INTRODUCTION

Spin echo denotes a peculiar response when a spin en-
semble is excited by two separated pulses. While system
response decays after each pulse has ceased, after some time
our system spontaneously regroups and shoots out another
pulse, indicating a reversible dynamics [1]. This is a generic
behavior that can be understood from the simple example of
Hahn’s horse herd. After a cowboy shoots a gun horses will
run away, and since each has a different velocity our herd
will spread. If after some time another cowboy in front of the
herd shoots his gun, horses will turn around and at particular
instant regroup at the initial herd size (here we neglect horse
collisions and acceleration times). A similar effect occurs in
electron plasmas [2] and it is the purpose of this paper to
explore the echo effect in the two-dimensional (2D) graphene
electron plasma [3].

We describe our plasma by a semiclassical distribution
function f (r, p, t ), where r = xx̂ + yŷ is the radius vector
and p is the electron momentum in the 2D graphene plane.
In the equilibrium case at temperature T and Fermi energy EF

we get a Fermi-Dirac distribution: f0(p) = 4
h2

1
e(Ep−EF )/kBT +1

[4].

Here h2 is the semiclassical phase space volume per quantum
state and we took into account two spin and two valley de-
generacy in graphene [5]. The main point of this paper can be
understood from the following simple analysis. Let us apply
two electric field pulses separated by a time τ , both periodic
in space: E = A1δ(t ) cos k1x x̂ + A2δ(t − τ ) cos k2x x̂. In the
linear response regime first pulse will induce a distribution
change:

δ f1 ∝ A1 cos k1x · ∂ f0

∂ px
. (1)

Later we will show that the constant of proportionality
is just the electron charge, but for now we will only give
a rough analysis. For example, it is easy to see that in the
lowest order we need to have a factor of a type ∂ f0/∂ px in the
response. Namely if f0(px ) was a constant, then the electric
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field would make no effect on our plasma since it would just
shuffle electrons ṗx = −eEx between states of a featureless
distribution. After the external pulse has ceased our system
continues to evolve as

δ f1 ∝ A1 cos k1(x − vxt ) · ∂ f0

∂ px
, (2)

where we assumed that particles in plasma evolve indepen-
dently which we will justify later. We can now see that at
large times t we get fast oscillations in δ f1(p), which results
in large cancellations in the integral of the induced particle
density δn1 = ∫

dp δ f1. In other words, we expect to see
density decay as time increases. Specifically in the 2D case

δn1 ∝ A1

∫ ∞

0
p d p

df0

d p

∫ 2π

0
dθ cos θ cos k1(x − vt cos θ ).

(3)
Particularly in graphene we have massless Dirac electrons

with linear energy dispersion E (p) = vF |p| (note a singularity
at the Dirac point p = 0) and velocity v(p) = ∂E /∂p = vF p̂
of constant magnitude v = vF [5]. We thus obtain the particle
density

δn1(x, t ) ∝ A1 sin k1x · J1(k1vFt ), (4)

where Jν is a Bessel function of the first kind of the order ν [6]
and we only wrote the (x, t ) density dependence. Furthermore,
since Jν (ξ ) ∼ √

2/πξ cos(ξ − νπ/2 − π/4) for large ξ , we
see that density decays like 1/

√
t at large times. Note that

this result is independent of temperature in the graphene case,
which is a consequence of the linear electron dispersion, i.e.,
a Dirac point singularity.

In the case of massive particles with parabolic dispersion,
E (p) = p2/2m, at zero temperature we get the same type
of behavior as given by Eq. (4), only now vF = √

2EF /m.
However, this behavior can now be traced to the Fermi
sea singularity since df0/d p → ∞ at the Fermi momentum
pF = √

2mEF . One obtains a very different result in the high
temperature case of Boltzmann distribution. It is then more
convenient to separate the integral (3) into Cartesian coordi-
nates

∫
d pxd py and, by performing the saddle-point analysis,
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one finds the exponential decay: dn1 ∼ e−k2
1v2

T t2/2, where vT =√
kBT/m [4].
In all these cases we can see that plasma density decays

in time even though we did not consider any dissipative
processes. This plasma decay is thus a perfectly reversible
process which can in turn be demonstrated by an echo experi-
ment. To show this we look at the response to the second pulse
at a large time τk1vF � 1. One again obtains the response
of the type shown in Eq. (1), which decays after the second
pulse has ceased. However, now there is another response
(also linear in the second field amplitude) given by

δ f2 ∝ A2 cos k2x · ∂δ f1

∂ px

∝ A2 cos k2x · A1 sin k1(x − vxτ ),

(5)

where we explicitly wrote only the x dependence. Note that
we have used Eq. (2) and the derivative in ∂δ f1/∂ px has
affected only the argument of the cosine since this extracts a
large factor ∝τ . After the second pulse has ceased our system
continues to evolve as

δ f2 ∝ A1A2 sin k1(x − vxt ) cos k2[x − vx(t − τ )]

= 1
2 A1A2 sin[(k1 + k2)x − (k1 + k2)vxt + k2vxτ ]

+ 1
2 A1A2 sin[(k1 − k2)x − (k1 − k2)vxt − k2vxτ ]. (6)

By looking at the argument of the second sine we see that at a
particular time,

t = τecho = τ · k2

k2 − k1
, (7)

all the p dependence disappears and we remove the cancella-
tions in the integral of δn, i.e., we get a strong echo response.
The same trick clearly does not work with the first sine since
then echo had to occur at a time τk2/(k2 + k1) < τ , i.e., before
the second pulse was even launched. The same argument
dictates that k2 > k1, since otherwise the echo from Eq. (7)
would had to have occurred at time τecho < 0, i.e., before even
the first pulse was launched.

Note that there is also a second order response,

δ f2 ∝ A1 cos k1x
∂δ f1

∂ px
∝ A2

1 cos2 k1x, (8)

excited at time t = 0, which continues to evolve as δ f2 ∝
A2

1 cos2 k1(x − vxt ). This mode contains a second harmonic
oscillating in space at wave vector 2k1 and decaying in time.
Similar properties are valid for the δ f2 ∼ A2

2 mode excited at
time t = τ . These modes will then contribute to higher order
echoes [2].

II. PLASMON EMISSION

So far we have neglected particle interactions which are
of course very important. For example long range Coulomb
interaction can result in collective plasma oscillation (plas-
mon). Then, in addition to the echoes discussed in the previous
chapter, our pulsed sources can also excite plasmons. It is the
purpose of this chapter to discuss when we can neglect this
plasmon emission. Let us first neglect particle interactions
beyond the mean field (we discuss collisions at the end of

the paper). Plasma dynamics is then described by the Vlasov
equation [4]:

0 = df

dt
= ∂ f

∂t
+ ṙ · ∂ f

∂r
+ ṗ · ∂ f

∂p
. (9)

The force on the electron is ṗ = −eE, where E = Eext +
Eind contains both the externally applied electric field and
the induced (screening) field. We focus on the regime where
electrons and photons (i.e., polaritons) propagate at velocities
∼vF � c, so we neglect relativistic effects and introduce the
electrostatic potential via E = −∇ϕ.

Let the graphene plane sit on a dielectric of permittivity
ε1 and width d , which in turns sits on the perfectly con-
ducting metal plate. Furthermore, we assume a dielectric of
permittivity ε2 filling the space above the graphene. External
potential will induce charge density ρ ind = −e

∫
dp δ f , which

will create the potential ϕind. It is straightforward to solve
the Maxwell equations for the 2D charge density oscillating
at a particular Fourier component: ρ ind(r) = ρ ind

k eik·r. Fourier
component of the induced potential is given by

ϕind
k = ρ ind

k

2kε0

2(1 − e−2kd )

ε1 + ε2 + (ε1 − ε2)e−2kd
= ρ ind

k

2kε0εk
, (10)

where we have introduced the wave number dependent per-
mittivity εk for convenience. Particularly if the conducting
plate is far (kd → ∞) we simply get the average permittivity,
εk = ε̄ = (ε1 + ε2)/2, while if the plate is near (kd → 0) we
get εk → ∞.

Let us now look at the linear response to the external
potential. In that case we can separately treat each Fourier
component: ϕext (r, t ) = ϕext

kωei(k·r−ωt ). From Eq. (9) we find
Fourier component of δ f = f − f0:

δ fkω = − eϕkωk
k · v − ω

· ∂ f0

∂p
. (11)

We can then calculate induced charge density ρ ind
kω =

−e
∫

dp δ fkω and using Eq. (10) the induced potential ϕind
kω =

ϕkω − ϕext
kω . We thus obtain the total system response to the

external potential,

ϕkω = ϕext
kω

ε(k, ω)
, (12)

where we have introduced the dielectric function

ε(k, ω) = 1 − e2

2kε0εk

∫∫
p d p dθ

k · v − ω
k · ∂ f0

∂p
. (13)

Note that the dielectric function in any isotropic system
depends only on the magnitude of the wave vector k = |k|
and generally satisfies ε(k,−ω) = ε∗(k, ω) [4].

Finally let us note that the electric field in the graphene
plane, Er = −∇rϕ, is longitudinal with Fourier components
Ek = −ikϕk. We will be mostly interested in 1D variations
when all wave vectors are along x direction for example. Then
it is convenient to introduce the x component of the field: Ek =
Ek · x̂. From Eq. (12) we can then find the total response to the
external field,

Ekω = E ext
kω

ε(k, ω)
, (14)
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or from Eq. (10) we can find the induced field,

E ind
k = −ikx

ρ ind
k

2|kx|ε0ε|kx |
, (15)

which is what experimentalists can ultimately measure.
Particularly in graphene k · v = kvF cos θ , so we can sepa-

rate integrals over d p and dθ in (13). The integral over d p can
be easily solved by partial integration, while the integral over
dθ can be solved using the residuum theorem in the complex
plane ζ = eiθ , so we obtain

ε(k, ω) = 1 + χk

⎛
⎜⎝1 − 1√

1 − k2v2
F /ω2

⎞
⎟⎠, (16)

where we have introduced

χk = 4πe2kBT

kε0εkh2v2
F

ln(1 + eEF /kBT ). (17)

Note that ε(k, ω) diverges at the line ω/k = vF , which is a
very specific consequence of the linear Dirac dispersion where
all electrons move at the same velocity vF . Furthermore, for
0 < ω/k < vF we have a positive imaginary part of ε which
signifies the damping process, while for ω/k > vF there is
no damping and graphene can support plasmon modes de-
fined by ε(k, ω) = 0. In that case our systems support free
plasma oscillations even in the absence of the external field
[see Eq. (12)]. Plasmon dispersion is easily calculated from
Eq. (16):

ωP = kvF · 1 + χk√
1 + 2χk

, (18)

which is plotted in Fig. 1(a) for the case εk = ε̄ (absence of
metal plate). In that case it is convenient to introduce the
system scale parameter K = kχk and plot k in these units.
Generally the plasmon reaches almost acoustic dispersion
ωP ≈ kvF for χk � 1, which can be obtained with large sub-
strate screening (large ε1,2 or small distance d to the metal
plate). Moreover, it is easy to check that plasmon dispersion
can never cross the singular line ω = kvF , where ε(k, ω)
diverges (since

√
1 + 2χ <

√
1 + 2χ + χ2 = 1 + χ ). How-

ever, it was shown that these acoustic plasmons are very
weakly excited by a pulse source localized in time [7] and
we will show that the same is true of the source localized in
space. Note that this is bad news for the acoustic plasmon
nonlinear response, which was shown to be extremely large
[8]. In future papers we will discuss how to efficiently excite
acoustic plasmons and fully benefit from these nonlinearities.

Let us first look at the system response to a pulse localized
in time and periodic in space. We apply an electric field in the
graphene plane, Eext = E extx̂, where

E ext (x, t ) = −Aδ(t ) cos kx. (19)

Note that A = − ∫
E ext (0, t )dt , which corresponds to the

amplitude of the vector potential (in the gauge Φ = 0, A �= 0).
From Eq. (14) we easily find the total field:

E (x, t ) = −A cos kx
∫ ∞

−∞

dω

2π

e−iωt

ε(k, ω)
. (20)

FIG. 1. (a) Plasmon dispersion in graphene. Left (i.e., right)
inset shows integration contour in complex ω plane (k plane)
for perturbation localized in time (space) and periodic in space
(time). (b) Plasma response to an electric field perturbation:
E ext (x, t ) = −Φδ(x) cos ω1t − Φδ(x − l ) cos ω2t , where ω1 = vF K ,
ω2 = 3vF K , eΦ = 8EF /lK , and lK = 20. We plot each field fre-
quency with different color and shift vertically the red curve by
ΦK/2 and the green curve by −ΦK/2. Red, blue and green curves
present fields oscillating at frequencies ω1, ω2, and ω3 = ω2 − ω1,
respectively. Total field is the sum of these three contributions. Red
and blue curves present linear response, i.e., Dirac modes corre-
sponding to Eq. (32), while the green curve presents the nonlinear
echo field corresponding to Eq. (57). Note a divergence of the echo
field at lecho = lω2/ω3, signifying a breakdown of a perturbative
approach at this point. This divergence is removed by electron colli-
sions (see text for details).

This integrand has singularities at the plasmon poles ω =
±ωP, where ε(k, ω) = 0, and at the points ω = ±kvF , where
ε(k, ω) has singularities. To take these points properly into
account we adiabatically turn on the external field ∝eηt ,
where η → 0+. This amounts to adding a positive imaginary
part to the frequencies of the Fourier components: E exteηt =∫

E ext
ω e−i(ω+iη)t dω/2π . This means that now the singularities

of 1/ε(k, ω + iη) are pushed into the lower half of the com-
plex ω plane. In other words, the integral (20) passes slightly
above mentioned singularities. To evaluate the integral for
t > 0 we close the contour of integration in the lower half
of the complex ω plane [see Fig. 1(a)]. The result is simply
given by the singularities of the function 1/ε(k, ω), which are
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given by the zeros of ε(k, ω) (i.e., the plasmon poles) and
the singularities of the ε(k, ω), which we specify by putting
a branch cut along the line 〈−kvF , kvF 〉. Plasmon poles are
easily evaluated by the residuum theorem:

EP(x, t ) = 2A cos kx
sin ωPt

∂ε/∂ω|ωP

. (21)

One can immediately see that we can reduce the plasmon
emission by using acoustic plasmons where ∂ε/∂ω|ωP is large.
This is because there is a fast growth of dielectric function
from the plasmon pole ε(k, ωP ≈ kvF ) = 0 to the singularity
ε(k, kvF ) = ∞ over a short frequency interval. Mathemati-
cally if χk � 1 we get from Eq. (16)

∂ε

∂ω

∣∣∣∣
ωP

≈ 1

χ2
k kvF

, (22)

so the plasmon field is

EP(x, t ) ≈ 2χ2
k kvF A cos kx sin ωPt

≈ 2χ2
k kvF A cos kx sin kvFt .

(23)

The remaining part of the integral (20) is determined by the
behavior along the branch cut. We shall show that this is the
dominant part when χk � 1. From Eq. (16)

1

ε(k, ω)
≈ 1 − χk

⎛
⎜⎝1 + iω√

k2v2
F − ω2

⎞
⎟⎠, (24)

which is valid except near the branch points ω = ±kvF , which
contribute little (since the integral of the type

∫ l
0 dx/

√
x is

small for small l). Note that ε has an imaginary part in the
interval ω ∈ 〈−kvF , kvF 〉, whose sign can be easily found
from the general properties of the dielectric function which
has to satisfy Imε(ω > 0) � 0 along the physical contour (just
above the cut) [4]. We thus obtain the integral along the cut,

ED(x, t ) ≈ A cos kx · 2
∫ kvF

−kvF

dω

2π

χkiω e−iωt√
k2v2

F − ω2

= χk kvF A cos kxJ1(kvFt ),

(25)

where the last equation was obtained from the integral rep-
resentation of the Bessel function [6]. Since this singularity
at ω = kvF is a very specific result of the Dirac electron
linear dispersion we refer to this mode ED as the Dirac mode
for convenience. We can now clearly see that the plasmon
emission is suppressed by a factor χk � 1 compared to the
Dirac mode. However, experimentalists should be careful not
to confuse these two as both look similar superficially. Indeed
both oscillate at similar frequencies ω ≈ kvF and since the
Dirac mode decays slowly, ED(t ) ∼ 1/

√
t , one might confuse

it with a lossy plasmon.
Let us show that a similar behavior is observed from the

perturbation localized in space and periodic in time:

E ext (x, t ) = −Φδ(x) cos ωt . (26)

This also corresponds to a more typical experimental setup
used to excite plasmons via a scanning near field optical
microscope (SNOM) [9,10]. Note that Φ = − ∫

E ext (x, 0)dx
corresponds to the amplitude of the scalar potential (now in

the gauge A = 0, Φ �= 0). From Eq. (14) we can find the total
field

E (x, t ) = −Φ

2
e−i(ω+iη)t

∫ ∞

−∞

dk

2π

eikx

ε(k, ω + iη)
+ c.c., (27)

where c.c. stands for the complex conjugate. We have again
introduced the positive imaginary part to the frequency and
we have used a general relation: ε(−ω∗) = ε∗(ω) [4]. Also,
for the sake of convenience, instead of kx here we write k,
which can now be positive and negative. One should just keep
in mind that in this quasi-1D case ε(k) depends only on the
magnitude of wave number |k|.

Same as before, the integrand in Eq. (27) has singularities
at the plasmon poles k = ±kP, where ε(k, ω + iη) = 0, and at
points k = ±(ω + iη)/vF , which correspond to singularities
of ε(k, ω + iη). If ω > 0 then these points are pushed slightly
into a lower half of the complex k plane on a negative real
semiaxis (Rek < 0) and oppositely on a positive semiaxis
(Rek > 0). To evaluate the integral (27) for x > 0 we close
the integration contour in the upper half of the complex k
plane [see Fig. 1(a)]. The result is simply given by the sin-
gularities of the function 1/ε(k, ω), which are given by the
zeros of ε(k, ω) (i.e., the plasmon poles) and the singularities
of the ε(k, ω), which we specify by putting a branch cut
along the lines 〈−∞,−ω/vF 〉 and 〈ω/vF ,∞〉. Considering
the plasmon poles, only the pole on the positive real semiaxis
(k = +kP) contributes to the integral (27), which is easily
evaluated by the residuum theorem:

EP(x, t ) = Φ
sin(kPx − ωt )

∂ε/∂k|kP

. (28)

It is clear that only the plasmon pole with positive wave
number k = +kP contributes for ω > 0, since at x > 0 we can
only have a plasmon propagating to the right of the source.
Again we see that the plasmon emission is suppressed for
χkP � 1, since from Eq. (16)

∂ε

∂k

∣∣∣∣
kP

≈ − 1

χ2
ω/vF

ω/vF
, (29)

where we took into account that for the acoustic plasmon kP ≈
ω/vF . The plasmon field in this limit is

EP(x, t ) ≈ −χ2
ω
vF

ω

vF
Φ sin

[
ω

vF
(x − vFt )

]
. (30)

The remaining part of the integral (27) is given by the
integral along the cut line 〈ω/vF ,∞〉, which we again refer
to as the Dirac mode. In this case we were able to obtain
an analytical solution only for εk = ε̄, i.e., when there is no
metal plate, so we present this case only. Strictly speaking
there is then also a singularity at k = 0 where ε(k, ω) → ∞,
but it does not contribute to integral (27) since 1/ε = 0. From
Eq. (24) we get the Dirac mode:

ED(x, t ) ≈ Φ e−iωt
∫ ∞

ω
vF

dk

2π

ω
kvF

χ ω
vF

iω eikx√
k2v2

F − ω2
+ c.c. (31)

Then, using the relation i eikx/k = − ∫ x
0 eikxdx + i/k and in-

tegral representation of the Hankel function of the first kind
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H (1)
ν , we obtain [6]

ED(x, t ) ≈ χ ω
vF

ω

vF

i

4
Φ e−iωt

(
−

∫ xω
vF

0
H (1)

0 (ξ )dξ + 1

)
+ c.c.,

(32)

which can be further expressed via the Struve functions Hν

using the relation [6]∫ x

0
H (1)

0 (ξ )dξ = xH (1)
0 (x) + π

2
x
(
H0(x)H (1)

1 (x)

− H1(x)H (1)
0 (x)

)
. (33)

To get the field at x < 0 we close the integration contour in
the lower half of the complex k plane and one can easily show
that ED(x < 0, t ) = ED(−x, t ).

Again we see that plasmon emission is suppressed by a
factor χω/vF � 1 compared to the Dirac mode. Note the oscil-
lating, slowly decaying behavior of the Dirac mode [plotted in
Fig. 1(b)]. Experimentalists are again warned not to confuse it
with a lossy plasmon.

The reason for low plasmon emission, i.e., small screening
effect, can be easily understood by looking at Eq. (16). For
small χk � 1 screening is negligible ε ≈ 1, unless one is
extremely close to the line ω = kvF .

III. ECHO EMISSION

Let us first explore temporal echoes and look at the system
response to two pulses:

E ext (x, t ) = −A1δ(t ) cos k1x − A2δ(t − τ ) cos k2x. (34)

Again we focus on the regime of acoustic plasmons χk � 1
when the plasmon emission is weak. We can then neglect the
action of the screening field on the system and simply write
the total field E = E ext [mathematically this corresponds to
Eq. (24)]. It is then particularly simple to solve the Vlasov
Eq. (9) in the perturbative approach. To do so we look at the
general problem:

0 = ∂ f

∂t
+ vx

∂ f

∂x
− δ(t − τ )a(x). (35)

Using the Fourier transformations we obtain for t > τ

f (x, t ) = a[x − vx(t − τ )], (36)

which could have been anticipated as particles freely evolve
with velocities vx after the pulse has ceased. Specifically the
linearized Vlasov equation response to the first pulse is

0 = ∂δ f1

∂t
+ vx

∂δ f1

∂x
+ δ(t )A1e cos k1x

∂ f0

∂ px
, (37)

where f − f0 = δ f1 ∝ A1. We thus obtain

δ f1(x, t ) = −A1e
∂ f0

∂ px
cos k1(x − vxt ), (38)

which corresponds to the Dirac mode from Eq. (25) that we
calculated by a different approach. Compare also to Eq. (2)
from the Introduction.

Next we include the second pulse and look at the solution
in the form f = f0 + δ f1 + δ f2. The Vlasov equation lin-
earized in the variable δ f2 ∝ A2 is given by

0 = ∂δ f2

∂t
+ vx

∂δ f2

∂x
+ δ(t − τ )A2e cos k2x

∂ ( f0 + δ f1)

∂ px
.

(39)
Here the term containing ∂ f0/∂ px leads to a decaying

Dirac mode just like the response to the first pulse given by
Eq. (38), which is irrelevant since it does not contribute to
the lowest order echo. Moreover, at large times t · k1vF � 1,
the derivative in ∂δ f1/∂ px affects only the cosine in Eq. (38),
since this gives a large factor ∝t . We are thus left with the
following equation:

0 = ∂δ f2

∂t
+ vx

∂δ f2

∂x
− δ(t − τ )A1A2e2

× cos k2x sin k1(x − vxτ )k1τ
∂vx

∂ px

∂ f0

∂ px
. (40)

Then using Eqs. (35) and (36) we obtain

δ f2(x, t ) = A1A2e2k1τ
∂vx

∂ px

∂ f0

∂ px

× cos k2[x − vx(t − τ )] sin k1(x − vxt ). (41)

Compare it also to Eq. (6) from the Introduction. Just like
there we again write the product cos · sin as the sum of two
sines and select only the one which contributes to the echo:

δ f echo
2 (x, t ) = A1A2e2k1τvF

1

2p

df0

d p
sin2 θ cos θ

(42)× sin[−k3x + (k3t − k2τ )vF cos θ ],

where k3 = k2 − k1. We can then calculate the induced charge
density ρ ind = −e

∫
dp δ f echo

2 and using Eq. (15) the induced
(echo) field that can be measured:

E echo(x, t ) = A1A2
e3k1τvF

4ε0εk3

f0(0)
∫ 2π

0
dθ sin2 θ cos θ

× cos[−k3x + (k3t − k2τ )vF cos θ ]. (43)

Note that the full self-consistent echo calculation differs
from our Eq. (43) only in that the integrand should be divided
by a product of ε1(θ )ε2(θ )ε3(θ ), where [2,4]

εν (θ ) = ε(kν, sνkνvx ) = 1 + χkν

(
1 + i

cos θ

sin θ

)
. (44)

Here the signs are s1 = −1 and s2,3 = 1, but we are careless
about the final sign of Imε since it does not change the discus-
sion. Namely we can clearly see that, if χkν

� 1, screening
factors εν (θ ) only reduce the regime of very small angles
θ � 1, which is in any case small due to a factor sin2 θ in the
integrand of Eq. (43), so we can indeed neglect the screening
effects.

Finally using the integral representation of Bessel func-
tions and the relation [6] J1(ξ ) + J3(ξ ) = 4J2(ξ )/ξ , we obtain
an explicit expression for the echo electric field:

E echo(x, t ) = A1A2
πe3k1τvF

2ε0εk3

f0(0) sin k3x
J2[vF k3(t − τecho)]

vF k3(t − τecho)
.

(45)
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One can clearly see a strong echo response near the time
τecho given by Eq. (7) and a decay in E echo as we move away
from that point in time. Note that J2(x)/x = 0 at x = 0 but the
amplitude of J2(x)/x is of the order of ∼1 at x ∼ 1. Echo field
amplitude is thus of the order

E echo ∼ A2χkk2v2
F τe/pF , (46)

where we assumed that A1,2 ∼ A, k1,2 ∼ k, and T = 0 K. First
of all we can see that echo will become comparable to the
plasmon field (23) if

A ∼ pF

e

χk

kvF τ
, (47)

which is quite low since χk � 1 and kvF τ � 1. A somewhat
larger field is required to have echo comparable to the Dirac
mode amplitude (25):

A ∼ pF

e

1

kvF τ
. (48)

One might worry here about other nonlinear effects that
we disregarded in our analysis. For example, it was shown
that acoustic plasmons have extremely large nonlinear re-
sponse [8], so one might wonder if we can really disregard
the plasmon/screening field in the nonlinear case (strictly
speaking we have demonstrated that this is true only in the
linear response). Specifically it was shown that linear response
breaks down for the plasmon vector potential amplitude AP ∼
(1 − kvF /ω)pF /e [8]. One can get a rough understanding
of this result by looking into two opposite regimes. In the
homogenous case k = 0 equation of motion is easily solved by
introducing the generalized momentum p → p − eAP. Then
for eAP ∼ pF our field will probe the Dirac point singularity
resulting in the nonlinear behavior. On the other hand, in
the resonant case ω ≈ kvF linear response function ε(q, ω)
diverges indicating the breakdown of the linear response
regime [8]. Particularly we can obtain the plasmon poten-
tial amplitude from Eq. (23): AP = 2χ2

k A, since EP(x, t ) =
−∂AP(x, t )/∂t . Finally, as 1 − kvF /ω ∼ χ2

k from Eq. (16), we
find the amplitude needed for the plasmon to enter nonlinear
response, A ∼ pF /e, which is larger than the fields given by
expressions (47) and (48). This further justifies our assump-
tion to neglect the nonlinear screening field.

One should also note that the echo response is an effect
of the order ∼E1E2, but we disregarded terms of the order
∼E2

1,2 since they influence echoes only as a higher order
effect. However, these terms will lead to Dirac modes at the
second harmonics 2k1,2 [see Eq. (8)], which should be simple
to observe in experiments.

Since it is probably not easy to obtain a temporal pulse
perfectly harmonic in space it might be more convenient to
pattern the graphene surface with a periodically alternating
dielectric (1D photonic crystal) and couple the normal inci-
dence light into spatial harmonics. If D is the period of the
photonic crystal, then light will excite all the harmonics with
wave number kν = 2νπ/D. Our former echo analysis can
then be easily generalized by using a periodic function a(x)
in Eq. (35) instead of a simple cos kx. Moreover, one could
use Eq. (45) to get a lowest order echo estimate by writing
k2 = 2k1 = 2k3 = 4π/D; however, one first has to solve the

exact scattering problem and relate the amplitudes A1,2 and
E echo to the input and output light intensities.

It probably simpler to use a monochromatic light (har-
monic in time) which can be localized in space by hitting a
SNOM tip for example. Let us then explore spatial echo and
look at the system response to a field:

E ext (x, t ) = −Φ1δ(x) cos ω1t − Φ2δ(x − l ) cos ω2t . (49)

Like before we study the general problem of a type:

0 = ∂ f

∂t
+ vx

∂ f

∂x
− δ(x − l )φ(t ). (50)

This case being more tricky we give all the steps of the
analysis. We start by finding the Fourier components:

fkω = −i
φω

vx

e−ikl

k − ω+iη
vx

. (51)

We perform first the Fourier transform in space:

fω(x) =
∫

dk

2π
eikx fkω = − iφω

2πvx

∫
dk

eik(x−l )

k − ω+iη
vx

. (52)

For x > l we close the integration contour in the upper part of
the complex k plane but note that we pick up the singularity
at k = ω/vx only if vx > 0. Using the residuum theorem we
thus obtain

fω(x) = �(vx )

vx
φωei(x−l )ω/vx , (53)

where �(x) is a unit step function. Finally we perform the
Fourier transform in time to obtain

f (x, t ) = �(vx )

vx
φ

(
t − x − l

vx

)
. (54)

Note a divergence in the response at 0 = vx = v cos θ .
The rest of the calculation perfectly parallels the case of

temporal echoes so we only give the final result valid for a
large distance lω1/vx � 1:

E echo(x, t ) = −Φ1Φ2
e3ω1l

4ε0ε̄

∫
dp

�(vx )

v4
x

∂vx

∂ px

∂ f0

∂ px
(55)

× cos

(
−ω3t + xω3 − lω2

vx

)
,

where ω3 = ω2 − ω1 and we assumed that there is no metal
plate, i.e., εk = ε̄. Particularly in graphene we get

E echo(x, t ) = Φ1Φ2
e3ω1l

2ε0ε̄v
3
F

f0(0)

×
∫ π

2

0
dθ

sin2 θ

cos3 θ
cos

(
−ω3t + xω3 − lω2

vF cos θ

)
.

(56)

Then by making a substitution cosh ζ = 1/ cos θ , using the
integral representation of the Hankel function and the relation
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[6] Ḧ (1)
0 (ξ ) + H (1)

0 (ξ ) = H (1)
1 (ξ )/ξ , we obtain

E echo(x, t ) = −Φ1Φ2
πe3ω1l

8ε0ε̄vF 3
f0(0)e−iω3t

iH (1)
1

(
ω3
vF

|x − lecho|
)

ω3
vF

|x − lecho|
+ c.c., (57)

which is plotted in Fig. 1(b) at t = 0′s. We can clearly see a
large echo response at the position

x = lecho = l · ω2

ω2 − ω1
(58)

and a decay as we move away from that point. For x < lecho

an echo field is given by the same formula only iH (1)
1 should

be replaced by −iH (1)∗
1 .

To get a sense of the strength of nonlinear echo response we
assume T = 0 K, and introduce the system scale parameter:

K = kχk = 4πe2EF

ε0ε̄h2v2
F

. (59)

The scale of the echo field can then be written as

E echo ∼ Φ2K e

EF

ω1l

vF
. (60)

Let us compare this field to the amplitude of the Dirac mode
from Eq. (32): ED ∼ ΦK . We can make these two effects com-
parable: E echo ∼ ED, for ED ∼ (KEF /e)/(ω1l/vF ). To make
sense of this field we compare it to the intrinsic electric field
that naturally comes about in the study of nonlinear effects in
graphene [11]:

Ee−e = e

4πε0ε̄r2
e

. (61)

This is just the field between two electrons at an average
distance re given by r2

e π = 1/n. Since the electron density
is n = ∫

dp f0 = 4π p2
F /h2, we can write Ee−e ∼ KEF /e. Fi-

nally the required strength of the Dirac field

ED ∼ Ee−e
ω1l
vF

, (62)

so we can lower the nonlinear threshold by using a large
distance l between our sources.

Note that spatial echo diverges at x = lecho, since
H (1)

1 (ξ ) ∼ 1/ξ for small ξ � 1, which is not the case for tem-
poral echoes where J2(ξ ) ∼ ξ 2 [6]. This clearly points out that
our perturbative analysis of spatial echoes breaks apart near
the point lecho. Note also that this divergence is not removed
by the screening field, which is easily seen by dividing the
integrand in Eq. (56) by a dielectric function from Eq. (16):

ε(θ ) = 1 + χ ω3
vF cos θ

(
1 − 1√

1 − 1/ cos2 θ

)

= 1 + cos θχ ω3
vF

(
1 + i

cos θ

sin θ

)
.

(63)

This only reduces the regime of small angles θ ≈ 0, which
is in any case small due to a factor sin2 θ (again justifying
our assumption to neglect the screening field), while the prob-
lematic regime is around θ ≈ π/2 where 1/ cos3 θ → ∞ (and
screening is negligible ε ≈ 1). Similar arguments are valid for

the case of parabolic electron dispersion in 2D, while in 3D
spatial echoes do not show this divergent response [2]. This
is a consequence of a different nature of the Coulomb field in
3D since ∇E = ρ3D/ε0, i.e.,

E3D
k = −i

ρ3D
k

kε0
. (64)

Compare also to Eq. (15) in 2D. Again the issue is with large
angles θ ≈ π/2, i.e., small velocity regime vx, i.e., large wave
numbers k = ω3/vx in Eq. (55). So it is really this slow (i.e.,
fast) decay of the Coulomb field at large wave numbers that
gives the divergent (finite) echo field in 2D (3D). Divergence
of a 2D case points to a strong echo response, but one cannot
extrapolate the actual echo amplitude at the position lecho with
the perturbative approach presented here. In fact echo ampli-
tude will be strongly influenced by electron collisions beyond
the mean field, since this divergence can be traced down to the
small velocity vx regime. Namely for these slow electrons to
influence the echo they have to be able to travel the distance of
the order ∼l before they get scattered, i.e., vx � l/τcol, which
introduces a low velocity cutoff and removes the divergence
issue. Here τcol is the large angle collision time required to
kick the particle out of its trajectory (see also Discussion
below).

IV. DISCUSSION

While in this article we focus on plasma echoes in graphene
since this is the most interesting problem from a theoretical
perspective (linear dispersion has not been treated before) we
urge experimentalists to study the general case of these new
2D crystals [12]. In fact, the parabolic electron dispersion
might be more suitable than the linear dispersion to study tem-
poral echoes. While both work fine in the small momentum
limit, only parabolic dispersion will work at large momenta
(h̄k ∼ pF ). This can be seen by calculating the quantum me-
chanical response of the system to two pulses at wave vectors
k1 and k2 separated by a time τ . After straightforward cal-
culations (see the Appendix) we obtain an expression for the
induced field at the wave vector k3 = k2 − k1, in the second
order response of the form

E (2)
−k3

(t ) ∼
∫

dk ei(Ek+k3 −Ek )t/h̄ ei(Ek−Ek+k2 )τ/h̄. (65)

Specifically at large times t and τ , any k dependence in
the exponent will lead to large cancellations of the integral∫

dk. However, it might happen at a certain time t = τecho that
the exponent loses the k dependence returning the finite E (2)

−k3

response. To find the exact condition for this echo to arise we
can compare the successive terms in the Taylor expansion of
the energy differences: Ek − Ek+kν

. In the small momentum
limit it is sufficient to take the lowest order ∼kν to find
the echo time: τecho = τk2/k3 (assuming kν = kν x̂). Thus in
the small momentum (long wavelength) limit echo appears
regardless of the exact electron dispersion. However, for larger
momenta we need to look in the next order ∼k2

ν . If we tried to
vary first and second order independently we would conclude
that the echo also has to satisfy τecho = τk2

2/k2
3 , which is obvi-

ously impossible. One way to go beyond small momentum is
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to have ∂2E /∂k2
x as a k-independent constant. In other words,

we need a parabolic energy dispersion Ek = h̄2k2
x /2m + E ′

ky

(with arbitrary dispersion in the y direction). It is easy to
check that this specific dispersion indeed gives echo response
for any k1 and k2 (k3 = k2 − k1). Another way would be to
have ∂2E /∂k2

x ∝ ∂E /∂kx, which is satisfied by an exponential
dispersion: Ek = E0elkx + E ′

ky
. It is easy to see that we again

get echo for any k1,2 but this dispersion does not look very
physical.

On the other hand, there can be no strong echo response
in the case of interband transitions with the general Dirac
dispersion: Enk = nvF h̄

√
k2

x + k2
y , where n = ±1 represent

conduction and valence bands. Namely, one cannot remove
the k dependence from the exponent in Eq. (65),

e(k) = (
n3

√
(kx + k3)2 + k2

y − n
√

k2
x + k2

y

) · t

+ (
n
√

k2
x + k2

y − n2

√
(kx + k2)2 + k2

y

) · τ,

(66)

unless all states are in the same band nν = n, t = τk2/k3,
and we have constrained our problem to a semiclassical
case k � kν . One can easily check this by taking three
different large k values (k ∼ kν), which gives a system of
three linear equations with two unknowns (t, e) without a
solution.

However, what will really matter in the end is how sensitive
these echoes are to collisions (think of the horse collisions
from the Introduction). In fact, it was shown that electron-
electron (e-e) collisions have large influence on the echoes
due to rapid oscillations of the distribution function and it
is useful to repeat the argument in the 3D case [2,4]. Since
e-e interaction is long range, small angle collisions are very
important and sufficient to smooth out fine scale momentum
oscillations of the echo distribution. Furthermore, as there are
many more small than large angle Coulomb collisions, echo
could vanish even if the echo time is much smaller than the
large angle collision time: τecho � τcol [2]. From a different
perspective, small angle collisions can be described by a small
change of the momenta and thus lead to a diffusion behavior
described by a gradient of the particle flux in the momentum
space: df /dt = −∇ps. Fast oscillations of echo distribution
in momentum space then lead to a large increase in e-e
collision [4].

On the other hand, Coulomb interaction U (r) ∝ 1/r in 2D
is less singular in the small momentum transfer as the Fourier
transforms are U 2D

k ∝ 1/k [corresponding to Eq. (10)] and
U 3D

k ∝ 1/k2 [corresponding to Eq. (64)]. One might hope that
e-e collisions are then less effective in reducing 2D echoes
since for example the scattering cross section in the pertur-
bative Born approximation is [13]: dσ ∝ |U (k)|2, but careful
analysis of the problem is needed. For 2D spatial echoes the
problem is even more intricate as we saw that the echo field di-
verges (due to a slow decay of the Coulomb field at large wave
numbers) and the large angle collisions strongly influence the
echo amplitude. We also emphasize that in our case the large
substrate screening (required to reach the acoustic plasmon
dispersion) has an extra benefit of reducing these collisions
and thus increasing the echo response.

Before closing we would like to note that the interaction
of plasmons and echoes is an intricate mathematical problem.
For example, in the case of 3D massive electrons, plasmons
experience Landau damping and while Landau performed his
calculations in the linearized regime [4], full nonlinear Landau
damping was only recently solved [14]. A major problem
was to show that echoes do not accumulate constructively
to a large response. Echoes there played a role similar to
the dangerous resonances in the Kolmogorov-Arnold-Moser
theory. It would be very interesting to see if the same ap-
proach could handle echoes in the case of 2D massless Dirac
electrons in graphene, which adds additional singularities (in
electron dispersion at the Dirac point and in dielectric function
at ω = kvF ). However, it seems that mathematical rigor is
still not readily obtainable in theoretical physics, as noted by
Landau so many years ago [15]. Most likely this long time per-
turbative behavior discussed in Ref. [14] will be overwhelmed
by electron collisions.

In conclusion, we have obtained analytic expressions for
temporal and spatial plasma echoes in graphene when (acous-
tic) plasmon emission is suppressed. We found extremely
strong spatial echo response and discussed how electron
collisions reduce the echo. We also discussed differences be-
tween various electron dispersions and differences between
semiclassical and quantum model of echoes. Optimistically
looking one could hope to use these nonlinear echoes for
all optical signal processing like optical switch or optical
memory (since the result is delayed). Most likely echoes could
be used as a sensitive probe of electron interactions in 2D
crystals.
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APPENDIX: QUANTUM ECHOES

Here is a derivation of the factors appearing in Eq. (65)
of temporal quantum echoes from the independent particle
evolution. Let us solve the Schrödinger equation ih̄∂ψ/∂t =
(H0 + V )ψ , with initial condition ψnk(t < 0) = ψnke−iEnkt/h̄,
where ψnk and Enk are eigenstate and eigenvalue of the Hamil-
tonian H0 in the band n. It is easy to find the perturbative
solution [13] in the case of the pulse potential V (1)(t ) =
−eϕ1δ(t )e−ik1r + c.c.:

ψnk(t > 0) = ψnke−iEnkt/h̄ +
∑
s,n1

as
n1nψn1k−sk1 e−iEn1k−sk1 t/h̄,

(A1)

where s = ±1 and

as
n1n = − i

h̄

∫
dt V s(1)

n1n (t )ei(En1k−sk1 −Enk )t/h̄ = − i

h̄
V s(1)

n1n , (A2)

with the matrix elements

V s(1)
n1n = −eϕ1〈n1k − sk1|e−isk1r|nk〉. (A3)
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Similarly we find the response to the second pulse
V (2)(t ) = −eϕ2δ(t − τ )eik2r + c.c.:

ψnk(t > τ ) = ψnke−iEnkt/h̄

(A4)
+

∑
sn1n2

as
n2n1

as
n1nψn2k−sk1+sk2 e−iEn2k−sk1+sk2 t/h̄,

where we explicitly wrote only the echo terms, and like before
we have

as
n2n1

= − i

h̄

∫
dt V s(2)

n2n1
(t )ei(En2k−sk1+sk2 −En1k−sk1 )t/h̄

= − i

h̄
V s(2)

n2n1
ei(En2k−sk1+sk2 −En1k−sk1 )τ/h̄,

(A5)

with the matrix elements:

V s(2)
n2n1

= −eϕ2〈n2k − sk1 + sk2|eisk2r|n1k − sk1〉. (A6)

If we introduce k3 = k2 − k1, we can write the wave function

ψnk(t ) = ψnke−iEnkt/h̄ − 1

h̄2

∑
sn1n2

V s(2)
n2n1

V s(1)
n1n ψn2k+sk3

× e−iEn2k+sk3 t/h̄ei(En2k+sk3 −En1k−sk1 )τ/h̄ (A7)

and the probability density (focusing only on the echo terms)

|ψnk(t )|2 = − 1

h̄2

∑
sn1n2

V s(2)
n2n1

V s(1)
n1n ψn2k+sk3ψ

∗
nk

× ei(Enk−En2k+sk3 )t/h̄ei(En2k+sk3 −En1k−sk1 )τ/h̄ + c.c.
(A8)

We can then calculate the induced charge density ρ(t ) =
−e

∑
nk fnk|ψnk(t )|2 and from the ρ−k3 Fourier component

and Eq. (15) we can find the induced field which has the
following form:

E (2)
−k3

∼
∫

dk ei(Enk−En2k−k3 )t/h̄ei(En2k−k3 −En1k+k1 )τ/h̄. (A9)

Finally by changing the dummy variable k → k + k3 in the
integral

∫
dk we obtain Eq. (65).

[1] E. L. Hahn, Spin echoes, Phys. Rev. 80, 580 (1950).
[2] T. M. O’Neil and R. W. Gould, Temporal and spatial plasma

wave echoes, Phys. Fluids 11, 134 (1968).
[3] M. Jablan, H. Buljan, and M. Soljačić, Plasmonics in graphene
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