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1  Introduction 

1.1   Next generation sequencing technologies 
 

A remarkable advancement in sequencing technologies can be witnessed in the past 

decade, which led to a revolution in the field of genomics, the expansion of research 

capabilities, and the discovery of new clinical applications. The greatest impact of these next-

generation sequencing technologies (NGS) is that they enabled rapid, cost-effective, and high-

throughput sequencing of DNA and RNA molecules. There are a number of different NGS 

platforms (Illumina, Ion Torrent, Pacific Biosciences) that employ different sequencing 

strategies but still share common principles. The key concept is to break the target genome 

into millions of small fragments and then sequence them at the same time (Behjati and Tarpey, 

2013). This allows for generation of vast amounts of sequencing data in a single run, thereby 

accelerating genomic research (Behjati and Tarpey, 2013). Recent advancements in NGS 

technology have revolutionized large-scale resequencing of human samples for medical and 

population genetics purposes. There are numerous prominent initiatives such as the 1000 

Genomes (Fairley et al., 2020), The Cancer Genome Atlas (Weinstein et al., 2013), and 

various other expansive exome sequencing projects that have been launched with the goal of 

comprehensively understanding the entirety of human genetic diversity (Depristo et al., 2011). 

This ability to objectively inspect the whole genome enables thorough exploration of genetic 

variations associated with diseases, identification of underlying mutations in Mendelian 

diseases, and investigation of spontaneously arising mutations with no existing genetic 

mapping (like the ones occurring in cancer genomes) (Depristo et al., 2011). These 

advancements have provided cost-effective avenues for uncovering invaluable insights into 

the genetic landscape, paving the way for improved medical diagnoses and clinical treatments 

for patients. 

1.2   RNA sequencing 
 

RNA sequencing, also referred to as RNA-seq, emerged as a transformative technique in 

the field of molecular biology and genomics more than a decade ago, and since then it has 

become an omnipresent instrument in the field of molecular biology, significantly influencing 

our comprehension of genomic function across various domains (Stark et al., 2019). RNA-seq 

is a powerful method of deep sequencing that allows the examination of all expressed genes in 

an organism, referred to as the transcriptome, including noncoding RNAs like micro-RNAs 
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(Whitley et al., 2016). The RNA-seq technique leverages next-generation sequencing 

technologies to generate millions of short sequence reads from RNA molecules present in a 

biological sample. The process involves several essential steps, the first of which is RNA 

extraction in the laboratory, where high-quality RNA is isolated from the sample of interest. 

This is followed by mRNA enrichment or ribosomal RNA depletion if needed (Stark et al., 

2019). After isolation of the whole RNA and selective enrichment, RNA (or cDNA) must be 

fragmented to create short sequences of 200–500 base pairs that are adequate for sequencing 

(Whitley et al., 2016). Subsequently, the extracted RNA is converted into a complementary 

DNA (cDNA) library, often using reverse transcription, and then sequenced to a read depth of 

10–30 million reads per sample on a high-throughput platform (Stark et al., 2019). The 

process of sequencing fragmented cDNAs generally generates concise reads with lengths 

ranging from 250 to 400 nucleotides (Whitley et al., 2016) and to make sense of this vast 

amount of raw sequencing data, a series of computational analyses are performed. These 

analyses include read alignment to a reference genome or de novo assembly, quantification of 

transcript abundances, identification of differentially expressed genes, functional annotation, 

and alternative splicing detection (Kukurba and Montgomery, 2015). These analyses provide 

valuable insights into gene expression patterns, differential gene regulation across various 

conditions or tissues, and the underlying molecular mechanisms involved in biological 

processes.

 

Figure 1. The illustration of the typical RNA-seq workflow and data analysis. Adapted from Kukurba 
& Montgomery, 2015 
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Although the term RNA-seq is frequently employed to encompass diverse 

methodological approaches and biological applications, differential gene expression (DGE) 

analysis continues to be the principal application of RNA-seq and is regarded as a standard 

research technique (Stark et al., 2019). The progress and advancement of RNA-seq have been 

fueled by advancements in technology, encompassing both wet-lab procedures and 

computational approaches and these developments have paved the way for a more 

comprehensive and unbiased understanding of RNA biology and the transcriptome compared 

to previous microarray-based methods (Stark et al., 2019). Constant improvements in 

sequence technology along with new scientific findings led to the development of numerous 

distinct methodologies derived from conventional RNA-seq protocols. Although RNA-seq is 

generally used to measure gene expression, it can potentially also be used for the analysis of 

somatic mutations (Coudray et al., 2018). Currently, most studies focusing on the 

identification of somatic mutations have primarily relied on analyzing DNA at the molecular 

level. With the development of somatic mutation detection within whole-genome or whole-

exome sequencing data, significant advancements have been made in the field of the precision 

oncology (Xiao et al., 2021). One would think that all mutations within exons are transcribed 

into RNA and can be detected, but that is not always the case. Nevertheless, RNA serves as a 

dependable resource for distinguishing mutations that have actively influenced cellular 

functions (Long et al., 2022). Previous research efforts demonstrated that it is not only 

feasible and cost-effective to identify genomic variations in expressed exons through RNA-

seq data analysis (Chepelev et al., 2009; Long et al., 2022; Radenbaugh et al., 2014), but also 

that developed protocols for detecting novel, tumor related somatic mutations can 

complement whole-exome sequencing in identifying somatic mutations specific to tumor 

genomes (Coudray et al., 2018). 

1.3  Databases for genomic research  
 

The National Center for Biotechnology Information (NCBI) database is an invaluable 

resource used for various research projects in the fields of biotechnology and genetics (NCBI, 

2023). The NCBI database serves as a centralized repository of genetic and molecular biology 

information, encompassing a vast array of data derived from various sources, such as 

scientific literature, research projects, and publicly available sequence databases (NCBI, 

2023). The NCBI database operates as a comprehensive suite of databases and tools that cover 

a wide range of biological data. These include databases like GenBank (DNA and protein 
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sequences); PubMed (repository of biomedical literature); GEO (gene expression data); and 

more. It also combines a user-friendly interface with powerful search functionalities, which 

enables conducting complex bioinformatics analyses and exploring different molecular 

relationships (NCBI, 2023). 

The GEO (Gene Expression Omnibus) database is a public repository maintained by 

the NCBI (Edgar et al., 2002). The primary purpose of GEO is to provide a platform for 

researchers to deposit, access, and analyze gene expression data from a wide range of 

organisms and experimental conditions. GEO contains various types of gene expression data, 

including raw data files, processed data, and metadata associated with each experiment. The 

availability of vast amounts of gene expression data in GEO makes it a valuable resource for a 

wide range of research areas, including genomics, functional genomics, transcriptomics, and 

systems biology (Edgar et al., 2002). 

The University of California, Santa Cruz (UCSC) database is a comprehensive and 

widely used resource in genomic research (UCSC Genome Browser, 2022). It offers a 

plentiful collection of genomic data and annotations for various organisms. The UCSC 

database is comprised of diverse genomic data types, including DNA sequences, gene 

annotations, regulatory elements, epigenetic marks, genetic variations, and more (Kent et al., 

2002). All this information is easily accessible through the web interface, which enables 

researchers to explore and analyze genomic data within the context of a genome browser. 

SRA (Sequence Read Archive) is a publicly available repository that stores raw 

sequencing data generated from technologies such as next-generation sequencing (NGS) 

platforms (Leinonen et al., 2011). The SRA accepts data from various sequencing methods, 

including whole-genome sequencing, transcriptome sequencing (RNA-seq), metagenomic 

sequencing, and others. The SRA provides resources for data exploration, analysis, and 

visualization, but raw sequences can also be retrieved from the SRA by using specific 

keywords, metadata, or accession numbers associated with experiments and further analyzed 

using downstream bioinformatics pipelines. 

1.4  Cancer genomics 
 

According to the NCI Dictionary of Cancer Terms, a tumor is defined as an abnormal 

cluster of tissue that arises when cells exhibit excessive growth and division or fail to undergo 

programmed cell death as expected (NCI Dictionary of Cancer Terms, 2023). Tumors can be 
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categorized as either benign, meaning they are not cancerous and do not invade nearby 

tissues, or malignant, meaning they are cancerous and can spread into nearby tissues or other 

parts of the body (NCI Dictionary of Cancer Terms, 2023).  

Cancer is known to be one of the leading diseases with the greatest death expectancy 

worldwide. Based on the estimates provided by GLOBOCAN 2020 regarding the occurrence 

of cancer and related fatalities, approximately 19.3 million individuals were diagnosed with 

new cases of cancer, while the number of cancer-related deaths reached 10.0 million in the 

year 2020 (Sung et al., 2021). The hallmarks of cancer consist of eight biological capabilities 

that emerge throughout the progressive stages of tumor development in humans. They include 

sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling 

replicative immortality, inducing angiogenesis, and activating invasion, metastasis, 

reprogramming of energy metabolism and evading immune destruction (Hanahan and 

Weinberg, 2011). These fundamental characteristics of cancer serve as a framework for 

understanding and making sense of the intricate nature of tumorous diseases (Hanahan and 

Weinberg, 2011). In the past, the diagnosis and treatment of cancer were primarily determined 

by examining the physical characteristics of the tumor, its clinical symptoms, and its location 

within the body. Comprehensive investigations of cancer genomes over the last decade caused 

a paradigm shift, and now the concept of "cancer" encompasses a wide range of diseases, each 

of which is distinguished by unique combinations of gene mutations (Hudson et al., 2010; 

Stratton et al., 2009; Van Hoeck et al., 2019).  

1.4.1  Cancer somatic mutations  

Cancer, being a genetic condition, is partly fueled by the buildup of somatic mutations 

(Coudray et al., 2018; Weinstein et al., 2013). Cancer cells commonly accumulate somatic 

variations typically induced by environmental factors, whose accumulation affects specific 

pathways linked to cell growth, survival, angiogenesis, motility, and other fundamental 

characteristics of cancer, resulting in malignant transformation and ultimately cancer 

(Hanahan and Weinberg, 2011; Watson et al., 2013). Therefore, the comprehensive 

identification of somatic mutations in cancer, such as through the utilization of the Catalogue 

Of Somatic Mutations In Cancer (COSMIC) database (COSMIC 2023, Tate et al., 2019), 

serves to characterize the intricate genomic complexities of the disease (Long et al., 2022; 

Watson et al., 2013), and also aids in the discovery of oncogenic mutations and driver genes 

that play a significant role in cancer development (Bailey et al., 2018; Long et al., 2022). 
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Interestingly, these mutations also present opportunities for targeted precision therapies aimed 

at combating the mutations responsible for tumor growth (Yu et al., 2015). Apart from that, 

individual-level somatic mutations possess their own oncogenic and therapeutic implications 

in various types of cancer, including lung cancer (Skoulidis and Heymach, 2019), bladder 

cancer (Wen et al., 2021), and glioblastoma (Lin et al., 2021; McDonald et al., 2015). It is 

expected that targeting these specific somatic mutations holds potential for personalized 

treatment strategies (Coudray et al., 2018). 

Recent advancements in next-generation sequencing technologies have facilitated 

rapid, accurate, and cost-effective analysis of DNA and RNA samples, leading to the 

discovery of crucial mutations that drive cancer development (Coudray et al., 2018; Raphael 

et al., 2014). To date, the advancement of cancer diagnostic methods has primarily 

concentrated on the identification of these driver mutations, which confer growth advantages 

to cancer cells and promote the development of tumors (Stratton et al., 2009; Van Hoeck et 

al., 2019). Genetic testing targeting these driver genes enabled the identification of potential 

targets for treatment, the development of accurate mutation detection assays for cancer 

diagnosis, and the design of drugs that directly target proteins encoded by mutated driver 

genes (Bernards, 2010). While this knowledge has significantly contributed to drug 

development and improved cancer care, a considerable number of patients do not benefit from 

this approach due to low response rates to targeted drugs and a lack of reliable biomarkers 

(Van Hoeck et al., 2019). Next-generation sequencing (NGS) technologies have emerged as a 

valuable tool to address the need for enhanced molecular profiling of tumors and the 

identification of dependable biomarkers for patient stratification in cancer diagnostics (Van 

Hoeck et al., 2019). While these findings are laying the groundwork for novel targeted 

treatments across various types of cancer, despite advancements, some obstacles still need to 

be addressed for treatments to work properly (Coudray et al., 2018; E. Taylor et al., 2012; 

Paez et al., 2004). 

1.4.2  Mutational signatures 

Somatic mutations found in cancer genomes are the result of mutational processes 

occurring during the lineage of cells between the fertilized egg and the formation of the 

cancer cell (Alexandrov et al., 2020; Stratton et al., 2009). These mutational processes can 

stem from both exogenous factors, including exposure to environmental carcinogens or UV 

radiation, as well as from endogenous processes occurring within the body. Endogenous 
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mechanisms that contribute to somatic mutations involve normal mutational decay caused by 

the spontaneous deamination of methylated nucleotides, errors in DNA replication by error-

prone polymerases leading to base misincorporation, and impaired function of DNA damage 

response (DDR) genes resulting in unrepaired or improperly repaired DNA damage (Helleday 

et al., 2014; Van Hoeck et al., 2019). Notably, each of these processes results in a distinct 

pattern of mutations, which are referred to as mutational signatures. (Alexandrov, Nik-Zainal, 

Wedge, Aparicio, et al., 2013; Van Hoeck et al., 2019). Although mutational signatures are a 

relatively recent concept in cancer biology, the idea of linking mutational processes with 

mutational patterns is not new (Van Hoeck et al., 2019). The abundance of mutations present 

in each patient's cancer has provided us with a remarkable capability to identify these 

common patterns of mutations known as mutational signatures that emerge during the process 

of tumor formation (tumorigenesis) (Koh et al., 2021). Each mutational signature is 

characterized by base substitutions, small insertions and deletions (indels), genome 

rearrangements, and chromosome copy number changes (Alexandrov et al., 2020). The initial 

mutational signatures that were introduced are base substitutions (Van Hoeck et al., 2019). In 

these types of mutations, a signature is characterized by a specific change in the DNA base, 

along with the 5' and 3' flanking bases (Alexandrov et al., 2020). The main classification of 

SBS consists of 96 distinct trinucleotide classes since there are six categories of base 

substitution and a total of 16 possible sequence contexts. It is possible to extract mutational 

signatures from large groups of cancer patients whose DNA has been sequenced using a 

computational framework to identify recurring patterns within the cohort's 96-mutation 

matrix. Ultimately, each pattern represents the relative proportion of trinucleotide mutations 

and serves as a reflection of a mutational signature (Van Hoeck et al., 2019). 

It is important to note that it is possible to detect mutations in an individual cancer 

genome that may result from multiple different mutational processes due to the simultaneous 

or sequential action of several internal or external factors causing mutations in a cell's genetic 

material over its lifetime, and because of that this, genome will then incorporate multiple 

overlapping mutational signatures (Van Hoeck et al., 2019). Certain mutational processes 

remain consistently active throughout the entire lifespan of the cancer cell (referred to as 

'clock signatures'), while others operate periodically, some of which are influenced by the 

patient's lifestyle (Alexandrov et al., 2015). Consequently, numerous mathematical 

approaches have been employed to systematically interpret and characterize the mutational 

processes involved in cancer. These methods aim to extract mutational signatures from 
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collections of somatic mutations, estimate the proportion of mutations associated with each 

signature in individual samples, and annotate specific mutation classes within each tumor 

(Alexandrov et al., 2015, 2020; Alexandrov, Nik-Zainal, Wedge, Campbell, et al., 2013; 

Blokzijl et al., 2018; Fischer et al., 2013; Gehring et al., 2015). Therefore, mutational 

signatures can serve as indicators of the occurrence (or non-occurrence) of various cellular 

activities in cancer cells.  

Recent research has demonstrated that mutational signatures can serve as biomarkers 

for specific characteristics of cancer (Alexandrov, Nik-Zainal, Wedge, Aparicio, et al., 2013; 

Nik-Zainal et al., 2012; Van Hoeck et al., 2019). Consequently, they can be hold promising 

clinical value as diagnostic tools and as predictors of cancer treatment response (Davies et al., 

2017). However, a crucial requirement for conducting mutational signature analysis is the 

availability of comprehensive mutational data covering the entire genome from numerous 

distinct cancer cases (Van Hoeck et al., 2019). The cost of whole-exome sequencing (WXS) 

has decreased in the last decade, and with that came the successful completion of extensive 

pan-cancer genomic datasets, including The Cancer Genome Atlas (TCGA) (McLendon et al., 

2008), Welcome Trust Sanger Institute's Cancer Genome Project (Pleasance et al., 2010), and 

the International Cancer Genome Consortium (ICGC) (Hudson et al., 2010). These datasets 

provided essential resources and data necessary for conducting cancer research and helped to 

establish mutational signature analysis as a novel way for discovering biomarkers, diagnosing 

tumors, and guiding treatment decisions (Van Hoeck et al., 2019). In the present day, 

mutational signature analyses have emerged as a fundamental aspect of genomic research due 

to their ability to offer fresh perspectives on the underlying causes of specific cancers (Koh et 

al., 2021). They can uncover both environmental and endogenous causes of mutations within 

each tumor. As a result, the field of mutational signatures analysis is gaining increasing 

recognition and holds great promise for enhancing our understanding of individual cancers 

and their potential implications for clinical practice (Koh et al., 2021). Until recently, 

mutational signatures analyses were made using whole genome sequencing data (WGS), but 

newly developed protocols allowed using RNA-seq and WXS data as well in an attempt to 

gain a better understanding of complex tumor biology (Coudray et al., 2018). 

1.4.3.  Large-scale cancer genomics projects  

 The ICGC (International Cancer Genome Consortium) is an international 

collaborative effort focused on deciphering the genomic alterations associated with various 
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types of cancer (Hudson et al., 2010). The primary goal of the ICGC project is to thoroughly 

characterize the genomic changes occurring in different cancer types. This involves analyzing 

DNA sequencing data to identify somatic mutations, structural variations, copy number 

alterations, and epigenetic modifications in tumor genomes. The ICGC Data Portal serves as a 

central repository for accessing and exploring the genomic data generated by member 

projects. It also provides different tools and resources for data analysis and visualization. 

The Cancer Genome Atlas (TCGA) (NCI The Cancer Genome Atlas Program, 2023) is 

a large-scale collaborative initiative aimed at comprehensively analyzing various types of 

cancer at the molecular level, including genomic, transcriptomic, and epigenomic alterations 

(Weinstein et al., 2013). This project integrates high-throughput sequencing technologies and 

innovative bioinformatics approaches to provide a comprehensive molecular characterization 

of cancer, enabling researchers to identify key genetic mutations, gene expression patterns, 

and epigenetic modifications associated with different cancer types. TCGA maintains an 

open-access policy for its database, which allows scientists worldwide to access and utilize 

this invaluable resource to accelerate cancer research and ultimately improve patient treatment 

outcomes.  

1.5  Pancreatic ductal adenocarcinoma (PDAC) 
 

Pancreatic ductal adenocarcinoma (PDAC) is the predominant type of pancreatic 

cancer, comprising over 80% of pancreatic cancer cases (NCI Pancreatic Ductal 

Adenocarcinoma Study, 2023). PDAC is an extremely destructive disease, one of the most 

aggressive and lethal malignancies, characterized by a bleak prognosis and increasing 

occurrence (Orth et al., 2019). The development of pancreatic ductal adenocarcinoma is 

characterized by a poor prognosis, primarily due to its complex and multifactorial nature 

(Sarantis et al., 2020). As of now, pancreatic ductal adenocarcinoma ranks as the fifth leading 

cause of cancer-related deaths in the United States, with a 5-year overall survival rate of 12% 

(Siegel Mph et al., 2023). The incidence of PDAC is predicted to continue increasing in the 

future, and projections suggest a more than two-fold rise in the number of new diagnoses and 

PDAC-related deaths within the next decade in the United States and European countries 

(Orth et al., 2019; Cancer Research UK, 2023; Quante et al., 2016; Rahib et al., 2014). This 

disease originates in the ducts of the pancreas, which are responsible for transporting 

digestive enzyme-containing fluids to the small intestine (NCI Pancreatic Ductal 

Adenocarcinoma Study, 2023). The most commonly observed symptoms in patients with 
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PDAC include weight loss, abdominal pain, and jaundice (Porta et al., 2005). However, there 

are also less common symptoms, such as new-onset type 2 diabetes and thromboembolic 

disease, that can be associated with PDAC (De Souza et al., 2016; Khorana, 2012; Sarantis et 

al., 2020). 

According to the Pancreatic Ductal Adenocarcinoma Study by the National Cancer 

Institute (NCI), several risk factors are associated with the development of PDAC. These 

include having a family history of the disease, a previous history of chronic inflammation of 

the pancreas (pancreatitis), Lynch syndrome, diabetes, being overweight or obese, and 

smoking (NCI Pancreatic Ductal Adenocarcinoma Study). In a subgroup comprising around 

5-6% of all PDAC patients, there are additional risk factors in the form of genetic 

predispositions. These include germline mutations in genes such as BRCA1/2, ATM, MLH1, 

TP53, or CDKN2A (Hu et al., 2018; Orth et al., 2019; Petersen et al., 2010; Pihlak et al., 

2017). 

Challenges associated with early detection and the limited effectiveness of available 

treatments led to PDAC being an extremely aggressive and fatal malignancy. The significant 

obstacles that contribute to therapeutic failure are the late identification of the disease and its 

notably aggressive nature (Orth et al., 2019). The effectiveness of treatments for pancreatic 

ductal adenocarcinoma such as surgery, radiation, and chemotherapy are limited due to 

various factors, including the extensive heterogeneity of genetic mutations and the dense 

stromal environment (Sarantis et al., 2020). The outcome of pancreatic ductal 

adenocarcinoma treatment primarily depends on the stage of the disease at the time of 

diagnosis. Typically, PDAC is diagnosed at an advanced stage since symptoms tend to 

manifest only when the disease has already progressed and metastasized to different sites 

(Sarantis et al., 2020). Treating pancreatic cancer is a challenging task that involves 

addressing issues at both the genetic and cellular levels. The high degree of genetic mutations 

in pancreatic tumors contributes to gene instability, which plays a crucial role in the growth of 

PDAC and its resistance to treatments (Sarantis et al., 2020). PDAC is characterized by 

significant genetic heterogeneity, not only among different patients but even within a single 

primary tumor (Sarantis et al., 2020). Currently, the only potentially curative treatment option 

available is surgical resection followed by adjuvant chemotherapy (Orth et al., 2019). 

However, in recent years, combined treatments with immunotherapy have shown success in 

treating different cancer types (Sarantis et al., 2020). Despite the revolutionary impact of 

immunotherapy in cancer treatment, it presents significant challenges when applied to 
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pancreatic ductal adenocarcinoma. This is primarily due to the nonimmunogenic nature of 

PDAC as well as its immune-suppressive and therapy-resistant microenvironment (Sarantis et 

al., 2020). In contrast to cancers like lung cancer with EGFR mutations and melanoma with 

BRAF mutations, where targeted treatments have shown efficacy due to a relatively high 

percentage of patients sharing the same cancer-causing mutation (Bethune et al., 2010; Cheng 

et al., 2018), pancreatic cancer presents a different challenge because it exhibits a wide variety 

of mutations that contribute to its development, with each mutation being present in a small 

percentage of patients (Grant et al., 2016; Sarantis et al., 2020). This genetic heterogeneity 

makes it difficult to develop targeted therapies that can effectively address the diverse 

mutational landscape of pancreatic cancer (Sarantis et al., 2020). These factors make it 

difficult to achieve successful outcomes with targeted immunotherapy in the context of 

PDAC. 

1.5.1  PDAC mutational signatures 

The most common mutational signature found in pancreatic cancer is Signature 3 

(COSMIC 2023; Forbes et al., 2017, Tate et al., 2019). This specific mutational pattern has 

been found to be strongly associated with alterations in genes involved with homologous 

recombination repair machinery, showing both germline and somatic mutations in the BRCA1 

and BRCA2 genes (Forbes et al., 2017; Polak et al., 2017). Research done by Polak et al. in 

2017 demonstrated that Signature 3 can also be found in samples without BRA1 or BRCA2 

mutations but with a mutational landscape similar to that of samples with homolog repair 

deficiency. Signature 3 is found particularly in pancreatic, but is also common in breast and 

ovarian cancers (Forbes et al., 2017). In the case of pancreatic cancer, patients who respond 

positively to platinum-based therapy often exhibit mutations associated with Signature 3 

(Forbes et al., 2017).  
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Figure 2. The pattern of Mutational Signature 3 displayed using the six substitution subtypes: C>A, 

C>G, C>T, T>A, T>C, and T>G. Information on the different combinations of bases immediately 5' 

and 3' to the mutated base is taken into account to allow for the generation of 96 possible mutation 

types (6 types of substitution ∗ 4 types of 5’ base ∗ 4 types of 3’ base). Adapted from Forbes et al., 

2017. 

When researching signatures of mutational processes in human cancer samples in 

2013, Alexandrov, Nik-Zainal, Wedge, Aparicio, et al. detected three more signatures in 

pancreatic cancer sample sequences derived from WGS and WXS. These were Signature 1B 

attributed to age, Signature 2 attributed to activity of the AID/APOBEC family of cytidine 

deaminases, and Signature 6 associated with the presence of defective DNA mismatch repair 

commonly found in microsatellite unstable tumors (Alexandrov et al., 2020; Forbes et al., 

2017). In research from 2017. by Connor et al., mutational signatures that correlated with 

detected mutations in PDAC sequencing data from International Cancer Genome Consortium 

(ICGC) database were also Signature 8 and Signature 17 (Connor et al., 2017). Considering 

useful results from recent cancer genomics studies, it is clear that mutational signature 

analysis, along with mutation profile analysis, will have an important role in optimizing the 

diagnosis and treatment of cancer patients, including those suffering from PDAC.  

1.6  Bioinformatic tools and software environments used for variant discovery 

in cancer genome research 

1.6.1  Programming language R 

R is a programming language and open-source software environment widely used for 

statistical analysis and data visualization. It can be run on the majority of platforms 

(Windows, UNIX), and it provides a wide variety of statistical and graphical techniques that 

are highly extensible (R: The R Project for Statistical Computing, n.d.). One of the biggest 

strengths of R is its broad selection of user contributed packages, which greatly extends its 

functionality. Additionally, the graphics capabilities of R are robust and adaptable, making it 

possible to generate high-quality visual representations of analyzed data. 
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1.6.2  FastQC 

FastQC is a widely used bioinformatics tool designed for quality control of high-

throughput sequencing data. It provides the user with a comprehensive assessment of the 

quality and composition of raw sequencing reads and generates detailed reports that point out 

potential issues with generated read sequences (Andrews, 2010). These insights help 

researchers evaluate the overall quality of their sequencing data, identify potential sources of 

bias or errors, and make decisions about data processing and downstream analysis (Andrews, 

2010). 

1.6.3  Samtools 

Samtools is a commonly used software package for the manipulation and analysis of 

data stored in the widely adopted SAM (Sequence Alignment/Map) and BAM (Binary 

Alignment/Map) file formats (Danecek et al., 2021). These formats are prevalent in the field 

of bioinformatics and serve as standards for storing and exchanging sequence alignment data. 

Samtools provides a broad set of functionalities to effectively work with SAM and BAM files. 

It offers to complete multiple operations on sequence alignment data, such as format 

conversion, sorting, indexing, filtering, and variant calling (Danecek et al., 2021). 

1.6.4  Read Alignment 

 One of the essential stages in most genomic analysis workflows is matching sequenced 

reads to a reference genome. This process is called read alignment (also known as read 

mapping), and its purpose is to determine the potential location of each read using the 

sequence of the reference genome as a template (Schilbert et al., 2020). This is done by using 

computational algorithms that have progressed through the years along with technological 

advances, leaving us with a wide variety of alignment methods. Some of the most popular 

bioinformatic tools used for aligning reads are: Bowtie2, BWA-MEM, STAR, CLC Genomics 

Workbench (Qiagen), GEM3, Novoalign, Segemehl, and BBMap (Alser et al., 2021). 

1.6.4.1 STAR aligner 

 

Spliced transcripts alignment to a reference (STAR) is a tool that gives out information 

about where on the human genome given reads originated from (Dobin et al., 2013). It is 

specifically designed to address many of the challenges with RNA sequenced reads mapping. 

The STAR algorithm uses an approach that considers the existence of spliced alignments 
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(Dobin et al., 2013). Splice alignment can be found in RNA-seq data, considering isolated 

RNA sequences are formed by the splicing of transcribed intron regions from pre-messenger 

RNA molecules (Regan et al., 2021). These alignments are the result of the existence of 

spliced junctions, defined as borders separating the introns from the exons in non-mature 

messenger RNA molecules. (Regan et al., 2021). Mapping with STAR has two phases: 1) 

Indexing of a reference genome using the information from FASTA file reference sequences 

and GTF file reference genome annotations; 2) Mapping read sequences on the indexed 

reference genome (Dobin et al., 2013).The highly efficient STAR mapping algorithm consists 

of two steps. The first step is seed searching, where STAR searches for the longest read 

sequences that exactly match one or more locations in the reference genome (Dobin et al., 

2013). These are marked as seed1. After that, STAR searches again for only the unmapped 

part of the read to find the next longest sequence that exactly matches the reference genome 

and marks it as seed2 (Dobin et al., 2013). If it is impossible to find exact matches for each 

part of the read (because of mismatches or indels, etc.), the previous seed will be extended, 

and if the extension has poor quality alignment, it will be soft clipped (Dobin et al., 2013). 

The second step is clustering, stitching, and scoring, where STAR stitches together the 

separate seeds to get full alignment (Dobin et al., 2013). The seeds are first clustered by the 

proximity of the “anchor seeds”, the alignment of the read is scored based on mismatches, 

indels, gaps, etc., and then the seeds are stitched based on the best alignment (Dobin et al., 

2013). An illustration of this process can be seen in Figure 3. 
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1.6.5  GATK 

GATK stands for Genome Analysis Toolkit (GATK, 2023). It is a widely used software 

package developed by the Broad Institute for the purpose of analyzing high-throughput 

sequencing data (GATK, 2023). GATK software offers a broad suite of tools and algorithms 

for processing next-generation sequencing data. Its notable capabilities include variant 

calling, including single nucleotide polymorphisms (SNPs) and structural variations, as well 

Figure 3.Illustration of the STAR aligner algorithm strategy; A) Seed searching, searching for the 

longest sequence that exactly matches one or more locations on the reference genome;. B) Extension 

of previous MMPs if STAR didn't find an exact matching sequence on the reference; C) Soft clipping 

of the poor quality or adapter sequence if extension didn't produce good alignment; D) The separate 

seeds are clustered together and stitched based on proximity. Adapted from Introduction to RNA-seq 

using high-performance computing (HPC), 2021). 
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as sequence data preprocessing steps like base quality score recalibration and indel 

realignment, which are designed to enhance variant calling accuracy (Auwera and O’Connor, 

2020; Depristo et al., 2011). GATK abilities extend further and involve variant annotation, 

haplotype phasing, and variant filtering, making it a valuable resource in genomics research 

and clinical applications (Auwera and O’Connor, 2020).  

 

Figure 4. Illustration of GATK best practices workflow for RNAseq short variant discovery (SNPs + 

Indels). Adapted from (GATK, 2023) 

1.6.6  Variant calling and annotation 

One of the primary applications of next-generation sequencing is to identify genetic variations 

within large populations of closely related samples (Danecek et al., 2011). The name of this 

process is variant calling. Variant calling is essentially the procedure of distinguishing genuine 

genetic variations from anomalies arising during library preparation, sample enrichment, 

sequencing, and read alignment (Xu, 2018). This has been a highly dynamic area of research 

for numerous years, leading to the development of numerous variant calling tools, many of 

which are freely accessible. Widely used variant calling tools are: DeepVariant, Strelka2, 

Octopus, FreeBayes, Platypus, Samtools/mpileup, SNVer, VarScan, VarDict. 

The process of analyzing and interpreting genetic variants identified in an individual's 

genome is called variant annotation (McCarthy et al., 2014). Variant annotation involves 

adding functional and clinical information to each variant (affected gene, type of variant, 

potential implications for health, etc.). This is a crucial step in the analysis of sequencing data, 
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considering its results have the greatest impact on the conclusions about diseases that were 

researched in the study (McCarthy et al., 2014). Furthermore, it is essential for understanding 

the functional and clinical significance of discovered genetic variants, enabling accurate 

diagnosis and personalized treatment, and advancing knowledge of genetic diseases. 

Frequently used tools for annotating detected mutations are SnpEff, AnnoVar and VEP. 

1.6.6.1 Strelka2 

Strelka2 is a useful open-source tool for detecting small variants in sequencing data 

(Kim et al., 2018). Compared to its predecessor Strelka, Strelka2 exhibits enhanced accuracy, 

speed, and efficiency in identifying genetic variations, including single nucleotide variants 

(SNVs), insertions, and deletions (Kim et al., 2018). The Strelka2 variant calling algorithm 

can be simply described as a two-step process. In the first step, the algorithm finds potential 

variant sites and implements local assembly around those sites (Kim et al., 2018). The second 

step consists of utilizing a refined statistical model that considers local sequence context, 

mapping qualities, and other characteristics to estimate the probability of occurrence of each 

identified variant at that specific place in the genome (Kim et al., 2018). The result of these 

refined steps is highly accurate variant calling with reduced rates of false positives and false 

negatives. 

The somatic variant calling algorithm begins with parameter estimation from sample 

data (Kim et al., 2018). Parameter estimation involves promptly estimating the sequencing 

depth for each chromosome using read alignments in the BAM file, but estimation is 

specifically performed solely on the normal samples (Kim et al., 2018). This step is crucial for 

accurately assessing the likelihoods and making reliable somatic variant calls because it 

estimates the parameters of the statistical models used to evaluate the evidence for somatic 

variants. 

By comparing the genotype likelihoods in the tumor sample with the expected 

distribution based on the normal sample model, Strelka2 estimates the probability for each 

candidate variant position in the tumor sample to be a true somatic mutation (Kim et al., 

2018). The final set of somatic variants is determined by applying an empirical threshold to 

calculated somatic variant probabilities, and only variants with somatic variant probabilities 

higher than this threshold are confident somatic variant calls (Kim et al., 2018). 

The final phase of variant calling is empirical scoring and filtering. In this phase, 

additional information is extracted in the form of predictive features and used together with 
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calculated probabilities to enhance the precision of variant calls. This integration is executed 

with the Empirical Variant Scoring (EVS) model, which acts as a supervised random forest 

classifier (Kim et al., 2018). This model is trained on labeled data from sequencing runs 

conducted under diverse conditions (different sequencers, different sample preparation 

techniques, and different coverage levels) (Kim et al., 2018). The EVS model assigns an 

aggregate quality score to each variant, enabling the exploration of the precision-recall curve 

in a convenient manner (Kim et al., 2018).  

 

Figure 5. The Strelka2 algorithm workflow. Adapted from (Kim et al., 2018) 

1.6.6.2   SnpEff 

SnpEff is a practical, multiplatform, open-source computer program designed to annotate 

variants and predict the coding effects of genetic variations (Cingolani et al., 2012). This tool 

is capable of categorizing effects of various genome aberrations resulting from mutational 

processes such as single nucleotide polymorphisms (SNPs), multiple nucleotide 

polymorphisms (MNPs), insertions, and deletions (indels) in whole genome sequencing 

results (Cingolani et al., 2012). SnpEff is extensively used in major academic institutions for 

research, pharmaceutical companies and clinical sequencing projects because of its main 

assets that are: (1) speed – it enables generation of thousands of predictions per second; (2) 

flexibility – it allows the inclusion of custom made genomes and annotations; (3) it integrates 

with Galaxy, an open-access web-based platform for computational bioinformatic research 

(Afgan et al., 2022); (4) it is compatible with multiple species and multiple codon usage tables 

(such as mitochondrial genomes); (5) it seamlessly integrates with the GATK which makes 
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work much easier; and (6) it demonstrates the ability to perform non-coding annotations, 

enabling researchers to explore and interpret variants located outside of coding regions 

(Cingolani et al., 2012). 
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2 Goals 
 

Next-generation sequencing technologies have revolutionized cancer research by 

providing tools for fast and accurate sequencing of large numbers of samples, leading to a 

better understanding of the complex genomic landscape of tumors. Tools for identifying and 

annotating variations across the genome, like Strelka2, are well developed and widely 

accessible, making it possible to detect genetic variations and explore the mutational 

landscape of tumor samples. In addition to the currently used whole-genome sequencing and 

whole-exome sequencing technologies, RNA sequencing (RNA-seq) is also thought to have 

great potential in cancer genomics by providing information that could be used in clinical 

diagnosis and treatment. Since the use of RNA-seq is not as ubiquitous in clinical practice, in 

this research I will use RNA-seq data to detect variants and identify mutational signatures in 

PDAC tumor samples and compare my results to those obtained by more established 

techniques. The goals of this research are: 

1. To identify and annotate somatic mutations using RNA-seq data from PDAC tumor 

tissue samples; 

2. To characterize identified mutations and developed mutational landscape; 

3. To analyze the mutational signatures of identified somatic variants; 

4. To compare results with publicly available whole exome sequencing (WXS) 

pancreatic cancer data and assess the concordance of the results of RNA sequencing 

and whole exome analyses. 
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3 Materials and methods 
 

3.1  Downloading and preprocessing of raw sequencing data 
 

In this work, I analyzed publicly available sequencing data from the NCBI database. 

The analyzed data can be found in the GEO database under the GEO series designation 

GSE130688, while the raw sequences are saved in the SRA database. Samples were collected 

from patients with PDAC by the Biochemistry Department of the University of São Paulo.  

Surgically removed fragments of PDAC and peritumoral nonmalignant tissues were collected 

and then frozen in liquid nitrogen. The RNA isolation was done using Trizol reagent 

(ThermoFisher), and purification was done according to the manufacturer's protocol. After 

isolation, RNA-seq libraries were generated using the Illumina TruSeq Stranded Total RNA 

LT sample preparation kit with Ribo-Zero Gold according to the standard manufacturer’s 

protocol (da Paixão et al., 2022). Total strand-specific RNA-seq libraries from 15 paired 

samples were sequenced using the Illumina HiSeq 1500/2500 platform, and the resulting 

sequences were then uploaded to the SRA database. I downloaded raw sequenced reads from 

the publicly available SRA database under the SRA Study designation mark SRP194936 to 

conduct further analysis. Analysis was not possible for three of the downloaded samples 

because of the occurrence of corrupted files during pipeline implementation and because of 

that analysis was made on the remaining twelve samples.  

3.2  Quality control 
 

 Raw sequences can be unreliable because of errors during sequencing, such as using 

the wrong primers or old polymerases, sequencing machine failure, etc. This causes a loss of 

quality, which is why one of the most important steps in the whole study is quality control. I 

used publicly available FastQC software to generate a detailed report of the characteristics of 

raw sequenced reads and access their quality. Afterwards, I used Trimmomatic to filter and 

trim raw sequenced reads using the parameters SLIDINGWINDOW:5:10 MINLEN:60 

HEADCROP:5. I did one more quality control over trimmed and filtered reads. 

3.3  Read mapping and data cleanup 
 

Before calling variants, it must be known exactly where sequenced reads belong on the 

reference genome for the variant caller to be able to compare them with the reference. For that 
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purpose, I used the STAR aligner to map our sequenced reads of interest to GRCh38 (hg38) 

downloaded from the NCBI database. For both phases of mapping, I used only the default 

options when running STAR. The result of mapping with STAR are alignments in BAM 

format, which hold the information about where on the reference genome the extracted read 

sequences come from. 

After mapping and before variant calling, mapped read data needs to be cleaned for the 

variant caller to make good calls on the existence of possible variants. I followed GATK's best 

practices workflow for RNAseq short variant discovery for the steps of data cleanup. First, I 

used the MarkDuplicates tool with standard options for effectively identifying and marking 

duplicated reads. Duplicated reads are the result of errors occurring in PCR steps during 

sequencing, and their occurrence varies depending on the phase of the sequencing process. 

The result is a BAM file with marked duplicates and a metrics file with the number of 

duplicates. 

After cleaning the duplicated reads, I used the GATK tool AddOrReplaceReadGroups 

to add information about the read group, which other tools used in the pipeline need to 

function properly. Added information included read-group ID, read-group library, read-group 

platform, read-group platform unit (e.g., run barcode), and read-group sample name. Next, I 

needed to index the BAM file with read alignments, and for that, I used the BuildBamIndex 

tool from the GATK best practices workflow. The result is a BAM file with indexed and 

sorted reads. Considering that in RNA-seq data, reads can span exon-exon junctions or harbor 

splice junctions, it's necessary to split the reads at these junctions for variants to be called 

correctly. The tool I used for reconstruction of alignments that span intron regions is called 

SplitNCigarStrings. The output is a BAM file with reads split at N CIGAR elements and 

CIGAR strings updated. 

One of the most important steps during data preprocessing is base quality score 

recalibration. The primary goal of this step is to identify and flag systematic errors that 

occurred during the estimation of the accuracy of individual base calls performed by a 

sequencing machine. Since the quality scores play an important role in the decision of the 

algorithm whether something will be considered a variant or not, it is important to exclude 

any kind of systematic bias in my data. In the process of Base Quality Score Recalibration 

(BQSR), machine learning methods need to be utilized to empirically model these errors and 

make appropriate adjustments to the quality scores. For that, I used two tools from the GATK 

best practices workflow called BaseRecalibrator and ApplyBQSR. BaseRecalibrator is 
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responsible for building a recalibration model by using all reads from an indexed BAM file 

and a collection of known variants (that I downloaded from the UCSC genome browser), 

while ApplyBQSR creates a new BAM file by adjusting quality scores based on the 

previously created recalibration model. The result of this step is analysis-ready RNA-seq 

reads saved in a BAM file. 

3.4  Variant discovery and filtering 
 

After the read data is prepared, variant calling can be done. For variant discovery, I 

used Strelka2, an open-source tool specifically designed for small variant calling in research 

and clinical germline and somatic sequencing applications (Kim et al., 2018). I used Strelka2 

in the mode for calling somatic variants from paired tumor—normal samples originating from 

the same patient. 

3.5  Variant annotation 
 

For annotating identified variants and predicting their effects on genes and proteins, I 

used the bioinformatic tool SnpEff. For variant annotation, certain files are required: 1) a 

reference genome sequence, which serves as a baseline against which the variants are 

compared; 2) an organism-specific annotation database, which provides information about 

genes, transcripts, and functional elements; 3) VCF (Variant Call Format) file with genetic 

variants obtained through sequencing and variant identification. SnpEff determines the impact 

and potential consequences of a variant by considering its genomic location, the affected 

gene(s), and the type of variant (missense, nonsense, synonymous, or frameshift). The 

functional consequences of each variant are predicted based on the annotation, and variants 

are classified into categories (high impact, moderate impact, low impact, and modifier). The 

result of variant annotation with SnpEff is a detailed output file in VCF format containing 

information about each variant’s impact, gene annotations, and predicted effect, which can be 

further processed in downstream analyses. 

3.6  Analysis of detected variants 
 

I loaded the annotated VCF files with annotated somatic variants from 12 analyzed 

samples into R Studio using the read.vcfR function from the vcfR package, saved them into a 

list, and assigned them patient names (Patient_1 to Patient_15).  
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Starting the analysis, first I filtered all the variants that didn’t pass variant filtration, 

and these are all the variants that didn’t have a "PASS" annotation in the FILTER column of 

the data frame. Since I am interested only in detected mutations positioned on the 

chromosomes, I also filtered all the scaffolds in the file. I filtered out all non-protein-coding 

genes by keeping all protein-coding genes, which I downloaded using the BiomaRt package. 

For analyzing and visualizing detected somatic mutations in patient cancer genomes, I used 

the R package maftools. I modified the imported VCFs to appropriate the MAF object format 

using a custom R script.  

3.6.1 Mutational landscape analysis 

To see how detected mutations are distributed across the genome, I counted the 

number of all detected mutations on each chromosome of all analyzed patients. I normalized 

the counted mutations per chromosome by dividing the number of detected mutations by the 

calculated number of exon nucleotides in each chromosome. The results were plotted using 

the ggplot function from the ggplot2 package in R Studio. 

Using the maftools package and its titv function, I classified the detected mutations 

into transitions and transversions. Furthermore, I used the plot function to visually represent 

the overall distribution of six different nucleotide conversions, the fraction of conversions in 

each patient, and the percentage of transitions and transversions across all detected SNPs in 

all samples (patients). 

Oncoplots, alternatively known as waterfall plots, serve as an improved means of 

displaying the information contained in a MAF file. To generate oncoplots depicting the 

mutational landscape of my samples, I used the oncoplot function from the maftools package. 

To show only the top 10 most mutated genes, I used the argument top = 10, and to show the 

top 3 pathways with the most mutated genes, I used the argument pathways = TRUE. 

I searched for the co-occurring and mutually exclusive set of genes affected by the 

mutations with the somaticInteractions function from the maftools package. This function 

performs a pair-wise Fisher’s Exact test to detect such a pair of genes and shows the results 

graphically. 

Using literature, I found the commonly mutated genes in PDAC. According to my 

research, the genes KRAS, CDKN2A, TP53, SMAD4, BRCA1, BRCA2, ATM, PALB2, and 

BRAF are highly connected to PDAC (Hu et al., 2021; Kamisawa et al., 2016; Maitra and 
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Hruban, 2008; Orth et al., 2019; Sarantis et al., 2020). I used the oncoplot function with the 

argument genes = c("KRAS", "CDKN2A", "TP53", "SMAD4", "BRCA1", "BRCA2", 

"ATM", "PALB2" and "BRAF") to draw oncoplot only for these genes. I inspected the 

generated mutational summary data to see how many mutations affected this group of genes 

and to compare them with the most mutated genes detected in patient samples. I performed an 

analysis of each gene found to be highly connected to PDAC. First, I extracted the 

information considering mutations for individual genes from a data frame containing all the 

mutations across all samples by using their Hugo symbols. I counted the classes of variants 

affecting each gene and plotted them on individual bar plots. I used the lollipopPlot function 

to visually represent the locations of detected variants on each gene and cause amino acid 

changes. 

I wanted to compare mutation load in analyzed patient data against 33 TCGA cohorts 

from the MC3 project, and for this I used the tcgaCompare function included in the maftools 

package. Apart from that, I explored the differences and similarities between mutational data 

detected in my samples and mutational data in the pancreatic adenocarcinoma (PAAD) cohort 

from TCGA. To do this comparative analysis, I downloaded PAAD somatic mutation whole 

exome sequencing data from the ICGC data portal. I read the data into R Studio and filtered it 

by mutation type to keep only single-base substitutions. I counted the number of mutations on 

each chromosome (across all samples) and generated a bar plot to explore which 

chromosomes carried the most mutations. 

Furthermore, I generated a maf object from PAAD cohort data and used the titv and 

plot functions to show percentages of transitions and transversions, the distribution of 

nucleotide conversions, and the portion of each nucleotide conversion in each sample. I 

generated the oncoplot by using the oncoplot function to showcase the most mutated genes 

and their mutation types across all samples. I also used the mafCompare function to detect 

differentially mutated genes between PAAD and my cohort. I wanted to include only genes 

that are mutated in at least nine samples in one of the cohorts to avoid bias due to genes 

mutated in a single sample. The results of the comparison were plotted using the coBarplot 

function. To see if there is a significant difference between the most mutated genes in my 

sample data and the PAAD cohort sample data, I carried out Chi-square test. 
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3.7  Mutational signature analysis 
 

To expose and explore mutational signatures in patient data, I used the 

mutational.signatures.lib package. First, I created mutational catalogs from VCF files with 

identified somatic variants in patient sample sequencing data. These mutational catalogs refer 

to collections of distinct patterns of DNA mutations observed in cancer genomes.  

I fitted known mutational signatures to mutation count data (contained in mutational 

catalogs) using the Fit and FitMS functions, which apply non-negative matrix factorization to 

decompose the mutation count matrix into a set of mutational signatures and their 

corresponding contributions to the mutational pattern.  

The result of the mutational signature fitting process using the signature.tools.lib 

algorithm and its Fit and FitMS functions is the decomposition matrix C ≈   SE, where C is the 

catalog matrix, with mutation types as rows and samples as columns; S is the signature 

matrix, with mutation types as rows and signatures as columns; and E is the exposure matrix, 

with signatures as rows and samples as columns (Degasperi et al., 2020, 2022). Vector e 

indicates how many mutations in C are associated with each of the k mutational signatures. 

To compare original and reconstructed mutational catalogs, cosine similarity is calculated 

and displayed. This similarity score has a value between 0 and 1, and it serves as measure of 

reconstruction error. A high cosine similarity score between the original and reconstructed 

mutational catalog indicates that the signatures used for the fitting process can explain the 

original mutational pattern well. 

I performed signature fit using organ-specific signatures with the Fit function. This 

function uses a one-step bootstrap (resampling with replacement) approach to calculate the 

empirical probability of an exposure being larger or equal to a given threshold (Degasperi et 

al., 2020, 2022). I extracted signatures specific for the pancreas using the getOrganSignatures 

function with the arguments "Pancreas", and typemut = "subs". I did the multi-step signature 

fit using the FitMS function. According to the specified organ, this function automatically 

selects the common signatures that will be used in the first step of the fitting process and the 

rare signatures whose presence will try to be determined (Degasperi et al., 2020, 2022). In 

both fitting procedures, I used the Gini-based exposure filter to compute the unique thresholds 

for every fitted mutational signature. For visual representation of fitting results, I used the 

plotFit and plotFitMS functions, respectively. 
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4 Results 
 

4.1   The distribution of mutations across the chromosomes 
 

The normalized number of mutations per chromosome detected in each patient's cancer 

RNA-seq data is depicted in the plot in Figure 6. Each boxplot provides a summary of the 

distribution of the normalized mutation count for each analyzed patient on a specific 

chromosome. The graph shows that all the chromosomes harbor mutations, although some of 

them are affected more than others. The median values of normalized mutation count per 

chromosome revolve between 0.00066 and 0.00025, while interquartile ranges are relatively 

wide, spanning from 0.0013 (chromosome 7) to 0.00016 (chromosome 17). The highest 

median value is detected for chromosome Y (0.0006558), followed by chromosomes 8, 4, and 

20, while the lowest median value is detected for chromosome 9 (0.0002511), followed by 

chromosomes 22, 17, and 16. The outliers are not common, being detected in data for only 

four chromosomes. 

 

Figure 6. A box plot of the normalized mutation count per chromosome in the analyzed patient cohort 

data. Each boxplot represents a summary of the normalized number of mutations detected in each 

analyzed patient for a specified chromosome. The names of chromosomes are listed along the x-axis, 

while the y-axis represents the normalized number of detected mutations. The median value is 

represented by a thick blue line in each boxplot. The dots represent the normalized number of 

mutations detected in specific patient sequence data, while their color corresponds to the specific 

sample from the PDAC cohort. 
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4.2   Mutational landscape 
 

The overall distribution of six different nucleotide conversions is shown with a box and 

whiskers plot in Figure 7. A. The most common nucleotide conversion detected is the T>C 

transition, with a median occurrence rate of 54.72%. The second most common nucleotide 

conversion is reverse mutation, that is, C>T transition, with a median value of 24.34%, while 

the rest of the four types of nucleotide conversions, transversions T>A, C>A, C>G, and T>G, 

are less common, with median values of occurrence of 5.65%, 5.92%, 4.92%, and 2.54%, 

respectively. 

The ratio of mutations classified into transitions and transversions is shown with a box 

and whiskers plot on Figure 7. B. The percentage of transitions is significantly higher than 

that of transversion mutations. The median value for the percentage of transition mutations is 

79.38%, while for the percentage of transversion mutations, it adds up to 20.62%. 

The contribution of detected nucleotide conversions in each patient's sequencing data is 

shown with a stacked bar chart in Figure 7. C. Percentages of nucleotide conversions follow 

the overall distribution of six different nucleotide conversions depicted in Figure 7 for the 

most part, whereas in most patients sequencing data, the most numerous nucleotide 

conversion is a T>C transition, apart from Patient_2, Patient_8, and Patient_9, where the most 

nucleotide conversions come from C>T transitions. The percentages of transversions in all 

patients are small, while their contribution to each patient's mutational landscape does not 

follow any pattern but rather is different from one patient to another. 
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Figure 7. Transitions and transversions classification of mutations and nucleotide conversions 

contribution to the mutational profile. The percentage of contribution is shown on the y-axis of all 

three graphs, while six different nucleotide conversions are shown on the x-axis of A), transition and 

transversion classification on the x-axis of B), and analyzed patient samples on the x-axis of C). A) 

Box and whiskers plot depicting the overall distribution of six different nucleotide conversions 

detected in patient tumor genome sequence data. B) Box and whiskers plot showing the calculated 

contribution of transitions and transversions detected in the analyzed patient tumor sequence data. C) 

Stacked bar charts showing the contribution of detected nucleotide conversions in each patient's 

sequencing data. 

An overview of the genomic alterations across patient samples is shown in Figure 8. 

with an oncoplot, also called a waterfall plot. The top 10 mutated genes in patient samples are 

listed along the y-axis of the plot. The gene with the most detected mutations is XIAP, which 

is altered in all the samples included in the analysis. It is hit by multiple mutations in most of 

the samples, apart from Patient_5, Patient_8, and Patient_12 samples, where only a 3’ prime 

UTR mutation is detected. The next three genes, CTNND1, CTSB, and MIR612 are altered in 

92% of the samples, while the next six genes, ACOX1, EIF2AK2, H2AZ2, METTL7A, 

SLC4A4, and SOD2, are altered in 82% of the samples. 
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Figure 8. Oncoplot depicting the top 10 most mutated genes in the analyzed tumor genome sequence 

data. Mutated genes are listed along the y-axis, while sample names are listed along the x-axis. The 

mutation frequency and prevalence of variants in the corresponding gene across patient cohorts are 

shown on the right side of the matrix with a stacked bar chart.  

The top 3 most mutated pathways, that is, the pathways whose genes accumulated the 

most mutations, are shown in Figure 9. with oncoplot. The biological pathways with the most 

mutated genes in the analyzed tumor genome sequence data are Wnt/B-catenin signaling and 

Transcription factor with alteration in 92% of patient samples. Mutated genes in the Wnt/B-

catenin signaling, pathway are CTNND1, CTNNB1, TCF7L2, and APC, with mostly detected 

multiple mutations, alongside intron variants, a 5’ prime UTR variant, and a 3’ prime UTR 

variant. There are 17 detected mutated genes in the analyzed data that are involved in the 

pathway Transcription factor, which is altered in 92% of samples, and these are: MECOM, 

ZBTB20, EPAS1, MAX, MYC, RUNX1, CBFB, ELF3, FUBP1, KLF5, MGA, NFE2L2, RXRA, 

TBX13, TCF12, ZFHX3, and ZMYM2. The most common class of variants with these genes is 

multiple hit, followed by intron variant and 3’ prime UTR variant, but other classes such as 

missense variant, 5’ prime UTR variant, upstream gene variant, and downstream gene variant 

also appear. The third most mutated biological pathway is Other signaling, with mutations 

detected in 19 genes included in it. These genes are FAT1, GNAQ, CDH1, LATS2, MAP3K1, 

PRKAR1A, RAC1, RHOA, ARHGAP35, DIAPH2, GNA11, GNA13, GNAS, MAP2K4, 

PLXXNB2, PTPDC1, PTPN11, RHOB, and SOS1. Most detected variants are multiple hits and 
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3’ prime UTR variant, followed by missense variant, upstream gene variant, downstream gene 

variant, intron variant and synonymous variant. 

 

Figure 9. Oncoplot with the top 3 most mutated biological pathways with belonging genes in analyzed 

tumor genome RNA-seq data. The pathways are listed along the y-axis, while sample names are listed 

along the x-axis. The genes are grouped based on their biological processes above the pathways along 

the y-axis. Pathway mutation frequency in analyzed samples is shown on the right side of the matrix 

with a corresponding bar chart, while the mutation frequency and prevalence of variants in the 

corresponding gene across patient cohorts are also shown on the right side of the matrix, but with a 

stacked bar chart. 

 Somatic interactions, that is, co-occurrences of genomic alterations, in tumor genome 

sequencing data are visualized with a plot in Figure 10. Here, somatic interactions are shown 

for the top 20 genes. Co-occurrence refers to the simultaneous presence of two or more 

alterations in the same sample, while mutual exclusivity indicates that the alterations or events 

are rarely or never observed together in the same sample. Positive associations among the top 

20 mutated genes in the analyzed samples can be seen for fifteen pairs of genes: ACOX1 and 

SLC35F5, ACOX1 and KAT8, ACOX1 and FNDC3B, ACOX1 and AKAP13, EIF2AK2 and 

SMIM14, EF2AK2 and ELL2, H2AZ2 and NIBAN1, METTL7A and SLC35F5, METTL7A and 

KAT8, METTL7A and HNRNPNC, METTL7A and ELL2, SLC4A4 and SLC35F5, SLC4A4 and 

KAT8, SLC4A4 and AHR, KAT8 and SLC35F5. This means that Fisher’s exact test revealed 
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that the mutations of these genes tend to occur together in the same sample more frequently 

than expected by chance (p < 0.05). There are no two genes that demonstrate mutual 

exclusivity with statistical significance in any of the analyzed samples.  

 

Figure 10. Plot depicting the somatic interactions of the top 20 mutated genes in the analyzed samples 

in an oncoplot-like grid; each row and column represents a specific mutated gene. Gene names are 

listed above the columns and on the left side of the rows. The number in square brackets represents the 

number of samples in which a particular genomic alteration was observed for that gene. The dot (".") 

and asterisk ("*") symbols represent the statistical significance of the co-occurrence or mutual 

exclusivity of a pair of mutated genes. The color of the square represents the calculated p-value with 

Fisher’s exact test; green indicates a tendency toward co-occurrence, whereas brown indicates a 

tendency toward exclusiveness. 

4.3   Commonly mutated genes in PDAC 
 

The oncoplot for genes found to be highly connected to PDAC is shown in Figure 11., 

along with a stacked bar plot showing the proportion of six different nucleotide conversions in 

each patient's sequencing data. Only in eight patient samples was a mutation of one of these 

genes detected. The most mutated gene is BRAF, whose mutation classified as a 3’ prime 

UTR variant is detected in Patient_7, Patient_8, and Patient_10 samples, while a mutation 

classified as a downstream gene variant is detected in Patient_15. Genes KRAS and ATM 

share second place with detected mutations in two samples. KRAS variants are detected in 

Patient_8 and Patient_9 samples, and both are classified as multiple hit mutations, while ATM 
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has detected variants in Patient_2 and Patient_6 samples classified as 3’ prime UTR variant 

and missense variant respectively. TP53 has detected mutation only in the Patient_4 classified 

as missense variant, while SMAD4 has detected mutation only in the Patient_2 classified as 

synonymous variant. The other four genes, BRCA1, BRCA2, CDKN2A, and PALB2, have no 

detected mutations in any of the samples. In all samples, the most numerous nucleotide 

conversion is the T>C transition followed by the C>T transition, except in the Patient_8 

sample, where the most numerous nucleotide conversion is the C>T transition followed by the 

T>C transition.   

 

 Figure 11. Oncoplot of genes highly connected to PDAC, along with stacked bar plots with 

contributions of detected nucleotide conversions in each sample of sequencing data. Genes are listed 

along the y-axis, while sample names are listed along the x-axis. The mutation frequency and 

prevalence of variants in the corresponding gene across patient cohorts are shown on the right side of 

the matrix with a stacked bar chart. 

All the genes with detected mutations in the analyzed data were ranked by the number 

of samples in which alterations were found and ordered from the most mutated ones to the 

least mutated ones. Table 1. contains the ranks of five genes highly connected to PDAC with 

detected mutations in the analyzed data, together with the total number of mutations and the 

number of samples in which mutations of the specific gene were found. The highest-ranking 
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gene that is commonly mutated in PDAC is BRAF, with a total of 4 mutations in 4 mutated 

samples and a rank of 387. Gene KRAS received a rank of 886 with six detected mutations in 

two samples. The ranks of the remaining three genes are considerably low; ATM has a rank of 

1271 with two detected mutations in two samples, while the ranks of SMAD4 and TP53 are 

4126 and 4335, respectively, with only 1 detected mutation in 1 sample each. 

Table 1.  Mutation ranks of genes highly connected to PDAC retrieved from detected mutations in 
analyzed sample data. 

Hugo symbol Rank Total mutations Number of mutated samples 

BRAF 387 4 4 

KRAS 886 6 2 

ATM 1271 2 2 

SMAD4 4126 1 1 

TP53 4335 1 1 

 

Bar charts illustrating the count of classes of variants detected for genes BRAF, KRAS, 

TP53, ATM, and SMAD4 are represented in Figure 12. The genes CDKN2A, BRCA1, BRCA2, 

and PALB2 are excluded from this analysis, considering neither of them has any detected 

mutations in the analyzed patient tumor sequence data. The BRAF gene variant classification 

is depicted in Figure 12. A. Two mutations are classified as intron variants, four as 

downstream gene variants, and three as 3’ prime UTR variants. There are four different 

classes of KRAS gene variants depicted in Figure 12. B. Eight mutations belong to the 3-prime 

UTR variant class, six to the non-coding transcript exon variant class, six to the 3’ prime UTR 

variant class, and four to the downstream gene variant class, while the least populated class is 

the intron variant with one detected mutation. Detected variants of the ATM gene, divided by 

classes, are depicted in Figure 12 C. Classes 3’ prime UTR variant and non-coding transcript 

exon variant have two assigned mutations, while classes upstream gene variant, missense 

variant, and downstream gene variant have one assigned mutation each. Variant classifications 

of the TP53 gene are shown in Figure 12 D. The most numerous class of variants is the 

missense variant, with four assigned mutations, while downstream gene variants, intron 

variants, noncoding transcript exon variants, and upstream gene variants each have one 

assigned mutation. Gene SMAD4 variant classes are shown in Figure 12 E. Mutations in these 

genes are assigned to four different classes: downstream gene variant, noncoding transcript 

exon variant, synonymous variant, and upstream gene variant, and each of them has only one 

assigned mutation. 
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I used the lollipopPlot function to visually represent the locations of detected 

mutations on each gene that caused amino acid changes. This plot displays the different types 

of mutations found within a gene and their corresponding positions along the gene sequence. 

In this graph, each gene is represented by a horizontal line consisting of gene domains drawn 

as rectangles in different colors, while each mutation along the gene is depicted as a tick mark 

with labeled amino acid changes. In Figure 13., only the lollipop plots of KRAS, TP53, ATM, 

and SMAD4 are shown because only in these genes are there detected mutations in the 

analyzed samples. A lollipop plot for the BRAF gene couldn’t be drawn because there are no 

annotated amino acid changes in the data set. Some mutations in drawn lollipop plots have no 

labeled amino acid change, and for that fact, these are not marked on the lollipop plot 

Figure 12. Barplots of counts of detected variant classes in commonly mutated genes in PDAC 

Variant classes are listed along the y-axis, while count numbers are listed along the x-axis. A) BRAF 

gene variant class count; B) KRAS gene variant class count; C) ATM gene variant class count; D) 

TP53 gene variant class count; E) SMAD4 gene variant class count. 

A B 

C D 

E 
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corresponding to that gene. Figure 13. A represents the KRAS gene lollipop plot. The detected 

mutation rate is 16.67%, and a synonymous mutation in the COG1100 domain is marked on 

the 173rd nucleotide, where aspartic acid remains unchanged. On Figure 13. B, the TP53 gene 

lollipop plot is shown. There is an 8.33% somatic mutation rate observed. A marked mutation 

in the P53 domain on the 270th nucleotide causes the conversion of phenylalanine into serine. 

The ATM gene lollipop plot is depicted in Figure 13. C. The detected mutation rate is 16.67%. 

The detected mutation lies in the FAT domain on the 2314th nucleotide and causes glutamine 

to change to leucine. The lollipop plot of the SMAD4 gene is shown in Figure 13. D. The 

somatic mutation rate is 8.33%, and the detected mutation is located on the 202nd nucleotide, 

marked as synonymous, which means alanine remains unchanged. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Lollipop plots of genes found to be commonly mutated in PDAC. Each graph consists of a 

gene depicted as a horizontal line, with colored rectangles representing gene domains. Variants are 

marked as a vertical line with labeled amino acid changes and nucleotide positions. The x-axis consists 

of numbers representing nucleotide positions in gene sequence, while the y-axis shows the number of 

detected variants. Next to a gene name in the title, there is a percentage of the somatic mutation rate 

written for that gene. A) KRAS lollipop plot; B) TP53 lollipop plot; C) ATM lollipop plot; D) SMAD4 

lollipop plot 

A B 

C D 
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4.4   Comparison of the mutational landscape of RNA-seq called mutations in PDAC 

samples with mutational landscape of TCGA cohorts obtained by WXS 
 

The comparison of detected mutational load between analyzed patient data and 33 TCGA 

cohorts from the MC3 project is depicted in Figure 14. The tumor mutational burden (TMB) 

is measured in the number of detected mutations per megabase of DNA. The mutational 

burden of all 33 TCGA cohorts seems to follow the student-t distribution, while the same 

cannot certainly be said for the samples analyzed in this paper considering there are only 12 

samples. The median tumor mutational burden for analyzed patient data has a value of 15.9 

mutations per megabase, which is rather higher than for any of the TCGA cohorts involved in 

the comparison. When looking at the distribution and median value for all 33 TCGA cohorts, 

the Skin Cutaneous Melanoma (SKCM) cohort shows the most similarity to the cohort of 

samples analyzed in this research. 

 

Figure 14. Scatter plot for comparison of mutational load between cohorts of analyzed patient data and 

33 TCGA cohorts from the MC3 project. Mutational load is expressed as TMB (tumor mutational 

burden) in the form of the number of detected mutations per megabase in the analyzed DNA. TMB 

values are listed along the y-axis. The names of cohorts are listed along the x-axis from the downside, 

while the number of analyzed samples in each cohort is shown from the upper side of the graph. Each 

dot represents the TMB value for one sample in a cohort, while the red horizontal line represents the 

calculated median value of TMB in each cohort.  
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4.5   Comparison with the TCGA Pancreatic adenocarcinoma cohort 

 

Since the analyzed data in this work comes from PDAC tumor samples, I used the PAAD 

cohort from the TCGA M3 project for comparison. Figure 15. depicts the normalized number 

of mutations per chromosome detected for each sample in the PAAD cohort. Each boxplot 

provides a summary of the distribution of the normalized mutation count for each analyzed 

patient on a specific chromosome. The mutations are detected on all chromosomes, but their 

accumulation is not equally distributed. Chromosome Y stands out among all others with a 

median normalized mutation count of 0.0005365, which is double the recorded median values 

of the other 23 chromosomes. The median values of normalized mutation count are appearing 

in the range between 0.00035 and 0.0001 when chromosome Y is excluded. Two samples 

from the PAAD cohort presented strong outliers for every chromosome with values of 

normalized mutation count from 0.03 to more than 0.15, which is why they were excluded 

from further analysis.  

 

Figure 15. Box plot of the normalized mutation count per chromosome in PAAD cohort samples. Each 

boxplot represents a summary of the normalized number of mutations detected in each analyzed 

PAAD sample for a specified chromosome. The names of chromosomes are listed along the x-axis, 

while the y-axis represents the normalized number of detected mutations. The median value is 

represented by a thick blue line in each boxplot. The dots represent the normalized number of 

mutations detected in specific patient sequence data, while their color corresponds to the specific 

sample from the PAAD cohort. 

The PAAD cohort transitions and transversions (TiTv) graph is depicted in Figure 15. 

A shows the overall distribution of six different nucleotide conversions with a box and 

whiskers plot. The most common nucleotide conversion detected is the C>T transition, with a 
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median value of 63.12% in the data set. This mutation is by far the most numerous, 

considering the other five mutations do not add up to even 35% of total mutations. The second 

most common nucleotide conversion is C>A transversion, with a median value of 11.51%, 

while the other four types of nucleotide conversions, T>C, C>G, T>A, and T>G, have less 

than 10% occurrence, with median values of 9.38%, 6.72%, 4.44%, and 2.6%, respectively. 

The ratio of mutations classified into transitions and transversions is shown with a box 

and whiskers plot on Figure 15. B. The percentage of transitions is significantly higher than 

the percentage of transversion mutations. The median value for the percentage of transition 

mutations is 72.65%, while for the percentage of transversion mutations, it adds up to 27.35%. 

The mutation contribution of detected nucleotide conversions in each patient's 

sequencing data is depicted in Figure 15. C with a stacked bar plot. The mutation with the 

most contribution to the mutation profile of almost all analyzed patient samples is the C>T 

transition. Only a few patient samples have the C>T transition or C>G transversion as the 

most common nucleotide conversion. 

   

Figure 16. Transitions and transversions classification of mutations and nucleotide conversions 

contribution to the mutational profile. The percentage of contribution is shown on the y-axis of all 

three graphs, while six different nucleotide conversions are shown on the x-axis of A), transition and 

transversion classification on the x-axis of B), and analyzed patient samples on the x-axis of C). A) 

Box and whiskers plot showing the calculated contribution of each of the six different nucleotide 

conversions detected in the analyzed sample data. B) Box and whiskers plot showing the calculated 

contribution of transitions and transversions detected in the analyzed sample data. C) A stacked bar 

chart showing the contribution of detected nucleotide conversions in each patient's sequencing data. 

B 

C 

A 
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The oncoplot for the top 10 mutated genes in the PAAD cohort, along with a stacked 

bar plot showing the proportion of six different nucleotide conversions in each patient's 

sequencing data, is shown in Figure 16. The genes that accumulated the most mutations are: 

KRAS, TP53, TTN, MUC16, FLG, OBSCN, RYR1, DNAH11, MYO18B, and SCN5A. The most 

mutated gene is KRAS, with a 62% mutation rate in analyzed samples, and most of them are 

classified as missense mutations, while a small amount is classified as a multiple hit mutation. 

In second place is the TP53 gene, with alteration in 19% of analyzed samples, with mutations 

being classified as missense mutations for the most part, five as nonsense mutations, and one 

as frame insertion. 10% of the samples have detected mutations in the TTN gene, and the 

majority of them are classified as missense mutations, but there are also three detected 

nonsense mutations and one multi-hit mutation. Seven of the top ten genes have a mutation 

rate below 10% in the analyzed PAAD cohort. Most of the detected variants are classified as 

missense mutations, but there are also detected multi-hit mutations, splice site mutations, 

frame shift insertions, and nonsense mutations. 

 

Figure 17. Oncoplot of the top 10 mutated genes in the PAAD cohort, along with a stacked bar plot 

with the contributions of detected nucleotide conversions in each sample of sequencing data Genes are 

listed along the y-axis, while sample names are listed along the x-axis. The mutation frequency and 

prevalence of variants in the corresponding gene across patient cohorts are shown on the right side of 

the matrix with a stacked bar chart. 
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The oncoplot made for the top 3 most mutated pathways is shown in Figure 17. The 

biological pathway with the most mutated genes in PAAD cohort data is MAPK signaling, 

with alterations in 62% of patient samples. Mutated genes involved in this pathway are KRAS 

and BRAF. All the samples contain mutations in the KRAS gene, with most of them classified 

as missense variants, while three are classified as multi-hit variants. One of the samples has 

detected a mutation in BRAF categorized as a missense variant, along with a missense variant 

of KRAS. The second most mutated pathway is Genome integrity, with 11 mutated genes: 

TP53, ATM, ATR, BRCA1, BRCA2, CHEK2, ERCC2, PDS5BPOLQ, RFC1, and STAG2. The 

most mutated gene in this pathway is TP53, with alterations in 19% of the samples classified 

as missense mutations or nonsense mutations. The other ten genes contribute much less to the 

mutation rate of the pathway, with four (ATM), two (ATR and BRCA), or just one (all others) 

detecting mutations in analyzed samples. Pathway Other takes third place among the most 

mutated pathways. Mutated genes involved in this pathway are: APOB, SPATA1, CACNA1A, 

COL5A1, FLNA, KIF1A, CNBD1, DMD, GABRA6, GRIN2D, KEL, MUC6, MYH9, and 

SPTAN1. Most of these mutations are classified as missense or multi-hit mutations, except for 

two nonsense mutations and one frame shift insertion. Recorded alterations in these genes 

contribute 3% or less to the overall mutation rate for the analyzed samples. 
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Figure 18. Oncoplot with the top 3 most mutated biological pathways with belonging genes in 

analyzed tumor genome sequence data. The pathways are listed along the y-axis, while sample names 

are listed along the x-axis. The genes are grouped based on their biological processes above the 

pathways along the y-axis. Pathway mutation frequency in analyzed samples is shown on the right side 

of the matrix with a corresponding bar chart, while the mutation frequency and prevalence of variants 

in the corresponding gene across patient cohorts are also shown on the right side of the matrix, but 

with a stacked bar chart. 

The visualization of differences between mutational patterns in the PAAD cohort and 

the analyzed data cohort is represented by a co-bar plot in Figure 18. This graph shows the 

mutational frequencies of the most mutated genes in the PAAD cohort and in the cohort of 

analyzed PDAC patient samples researched in this study. Five out of ten displayed genes 

appear to be mutated in both cohorts: CTNND1, KRAS, TPP3, TTN, and MUC16, but their 

mutational frequencies are different for these two cohorts. The mutational frequency of 

CTNND1 for PAAD is 1% compared to 92% for PDAC; the mutational frequency of KRAS is 

62% for PAAD compared to 17% for PDAC cohort; the mutational frequency of TP53 for 

PAAD is 19% compared to 8% for PDAC cohort; the mutational frequency of TTN is 10% for 

PAAD compared to 25% for PDAC cohort; and the mutational frequency of MUC16 is 7% for 

PAAD compared to 8% for PDAC cohort. We found a statistically significant difference in 

proportions of mutated samples between PDAC and PAAD samples for the following genes: 
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XIAP, CTSB, MIR612, CTNND1, ACOX1, and KRAS (chi-square test, p-value < 0.05, p-values 

were adjusted for multiple comparisons using Bonferroni's method). 

 

Figure 19. Co-barplot displaying mutational frequencies of the top 5 mutated genes in the PAAD 

cohort and cohort of analyzed patient samples in this research. Gene names are listed along the y-axis, 

while percentages describing mutational frequency are displayed along the y-axis for each cohort. The 

name of the cohort is displayed on the upper side, with cohort size in brackets. The size of the bar 

represents the detected mutational frequency for the specified gene in each of the two cohorts. 

Rectangles of different colors represent different classes of detected gene variants. Genes that showed 

a statistically significant difference in proportions of mutated genes between PDAC and PAAD 

cohorts are marked with an asterisk (*). 

4.6   Mutational signatures fitting 
 

The point estimate exposures calculated with the Fit function are visualized as proportions 

of total mutations and can be seen in Figure 19. The calculated cosine similarity between a 

given catalog and the corresponding catalog reconstructed using the signatures indicates that 

none of the sample catalogs can be well explained with the signatures used. The highest 

cosine similarity can be seen in the Patient_8 (0.89) and Patient_2 (0.88) sample catalogs, 

while the Patient_9 sample catalog is not so far behind with 0.87 calculated cosine similarity 
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but still below the threshold of 0.95, which would be considered a meaningful cosine 

similarity. All other sample catalogs show a cosine similarity less than 0.8, which cannot be 

considered when explaining mutational catalogs with this group of signatures. Every sample 

catalog except Patient_6 has at least twenty six unassigned mutations. Most of the mutations 

are assigned to Signature GEL-Pancreas common SBS1+15+18. 

 

Figure 20. Proportions of total mutations from mutational catalogs assigned to mutational signatures 

used for the fitting process and calculated point estimate exposures. In this matrix-like visualization, 

sample names are listed vertically, while signatures used for fitting are listed horizontally. The cosine 

similarity scores between the original patient mutational catalog and the one reconstructed based on 

chosen signatures are listed in the first column. The size of the circle around the number of assigned 

mutations or calculated cosine similarity is proportional to the absolute value of the number it 

corresponds to. The color of the circle around the calculated cosine similarity represents how the point 

estimate of exposure corresponds to the thresholds computed with the Gini-based exposure filter. 

The point estimates from the multi-step fitting process using the FitMS function are 

visually represented as proportions of total mutations in Figure 20. The calculated cosine 

similarity scores between the original mutational catalog and the reconstructed catalog 

indicate that seven out of twelve sample catalogs can be well explained using the best linear 
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combination of signatures chosen in this multi-step fitting process. The highest cosine 

similarity of 0.95 can be seen in Patient_2, followed by Patient_8 with a calculated cosine 

similarity of 0.94. Patient_5 and Patient_9 sample catalogs showed a 0.93 cosine similarity 

with their respective reconstructed catalogs, while the last sample catalogs whose calculated 

cosine similarity is considered meaningful are Patient_4, Patient_7, and Patient_15 catalogs 

with a recorded similarity of 0.90. The cosine similarity of the Patient_3, Patient_6, 

Patient_13, and Patient_10 sample catalogs is high (0.89, 0.88, 0.88, and 0.86, respectively), 

but not high enough to reach the threshold to be considered acceptable. The worst cosine 

similarity was detected for Patient_12's mutational catalog, which scored 0.62. This means 

that the difference between the reconstructed catalog and the mutational catalog is so big that 

this mutational catalog cannot be explained with chosen mutational signatures. Apart from the 

GEL-pancreas common signatures SBS1, SBS5, and SBS1+5+18, the rare signature SBS123 

is also detected in analyzed samples, and it has most mutations assigned to it. Some of the 

mutations from the patient catalogs remained unassigned, most of them belonging to 

Patient_2, Patient_8 and Patient_13, while Patient_3, Patient_6, and Patient_7 have no 

unassigned mutations. 
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Figure 3. Proportions of total mutations from mutational catalogs assigned to mutational signatures 

used for multiple fitting process and calculated point estimate exposures. In this matrix-like 

visualization, sample names are listed vertically, while signatures used for fitting are listed 

horizontally. The size of the circle around the number of assigned mutations or calculated cosine 

similarity is proportional to the absolute value of the number it corresponds to. The color of the circle 

around the calculated cosine similarity represents how the point estimate of exposure corresponds to 

the thresholds computed with the Gini-based exposure filter. 
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5  Discussion 
 

Analyzed cohort samples are firstly characterized by the number of detected mutations 

per chromosome to explore the distribution of mutations across the analyzed genomes and 

possibly detect chromosomes with a high accumulation of mutations. When looking at the 

normalized count of mutations per chromosome, it can be seen that mutations are well 

distributed across all 24 chromosomes of the analyzed patients. The highest mutation count 

median value is recorded for chromosome Y, which is the smallest and contains the least 

number of nucleotides in its exons, but only two samples in the whole PAAD cohort carry 

mutations on this chromosome. This kind of mutation count across the genome suggests the 

advanced stage of pancreatic cancer in patients whose samples were analyzed in this study. 

The overall pattern or profile of genetic mutations present in tumor cells is called the 

mutational landscape, and it provides a comprehensive view of the genetic alterations that 

have occurred in the tumor cells (Moore et al., 2021). The landscape can provide important 

insights into the underlying molecular mechanisms driving tumor growth, metastasis, and 

response to therapy. The mutational landscape of the analyzed tumor sample data cohort is 

consistent across all 12 patient samples, with mutations mainly being classified as transitions, 

most of them being T>C nucleotide conversions, with reverse conversion (C>T) taking 

second place. This kind of profile could be the result of DNA replication or damage and repair 

processes such as oxidative damage or exposure to reactive chemicals formed during 

tumorigenesis, as well as exposure to certain environmental factors either before or during 

tumorigenesis (Harris, 2013).  

The analysis of detected mutations in analyzed patient tumor samples determined XIAP, 

CTNND1, CTSB, MIR612, ACOX1, EIF2AK2, H2AZ2, METTL7A, SLC4A4, and SOD2 as the 

top 10 mutated genes. Neither of them was found to be listed among commonly mutated 

genes in previous PDAC tumor studies. The most mutated gene in analyzed patient tumor 

samples is XIAP, with alterations in all the analyzed samples, and it was mostly hit by 

multiple mutations, except in three samples where the 3’ prime UTR variant was the only 

detected mutation. The XIAP gene encodes a multi-functional protein belonging to a family of 

apoptotic suppressors that regulates not only caspases and apoptosis but also modulates 

inflammatory signaling and immunity, copper homeostasis, mitogenic kinase signaling, cell 

proliferation, as well as cell invasion and metastasis (Tu and Costa, 2020). This protein also 

acts as an important regulator of innate immune signaling via regulation of Nod-like receptors 
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(NLRs) (GeneCards - Human Genes, 2023; Tu & Costa, 2020). The overexpression of XIAP 

is known to cause resistance to apoptosis and is well documented in pancreatic cancer studies. 

(Li et al., 2013; Vogler et al., 2009). It was also shown that elevated levels of XIAP expression 

posed a risk factor for the development of pancreatic cancer and served as an indicator for 

predicting the prognosis of post-operative pancreatic cancer patients (Li et al., 2013). 

MIR612, along with CTNND1 and CTSB, holds second place for the most mutated gene, with 

alteration in 92% of the samples. MIR612 (MicroRNA 612) is an RNA gene and is affiliated 

with the miRNA class. It is involved in a post-transcriptional gene silencing pathway where 

regulatory microRNAs (miRNAs) are responsible for silencing specific target genes 

(GeneCards - Human Genes, 2023). Due to their regulatory role in tumorigenesis, miRNAs 

have been used as therapeutic methods and diagnostic biomarkers, and miR-612 has 

demonstrated tumor-suppressive activity in various cancer types (Javadrashid et al., 2021). It 

is important to note that Javadrashid et al. demonstrated in the study from 2021 on pancreatic 

cells in vitro that miR-612 has the potential to be a focal point for therapeutic intervention in 

pancreatic cancer when combined treatment strategies are used. The CTNND1 and CTSB 

genes are both protein-coding genes with different roles. CTSB encodes a member of the C1 

family of peptidases that possesses both endopeptidase and exopeptidase activities and is 

classified as a lysosomal cysteine protease involved in protein turnover processes within the 

cell (GeneCards - Human Genes, 2023; Mort, 2013). Its main physiological function is to 

maintain the stability of the intracellular proteome by degrading different proteins in the 

lysosomes, but it also has a significant role in different intracellular signaling pathways, 

including cell proliferation, migration, autophagy, antigen presentation, and apoptosis (Ma et 

al., 2022; Mort, 2013). The research from 2021 done by Fujimoto et al. demonstrated high 

expression of CTSB in pancreatic cancer stem-like cells and also suggested that its expression 

in surgically removed tumor samples correlated with unfavorable outcomes after surgery 

(Fujimoto et al., 2021). The CTNND1 gene, which is also found to be mutated in 92% of 

analyzed patient tumor samples, encodes a member of the Armadillo protein family with the 

main function of regulating cell-cell adhesion through the surface stability of C-, E-, and N-

cadherins (Alharatani et al., 2020). Furthermore, it also regulates gene transcription through 

several transcription factors (GeneCards - Human Genes, 2023). It has been shown that 

pancreatic cancer patients with high expression of CTNND1 have a poor prognosis because its 

encoded protein is one of the key molecules involved in pancreatic cancer metastasis (Huang 

et al., 2023). On top of that, it was also shown that downregulation of CTNND1 expression in 

PDAC leads to a poor prognosis (Huang et al., 2023). The remaining six genes are altered in 
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82% of the analyzed samples. ACOX1 and EIF2AK2 both encode enzymes. The first enzyme 

of the fatty acid beta-oxidation pathway is encoded by ACOX1, and in some studies, its 

overexpression is linked to pancreatic cancer development (GeneCards - Human Genes, 2023; 

Nowara & Huszno, 2016). The protein encoded by EIF2AK2 (Eukaryotic Translation 

Initiation Factor 2 Alpha Kinase 2) is a serine/threonine protein kinase that becomes activated 

by autophosphorylation upon binding to double-stranded RNA (dsRNA) and plays an 

important role in the innate immune response against multiple DNA and RNA viruses 

(Kuipers et al., 2021). This enzyme is also involved in the regulation of signal transduction, 

apoptosis, cell proliferation, and differentiation by phosphorylating other substrates, so it is 

not a surprise that its overexpression is thought to contribute to tumor development 

(GeneCards - Human Genes, 2023; Kuipers et al., 2021; Wang et al., 2022). H2AZ2 (H2A.Z 

Variant Histone 2) is a protein-coding gene for replication-independent histone protein 

variants found in different organisms. It belongs to the H2A family of histones involved in 

various pathways, including RNA polymerase, promoter opening, and packaging of telomere 

ends (Ávila-López et al., 2021; GeneCards - Human Genes, 2023). It has been shown that this 

histone isoform is highly expressed in PDAC patients, leading to tumor growth and 

chemoresistance (Ávila-López et al., 2021; Salmerón-Bárcenas et al., 2021). Protein encoded 

by METTL7A (also known as TMT1A, or Thiol Methyltransferase 1A) belongs to the 

methyltransferase-like protein family and can be found in the endoplasmic reticulum, where it 

plays a role in lipid metabolism and recruits cellular proteins for the assembly of functional 

organelles (Liu et al., 2023; Zehmer et al., 2008, 2009). The exact function of METTL7A is 

not fully understood, but it is believed to play a role in cellular processes such as protein 

methylation and post-translational modifications, as well as cell development, migration, and 

drug resistance (Liu et al., 2023). Its altered expression has been observed in several types of 

cancer, including breast cancer, ovarian cancer, colorectal cancer, and hepatocellular 

carcinoma, implying its potential as a molecular marker for the diagnosis of tumors 

(GeneCards - Human Genes, 2023; Liu et al., 2023). SLC4A4 is also a protein-coding gene; it 

encodes for electrogenic sodium bicarbonate cotransporter 1 (NBCe1), whose role is to 

control intracellular pH and regulate bicarbonate absorption and secretion (GeneCards - 

Human Genes, 2023). Research revealed that SLC4A4 is the most expressed bicarbonate 

transporter in PDAC, and it was demonstrated that it plays an important role in regulating 

extracellular pH levels throughout the progression of PDAC (Cappellesso et al., 2022). SOD2 

is a protein-coding gene and a member of the iron/manganese superoxide dismutase family. It 

encodes a mitochondrial protein working as a homotetramer that binds one manganese ion per 
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subunit (Alateyah et al., 2022). Its main role lies in the detoxification of mitochondrial 

reactive oxygen species (mtROS) (Alateyah et al., 2022; Infantino et al., 2023). ROS cause 

DNA damage, leading to genetic mutations and genomic instability and promoting 

carcinogenesis (Alateyah et al., 2022). Consequently, any changes in the expression or 

activity of SOD2 inevitably impact mitochondrial function, potentially contributing to the 

emergence of numerous diseases (Infantino et al., 2023; Steven et al., 2019). Diverse research 

studies have provided evidence that SOD2 has the capacity to function as a tumor suppressor 

gene but also as an oncogene (Alateyah et al., 2022; Kim et al., 2017). The expression of 

SOD2 is found to be elevated in several tumors, including PDAC (Nie et al., 2022). The 

results of the 2022 study by Nie et al. suggest that overexpression of SOD1 inhibits 

mitochondrial ROS-dependent cell apoptosis and endorses the proliferation of pancreatic 

cancer cells. On the other hand, several studies also documented the downregulation of the 

SOD2 gene in pancreatic cancer as a consequence of epigenetic silencing and microRNA 

activation (mi-R301a) (Alateyah et al., 2022; Pandit et al., 2015). 

When analyzing the somatic interactions of mutated genes, eleven pairs of genes are 

found to be mutated in the same sample more frequently than expected by chance (p < 0.05). 

That means positive somatic interactions are recorded for these pairs of mutated genes in the 

analyzed sample data. These pairs of genes are: ACOX1 and SLC35F5, ACOX1 and FNDC3B, 

ACOX1 and AKAP13, EIF2AK2 and SMIM14, EF2AK2 and ELL2, H2AZ2 and NIBAN1, 

METTL7A and SLC35F5, METTL7A and HNRNPNC, METTL7A and ELL2, SLC4A4 and 

SLC35F5, SLC4A4 and AHR. Considering the size of the analyzed cohort, the co-occurrence 

of these genes needs to be assessed carefully. The cooccurrence of two genes does not imply 

causation or involvement in the same biological pathways. None of these pairs of genes seems 

to have connected functions in a cell, but that does not necessarily mean that their respective 

pathways are not intertwined. The sheer complexity and interconnection of cellular pathways 

need to be taken seriously when analyzing the cooccurrence of mutated genes because it is 

possible that a cooccurring pair of genes is not connected in any sort of way, and that 

connection exists but has not yet been documented in any research study. It would be useful to 

do a bioinformatic analysis of the biological pathways in which these genes are involved and 

explore their possible connections. 

The analysis of the mutational landscape of acquired patient tumor sample data also 

determined which biological pathways accumulated the most mutations. Three pathways that 

were altered the most by variations are Wnt/β-catenin signaling, Transcription factor and 
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Other signaling. The Wnt/β-catenin signaling pathway has essential functions in the 

maintenance of somatic stem cells development in embryos and maintaining the homeostasis 

of adult tissues (Liu et al., 2022; Makena et al., 2019). This pathway is involved in pancreatic 

cancer development because it has a role in overseeing processes such as cell cycle 

progression, apoptosis, epithelial-mesenchymal transition (EMT), angiogenesis, and many 

more, but it was also demonstrated that when disrupted, it can contribute to drug resistance 

(Makena et al., 2019). Emerging evidence suggests a potential connection between the Wnt/β-

catenin signaling pathway and PDAC pathogenesis by exerting diverse influences on cellular 

proliferation, survival, differentiation, stemness, and the tumor immune microenvironment 

(Aguilera and Dawson, 2021). Aberrant activation of the pathway, often resulting from 

mutations in key components such as APC, CTNNB1 (β-catenin), or other upstream 

regulators, leads to the accumulation and nuclear translocation of β-catenin, promoting the 

transcription of target genes involved in cell proliferation, invasion, and metastasis (Liu et al., 

2022). Mutations in CTNNB1 as well as in CTNND1 were detected in the analyzed samples; 

CTNND1 was altered in 92% of the samples, while CTNNB1 was altered in 19% of the 

analyzed samples. It is important to note that microRNAs greatly participate in the regulation 

of Wnt/β-catenin signaling (Liu et al., 2022) and the MIR612 gene was found to be altered in 

eleven out of twelve analyzed samples. Moreover, crosstalk between the Wnt/β-catenin 

signaling pathway and some other signaling cascades, such as Hedgehog and Notch, further 

contributes to PDAC development (Liu et al., 2022; Xia et al., 2022) The biological pathway 

that is altered in the same number of samples as the Wnt/β-catenin signaling pathway (92%) is 

the Transcription factor pathway which encapsulates all the proteins acting as key regulators 

of intrinsic cellular processes, such as differentiation and development, as well as 

orchestrators of cellular responses to external disturbances via signaling pathways 

(Weidemüller et al., 2021). Since transcription factors influence the creation of proteins 

(which themselves can act as signaling molecules), there are a wide variety of pathways and 

proteins that fall under this area (Weidemüller et al., 2021). Considering the nature of tumors 

as a pathogenic disease, it is expected that with their progression, more transcriptional factors 

will accumulate mutations that alter their activity and enable the progression of tumorigenesis. 

Apart from transcriptional factors, it is not surprising that the third most mutated pathway is 

the Other signaling containing genes that encode proteins that receive signals from the cell 

environment and carry them further down the pathway chain. 
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Although the most mutated genes found in the patient tumor cohort may not be directly 

linked to the formation of PDAC, they play important roles in the regulation of the cell cycle, 

cell communication and signaling, metabolism, and overall homeostasis. These roles are 

greatly devastated by multiple mutations causing the break of the cell cycle, inhibition of 

signaling pathways, and further progression of tumorigenesis. Even though these genes do not 

belong to a group of genes commonly found to be mutated in PDAC samples, this study of 

PDAC implicates that continuous mutational pressure caused by the formation of PDAC 

causes additional mutations in this set of genes. The documented destruction of important 

biological pathways used for signaling and regulating the cell cycle is expected in these stages 

of tumorigenesis. Further analysis should also include results of variant calling with WXS 

data and WGS data from the same samples to find the cause of the accumulation of mutations 

in this set of genes and try to connect them with the driver mutations causing the PDAC. 

Analysis conducted on the group of genes found to be commonly mutated in previous 

studies of PDAC showed that these genes accumulated a small number of mutations in the 

analyzed PDAC sequence data. When all protein-coding genes with detected mutations are 

ranked and ordered by the number of samples in which they carry mutations, the group of 

commonly mutated genes in PDAC is far from being the most mutated, which was not 

expected. The highest ranked of them is the BRAF gene, placed in 310th place with four 

detected mutations in four samples, all of them being 3’ prime UTR variants, followed by 

KRAS in 736th place with six detected mutations in two samples, all of them being classified 

as multi-hit mutations. Considering KRAS encodes a small GTPase oncogenic protein that 

plays an important role in the regulation of cell proliferation and, when mutated, promotes 

oncogenic events by inducing transcriptional silencing of tumor suppressor genes (GeneCards 

– Human Genes, 2023; Hajdúch et al., 2010), it is expected to be ranked much higher on this 

list. The same thing can be said for the BRAF gene, which encodes a protein of the same name 

belonging to the RAF family of serine/threonine protein kinases (GeneCards - Human Genes, 

2023; Hussain et al., 2015). This protein plays a role in regulating the MAP kinase/ERK 

signaling pathway, which affects cell division, differentiation, secretion, and apoptosis 

(Hussain et al., 2015). BRAF is a known oncogene that, when mutated, is continuously active 

and transmits messages to the nucleus that encourage cell growth and division, even in the 

absence of these chemical signals (Hussain et al., 2015). The lollipop plot for BRAF couldn’t 

be drawn because there were no detected amino acid changes in the dataset. Lollipop plot 

representing KRAS and its detected variants showed only synonymous mutation that wasn’t 
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present in any previous research because it should not be relevant for protein function. ATM, 

SMAD4, and TP53 genes are not even in the top 1000 mutated genes, which is particularly 

curious when TP53 is considered to be the most common mutated gene across all cancer types 

(Guimaraes and Hainaut, 2002). TP53 shows alteration only in one sample, and it is classified 

as a missense variant. This gene has been nicknamed the "guardian of the genome" because it 

encodes a tumor suppressor protein p53 essential for regulating DNA repair and cell division 

in response to a wide range of cellular stresses and regulates the expression of target genes 

(GeneCards - Human Genes, 2023; Guimaraes & Hainaut, 2002). This regulation leads to 

diverse cellular outcomes such as cell cycle arrest, apoptosis, senescence, DNA repair, or 

alterations in metabolism (Guimaraes and Hainaut, 2002). Even though it is not among the 

most mutated genes, the lollipop plot of TP53 shows that the detected missense mutation 

causing the conversion of phenylalanine into serine is located in the DNA-binding domain 

(NM000546). This missense mutation is classified as pathogenic in the ClinVar database, and 

it is a commonly observed single nucleotide variation in TP53 that has lost tumor suppressor 

function (ClinVar, 2023; Landrum et al., 2018). Alterations in the ATM gene have been 

detected in two samples, one being classified as a missense variant and the other as a 3’ prime 

UTR variant. The ATM gene encodes for a protein belonging to the PI3/PI4-kinase family that 

is thought to be the master controller of cell cycle checkpoint signaling pathways that are 

required for cell response to DNA damage and for genome stability (GeneCards - Human 

Genes, 2023; Khanna, 2000). The lollipop plot of ATM shows a missense variant in the FAT 

domain necessary for ATM dimerization, causing glutamine to change to leucine, which could 

affect its function and subsequently cause disturbance in the cell cycle. The SMAD4 protein 

encoded by the SMAD4 gene is part of the TGF-β signaling pathway and functions in dual 

roles as both a transcription factor and a suppressor of tumor growth (GeneCards - Human 

Genes, 2023; Zhao et al., 2018). The detected synonymous mutation is shown on the lollipop 

plot, and considering it is located in the non-active domain and there is no amino acid change, 

its function cannot be considered disturbed. 

When the analyzed cohort is compared to the PAAD cohort from the TCGA database, 

there are much more dissimilarities than expected. Looking at the mutational landscape, 

transitions are the predominant type of mutation in both cohorts, but in the PAAD cohort, 

C>T nucleotide conversion is by far the most common one, followed by C>A transversion. 

This was expected considering the C>T transition occurs often, not only during tumorigenesis 

but also as a spontaneous one (Rünger, 2008). The most common detected nucleotide 
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conversion in the analyzed PDAC cohort (T>C) takes third place in the PAAD cohort, with 

more than 50% fewer detected mutations than the C>T transition. The normalized number of 

detected mutations per chromosome in TCGA cohort samples shows again that mutations are 

widespread across all chromosomes, as is expected in advanced stages of cancer. When 

looking at the median values of normalized mutation count as well as interquartile ranges, it 

should be noted that these values are significantly smaller than the same values calculated for 

the PDAC cohort. That could mean PDAC samples accumulated more mutations during 

tumorigenesis than samples in the PAAD cohort, or that more mutations were detected with 

RNA-seq data in this pipeline than WXS data from the PAAD cohort, but it could also just be 

the result of the fewer samples in the PDAC cohort. These assumptions should be further 

investigated by calling mutations from the WXS sequencing data of PDAC samples and 

comparing the results. One other thing that should be mentioned is that only chromosome Y 

shows similar values in both cohorts, with median values of 0.0006558 for the PDAC cohort 

and 0.0005365 for the PAAD cohort, bearing in mind that only two samples in the whole 

PAAD cohort even accumulated mutations on chromosome Y.  

Among the top 10 most mutated genes in the PAAD cohort, only five genes were also 

found to be mutated in the analyzed patient sample cohort. The two genes that were expected 

to be altered in both cohorts are KRAS and TP53. The KRAS gene came on top of the list with 

alterations in 62% of the samples in the PAAD cohort and recorded a 17% mutation rate in the 

PDAC cohort, while TP53 had detected alterations in 19% of the samples from PAAD and 8% 

in the PDAC cohort. In the PAAD cohort, both genes harbor missense mutations with a small 

percent of multi-hit mutations (KRAS) and nonsense mutations (TP53), while in the PDAC 

cohort, the detected mutations of KRAS are classified as multi-hit mutations and TP53 

mutations are classified as nonsense mutations. There are also two more genes found among 

the top ten mutated genes in the PAAD cohort that are also marked as mutated in the analyzed 

PDAC RNA-seq samples. These two genes are TTN and MUC16. In the PAAD cohort, their 

variants are mostly classified as missense mutations, but there are a few nonsense mutations 

and multi-hit mutations. On the other hand, the PDAC cohort had variants classified as multi-

hit mutations for the TTN gene and frame shift insertion for the MUC16 gene. TTN encodes 

for the large, abundant protein titin, which is a key structural and mechanical component for 

the assembly and normal functioning of striated muscles (Chauveau et al., 2014; GeneCards - 

Human Genes, 2023). Even though its mutations have a strong correlation to muscular 

diseases, mutated TTN is often observed in solid tumors and shows a correlation with the 
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raising tumor mutational burden (TMB) (Xue et al., 2021). Observed TTN variants can also be 

connected with chemotherapy, which is known to induce TTN mutations, causing truncating 

of the titin and subsequently cardiomyopathy (chemotherapy induced cardiomyopathy, 

CCMP) (Xue et al., 2021). The last gene that accumulated mutations in both cohorts is 

MUC16. MUC16 encoded protein is membrane-bound mucin, which is thought to provide a 

protective barrier against different infectious agents at mucosal surfaces (GeneCards - Human 

Genes, 2023; Haridas et al., 2014). It is proven to be overexpressed in multiple human 

malignancies and has a significant impact on tumorigenicity as well as acquired resistance to 

therapy (Aithal et al., 2018). Furthermore, recent research shows its oncogenic role in PDAC; 

however, the pathological roles of MUC16 in PDAC progression, tumor microenvironment, 

and metastasis are yet to be discovered (Lakshmanan et al., 2022). 

Analysis of the most mutated pathways in PAAD cohort samples showed no similarities 

with the most mutated pathways in the analyzed PDAC cohort. The most mutated biological 

pathway is MAPK signaling with alteration in 62% of the samples, and this result was 

anticipated since the most mutated gene is KRAS (with alteration in 62% of the samples), 

which is one of the crucial parts of this pathway. In second place is the Genome integrity 

pathway, with genes such as TP53, ATM, ATR, BRCA1, BRCA2, and others. Even though it is 

not among the top 3 most mutated pathways in the analyzed PDAC patient samples, the 

alterations in genes included in this pathway are very well expected in any kind of pathogenic 

disease, considering the nature of tumors as disturbers of genome integrity and cell cycle.  

The comparison of mutational load between analyzed patient tumor samples and 33 

TCGA cohorts from the MC3 project by the number of detected mutations per magabase 

(TMB) implies that the mutational pattern of the analyzed cohort has the most similarity to the 

SKCM cohort. This kind of result is unexpected considering these are two completely 

unrelated carcinomas affecting two different organs. One of the explanations for such results 

could be that the number of mutations called using RNA-seq data is very large and highly 

prone to false positives, in part due to sequencing and mapping errors (Coudray et al., 2018; 

Piskol et al., 2013). On the other hand, previous research showed that SKCM is known to 

accumulate a large number of mutations during tumorigenesis, which can be explained by the 

nature of mutations occurring in this tumor (Li et al., 2021). That is why both datasets have 

recorded similarities in high TMB numbers and appear to be similar when they are not. 

Mutations detected in patient tumor sequences generated with the RNA-seq method have 

proven to be sufficient for calling variants and portraying the mutational landscapes of 
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patients. The differences in the derived mutational landscape between PDAC and PAAD 

cohorts are clearly observed in this research. This disparity can be justified by the fact that the 

data from the TCGA MC3 project comes from exome sequences, while the patient cohort data 

analyzed in this study comes from RNA sequences. Some of the highly expressed genes in 

cancer cannot be detected because they fall outside the boundaries of exon capture kits, but 

also because RNA-seq is prone to false positives, in part due to errors during the RNA to 

cDNA conversion, mapping mismatches, RNA editing processes, and the existence of splice 

sites and fusion genes (Coudray et al., 2018). This result could also be attributed to the 

unrepresentative size of the analyzed cohort (12 samples) compared to the other 33 TCGA 

cohorts, which are much larger (the minimum size of the cohort is 36). It is possible that the 

mutational pattern of PDAC could not be detected with such a small amount of data, leading 

to unreliable results. The cause could not be attributed to sequence quality, considering it was 

checked and assessed to meet the requirements. Other possible causes of divergency are that 

there was no filtration for RNA-specific mutations, which can greatly impact the result of 

variant calling (Long et al., 2022). The work from 2022 by Long et al. demonstrated that the 

implementation of multiple filtering along with machine learning models can greatly improve 

the accuracy of RNA somatic variants identification. This approach should be used in future 

studies when RNA-seq data is used for variant calling. Also, it should be noted that variant 

callers using RNA-seq data are not perfected yet and can produce additional errors (Goode et 

al., 2013). It was shown that if you want to enhance validation rates while preserving optimal 

sensitivity, the consensus approach with multiple variant callers provides much better results, 

which is why it should be used in future research (Goode et al., 2013). 

The comparison couldn’t be made with RNA-seq data from TCGA because this data is 

not publicly available yet. To get a better understanding of the advantages and disadvantages 

of variant calling using RNA-seq data and the nature of PDAC in general, this data should be 

included in comparative analysis in the future. 

The analysis was made on extracted mutational catalogues to try to observe possible 

existing mutational signatures among the mutational patterns of PDAC RNA-seq sequences. 

The goal was to find already defined mutational signatures that would most precisely describe 

the given pattern of detected mutations in each patient's sequence data. The analysis was 

conducted with two different algorithms to produce comparable results. Signatures used for 

matching mutational catalogs with the Fit function algorithm were the signatures that are most 

commonly found in pancreatic cancer. This group consists of eleven signatures found to 
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represent characteristic patterns of mutations detected in previous research on pancreatic 

cancer and reflect its underlying mutational processes. The results of the signature fit analysis 

with this function couldn’t be taken into account considering the low calculated cosine 

similarity between the provided mutational catalog and the one reconstructed using the chosen 

mutational signatures. This kind of bad fit could be the result of the large number of 

signatures trying to be fitted in a one-step manner. Also, signatures used for fitting are defined 

using whole-genome variant calls produced by the ICGC/TCGA Pan Cancer Analysis of 

Whole Genomes (PCAWG) Network, while sequences of patient tumor samples researched in 

this study are generated using RNA sequencing. These two methods of sequence generation 

differ in parts of the genome which they capture what implicates different mutational patterns, 

and because of that, they are unable to accurately describe the acquired mutational catalog 

with the desired mutational signatures (O’Brien et al., 2015). 

The algorithm of the FitMS function that conducts fitting in a multi-step manner achieved 

far better results regarding cosine similarity. This kind of outcome could be attributed to a 

multi-step method in which the first step of fitting is done on common signatures selected 

based on a specified organ, and then the presence of rare signatures is detected (Degasperi et 

al., 2020). A recent study revealed that different organs possess distinct collections of organ-

specific signatures, but importantly, the study also demonstrated that the majority of cancers 

in each organ exhibit a common set of signatures, while only a small subgroup displays a few 

rare signatures (Degasperi et al., 2022). When considering the tissue-specificity and tumor-

specificity of mutational signatures and the distinction between rare and common signatures, 

there is a lesser number of common signatures trying to be fitted to the mutational catalog, 

producing a more robust vector of exposures (Degasperi et al., 2022). Additionally, once the 

common signatures have been accounted for, it is possible to focus on identifying just one rare 

signature that could enhance the overall fit rather than attempting to incorporate multiple rare 

signatures simultaneously. 

Analysis using the FitMS algorithm appointed two common signatures, SBS1 and SBS5; 

one rare signature, SBS123; and one combination of common signatures, SBS1+5+18, to fit 

on mutational catalogues derived from PDAC samples RNA sequences. Signature SBS1 is 

reported to highly correlate with the age of individuals, which is why it is regarded as a 

mitotic clock (Alexandrov et al., 2020; Connor et al., 2017; Jianlong et al., 2022). The rates of 

acquisition of SBS1 mutations differ between cancer tissues and normal tissues, 

corresponding to rates of stem cell division in different cell types (Jianlong et al., 2022; Koh 



58 
 

et al., 2021). The SBS1 mutational burden is dominated by C>T mutations at CpG sites (Koh 

et al., 2021). This is the result of an endogenous mutational process led by spontaneous or 

enzymatic deamination of 5-methylcytosine generating G:T mismatches, which, if failed to be 

recognized and removed before DNA replication, result in the fixation of the T substitution 

for C (Koh et al., 2021; Nik-Zainal et al., 2012). Some research shows a correlation between 

the activity of SBS1 and the activity of SBS5 within different cancer types, although their 

mutational burdens do not clearly correlate with their activity because of different 

fundamental processes (COSMIC 2023). SBS5 signature mutations are also connected to the 

age of the individual (Alexandrov et al., 2020). While the rates of acquisition differ between 

cancer types and normal cell types, they do not show a correlation with the estimated rates of 

stem cell division in these tissues (COSMIC 2023). The mutational burden of the SBS5 

signature is characterized by T>C and A>G mutations at ATA, ATG, and ATT sequence sites, 

and it is known to be increased in many cancer types due to tobacco smoking, but its 

aetiology is yet unknown (Alexandrov, Nik-Zainal, Wedge, Aparicio, et al., 2013). Research 

from 2022 by Jianlong et al. showed that in most types of cancer, there was a positive 

connection between a decreased mutation load and a heightened contribution of SBS1 and 

SBS5 mutational signatures. The SBS18 mutational signature has been closely connected with 

damage by reactive oxygen species and shows association with defective base excision repair 

due to the MUTYH mutation (Jianlong et al., 2022; Jin et al., 2022; Kucab et al., 2019). Its 

mutational burden consists mostly of C>A substitutions with peaks on TCT, CCA, and GCA 

sequence sites (COSMIC 2023). An interesting thing to note is that when analyzing the 

changes in mutational signature activity during human cancer evolution from prostate 

adenocarcinoma patient samples in a study from 2022, Jianlong et al. found that SBS1 and 

SBS5 contributed a greater share of mutations during the initial stages of disease progression, 

whereas SBS18 demonstrated an escalation during later stages. 

It is important to mention that the obtained mutational catalogues did not exhibit the 

mutational pattern of the SBS3 mutational signature, which was not expected taking into 

account that SBS3 is considered a common one in pancreatic cancer (COSMIC 2023; Hayashi 

et al., 2021). This flat signature is strongly associated with BRCA1 and BRCA2 mutations 

and is proposed as a predictor of defective homologous recombination-based repair (Abbasi 

and Alexandrov, 2021). It would be reasonable to attribute this failed detection of SBS3 to the 

small size of the analyzed sample cohort, which may not be representative of the overall 

population of PDAC. The low prevalence of SBS3 in this population, along with various 
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mutagenic processes, and the fact that SBS3 is known as a ‘broad’ signature whose motifs 

overlap with other signatures (signature bleeding) make detection of SBS3 difficult (Abbasi 

and Alexandrov, 2021). On top of that, mutational signature analysis on RNA-seq data has a 

bias towards transcribed regions, causing the absence of some genomic mutations and an 

incomplete representation of the mutational landscape across the entire genome. 

Mutational signatures for the PAAD cohort from the TCGA M3 project were not 

extracted in this study, considering it was already done in the work from 2020 by Alexandrov 

et al. The study demonstrated the presence of four different mutational signatures in 

pancreatic cancer data. These are Signature 1B, Signature 2, Signature 3, and Signature 6 

(Alexandrov et al., 2020). Neither one of these was detected in the PDAC RNA-seq samples 

analyzed in this research. 

The mutational signature fitting method successfully extracted three common and one 

rare mutational signature, which was able to explain the mutational pattern. Future research 

should aim to discover mutational signatures de novo, using larger groups of patient 

sequences for analysis. Also, it would be useful to do differential expression analysis between 

normal samples and tumor samples to see how tumorigenesis influenced gene expression and 

connect that information with mutational signature analysis. RNA sequencing once again 

proved itself as a valuable addition to WXS and WGS, providing valuable insights into the 

PDAC mutational landscape by identifying its mutational signatures and potentially 

enhancing diagnostics and therapeutic approaches in PDAC treatment. 

The next generation sequencing technologies opened new horizons in the field of genome 

research and provided invaluable tools for understanding mutational processes in tumors and 

discovering new clinical applications. While whole-exome sequencing (WXS) has 

traditionally been the primary method employed for identifying somatic mutations in cancer 

genomes, new research along with this one indicates that using RNA-seq data from tumor 

samples to call variants can provide a valuable addition to our understanding of the mutational 

landscape in tumors (Coudray et al., 2018). In this study, RNA-seq analysis uncovered 

variants that are linked to the mutational landscape of PDAC, and they served as the primary 

ingredient in the search for mutational signatures that might be present in the analyzed tumor 

samples. RNA-seq data can provide valuable information for mutational signature discovery, 

although it has some limitations in accurately capturing the full mutational landscape of a 

tumor (compared to WGS or WXS) because it does not obtain all types of mutations, 

especially noncoding mutations or mutations occurring in regions that are not transcribed. 
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Therefore, integrating RNA-seq data with other sequencing approaches, such as DNA 

sequencing, can provide a more comprehensive understanding of the mutational landscape in 

tumors (Coudray et al., 2018). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



61 
 

6  Conclusions 
 

The detection of somatic mutations and mutational signatures in pancreatic cancer using 

RNA-sequencing data resulted in following findings: 

1. Somatic mutations were detected and annotated using RNA sequencing data from 

paired tumor and normal tissue patient samples. 

2. The mutational landscape of the analyzed samples was constructed based on the 

characterization of mutations. 

3. Genes XIAP, CTNND1, CTSB, MIR612, ACOX1, EIF2AK2, H2AZ2, METTL7A, 

SLC4A4 and SOD2 were identified as the most mutated in the analyzed samples, and 

their impact on tumor development is estimated. 

4. The most mutated biological pathways in the analyzed samples are Wnt/B-catenin 

signaling, Transcription factor, and Other signaling. 

5. The mutational impact of commonly mutated genes found in PDAC was assessed and 

visually represented with lollipop plots. 

6. The mutational pattern of the exome-sequenced PAAD cohort from the TCGA 

database showed little similarity with the one observed in RNA-sequenced patient 

data. 

7. Mutational signatures SBS1, SBS5, SBS18, and SBS123 proved to be the best choice 

for fitting on mutational catalogues derived from patient sample sequences. 

8. RNA sequencing is able to complement exome sequencing in variant detection and 

mutational signature analysis for a better understanding of tumorigenesis and the 

development of personalized therapies. 
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