
Effects of rotation and valence nucleons in molecular
α-chain nuclei

Zhang, D. D.; Ren, Z. X.; Zhao, P. W.; Vretenar, D.; Nikšić, T.; Meng, J.

Source / Izvornik: Physical Review C, 2022, 105

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.1103/PhysRevC.105.024322

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:557475

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-05-31

Repository / Repozitorij:

Repository of the Faculty of Science - University of 
Zagreb

https://doi.org/10.1103/PhysRevC.105.024322
https://urn.nsk.hr/urn:nbn:hr:217:557475
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://repozitorij.unizg.hr/islandora/object/pmf:12005
https://dabar.srce.hr/islandora/object/pmf:12005


PHYSICAL REVIEW C 105, 024322 (2022)

Effects of rotation and valence nucleons in molecular α-chain nuclei
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Effects of rotation and valence nucleons in molecular linear α-chain nuclei are analyzed using a three-
dimensional lattice cranking model based on covariant density functional theory. The structure of the mirror
nuclei 16C and 16Ne is investigated as a function of rotational frequency. The valence nucleons, with respect to
the 3α linear chain core of 12C, at low frequency occupy the π molecular orbital. With increasing rotational
frequency these nucleons transition from the π orbital to the σ molecular orbital, thus stabilizing the 3α linear
chain structure. It is predicted that the valence protons in 16Ne change occupation from the π to the σ molecular
orbital at h̄ω ≈ 1.3 MeV, a lower rotational frequency compared to h̄ω ≈ 1.7 MeV for the valence neutrons in
16C. The same effects of valence protons are found in 20Mg, compared to the four valence neutrons in 20O. The
model is also used to examine the effect of alignment of valence nucleons on the relative positions and size of
the three α clusters in the mirror nuclei 16C and 16Ne.

DOI: 10.1103/PhysRevC.105.024322

I. INTRODUCTION

Structure phenomena related to large deformations in ex-
otic nuclei have been the subject of extensive experimental
and theoretical studies. In heavy nuclei, a number of ro-
tational bands have been observed that are based on axial
quadrupole superdeformed and hyperdeformed states, charac-
terized by the ratio 1:2 and 1:3, respectively, between the axis
of the nuclear ellipsoid [1–5]. In relatively light nuclei, not
only pronounced deformations but also extremely elongated
shapes such as, for instance, linear α-cluster chain structure
can occur.

The linear chain structure of three α clusters was first
suggested in 1956 [6] and was used to describe the Hoyle
state (the first excited 0+ state of 12C at Ex = 7.65 MeV) [7]
which plays a crucial role in the synthesis of carbon through
the triple-α process, and it was observed in experiment soon
after [8]. Much later, this state was also described as a gaslike
structure [9], as well as an α condensate-like state [10,11].
Since then, experimental and theoretical studies have been
carried out in other N = Z nuclei, such as 8Be [12,13], 16O
[14–20], and 24Mg [21,22]. However, because of the antisym-
metrization of single-nucleon wave functions and the weak
coupling between α clusters, the linear chain configurations
are difficult to stabilize. Therefore, to strengthen the stability
of a linear chain structure, some additional mechanisms must
be considered.

Additional stability of linear α chains can be obtained by
the rotation of the nuclear system. At high angular momenta,
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the linear chain configuration with a large moment of inertia
is favored because of the centrifugal force. However, very
high angular momenta would also lead to a fission of the
linear chain. The region of angular momentum in which the
linear chain configuration is stabilized has been estimated
theoretically for some N = Z nuclei, for example, 16O [18]
and 24Mg [21]. Another mechanism that can enhance the
stability of linear chain configurations is the action of ad-
ditional valence neutrons. For instance, when neutrons are
added to N = Z nuclei and, especially when they occupy the
σ orbital (parallel to the symmetry axis of the linear chain),
very elongated shapes are energetically favored [23,24]. A
number of studies have discussed the role of valence neutrons
in carbon isotopes [23,25–35]. In Ref. [31], both mechanisms
have been considered simultaneously, and it has been shown
that the valence neutron orbitals change from the π orbital to
the σ orbital with increasing rotational frequency for 15−18C,
which enhances the stability of linear chain configurations.
However, the rotational effect on the stability of linear chain
configurations for proton-rich nuclei has not been discussed
so far. Thus it will be interesting to investigate the effects of
rotation and valence protons in proton-rich nuclei, eventual
differences with respect to neutron-rich nuclei, as well as
extend such studies to heavier nuclear system.

Various microscopic models have been developed to in-
vestigate linear chains of cluster structures. In addition to
conventional approaches, such as the resonating group method
[36], the generator coordinate method [37], the molecular
orbital model [38–40], and the antisymmetrized molecular
dynamics method [41,42], models based on nuclear density
functional theory (DFT) provide a successful description of
the linear chain structures [17–19,21,26,31–33]. Nuclear DFT
presents a self-consistent framework in which phenomena re-
lated to cluster structures can be investigated without a priori
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assuming the existence of α clusters. The relativistic extension
of nuclear DFT, that is, the covariant DFT naturally includes
the spin degree of freedom of the nucleon, the spin-orbital
interaction [43], and nuclear currents, which is particularly
important for the description of collective rotations [44,45].

In this work, the rotational effects in molecular linear
α-chain nuclei characterized by the alignment of valence
nucleons, are investigated using the three-dimensional (3D)
lattice cranking covariant density functional theory (CDFT),
in which the variational collapse is avoided by the inverse
Hamiltonian method [46] and the Fermion doubling problem
is solved by spectral method [47]. The paper is organized as
follows. In Sec. II, we briefly review the basic formalism of
the 3D lattice cranking CDFT, together with the localization
function. Numerical details of the calculation and the principal
results for rotating α-chain nuclei with valence nucleons are
presented and discussed in Sec. III. Finally, a brief summary
and outlook for future studies are included in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Cranking covariant density functional theory
in 3D lattice space

The framework of CDFT can be based on an effective
nuclear Lagrangian density, that describes the strong and elec-
tromagnetic interactions between nucleons by the exchange of
mesons and the photon, respectively [48],

L = ψ̄

[
iγ μ∂μ − M − gσ σ − gωγ μωμ − gργ

μ�τ · �ρμ

− eγ μ 1 − τ3

2
Aμ

]
ψ

+ 1

2
∂μσ∂μσ − 1

2
m2

σ σ 2 − 1

4
�μν�μν + 1

2
m2

ωωμωμ

− 1

4
�Rμν · �Rμν + 1

2
m2

ρ �ρμ · �ρμ − 1

4
FμνFμν, (1)

where M, mσ , mω, and mρ are the masses of the nucleon, σ

meson, ω meson, and ρ meson, respectively. gσ , gω, and gρ

are the corresponding couplings for the mesons to the nucleon
and, in general, these are functions of the nucleon density.
�μν , �Rμν , and Fμν are the field tensors of the vector fields
ω, ρ, and the photon.

To describe nuclear rotations in the cranking approxima-
tion, the effective Lagrangian density of Eq. (1) is transformed
into a rotating frame with a constant rotational frequency
around a given rotational axis. Taking the y axis as the axis
of rotation, the single-nucleon equation of motion is derived
from the Lagrangian in the rotating frame

ĥ′ψk = (ĥ0 − ω ĵy)ψk = ε′
kψk, (2)

where ĥ0 is single-nucleon Hamiltonian,

ĥ0 = α · (p − V ) + β(m + S) + V0. (3)

Here ĵy = l̂y + 1
2 �̂y is the y component of the total angular

momentum of the nucleon spinor, and ε′
k is the single-particle

Routhian. The relativistic scalar meson field S and vector
meson field Vμ are related in a self-consistent way to the

nucleon densities and current distributions. By solving the
cranking Dirac equation (2) self-consistently, one obtain the
single-particle Routhians, the expectation values of the angu-
lar momentum, quadrupole moments, etc.

In this work, the cranking Dirac equation is solved in
3D lattice space. The main challenges one encounters are
the variational collapse and the fermion doubling problem,
which are solved by the inverse Hamiltonian method [46] and
spectral method [47], respectively. For details, we refer the
reader to Ref. [47]. A damping function is introduced in the
cranking term to remove the unphysical continuum effect on
single-particle Routhians with large angular momenta [32].
The cranking term −ω ĵy in Eq. (2) is replaced by

fD(r)(−ω ĵy) fD(r), (4)

where the damping function is of a Fermi-type determined by
two parameter rD and aD:

fD(r) = 1

1 + er−rD/aD
. (5)

B. Localization function

The conditional probability of finding a nucleon within a
distance δ from a given nucleon at point r with the same spin
σ (=↑ or ↓) and isospin q (=n or p) quantum numbers is,

Rqσ (r, δ) ≈ 1

3

(
τqσ − 1

4

|∇ρqσ |2
ρqσ

− j2
qσ

ρqσ

)
δ2 + O(δ�), (6)

where ρqσ , τqσ , jqσ , and ∇ρqσ denote the particle density,
kinetic energy density, current density, and density gra-
dient, respectively, and are completely determined by the
self-consistent mean-field single-particle states. From the con-
ditional probability, the nucleon localization function can be
derived as [49–51],

Cqσ (r) =
[

1 +
(

τqσ ρqσ − 1
4 |∇ρqσ |2 − j2

qσ

ρqσ τTF
qσ

)2]−1

, (7)

where τTF
qσ = 3

5 (6π2)2/3ρ5/3
qσ is the Thomas-Fermi kinetic en-

ergy density. The function Cqσ (r) is normalized and provides
a dimensionless measure of nucleon localization. For homo-
geneous nuclear matter τ = τTF

qσ , the second and third term
in the numerator vanish, and Cqσ = 1/2. In the other limit
Cqσ (r) ≈ 1 indicates that the probability of finding two nu-
cleons with the same spin and isospin at the same point r is
very small. This is the case for the α cluster of four particles:
p ↑, p ↓, n ↑, and n ↓, for which all four nucleon localization
functions Cqσ ≈ 1.

To emphasize localization inside a nucleus and avoid nu-
merical instabilities in the outside region where densities are
very small, a masking function is used to suppress the local-
ization function in the region where this quantity is no longer
relevant:

Cqσ (r) → Cqσ (r)ρqσ (r)/ max[ρqσ (r)]. (8)

For 3D lattice CDFT calculations that include rotations,
spin is not a conserved quantity because of broken time-
reversal symmetry. Since we are interested in the total
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FIG. 1. Proton density distributions in the x-z plane for 12C,
16C and neutron density distributions in the x-z plane for 16Ne at
the rotational frequencies h̄ω = 0.0 MeV [(a), (c), and (e)] and
h̄ω = 3.0 MeV [(b), (d), and (f)].

localization of neutrons and protons, the average localization
function is considered: Cav

q = (Cq↑ + Cq↓)/2.

III. RESULTS AND DISCUSSION

In this work, the density functional DD-ME2 [52] is em-
ployed in self-consistent cranking mean-field calculations.
The number of grid points is 32 in the x and y directions,
and 40 in the z direction. The step size along all three axes is
0.8 fm. The parameters rD = 11 fm and aD = 0.2 fm of
the Fermi damping function ensure that the convergence is
achieved. The parameters used in the inverse Hamiltonian
method are same as in Ref. [32]

The present study of cluster structures starts with 12C. In
the first step, Eq. (2) is solved iteratively at zero rotational
frequency, by assuming the initial potential with a very large

prolate quadrupole deformation. A shape constrained self-
consistent solution with a 3α linear chain configuration is
thus obtained. Using this potential as the initial potential,
cranking CDFT calculations in 3D lattice space are performed
self-consistently for 12C, 16C, and 16Ne at different rotational
frequencies. The linear chain configurations at low rotational
frequencies are obtained in such a way that the proton config-
uration for 16C and the neutron configuration for 16Ne, are
constrained to reproduce the linear 3α-chain configuration
of 12C.

Figure 1 displays the proton density distributions for 12C
and 16C, as well as the neutron density distributions for 16Ne,
at rotational frequencies h̄ω = 0.0 MeV and h̄ω = 3.0 MeV.
The 3α chain is clearly seen in all cases, and it is interesting
to note how these structures are elongated along the z axis
by centrifugal stretching, when increasing the rotational fre-
quency to h̄ω = 3.0 MeV.

Although the 3α linear chain structure persists in the mirror
nuclei 16C and 16Ne, these configurations are not necessarily
stable at all rotational frequencies. In Fig. 2 we plot the single-
particle Routhians as functions of the rotational frequency for
12C, 16C, and 16Ne. Each level is labeled by the correspond-
ing Nilsson quantum number of its maximal component, and
levels of positive and negative parity are denoted by solid and
dashed lines, respectively. All levels are doubly degenerate at
h̄ω = 0.0 MeV because of time-reversal symmetry, and split
into two levels each as the rotational frequency increases.

For the nucleus 12C, the occupied proton states are al-
ways the lowest-energy levels and this configuration does
not change with increasing rotational frequency. A different
situation occurs for 16C, with four more valence neutrons.
As noted above, to obtain the linear 3α-chain configuration
at low rotational frequency, the occupation of proton levels
is constrained in such a way that the level 3/2[101] is un-
occupied, even though it is lower in energy than the occupied
levels originating from the Nilsson level 1/2[220]. This means
that the last two protons in the level 1/2[220] can occupy the
level 3/2[101] to lower the energy and, therefore, the 3α linear
chain proton configuration is not stable at small rotational
frequencies. Note that the linear chain structure requires that
the proton configuration for 16C does not change, thus the

FIG. 2. Single-proton Routhians as functions of the rotational frequency for 12C and 16C, and single-neutron Routhians for 16Ne. Each
orbital is labeled by the corresponding Nilsson quantum number of its maximal component. The solid and dashed lines correspond to single-
particle states with positive and negative parity, respectively. Circles denote the occupied orbitals.
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FIG. 3. Neutron localization function [(a), (b), and (c)], neutron
density distributions [(d), (e), and (f)], valence particle density dis-
tributions [(g), (h), and (i)] in the x-z plane for 16C at the rotational
frequencies h̄ω = 0.0, 2.0, and 3.0 MeV, respectively.

levels originating from 1/2[220] are denoted by the thin lines.
With the rotational frequency increasing, the occupied levels
1/2[220] become lower in energy with respect to the level
3/2[101]. The first level crossing occurs at h̄ω ≈ 1.7 MeV,
and the 3α linear chain proton configuration eventually stabi-
lizes at rotational frequency h̄ω ≈ 2.2 MeV.

The nucleus 16Ne has four more valence protons com-
pared to 12C and, analogous to the proton levels in 16C, the
corresponding first neutron level crossing occurs already at
h̄ω ≈ 1.3 MeV. One notices, however, that the 3α linear chain
neutron configuration is stabilized at rotational frequencies
h̄ω ≈ 1.7 MeV. When compared to 16C, it appears that the
3α linear chain configuration could be stabilized at lower
rotational frequency.

The stability of the linear 3α-chain configuration in the
mirror nuclei 16C and 16Ne is affected by the valence particles.
In Fig. 3 we plot the average neutron localization function
(Cav

n ), the neutron density distributions, and the valence neu-
tron density distributions for 16C at rotational frequencies:
h̄ω = 0.0, 2.0, and 3.0 MeV, respectively. At h̄ω = 0.0 MeV,
Cav

n displays two symmetric regions of pronounced localiza-
tion, but the neutron density appears to be less localized in the
central region. This is because the valence neutrons exhibit
an oblate distribution with respect to the z axis [Fig. 3(g)],
indicating that the valence neutrons occupy the π orbital.

FIG. 4. Proton localization function [(a), (b), and (c)], proton
density distributions [(d), (e), and (f)], valence particle density dis-
tributions [(g), (h), and (i)] in the x-z plane for 16Ne at the rotational
frequencies h̄ω = 0.0, 2.0, and 3.0 MeV, respectively.

The occupation of the π orbital contributes to the neutron
density in the z = 0 plane, thus reducing the localization of the
central α particle. With increasing rotational frequency, the
valence neutrons density changes from an oblate distribution
to a more prolate distribution. At h̄ω = 2.0 MeV, the valence
neutrons partly occupy the σ orbital. However, there is no
clear localization of the 3α linear chain structure in the map
of Cav

n or the neutron density distributions. As noted above,
the 3α linear chain proton configuration is not yet stabilized,
according to the single-proton Routhians for 16C in Fig. 2.

At h̄ω = 3.0 MeV, the valence neutrons display a prolate
distribution with respect to the z axis. This means that the
valence neutrons change the occupation from the π orbital
to the σ orbital, thus strengthening the stability of the 3α

linear chain structure. The 3α linear chain structure is clearly
seen in the map of Cav

n and the neutron density distribution.
Furthermore, the proton configuration that determines the 3α

structure has been stabilized at this rotational frequency (cf.
the single-proton Routhians in Fig. 2). The localization of the
α cluster in the center is slightly different from the peripheral
ones because of the contribution of the valence neutrons.

Figure 4 displays the corresponding proton average local-
ization function (Cav

p ), proton density distributions, and the
valence proton density distributions for 16Ne. Similarly to 16C,
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FIG. 5. Single-neutron Routhians for 16C, and single-proton Routhians for 16Ne, as functions of the rotational frequency. The open, open-
dot, and filled circles denote the occupied orbitals before the level crossing, after the first crossing, and after the second crossing, respectively.

the valence protons occupy the π orbital and delocalize the 3α

linear chain structure at h̄ω = 0.0 MeV. When the rotational
frequency is increased to h̄ω = 2.0 MeV, the valence proton
density already exhibits a prolate distribution along the z axis.
The linear 3α-chain structure is clearly seen in the map of Cav

p
and the proton density distribution. It appears that the valence
protons in 16Ne transition from the π orbital to the σ orbital
at lower rotational frequency compared to the valence neu-
trons in 16C. Consequently, the linear 3α-chain configuration
gets stabilized at a lower rotational frequency in the 3α + 4p
system.

The single-neutron Routhians for 16C, and single-proton
Routhians for 16Ne are shown in Fig. 5. One notices how
the level originating from 1/2[330] decreases in energy as
a function of rotational frequency and crosses the levels
that correspond to 3/2[211] and 1/2[101]. The downsloping
level becomes occupied at higher frequencies. For 16C, in
particular, we see that at h̄ω ≈ 1.7 MeV a valence neutron
firstly changes the occupation from the level originating in
1/2[101] to the level corresponding to 1/2[330], and after-
wards another valence neutron occupies a level corresponding
to 3/2[211] at h̄ω ≈ 2.5 MeV. A similar behavior is also
observed for 16Ne, but the valence protons change the occu-
pation from π to σ molecular orbitals at a lower rotational
frequency.

One expects that a similar effect might occur in heavier
systems. Therefore, we have carried out the corresponding
calculations for the mirror nuclei 20O and 20Mg. The results
are shown in Figs. 6 and 7. Both for the mirror nuclei 20O
and 20Mg, the valence particle densities in the lower panels
exhibit distributions that are characteristic for the occupa-
tion of the π orbital at h̄ω = 0.0 MeV. At h̄ω ≈ 2.2 MeV,
for the nucleus 20O, valence neutrons start to change the
occupation from the π orbital to the σ orbital. However,
the contribution of the σ orbital is still not dominant. As
a result, the neutron density extends along the z direction,
and the two α clusters in the central region are difficult to
identify from the map of Cav

n and the neutron density dis-
tribution. For the nucleus 20Mg, already at this frequency
the valence protons predominantly occupy the σ orbital, and

the 4α linear chain structure is significantly more localized
in the map of Cav

p . This shows that the valence protons
change the occupation from the π orbital to the σ orbital at
lower rotational frequency compared to the valence neutrons
that supplement the 4α system in 20O. At h̄ω = 2.4 MeV,
four nodes along the z axis are clearly identified in the density
distributions of the valence particles both for 20O and 20Mg,
and the 4α linear chain structure is more pronounced in the
maps of the localization function.

We have also analyzed the single-proton and the single-
neutron Routhians as functions of rotational frequency for
the mirror nuclei 20O and 20Mg, respectively. For 20O, we
find that the 4α linear chain neutron configuration sta-
bilizes at h̄ω ≈ 2.4 MeV, while for 20Mg the 4α linear
chain proton configuration appears stable already at h̄ω ≈
2.2 MeV. Therefore, with increasing rotational frequency, the
linear chain configuration is stabilized at lower rotational
frequency for the 4α + 4p system. The valence protons in
20Mg change the occupation from the π orbital to the σ

orbital at lower frequency compared to the valence neutrons
in 20O.

The phenomenon described above is also illustrated in the
alignment of the angular momentum and the evolution of
quadrupole deformation with rotational frequency. Figure 8
displays the angular momentum and the quadrupole deforma-
tion β2 for 16C, 16Ne, 20O, and 20Mg, as functions of rotational
frequency. Initially, in all cases the angular momentum in-
creases linearly with rotational frequency, which means that
the moments of inertia are nearly constant. This is because the
single-nucleon configurations do not change at low rotational
frequencies.

The slope suddenly changes at h̄ω ≈ 1.5 MeV for 16Ne and
h̄ω ≈ 2.0 MeV for 16C [Fig. 8(a)], and this indicates a struc-
tural change with increasing angular momentum. At these
rotational frequencies the valence nucleons begin to change
their occupation from the π orbital to the σ orbital. Note that
the alignment occurs at lower rotational frequency in 16Ne.
The effect is also clearly seen, and even more pronounced, in
the plot of the quadrupole deformation parameter β2 as func-
tion of the rotational frequency [Fig. 8(b)]. The quadrupole
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FIG. 6. Same as in the caption to Fig. 3 but for 20O at the rota-
tional frequencies h̄ω = 0.0, 2.2, and 2.4 MeV.

moment of 16C is almost constant up to h̄ω ≈ 1.5 MeV,
where it exhibits an abrupt increase. The corresponding sharp
rise of the quadrupole deformation in 16Ne occurs already at
h̄ω ≈ 1.5 MeV. A similar behavior, but perhaps with a less
pronounced difference between systems with valence neu-
trons and protons, is also seen for the mirror nuclei 20Mg and
20O [Figs. 8(c) and 8(d)].

An interesting point, that has not been considered in pre-
vious studies of molecular bonding in nuclei with cluster
structures, is the effect of valence nucleons on the characteris-
tics of the clusters (relative positions, cluster size). In all cases
considered in the present study, one notices that the central
cluster structures differ from the outer ones which, generally,
exhibit more localization. This difference, however, depends
on the rotational frequency. Here we analyze this behavior
for the α linear chain configurations in 12C, 16C, and 16Ne.
The 3α-like density distributions of the core nucleons, that is,
excluding the valence particles, are fitted along z direction (the
density is integrated in the x-y plane) by a linear combination

FIG. 7. Same as in the caption to Fig. 4 but for 20Mg at the
rotational frequencies h̄ω = 0.0, 2.2, and 2.4 MeV.

of Gaussian functions:

ρ =
3∑

i=1

ρi exp

[
− (z − zi)2

2w2
i

]
, (9)

where ρi, zi,wi (i = 1, 2, 3) denote the amplitude, the peak
location, and the width, respectively of each α-like cluster.
The results are shown in Fig. 9. In the upper panel we plot the
z coordinates of the peak of each cluster. On the one hand, for
12C the position of the peripheral peaks hardly changes with
rotational frequency, and only for h̄ω > 2 MeV one notices
the effect of centrifugal stretching. For the mirror nuclei 16C
and 16Ne, on the other hand, the positions of the outer peaks
are much closer to the central one at low rotational frequen-
cies. This is the effect of the valence nucleons occupying the
π orbital, and thus providing additional attraction for the outer
α clusters. The transition of the valence nucleons from the π

to the σ orbital at h̄ω ≈ 1.5 MeV for 16Ne and h̄ω ≈ 2.0 MeV
for 16C, weakens the bonding of the outer α clusters and the
location of their peaks approaches that of the corresponding α
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FIG. 8. Angular momenta [(a) and (c)] and quadrupole deforma-
tion β2 [(b) and (d)] as functions of rotational frequency for 16C,
16Ne, 20O, and 20Mg.

particles in 12C. Moreover, the repulsive effect of the Coulomb
interaction between protons stretches the linear chain configu-
ration for proton-rich nuclei, and the distance between cluster
peaks for 16Ne is always longer than for 16C. This mechanism
makes it easier for proton-rich nuclei to stabilize the linear
chain configuration.

The widths of the fitted Gaussian functions are shown, as
functions of rotational frequency, in the lower panel of Fig. 9.
As one would expect, there is virtually no difference between
the widths of the central and outer α clusters in 12C for
h̄ω � 2 MeV, and only a small effect of centrifugal stretching
in the interval 2 � h̄ω � 3 MeV. In contrast, for 16C and 16Ne
one notices a pronounced reduction of the Gaussian width
that corresponds to the central α cluster. It appears as if the
α cluster in the middle is squeezed by the outer ones that are
more strongly bound by the valence particles occupying the
π orbital. Therefore, the transition from the π to the σ orbital
not only releases the outer α clusters, but also results in the
increase of the width of the central cluster peak which, after
the transition, approaches values that are characteristic for the
peripheral clusters, and the three α clusters in 12C.

IV. SUMMARY

By employing the 3D lattice cranking CDFT, we have in-
vestigated rotational effects in molecular linear α-chain nuclei
characterized by the alignment of valence nucleons. Starting
from the 3α linear chain configuration in 12C, the structure of
the mirror nuclei with four more neutrons (16C) and four more
protons (16Ne) has been analyzed as a function of rotational
frequency. At low frequency, or low angular momenta, the va-
lence nucleons occupy the π molecular orbital (perpendicular
to the z axis of the 3α linear chain core) and, although this
configuration provides additional binding for the 3α struc-
ture, it cannot stabilize the 3α linear chain. With increasing
rotational frequency, however, the valence nucleons transition

FIG. 9. Location of the peak (upper panel), and the width (lower
panel) of each α-like cluster in 12C, 16C, and 16Ne, obtained by fitting
the 3α core density along z direction by a linear combination of
Gaussian functions, as functions of rotational frequency.

from the π orbital to the σ molecular orbital (parallel to the
z axis of the 3α linear chain core), and stabilize the 3α linear
chain. At the same rotational frequency one finds a crossing
between occupied and unoccupied Routhians of core nucleons
with opposite isospin projection. The rather abrupt transitions
is also reflected in the sudden change of alignment of the
angular momentum and the quadrupole deformation of the
nucleus.

An interesting result is that the valence protons in 16Ne
change occupation from the π to the σ molecular orbital at
lower rotational frequency compared to the valence neutrons
in 16C. We have also verified that the same effect, although
less pronounced, is found for the alignment of valence protons
in 20Mg when compared to the four valence neutrons in 20O.
The repulsive effect of the Coulomb interaction increases the
distance between clusters along the z axis for proton-rich
nuclei and thus stabilizes the linear chain configurations at a
lower rotational frequency. Finally, we have investigated the
effect of the alignment of valence nucleons on the relative
positions and size of the three α clusters in the mirror nuclei
16C and 16Ne. When compared to the 3α linear chain con-
figuration in 12C, at low rotational frequency, the positions
of the peripheral clusters in the mirror nuclei 16C and 16Ne
appear to be much closer to the central one. The alignment
of the valence nucleons from the π to the σ orbital with
increasing rotational frequency, however, reduces the bonding
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of the outer clusters and their relative position with respect
to the central cluster becomes comparable to the one found
in 12C. An additional effect of the alignment of the valence
nucleons is an enlargement of the central cluster which, at low
rotational frequency, appears to be smaller in size compared
to the peripheral ones, but approaches their width at higher
rotational frequencies.

The model based on 3D lattice cranking CDFT can be
employed in further studies of rotations of cluster structures
in N = Z nuclei, or molecular nuclei like the ones considered
in the present work. A particularly important point is the
possibility to investigate structures that are not constrained
by axial symmetry but allow for bending motion. It has been
shown that some linear α-chain configurations, which also
include valence nucleons, are not stable against bending and,
therefore, it will be interesting to analyze the effect of collec-
tive rotation on such structures.

ACKNOWLEDGMENTS

This work was partly supported by the National Key R&D
Program of China (Contracts No. 2018YFA0404400 and No.
2017YFE0116700), the National Natural Science Founda-
tion of China (Grants No. 12070131001, No. 11875075,
No. 11935003, No. 11975031, and No. 12141501), the
China Postdoctoral Science Foundation under Grant No.
2020M670013, the High-end Foreign Experts Project of
Peking University, the High-performance Computing Plat-
form of Peking University, the QuantiXLie Centre of Ex-
cellence, a project co-financed by the Croatian Government
and European Union through the European Regional Devel-
opment Fund–the Competitiveness and Cohesion Operational
Programme (KK.01.1.1.01.0004), and the Croatian Science
Foundation under the project Uncertainty quantification
within the nuclear energy density framework (IP-2018-01-
5987).

[1] B. M. Nyakó, J. R. Cresswell, P. D. Forsyth, D. Howe, P. J.
Nolan, M. A. Riley, J. F. Sharpey-Schafer, J. Simpson, N. J.
Ward, and P. J. Twin, Phys. Rev. Lett. 52, 507 (1984).

[2] P. J. Twin, B. M. Nyakó, A. H. Nelson, J. Simpson, M. A.
Bentley, H. W. Cranmer-Gordon, P. D. Forsyth, D. Howe, A. R.
Mokhtar, J. D. Morrison, J. F. Sharpey-Schafer, and G. Sletten,
Phys. Rev. Lett. 57, 811 (1986).

[3] A. Galindo-Uribarri, H. R. Andrews, G. C. Ball, T. E. Drake,
V. P. Janzen, J. A. Kuehner, S. M. Mullins, L. Persson, D.
Prévost, D. C. Radford, J. C. Waddington, D. Ward, and R.
Wyss, Phys. Rev. Lett. 71, 231 (1993).

[4] D. R. LaFosse, D. G. Sarantites, C. Baktash, P.-F. Hua, B.
Cederwall, P. Fallon, C. J. Gross, H.-Q. Jin, M. Korolija, I. Y.
Lee, A. O. Macchiavelli, M. R. Maier, W. Rathbun, D. W.
Stracener, and T. R. Werner, Phys. Rev. Lett. 74, 5186 (1995).

[5] A. Krasznahorkay, M. Hunyadi, M. N. Harakeh, M. Csatlós, T.
Faestermann, A. Gollwitzer, G. Graw, J. Gulyás, D. Habs, R.
Hertenberger, H. J. Maier, Z. Máté, D. Rudolph, P. Thirolf, J.
Timár, and B. D. Valnion, Phys. Rev. Lett. 80, 2073 (1998).

[6] H. Morinaga, Phys. Rev. 101, 254 (1956).
[7] F. Hoyle, Astrophys. J. Suppl. Ser. 1, 121 (1954).
[8] C. W. Cook, W. A. Fowler, C. C. Lauritsen, and T. Lauritsen,

Phys. Rev. 107, 508 (1957).
[9] Y. Fujiwara, H. Horiuchi, K. Ikeda, M. Kamimura, K. Kat,

Y. Suzuki, and E. Uegaki, Prog. Theor. Phys. Suppl. 68, 29
(1980).

[10] A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, Phys. Rev.
Lett. 87, 192501 (2001).

[11] T. Suhara, Y. Funaki, B. Zhou, H. Horiuchi, and A. Tohsaki,
Phys. Rev. Lett. 112, 062501 (2014).

[12] V. M. Datar, D. R. Chakrabarty, S. Kumar, V. Nanal, S. Pastore,
R. B. Wiringa, S. P. Behera, A. Chatterjee, D. Jenkins, C. J.
Lister, E. T. Mirgule, A. Mitra, R. G. Pillay, K. Ramachandran,
O. J. Roberts, P. C. Rout, A. Shrivastava, and P. Sugathan, Phys.
Rev. Lett. 111, 062502 (2013).

[13] E. Garrido, A. S. Jensen, and D. V. Fedorov, Phys. Rev. C 88,
024001 (2013).

[14] P. Chevallier, F. Scheibling, G. Goldring, I. Plesser, and M. W.
Sachs, Phys. Rev. 160, 827 (1967).

[15] Y. Suzuki, H. Horiuchi, and K. Ikeda, Prog. Theor. Phys. 47,
1517 (1972).

[16] H. Flocard, P. H. Heenen, S. J. Krieger, and M. S. Weiss,
Prog. Theor. Phys. 72, 1000 (1984).

[17] M. Bender and P.-H. Heenen, Nucl. Phys. A 713, 390 (2003).
[18] T. Ichikawa, J. A. Maruhn, N. Itagaki, and S. Ohkubo,

Phys. Rev. Lett. 107, 112501 (2011).
[19] J. M. Yao, N. Itagaki, and J. Meng, Phys. Rev. C 90, 054307

(2014).
[20] W. B. He, Y. G. Ma, X. G. Cao, X. Z. Cai, and G. Q. Zhang,

Phys. Rev. Lett. 113, 032506 (2014).
[21] Y. Iwata, T. Ichikawa, N. Itagaki, J. A. Maruhn, and T. Otsuka,

Phys. Rev. C 92, 011303(R) (2015).
[22] A. H. Wuosmaa, R. R. Betts, B. B. Back, M. Freer, B. G.

Glagola, T. Happ, D. J. Henderson, P. Wilt, and I. G. Bearden,
Phys. Rev. Lett. 68, 1295 (1992).

[23] N. Itagaki, S. Okabe, K. Ikeda, and I. Tanihata, Phys. Rev. C 64,
014301 (2001).

[24] N. Itagaki, T. Otsuka, K. Ikeda, and S. Okabe, Phys. Rev. Lett.
92, 142501 (2004).

[25] N. Itagaki, W. von Oertzen, and S. Okabe, Phys. Rev. C 74,
067304 (2006).

[26] J. Maruhn, N. Loebl, N. Itagaki, and M. Kimura, Nucl. Phys. A
833, 1 (2010).

[27] T. Suhara and Y. Kanada-En’yo, Phys. Rev. C 82, 044301
(2010).

[28] T. Baba, Y. Chiba, and M. Kimura, Phys. Rev. C 90, 064319
(2014).

[29] J.-P. Ebran, E. Khan, T. Nikšić, and D. Vretenar, Phys. Rev. C
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