Naslov Modeliranje parametara sustava koloidnih otopina nanočestica dobivenih laserskom ablacijom u vodi i primjene
Naslov (engleski) Parameter modeling of system of colloidal solutions of nanoparticles obtained by laser ablation in water and applications
Autor Julio Car
Mentor Nikša Krstulović (mentor)
Član povjerenstva Vedran Đerek (predsjednik povjerenstva)
Član povjerenstva Nikša Krstulović (član povjerenstva)
Član povjerenstva Hrvoje Buljan (član povjerenstva)
Ustanova koja je dodijelila akademski / stručni stupanj Sveučilište u Zagrebu Prirodoslovno-matematički fakultet (Fizički odsjek) Zagreb
Datum i država obrane 2023-11-30, Hrvatska
Znanstveno / umjetničko područje, polje i grana PRIRODNE ZNANOSTI Fizika
Univerzalna decimalna klasifikacija (UDC ) 53 - Fizika
Sažetak Pulsna laserska ablacija u tekućini (eng. pulsed laser ablation in liquid, PLAL) je zelena metoda sinteze koloidnih otopina nanočestica iz plinovite faze interakcijom laserskog zračenja sa materijalom u tekućini. Primjene sintetiziranih nanočestica sežu od katalize, optoelektronike, energetike, senzorike, toksikologije, nanomedicine, tretmana raka, kozmetike do površinski pojačane Ramanove spektroskopije. Ovaj rad bavi se modeliranjem parametara koloidnih otopina srebrnih nanočestica u vodi relevantnih za teorijske i praktične primjene prvenstveno pomoću UV-Vis spektroskopije. Karakterizacija koloidnih nanočestica vrši se i elektronskom mikroskopijom, atomskom mikroskopijom, dinamičkim raspršenjem svjetlosti, rendgenskom difrakcijom, optičkom mikroskopijom te mjerenjem zeta potencijala. Motivacija za izradu ovog rada je dublje razumijevanje optičkih svojstava koloidnih otopina nanočestica osobito lokalizirane površinske plazmonske rezonancije i njihove veze sa strukturalnim parametrima nanočestica. Cilj rada je razvoj analitičkih i numeričkih modela za određivanje veličine i koncentracije koloidnih srebrnih nanočestica te funkcije prilagodbe UV-Vis spektara koloidnih srebrnih nanočestica budući da je riječ o aktualnoj problematici u nanoplazmonskim istraživanjima. Glavni rezultat rada je razvoj inovativnog pristupa u karakterizaciji relevantnih parametara poput raspodjele veličina i koncentracija koloidnih nanočestica koji se svodi na isključivo dvije jednostavne i brze metode (UV-Vis spektroskopiju i optičku mikroskopiju) umjesto konvencionalnih tehnički i vremenski zahtjevnih metoda (elektronsku mikroskopiju i masenu spektroskopiju). U tu svrhu razvijeni su analitički i numerički modeli za dijametre i koncentracije koloidnih srebrnih nanočestica koji su verificirani na 79 neovisnih uzoraka. Također, izvedena je funkcija prilagodbe UV-Vis spektara koja je testirana na 33 neovisna UV Vis spektra koloidnih srebrnih nanočestica te napravljena rekonstrukcija log-normalne raspodjele nanočestica po veličini. Izvedeno je novo svojstvo log-normalne raspodjele nanočestica po veličini koje može biti relevantno za brzo i precizno određivanje veličina i koncentracija nanočestica. Odstupanje simuliranih od eksperimentalnih UV-Vis spektara koloidnih srebrnih nanočestica temeljenih na poznatim dielektričnim funkcijama za srebro rezultiralo je redefinicijom dielektričnih funkcija za srebrne nanočestice na temelju modela razvijenih u ovom radu. Komparativnom analizom razvijenih i postojećih modela pokazane su prednosti i mane u određivanju relevantnih parametara koloidnih otopina metalnih nanočestica. Razvijeni modeli verificirani su za srebrne nanočestice i testirani na nanočesticama metalnih oksida te su potencijalno primjenjivi u nanoplazmonskoj senzorici. Matematička konstrukcija razvijenih modela bazira se na Mievoj teoriji raspršenja, Beer-Lambertovom zakonu i log normalnoj funkciji raspodjele, ali sa inovativnim pristupom i naglaskom na analitičnost konačnih formula. U svrhu primjena sintetizirane su polidisperzne koloidne otopine srebrnih i cink oksid nanočestica čija karakterizacija je napravljena dinamičkim raspršenjem svjetlosti i UV-Vis spektroskopijom. Cilj istraživanja bio je razvoj polimernih nanokompozita sa pojačanom UV zaštitom. To je postignuto impregnacijom sintetiziranih nanočestica na polimerne uzroke PET-a tretirane atmosferskim plazmenim mlazom (APPJ). Polimerni uzorci bez i sa impregniranim nanočesticama tretirani APPJ-om ispitani su infracrvenom spektroskopijom (FTIR), UV-Vis spektroskopijom te mjerenjem kontaktnog kuta kapljice vode na uzorcima. Kvantifikacija UV zaštite dobivenih polimernih nanokompozita dana je UPF faktorima čije vrijednosti su veće za cink oksid nanočestice unatoč manjem broju impregniranih nanočestica u odnosu na srebrne nanočestice. Time je pokazano da uz broj impregniranih nanočestica, na vrijednost UPF faktora utječe i veličina nanočestica. Iako fokusiran na uske aspekte svojstava koloidnih nanočestica, ovaj rad može pridonjeti učinkovitoj i brzoj kvantitativnoj analizi fizikalnih parametara relevantnih za nanotehnološke primjene.
Sažetak (engleski) Pulsed laser ablation in liquids (PLAL) is a green method of nanoparticle synthesis from
gaseous phase by interaction of laser radiation with material immersed in liquid. Applications
of synthesized nanoparticles include catalysis, optoelectronics, energetics, sensorics,
toxicology, nanomedicine, cancer treatment, cosmetics and surface enhanced Raman
spectroscopy. This thesis deals with parameter modeling of colloidal silver nanoparticles
obtained by laser ablation of silver target in water and analyzed mainly by UV-Vis
spectroscopy. Modeled parameters are relevant for theoretical and practical applications.
Characterization of colloidal nanopaticles is also done using electron microscopy, atomic force
microscopy, dynamic light scattering, X-ray diffraction, optical microscopy and zeta potential
measurement. Motivation for this work is deep understanding of optical properties of colloidal
nanoparticles especially localized surface plasmon resonance and their relation with structural
parameters of nanoparticles. The aim of this work is development of analytical and numerical
models for determination of size and concentration of colloidal silver nanoparticles as well as
fitting function of UV-Vis spectra of colloidal silver nanoparticles since it's timely and actual
problematics in nanoplasmonic research. The main result of this work is development of
innovative approach in characterization of relevant parameters as size distribution and
concentrations of colloidal nanoparticles which is based on only 2 simple and rapid methods
(UV-Vis spectroscopy and optical microscopy) instead of conventional technical and time
demanding methods (electron microscopy and mass spectroscopy). In that purpose, analytical
and numerical models for determination of diameters and concentrations of colloidal
nanoparticles are developed and verified on 79 independent samples. Furthermore, fitting
function for UV-Vis spectra is developed and tested on 33 independent UV-Vis spectra of
colloidal silver nanoparticles from which reconstruction of log-normal size distribution of
nanoparticles is made. Additionally, new property of log-normal size distribution of colloidal
nanoparticles is derived which can be relevant for precise and rapid determination of sizes and
concentrations of colloidal nanoparticles. Due to discrepancy between simulated UV-Vis
spectra of colloidal silver nanoparticles and experimental spectra using dielectric functions of
bulk silver, redefinition of dielectric functions for silver nanoparticles is made based on models
developed in this work. By comparative analysis between existing and developed models in this
work, advantages and disadvantages are emphasized in context of precision and rapidity in
determination of diameters and concentration of colloidal nanoparticles. Developed models are
verified for silver nanoparticles and tested on metal-oxide nanoparticles and potentially
applicable in nanoplasmonic sensorics. Mathematical framework for developed models is based
on Mie scattering theory, Beer-Lambert law and log-normal distribution function but with
innovative approach and emphasis on analytical form of final expressions. Considering
applications, polydisperse colloidal solutions of silver and zinc oxide nanoparticles were
synthesized and analyzed using dynamic light scattering and UV-Vis spectroscopy. Purpose of
this research was development of polymers with enhanced UV protection obtained by
impregnation of synthesized nanoparticles on PET polymer samples by treatment with
atmospheric pressure plasma jet (APPJ). Polymer samples with and without nanoparticles,
treated with APPJ were analyzed using infrared spectroscopy (FTIR), UV-Vis spectroscopy
and measurement of contact angle between polymer surface and water droplet. UV protection
of obtained polymer nanocomposites was quantified by UPF factors which were higher for zinc
oxide nanoparticles although their impregnated number was significantly less than of silver
nanoparticles. This showed that not only number of nanoparticles but also their size plays
significant role in values of UPF factors. Although focused on narrow aspects of colloidal
nanopaticles' properties, this thesis can contribute to efficient and rapid quantitative analysis of
physical parameters relevant for nanotechnological applications.
Ključne riječi
laserska ablacija
koloidne srebrne nanočestice
Mieva teorija raspršenja
BeerLambertov zakon
log-normalna raspodjela
lokalizirana površinska plazmonska rezonancija
UPF faktori
Ključne riječi (engleski)
laser ablation
colloidal silver nanoparticles. Mie scattering theory
Beer-Lambert law
log-normal distribution
localized surface plasmon resonance
UPF factors
Jezik hrvatski
URN:NBN urn:nbn:hr:217:309970
Projekt Šifra: IP-2019-04-6418 Naziv: Laserska sinteza nanočestica i primjene Naziv: Laser synthesis of nanoparticles and applications Kratica: LaSyNanoApp Voditelj: Nikša Krstulović Pravna nadležnost: Hrvatska Financijer: HRZZ Linija financiranja: IP
Studijski program Naziv: Fizika Vrsta studija: sveučilišni Stupanj studija: doktorski studij Akademski / stručni naziv: doktor/doktorica znanosti u području prirodnih znanosti (dr. sc. natur.)
Vrsta resursa Tekst
Način izrade datoteke Izvorno digitalna
Prava pristupa Otvoreni pristup
Uvjeti korištenja
Datum i vrijeme pohrane 2024-02-15 13:38:44