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The study of nuclei and antinuclei production has proven to be a powerful tool to investigate the
formation mechanism of loosely bound states in high-energy hadronic collisions. The first measurement of
the production of 3ΛH in p-Pb collisions at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 5.02 TeV is presented in this Letter. Its production yield

measured in the rapidity interval −1 < y < 0 for the 40% highest-multiplicity p-Pb collisions is
dN=dy ¼ ½6.3� 1.8ðstatÞ � 1.2ðsystÞ� × 10−7. The measurement is compared with the expectations of
statistical hadronization and coalescence models, which describe the nucleosynthesis in hadronic
collisions. These two models predict very different yields of the hypertriton in charged particle multiplicity
environments relevant to small collision systems such as p-Pb, and therefore the measurement of dN=dy is
crucial to distinguish between them. The precision of this measurement leads to the exclusion with a
significance larger than 6.9σ of some configurations of the statistical hadronization model, thus
constraining the theory behind the production of loosely bound states at hadron colliders.

DOI: 10.1103/PhysRevLett.128.252003

In the last few decades, the production of deuterons, 3H,
3He, 4He, and their charge conjugates was measured in
many different colliding systems and energies. The results
of the measurements in hadronic and heavy-ion collisions
at the LHC [1–7], in eþe− collisions at LEP [8], at lower-
energy colliders [9–16], and in fixed target experiments
[17–20] significantly constrained the parameter space for
production models like coalescence [21–23] and statistical
hadronization [24,25], yet they were unable to decisively
discriminate between these two models. The interest in the
phenomenon of nucleosynthesis in the final state of
hadronic collisions has risen again in recent years owing
to its relevance in dark matter searches in space [26,27]. A
precise modeling of the production of nuclei and antinuclei
is required for the interpretation of the expected fluxes of
antinuclei originating from dark matter annihilation, and
for the relevant Standard Model background channels.
For large colliding systems, such as Pb-Pb collisions at

the LHC, the predictions of statistical hadronization and
coalescence models are very similar, and they are both able
to describe the measured production of nuclei [28]. The
statistical hadronization model (SHM) describes the system
as a hadron-resonance gas (HRG) in thermal equilibrium at
hadron emission, hence it predicts particle yields starting
from the volume and the temperature of the system at

chemical freeze-out (Tchem). The grand canonical formu-
lation of the SHM describes the measured production yields
of light hadrons and nuclei in Pb-Pb collisions at 2.76 TeV
with Tchem ¼ 155 MeV [5]. This temperature, which
successfully describes the yield of light hadrons in central
Pb-Pb collisions, is 1–2 orders of magnitude larger than the
typical binding energies of light nuclei (a few MeV), and
nuclei are likely to interact with the other hadrons in the
dense HRG after chemical freeze-out due to the large cross
sections [29], thus further modifying the yield. How these
loosely bound objects can be formed and survive in such a
hostile environment is still an unsolved question [30]. The
coalescence model uses a different approach to explain the
production of nuclei: the size of the nucleon-emitting
source, accessible through the analysis of femtoscopic
correlations [31], and the nuclear wave function are the
two inputs that determine the formation probability of
bound states [23,26]. While the SHM can compute directly
the absolute yields of particles, in the hadron coalescence
model the yield of bound states can be computed only
relative to the yields of other particles.
The measurement of the production of large bound states

in small collision systems, such as pp and p-Pb, is
considered to allow for conclusive tests [28,32] of nucleo-
synthesis in hadronic collisions. An extreme example is the
hypertriton 3

ΛH, the bound state of a proton, a neutron, and a
Λ baryon. This state is characterized by a very small Λ
separation energy, of the order of a few hundreds of keV
[33,34], and consequently it has a wide wave function that
can extend up to a radius of ≈10 fm [35,36]. The size of the
3
ΛH wave function is therefore much larger than the hadron
emission radius estimated with a femtoscopic technique in

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW LETTERS 128, 252003 (2022)

0031-9007=22=128(25)=252003(13) 252003-1 © 2022 CERN, for the ALICE Collaboration

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.252003&domain=pdf&date_stamp=2022-06-23
https://doi.org/10.1103/PhysRevLett.128.252003
https://doi.org/10.1103/PhysRevLett.128.252003
https://doi.org/10.1103/PhysRevLett.128.252003
https://doi.org/10.1103/PhysRevLett.128.252003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


p-Pb collisions (1–2 fm [37,38]). For this reason, the 3
ΛH

yield in p-Pb collisions predicted by the coalescence
model, where the ratio of nucleus size to source size
directly influences its yield, is suppressed with respect to
the statistical hadronization model expectations, where the
nuclear size does not enter explicitly [23,25,28].
The results presented in this Letter are based on data

collected during the 2013 and 2016 p-Pb LHC runs at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 5.02 TeV. With this beam configuration, the
nucleon-nucleon center-of-mass system moves in rapidity
by Δycms ¼ 0.465 in the direction of the proton beam. The
ALICE detector and its performance are described in detail
in Refs. [39,40]. Collision events are selected by using the
information from the V0A and V0C scintillator arrays [41],
located on both sides of the interaction point, covering the
pseudorapidity intervals −3.7 < η < −1.7 and 2.8 < η <
5.1. A coincident signal in both arrays is used as a
minimum-bias (MB) trigger. In addition, only events with
the primary vertex position within 10 cm along the beam
axis to the nominal center of the experiment are selected
to benefit from the full acceptance of the detector.
Furthermore, to ensure the best possible performance of
the detector and the proper normalization of the results,
events with more than one reconstructed primary inter-
action vertex (pileup events) are rejected. In total, about
7.5 × 108 MB events are selected for analysis, correspond-
ing to an integrated luminosity of LMB

int ¼ 359 μb−1, with a
relative uncertainty determined by the van der Meer scan to
be 3.7% [42]. For this analysis, the 40% of events with the
highest multiplicity measured by the V0A detector
are used.
The 3

ΛH candidates are reconstructed via the charged
two-body decay channel 3

ΛH → 3Heþ π− (and the related
charge conjugated particles for 3

Λ̄H̄). In this Letter, 3ΛH and
3
Λ̄H̄ are combined to reduce the statistical uncertainty.
In the following, we use the notation 3

ΛH and 3He for both
the particle and the antiparticle, as well as for their average.
The charged-particle tracks are reconstructed in the ALICE
central barrel with the inner tracking system (ITS) [43] and
the time projection chamber (TPC) [44], which are located
within a solenoid that provides a homogeneous magnetic
field of 0.5 T in the direction of the beam axis. These two
subsystems provide full azimuthal coverage for charged-
particle trajectories in the pseudorapidity interval jηj < 0.8.
The TPC is also used for the particle identification (PID) of
the 3He and the π− via their specific energy loss dE=dx in
the gas volume, with a dE=dx resolution of about 5% [44].
The nðσTPCi Þ variable represents the PID response in the
TPC expressed in terms of the deviation between the
measured and the expected dE=dx for a particle species
i, normalized by the detector resolution σ. The expected
dE=dx is computed with a parametrized Bethe-Bloch
function [40]. Pion and 3He tracks within 5σTPC are
selected. The identified 3He and π tracks are then used

to reconstruct the 3
ΛH weak decay topology with an

algorithm similar to that used in previous analyses
[45,46]. By combining the information on the decay
kinematics and decay vertex, several selection variables
are defined. Those used in the analysis are the radial
distance of the decay vertex from the beam line, the
distance of each daughter track from both the primary
and the decay vertices, the proper decay length of the
candidate (ct), and cosðθPÞ, where θP is the angle between
the total momentum vector of the decay daughters and the
straight line connecting the primary and secondary vertices.
The final candidate selection based on these variables is
performed with a gradient boosted decision tree classifier
(BDT) implemented by the XGBoost library [47–49] and
trained on a dedicated Monte Carlo (MC) simulated event
sample. The MC sample is created using the HIJING event
generator [50] for simulating the underlying p-Pb colli-
sions, while 3

ΛH are injected with a pT distribution
represented by a mT exponential function that describes
the pT distribution of 3He as measured in p-Pb collisions
[5]. The particles are transported through the detector
geometry using GEANT4 [51], which simulates the inter-
action with the material and the weak decay of the 3

ΛH. The
BDT is a supervised learning algorithm that determines
how to discriminate between two or more classes, signal
and background in this case, by examining sets of examples
called the training sets. In this analysis, the training sets are
composed of 3

ΛH signal candidates extracted from the MC
sample and background candidates from paired like-sign
3He and π tracks from the data. For each 3

ΛH candidate, the
BDT combines topological and single track variables to
return a score, which is proportional to the candidate
probability of being signal or background. The selection
is based on the BDT score, defining a threshold that
maximizes the expected signal significance, assuming
thermal production. In this analysis, the default BDT score
selection corresponds to a 72% signal efficiency and a 3 ×
10−5 background rejection factor. The candidates that pass
the BDT selection are used to populate the invariant mass
distribution in the transverse momentum interval
0 < pT < 9 GeV=c. An excess of entries is observed at
a mass near 2.99 GeV=c2, as shown in Fig. 1. The
unbinned distribution is fitted with a kernel density
estimator (KDE) [52,53] function tuned on the MC sample
to describe the signal and a linear function to describe the
background component. The KDE is chosen for smoothing
the template extracted from the MC. The invariant mass
distribution with the superimposed fit is shown in Fig. 1.
The significance associated with the signal is evaluated

following the procedure described in Ref. [54]: the prob-
ability for a background fluctuation to be at least as large as
the observed maximum excess (local p-value) is computed
by employing the asymptotic formulas for likelihood-based
tests. The local p-value is expressed as a corresponding
number of standard deviations using the one-sided
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Gaussian tail convention. The excess of entries observed
above the expected background has a local significance of
4.6 standard deviations at the nominal 3

ΛH mass. The
production yield is obtained starting from the signal
extracted from the fit to the invariant mass spectrum.
Then the fitted signal is corrected for the reconstruction
and the selection efficiency, including reconstruction effi-
ciencies for the daughter particles and the topology, the
acceptance of the ALICE detector, the number of analyzed
events, the branching ratio (BR) of the 3

ΛH in the two-body
decay channel, and the fraction of 3

ΛH that are absorbed in
the ALICE detector (fabs). The simulation of inelastic
interactions of the daughter particles is done with GEANT4
and is taken into account in the reconstruction efficiency
computation. The BR value is assumed to be 0.25 accord-
ing to the calculation published in Ref. [55].
The systematic uncertainties originate from (1) the 3

ΛH
selection and the signal extraction, (2) the choice of the 3

ΛH
input pT distribution in the Monte Carlo sample, and (3) the
3
ΛH absorption in the detector. In addition, (4) a 9%
systematic uncertainty is added due to the uncertainty of
the BR, as explained later in the text. The total uncertainty
is obtained as the quadratic sum of the individual con-
tributions. The first contribution, which is the dominant
one, is computed by varying simultaneously the BDT
threshold (�5%) and the background fit function (constant,
linear, exponential). The standard deviation (rms) of the
different yields represents our systematic error associated
with the BDT selection and the signal extraction, and it
amounts to 14%. The second contribution is evaluated by
using different input pT distributions for the Monte Carlo

sample and evaluating the effects on the efficiency. Four
different pT models (mT exponential, pT exponential,
Boltzmann, and blast wave [56]) are fitted to the 3He pT
distribution [5]. For each of them, the efficiency and the
yield are computed assuming that the 3He and the 3

ΛH have
the same pT distributions as already seen for light flavor
hadrons with similar masses in all collision systems
[1,45,57]. The rms among the trials is calculated, yielding
a systematic uncertainty of 7%. Finally, the uncertainty of
fabs is considered. According to Ref. [58], the expected
absorption cross section of 3

ΛH due to the inelastic inter-
actions in the ALICE detector material is ≈1.5 times that of
3He (σ

3He
inel). The value of fabs is computed by simulating the

passage of hypertritons through the ALICE detector using
this cross section and gives a result of ≈3%. The systematic
uncertainty of fabs is evaluated by employing different
cross sections for the 3

ΛH from zero (no interactions) to

2σ
3He
inel. For each variation, fabs is recalculated. This results in

a systematic uncertainty on the yield of about 4%. Larger
variations of the inelastic cross section are not considered
here, as they spoil the exponential trend of the proper decay
length spectrum measured in Pb-Pb collisions.
The resulting corrected 3

ΛH yield in the rapidity interval
−1 < y < 0, together with its statistical and systematic
uncertainties, is

dN
dy

¼ ½6.3� 1.8ðstatÞ � 1.2ðsystÞ� × 10−7:

The result is compared with the expectations from the
canonical SHM [25], which assumes exact conservation of
baryon number, strangeness, and electric charge across a
correlation volume Vc. The SHM predictions are computed
using a fixed chemical freeze-out temperature of Tchem ¼
155 MeV, two correlation volumes extending across one
unit (Vc ¼ dV=dy), and three units (Vc ¼ 3dV=dy) of
rapidity [25]. The size of the correlation volume governs
the influence of exact quantum number conservation, with
smaller values leading to a stronger suppression of con-
served charges and Vc → ∞ leading to the grand canonical
ensemble. The 3

ΛH pT integrated yield is 1.1 × 10−6 and
2.0 × 10−6 with Vc ¼ dV=dy and Vc ¼ 3dV=dy, respec-
tively. The dN=dy predictions by the model were obtained
using the code released together with the publication [59].
As explained above, in the case of the coalescence

model, it is not possible to compare directly the measured
absolute yield to the model prediction. Hence, this com-
parison is attained by computing the 3

ΛH=Λ ratio and the
strangeness population factor S3 ¼ ð3ΛH=3HeÞ=ðΛ=pÞ [60]
using previous ALICE measurements of p, Λ, and 3He
yields [5,57], as shown in Fig. 2. The yield of the Λ baryon,
measured in −0.5 < y < 0, has been extrapolated to the 3

ΛH
rapidity region using MC generators [61–63] that are
known to reproduce the pseudorapidity density distribution
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FIG. 1. Invariant mass distribution of the 3Heþ π− and charge
conjugate pairs passing the analysis selections. Vertical lines
represent the statistical Poissonian uncertainties. The invariant
mass spectrum is fitted with a two-component model: the blue
line represents the total fit, while the orange dashed line shows
the background component only.
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of charged hadrons [64]. The corresponding correction is
approximately 2%. In central Pb-Pb collisions, the data are
consistent with both coalescence and SHM predictions,
which are similar, as shown in Fig. 2. The situation is
different for p-Pb collisions, where the two models are well
separated. Taking into account the uncertainties of the
measurement as well as the model uncertainty, the mea-
sured S3 ratio is compatible with the two-body (deuteron-
Λ) and three-body (proton-neutron-Λ) coalescence within
1.2σ and 2σ, respectively. With its large uncertainties, also
due to the large uncertainty on the 3He yield, the S3 is
compatible within 2σ with the SHM calculations too.
Hence, the 3

ΛH=Λ ratio is used as a test for coalescence
and SHM predictions in the following. In this case, the
measurement is deviating by 3.2σ and 7.9σ from the SHM
with Vc ¼ 1dV=dy and Vc ¼ 3dV=dy, respectively. On the
other hand, both the coalescence calculations are within 2σ
of the measured 3

ΛH=Λ. It has to be noted that recent
measurements of the 3

ΛH mass [34] suggest a larger binding
energy, and hence a smaller wave function, of the 3

ΛH. This
would further shift upward the coalescence predictions.
The value of BR ¼ 0.25 for the 3

ΛH → 3Hþ π decay
used in this analysis was computed theoretically in
Ref. [55]. To investigate the uncertainty resulting from
this assumption, Fig. 3 shows the measured 3

ΛH=Λ × BR.
for different theoretical model calculations [23,25] assum-
ing a possible variation of the BR value. The variation range
is chosen by evaluating the relative deviation between
the theoretical R3 and the world average of all the R3

measurements, including the most recent measurement in
heavy-ion collisions [65], where R3 is defined as

R3 ¼
Γð3ΛH → 3Heþ π−Þ

Γð3ΛH → all π− decay channelsÞ :

This uncertainty on R3 is propagated to the BRð3ΛH →
3Heþ π−Þ and corresponds to a variation range of �9%
around the nominal value. While the two-body coalescence
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FIG. 2. 3
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charged-particle multiplicity. The vertical lines and boxes are the statistical and systematic uncertainties (including the uncertainty on the
BR), respectively. The expectations for the canonical statistical hadronization [25] and coalescence models are shown [23].
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calculation is compatible with the data for the nominal or
larger BR, a discrepancy of 2σ is observed between data
and the three-body coalescence prediction. Furthermore, in
the whole BR variation interval, the SHM is more than
2.7σ and 6.9σ away from the measured 3

ΛH=Λ × BR
for the Vc ¼ 1dV=dy and Vc ¼ 3dV=dy configurations,
respectively.
In summary, the first measurement of the production

yield of hypertritons in p-Pb collisions at the LHC is
reported. The measurements of yields of 3

ΛH in p-Pb
collisions provide an opportunity to potentially discrimi-
nate between nucleosynthesis models. The measured pT
integrated yield excludes, with high significance, canonical
versions of the SHM with Vc ≥ 3dV=dy to explain the
(hyper)nuclei production in p-Pb collisions. It remains to
be seen if advanced versions of the SHM using the S-matrix
approach to account for the interactions among hadrons
[66] will be able to solve this discrepancy. The 3

ΛH=Λ ratio
is well described by the two-body coalescence prediction,
while the three-body formulation is slightly disfavored by
our measurement. While the general conclusions of the
comparison with the models are unaltered even when
considering large variations of the BRð3ΛH → 3Heþ π−Þ
around the value available in literature, the significance of
the comparison between data and models is influenced by
this uncertainty. Upcoming studies using the LHC Run 2
Pb-Pb data will help to reduce this uncertainty by meas-
uring the 3

ΛH → dþ pþ π− decay channel relative branch-
ing ratio. Furthermore, with the upgraded ALICE apparatus
and the upcoming LHC Run 3, it will be possible to reduce
both the statistical and the systematic uncertainties of the
3
ΛH yield measurements in pp [67] and p-Pb collisions and
to study the 3

ΛH production as a function of the size of the
nucleon-emitting source measured with femtoscopic cor-
relations. These studies may make it possible to decisively
distinguish between the two production models.
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27bSezione INFN, Catania, Italy

28aDipartimento di Fisica e Astronomia dell’Università, Padova, Italy
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141Università degli Studi di Foggia, Foggia, Italy
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