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Yinu Zhang,1 Antonio Bjelčić,2 Tamara Nikšić,2 Elena Litvinova,1,3 Peter Ring ,4 and Peter Schuck5,6

1Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008, USA
2Department of Physics, Faculty of Science, University of Zagreb, HR-10000 Zagreb, Croatia

3National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
4Fakultät für Physik, Technische Universität München, D-85748 Garching, Germany

5Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, F-91406 Orsay Cedex, France
6Université Grenoble Alpes, CNRS, LPMMC, 38000 Grenoble, France

(Received 12 May 2021; accepted 18 February 2022; published 27 April 2022)

Starting from a general many-body fermionic Hamiltonian, we derive the equations of motion (EOM) for
nucleonic propagators in a superfluid system. The resulting EOM is of the Dyson type formulated in the
basis of Bogoliubov’s quasiparticles. As the leading contributions to the dynamical kernel of this EOM in
strongly-coupled regimes contain phonon degrees of freedom in various channels, an efficient method of
calculating phonon’s characteristics is required to successfully model these kernels. The traditional quasiparticle
random phase approximation (QRPA) solvers are typically used for this purpose in nuclear structure calculations,
however, they become very prohibitive in nonspherical geometries. In this paper, by linking the notion of
the quasiparticle-phonon vertex to the variation of the Bogoliubov’s Hamiltonian, we show that the recently
developed finite-amplitude method (FAM) can be efficiently employed to compute the vertices within the
FAM-QRPA. To illustrate the validity of the method, calculations based on the relativistic density-dependent
point-coupling Lagrangian are performed for the single-nucleon states in heavy and medium-mass nuclei with
axial deformations. The cases of 38Si and 250Cf are presented and discussed.

DOI: 10.1103/PhysRevC.105.044326

I. INTRODUCTION

Theoretical description of nuclear shell structure and re-
sponse remain challenging aspects of nuclear physics for
decades. The nuclear shell model pioneered by M. Goeppert-
Mayer [1] and J. H. D. Jensen [2] and later promoted to the
inclusion of nuclear pairing [3,4] has provided the essential
building blocks for understanding the fermionic motion in
medium-mass and heavy nuclei. The paradigm of the mean
field dominating higher-rank fermionic correlations was de-
veloped throughout further decades into the sophisticated
microscopic self-consistent mean fields linked to the density
functional theory (DFT) [5–12], which are capable of re-
producing the experimentally established nuclear shells, both
spherical and deformed, reasonably well.

With the advent of the radioactive beam facilities the con-
cept of firm nuclear shells and well-defined magic numbers
associated with the enhanced stability of closed-shell nu-
clei started to change. It turned out, in particular, that the
unstable systems with exotic neutron-to-proton ratios may
exhibit magic numbers, which are different from those in
stable nuclei. This phenomenon is studied extensively, both
experimentally and theoretically, and there are indications that
it can be associated with the enhanced role of beyond-mean-
field correlations in exotic nuclear systems [13–17]. Although
the criteria of magicity are not unambiguously defined and
can be associated with the shell gaps, the peculiarities in the

systematic behavior of the lowest quadrupole states or charge
radii, the idea of violation of magic numbers in nuclei with
extreme neutron-to-proton ratios is widely accepted [16,17].

As many of the successful density functionals are based on
a considerably reduced effective nucleon mass, as compared
to its bare values, they typically underestimate the fermionic
level densities and overestimate the respective occupation
probabilities [18–20]. The inclusion of correlations beyond
the mean field helps resolving these deficiencies and can be
done by taking into account the dynamical part of the nu-
cleonic self-energy, which arises from the model-independent
equations of motion (EOM) for the in-medium fermionic
propagator [21,22] and which is neglected in the DFT. This
leads to the fragmentation of the mean-field states and the
densifying of the single-particle spectra [23–29].

The important ingredients for the dynamical self-energy in
the leading approximation are the particle-vibration coupling
(PVC) vertices and the frequencies of the vibrational modes
(phonons). In the DFT-based self-consistent approaches they
can be calculated within the (quasiparticle) random phase ap-
proximation [(Q)RPA]. This strategy based on the traditional
QRPA diagonalization solvers works reasonably well for
spherically-symmetric nuclear systems, however, it becomes
very prohibitive for calculations in nonspherical geometries.
This fact limited the existing applications of the DFT-PVC
method to only spherical nuclei.
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In this paper, we report the first results of the approach
designed to overcome this limitation. We employ the re-
cently developed finite-amplitude method (FAM) to solve the
relativistic QRPA equations in the deformed Dirac-Hartree-
Bogoliubov basis for the variations of the fermionic density
[30] and extract the PVC vertices by linking these solutions
to the fermionic dynamical self-energy obtained within the
EOM method [21] generalized for the superfluid phase. As the
FAM has manifested itself over the past decade as a very ef-
ficient method for numerical solutions of the RPA and QRPA
equations [30–33], we, thereby, utilize the advantages of the
FAM for extending the mean-field theory for nonspherical
systems and present the first numerical implementations of
this extension for nuclei with axial deformations.

II. FORMALISM

A. Equation of motion for the quasiparticle propagator

In this paper we consider the equation of motion for the
quasiparticle propagator derived ab initio, i.e., with the only
input of the bare nucleon-nucleon interaction in the vacuum.
As it was discussed in Refs. [21,22,34], such an approach
allows one to obtain the most general and model-independent
expressions for the EOM interaction kernels, which can be
then approximated with various degrees of accuracy and
adopted for calculations with effective interactions. Thus, the
starting point is the many-body Hamiltonian

H = H (1) + V =
∑

12

h12ψ
†
1 ψ2 + 1

4

∑
1234

v̄1234ψ
†

1ψ
†

2ψ4ψ3

(1)
with the one-body matrix elements h12 comprising the kinetic
energy and the external mean field in case it is present, and the
antisymmetrized matrix elements of the two body-interaction
v̄1234. The three-body forces are neglected in the present study,
but can be included as an extension of the framework. The
number indices stand for complete sets of quantum numbers
defining the single-particle degrees of freedom. Furthermore,
it is convenient to work in the canonical basis, which diago-
nalizes the one-body part of the Hamiltonian, so that we set
h12 = δ12ε1.

The quasiparticle propagator Ĝ12 through the superfluid
correlated medium is defined as follows:

Ĝ12(t − t ′) = −i

(〈T ψ1(t )ψ†
2 (t ′)〉 〈T ψ1(t )ψ2(t ′)〉

〈T ψ
†
1 (t )ψ†

2 (t ′)〉 〈T ψ
†
1 (t )ψ2(t ′)〉

)

≡
(

G(11)
12 (τ ) G(12)

12 (τ )

G(21)
12 (τ ) G(22)

12 (τ )

)

≡
(

G12(τ ) F (1)
12 (τ )

F (2)
12 (τ ) G(h)

12 (τ )

)
(2)

with T being the time ordering operator, τ = t − t ′, and
ψ1(t ), ψ†

1 (t ) the time-dependent fermionic field operators
in Heisenberg representation. The propagator (2) is often
called Gor’kov propagator [35] and famously includes both
normal components on the main diagonal and anomalous off-
diagonal components, which are compatible with the relaxed

particle number conservation condition. The most direct way
for generating a time-dependent EOM for this propagator is
differentiation with respect to the time variables. Differentiat-
ing with respect to t , then with respect to t ′ and performing the
Fourier transformation with respect to τ to the domain of the
energy variable ε [21,22,34] leads to the following equation:(

G11′ (ε) F (1)
11′ (ε)

F (2)
11′ (ε) G(h)

11′ (ε)

)
=

(
G0

11′ (ε) 0
0 G(h)0

11′ (ε)

)

+
∑
22′

(
G0

12(ε) 0
0 G(h)0

12 (ε)

)

×
(

T22′ (ε) T (1)
22′ (ε)

T (2)
22′ (ε) T (h)

22′ (ε)

)

×
(

G0
2′1′ (ε) 0

0 G(h)0
2′1′ (ε)

)
(3)

or, symbolically,

Ĝ11′ (ε) = Ĝ0
11′ (ε) +

∑
22′

Ĝ0
12(ε)T̂22′ (ε)Ĝ0

2′1′ (ε). (4)

In Eq. (4) Ĝ0 is the free quasiparticle propagator

Ĝ0
11′ (ε) =

(
G0

11′ (ε) 0
0 G(h)0

11′ (ε)

)

=
(

δ11′/(ε − ε1) 0
0 δ11′/(ε + ε1)

)
, (5)

with vanishing anomalous components, and T̂ is the quasipar-
ticle T matrix of the following origin:

T̂11′ (t − t ′)

= T̂ 0
11′ (t − t ′) + T̂ r

11′ (t − t ′)

= −δ(t − t ′)
〈(

[[V, ψ1], ψ†
1′ ]+ [[V, ψ1], ψ1′ ]+

[[V, ψ
†
1 ], ψ†

1′ ]+ [[V, ψ
†
1 ], ψ1′ ]+

)〉

+ i

〈
T

(
[V, ψ1](t )[V, ψ

†
1′ ](t ′) [V, ψ1](t )[V, ψ1′ ](t ′)

[V, ψ
†
1 ](t )[V, ψ

†
1′ ](t ′) [V, ψ

†
1 ](t )[V, ψ1′ ](t ′)

)〉
,

(6)

where we adopted the notation (AB)(t ) = eiHt ABe−iHt for the
Heisenberg representation of the operator products and an
analogous convention for the commutators. The matrix T̂11′ (ε)
is the Fourier image of T̂11′ (t − t ′) in the energy domain. The
important feature of the T matrix (6) is its decomposition into
the static (instantaneous) T̂ 0 and dynamical T̂ r components.
The static component is independent of time (energy) and
reads:

T̂ 0
11′ =

∑
i j

(
v̄1i1′ j〈ψ†

i ψ j〉 1
2 v̄11′i j〈ψ jψi〉

1
2 v̄i j11′ 〈ψ†

j ψ
†
i 〉 −v̄1′i1 j〈ψ†

i ψ j〉
)

≡
(

�̃11′ �11′

−�∗
11′ −�̃T

11′

)
, (7)

comprising the single-particle and single-hole mean fields
on the main diagonal as well as the off-diagonal pairing
fields. The dynamical component in the time domain is also a
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FIG. 1. The emergent origin of the quasiparticle-vibration coupling amplitudes in the diagrammatic form. Empty and filled circles denote
normal and pairing vibration (phonon) vertices, while the wavy and double lines with arrows are the normal and pairing phonon propagators,
respectively. The square boxes stand for the antisymmetrized v̄ and nonantisymmetrized v interaction matrix elements. The operator products in
the rectangular boxes, together with the attached fermionic lines (solid lines with arrows), are reserved for the two-point correlation functions,
with the following correspondence: abcd = −i〈T (ab)(t )(cd )(t ′)〉.

2×2 array

T̂ r
11′ (t − t ′) =

(
T̂ r

11′ (t − t ′) T̂ r(1)
11′ (t − t ′)

T̂ r(2)
11′ (t − t ′) T̂ r(h)

11′ (t − t ′)

)
, (8)

where

T̂ r
11′ (τ ) = −i

4

∑
ikl pqr

v̄1ikl〈T (ψ†
i ψlψk )(t )(ψ†

q ψ†
pψr )(t ′)〉v̄pqr1′

T̂ r(1)
11′ (τ ) = −i

4

∑
ikl pqr

v̄1ikl〈T (ψ†
i ψlψk )(t )(ψ†

pψrψq)(t ′)〉v̄p1′qr

T̂ r(2)
11′ (τ ) = −i

4

∑
ikl pqr

v̄ikl1〈T (ψ†
i ψ

†
k ψl )(t )(ψ†

q ψ†
pψr )(t ′)〉v̄pqr1′

T̂ r(h)
11′ (τ ) = −i

4

∑
ikl pqr

v̄ikl1〈T (ψ†
i ψ

†
k ψl )(t )(ψ†

pψrψq)(t ′)〉v̄p1′qr,

(9)

and consists of the double convolutions of three-fermion
two-point propagators with the interaction matrix elements.
Introducing the irreducible with respect to the free propagator
Ĝ0

11′ (5) part of the T -matrix �̂ = T̂ irr , Eq. (4) can be written
in the Dyson form:

Ĝ11′ (ε) = Ĝ0
11′ (ε) +

∑
22′

Ĝ0
12(ε)�̂22′ (ε)Ĝ2′1′ (ε), (10)

where the self-energy is obviously decomposed into the static
�̂0 and dynamical �̂r parts: �̂ = �̂0 + �̂r with �̂0 = T̂ 0

and �̂r = T̂ r;irr . The static, or mean-field, contribution is
determined by Eq. (7) through the normal 〈ψ†

i ψ j〉 and pair-
ing 〈ψiψ j〉 one-body densities, which can, in principle, be
found self-consistently as the static limit of Ĝ. The dynamical
contribution is the irreducible part of Eq. (9), which con-
tains three-fermion propagators. These propagators can be
with minimal approximations decomposed into the products
of one-fermion and two-fermion propagators as described
in detail in Refs. [21,34]. Here, as in Ref. [34], we re-
tain all the possible irreducible combinations including those

with anomalous one-body and two-body propagators. The
two-body propagators enter the dynamical self-energy com-
ponents as double contractions with the interaction matrix
elements. The complete set of those combinations is shown
diagrammatically in Fig. 1, where it is mapped onto the set
of quasiparticle-vibration coupling (qPVC) amplitudes. Here
and hereinafter by the abbreviation “qPVC” we emphasize
that the PVC is taken into account consistently and on equal
footing with superfluidity.

The mapping of Fig. 1 is exact and independent of the
approximation, which is made for the two-body propagators.
In practice, the propagators can be found from the EOMs
generated for each of them, as it is discussed in Refs. [21,36].
In a fully ab initio approach, these EOMs should be solved
self-consistently together with the quasiparticle propagator
(2), in a certain approximation for the two-body dynamical
kernels. While such a realization will be performed elsewhere,
in the present paper the static kernel is taken in the form of
the effective interaction as the second variational derivative
of the energy density functional (EDF) with respect to the
superfluid density matrix. The phonon vertices, respectively,
are computed with this interaction. If the EDF is adjusted to
finite nuclei, the QRPA provides a good first approximation to
the phonon characteristics.

The EDFs also represent an appropriate starting point to
describe the quasiparticle states. Therefore, it is convenient
to recast the Dyson equation (10) in terms of the mean-field
propagator ˆ̃G:

Ĝ11′ (ε) = ˆ̃G11′ (ε) +
∑
22′

ˆ̃G12(ε)�̂r
22′ (ε)Ĝ2′1′ (ε), (11)

such that

ˆ̃G11′ (ε) = Ĝ0
11′ (ε) +

∑
22′

Ĝ0
12(ε)�̂0

22′ (ε) ˆ̃G2′1′ (ε), (12)

which is the direct output of the EDF.
The transformation of ˆ̃G and Ĝ to the quasiparticle ba-

sis |ν〉 singles out their forward (+) and backward (–)
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FIG. 2. The 2 × 2 matrix structure of the dynamical self-energy in the canonical basis. The diagrammatic conventions for the phonon
propagators, single-arrow fermionic lines and PVC vertices are the same as in Fig. 1. The single fermionic lines with double arrows denote the
anomalous one-fermion propagators: right-left arrows are associated with F (1), and left-right arrows stand for F (2).

components

G̃(+)
νν ′ (ε) =

∑
12

(U †
ν1 V †

ν1) ˆ̃G12(ε)

(
U2ν ′

V2ν ′

)

G(+)
νν ′ (ε) =

∑
12

(U †
ν1 V †

ν1)Ĝ12(ε)

(
U2ν ′

V2ν ′

)

G̃(−)
νν ′ (ε) =

∑
12

(V T
ν1 U T

ν1) ˆ̃G12(ε)

(
V ∗

2ν ′
U ∗

2ν ′

)

G(−)
νν ′ (ε) =

∑
12

(V T
ν1 U T

ν1)Ĝ12(ε)

(
V ∗

2ν ′
U ∗

2ν ′

)
,

(13)

with the aid of the Bogoliubov’s matrices U1ν and V1ν con-
necting the particle ψ1 and quasiparticle αν Fock operators:

ψ1 =
∑

ν

(U1ναν + V ∗
1να

†
ν ), ψ

†
1 =

∑
ν

(V1ναν + U ∗
1να

†
ν ).

(14)
Applying the transformations (13) to the Dyson equation (11)
leads to:

G(η)
νν ′ (ε) = G̃(η)

νν ′ (ε) +
∑
μμ′

G̃(η)
νμ (ε)�r(η)

μμ′ (ε)G(η)
μ′ν ′ (ε), (15)

where (η) = (+) and (η) = (−). The components of the dy-
namical kernel are transformed to the quasiparticle space,
accordingly, as

�
r(+)
μμ′ (ε) =

∑
12

(
U †

μ1 V †
μ1

)
�̂r

12(ε)

(
U2μ′

V2μ′

)

�
r(−)
μμ′ (ε) =

∑
12

(
V T

μ1 U T
μ1

)
�̂r

12(ε)

(
V ∗

2μ′

U ∗
2μ′

)
,

(16)

while the explicit form of the dynamical self-energy in the
canonical basis �̂r

12 is represented diagrammatically in Fig. 2.
It contains all possible convolutions of the amplitudes listed in
Fig. 1 with the normal and anomalous one-fermion propaga-
tors (2). The corresponding analytical derivation for �̂r

12 can
be found in Ref. [34]. The mean-field and the exact quasipar-
ticle propagators, respectively, read:

G̃(η)
νν ′ (ε) = δνν ′

ε − η(Eν − E0 − iδ)
,

G(η)
νν ′ (ε) =

∑
n

S(η)n
νν ′

ε − η(En − E0 − iδ)
,

(17)

where the summation is formally running over the complete
set of states |n〉 in (N + 1)-particle system for (η) = (+)

and in (N − 1)-particle system for (η) = (−). One can see
that after the transformations (13) to the quasiparticle basis
the solution of the Dyson equation in the form of Eq. (15)
reduces to finding only two components of the quasiparticle
propagator, instead of four of them in the canonical basis
of Eq. (2). The computational effort reduces considerably as
the equations for the (η) = (±) components are decoupled.
Furthermore, the residues in the exact propagator of Eq. (17),
also called spectroscopic factors, coincide, i.e., S(+)n

νν ′ = S(−)n
νν ′

if the particle number conservation condition is relaxed, that is
the case in the Bogoliubov’s theory and in QRPA. This means
that only one of the Eqs. (15) needs to be solved, e.g., the one
for (η) = (+), that further reduces the computation effort by
a factor of two.

The remaining quantity to be determined is, thus, the dy-
namical self-energy in the quasiparticle basis. As a result
of the transformation (16), its forward component (η) = (+)
reads:

�
r(+)
νν ′ (ε) =

∑
ν ′′μ

[
�

(11)μ
νν ′′ �

(11)μ∗
ν ′ν ′′

ε − Eν ′′ − ωμ + iδ
+ �

(02)μ∗
νν ′′ �

(02)μ
ν ′ν ′′

ε + Eν ′′ + ωμ − iδ

]

(18)

where ωμ are the frequencies of the superfluid phonons, which
combine normal and pairing phonons, as shown diagrammat-
ically in Fig. 2. The corresponding superfluid phonon vertices
(the qPVC vertices) �(11)μ and �(02)μ contain, respectively,
the following linear combinations of the normal gμ and pair-
ing γ μ(±) phonon vertices:

�
(11)μ
νν ′ =

∑
12

[
U †

ν1gμ
12U2ν ′ + U †

ν1γ
μ(+)
12 V2ν ′

−V †
ν1

(
gμ

12

)T
V2ν ′ − V †

ν1

(
γ

μ(−)
12

)T
U2ν ′

]
(19)

�
(02)μ
νν ′ = −

∑
12

[
V T

ν1gμ
12U2ν ′ + V T

ν1γ
μ(+)
12 V2ν ′

−U T
ν1

(
gμ

12

)T
V2ν ′ − U T

ν1

(
γ

μ(−)
12

)T
U2ν ′

]
, (20)

defined as:

gμ
13 =

∑
24

v̄1234ρ
μ
42

γ
μ(+)
12 =

∑
34

v1234κ
μ(+)
34 , γ

μ(−)
12 =

∑
34

κ
μ(−)∗
34 v3412, (21)

via the normal ρμ and pairing κ
μ(±) transition densities

ρ
μ
42 = 〈0|ψ†

2 ψ4|μ〉
κ

μ(+)
34 = 〈0|ψ4ψ3|μ〉, κ

μ(−)∗
34 = 〈0|ψ†

4 ψ
†
3 |μ〉, (22)
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where |0〉 and |μ〉 are the ground and excited states of
the even-even core, respectively. Equations (19) and (20)
are obtained under the assumptions that the intermedi-
ate quasiparticle propagators in the dynamical self-energy
given by Fig. 2 are the superfluid mean-field [Hartree-Fock-
Bogoliubov (HFB) or Hartree-Bogoliubov] propagators [34].
This is a rather good approximation within EDF frameworks,
while further more accurate solutions can be obtained by
iterating these propagators in a self-consistent cycle.

B. Phonon vertex extraction from FAM-QRPA

Determining the phonon characteristics is an external pro-
cedure with respect to the Dyson equation and requires,
in general, solving an EOM for the superfluid two-fermion
propagator, or response function. Although quite advanced so-
lutions for the nuclear response have become available during
the last decades [22], in the DFT-based calculation schemes a
rather good description of the major phonon characteristics
for the dynamical kernels can be obtained in QRPA. After
formulating our approach in the quasiparticle basis, we notice
that the vertex functions �(11) and �(02) [Eqs. (19), (20)]
have the same structure as the variation of the quasiparticle
Hamiltonian:

δH (11) = U †δhU + U †δ�(+)V − V †δ�(−)∗U − V †δhT V

(23)

−δH (02) = V T δhU + V T δ�(+)V − U T δ�(−)∗U − U T δhT V,

(24)

which enter the FAM-QRPA equations [30]:

δR(20)
μν (ω) = δH(20)

μν (ω) + F (20)
μν

ω − Eμ − Eν

δR(02)
μν (ω) = δH(02)

μν (ω) + F (02)
μν

−ω − Eμ − Eν

. (25)

The variation of the quasiparticle Hamiltonian has the follow-
ing component structure in the quasiparticle basis:

δH(ω) ≡
(

δH(11)(ω) δH(20)(ω)
−δH(02)(ω) −δH(11)T (ω)

)
, (26)

as well as the density variation and the external field operator.
Equations (25) can be solved with the aid of the linearization
technique [30,32]. The variations δH(20)(ω) and δH(02)(ω)
depend on the density variations induced by the external field,
so that the nonlinear equations (25) should be solved in a
self-consistent iterative cycle. The expansion of δH(20)(ω) and
δH(02)(ω) in terms of δR(20)(ω) and δR(02)(ω) up to linear
order leads to the conventional QRPA equations, that is suffi-
cient for the PVC vertices, if an effective interaction is used
in the calculations. The obvious advantage of the FAM is that
it involves only one-body matrix elements, and no two-body
matrix elements enter the calculation scheme, in contrast to
the standard diagonalization of the QRPA matrix containing
the matrix elements of the two-body interaction [37].

In turn, the variations of the single-particle Hamiltonian
δh and the pairing fields δ�(±), are related to the effective

interaction of the DFT, which plays the role of v̄ in the DFT-
based calculations, so one can assume:

δh12(ω) =
∑

34

v̄1423δρ34(ω),

δ�
(±)
12 (ω) = 1

2

∑
34

v̄1234δκ
(±)
34 (ω). (27)

The density variations δρ(ω) and δκ
(±)(ω) are obtained from

the solutions of the nonhomogeneous (FAM)-QRPA equa-
tions with the external field as a free term, while the transition
densities ρμ and κ

μ(±) can be extracted from the solutions of
the homogeneous QRPA equations, namely the equations(

A B
B∗ A∗

)(
X (ω)
Y (ω)

)
+

(
F 20

F 02

)
= ω

(
X (ω)

−Y (ω)

)
(28)

and (
A B
B∗ A∗

)(
X n

Y n

)
= ωn

(
X n

−Y n

)
, (29)

respectively. In Eqs. (28,29), A and B are the regular QRPA
matrices [37], δR(20)(ω) = X (ω), and δR(02)(ω) = Y (ω).
Similarly to the case of the quasiparticle propagator, for both
the density variations and the transition densities their com-
ponents in the canonical basis are mapped to the X and Y
components in the quasiparticle basis:

δρ12(ω) = (UX (ω)V T + V ∗Y T (ω)U †)12

δκ
(+)
12 (ω) = (UX (ω)U T + V ∗Y T (ω)V †)12 (30)

δκ
(−)
12 (ω) = (V ∗X †(ω)V † + UY ∗(ω)U T )12

and

ρn
12 = (UX nV T + V ∗Y nT U †)12

κ
n(+)
12 = (UX nU T + V ∗Y nT V †)12 (31)

κ
n(−)
12 = (V ∗X n†V † + UY n∗U T )12,

respectively. Therefore, their components in the canonical
basis are related at the poles of the QRPA propagator ωμ as
follows [34,38]:

δρ12(ω → ωμ) = ρ
μ
12〈μ|F |0〉

ω − ωμ + iδ

δκ
(+)
12 (ω → ωμ) = κ

μ(+)
12 〈μ|F |0〉

ω − ωμ + iδ

δκ
(−)∗
12 (ω → ωμ) = κ

μ(−)∗
12 〈μ|F |0〉
ω − ωμ + iδ

. (32)

With the aid of Eqs. (19)–(32), one can see that the qPVC
vertices �(11)μ and �(02)μ and the variations of the quasiparti-
cle Hamiltonian δH (11) and δH (02) at the peaks of the strength
function ω = ωμ are related by

�
(i j)κ
νν ′ = lim

δ→0

√
δ

πS(ωκ )
Im

(
δH(i j)

νν ′ (ωκ + iδ)
)
, (33)
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up to an unimportant phase. The values of the strength func-
tion S(ω)

S(ω) = − 1

2π
Im

∑
μν

(
F (20)∗

μν δR(20)
μν (ω) + F (02)∗

μν δR(02)
μν (ω)

)
(34)

at the peaks of its distribution enter Eq. (33) to correctly
normalize the vertices by removing the dependence on the
external field, that becomes exact at δ → 0. Alternatively, the
vertices can be extracted by contour integrations of the density
or quasiparticle Hamiltonian variations in the complex plane,
as described in Refs. [34,38].

C. Sum rules for quasiparticle states

The energies of fragmented states En and the corresponding
spectroscopic factors S(η)n

νν ′ entering the correlated propagators
in Eq. (17) satisfy the sum rules, which relate these quantities
to their mean-field (RHB) counterparts. Such sum rules for the
nonsuperfluid case appear, for instance, in Refs. [39,40] in the
context of the Baranger theorem, while below we formulate
them for the superfluid case.

The correlated quasiparticle propagator (17) can be ex-
panded in negative powers of the energy variable in the
high-energy limit ε → ∞ as:

G(η)
νν ′ (ε) = I (0)

νν ′

ε
+ I (1)

νν ′

ε2
+ I (2)

νν ′

ε3
+ ..., (35)

where

I (0)
νν ′ =

∑
n

S(η)n
νν ′

I (1)
νν ′ =

∑
n

ηEnS(η)n
νν ′ (36)

I (2)
νν ′ =

∑
n

(ηEn)2S(η)n
νν ′ ,

and we set E0 = 0. Equations (36) can be verified with the
aid of the geometrical progression summation formula for
ε > E :

S

ε − E
= S

ε(1 − E/ε)
= S

ε

∞∑
k=0

(E

ε

)k
. (37)

The self-energy (18) can be similarly decomposed as

�
e(η)
νν ′ (ε) = �

(0)
νν ′

ε
+ �

(1)
νν ′

ε2
+ �

(2)
νν ′

ε3
+ ..., (38)

with the obvious meaning of the numerators �
(k)
νν ′ . Substitution

of Eqs. (35) and (38) to Eq. (15) leads to:

ε

(
I (0)
νν ′

ε
+ I (1)

νν ′

ε2
+ I (2)

νν ′

ε3
+ ...

)

= δνν ′ +
∑
ν ′′

(
δνν ′′ηEν + �

(0)
νν ′′

ε
+ �

(1)
νν ′′

ε2
+ �

(2)
νν ′′

ε3
+ ...

)

×
(

I (0)
ν ′′ν ′

ε
+ I (1)

ν ′′ν ′

ε2
+ I (2)

ν ′′ν ′

ε3
+ ...

)
. (39)

Equating the coefficients at the zeroth and negative-one
powers of ε, one obtains the non-energy-weighted and the
energy-weighted sum rules, respectively:∑

n

S(η)n
νν ′ = δνν ′

∑
n

EnS(η)n
νν ′ = δνν ′Eν . (40)

The non-energy-weighted sum rule reflects the conservation
of probabilities for the given quasiparticle state: The occu-
pancy of an HFB state is equal to unity in the HFB basis
(being, however, fractional in the canonical basis), that is
expressed by δνν ′ in the numerator of the mean-field quasipar-
ticle propagator G̃ of Eq. (2), and this occupancy is equal to
the sum of the occupancies for the fragments S(η)n

νν ′ of the given
quasiparticle state, when the dynamical qPVC self-energy
(18) is taken into account. The energy-weighted sum rule
expresses the fact that the centroid of the fragmented state
is located exactly at the energy of the reference mean-field
state. The sum rules (40) are very useful to control numerical
implementations of the approaches, which include (q)PVC or
singular self-energies of perturbative character.

We emphasize here that the sum rules (40) are obtained
using the definition of the propagators (2) and the form of the
self-energy (18), which consist of simple poles with the prop-
erly normalized residues (notice that this property and, thus,
the obtained sum rules are valid also for the exact self-energy
with the correlated three-fermion propagators). The latter is
a manifestation of locality and unitarity, the typical quantum
field theory constraints, which are compatible with causality
in the time domain. Another condition is the full solution of
the Dyson equation (not a perturbative expansion), which is
also part of the derivation of the sum rules (40).

We notice also that the completeness of the phonon space
and the approximations, in which the phonons are computed,
do not play a role for the sum rules (40), which do not even in-
clude explicitly the residues of the dynamical self-energy and
its poles (these quantities start to appear in higher-power sum
rules). The sum rules (40) remain fulfilled for any number of
phonons and for any number of intermediate states in Eq. (18).
The reader can easily verify this statement for the case of
one phonon mode and one intermediate quasiparticle state in
Eq. (18): In this case the secular equation corresponding to
Eq. (15) reduces to a quadratic equation. Thus, we summarize
that truncations of the (q)PVC model space do not violate the
sum rules (40).

III. CALCULATION DETAILS, RESULTS,
AND DISCUSSION

The numerical implementation of the approach described
above is based on the FAM-QRPA of Ref. [30], which is
employed to generate the quasiparticle-phonon model space
in axial geometry. The relativistic Hartree-Bogoliubov (RHB)
equations for the stationary fermionic basis states resulting
from the relativistic point coupling Lagrangian were solved
by expanding the Dirac spinors in terms of eigenfunctions
of an axially symmetric harmonic oscillator potential. Ten
major shells were used in the calculations for light nuclei
with the mass numbers A ≈ 30 − 40 and the number of the
oscillator shells was extended to fourteen in the calcula-
tions for heavy nuclei with masses around A ≈ 250. The
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FIG. 3. The Jπ = 2+ and Jπ = 3− low-energy isoscalar strength functions for varying quadrupole deformation in 38Si computed within
the relativistic FAM-QRPA of Ref. [30]. The smearing parameter δ = 100 keV (imaginary part of the energy argument) was used in the
calculations.

density-dependent point-coupling interaction DD-PC1 [41]
and the finite-range pairing force with D1S parametrization
[42] in the separable form [43,44] were employed in the
calculations. The FAM-QRPA equations (25) were solved
iteratively with the aid of the modified Broyden’s method
[45] and with the convergence criteria defined in Ref. [30].
The imaginary part δ = 100 keV of the frequency argument
ω was employed to eliminate the divergencies of the sub-
sequently computed strength distribution S(ω) at the roots
of Eqs. (25). This value of δ is sufficiently small for the
extraction of the qPVC vertices by Eq. (33) with a reason-
able accuracy. Both normal and pairing phonon modes with
Jπ = 2+, 3−, 4+, 5− and 0 � K � J were included in the
quasiparticle dynamical self-energy (18). Although it is tech-
nically difficult to extend the calculations beyond J = 5 at
this point, we have found gradually decreasing contributions
from large-J phonons, similarly to the spherical case. Contri-
butions from the Jπ= 0+ and Jπ = 1− were found negligible.
The dynamical self-energy (18) was treated in the diagonal
approximation |ν〉 = |ν ′〉, which was found quite accurate in
the calculations for spherical nuclei [25–29]. It is expected to
be a good approximation also for deformed systems because
of destructive interference between the nondiagonal terms.
The phonon frequency cutoff ωmax

κ
= 15 MeV was adopted

for ωκ . The phonon modes within each {Jπ , K} family were
selected by their reduced transition probabilities of the electric
multipole transitions: The phonons with the reduced transition
probabilities equal or exceeding 10% of the maximal one
were kept in the model space. The quasiparticle intermediate
states |ν ′′〉 with the energy differences |Eν − Eν ′′ | � 60 MeV
were included in the summation of Eq. (18), that ensured its
convergence. This calculation scheme allowed us to include
the leading contributions to Eq. (18) and it is justified by
the preceding qPVC calculations for medium-heavy spherical
nuclei [26–28].

Figure 3 displays the FAM-QRPA responses to isoscalar
operators with Jπ = 2+ and Jπ = 3− in 38Si, illustrating their
evolutions with quadrupole deformation parameter β2. In the
approaches based on effective nucleon-nucleon interactions,
as in this paper, QRPA provides a reasonable description
of both low-energy and high-energy collective states.
Although the observed response indicates that correlations
of higher complexity than those of QRPA are needed to
describe the excitation spectra [21,46,47], QRPA phonons
are sufficient to capture the leading qPVC effects in both
the one-fermion and two-fermion self-energies. This point
was investigated and confirmed explicitly in Ref. [48] in
beyond-QRPA calculations based on the Skyrme EDF. In
ab initio frameworks based on the bare nucleon-nucleon
interaction (Q)RPA, however, produces too unrealistic results
for the nuclear response and, thus, for the phonon modes, so
that higher-complexity approaches beyond (Q)RPA should
be employed [49–51]. Fully ab initio solutions for fermionic
EOMs, such as the one described here and in Refs. [21,36],
remain tasks for future research.

After obtaining the spectra of quasiparticles and phonons,
the matrix elements δH(11) and δH(02) were retrieved at the
energies corresponding to the roots of Eq. (25). Subsequently,
the qPVC vertices were extracted with the aid of Eq. (33)
for the selected phonon modes. This information was then
used for constructing the dynamical self-energy of Eq. (18).
With this input, the Dyson equation (15) was transformed to
the arrowhead matrix form as in Refs. [23,25] and solved
by the ordinary diagonalization procedure. In this paper we
focused on the quasiparticle states states located within Ew ≈
±10 MeV energy window around the Fermi energy, and
Eq. (15) was solved separately for each of these states. The
spectroscopic factors were determined via the derivatives
of the dynamical self-energy at the poles of the resulting
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FIG. 4. Single-particle energies (SPE) and strength of the neu-
tron states in the axially deformed 38Si obtained in the RHB-PVC
calculations (thick bars) in comparison with the RHB reference states
(thin bars). The vertical dash-dotted line denotes the RHB Fermi
energy.

quasiparticle propagator

S(η)n
νν ′ =

[
δνν ′ − d�

r(η)
νν ′ (ε)

dε

∣∣∣∣
ε=ηEn

]−1

, (41)

as it follows from Eqs. (15) and (17).
The calculations were performed for a set of light and

heavy nuclei with axial deformations. Figure 4 displays the
correlated neutron quasiparticle states obtained in the RHB-
PVC calculations for the neutron-rich nucleus 38Si with the
self-consistent prolate deformation β2 = 0.31. The thick bars
represent the fragments of the final quasiparticle states located
at λ ± En, i.e., above (below) the RHB Fermi energy λ if
their RHB occupancies are smaller (greater) than 0.5. Their
heights correspond to the spectroscopic factors of these states
in the canonical basis. The RHB reference states at energies
λ ± Eν are given by the thin bars with the unity hight. The
comparison between the thin and thick bars reveals the ef-
fects of the qPVC in the nucleonic dynamical self-energy on
the quasiparticles. One can see that a remarkable fragmen-
tation occurs already at the Fermi surface indicated by the
dash-dotted line. The analytic structure of the dynamical self-
energy �

r(η)
νν ′ (ε) implies that each RHB basis state |ν〉 splits

into a large number of fragments corresponding to the number
of terms in Eq. (18). The first, forward-going, term is responsi-
ble for the main qPVC effect and the second, backward going
one, is the counter term famously associated with the ground
state correlations, which reduce the qPVC. As a result, the
major part of the obtained correlated quasiparticle states are
represented by a few competing fragments as, for instance,
the states 1/2+[010], 1/2−[110], 3/2+[002] and 3/2−[201].
These states are characterized by the presence of two or three
fragments with comparable spectroscopic factors S(±)n

νν of the
order of 0.1–0.2 units. This is a new feature as compared
to the previously studied spherical nuclei, where typically
a dominant fragment with large spectroscopic factor can be
extracted for the states at the Fermi energy, with the most
pronounced dominance in closed-shell systems. The axial

FIG. 5. The Nilsson diagram for 38Si extracted from the RHB
calculations (top) and from the RHB-PVC calculations (bottom).

deformation, together with the superfluid pairing correlations
in deformed open-shell nuclei, induce a considerably stronger
fragmentation, which can be linked to the fact that these two
effects stipulate the formation of the collective phonon modes
at lower energies. The overall trend is, however, similar to that
found for spherical nuclei: The center of gravity of the major
fragments is moving toward the Fermi energy, with respect to
the reference RHB quasiparticle states. In order to illuminate
the effect of deformation, we performed similar calculations
with different values of the deformation parameter −0.5 �
β2 � 0.8 spanning a wide range from prolate to oblate defor-
mations with the step of 0.05. The results for the dominant
fragments, i.e., the fragments with the largest spectroscopic
factors and with the energies En0 of the correlated neutron
quasiparticle states are displayed in the bottom panel of Fig. 5.
Their energies are plotted as functions of the deformation
parameter β2 and compared to the RHB Nilsson diagram
shown in the top panel. The finite width of each color band is
proportional to the value of v2

νS(η)n0
νν and (1 − v2

ν )S(η)n0
νν , with

v2
ν being the RHB occupancies, for the states below and above

the Fermi energy, respectively, as these products represent the
resulting single-particle spectroscopic factors. The noticeably
thinner bands in the case of the RHB-PVC states indicate
the considerable reduction of the occupancies with respect to
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FIG. 6. Single-quasiparticle neutron states in the axially de-
formed 251Cf (a) and 249Cf (b). Left columns: the RHB states, middle
columns: the RHB-PVC dominant states, right columns: experimen-
tal data from Ref. [52].

the pure RHB calculations, if only one dominant fragment is
taken into account.

However, Fig. 4 discussed above is complementary to
Fig. 5 as well as the non-energy-weighted and energy-
weighted sum rules (40), which reflect the conservation of
probabilities (spectroscopic factors) and centroids of the cor-
related quasiparticle states. Both sum rules are fulfilled in our
numerical implementation with high accuracy. One can see in
Fig. 5 that both the energies and the occupancies of the dom-
inant fragments show notable variations with the deformation
parameter. First of all, we emphasize that for the vanishing
deformation parameter the calculations in the axial symmetry
yield the correct limit, which is verified by the degeneracy
of the quasiparticle states at β2 = 0 reproduced with good
accuracy. The occupancies of the dominant fragments are
maximized at the spherical shape. The next observation is
the additional oscillations of the positions of the dominant
fragments on the energy scale with respect to the relatively
smooth evolution of the RHB states with the deformation.
Such oscillations are attributed to the evolution of the low-
energy collective phonon modes, which play the major role
in the qPVC, with deformations. The corresponding isoscalar
strength functions for Jπ = 2+ and 3− in 38Si shown in
Fig. 3 illustrate this evolution. We observe, for instance, the
disappearance of the J = 2 low-lying states with K = 0 and
the simultaneous appearance of the J = 2 and J = 3 low-
energy modes with K = 1 as well as the J = 2, K = 2 one in
the interval ≈0.3 � β2 � 0.6, while the J = 2, K = 0 mode
reappears again at β2 = 5.5. Similar irregularities are ob-
served in J = 4 and J = 5 channels. The nonsmooth behavior
of quite a few dominant quasiparticle states in this interval
is a direct consequence of these irregularities in the phonon
spectra. Remarkably, this effect gives rise to the formation
of the new shell closure with the neutron number N = 12 at
β2 � 0.5.

Figure 6 represents our results for the single-quasiparticle
states in heavy nuclei displaying the level scheme for the

neutron subsystems of 251,249Cf, whose experimental ground
states are taken as a reference at E = 0. The RHB ground
states of these nuclei are supposed to be unaffected by PVC
as the parameters of the DFT are adjusted to nuclear ground
states. The parameter of axial deformation β2 = 0.29 was
obtained in the self-consistent RHB calculations for 250Cf,
in agreement with its experimental value [52]. The dominant
quasiparticle states, extracted from the solution of Eq. (15) for
the poles and residues of the quasiparticle propagator G(η)

νν ′ (ε),
above and below the Fermi surface are identified with those
in the neighboring N ± 1 nuclei, respectively, according to
the definition of those poles and compared to the available
data on the band-head levels in 251Cf and 249Cf from the data
base [52]. As it can be seen from Fig. 6, qPVC causes sizable
shifts of the energies of the dominant fragments obtained
in the RHB-PVC calculations with respect to the reference
RHB states. All the shifts are directed downward leading to
the overall compression of the single-quasiparticle spectra,
while for the majority of the levels the RHB+PVC results
are of nearly spectroscopic accuracy. Remarkably, the shift
and splitting of the 3/2− RHB state is accurately reproduced,
and the ground-state spin of 251Cf is changed by qPVC, in
agreement with data. An additional enhancement of the level
density occurs because of the strong fragmentation of the
states, similar to the case of 38Si and in agreement with the
phenomenological model of Ref. [53].

To overcome the remaining minor discrepancies between
theory and experiment, the approach can be further perfected
by (i) relaxing the diagonal approximation for the self-energy
(18), (ii) including the phonon modes with unnatural parities
and isospin flip, which are known to make generally a weaker
contribution than the neutral natural parity phonons, but cu-
mulatively may slightly further reinforce the qPVC effects,
and (iii) elaborating on a subtraction procedure for the nu-
cleonic self-energy to remove the double counting of qPVC,
which should be removed in the DFT-based implementations,
when the qPVC model space is close to completeness. Such
a procedure has become a common practice in DFT-based
applications for nuclear response [21,46–48,54,55], being
proposed originally in Ref. [56]. For the case of the single-
quasiparticle EOM such a procedure has not been developed
yet, however, the first steps toward its understanding are made
in Refs. [21,34], where the single-(quasi)particle EOM is de-
rived in the ab initio framework.

IV. SUMMARY

We presented a framework, which allows for a synthe-
sis of the two powerful techniques: the equation of motion
for the fermionic correlation functions and the finite ampli-
tude method for vibrational modes in nuclei. The EOM for
the quasiparticle propagator in a superfluid medium obtained
from the bare fermionic Hamiltonian in the form of Dyson
equation contains static and dynamical interaction kernels in
the most general exact form. The three-fermion propagators
of the dynamical kernel can be with a good accuracy fac-
torized into two-fermion and one-fermion ones, which, in
the superfluid case, generates the coupling of quasiparticles
to superfluid phonons. The latter phonons unify the normal
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and pairing phonons and, in general, are the solutions of the
two-quasiparticle EOM. In this paper we approximated the
superfluid phonons by the relativistic QRPA, that is compati-
ble with the static kernel of the quasiparticle EOM in the form
of the relativistic Hartree-Bogoliubov approach. Furthermore,
the link between the two EOMs allows for establishing a re-
lationship between the qPVC vertices in the dynamical kernel
and the variations of the RHB Hamiltonian in FAM-QRPA.

The latter provides efficient computation of the phonon
frequencies and the quasiparticle-vibration coupling vertices,
which are incorporated into the Dyson equation for the
nucleonic propagator. The approach is formulated in the
basis of Dirac-Hartree-Bogoliubov quasiparticles and im-
plemented for open-shell nuclei with axial deformations.
The analysis of the solutions obtained for the medium-light
neutron-rich nucleus 38Si and for the heavy nucleus 250Cf
reveals a significant fragmentation of the quasiparticle states
around the Fermi surfaces and an increase of the level

densities in both neutron and proton subsystems. This im-
proves considerably the agreement with experimental data
for axially-deformed nuclei as compared to the mean-field
approximation. The developed framework and its numerical
implementation open the way for further progress on com-
putation of the nuclear spectral properties in nonspherical
geometries.
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