Physics-inspired dynamical systems for optimization
(Dinamicki sustavi za optimizaciju inspirirani fizikom)

Jovanovié, Luka

Master's thesis / Diplomski rad
2023

Degree Grantor / Ustanova koja je dodijelila akademski / strucni stupanj: University of
Zagreb, Faculty of Science / SveuciliSte u Zagrebu, Prirodoslovno-matematicki fakultet

Permanent link / Trajna poveznica: https://um.nsk.hr/urn:nbn:hr:217:074762

Rights / Prava: In copyright /Zasti¢eno autorskim pravom.

Download date / Datum preuzimanja: 2024-05-10

L STE U2
S EN 2

72
< £,
& %
=) - , . ..
N % Repository / Repozitorij:
7% ET: Repository of the Faculty of Science - University of
) ey Zagreb
% &
< N
(@) €

L
Ay \
0. MATEMF;“

DIGITALNI AKADEMSKI ARHIVI I REPOZITORLIL

zir.nsk.hr

https://urn.nsk.hr/urn:nbn:hr:217:074762
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://zir.nsk.hr/islandora/object/pmf:12632
https://repozitorij.unizg.hr/islandora/object/pmf:12632
https://dabar.srce.hr/islandora/object/pmf:12632

UNIVERSITY OF ZAGREB
FACULTY OF SCIENCE
DEPARTMENT OF MATHEMATICS

Luka Jovanovic

PHYSICS-INSPIRED DYNAMICAL
SYSTEMS FOR OPTIMIZATION

Master’s thesis

Advisors: _ B
assoc. prof. dr. sc. llja Gogic,
dr. sc. Daniel Ebler

Zagreb, December 2023

SVEUCILISTE U ZAGREBU
PRIRODOSLOVNO-MATEMATICKI FAKULTET
MATEMATICKI ODSJEK

Luka Jovanovi¢
Dinamicki sustavi za optimizaciju
inspirirani fizikom

Diplomski rad

Voditelji rada:
dr. sc. llja Gogic¢, izv. prof.;
dr. sc. Daniel Ebler

Zagreb, prosinac 2023.

Ovaj diplomski rad obranjen je dana

pred ispitnim povjerenstvom

u sastavu:

, predsjednik

, Clan

, Clan

Povjerenstvo je rad ocijenilo ocjenom

Potpisi ¢lanova povjerenstva:

To my parents and grandparents, to my brothers, to my friends, and to my dear one —
for the support and love they shared with me throughout my studies.

Contents

Contents
Introduction

1 Quadratic Unconstrained Binary Optimization
1.1 Analysisoftheproblem
1.2 Applications e

2 Preliminary theory
2.1 Dynamical systems
2.2 Numerical simulations
23 Other. e

3 Algorithms
3.1 IntroductiontoCIMandSB.
3.2 Coherent Ising machine (CIM)
3.3 Gradient descent and momentum
3.4 Simulated Bifurcation (SB)
3.5 MechanismofCIMandSB
3.6 ComparingCIMandSB
3.7 Introduction to SimCIM andbSB
3.8 Simulated Coherent Ising machine (SimCIM)
3.9 Ballistic Simulated Bifurcation (bSB)
3.10 Mechanism of SimCIM andbSB
3.11 Relation between SimCIM andbSB
3.12 Firstbifurcationpoint
313 OVEIVIEW . . . o o o o e e e e e e e e e

4 Experiments
4.1 GSetDataset. e

11
15
18

25
26
34
36

39
40
46
48
49
53
54
56
60
65
70
71
73
73

75

CONTENTS

42 Method e
43 Benchmarking
4.4 Momentuml e e e e
4.5 Dropout e e

Conclusion
Acknowledgements

Bibliography

76
77
83
84

91

93

95

Introduction

The quadratic unconstrained binary optimization (QUBO) task is a minimization task de-
fined by

n

n
min ZJ,‘jS[Sj'FZhl'Si'FC
S15--,5n€{0,1} =

i,j=1

where the coefficients J;;, h;,c € R are given. This simple combinatorial optimization
task has many applications in the sense that it can be used to model various real-world
problems. These real-world problems include combinatorial optimization problems which
arise in finance [1], cluster analysis [2], economic analysis [3], computer-aided layout
design [4], integrated chip design [5], physics [5, 6], and many more [7]. Although simple
to state, these combinatorial optimization problems are in general very hard to solve if the
number of variables is large. One obvious algorithm for solving such a problem would
be to try every possible combination s; € {0, 1}, evaluate it, and then take the minimum
result found. However, the problem with this algorithm is that the number of possible
combinations which need to be evaluated is 2" which grows exponentially with respect to
the number of variables. For example, solving a problem with n = 100 variables on a
computer which can perform 10® multiply/add operations per second would require more
than 2'% % 100?/10% > 10% seconds which is more time than the predicted current age of
the Universe (according to [8]).

The question which now emerges is whether there exists a significantly faster algorithm
which would find the exact solution of QUBO? The short answer to this question is —
probably not. In fact, QUBO is an archetype of a NP-hard combinatorial optimization
problem [7, 9], meaning that there is no polynomial-time algorithm which would solve it,
unless P=NP which is suspected to be false [10]. Furthermore, many NP-complete and
NP-hard problems, including all of Karp’s 21 NP-complete problems, can be reduced to a
QUBO problem efficiently [11].

Although being NP-hard, there is a vast number of algorithms for solving QUBO prob-
lem exactly. Each of these algorithms exploits some properties of QUBO and provides a
smarter way to reach the exact solution than trying all combinations. Nevertheless, their
complexity is still non-polynomial and thus they work efficiently for up to a few hundred

5

6 INTRODUCTION

variables at most. Many of these algorithms, developed before 2014, can be found in a
survey [7].

On the other hand, there is a multitude of heuristic and metaheuristic algorithms for
solving QUBO approximately but quickly. These algorithms usually do not have a guar-
antee of achieving certain accuracy, but their performance is rather based on empirical
evidence. These algorithms include variations and adaptations of tabu search [12], simu-
lated annealing [13, 14], genetic algorithms [15], Hopfield neural networks [16], and many
others [7]. There is also one notable metaheuristic algorithm called Breakout Local Search
(BLS) [17] which provides high quality approximate solutions to the MAX-CUT problem,
which is equivalent to QUBO 1.2.6.

Along these classical algorithms designed for running on conventional computers, sig-
nificant effort was put into building Ising machines — a special type of hardware devices
designed for sampling the exact, or high-quality approximate solutions of the QUBO prob-
lem [18]. One particular type of Ising machines are quantum computers capable of per-
forming adiabatic quantum computing [19]. The working principle is as follows. First,
the combinatorial optimization problem is encoded into a Hamiltonian Hp in such a way
that the ground state of this Hamiltonian encodes the optimum solution of the combinato-
rial problem. In order to find the ground state of Hp, one first prepares the quantum state
to be the ground state of some initial Hamiltonian Hy, whose ground state is easy to find
and construct. Then, the system is slowly evolved in time from H, to Hp according to
H(t) = (1 - £)Hy + +Hp. According to the adiabatic theorem of quantum mechanics [20],
if the system is evolved slowly enough, the state will remain the ground state at each time
instance. Thus, at the final time instance 7', the ground state of the Hamiltonian H(T') = Hp
will be prepared. After measurement, it provides the solution of the original combinatorial
optimization problem. There is, however, a debate whether this technique would be useful
in practice because, in order to satisfy the assumptions of the adiabatic theorem of quantum
mechanics, one often finds that the required time for evolution depends exponentially on
the problem size [11]. Besides this, one would first need a quantum computer with a large
enough number of qubits in order to outperform the existing classical computer architec-
tures. The current state of the art quantum annealers have around 5000 qubits (by D-Wave
[21, 22]). However, the topological embedding of these qubits limits the number of vari-
ables that can be encoded into the annealer to around tens or hundreds of variables. Thus,
existing quantum devices are not able to handle moderate and large instances of problems.

Some other physical devices which have been proposed as Ising machines include
a network of coupled optical parametric oscillators [23], electronic oscillators [24], and
quantum-mechanical oscillators [25]. Some of these machines have been built and demon-
strated good performance on problems of size up to 100,000 variables [26].

Recently, a new paradigm for heuristic approaches has been proposed in [27] and [25].
Instead of building a physical hardware for an Ising machine, one can simulate its be-

INTRODUCTION 7

haviour on standard hardware devices such as CPU, GPU, and FPGA. In order to do that,
one first writes a set of differential equations which approximately describe the behaviour
of an Ising machine. For example, instead of evolving a quantum Hamiltonian on a quan-
tum device, one can define the corresponding classical dynamical system by approximating
the expected value of the annihilation operator a, present in the quantum Hamiltonian H,
by a complex number x + iy where x, y € R. This way, one obtains the equations of motion
for x and y.

The derived set of differential equations represents a dynamical system which is then
further simplified such that it can be efficiently simulated with standard numerical algo-
rithms on a classical computer. This is how Coherent Ising Machine (CIM) [28], Simu-
lated Bifurcation (SB) [29], Simulated Coherent Ising Machine (SimCIM) [30], Ballistic
Simulated Bifurcation (bSB) [31], Discrete Simulated Bifurcation (dSB) [31], and some
other related algorithms were born. These algorithms are easily parallelized on GPUs or
similar hardware devices which enables them to quickly provide high-quality solutions for
large instances of QUBO and other combinatorial problems.

The goal of this master’s thesis is presenting these physics-inspired dynamical systems,
and analyzing them from a mathematical perspective in order to understand their mecha-
nisms for generating high-quality solutions of combinatorial optimization problems. To
understand how a continuous dynamical system can provide a solution of the combinato-
rial optimization problem, consider a state vector which evolves in time x : [0, c0o) — R".
Taking the sign of each component at some time instance ¢, o; := sign x;(¢) provides a can-
didate solution (o7, ..., 0,) for the QUBO task. The evolution of a continuous dynamical
system is determined by its vector field and initial conditions. The vector field is defined
at each point in space and determines the velocity x of the system if it passes through that
point. The initial conditions x, € R" determine the starting position of the dynamical sys-
tem x(0) = x. The goal is obtaining a dynamical system which attracts various trajectories
towards such areas of space that provide high-quality approximate solutions of the QUBO
problem, according to the mapping mentioned above o; := sign x;(t).

In chapter 1, a QUBO task is studied. Several other combinatorial optimization prob-
lems are presented including MAX-CUT and Traveling Salesman Problem, and their em-
bedding into a QUBO task is given.

In chapter 2, a mathematical theory for dynamical systems and certain other topics are
briefly presented, with the main purpose of providing a good understanding of topics in
chapter 3.

Chapter 3 is the core chapter as it presents and analyzes these aforementioned physics-
inspired dynamical systems and their corresponding numerical simulations which together
are used for approximately solving a QUBO problem. These algorithms include Coher-
ent Ising Machine (CIM), Simulated Bifurcation (SB), Simulated Coherent Ising Machine
(SimCIM), and Ballistic Simulated Bifurcation (bSB). In order to provide a bigger pic-

8 INTRODUCTION

ture and the mutual relation between these algorithms, they may be presented in slightly
different form than in the original articles.

All of these algorithms have efficient implementations which are run on classical com-
puters or even parallelized architectures such as GPUs and FPGAs. They can be used for
fast sampling of high-quality QUBO solutions. The results obtained by these algorithms
are presented in the final chapter 4. These results cover the performance of algorithms on
a benchmark dataset GSet along with methods used for fine-tuning parameters. Finally, a
dropout technique is proposed for improving the performance of these algorithms.

INTRODUCTION 9

Contributions

This thesis focuses on analyzing physics-inspired dynamical systems purely from a formal
mathematical perspective. Thus, some arguments mentioned in the original articles are
refined here and formalized as much as possible. In order to do that, it was first neces-
sary to extract the relevant existing theorems from the theory of dynamical systems and
other fields. Some arguments for explaining the mechanism of these algorithms are only
applicable to autononomous dynamical systems. Since dynamical systems of interest are
nonautonomous, the author proposes a theorem for connecting nonautonomous system
whose vector field changes slowly in time to the corresponding autonomous systems with
the vector field frozen in time. This is the theorem 2.1.9.

As proposed in the original articles, the dynamical systems discussed in this thesis are
solved approximately by simulating them numerically. In this thesis, the exact solutions
of SimCIM and bSB algorithms are derived which is, as far as the author is aware, not yet
reported in the literature, but could potentially be useful for further research.

Although momentum has been introduced for SimCIM algorithm, it seems not to be
used for CIM. It was observed that adding momentum to CIM improved the solution quality
for the QUBO task. During fine-tuning, the momentum had the option of being O (original
CIM), or some other larger values (for example 0.8, 0.9, 1.0). It indeed turned out to always
pick some value larger than 0. In chapter 4, results which compare the performance of CIM
with and without momentum have also been provided.

Furthermore, it is shown in chapter 3 that CIM with momentum is in a certain sense a
generalization of the SB algorithm. Similarly, SimCIM with momentum is in some sense a
generalization of the bSB algorithm, which is even able to exactly reproduce the behaviour
of bSB.

Most of these algorithms have already been benchmarked on GSet. However, the thesis
provides another independent source of these results. This can be understood as comparing
all of these algorithms in a consistent and unified way.

Finally, a new technique for adding a meaningful noise was proposed in chapter 4,
which we call dropout. It works by randomly and temporarily (throughout one iteration
of the algorithm) dropping out some vertices — meaning that all of the connections of such
vertices are temporarily deleted. This technique was tested on GSet instances and seems to
improve the solution quality obtained by CIM, SimCIM, and bSB algorithms. How exactly
does this technique enable these algorithms to find better solutions is yet to be researched.

Chapter 1

Quadratic Unconstrained Binary
Optimization

The quadratic unconstrained binary optimization (QUBO) problem is a combinatorial op-
timization problem defined by

n n
min N Jysis;+) hisi+c (1.1)
ST peensd sn€{0,1} & ’ "
i,j=1 i=1

where coeflicients J;;, h;, ¢ € R are given. In other words, the task is to minimize a given
quadratic polynomial in n variables over the discrete domain {0, 1}".

We are usually interested not only in finding a minimum but finding an argument which
minimizes the function. Also, since finding such an optimum is computationally very
hard for large instances, we will be interested in finding as low value as possible and
the corresponding argument. The domain {—1,+1}" is called the search space while the
elements of this set are called candidate solutions or feasible solutions or simply solutions.
An optimum solution is then the minimizer of the function over the set of feasible solutions
- 1.e. the best possible solution.

Since h;s; = h,-sl.2 for s; € {0,1}, all terms of degree one can be transformed into
quadratic terms. The constant ¢ does not play any role in the minimization task. That
being said, an equivalent formulation of the QUBO task is minimizing a homogeneous
quadratic polynomial in n variables over the domain {0, 1}",

S1seerSn€{0,1} 4
i,j

min Z J,"/'S,‘Sj (12)
j=1

Coeflicients J;; can always be taken symmetrically i.e. such that J;; = Jj;. Indeed, if
they are not symmetric, taking coefficients %(Ji ;+Jji) in place of both J;; and J;; will make
them symmetric.

11

12 CHAPTER 1. QUADRATIC UNCONSTRAINED BINARY OPTIMIZATION

As stated in the Introduction part, an obvious brute-force algorithm for solving a QUBO
problem is to evaluate the polynomial at all possible candidate solutions s; € {0, 1} and take
the minimum among them. However, the problem with this algorithm is that there are 2"
combinations in total, so the search space grows exponentially with respect to the number
of variables. Depending on the computer’s performance, this will work efficiently for a
number of variables of order 10'. However, already for n = 100 this becomes too many
operations to perform on a computer within any reasonable amount of time.

The key point here is that, since QUBO is a NP-hard problem [7], there is no polynomial
time algorithm which would solve it exactly (unless P=NP which is suspected to be false
[10]). Thus, there is probably no algorithm for solving QUBO exactly which would have
significantly lower computational complexity than exponential one.

Nevertheless, there are many algorithms which solve QUBO exactly by leveraging var-
ious properties of the problem and using different techniques. Many of these methods are
listed in [7]. However, all of these methods work effectively for number of vertices up to
few hundreds at most.

For larger instances of QUBO, various heuristic and metaheuristic algorithms have
been developed which provide some relatively high-quality approximate solution. A lot of
such algorithms can be found in [7] as well. However, there is one special kind of heuristic
algorithms recently proposed. These algorithms are based on physics-inspired dynamical
systems. These algorithms are the core of this thesis and are presented in chapter 3.

It will be shown in 1.2 that QUBO problem is in fact equivalent to a specific graph
problem called MAX-CUT. There are some approximation algorithms in the literature for
solving MAX-CUT which are thus directly applicable to solving QUBO.

The question which emerges is whether there exists a polynomial-time algorithm which
would provide arbitrarily good approximate solution. In fact, QUBO problem is APX-hard,
which under the assumption P#NP implies that there is no polynomial-time approximation
scheme (PTAS) for it [32, 33, 34]. In other words, no polynomial-time algorithm can
guarantee to provide a solution which is as close to the optimal solution as we would
require in advance (if P#NP).

To address the question of how close to the optimal solution can some algorithm get
with a guarantee, there is an article by Goemans and Williamson [35] proposing a random-
ized algorithm for solving MAX-CUT problem (see section 1.2) based on semidefinite
programming which always provides solutions with expected value at least 0.87856 times
the optimal solution. MAX-CUT is equivalent to QUBO 1.2.6 in such a way that there ex-
ists a mapping from candidate solutions of one problem to candidate solutions of the other
problem, which preserves value obtained by these candidate solutions. Thus, algorithm
which provides solutions with expected value at least 0.87856 times the optimal solution
of the MAX-CUT problem could also be used to provide solutions of the QUBO problem
with the same accuracy.

13

If the unique games conjecture [36] is true, this is the best possible approximation ratio
which can be guaranteed for MAX-CUT (see [34, 36], subsection 1.2 and remark 1.2.6),
and thus for QUBO as well.

Equivalent forms

Let Q'(s1,...,8,) = 221:1 Jlfjs,-sj + iy hlsi+ ¢’ be a quadratic polynomial with the domain
{0, 1}" asin 1.1. By taking a linear change of variables given by o; = 2s5;,—1, a new quadratic
polynomial Q(oy,...,0,) is given over the domain {—1, +1}", satisfying Q’(sy,...,s,) =

Q(oy,...,0,). Thus, the QUBO task 1.1 has an equivalent form

n n
min ZJ[jO'iO'/‘+Zhio-i+c (1.3)

T yeeny O'nE{—L"']}. —1 | i=1

i,j= =

for some new coeflicients J;;, h;, c.

Although equivalent, each of these formulations has it’s own benefit. As it will be
seen in the following sections, some other combinatorial optimization problems can be
embedded into QUBO task. Sometimes it will be easier to think of an embedding in 1.1
form and sometimes in 1.3 form. Form 1.3 might be more suitable for analysis because the
domain {—1,+1}" consists of elements with equal norm. When solving QUBO task on a
computer, the algorithm will often be implemented either as Q over the domain {-1, +1}"
or as Q' over the domain {0, 1}". It is thus useful to have an explicit relation between
coefficients in Q and Q’. That relation is given by

0:{-1,+1})" >R 0 :{0,1}' > R
1, ,
J,'j = Z.Iij Jij = 4.],‘]'
1 - 4 4 1 ’ ’ -
hi= g) U+)+ 5k Wo==23 g+ Jp)+ 2 (14)
j=1 j=1
1 - ’ 1 - ’ ’ ’ - -
C:Zijz:l]ij+§;hi+c Ci:ijZ:lJij—;hi-l-C

Another equivalent form emerges if minimization task is replaced with maximization.
Indeed,

max Ooy,...,00) = — min -0(o1,...,0) (1.5)
01,00 n€{—1,+1} 01,0 06{—1,+1}

and —Q is still a quadratic polynomial.

14 CHAPTER 1. QUADRATIC UNCONSTRAINED BINARY OPTIMIZATION

Homogenizing

Let us assume that a quadratic polynomial

O(oy,...,0,) = Z Jijoioj+ Zhd, +c

i,j=1

is given over the domain {—1,+1}". For the minimization task, the constant term c is
irrelevant so here we assume without loss of generality that ¢ = 0. By introducing one
auxiliary variable 0,,; € {—1, +1} we define a polynomial

P(O'], <o Op, O-n+1) = Z ‘]ljo-lo-j + Zho-lo-n+l

i,j=1

which is homogeneous of degree 2. For each configuration (o7, ...,0,) € {—1,+1}", there

are two corresponding configurations in {—1, +1}"*!.

Those are (oy,...,0,,+1)and (-0, ...,—0,,—1). It follows that (¢ = 0 by assumption)
Q(O-l’ e 90-11) = P(O-l’ ceesOpy +1) = P(_O-b vy Oy, _1) (16)

Thus, finding a minimum of a (nonhomogeneous) quadratic polynomial with n variables
over the domain {—1, +1}" is equivalent to finding a minimum of the corresponding homo-
geneous quadratic polynomial with 7+ 1 variables over the domain {—1, +1}"*!. Because of
(1.6), not only the minima are in correspondence, but all values are. Although increasing
the number of variables by 1 does not play any important role in a sense of computa-
tional complexity, the performance of some algorithms might be affected because the extra
variable o,;; is (possibly) coupled to all other variables. If some algorithm leverages the
coupling structure of the original problem (for example sparsity of J), the new coupling
might lose this structure after introducing o, (sparsity might be compromised because
0,41 could be coupled to all other variables), thus causing the algorithm to drop in per-
formance. Adding this extra variable could also often cause issues with convergence of
physics-inspired dynamical systems and corresponding algorithms presented in chapter 3.

Nevertheless, we will not be concerned with the effect of adding this extra variable in
the rest of the thesis, but rather take this theoretical result as a justification for solving and
analyzing mostly the homogeneous case

m1n Z Jijoio; (1.7)

1.1. ANALYSIS OF THE PROBLEM 15

Matrix-Vector notation
Given a quadratic polynomial with real coefficients
n n
Q(O'l,...,O'n) = Z.IijO'iO'j+Zh,‘0',‘+C
ij=1 i=1

it’s evaluation can be written in matrix-vector notation as follows. Put all coefficients J;;
into the matrix J € M, (R), coefficients 4; into the vector h € R” and arguments o; into the
vector o € {—1, +1}". Then we write

n n
Z Jijoioj + Zhﬂi +c=0(,...,0,)=0(0)=0"Jo+o h+c
i,j=1 i=1

and so the minimization task is rewritten as

min o’Jo+oc’h+c (1.8)
oe{-1,+1}*

This transition between vectors, matrices and their coefficients, will be used in what follows
without further noticing.

1.1 Analysis of the problem

Bounds with coefficients

Define the following matrix and vector norms

n n
Ml =) |3 Ihil; =) 1A
ix/A:l l=1
I/l == max |J;] |Ihll., := max A
i,j=1,..,n i=1,..,n

Then we have the following bounds for the value in QUBO

D g+ Y o+ | < Wl + Il + Iel < n? Wl +nllile +1cl (1.9)
ij=1 i=1
Bounds with the largest and the smallest eigenvalue

Let A4,..., 4, be the eigenvalues of the symmetric coupling matrix J sorted in descending
ascending order, meaning that ; < 4, < --- < 4,. Letvy,...,v, be the orthonormal basis

16 CHAPTER 1. QUADRATIC UNCONSTRAINED BINARY OPTIMIZATION

which diagonalizes the coupling matrix J, corresponding to eigenvalues 4,,...,4,. Then
we have the following:
o= Z vivio

ol'Jo = (Z ViViTO')TJ(Z viv o) = Z ovv Jvivio = Z Lolvivlio
; ; i ;
Thus,
T T T _ T
o' Jo < max{4,,. ..,/l,,}z o' v;v; 0 = max{d,,...,4,}J0 O
i

o' Jo > min{d,,...,4,} Z o'vivl o =min{d,,...,4,})c" @
i

Since for all vectors o € {1, +1}" the quantity o” o is equals n, we obtain the bounds

n-min{dy,...,A,} < o'Jo < n-max{d,,..., A, (1.10)

Degree of synchronization

Let Q(x) = —x’ Jx and consider the following minimization QUBO task

min Q(0) (1.11)
oe{-1,+1}"
We have that A,i,(—J) = —Anax(J) with eigenvectors corresponding to each other. Ac-

cording to the previous subsection, if the eigenvector v, corresponding to the largest
eigenvalue A,(J) consists only of components with magnitude 1 i.e. vy, € {—1, +1}",
then the solution of the QUBO problem (1.11) is exactly the vector vy,c. Intuitively this
should also hold in case that v, is very close to some point from the feasible set {—1, +1}"
(ignoring the scale and considering all vectors to be normalized). This is formally justified
in the following result from [37].

Definition 1.1.1. Let x be an arbitrary vector in R". The feasible solution for QUBO task
corresponding to this vector is considered to be o = sign(x). We define the degree of

synchronization of x fo be
T 2
aA(x) = (X—i) (1.12)
I ol

where o = sign(X).

1.1. ANALYSIS OF THE PROBLEM 17

Theorem 1.1.2. Consider the minimization QUBO task (1.11). Denote with Qq the opti-
mum (minimum) solution for this minimization task. Denote with Q, the second smallest
value if it exists, otherwise let Q1 = Qy. Denote with AQ = Q) — Qo. Let Adpax = 41 >
<o > Ay = Amin be all eigenvalues of J sorted in descending order. Assume that the largest
eigenvalue’s multiplicity is 1 (i.e. A; # A). Denote with vy, a normalized eigenvector
corresponding to Ayax.
If for the degree of synchronization of vector V. it holds
AQ
2
a“(v >l - — 1.13

(maX) n(/lmax - /lmin) ()
then the corresponding solution ¢ = sign(Vy.x) is the optimum solution of QUBO task
(1.11).

Proof. If AQ = 0 we have that all feasible solutions are minima so there is nothing to
prove. Thus, let us assume that AQ > 0.

@*(Vmax) = 1 is equivalent to the fact that ¢ is proportional to V.. In this case, o
reaches the bound value of (1.10) so o must be the optimum solution and the proof is
done.

Consider the opposite case where o is not proportional to V.. Since A; < Apayx, Vi > 1
we have that

Qo > mzin 0(X) = —ndpmax (1.14)
lIxll"=n
which implies
Q1 > —ndyax + AQ (1.15)

Using the fact that J = }}; 4;v;v] we have that
0(0) = =07 Jo = =67 () (i = AV)0 = > Ain@" Vi¥] &
= - Z(/L‘ — Amin)(V] 0)° = nAmin (1.16)

< _(/lmax - /lmin)(vliaxo-)z - n/lmin

where for obtaining the last inequality we have dropped all but one summation terms. Since
1% (Viax) = (Vrflax 0)?, by assumption of the theorem we have that
A
(Vhax 0)° spo 22 (1.17)

max
max — /lmin

Combining these we get

Q(O-) < AQ - n(/lmax - /1min) - n/lmin = AQ - n/lmax < Ql (118)
Thus, Q(0) = Qg i.e. o is the optimum solution of the QUBO task. O

18 CHAPTER 1. QUADRATIC UNCONSTRAINED BINARY OPTIMIZATION

1-opt solution
LetQ(crl,...,O',,):Z" Jijo-io-j"'Zi‘l:lhio-i"'C-

i,j=1

Definition 1.1.3. For the maximization QUBO task

pmax (o), (1.19)
vector o € {—1,+1}" is called a 1-opt solution if for everyi = 1,...,n we have that
AQ(oy,...,0,) <0 (1.20)
where
NQOy,...,00) =001, s Oy =1, Tigly ey 0p) = QO 1, oo s O i1, Oy Oy e oy Op)

(1.21)

That is, for a 1-opt solution, switching the value of a single variable cannot produce a
better solution.

By replacing < with > in equation (1.21) we get the definition of a 1-opt solution for
the minimization QUBO task.

In a similar way we can define a k-opt solution for integer k > 1.

Writing out further the formula for A;Q and using the fact that J;; = J;;, J; = 0, we get

AQO1,) = =2) iy + Ti)oriery = 2hiors = =4) Jyjorioy = 2hiory (1.22)

J=1 J=1

1.2 Applications

Many combinatorial optimization problems can be embedded into a QUBO problem. Those
include all of Karp’s 21 NP-complete problems. [11] This embedding refers to the fact that
the original combinatorial optimization problem can be reformulated into a QUBO task
in such a way that the solution of QUBO task encodes the solution of the original op-
timization problem. In the following subsections, some examples of these embeddings
are provided. Namely, those are MAX-CUT problem, Number partitioning problem, and
Traveling salesman problem. Many more examples can be found in [11].

There is one notable difference among these embeddings of different combinatorial
optimization problems. As an example, let us consider the Traveling salesman problem
(TSP). In order to embed this problem into the QUBO formulation, we need to introduce
some ancillary variables. So, for a TSP problem with n variables (cities), we would need

1.2. APPLICATIONS 19

to solve the QUBO task with n? variables. Nevertheless, the number of variables required
for embedding all of Karp’s 21 NP-complete problems is at most cubic with respect to
the number of variables in the original problem [11]. Additionally to ancillary variables,
we will need to impose some constraints on those variables i.e. we will have to solve a
constrained quadratic binary optimization task. These constraints can often be embedded
into the QUBO task as well, but this might significantly affect the algorithm’s performance
and the quality of the solution.

Handling constraints

In this section we will describe a way of handling constraints by introducing penalty func-
tions. Consider a minimization task

min Q(s1,...,5,) (1.23)
seA

where A C {0, 1}" is some allowable set over which we want to minimize a quadratic
polynomial Q. Denote with A° its complement. Let us suppose that P(sy,...,s,) is a
quadratic polynomial which is precisely equal zero on the set A, while it is strictly greater
than zero outside of A. Now, let us define

Q'(s) := Q(s) + C - P(s) (1.24)

for some C > 0.

First, we have not changed the values obtained when evaluating solutions from the
allowable set. That is, Q’(s) = O(s), Vs € A.

Second, by choosing C > 0 to be large enough, every configuration which is not al-
lowed evaluates Q" to something which is too large to be the minimum of Q. That is,
Vs € A, Q'(s) > mingc4 O(S)

Third, Q’ is still a quadratic polynomial.

This means that solving an unconstrained (QUBO) problem

min Q'(sy,...,8,) (1.25)
se(0,1}

provides us with a solution of the constrained problem (1.23).

Example 1.2.1. Suppose we want to minimize some quadratic polynomial Q(si,...,S,)

over the discrete set {0, 1}", but we are only interested in balanced configurations, i.e.

configurations (sy, ..., s,) which contain equal amount of 0’s as 1’s (assume that n is even).
For the penalty function

4 N2
P(sy,....8,) = [g - Zs,-] (1.26)

i=1

20 CHAPTER 1. QUADRATIC UNCONSTRAINED BINARY OPTIMIZATION

we have that P(sy,...,s,) > 0 for all configurations, but P(sy,...,s,) = 0if and only if the
configuration is balanced. Furthermore, P is a quadratic polynomial.

By selecting C > 0 appropriately large, and defining Q' = Q + C - P, we have that
Q' is a quadratic polynomial whose minimum over the whole set {0, 1} corresponds to the
minimum of Q over the set of all possible balanced configurations.

Similar procedures can be done for handling other types of constraints. If we have mul-
tiple constraints which need to be satisfied at the same time, we can just sum the penalties
which correspond to each constraint separately.

Although theoretically perfectly valid, handling constraints with penalty functions can
impose problems in practice because algorithms for solving the QUBO often do not neces-
sarily provide the minimum, but rather an approximate solution. Choosing a constant C > 0
(from above example) which is too large might force the algorithm to produce solutions
which satisfy the constraints, but are completely unaware of the actual value of Q which
we are trying to minimize. On the other hand, making the value C > 0 too small might
allow the algorithm to produce solutions which violate constraints. Therefore, we would
definitely need to fine tune the value C. However, for approximate solvers this sometimes
just does not work well (for example if many constraints need to be satisfied at the same
time).

It is very problem-specific and also algorithm-specific to determine how to efficiently
embed the constraints — whether there are some alternative penalty functions which might
perform better, and whether there are some completely different embeddings which could
perform better.

MAX-CUT

This section is based on [34].

MAX-CUT is a combinatorial optimization problem on graphs which can be directly
modeled with QUBO task. Consider an undirected weighted graph G = (V, E) with no
self-loops and no multiple edges between vertices. V denotes the set of vertices, E the set
of edges. Each edge e € E is a triplet of the form e = (a, b, J,,) where vertices a,b € V
are connected with an edge with weight J,,. If the number of vertices is n = |V/| then all
weights can be stored in a symmetric adjacency matrix J € M,(R). The fact that vertices
a,b € V are connected with an edge having weight w is represented in adjacency matrix by
Ja» = Jpa = w. Throughout this section, only graphs of this type will be considered.

In order to describe the MAX-CUT problem we need a precise definition of what the
graph cut means.

Definition 1.2.2. Given a graph G = (V, E) with adjacency matrix J, a (graph) cut is a
bipartition P = {A, B} of the vertices (meaning that A,BC V;ANB=0;AUB=YV).

1.2. APPLICATIONS 21

The value of a certain graph cut P = {A, B} is a number

Z Jap (1.27)

a€A,beB

A cut is maximum if no other cut produces greater value.
The MAX-CUT problem is then straightforward
Problem 1.2.3 (MAX-CUT problem). Given a graph G, determine its maximum cut.

MAX-CUT problem is a NP-hard problem.
There is a similar version with yes-no solution

Problem 1.2.4 (MAX-CUT problem, binary). Given a graph G and a value k, determine
whether or not there exists a cut with value at least k in G.

This version is a NP-complete problem and is on the Karp’s list of 21 NP-complete
problems.

Remark 1.2.5. A dual definition of "MIN-CUT” of a graph could be provided and so the
problem of finding a MIN-CUT would be equivalent to the problem of finding a MAX-CUT
by just taking the opposite sign of each edge weight. However, in the literature a MIN-CUT
is usually considered only for weighted graphs whose weights are strictly positive and with
the requirement that the cut is not trivial i.e. A, B # () (otherwise a trivial cut A = V,B =
would always be the solution). Under these restrictions, a MIN-CUT problem becomes
P instead of NP-hard. It is in fact a dual problem to the max-flow problem i.e. finding
the maximum flow from source to sink (source and sink are newly added vertices) which
is as well solvable in polynomial time. Here, only graphs with arbitrary real weights are
considered, so in order to stay aligned with nomenclature in the literature, only MAX-CUT
problem will be considered, as defined in 1.2.2.

Let us formulate the MAX-CUT problem as a QUBO task. Suppose a graph G = (V, E)

is given, with adjacency matrix J and the set of vertices being V = {1,...,n} . Assume
that the graph is weighted, has no self-loops, and is undirected. For a given cut $ = {A, B},
define a vector o = (07y,...,0,) € {—1,+1}" such that o; = -1 ifi € A, and o; = +1 if

i € B. Itis clear that this mapping is a one-to-one correspondence between all possible cuts
and all vectors {—1, +1}". Furthermore, define

1 n
0(0) = 7) Il = 7)) (1.28)

ij=1

which is a quadratic polynomial over the domain {—1, +1}". For a particular cut = {A, B},
plugging in o corresponding to #, the value of Q(o) becomes precisely the value of that

22 CHAPTER 1. QUADRATIC UNCONSTRAINED BINARY OPTIMIZATION

cut. To see this, note that (1 — o;07;) is equals to 2 in case that i and j belong to different
parts of the partition (i.e. i € A,j€ Bori € B, j € A) while it is O otherwise.

The conclusion is that finding a MAX-CUT of the graph can be embedded into solving
a QUBO task given by

max o
oe{-1,+1}" Q()

with Q defined by 1.28.

Note that up to a constant term (which is irrelevant for maximization task), Q is a
homogeneous polynomial. The number of variables that we required to embed a MAX-
CUT problem into a QUBO task is O(n), where n is the number of vertices in the graph.

On the other hand, consider an arbitrary QUBO problem given by

max o'Jo+ o h+c (1.29)
oe{-1,+1}"

As discussed in subsection 1, this is equivalent to solving the QUBO task with a corre-
sponding homogeneous polynomial with n + 1 variables. In this correspondence, all candi-
date solution values are preserved. Thus, we may assume that h = 0 and ¢ = 0 without loss
of generality. Let us define an undirected graph G = (V, E) with adjacency matrix given
by —4J. Up to a constant term, all the cuts of this graph and their values correspond to
the evaluation of the given quadratic polynomial, as seen in 1.28. Thus, solving a QUBO
problem can be embedded into a MAX-CUT problem.
These two statements are summarized in the following remark.

Remark 1.2.6. The QUBO problem and the MAX-CUT problem are equivalent in a sense
that given an arbitrary instance of one of these problems with n variables, one can formu-
late an instance of the other problem with at most n+ 1 = O(n) variables in such a way that
there is a mutual correspondence between candidate solutions as well as between values
produced by these candidate solutions.

Thus, statements and techniques for solving MAX-CUT can almost always be applied
to QUBO, and vice versa.

Number Partitioning

Number partitioning is the following combinatorial problem.

Problem 1.2.7 (Number Partitioning). A sequence of n real numbers a,...,a, is given.
Determine whether or not there exists a bipartition P = {A, B} of those numbers (A, B C
{1,...,n};,AUB={l,....,n};AN B =0) such that };cx a; = ;cp Q.

If such a bipartition exists, determine it.

1.2. APPLICATIONS 23

For example, can we divide a set of assets with values ay,...,a, fairly between two
people?
This problem is known to be NP-complete [11].

To formulate this problem in terms of a QUBO task, let us define the following quadratic
polynomial with n variables over the domain {-1, +1}".

Qar,...,o0) = () aio)? (1.30)
i=1

There is a one-to-one correspondence between each bipartition £ = {A, B} and the do-
main {—1, +1}" given by the rule: o; = -1 ifi € A, 0; = +1 if i € B. It is clear that
a solution of the number partitioning problem exists if and only if there exists a configu-
ration (oy,...,0,) € {—1,+1}" that evaluates to Q(oy,...,0,) = 0. Additionally, those
solutions are in correspondence with minimizers of Q by the described rule. Evaluation
Q(oy,...,0,) = 0 means that the minimum of Q has been found and it is equals to O.
Thus, minimizing Q is equivalent to solving the Number partitioning problem.

If there does not exist a solution to the Number partitioning problem, then one might
want to find a bipartition which is the closest possible to the fair partition. Minimizing Q
again solves this problem.

The polynomial Q is generally not homogeneous. The number of variables required for
encoding the number partitioning problem into a QUBO task is linear with respect to the
problem size, i.e. O(n), where n is the number of assets that are being partitioned.

Traveling Salesman Problem

There are many variants of the traveling salesman problem. We will present the following
version and it’s QUBO formulation. Many other variants can be formulated as QUBO task
in a similar fashion.

Problem 1.2.8 (Traveling Salesman Problem (TSP)). A weighted directed complete graph
G = (V,E) is given. Edges of the form (a,b, W,,) € E represent that there is an edge from
a to b with weight W,,. All weights are positive. The fact that G is directed here refers to
the possibility that W, # Wp,. Let us assume that vertices are numbered V = (1,...,n). A
tour vy, ..., Vv, is a permutation of vertices V representing the order for visiting each vertex,
that is vi,va, ..., v,, V| because one wants to return to the starting vertex.

The task is to find a tour which minimizes the sum of traversed edges i.e. the sum

—_

n—

WVi7Vi+i + WV)uVI

1l
—_

i

which will often be refered to as tour length.

24 CHAPTER 1. QUADRATIC UNCONSTRAINED BINARY OPTIMIZATION

One example of the traveling salesman problem is: how to plan the route for a delivery
vehicle given that it needs to visit each of the specified locations once, while minimizing
the total path length and thus minimizing the transport costs.

Let us present a QUBO formulation of the TSP. Since the route length does not depend
on the starting vertex, we may choose vertex a = 1 as the starting one. Define (n — 1)?
variables s;, € {0, 1} where i € {2, ..., n} represents the step and u € V' \ {a} represents the
vertex to be visited in i-th step. s;,, = 1 means that we want to visit vertex u at step i, while
si,» = 0 otherwise. Since we want a permutation of vertices, we want exactly one s;, = 1
per turn i, and all others to be s;, = 0. The same should hold per each vertex u € V '\ {a}.
Let us thus define the following quadratic polynomial

n

0als) = i(l— s D A= sy (1.31)
i=2 } 2

ueV\{a} ueV\ia i=

We have that Q4(s) = 0 if and only if s represents a permutation of vertices as described
above, and Q4(s) > 1 otherwise.
Now define the following quadratic polynomial

QB(S) = Z Wa,uSZ,u'i'i Z Z Wu,vsi—l,usi,v+ Z Wu,asn,u (132)

ueV\{a} i=3 ueV\{a} veV\{a} ueV\{a}

We have that Qp > 0. Considering only those configurations s that already represent a
valid permutation as described above, the value Qp(s) is precisely the length of the tour
corresponding to the given permutation. Now define

0(s) := C - Quls) + Op(s) (1.33)

for properly chosen constant C > 0. It should be chosen in such a way that any configura-
tion s which violates the above requirements for producing a valid permutation, evaluates
to suboptimal Q(s). For example, for any s corresponding to a valid permutation of ver-
tices, Qp(s) < n - max, ey W,,. Choosing any C > n - max,,cy W, as a constant will be
sufficient. Indeed, for any s which does not correspond to a valid permutation, the value
Q(s) will be higher than every possible tour length, so any valid route encoding s" will
provide Q(s’) < Q(s). Minimizing Q thus simplifies to minimizing Qg over the set of all
valid permutations. This is exactly minimizing the tour length from the traveling salesman
problem.

Since Q is a quadratic polynomial over the domain {0, 1}~ we have showed that
solving a traveling salesman problem can be embedded into solving a minimization QUBO
task. The number of variables required for embedding a traveling salesman problem into a
QUBO task is O(n?) where n is the number of vertices in the graph.

Chapter 2

Preliminary theory

This chapter is a brief recapitulation of certain well-known topics in mathematics. Its first
purpose is to give a mathematical background for dynamical systems, along with a few
examples which will be essential for understanding the behaviour of dynamical systems in
chapter 3. Its second purpose is to serve as a reference for some arguments used in chapter
3.

In terms of notation, a time derivative is denoted by a dot, X = %. Column vectors in

R™ are denoted by bold letters, while their components are denoted with regular letters and
X1

a subscript denoting their index of component x = | : | = (xy,..., x,)". The superscript
Xn

T denotes a transpose. For a vector function f : Q c R" — R”, its matrix derivative or
differential is considered to be a matrix of its partial derivatives arranged as

h h
af 6:\"1 : o a:\"n
x o o
ox; " Ox,

So, for a scalar function E : R” —» R, ‘;—1; 1s a row vector. Its second differential (also called
Hessian matrix) is considered to be a matrix

P E 0*E
aZE Ox10x; " 0x10x,
- = :
ox P E PE
6x,,6x1 e axnaxn
Throughout the thesis, the second differential will always be taken of C? functions, so the
. 2 . . b
matrix ?97125 will always be symmetric due to the Schwarz’s theorem.

Matrix derivations of higher order and shape could be defined as well, but will not be
used in the thesis.

25

26 CHAPTER 2. PRELIMINARY THEORY

2.1 Dynamical systems

In this section, the results and concepts from the theory of dynamical systems are briefly
given. All systems discussed are continuous dynamical systems meaning that the time is
continuous and they are governed by ordinary differential equations.

Let I ¢ R,U C R" be open sets, and f € C'(I x U;R"). A (continuous) dynamical
system is an ordinary differential equation of the form

x(t) = f(1,x) (2.1

where f is a given vector field. When initial condition x(0) = X, is specified, we call such
system

{X(t) = (1, x) 22)

x(0) = x,

an initial value problem.

The following two theorems are fundamental for dynamical systems in a sense that
given a vector field, and the initial condition, the trajectory of the dynamical system exists
and is uniquely determined. Moreover, this solution can be extended in time until it either
reaches the domain boundary or blows up to infinity.

Theorem 2.1.1 (Existence-Uniqueness). [38] Let ty € I C R,xy € U C R" be open sets,
andf € C'(IxU;R"). Then there exist open subsets ty € Iy C I,x € Uy C U and a function
¢ : Iy X Iy Xx Uy — R" such that for each (t;,X;) € Iy X Uy, the function t — ¢(t,t,,X) is
the unique solution defined on Iy of the initial value problem (2.2).

Theorem 2.1.2 (Extension). [38] Let ty € I € R,xg € U C R”" be open sets, and f €
C'(I x U;R"). Let {a,p) be the maximal open interval where the solution x of dynamical
system (2.2) exists, with —oo < a < B < oo. Then either X(t)| approaches oo or X(t)
approaches the boundary of U as t — .

When f does not depend on the time variable 7, we call such dynamical system an
autonomous dynamical system. Otherwise, we call it a nonautonomous dynamical system.

When f(¢,x) = Ax for some constant matrix A € M,(R), we say that the dynamical
system is linear. Otherwise we call it a nonlinear dynamical system.

Remark 2.1.3. Nonautonomous dynamical systems are often referred to as a generaliza-
tion of autonomous ones, so if we do not care if f depends on t or not, we may just say a
nonautonomous dynamical system.

Analogously, nonlinear dynamical systems are a generalization of linear ones.

Consider a nonautonomous dynamical system

x(t) = f(1,x) (2.3)

2.1. DYNAMICAL SYSTEMS 27

Definition 2.1.4. An equilibrium point of a nonautomous dynamical system is a point X, €
Q which is also a trajectory of the system, meaning that X(t) ‘= X is the solution of (2.3).

The definition of equilibrium point is equivalent to the fact that f(z,x9) = 0, V. When
studying a dynamical system, it is often useful to look for its equilibrium points. The
character of these points can often tell us about the qualitative behavior of the dynamical
system in the neighborhood of these points. The main result about this is the Hartman-
Grobman theorem for nonlinear autonomous dynamical systems.

The Hartman-Grobman theorem
This section is based on [38]. Consider a nonlinear autonomous dynamical system

x(1) = f(x) (2.4)
where f € C'(U;R"), U c R".

Definition 2.1.5. For each X, € U let x be the solution of 2.4 with initial condition x(0) =
Xo. Let us define a one-parameter family of functions ¢, called the flow of dynamical system
2.4 as

Pi(X0) = x(2)
for every t in which X is defined.

Proposition 2.1.6. The flow ¢, of the dynamical system 2.4 has the following properties
@) Gius = $10 0,

b) ¢o(x) =x

whenever both sides of the equation are defined.

Let us assume that the dynamical system 2.4 has an equilibrium point at X.
The behavior of a nonlinear autonomous dynamical system near an equilibrium point
X is qualitatively the same as the dynamics of the corresponding linearization i.e.

x(t) = Ax (2.5)
where A = g—i(xo). That is formally stated in the Hartman-Grobman theorem.

Theorem 2.1.7 (The Hartman-Grobman Theorem [38]). Let f € C'(R";R") be a smooth
vector field, and let ¢, be the flow of the nonlinear system (2.4). Suppose that X, is a
hyperbolic equilibrium point, meaning that £(xo) = 0 and none of the eigenvalues of A =
%(Xo) have zero real part. Let s, be the flow of the corresponding linearization (2.5).

Then there exist open sets xo € U Cc R",0 € V c R" and a homeomorphism H : U — V
such that H(¢,(x)) = ¥,(H(X)) whenever x € U and both sides of the equation are defined.

28 CHAPTER 2. PRELIMINARY THEORY

A connection between autonomous and nonautonomous systems

In chapter 3, we will be dealing with nonautonomous dynamical systems. However, the
vector field f will slowly vary in time, meaning that % has relatively small norm. In this
case, if we want to analyze the local (in time) behavior of the dynamical system, it might
be tempting to analyze the behaviour of the dynamical system which has its vector field
frozen in time, i.e. the dynamical system

x = f(#,x) (2.6)

where 1, is some time instance at which the vector field is frozen.
For analyzing the global (in time) behavior of the system, this strategy is inadequate
and even misleading, as seen from the following example.

Example 2.1.8. Consider a one-dimensional nonautonomous dynamical system
x(t) =t — x(¢) (2.7)

If we were to analyze this system by observing the system which has its vector field frozen
in time, that is

x(t) =ty — x(¢) (2.8)

for some ty € R, we would see that it has equilibrium point at x = ty. The linearization of
such system is

x(t) = —x(1) (2.9)

which by Hartman-Grobman theorem (or by solving this directly) would imply that it is
an attractive equilibrium. It might be tempting to conclude that the system follows the
trajectory given by instantaneous equilibrium points, that is the trajectory x;sp(t) = t.

However, the exact solutions of this equation are x(t) = Ce™ + 1t — 1 for some C € R. It
is clear that all of these solutions converge to the solution xpy7(t) =t —1ast — oo.

First of all, x;5p(2) is not even a solution of the above differential equation. Second, and
even more important, the system globally behaves in such a way that it converges towards
the trajectory xpur(t), and not xsp(t).

In [39] they develop the concept of a distinguished hyperbolic trajectory which in the
above example is precisely xpyr(?), contrary to the instantaneous stagnation points which
are xisp(?) in this example.

However, the global (in time) behavior of the dynamical system will not be of great
interest in chapter 3, but rather a local one. In this case, analyzing the system as if its
vector field was frozen in time makes sense. This concept is formalized in the following.

2.1. DYNAMICAL SYSTEMS 29

Let f € C'(R x R";R") be a given vector field, xo € R", 1, < t,.
Consider the following dynamical system

{X(r) = £(1,x(1)) (2.10)

X(f) = X

and the corresponding dynamical system with vector field frozen at time instance f,, with
the same initial conditions.

{ﬂﬁ = (1o, y(1)) o1

y(t) =X

For vector v € R" we will denote the norm ||v||., = max;;
function g : Q c R™ — R” we will denote the norm

. |vil, and for a vector

.....

gl =@ = max Igill) (2.12)

..... n

Let us formally define the successive approximations as

Xo(1) ==X
mmo:m+ffmmmur
0 (2.13)
Yo(?) =X

nﬂﬂ:m+ffwnwwr

Theorem 2.1.9 (Connection between autonomous and nonautonomous dynamical sys-
tems). Let f € C'(R x R";R"),x¢ € R", ty < t,. Assume that all successive approximations
(2.13) for dynamical systems (2.10) and (2.11) are well defined and continuous on [ty, t;]
and that they uniformly converge to solutions

X oD, o (2.14)
y, —th, g (2.15)

Assume that D C R" is a convex compact set which contains both solutions and all suc-
cessive approximations X([ty, t1]), Xi([to, t11), Y([t0. t11), ¥, ([0, 11]) € D,Vk. Let L > 0 be a
Lipschitz constant in second variable for f in a sense that

If(z,x) — £, Yl < LIIX=Yllo, VE€l[to,t1],YX,y €D (2.16)
Let o
M = ”— (2.17)
Ot |l ((19.111xD)

30 CHAPTER 2. PRELIMINARY THEORY

Then,

M, M M
X = ¥l (i) < LZeL(’ - Tt =73 Vieln.n] (2.18)

Proof. First, let’s show that f is Lipschitz continuous in second variable with some constant
L > 0 in a sense of (2.16). By following the proof of proposition 2.3.4 and applying it to
each component of f, we get that fi, ..., f, are Lipschitz continuous in second variable.
From here, (2.16) follows easily.

By inductive argument we prove a bound for ||Xk(l‘) - yk(t)”w. For k = 0 we have
||Xo(t) - yo(t)”00 = 0. Assume that for some £ it holds

k+1 l)

%) - v, 0)||, < MZ —(=10), Vi€ ln.n) (2.19)
Then,

X1 (0) = ¥ir)], < f [f(r, xe()) = £(to, y, (D))]| _ d7 (2.20)

= f [, %) = £(7, y, (1) + £(@, y, (0)) = £, y, ()| dT - (2.21)

< f Lxi(7) - y,(@)|, + Mt - to)dr (2.22)
0, k+1 i-2
f LM Z — (- 1) + M(t — to)dt (2.23)
k+1 l 122
- LMZ - (T —to)idt + f M(t - ty)dt (2.24)
i=2 :
k+1 M
(" 1)' 1)+ + ?(I —1)? (2.25)
k+2 1i-o .
- MZ — (=10 (2.26)

i=2

for arbitrary ¢ € [ty,#;]. In order to get (2.22), we used triangle inequality, mean value
theorem, Lipschitz condition (2.16) and bound for the partial derivative of f by ¢ (2.17).

2.1. DYNAMICAL SYSTEMS 31

Now, by induction we have that (2.19) holds for each k. Thus, for all k we have

k+1 i o

L i
% = ¥l < M; — (= 1) (2.27)
o Lz—Z)
< M; — (= 1) (2.28)
M L .M
=12 a E(t — 1) — I(t —1p) - ﬁ (2.29)
M M M
=3¢ =) _ f(t_ to) — 2 Yt € [ty, 1] (2.30)
Since
x, 220D kS oo 2.31)
L=([to,t1])
Yo — Y, k— (2.32)
we get the bound
M M M
X = ¥l oo 0.0 < 12¢ o — f(l —1p) — 7R Yt € [0, 1] (2.33)
m]

Gradient dynamical systems

A special type of dynamical systems are gradient dynamical systems. The name is derived
by the fact that the vector field is negative gradient of some landscape function. More
formally, let Q c R”, I C R be open sets and E € C*(I x Q;R). The dynamical system

T

OE
X(1) = " x (1, %) (2.34)

is a gradient dynamical system with corresponding landscape function E.
Generally, the function E can vary over time. However, let us analyze an example
where E is time-independent, i.e. E = E(X).

Example 2.1.10. Let A € M,(R) be a real symmetric matrix and E(X) = %XTAX. Consider
a gradient dynamical system with landscape function E.

OET
X(2) = ~ox (x(2)) (2.35)
= —AXx

32 CHAPTER 2. PRELIMINARY THEORY

Since A is symmetric, it is orthogonally diagonalizable, so let UTAU = A = diag(4,,. .., 4,)
be its orthogonal diagonalization.
Define a change of variables X = UTx. The equation (2.35) becomes

x = -UTAUX
_ (2.36)
= -AX
which is a system of decoupled ordinary differential equations in each component. Written
out component-wise, the system is

);Ci = _/11')_61'; i= 1, ... (237)
The solution for each component is thus
(1) = x0)e™; i=1,...,n (2.38)

where x(0) is the initial condition. The solution in the original reference frame is then
x(t) = UX(?).

This change of reference provides us not only with the exact solution, but also with a
qualitative understanding of solution’s behavior. For each component we have different
behavior depending on the sign of the corresponding eigenvalue. For A; > 0 the solution
component rapidly collapses towards 0. For A; = 0, the solution component is stationary.
For A; < 0 the solution component rapidly expands to +oo.

This gives us the qualitative understanding of the behavior of x(t). When viewed in
reference frame which diagonalizes A, the solution’s components either collapse, stay sta-
tionary, or expand, all with respect to the sign of the corresponding eigenvalue.

Hamiltonian dynamical systems

Let I € R,Q C R*" be open sets and H € C*(I x Q) where H = H(t,X,y), X,y € R". A
system of the form

T
X = 8_ (t,x,y)
y (2.39)

__ oHT
Y= _a_ (ta X, Y)
X

is called a Hamiltonian dynamical system.
Function H is called a Hamiltonian function or total energy of the system.
Hamiltonian H can take various forms.

2.1. DYNAMICAL SYSTEMS 33

The motion of the particles in space can be modeled by taking H to be of the following

form
n

m; o

H(t,x,y) = Z‘ 507+ EtX) (2.40)
Each particle has certain number of degrees of freedom (for example 1D, 2D or 3D mo-
tion). Each degree of freedom has its corresponding position x; and momentum y;. The
quantity Y7, 5y? is called the kinetic energy of the system, while E(z,x) is a function
called potential energy of the system. Kinetic energy depends only on constants m; which
represent the mass of each particle, and momenta y;. On the other hand, the potential en-
ergy depends only on the position vector x and the time instance in case that the potential

energy changes over time.

Example 2.1.11. Let A € M,(R) be a real symmetric matrix and E(X) = %XTAX. Consider
an autonomous Hamiltonian dynamical system corresponding to the motion of particles,
each with mass m, in time-independent potential E(X)

 m 1
H(x,y) = Z Eylz + EXTAX
i=1
. OHT
X=—
oy (2.41)
= my
OHT

Y=
= —AX

Since A is symmetric, it is orthogonally diagonalizable, so let UTAU = A = diag(4,, ..., 4,)
be its orthogonal diagonalization.

Define a change of variables X = UTx,y = U'y. The dynamical system (2.41) be-
comes

my
~UTAUR = —-AX

X

. (2.42)
y

or written out component-wise

);Ci:m}_)i; izl,...,l’l
. _) (2.43)
yi:—/lixi; l:1,...,l’l

By taking the derivative of x; we obtain an equivalent equation

.i',' = —H’I/ll')_Ci; I= 1, e, (244)

34 CHAPTER 2. PRELIMINARY THEORY

This is a system of decoupled linear equations so for each component we have the solution
depending on the sign of A,.
If A; > 0, then

\/l_ﬂ)?i(O)sin(m/lit)+)'cl-(0)cos(m/l,-t) (2.45)
mda;

which means that this component periodically oscillates around 0.

Xi() =

If 1; =0, then
x(1) = x;(0)t + x,(0) (2.46)
which means that this component linearly expands.
If‘ﬂ,’ <0,
x;(0 x,(0 —n; x;(0 x,(0 BNy
)'Ci(t):(x()+ *(0))e ”W+(x()— *(O))e Vi (2.47)
2 2 V—m/l,' 2 2 —m/l,-

which means that this component exponentially expands.

By changing the reference frame back to the original x = UX, we can obtain the exact
solution of the dynamical system. However, the qualitative behavior of this dynamical
system can be understood by analyzing each solution component of the system in reference
frame which diagonalizes A. Each component in this reference frame either oscillates
around zero, linearly expands, or exponentially expands, with respect to the sign of the
corresponding eigenvalue.

2.2 Numerical simulations

In this section, two numerical methods for solving ordinary differential equations are pre-
sented. Those are Euler method and symplectic Euler method.

Euler method is a numerical method which can be used to approximately solve any
initial-value problem and thus simulate any dynamical system. Although being very sim-
ple to state and implement, its weakness is being less precise than some other numerical
methods such as various other Runge-Kutta methods.

Symplectic Euler method is a modification of the Euler method used for simulating
special kind of ordinary differential equations, namely Hamiltonian dynamical systems.
Although the error bound is of the same order as for the Euler method, symplectic Euler
method conserves the energy (for time-independent Hamiltonian) much better than the Eu-
ler method. Thus, symplectic Euler method is more appropriate for simulating Hamiltonian
dynamics.

Many other numerical methods for solving various ordinary differential equations can
be found in [40] and [41], each with certain advantages and disadvantages. However, only
these two methods will be used in chapter 3.

2.2. NUMERICAL SIMULATIONS 35

Euler method
This section is based on [40]. Consider a given initial value problem
x(t) = f(t,x
0 =1) (2.48)
x(fy) = Xo

The Euler method for approximately solving this initial value problem is given by the
iterative formula
x? = x,

2.49
XD = xO 4 (5, xM) AL k=0, Ny — 1 o

where A, = ﬁ, t = kA;, and T is the time interval on which we need to approximate the
solution. For each k, x*¥) is the approximate value for x(#).

Euler method is a first-order method, meaning that the bound for error between the
approximate and exact solutions is proportional to A,, and is not proportional to any higher
power of A,. Details can be found in [40].

Symplectic Euler method

This section is based on [42]. Symplectic Euler method (sometimes also called semi-
implicit Euler method) can be used for approximately solving the initial value problem of
the form

x =1£(1,y)
y =g, x)
X(fy) = X

y(f) =¥,

(2.50)

This system typically arises in Hamiltonian dynamics if the Hamiltonian has separable
variables
H(1,x,y) = E(1,x) + T(1,y)

Often E is the potential energy of the system, while 7 is the kinetic energy.
Symplectic Euler method for approximately solving this system is given by the iterative
formula

x© = Xo
0
y() = Yo
xED = x® 1 £1(1,y9) - A,
y(k+1) = y(k) + g(tk, X(k+1)) . Ata k = Oa ey Niter - 1

(2.51)

36 CHAPTER 2. PRELIMINARY THEORY

where A, = %, tr = kA;, and T is the time interval on which we need to approximate the

solution. For each k, x® and y® are respectively approximate values for x(#;) and y(#;).
The difference between original Euler method is that x**1 is used for calculating y**V,
instead of x®.

A second variant of this method is given by reversing the order of calculations, i.e.

x© = Xo
0
y() = Yo
k+1 k k
y(+) y()+g(l‘k,X())‘Az
X(k+1) = X(k) + f(tk’ y(k+1)) : At’ k = O’ see ’Niter -1

(2.52)

Although symplectic Euler method is also a first-order method, i.e. the error is proportional
to A;, it is usually a more appropriate method for simulating Hamiltonian dynamical sys-
tems compared to the original Euler method. This is due to the fact that symplectic Euler
method conserves energy (for time-independent Hamiltonians) better than Euler method.
In fact, Euler method often persistently increases the energy, making it less accurate. De-
tails about this method can be found in [42] and [41].

2.3 Other

This section serves only as a reference for some arguments used in the rest of the thesis.

Theorem 2.3.1 (Weyl’s inequality [43]). Let M = N + R, N, and R be n X n Hermitian
matrices, with their respective eigenvalues u;, n;, p; ordered in descending order as follows:

M: py =2 py,
Nt mz--2ny,
R: pr=--2py
Then the following inequalities hold:
Ni+p, < <mi+p, i=1,....n

Proposition 2.3.2. Let Q C R" be an open, convex and connected set. Let E € C*(Q) such
that the second differential ‘;Tf is positive semidefinite, i.e. all of its eigenvalues are greater
than 0, at each point of L.

Then E is a convex function.

Definition 2.3.3. [44] Consider a second-order differential equation

X(t) = tx(1) (2.53)

2.3. OTHER 37

Two linearly independent solutions of this equation are called Airy functions and are de-
noted by A(t), B(t).

Proposition 2.3.4. Let D C R" be a compact and convex set. Let f € C'(D).
Then, f is Lipscitz continuous.

Proof. Choose arbitrary X,y € D and consider the line between them parametrized by
v :[0,1] = D,y(t) = (1 — t)x + ty. Since D is convex, y is indeed contained in D. Define
g :[0,1] - R, g = f ovy. Then, by the mean value theorem there exists & € (0, 1) such that

0
) (v =% = €)= 8(0) - 80) = f) - ()

Thus,
|£(y -)| < [Cauchy-Schwartz] < Z{(w@))” ly = xll < L-lly - xI
where of
L= r)r(le%x G_X(X) < 00

Thus, f is Lipschitz with a Lipschitz constant L. O

Chapter 3

Algorithms

This chapter presents and analyses physics-inspired dynamical systems and their corre-
sponding numerical simulations, which together comprise algorithms for heuristically solv-
ing QUBO problem. These algorithms are namely Coherent Ising Machine (CIM) 3.2,
Simulated Bifurcation (SB) 3.4, Simulated Coherent Ising Machine (SimCIM) 3.8, and
Ballistic Simulated Bifurcation (bSB) 3.9. There are other similar variants of these physics-
inspired algorithms, such as Discrete Simulated Bifurcation (dSB) [31] and heated versions
of simulated bifurcation [45], but those are not covered in the thesis.

These physics-inspired algorithms were proposed as adaptations of quantum algorithms
(algorithms designed for running on a quantum computer) for solving QUBO and other
combinatorial optimization problems. These adaptations are done by approximating the
expected value of annihilation operator a, present in the quantum Hamiltonian H, by a
complex number x + iy where x,y € R. What is left after this dequantization are the
equations of motion for variables x,y. This is where physics-inspired dynamical systems
for solving combinatorial optimization problems came from — the details can be found
in [27], [29], and [25]. Modifying these dynamical systems further enabled to design
algorithm which are easier to simulate, while preserving, and even improving the solution
quality [31, 30].

Although motivated by quantum systems, these dynamical systems are completely clas-
sical, often even deterministic. Thus, in what follows, those systems will be analyzed from
a mathematical perspective of dynamical systems.

First, in order to understand how a dynamical system generates candidate solutions of
QUBO problem, consider a state vector which evolves in time x : [0, c0) — R". Taking
the sign of each component at some time instance ¢, o; = signx;(¢) provides a candi-
date solution for the QUBO task (o, ...,0,). The goal is to obtain a dynamical system
which attracts various trajectories towards such areas of space that provide high-quality
approximate solutions of the QUBO problem, according to the mapping mentioned above

39

40 CHAPTER 3. ALGORITHMS

o = sign x;(?).

Finally, CIM and SB were chronologically developed earlier, and they are respectively a
gradient and a Hamiltonian system over the same energy/landscape function E. Motivated
by CIM and SB, and by modifying the function E, new algorithms were proposed. This is
how bSB and SimCIM were born. They are also respectively a gradient and a Hamiltonian
systems over this new energy/landscape function.

3.1 Introduction to CIM and SB

Let us define the following energy functional

E(x:a o) = 7 (5 =) —§Z Jijxix; 3.1)
i=1

i,j=1
and the corresponding gradient vector field

T

OE
f(x; a0, B, 1) = o (x; @, B, 1) (3.2)

= —a[xi,...,x]" + aux + BJx

both of which will be used in sections 3.2 and 3.4. E and f are functions of position x
and parameters «, 8, u denoted after the semicolon. It is essential to analyze this energy
functional E with respect to parameters because it defines the vector field f which will
govern the dynamical systems in sections 3.2 and 3.4. This energy function will vary in
time itself because the parameters will vary in time.

The given coupling matrix J is symmetric (if not, we may always symmetrize it by
taking coefficients %(J,- j + Jj) instead of J;; and Jj;). a(r) > 0, B(r) > 0 and u(r) € R are
parameters which (might) vary over time and thus produce different landscape over which
the point x moves. However, both in CIM and SB algorithm, parameters a and 8 are con-
stant in time. The crucial part is that u(7) is time-dependent which causes the bifurcations
of the system. When talking about CIM and SB, a bifurcation refers to the emergence
of new or vanishing of some existing local minima of energy functional E. The second
part, —'@ 2.i.; Jijxix;, corresponds to the value of the QUBO task and is the actual function
that we want to minimize but over the set {—1, +1}". The first part, o) Zi(xl.2 — u(?))?, thus
might be viewed as a penalty term. It penalizes x;’s whose magnitude is different than /u
(whenever u > 0). More about penalty terms can be found in [46].

When u is small enough, the only local and global minimum of E is the origin. As
u increases, new local minima occur. For large enough p, E will have 2" local minima

corresponding to (existing in the close vicinity of) the points {— +/u, + y/u}". The value of

3.1. INTRODUCTION TO CIM AND SB 41

the energy functional E at such a point x = 4/uo, 0 € {—1,+1}" is given by
E(+io: - Py,
(Vuo;a,B,u) = 5 Z ijOi0
]

which is proportional to the function that we are minimizing over the discrete set.

Increasing the parameter u from the starting value yj to the final value yu; causes new
bifurcation of the system. As already stated, if we evolve the system long enough, i.e. until
u crosses certain large enough value, E will have 2" local minima, each corresponding to
one feasible solution from {—1, +1}". This is the statement of the next theorem.

Theorem 3.1.1. Let D := max; 27:1 |ﬁJ,-‘,~| For u > i(l + 3V3)D, there exist 2" local
minima of function E, which are all in a one-to-one correspondence with the feasible set
{=1,+1}". This correspondence is given by taking the sign of each component — for a local
minimum X, the corresponding element of the feasible set is 0 = signX.

Proof. The proof can be found in [37]. |

Let us calculate the second differential of E.

O’E .,)
ol 3adiag(xy,...,x,) —aul - pJ (3.3)

Proposition 3.1.2. The origin is a stationary point of E, meaning that ‘3—5(0) =07, for all
ueR. For
H< _é/lmax(-]) (34)
a

the origin is a local minimum of E. For
1> L) (35)
a

the origin is not a local minimum of E.

Proof. Use formula (3.2) to see that the origin is stationary. The second differential of E

at the origin is
’E
@(0) = —O’/JI —ﬁj

If (3.4) holds, than /lmin(‘;%(ﬂ)) = —aU—LAnax(J) > afgxlmax(J)—,B/lmax(J) = 0 which means
that all eigenvalues of 227125 are positive which implies that the origin is a local minimum of

E. Analogous argument shows that when (3.5) holds, the origin is not a local minimum
because at least one eigenvalue is negative. m|

42 CHAPTER 3. ALGORITHMS

For

h< —gamm (3.6)

we can actually analyze the second differential of E to see that
O0*E . . .
Amin | =5 | = [Weyl’s inequality (2.3.1) |
ox
> Anin(Ba diag(x%, cees X,z,)) + Apin(—aul — BJ)
=3a min x7 — ap — Blna(J) (3.7)

=1,...n

> —au — ﬁ/lmax(J)
> agnmax<J> Bl () = 0

So, when condition (3.6) is satisfied, we know from 2.3.2 and 3.1.2 that E is a convex
function with its global minimum centered at the origin.
The condition
B

M= == Amax (V) (3.8)
a

is thus called the first bifurcation point.
It thus makes sense to increase u, for example linearly, from certain starting value y to
certain ending value y,, while taking

o = ~E (1) (3.9)

because this is the point when bifurcations in landscape function E start to emerge. Se-
lecting the concrete value of wy and u; should be based on empirical evidence i.e. by
experimenting which parameter provides the best result.

Example 3.1.3. In this example we will observe what happens for the case n = 2. Since
the coupling matrix is symmetric and with zero diagonal elements, there are, up to scale,

6], eci—1,+1).

two possibilities for the coupling matrix, and those are given by J = [6 0

Consider the QUBO task given by

2
max " Jijoio (3.10)
i,j=1

o,026{=1,+1} &
1]

and define the corresponding energy landscape as in (3.1)

2
E = % ;(xiz —/J)2 — Bexix; (3.11)

3.1. INTRODUCTION TO CIM AND SB

1
Diagonalization of J provides us with eigenvectors [_1], [1

43

corresponding respec-

tively to eigenvalues —e, +e€. First, we will determine stationary points of E for some fixed

M
ax(u— x%) + Bex; =0
axy(u — x%) + Bex; =0
which is, by summing and subtracting these equations, equivalent to
ap(xy + xp) — a(x; + xz)(x% — X1Xy + x%) + Be(x; +x2) =0
au(x; = x;) = @(x; =)(x7 + X1 + X3) = Be(x = x5) = 0
Casel: x;+x=0,x1—x =0
This is the trivial case x; = x, = 0 which is the stationary point for all u.

Case2: x1+x=0,x1—x #0

From first equation we have x| = —x; so plugging it into the above we get
2aux, — 2ax? —2Bex; =0
Be

ex=p-—
10
From here we conclude that

Be

€
—X; =X =% ,U—'B—, forp=—
a a

Case3: x1+x #0,x1—x, =0
From second equation we have x| = x, so plugging it into the above we get
2aux, — 2ax{’ + 2Bex; =0
€
©x=pu+ pe
a
From here we conclude that
€

€
X, =Xx] =% y+ﬁ—, for,uZ—'B—
a o

Cased: x1+x, #0,x1—x, #0
This provides

a/,u—a/(x%—xlxz+x§)+,862 0

ap — a(x] + x1x, + x3) — Be =0

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

44 CHAPTER 3. ALGORITHMS

€
xz—x1x2+x2—,u+ﬁ—
o ﬁae (3.19)
X%+X1X2+X§:/,t——
(04

& [by introducing y, = x| + X2,y2 = X1 — X2
Be
Vi+3y; =4+ =)
& < (3.20)

€
3 = 40— 55

which is a full-rank linear system with quadratic indeterminates whose solution is then

% w+ﬁ—)+3w—ﬁ—) —2[E
(3.21)
1
%= 3B+ ﬁ—)—(u—ﬁ—n e
a a
leading to 4 solutions
1
= SHD = 2 s 2
k,l1€{0,1} (3.22)

oL / 2,86’
X =Zl= 1" -1

which holds whenever u > |€| zjf

First two non-trivial cases are local minima, which can be seen by taking the second
partial derivatives of E:

PE |au- 3ax? Be
Coxe [Be ap — 3ax; (3:23)
If —ZL s negative-definite (all of its eigenvalues are less than zero), then we have a local

mzmmum. Calculating the eigenvalues is straightforward for this 2 X 2 symmetric matrix,
and plugging in from first two cases the fact that x; = x; we obtain that E has local
minimum when

Blel < aBxi —) (3.24)

In table 3.1 we systematically write all the cases and conclude that those local minima
that correspond to optimum solution of the minimization problem (3.10) bifurcate earlier
than other local minima.

In figure 3.1 we can see how these local minima start to emerge as u increases.

3.1. INTRODUCTION TO CIM AND SB 45

€=+1 e=-1
X] = =X 25 _B
u> u>
(case (3.15)) ¢ ¢
X1 = X u > _B u> Et
(case (3.17)) ¢ ¢
solution for max 2eo0 0> o1 =0, | oy = -0,
o1,06{—1,+1}

Table 3.1: Behaviour of E on a system with two variables

We see that those local minima that correspond to the optimum solution (highlighted in
gray) bifurcate earlier than suboptimal local minima.

f=-3

Figure 3.1: Visualization of energy landscape E for CIM and SB

Overview: This is a visual representation of energy landscape E for a system with two
variables and coupling term Jj, = J,; = 1. Optimum solutions of the corresponding
QUBO problem are (+,+) and (-, -). As the parameter u increases, it causes the qualitative
appearance of the landscape function E to change — new local minima emerge, and they
correspond to candidate solutions of QUBO. Notice that local minima corresponding to
optimum solutions of QUBO bifurcate earlier than suboptimal ones.

Details: The values of parameter u are denoted on the top of each subplot. Red crosses
denote local minimaof E. @ = 1,8 = 2.

46 CHAPTER 3. ALGORITHMS

3.2 Coherent Ising machine (CIM)

This section is based on [28] and [37].

Dynamics

CIM is a gradient dynamical system with time-dependent landscape function E defined
by equation 3.1. The vector field f describing this dynamical system is thus given by the
negative gradient of E, as defined by 3.2

OET
f(x;a,B,1) = " ox (x; @, B, 1) (3.25)

= —a[x},.... 1" + aux + BJx

Parameters are written after the semicolon and those are @, 3, u. Time dependence is
achieved by varying parameters in time. In this algorithm only parameter y is monotoni-
cally increased from certain initial value yg to certain final value y,. Parameters a,5 > 0
are kept constant.

The dynamical system describing CIM is thus given by

X(1) = £(x(0); @, B, u(1)) (3.26)

Written out component-wise without denoting the dependence on time

W= fi=ax(u—x)+p Y Jiyx; 5 i=1,.n (3.27)
J

Algorithm

CIM algorithm is a simulation of the described dynamical system on a computer using
Euler method.

Algorithm 1 CIM
1: Initialize vector x randomly around 0
2: for k in range(0, Ni,) do
30 x e x+|exun) - D) +BY Tl A i=1,0n
4: end for

In figure 3.2 we observe that as local minima bifurcate away from the origin, the system
follows some of these local minima. Local minima corresponding to (+, +) and (—, —) are
lower than those corresponding to (+,—) and (—, +) so it is more likely that the system

3.2. COHERENT ISING MACHINE (CIM) 47

will converge towards (+,+) or (—, —) that the other two minima. Also, local minima
corresponding to (+, +), (—, —) bifurcate earlier, i.e. for smaller values of y, than the other
two local minima. That’s why in the middle subplot the system will surely converge to the
optimal solution, since other local minima have not yet even emerged.

w(0y=—4, p(T)=-3 i (T)=0 w()y=2, up(T)=4

0)=-2, u

Figure 3.2: CIM algorithm

Overview: This is a visual representation of CIM algorithm on a system with two
variables with coupling term J, = J,; = 1. Optimum solutions of the corresponding
QUBO problem are (+,+) and (-, -). In the left subplot, the parameter u did not cross the
first bifurcation point, so the dynamical system collapses towards the origin (starting far
away from it). As the time passes, u increases, causing a change in the qualitative
appearance of landscape E. In the middle subplot, the origin splits into two local minima
(red crosses) which correspond to the solution of QUBO problem. In the right subplot,
two new local minima emerge, corresponding to suboptimal solutions of QUBO.
However, they are not as attractive for the dynamical system as the optimal solutions. In
both cases, the dynamical system ends up converging towards a local minimum
corresponding to an optimal solution of QUBO.

Details: The white line represents the trajectory obtained by running the CIM algorithm.
Red crosses denote local minima of E. Each subplot corresponds to a new run of the
algorithm. The parameters are @ = 1,8 = 2. The energy landscape E is plotted only for
the final value of y, thatis E(-; a, 8, u(T)) is plotted on each of the subplots. In each
subplot, u increases linearly from starting to ending value. Starting and ending values are
respectively denoted as p(0) and u(7') on top of each subplot. Number of iterations is 400,
while A, = 0.01. Initial positions are x(0) = (1, 2) for the left subplot, x(0) = (0.5, -1.0)
for the middle subplot, and x(0) = (-0.3, 1.0) for the right subplot.

48 CHAPTER 3. ALGORITHMS

3.3 Gradient descent and momentum

Gradient descent algorithms are used extensively for various continuous optimization tasks,
such as for training neural networks in machine learning models. These algorithms could
be understood as Euler method applied to the gradient system where the gradient is taken
of the function which is being optimized. Suppose that we want to find a (local) minimum
of a function £ : R" — R. A gradient descent algorithm is then

x© =x,

. (3.28)
LD =) a_x(x(k)) Ay k=0,..., Ny — 1

where A, is a parameter called learning rate, Ny 1s the number of iterations, and X is
some initial position which is often randomly chosen, ideally in a close vicinity of the
target (local) minimum.

On top of this, there is a technique which is often used for improving the convergence
rate of such optimization algorithms, and it is called the momentum [47]. The momentum
acts in such a way that it accumulates the previous displacements and takes those into
account when performing the next update. The algorithm is the following

x? = x,

OE
(1) — 0) (0)
x =x" - 6X(X) A (3.29)
OE
xBD = x® _ ZZ(x®y A, + y(x(") - x(k‘l)), k=1,...,Nyer— 1
ox

where all parameters are as earlier, and y € [0, 1] is the momentum parameter. Adding the
momentum has been shown to increase the convergence rate significantly [47]. According
to [47], adding momentum is actually equivalent to the numerical simulation of a physical
system in which a Newtonian particle moves through a viscous medium under the influence
of a conservative force field. This interpretation is of special interest to us because we are
already dealing with continuous dynamical systems.

Now let’s return to the CIM algorithm.

Adding momentum to CIM

Since CIM is essentially a gradient descent algorithm, it might make sense to apply the
momentum to it for improving its performance.

Adding the momentum to algorithm 1, we get the following: First, choose the momen-
tum parameter 0 <y < 1. Momenta will be stored in vector y. We could also initialize the
momentum vector randomly.

3.4. SIMULATED BIFURCATION (SB) 49

Algorithm 2 CIM with momentum
1: Initialize vectors X, y randomly around 0

2: for k in range(0, Ny,) do

3 y,~<—y-y,-+ax,-(,u(tk)—xi2)+,82j.],»jxj, i=1,...,n
4: Xie—xi+yi-AN, i=1,...,n

5: end for

For momentum parameter y = 0, CIM with momentum (algorithm 2) becomes pre-
cisely CIM (algorithm 1).

Remark 3.3.1. Throughout the rest of the thesis, "CIM’ and ’CIM with momentum’ will
often be used interchangeably while referring to CIM with momentum, unless specified
otherwise.

3.4 Simulated Bifurcation (SB)

This section is based on [29].

Dynamics

Simulated Bifurcation (SB) is a Hamiltonian dynamical system with time-dependent Hamil-
tonian given by

m n
HX,Y: . fom.) = 5 D5 + E(G o) (3:30)
i=1

where E is the potential function given by 3.1. The first part of the summation corresponds
to kinetic energy depending only on momenta y while the second part corresponds to po-
tential energy depending only on positions x. Parameters «, 8, m > 0 will be kept constant
over time, while the parameter u(f) € R will monotonically increase from certain initial to
certain final value. The system of differential equations governing the dynamics for this
Hamiltonian system is thus given by

OHT
X(1) = — (x(2),y(0); @, B, m, u(t)) = my(r)
oy (3.31)

, OHT
y(@©) = ™ x@), y(®); a, B, m, u(1)) = £(x(1); a, B, (1))

50 CHAPTER 3. ALGORITHMS
where f is the negative gradient of E, defined by equation (3.2) i.e.

OET
f(x;a,8,u) = ~ox (x; @, B, 1) (3.32)

= —a[x},..., 1" + aux + BJx

Written out further component-wise and omitting the time variable we get

_ OH
Xi = — = my;
0y; Y (3.33)
OH '
Vi = o = ax;(u — X,~2) +ﬂZ JijX;
i J

Algorithm

SB algorithm is a numerical simulation of the above dynamical system on a computer. The
simulation is performed by symplectic Euler method rather than standard Euler method be-
cause it is more stable for simulating Hamiltonian systems. The update step with standard
symplectic Euler method would thus be

k+1) _ (k) (k)
X, =x +my; A

y;k+l) _ y§k> 4 [ax§k+l) (u(ty) - (xEkH))z) +ﬁz Jin5k+1)] A, (3.34)
J

where 1, = Ak is the time discretization, having A, fixed.

Additionally, as the authors proposed in the article [29], a modified symplectic Eu-
ler method provides even better results in terms of solution quality and computation speed.
Since the computation of }; J; jx;k”) 1s computationally the most expensive part, the Hamil-

tonian is split into M + 1 parts

H (x,y;a,5,m,u)
M

m a
HiGcy:apomp) =5) ¥+ 7) (o —u) (3.35)

HX,y;a,B,m,u) =M + Hy(X,y; @, B,m, 1)

B
Hy(X,y; @, B,m, p) =) Z Jijxix;
bj

M is some positive integer.
Applying arguments about symplectic maps, a modified explicit symplectic Euler method
for Simulated Bifurcation is obtained, which is called the SB algorithm.

3.4. SIMULATED BIFURCATION (SB) 51

Algorithm 3 SB

1: Initialize vectors X, y randomly around O
2: for k in range(0, Nie,) do

3: for [in range(0, M) do

4: Xi— x;+myo,, i=1,...,n

5: i = yi+|axi - () - x| -6, i=1,...n
6: end for

7 y,~<—y,~+ﬁZ;f:1J,-jxj-At, i=1,...,n

8: end for

A, is fixed discretized time interval and ¢, is its smaller refinement given by 6, = %}.
Updates with respect to the first part of the Hamiltonian are refined by iterating m =
0,...,M — 1 sub-updates with smaller time step 9;.

In figure 3.3 we see a visualization of SB algorithm on a system with two variables.

52 CHAPTER 3. ALGORITHMS

H0)=—4. u(T)y=-3

woy =2 p(Ty=4

Figure 3.3: SB algorithm

Overview: This is a visual representation of SB algorithm on a system with two variables
with coupling term Jy; = J,; = 1. Optimum solutions of the corresponding QUBO
problem are (+,+) and (-, -). In the left subplot, the parameter u did not cross the first
bifurcation point, so the dynamical system revolves around the origin. As the time passes,
u increases, causing a change in the qualitative appearance of landscape E. In the middle
subplot, the origin splits into two local minima (red crossses) which correspond to the
solution of QUBO problem. In the right subplot, two new local minima emerge,
corresponding to suboptimal solutions of QUBO. However, they are not as attractive for
the dynamical system as the optimal solutions. In both cases, the dynamical system ends
up circulating through the area (red dashed line) corresponding to an optimal solution of
QUBO.

Details: The white line represents the trajectory obtained by running the SB algorithm.
Red crosses denote local minima of E. The red dotted line represents the boundary for the
feasible region of the Hamiltonian system, that is the level set of E at value equals to the
total energy of the system at that time instance. The parameters are @ = 1,5 = 2. Each
subplot corresponds to a new run of the algorithm. The energy landscape E is plotted only
for the final value of u, that is E(-; a, 8, u(T)) is plotted on each of the subplots. In each
subplot, u increases linearly from the starting to the ending value. Starting and ending
values are respectively denoted as ¢(0) and u(7') on top of each subplot. Initial positions
are x = (0, 0) in each subplot. For the leftmost subplot, initial positions are
x = [0.3, —0.3], initial momenta are y = [0.5,0.5], A, = 0.1, and the number of iterations
is 100. For the middle subplot, initial positions are x = [0, 0], initial momenta are
y = [0.3,-0.4], A, = 0.05, and the number of iterations is 150. For the rightmost subplot,
initial positions are x = [0, 0], initial momenta are y = [0.3, -0.2], A; = 0.05, and the
number of iterations is 150.

3.5. MECHANISM OF CIM AND SB 53

3.5 Mechanism of CIM and SB

Let us explain the mechanism of CIM and SB. Although CIM and SB are nonautonomous
dynamical systems; in order to analyze them locally in time, it is sufficient to consider
them as autonomous systems with their vector fields frozen at some time instance of in-
terest. Indeed, using the connection theorem 2.1.9 and the fact that these vector fields
change relatively slowly in time, we have that the error made by such approximation will
be relatively small, especially for short time intervals.

The behaviour of these two systems around the first bifurcation point could be under-
stood in the light of examples 2.1.11 and 2.1.10 which provide solutions of linear gra-
dient and Hamiltonian systems. Indeed, by the Hartman-Grobman theorem 2.1.7, we
have that the qualitative behaviour of CIM and SB around the origin is equivalent to
the dynamics of the corresponding linearized systems. Thus, we need to analyze % =
—3a diag(x?, ..., x2)+aul +BJ which at the origin is 2(0) = aul +8J. To understand this,
we need to observe what happens in the reference frame which diagonalizes %(0). Before
the first bifurcation point, all eigenvalues of %(0) are smaller than 0, so CIM will collapse
towards the origin, while SB will revolve around it. As the time passes, and u increases,
some of the largest eigenvalues of %(0) will cross 0 and become positive. Both the CIM
and SB will start to rapidly expand towards these directions, while staying bounded or even
contract in all other directions. Since these direction correspond to eigenvectors of J, both
CIM and SB provide good approximate solutions of the QUBO problem at early stages of
the algorithm.

After the system expands far enough from the origin, and as u continues to increase, the
behaviour around the origin stops being relevant. Instead, new local minima of E emerge
and the system starts either converging towards them (CIM) or revolving around them (SB).
Under the assumption that local minima corresponding to better QUBO solutions emerge
earlier (for smaller p) than other local minima, or that these local minima will have higher
attractivity, we expect that the system will be able to converge towards these local minima
and thus provide high-quality QUBO solutions.

As discussed in [37] for CIM, those variables which bifurcate from the origin at early
stages usually do not return to the origin nor change their sign anymore. This potentially
allows us to consider only the system reduced to those variables which did not bifurcate
yet, while keeping others frozen.

Analyzing the bifurcation pattern (the relative order of emergence of local minima)
would be essential for understanding the behavior of CIM. This would enable us to pre-
dict the performance of CIM and SB algorithms — provide us a way to tell when will
these algorithms provide good solutions of QUBO problem and when it will fail to do so.
However, it is not clear how to systematically treat and analyze this bifurcation pattern or
develop theory about it. Analyzing this further is out of the scope of this thesis.

54 CHAPTER 3. ALGORITHMS

3.6 Comparing CIM and SB

Bifurcation pattern

In the figure 3.4 we compare the bifurcation behaviour of a single-variable system and the
evolution of the dynamics through time.

CIM

1.0 1

0.5

_0.5 -

_1.0 -

T T T T
0 20 40 60 80 100

1.0 1

0.5

—-0.5

-1.0 4

0 20 40 60 80 100

Figure 3.4: Comparison of CIM and SB with one variable

Overview: This is a visual representation of CIM and SB algorithms performing on only
one variable. As the time evolves, and u crosses the first bifurcation point (black dot), the
landscape function E changes its qualitative appearance and thus forces the dynamical
system to bifurcate towards one of the two stable branches (solid black lines).
Details: Solid black lines represent the positions of local minima of landscape function E.
Dashed line represents the position of an unstable stationary point. Black dot is the
bifurcation point. Blue lines represent the evolution of CIM and SB algorithms. These are
locally a good approximation of the exact solutions of CIM and SB dynamical systems.
The following parameters have been used. J = [0], @ = 0.5, 8 = 0.5, yp = —0.3, u; = 1.0,
A; = 0.1. The number of iterations is 1000. Initial conditions for CIM are x;(0) = 0.5,
while for SB are x;(0) = 0.0, y;(0) = 0.1. Momentum is not used for this CIM simulation.

3.6. COMPARING CIM AND SB 55

Relation between CIM and SB

Although the momentum parameter is usually kept smaller than 1, it is very interesting
what happens when vy = 1. In this case, CIM with momentum (algorithm 2) potentially
becomes a simulation of SB dynamical system. That is, we can choose hyperparameters
in CIM with momentum in such a way that the update step becomes a symplectic Euler
method applied to SB dynamics.

Let us distinguish between CIM’s and SB’s parameters with a superscript "CIM’ and
SB’.

For given parameters for SB algorithm o, 13®, uf®, 8%, AP, m®®, and assuming that
M5B = 1, the SB algorithm could be written like this (notice that the order of equations
for x; and y; is flipped but this remains a correct numerical simulation of the dynamics as
described in section 2.2)

Algorithm 4 variant of SB with M =1
1: Initialize vectors X, y randomly around O
2: for k in range(0, Ny,) do
30y eyt (8B (n) - D) + BB X Jyxg| - ASE, i=1,.n
4: xi—x; +mBy A i=1,...,n
5: end for

Define the parameters for CIM as follows

,yCIM =1 a,ClM — a,SBAtSB

CIM _ ﬁSBASB CIM _ ,,SB
B = i H =
A?IM — mSB Af B

Plugging in the above parameters into CIM with momentum (algorithm 2), we obtain

Algorithm 5 CIM with momentum mimicking SB
1: Initialize vectors X, y randomly around 0

2: for k in range(0, Ny,) do

3y ey BN) - x) + BBAB Y Jx;, =10
4: x,~<—x,-+y,~-mSBA,SB, i=1,...,n

5: end for

which is precisely the above variant of SB, algorithm 4. Although these implementations of
CIM and SB are not completely equivalent, CIM with momentum has the ability to simulate
the dynamics of SB if the parameters are selected appropriately (especially y = 1). In this
context, CIM with momentum is in some sense a generalization of SB algorithm.

56 CHAPTER 3. ALGORITHMS

3.7 Introduction to SimCIM and bSB

Let us define the following energy functional

a B "
E(x;a,p) = szf - EIZJ.“J,-,-x,xj, forx € [-1,+1] (3.36)
Ex;a,B) = +o0, otherwise (3.37)

which will be used both in sections 3.8 and 3.9.

Let us define the corresponding vector field f as a negative gradient of the regular part
of E (3.36)

OE"
f(X;Q,ﬁ) = _a_X (Xa Cl,ﬁ)

= —ax + fJX

(3.38)

This energy functional is a function of position x and parameters «, 5 denoted after the
semicolon.

Remark 3.7.1. Sometimes when we choose and fix some concrete values for a and 3, we
will pretend that E is only a function of position X and thus write E(X) = E(X; a,).

For SimCIM and bSB we will only be interested in the dynamics inside the region
[-1,+1]", and we actually want to prevent the system from going outside of this region.
That’s why we formally define that E(x) = +oo outside of [—1,+1]". This potentially
complicates the mathematical formalism but it will not be an issue for the analysis because
we will only be interested in the local behaviour in time in the regular region. When some
components hit the wall, these components will be (temporarily) frozen so all the others
will evolve in their (restricted) regular region. That is why we further define the vector
field g which handles these boundary conditions, and will thus be suitable for defining
both SimCIM and bSB dynamical systems.

g(x;a,pB) = A a,p) - f(x; @, B) (3.39)

where the diagonal matrix A regulates which components are allowed to evolve and which
should be paused because they hit the boundary and additionally their vector field compo-
nents point out of the regular region. That is, we have A(X; @, B) = diag(ay,...,a,); a; = 1
if x; e (=1,+1) or (x; € {—1,+1} & x;f; < 0), a; = 0 otherwise.

It is essential to analyze the energy functional £ with respect to parameters because it
defines vector fields f and g; and thus governs the SimCIM and bSB dynamical systems in
sections 3.8 and 3.9. This energy function will vary in time itself because the parameters

3.7. INTRODUCTION TO SIMCIM AND BSB 57

will vary in time. Concretely, 8 > 0 will be constant over time, while it is crucial that
a = a(t) will decrease monotonically from some initial value a(to some final value «;.
This decreasing regime varies among algorithms. In bSB, a(#) changes linearly, i.e. a(t) =
ap — “="1. In the original SimCIM algorithm, a(?) is a sigmoid function given by the
hyperbolic tangent law a(t) = —(a; — @) tanh(A(t - %)) + @y, where A > 0 is some
positive constant, for example A = 3. Although different regimes for a(#) produce different
solutions and some regimes might be better than the others, we cannot predict which regime
would be the best. The choice of the regime is not carved into the stone and it even seems
arbitrary to a certain degree. Nevertheless, what is important is that a(f) continuously,
monotonically, and relatively slowly decreases in time starting from a(and ending with ;.
Thus, we will usually make « linearly decrease from « to @y, as it is originally proposed
for bSB.

Let us explain the behaviour of energy functional E for arbitrary @ € R. Since J is
symmetric, it is thus orthogonally diagonalizable. Let UTJU = A = diag(4,,...,1,) be
the diagonalization of J such that eigenvalues of J are sorted in descending way Ap.x =
Ay > -+ > A, = Adnin. Denote the change of variables X := U”x. We have that

E(x) = %xTx - Oxlx = SxTx - CXAR = X (1 - DA (3.40)
Here the nice thing is that (57 — §A) is a diagonal matrix so E represented in these trans-
formed coordinates is more comprehensible.
Let us further calculate the second differential of E.

&E
ool al —BJ (3.41)
The eigenvalues of ?927125 are @ — B4y, ..., a — B4, with corresponding eigenvectors being the

same as J’s. The sign of these eigenvalues will locally determine the qualitative behavior
of the dynamical systems which follow in the next sections.

Lemma 3.7.2. For a > BAyax, E is convex with the global minimum at the origin Xy = 0.

Proof. On one hand, E(0) = 0. Write E in the form E(x) = $x'x — §XTJX so because
x'Jx < A X' X, we have

1
E® > Exx—Ba, xx = Lo pa,.0x"x (3.42)
2 2 2
So, for x # 0, this implies E(