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1. INTRODUCTION  

1.1 The study species 

 Willow Warbler (Phylloscopus trochilus) and Chiffchaff (Phylloscopus collybita) 

(Fig. 1) are two sympatric bird species which belong to order of the Leaf warblers 

(Phylloscopus), family of the Old World warblers (Sylviidae), sub-order songbirds (Oscines), 

order passerines (Passeriformes) (Clement et al. 2006). They are two most numerous and most 

widely distributed Leaf warbler species in the Western Palearctic (Cramp 1992), and both 

commonly breed across Europe (Fig. 2). 

Figure 1. Study species. A: Willow Warbler (Phylloscopus trochilus), B: Chiffchaff (Phylloscopus 

collybita). (Photos: Steve Garvie, http://ibc.lynxeds.com/) 

 Willow Warbler is a polytypic species that includes three subspecies: P. trochilus 

trochilus, P. t. acredula and P. t. yakutensis (Svensson 1992).  Subspecies P. t. trochilus and 

P. t. acredula are present in Poland during breeding and migration seasons. Breeding grounds 

of P. t. trochilus extend from western and central Europe to southern Scandinavia, while P. t. 

acredula breeds in central and eastern Europe, and in the northern part of Scandinavia and 

western Siberia (Ciach 2009). The populations of both subspecies of Willow Warbler that 

occur in Poland during spring (April-May) and autumn (September-November) migrations, 

and during breeding, are regular long-distance migrants (Bakken et al. 2003, Frasson and 

Hall-Karlsson 2008). Ringing of Willow Warblers in Europe has confirmed the existence of a 

migratory divide between two subspecies across central Scandinavia (Chamberlain et al. 

2000, Bensch et al. 1999). The subspecies P. t. trochilus, breeding in southern Scandinavia, 

migrate along the western migration flyway to the wintering grounds in sub-Saharan west 

Africa, while northern-Scandinavian P. t. acredula migrate along the eastern migration 

flyway to winter in east, central and south-east Africa (Svensson 1992, Chamberlain et al. 
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2000, Bensch et al. 1999). Willow Warblers moult twice a year, both at the breeding and at 

the wintering grounds (Jenni and Winkler 2011). 

 Chiffchaff has a more complex intra-specific differentiation, with the status of some 

taxa still unresolved (Ciach 2009, Price 2010, Alström et al. 2013). The subspecies which 

breed in and migrate through Poland are P. collybita collybita and P. c. abietinus. Breeding 

grounds of P. c. collybita span from Iberian Peninsula to central and eastern Europe, and also 

reach southern Sweden (Hansson et al. 2000). European populations of P. c. collybita have a 

mixed migration system. Those breeding in the northern and central Europe are obligatory 

migrants, but those breeding more southerly are partial migrants, with a part of the population 

undertaking short-distance migration and a part being sedentary (Cramp 1992). Wintering 

grounds of P. c. collybita span western Europe, the Iberian Peninsula, the Mediterranean Sea 

basin, and west Africa (Bakken et al. 2003). P. c. abietinus breeds in northern and eastern 

Europe, from the northern part of Scandinavia to the Ural Mountains (Hansson et al. 2000). 

All European populations of this subspecies are regular long-distance migrants to the winter 

quarters in the eastern part of the Mediterranean Sea basin, Middle East and north-eastern and 

central Africa (Ciach 2009). Chiffchaffs migrate mainly during March-April and August-

October, and undergo complete moult at their breeding grounds (Jenni and Winkler 2011, 

Bakken et al. 2003, Frasson and Hall-Karlsson 2008).  

 

Figure 2. Distribution ranges of Willow Warbler (A) and Chiffchaff (B) in Europe and Africa. Yellow 

– breeding range, green – overlapping breeding and wintering range, blue – wintering range, striped – 

range where species are observed only on migration. (Adapted from: https://en.wikipedia.org/; 

accessed on 10 Jan 2016) 
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 Willow Warbler and Chiffchaff are insectivorous species which can populate a wide 

range of habitats, and often coexist in the same areas, using the same feeding niches (Hanski 

& Tiainen 1991). Both species, however, have distinct habitat preferences. Willow Warbler 

prefers birch and willow thickets, tree plantations and early succession forest stages, shrubby 

areas of moor meadows and young forests. Chiffchaff is most commonly found in mixed and 

coniferous forests and riparian and alder swamp forests (Tiainen 1982, Hanski and Tiainen 

1991, Svensson 1992). Their habitat preferences during the non-breeding period are not well 

known (Ciach 2009). 

 

1.2 Sexing of birds based on sexual size dimorphism 

 Inter-specific and intra-specific differences in animals' morphology occur as a result of 

adaptation to environment and specific way of living. Differences in morphological traits 

within a single species are most frequently observed among geographically separate 

populations and between the sexes (James 1982). Sexual size dimorphism is common among 

birds, with males usually being larger than females, however a reverse sexual dimorphism 

also occurs in some bird orders. This size dimorphism often manifests in wing length, tarsus 

length or body mass (Svensson 1992). Most pronounced size dimorphism, with males 10-20% 

larger than females, is generally found among polygynous and lekking species (Payne 1984), 

while in socially monogamous species males are on average about 5% larger than females 

(Murphy 2007). While sexual selection is probably responsible for some differences in body 

size (Payne 1984, Székely et al. 2007), evolution of sexual size dimorphism might also be 

attributed to intra-specific competition for resources (Temeles et al. 2010), differential 

migration strategies (Leisler and Winkler 2003, Moore et al. 2003), parental roles and 

energetic strains during reproduction (Monaghan and Metcalfe 1986, Sandberg and Moore 

1996), population density (Björklund and Lindén 1993) and other factors.  

 Aside from studies on its functional significance, numerous studies focus on size 

sexual dimorphism also to devise sexing criteria useful in other types of research (e.g. Ellrich 

et al. 2010, Huallacháin and Dunne 2010, Kulaszewicz et al. 2013, Henry et al. 2015). Sex 

determination of birds is crucial in behavioural (Balthazar and Ball 1995), ecological 

(Nyström 1990), conservation (Ito et al. 2003) and migration (Remisiewicz and Wennerberg 

2006) studies. However, a majority of passerine species are monomorphic in plumage, which 

makes their sexing challenging (Price and Birch 1996). Most of the existing sexing methods 



4 

 

are limited to the season in which they can be applied (e.g. cloacal protuberance, brood patch 

or breeding behaviour), or are time-consuming, expensive or invasive (e.g. genetic analysis, 

hormone analysis, laparoscopy) (Svensson 1992, Griffiths et al. 1998, Eason et al. 2001, 

Risser 1971). Creating a simple sexing criteria for a species, based on morphology, is 

therefore advantageous. To develop and verify sexing criteria based on morphology, a 

sufficient sample of individuals of one species needs to be measured and sexed by molecular 

or another reliable sexing method (Griffiths et al. 1998, Morhina et al. 2013). Sexing criteria 

can then be derived from measurements of this sample of sexed birds, simply by dividing a bi-

modal distribution or by application of logistical regression (Ellrich et al. 2010), discriminant 

analysis (Wojczulanis-Jakubas and Jakubas 2011), or principal component analysis 

(Remisiewicz and Wennerberg 2006).   

 In both Willow Warbler and Chiffchaff, sexual dimorphism is most pronounced in 

longer wings in males than in females (Tiainen 1982, Tiainen and Hanski 1985). Several 

authors suggested sexing criteria based on the wing length for Willow Warbler (Williamson 

1967, Norman 1983, Tiainen & Hanski 1985, Svensson 1992, Ellrich et al. 2010) and for 

Chiffchaff (Ticehurst 1938, Williamson 1967, Lövei 1983, Tiainen & Hanski 1985, Geen 

1988, Svensson 1992). However, only Ellrich et al. (2010) based their results on a reasonably 

large sample of DNA-sexed Willow Warblers, while similar study has not been conducted on 

Chiffchaffs. Furthermore, none of the previous studies were done on populations migrating 

through northern Poland. Ellrich et al. (2010) argue that the morphological sexing criteria 

generally cannot be applied over large geographical scale, because of geographical variation 

of subspecies and population, which makes the previously suggested sexing criteria for 

Willow Warblers and Chiffchaffs of limited application to these species migrating through 

northern Poland.  

 

1.3. Timing of spring migration 

 Spring migration is generally considered more time constrained than autumn 

migration, because of numerous reproductive consequences that the timing of arrival at the 

breeding grounds may have for an individual (Smith and Moore 2004, Newton 2010). Birds 

fly faster in spring than in autumn and spend less time on stopover sites, which indicates a 

strong selection for saving time during spring migration (Drent et al. 2006, Nilsson et al. 

2013, Alerstam 2011). Early arrival at the breeding grounds gives birds advantage in 
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competition for better quality territories (Kokko 1999). This allows early arriving individuals 

to start breeding earlier than those arriving late (Moore et al. 2005), and thus increase their 

reproductive performance (Smith and Moore 2004). Individuals of more favourable 

morphological traits are commonly observed to arrive and mate first, with the usual 

explanation stating that only birds in good condition can survive costs associated with early 

arrival (Kokko 1999, Møller et al. 2009). 

 Differential migration of the sexes is commonly observed in migratory birds (Coppack 

and Pulido 2009), and during spring migration usually occurs in the form of protandry 

(Morbey and Ydenberg 2001, Møller 2004, Rubolini et al. 2004, Kokko et al. 2006). 

Protandry refers to the earlier arrival at the breeding grounds of males than of females, caused 

by differences in their migration timing (Maggini and Barlein 2012). A number of hypotheses 

have been suggested to explain the evolutionary causes of protandry, however its adaptive 

significance is still not fully understood (Morbey and Ydenberg 2001). The two most 

supported, mutually inclusive explanations for evolution of protandry are the ''rank 

advantage'' hypothesis and the ''mate opportunity'' hypothesis (Morbey and Ydenberg 2001, 

Kokko et al. 2006, Møller et al. 2009). The rank advantage hypothesis, according to which 

competition for breeding sites amongst males drives selection for the early arrival, has 

received wide support, since in birds the territorial sex generally arrives earlier than the 

non-territorial sex (Nystörm 1997, Morbey and Ydenberg 2001, Tøttrup and Thorup 2008). 

The ''mate opportunity'' hypothesis relies on sexual selection, as early arrival improves males' 

chance to acquire a mate (Morbey and Ydenberg 2001, Kokko et al. 2006, Møller et al. 2009). 

Studies on the dependence of protandry on individuals' condition and the consequences of 

early arrival for fitness (Møller et al. 2009, Reudink et al. 2009), along with some theoretical 

models (Kokko et al. 2006), provide support for the ''mate opportunity'' hypothesis. However, 

Coppack and Pulido (2009) argue that available information on sexually differential migration 

is biased towards sexually dimorphic species, and point out the need for more studies on 

species monomorphic in plumage (such as Catry et al. 2004, Catry et al. 2005, Bowlin 2007, 

Edwards and Forbes 2007) to be included in comparative studies of protandry. Protandry is 

mostly achieved through spatial sexual segregation over latitude (Catry et al. 2007), with 

males wintering closer to the breeding grounds than females, and the differential onset of 

migration in the spring, with males starting their migration earlier than females (Maggini and 

Barlein 2012).  
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 Differential migration in the form of protandry has been previously observed in both 

Willow Warbler and Chiffchaff (Nystörm 1997, Jakobsson 1988, Catry et al. 2005). Early 

arrival of males in these species may be advantageous for a number of reasons, for example it 

minimizes the risk of the previously owned territory being occupied by a new resident 

(Tiainen 1982), gives an opportunity to choose among a wider range of unoccupied territories 

(Nystörm 1997) and allows for the familiarization with the territory and its resources before 

breeding (Jakobsson 1988). Trends of protandry and sex-specific migration timing have not 

yet been studied for birds migrating through northern Poland.  

 Different weather conditions also have a great influence on the process of migration, 

and therefore on migration phenology (Berthold 2001, Elkins 2004, Newton 2010). According 

to Berthold (2001), migrants react directly to local weather conditions (wind, precipitation 

and temperature) rather than to global weather conditions as a whole. One of those local 

weather factors, temperature, directly influences the energy balance of birds during spring 

migration by affecting available food supplies through vegetation growth, insect activity and 

ice meltdown (Newton 2010). It is therefore advantageous for birds to adjust their migration 

timing to short-term and long-term variations in temperature (Elkins 2004, Marra et al. 2005, 

Newton 2010, Kölzsch et al. 2015). Short-distance migrants usually arrive at their breeding 

sites earlier, and are more responsive to the variation in weather conditions, than long-

distance migrants (Berthold 2001, Bridge et al. 2010, Newton 2010). This pattern probably 

occurs because short-distance migrants winter closer to their breeding grounds than long-

distance ones, and thus need less time to return there during spring migration, which allows 

them more flexibility in adjusting their passage to weather conditions (Kokko 1999, Newton 

2010). Additionally, weather conditions steadily improve during spring, so the short-distance 

migrants are more likely to be delayed by poor weather than the long-distance migrants 

(Elkins 2004). Dorka (1966) observed year-to-year differences in arrival dates of Chiffchaffs 

in relation to weather conditions, but found no such differences in Willow Warblers. Several 

other studies described variation in median arrival dates of Willow Warblers in relation to 

climate change and weather conditions at their wintering grounds (Saino et al. 2007, Saino 

and Ambrosini 2008, Hedlund et al. 2015). Similar studies have not been conducted on 

populations of Chiffchaff and Willow Warbler migrating through northern Poland.  
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1.4 Study aims 

 This study focused on the analysis of populations of the Willow Warbler and the 

Chiffchaff that migrate through northern Poland in spring and autumn. The main aims of the 

study were:  

1. To optimise the DNA-based sexing method for Willow Warbler and Chiffchaff. 

2. To determine the extent of sexual dimorphism in these two species using DNA-based 

sexing method. 

3. To develop the best morphological sexing criteria for the population mixtures of each 

species observed in northern Poland, using the measurements of the DNA-sexed 

individuals.  

4. To determine sex differences in the migration timing of these two species, by applying 

the developed sexing criteria to the past ringing data. 

5. To identify potential year-to-year differences in spring migration timing of males and 

females in both species, and to discuss them in the context of the effects of weather on 

migration.   
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2. STUDY AREA 

 Measurements and samples used in this study were collected at the Bukowo-Kopań 

ringing site, as a part of an ongoing research program ''Operation Baltic'', conducted since 

1961 until present by the Bird Migration Research Station of the University of Gdańsk 

(Poland). The research area is situated along the southern Baltic Sea shore in northern Poland 

(Fig. 3). Data used in this study was collected during autumn and spring migration seasons in 

periods 2007-2009 at the ringing location Kopań and 2012-2015 at the location Bukowo. The 

exact locations of these two ringing sites are about 20 km apart along the same part of the 

coast, and thus are referred to as one ringing station Bukowo-Kopań. Data from 2010 (autumn) 

and 2011 (spring and autumn) was not included because Kopań did not operate long enough 

to cover full migration periods of both target species during those seasons. 

        

Figure 3. Locations of the two ringing stations where the data was collected: Kopań (54º27'46''N, 

16º24'38''E) and Bukowo (54º20'13''N, 16º14'36''E). (Adapted from: http://d-maps.com/; Google Earth, 

mapped on 29 Mar 2014, accessed on 18 Sep 2015) 

 The mist-nets catching birds at the Kopań ringing site were located in a mixed forest 

of birch (Betula pendula) and Scots pine (Pinus sylvestris) and over a wet meadow with 

scattered fruit bushes (Crataegus sp., Prunus avium, Prunus spinosa and other). During the 

autumn migration seasons 2007-2009 additional mist netting location was used in reed beds 

(Phragmites australis) at the edge of Lake Kopań (Fig. 4). Willow Warblers and Chiffchaffs 

were mostly caught in the nets on a wet meadow. 
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Figure 4. Habitats at mist net locations of Kopań ringing site. A: mixed forest of birch and Scots pine, 

B: wet meadow with scattered fruit bushes, C: reed beds. (Photos: Katarzyna Stępniewska) 

 Bukowo ringing site is located on a narrow spit between the Baltic Sea and Lake 

Bukowo, and covers a wide range of different habitats. Most of the nets were set up in a 

riparian forest of alder (Alnus glutinosa), ash (Fraxinus excelsior) and birch (Betula pendula), 

with undergrowth of fruit bushes (Crataegus sp., Viburnum opulus, Prunus avium, Prunus 

spinosa, Sorbus acuparia and other). Smaller number of nets were set up on yellow dunes and 

artificial sandbank overgrown by marram grass (Ammophila arenaria) and in a stripe of Scots 

pine trees (Pinus sylvestris) and scattered willow bushes (Salix sp.), as well as in the reed beds 

(Phragmites australis) at the bank of Lake Bukowo (Fig. 5).   

 

Figure 5. Habitats present at mist net locations of Bukowo ringing site. A: riparian forest with 

undergrowth of fruit bushes, B: yellow dunes with Scots pine and willow trees, C: reed beds. (Photos: 

Iva Šoštarić) 



10 

 

3. MATERIAL AND METHODS 

3.1 Data and sample collection  

 Field work for this study was carried out at Bukowo-Kopań ringing site from 2007 to 

2015. I collected the material in the field during the spring season of 2015. The two species in 

focus, Willow Warbler and Chiffchaff, were captured with standard ornithological mist-nets 

of 16 mm mesh during their spring (26 March – 26 May) and autumn (5 August – 5 October) 

migration through the study sites (Tab. 1).  

Table 1. Operating schedule of Bukowo-Kopań ringing site during spring and autumn migration 

seasons analysed in this study.  

Season Location Year Start End 

spring 

Bukowo 2015 27 Mar 26 May 

Bukowo 2014 21 Mar 27 May 

Bukowo 2013 25 Mar 22 May 

Bukowo 2012 26 Mar 21 May 

Kopań 2010 24 Mar 17 May 

Kopań 2009 25 Mar 17 May 

autumn 

Bukowo 2014 3 Aug 7 Nov 

Bukowo 2013 4 Aug 3 Nov 

Bukowo 2012 13 Aug 4 Nov 

Kopań 2009 13 Aug 9 Nov 

Kopań 2008 13 Aug 14 Nov 

Kopań 2007 12 Aug 14 Nov 

 

 Each captured individual was identified to the species, ringed and aged. Individuals 

were divided into three age categories: adult (A), immature (I) and unknown age (L). In 

autumn, adult Willow Warblers (birds in their second calendar year or older) can be identified 

by the white background colour of their underparts with occasional distinct yellow streaking 

on throat and breast, while immatures (birds in their first calendar year) usually have evenly 

coloured yellow or buff underparts. Adult Chiffchaffs are identified by fresh plumage with 

single-generation feathers and primary coverts with rounded tips and neat greenish edges, 

while the immatures have more worn flight feathers and a contrast between moulted and 

unmoulted greater coverts. Immature Willow Warblers can also be identified by the level of 

skull ossification until mid-September, and immatures of Chiffchaffs until the end of August 

(Svensson 1992, Jenni and Winkler 2011, Busse 2000). Both adult and immature Willow 
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Warblers undergo complete moult in their wintering quarters, therefore obtaining ''adult'' 

plumage before returning to their nesting site. For that reason during spring migration Willow 

Warblers in their third calendar year or older can no longer be distinguished from individuals 

in their second calendar year, and are therefore all regarded as adults. In spring, adult 

Chiffchaffs (birds in their third calendar year or older) can be recognized by well-preserved 

tips of primary feathers and broad and neat tips of primary coverts. The immature Chiffchaffs 

(birds in their second calendar year) may show abraded primary feathers, and occasionally 

moult limit in greater coverts and tail feathers. However, not all immatures can be identified, 

thus some birds are aged only as full-grown (Svensson 1992, Jenni and Winkler 2011).  

 The following set of measurements was taken for most of the captured individuals: 

wing length (according to Svensson's (1992) ''maximum chord'' method), distance between the 

longest primary and the first secondary feather ("Kipp's distance"; Kipp 1958), distance 

between the tips of the first and the second primary feathers, distance between the first 

primary and the longest greater covert, wing formula, tail length (Busse 2000), tarsus length 

(according to Svensson's (1992) ''alternative method'') and body mass. The tarsus was 

measured with calipers with the accuracy of 0.1 mm, and the rest of the measurements were 

taken with a ruler with the precision of 1 mm, the body mass was taken with an electronic 

balance with a precision of 0.1 g. In each individual the amount of fat in the furculum pit and 

on the belly was scored, according to the eight-score scale (Busse 2000). Most of these 

measurements were collected throughout the years on Bukowo-Kopań ringing station. But the 

tarsus was measured only during spring migration in 2015. Measuring was done by mutually 

calibrated bird ringers collaborating in the ''Operation Baltic'' research program. For some 

birds not all measurements were taken for various reasons (broken or very worn feathers, bird 

escaped during measuring etc.), so I chose only the individuals that had all the measurements 

required for my study available (Appendix, Tab. A1 and Tab. A2).  

 Blood and feather samples were collected only during the autumn migration in 2014 

and spring migration in 2015. I collected the blood samples and measured the birds myself, 

after calibration with my supervisor Dr Magdalena Remisiewicz, during most of the spring 

season in 2015. Blood samples (5-20 µl) were taken from individual's brachial vein (Owen 

2011) and preserved in 70 % ethanol in clearly marked vials. For three individuals samples of 

6-7 feathers were taken from birds' flanks, and preserved in marked vials. Vials with both 

types of samples were stored in closed boxes, unexposed to light, and kept in a refrigerator at 

-4 °C for further analysis.   
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 During the autumn migration in 2014, blood samples were collected from 82 Willow 

Warblers and 7 Chiffchaffs.  In the following spring migration of 2015, blood samples were 

collected from 36 Willow Warblers and 51 Chiffchaff, and feather samples were collected 

from one Willow Warbler and two Chiffchaffs (Tab. 2).   

Table 2. Total number of blood and feather samples collected from Willow Warblers and Chiffchaffs 

during spring (2015) and autumn (2014) migration season. 

 Willow Warbler Chiffchaff 
 spring 2015 autumn 2014 spring 2015 autumn 2014 

adult 37 1 18 - 
immature - 66 29 7 
unknown - 15 6 - 

total 37 82 53 7 

 

 During autumn 2014, samples were collected from most of the captured individuals in 

period from 6 August to 21 September, but there was no sampling during the rest of autumn 

migration of both species. During spring 2015, the sampling covered the whole migration of 

the target species, from 4 April to 26 May. Some individuals were not sampled for random 

reasons, such as poor condition of a bird or a short-term absence of the personnel trained in 

taking samples. Because these were random omissions of a few birds on random dates, we 

assumed that sampling covered the whole spring migration of both species and could be used 

for analysis of their migration timing.  

 

3.2. Laboratory DNA sexing of birds from samples 

 The sex of the sampled individuals was determined using standardised PCR-based 

molecular techniques. These techniques rely on differences in intron sizes within genes to use 

them as markers for Z and W chromosomes. Amplicons produced from homogametic male 

genome (ZZ) are therefore distinguishable from those produced from heterogametic female 

genome (ZW), based on their size (Griffiths et al. 1998, Bantock et al. 2008). Most of the 

DNA samples were analysed using standard pair of primers for sexing of most birds, called 

P2/P8 (Griffiths et al. 1998). These primers are complimentary to intron regions of chromo-

helicase-DNA gene (CHD) occurring on both sex chromosomes of most bird species. While 

the coding region of the gene is highly-conserved, its intron regions vary in length between 

the two sex chromosomes W and Z, enabling us to make a distinction between alleles 
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CHD-W (at chromosome W, shorter and exclusive to females) and CHD-Z (at chromosome Z, 

longer and present in both sexes). Primer pair P2/P8 produces amplicons of the size about 

300-400 bp. For unknown reasons, 11 % of DNA samples could not be amplified using the 

primer pair P2/P8. After numerous adjustments were made to the existing protocol, it still 

failed to produce any results, so an alternative primer pair F2/R1 (Bantock et al. 2008) was 

applied. Primer pair F2/R1 binds to the intron region of the gene for avian mitochondrial 

ATP-synthase α-subunit (ATP5A1), and enables distinction of sexes based on the same basic 

principle as described for the P2/P8 primer pair. Amplicons produced with F2/R1 primers are 

250-300 bp long.  

3.2.1 Isolation of DNA  

 DNA was extracted from blood samples using the Blood Mini Kit (A&A 

Biotechnology). Firstly the blood clot was transferred from its initial vial into a labeled 

microcentrifuge tube, and 100 µL of Tris buffer (pH 8.5), 200 µL of universal lysis solution 

LT (containing chaotropic salts and non-ionic detergent) and 20 µL of Proteinase K were 

added. The entire mixture was incubated with gentle shaking in thermomixer for 20 min at 

37 °C. The non-ionic detergent with Proteinase K facilitated lysis of the blood cells and 

release of DNA into the solution. After incubation the solution was transferred into previously 

labeled DNA purification columns, which were then centrifuged for 1 min at 13 000 rpm.  In 

this step, chaotropic salts contained in universal lysis solution LT enabled DNA to bind to 

silica membrane of the purification column, allowing the contaminants (fragmented proteins, 

salts, polysaccharides, etc.) to wash through. Higher purity was insured by the two subsequent 

wash steps, during which a total of 900 µL of A1 washing solution was forced through the 

purification column at 13 000 rpm. The column was then transferred into a new, clearly 

labeled microcentrifuge tube, and 30 µL of low-salt Tris buffer was added directly onto the 

membrane in the column to elute DNA. The membrane was incubated for 5 min at room 

temperature, and centrifuged afterwards for 3 min at 13 000 rpm. The resulting solution of 

purified DNA was stored at 4 °C for further analysis. 

 From feather samples DNA was extracted from pulp cells inside the quill of feathers. 

Since this type of sample contains smaller amount of cells to isolate DNA from, I used 

Sherlock AX (A&A Biotechnology) DNA isolation kit for forensic and troublesome samples 

for this purpose.  Firstly, quills of feathers were cut with sterile blades and transferred into a 

microcentrifuge tube containing 300 µL of deionised H2O, 300 µL of L1.4 lysis buffer and 20 

µL of Proteinase K. This mixture was then incubated in the thermomixer for 16 h, at 50 °C 
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and with gentle shaking. During the incubation DNA was released from the lysed cells. After 

incubation the sample was filtrated through filtration column for 1 min at 13 000 rpm, to 

separate quill leftovers from lysed cell material. The filtrate was then applied to Spin 10AX 

column, to bind the containing DNA onto column's ion-exchange membrane. This was 

followed by two wash steps, during which 600 µL of washing solution K2 was forced through 

the column at 8 000 rpm to remove various impurities (fragmented proteins, salts, 

polysaccharides, etc.) from the sample. DNA was then eluted from the membrane using 350 

µL of high salt concentration elution buffer K3 and by centrifuging it at 8 000 rpm for 1 min. 

To precipitate the DNA, 5 µL of precipitation enhancer and 600 µL of isopropanol were 

added to the filtrate. After mixing, supernatant was removed and the remaining blue pellet 

containing DNA was washed with 70 % ethanol. The DNA pellet was then dried for 10 min 

and re-dissolved in 30 µL of Tris buffer (pH 8.5). Purified DNA solution was stored at 4 °C to 

await further analysis. Spectrophotometric analysis of concentration and purity of isolated 

DNA was performed on BioPhotometer (Eppendorf), using 2 µL of each DNA sample.  

3.2.2 Polymerase chain reaction (PCR)  

 Purified DNA was afterwards amplified by PCR. The 16 µL reaction mix contained 

2 µL of DNA sample, 1 µL of each primer (10 mM), 1 µL of additional MgCl2 solution 

(25 mM), 3.5 µL of sterile-filtered H2O and 7.5 µL of REDTaq® ReadyMix™ PCR Reaction 

Mix (Sigma-Aldrich). This PCR Reaction Mix served as a source of Taq DNA polymerase 

(0.06 unit/µL), reaction buffer (pH 8.3), dNTPs (0.4 mM) and MgCl2 (3 mM). Although not 

strictly necessary, additional MgCl2 was always included in the total reaction mix, as earlier 

tests showed that it significantly improves amplification success when used in the listed 

concentration. All PCRs were performed on T100™ Thermal Cycler (Bio-Rad); parameters 

used in reactions are listed in Table 3.   

The sequences of the P2/P8 primers are as follows (Griffiths et al. 1998): 

P2: 5'-TCTGCATCGCTAAATCCTTT-3' 

P8: 5'-CTCCAAAGGATGAG[G/A]AA[T/C]TG-3' 

Alternative, F2/R primer sequences are the following (Bantock et al. 2008): 

F2: 5'-CCTCAGGACAAGGGAGGGGGAAATGTA-3' 

R1: 5'-CCCCCTCCCTTGTCCTGAGGGGATTC-3' 
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Table 3. Cycling parameters for PCR reactions using P2/P8 and F2/R1 primer pairs. 

 P2/P8  F2/R1  

step cycles temp. [°C] time [s] cycles temp. [°C] time [s] 

initial denaturation 1 94 120 1 94 120 

denaturation  

40 

94 30 

29 

94 45 

annealing  50 30 48 45 

extension  72 120 72 120 

final extension 1 72 300 1 72 300 

 

3.2.3 Electrophoresis of PCR products on agarose gel  

 The obtained PCR products were separated using horizontal gel electrophoresis. 

Amplicons originating from P2/P8 primer pair were separated on a 3.5 % agarose gel, while 

the shorter amplicons obtained from F2/R1 primers required denser, 4 % agarose gel (Basica 

LE, Prona).  During the preparation of the gel, Midori Green Advanced DNA Stain (NIPPON 

Genetics) was added to enable subsequent DNA visualization. Midori Green is a dye which 

emits green fluorescence when bound to DNA, and is commonly used as a non-cancerogenic 

alternative to ethidium bromide. Gels were run in Bio-Rad electrophoresis chamber, 

conditions adjusted to the length of amplicons which were being separated (Tab. 4). After the 

electrophoresis, the gels were viewed under UV light (Fig. 6). The length of products was 

determined by comparison with the GeneRuler 50 bp DNA Ladder (Thermo Scientific). 

Table 4. Conditions of electrophoresis used for amplicons obtained with the use of P2/P8 and F2/R1 

primer pairs. 

 P2/P8 F2/R1 

region of amplicon lengths 300-400 bp 250-300 bp 

concentration of agarose in gel  3.5 % 4 % 

voltage 75 V 110 V 

running time 120 min 60 min 
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Figure 6. PCR products separated on agarose gel. A: amplicons obtained with P2/P8 primer pair (M: 

DNA ladder / molecular weight marker, 1-3: males, 4-6: females). B: amplicons obtained with F2/R1 

primer pair (M: DNA ladder / molecular weight marker, 2-3: males, 4-6: females).  

 

3.3. Analysis of morphological data  

3.3.1. Initial comparison of chosen morphometric parameters  

 The measurements and the capture date of birds ringed in 2007-2010 and 2012-2015 

were used for analysis of biometric features and migration timing of Willow Warblers and 

Chiffchaffs. The age classes (adults, immatures and birds of unknown age) were treated 

separately for the Willow Warbler, but were combined for the Chiffchaff, because of the low 

sample sizes of each age class.  

 Morphological measurements chosen for analysis were the following: wing length (W), 

distance between the first and the second primary feather (P1P2), distance between the longest 

primary feather and the first secondary feather (K), distance between the first primary and the 

longest greater covert (P1GC) and tarsus length (S). Additionally, relative distance of first 

primary feather (P1r) was calculated for some groups of individuals according to the formula: 

P1r = W – D2 – P1P2, where D2 is distance from the tip of the second primary feather to the 

wing tip. To provide measure of sexual dimorphism, the Storer’s dimorphism index (DI, 

Storer 1966) was calculated according to the formula: DI = 100 (f – m) / 0.5 (f + m), where f 

and m are the mean values of analysed measurement in females and males, respectively. 
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Negative value of this index indicates that the males’ measurement were greater than those of 

the females. Wing shape of individuals was described using three indices calculated from the 

wing formulas (Tab. 5): IE – wing asymmetry index (Busse 1967), IB – Busse's wing 

pointedness index (Busse 1967) and IH – Hołyński's index (Hołyński 1965). 

Table 5. Formulas and interpretations of wingtip shape indices used. W – wing length, ∑p – sum of 

primary distances proximal to wing tip, ∑d – sum of primary distances distal to wing tip. 

Wingtip shape index Formula Original author’s interpretation 

Wing asymmetry index (IE) 
 

increasing with wing asymmetry 

Busse's wing pointedness 

index (IB)  
increasing with wing pointedness  

Hołyński's index (IH) 
 

increasing with wing pointedness 

and symmetry  

 

 Two-tailed t-test with equal variances, performed in Microsoft Excel 2010, was used 

to compare these measurements between age and sex groups of genetically sexed birds. Only 

the DNA-sexed individuals captured during the same migration season were compared. The 

accepted significance level was P < 0.05. 

3.3.2 Deriving the sexing criteria 

 A single measurement that provided the best distinction between sexes (wing length) 

was used to establish the basic morphological sexing criteria for both species. To obtain a 

better resolution of sexing by combining the wing length with other measurements, I applied 

Principle Component Analysis (PCA, Zar 1999) using Statistica 12.0 software (StatSoft, Inc. 

2013) and FactoMineR package (Husson et al. 2008) of R software ver. 3.1.3 (R Development 

Core Team 2007). For the PCA I combined wing length with those other measurements that 

showed highly significant difference between the sexes into a single parameter, the body size 

coefficient, derived as PC1, which could separate the sexes more successfully.  The best PC1 

was calculated using measurements of DNA-sexed birds, along with the available 

measurements of unsampled individuals from all of the seasons analysed. This way the PC1 

values of DNA-sexed birds could be used to determine the morphological criteria to separate 

the sexes using the PC1 values calculated also for the larger sample of unsexed individuals. 

The different body size coefficients obtained by combinations of different measurements were 
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compared based on their efficiency to separate DNA-sexed individuals. The efficiency of 

sexing by a given PC1 was less than 100 % if the values of this coefficient overlapped 

between the DNA-sexed males and females, and so in this overlap zone they could not be 

reliably sexed based just on this PC1.   

  

3.4 Analysis of migration timing  

 Timing of migration was compared between individuals that had been previously 

sexed morphologically or genetically. Capture dates of males and females ringed during all 

analysed migration seasons combined were compared by non-parametric Mann-Whitney 

U-test. Non-parametric Kruskall-Wallis test and post-hoc Mann-Whitney U-test were applied 

to compare migration dates of males and females among different years. These analyses were 

performed using Statistica 12.0 software (StatSoft, Inc. 2013), with the accepted significance 

level for all statistical analyses P < 0.05. I also compared changes in daily ringing numbers of 

Chiffchaffs with changes of average daily temperature during six spring migration seasons. 

The temperature was measured at the weather station in Łeba, located on the Baltic coast 

about 90 km from Bukowo-Kopań ringing site. 
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4. RESULTS  

4.1 DNA sexing of Willow Warblers and Chiffchaffs  

 The concentration of isolated DNA averaged 35.5 ± 0.2 µg/mL for DNA from blood 

samples and 7.1 ± 0.4 µg/mL for DNA from feathers. Ratio of absorbance at 260 and 280 nm 

was used to assess purity of isolated DNA, and A260/280 averaged 1.76 ± 0.35 (blood samples) 

and 1.82 ± 0.11 (feather samples). No significant differences in concentrations of isolated 

DNA between the two species were observed.    

 All of the 119 properly sampled individuals of Willow Warbler were sexed 

successfully (Tab. 7). Alternative primer pair F2/R1 was used in analysis of 19 samples which 

could not be amplified using the standard P2/P8 primer pair. Among 60 sampled individuals 

of Chiffchaff, 55 (92 %) were sexed successfully (Tab. 7). Most were amplified with P2/P8 

primers, and 4 samples were amplified using the primer pair F2/R1. Five samples did not 

produce any results with either of the primers.  

Table 7. Results of sexing of Willow Warblers and Chiffchaffs from blood and feather samples 

collected during autumn 2014 and spring 2015. 

 
Willow Warbler Chiffchaff 

spring 2015 autumn 2014 spring 2015 autumn 2014 

 male female male female male female male female 

adult 28 9 - 1 15 3 - - 
immature - - 37 29 11 12 3 3 
unknown - - 10 5 7 1 - - 

 

4.2 Morphological sexing of Willow Warbler and Chiffchaff  

4.2.1 Comparison of morphological features between the sexes  

 For the comparison of morphological features between sexes, three groups of birds 

with sufficient sample sizes of DNA-sexed individuals were chosen: immature Willow 

Warblers caught in autumn 2014, adult Willow Warblers caught in spring 2015, and 

Chiffchaffs (age groups combined) caught in spring 2015. To increase the sample sizes of the 

two latter groups I included into analyses of morphology one female Willow Warbler and one 

female Chiffchaff caught during incubation period and sexed by their prominent 

female-shaped brood patch (Svensson 1992).  
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4.2.1.1 Comparison of morphological features between the sexes in Willow Warbler 

 In adult Willow Warblers caught in spring 2015, males had on average 5.4 mm longer 

wing, 2.1 mm longer P1P2 distance and 0.7 mm longer tarsus when compared to the adult 

females. The differences between the sexes in the remaining morphological traits were not 

significant. In immature Willow Warblers caught in autumn 2014, males had on average 

4.9 mm longer wing, 2.3 mm longer P1P2 distance and 1.7 mm longer K distance when 

compared to the immature females. There were no significant differences between immature 

males and females in the remaining morphological traits (Tab. 8).  

Table 8. Comparison of morphological features of adult (spring 2015) and immature (autumn 2014) 

Willow Warblers between sexes. Mean, standard deviation (SD), sample size (N), and results of 

comparisons between the sexes by the t-test and the Storer’s dimorphism index (DI), are provided. 

Measurements included are: W – wing length, P1P2 – distance between the first and the second 

primary feather, K – distance between the longest primary feather and the first secondary feather, 

P1GC – distance between the first primary feather and the longest greater covert, and S – tarsus length; 

all expressed in millimetres. Indices compared are: IE – wing asymmetry index, IB – Busse's wing 

pointedness index and IH – Hołyński's index. Statistically significant values are given in bold. 

ADULTS  

Measurement 
/ Index 

Males  
N = 28 

Females  
N = 10 

t-test 
Storer's 

index 

mean SD mean SD t P DI 

W 69.8 1.3 64.4 1.3 11.41 1.63×10-13 -8.04 
P1P2 32.5 1.1 30.4 3.2 3.05 0.0042 -6.56 

K 17.1 1.2 16.6 1.1 1.06 0.2952 -2.80 
P1GC 3.8 1.1 4.4 1.4 -1.35 0.1845 14.07 

S 19.66 0.48 18.96 0.53 3.87 0.0004 -3.63 
IE 69.95 4.77 68.49 5.26 0.80 0.4221 -2.12 
IB 52.05 4.45 53.62 4.07 -0.98 0.3349 0.33 
IH 36.49 4.63 36.84 4.99 -1.19 0.8446 0.94 

 
 
IMMATURES 

Measurement 
/ Index 

Males  
N = 37 

Females 
N = 29 

t-test 
Storer's 

index 

mean SD mean SD t P DI 

W 68.6 1.2 63.7 1.9 12.71 3.66×10-19 -7.38 
P1P2 30.6 1.9 28.3 1.6 5.10 3.25×10-6 -7.84 

K 18.0 1.2 16.3 0.9 6.24 1.21×10-8 -10.15 
P1GC 4.6 1.7 4.5 1.2 0.30 0.765 -2.64 

IE 69.64 4.57 67.27 4.10 1.63 0.108 -2.59 
IB 50.32 4.70 50.42 4.56 -0.09 0.927 0.21 
IH 34.86 4.91 33.93 3.74 0.85 0.399 -2.72 
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 I also compared the morphological features with each sex between the two age groups. 

The immature females had on average 1.2 mm shorter P1P2 distance than the adult females 

(t = 2.29, P = 0.0275). The differences between the age groups in females in the remaining 

morphological traits were not significant. The immature males compared to the adult males 

had on average 1.2 mm shorter wing (t = 4.07, P = 0.0001), 1.8 mm shorter P1P2 distance 

(t = 4.48, P = 3.26×10-5), 0.9 mm longer K measurement (t = -3.05, P = 0.0033) and 0.7 mm 

longer P1GC distance (t = -2.03, P = 0.0464). Additionally, index IB was on average 1.8 lower 

(t = -2.13, P = 0.0365) for immature males, indicating a more rounded wing shape, in 

comparison to adult individuals. Shorter P1P2 and longer P1GC in immature males indicated a 

potential difference in length of first primary between the two age groups. An additional 

comparison of relative lengths of first primary feathers (P1r) showed that immature males have 

0.8 mm longer first primary when compared to adult birds (t = -2.03, P = 0.0469). 

 A single measurement that provided the best distinction between sexes of both age 

groups was the wing length. In immature Willow Warblers caught in autumn 2014, the 

females had wing length ≤ 66 mm, and the males ≥ 68 mm (Fig. 8). The overlap zone between 

the sexes spans wing lengths from 66 to 68 mm, and this includes 36 % (N = 24) of the sexed 

individuals from this season.  

Figure 7. Distribution of wing 

lengths for immature Willow 

Warblers caught in autumn of 

2014. Vertical lines indicate 

derived criteria for separating the 

sexes: females would be birds 

smaller than the left line value, 

males are birds larger than the 

right line value. 

 In adult Willow Warblers caught in spring 2015, females had wing length of ≤ 67 mm, 

while males had wing length of ≥ 68 mm, showing no overlap in size between the sexes 

(Fig. 8). Sexing criteria for both adult and immature Willow Warblers based on the wing 

length used in further analyses was derived from autumn 2014 data on immatures (Fig. 7), 

because of a small sample of adult females from spring 2015. Thus, hereafter adult and 

immature Willow Warbler with wing length ≤ 65 mm were regarded as females, the birds 
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with wing length ≥ 69 mm were regarded as males, and the individuals with wing lengths 

within the overlap zone of 66–68 mm remained unsexed.  

Figure 8. Distribution of wing 

lengths for adult Willow 

Warblers caught in spring of 

2015. Vertical lines indicate 

derived criteria for separating 

the sexes (as in Fig. 7). 

 

4.2.1.2 Comparison of morphological features between the sexes in Chiffchaff 

 In Chiffchaffs caught in spring 2015, the sexes differed significantly in almost all of 

the morphological traits compared. The male Chiffchaffs compared to females had on average 

5.7 mm longer wing, 2.3 mm longer P1P2 distance, 1.1 mm longer K distance, 1.0 mm longer 

P1GC distance and 1.5 mm longer tarsus. Additionally, males had on average 11.3 higher IE 

index and 4.3 higher IH index, in comparison to females (Tab. 9).  

Table 9. Comparison of morphological features of Chiffchaffs from spring 2015 between sexes. 

Mean, standard deviation (SD), sample size (N), results of comparisons between the sexes by the t-

test, and the Storer’s dimorphism index (DI), are provided. Measurements included are: W – wing 

length, P1P2 – distance between the first and the second primary feather, K – distance between the 

longest primary feather and the first secondary feather, P1GC – distance between the first primary 

feather and the longest greater covert and S – tarsus length; all expressed in millimetres. Indices 

compared are: IE – wing asymmetry index, IB – Busse's wing pointedness index and IH – Hołyński's 

index. Statistically significant values are given in bold 

Measurement 
/ Index 

Males Females t-test 
Storer's 

index 

mean SD N mean SD N t P DI 

W 62.3 1.9 33 56.6 1.3 17 11.22 5.11×10-15 -9.51 
P1P2 25.2 1.2 31 23.0 1.3 15 5.78 7.2×10-7 -9.36 

K 12.0 1.3 29 10.9 1.0 11 2.47 0.0179 -9.52 
P1GC 6.2 1.1 30 5.1 1.0 15 3.03 0.0041 -18.29 

S 19.77 0.63 33 18.27 0.53 15 8.05 2.51×10-10 -7.87 
IE 37.83 9.93 27 26.54 12.59 12 3.01 0.0046 -35.05 
IB 36.06 4.75 27 35.05 5.92 12 0.57 0.5722 -2.85 
IH 13.74 4.06 27 9.43 5.07 12 3.08 0.0073 -37.25 
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 A single measurement that provided the best distinction between the sexes was the 

wing length. In Chiffchaffs from spring 2015, the females had wing length ≤ 59 mm, the 

males had wing length of ≥ 59 mm, the overlap zone of the wing length 59 mm included 4 % 

of sexed birds (N = 2) (Fig. 9). The sexing criteria for Chiffchaffs based on the wing length 

used in further analyses were derived from this data, but extending the zone of overlap, where 

birds cannot be sexed with certainty, for one millimetre either side. Thus, in further analysis 

Chiffchaffs of all age groups with wing length of ≤ 57 mm were regarded as females, birds 

with wing length of ≥ 61 mm were regarded as males, and the individuals with wing lengths 

of 58-60 mm remained unsexed. 

Figure 9. Distribution of wing 

lengths for Chiffchaffs caught in 

spring of 2015. Vertical lines 

indicate derived criteria for 

separating the sexes (as in Fig. 7). 

 

4.2.2 Sexing criteria based on body size coefficients (PC1)  

 Among single measurements the wing length provided the best, but not 100 % 

efficient, distinction between the sexes in both species. So the next step was to attempt a 

better resolution of sexing by combining the wing length with other measurements, using the 

Principal Component Analysis (PCA) to derive body size coefficients (PC1). The PC1 values 

of DNA-sexed birds were used to determine the criteria to separate the sexes using the PC1 

values calculated also for the larger sample of unsexed individuals. 

4.2.2.1 Sexing criteria based on body size coefficients (PC1) for Willow Warbler 

 For adult Willow Warblers captured in spring 2015, body size coefficients (PC1) were 

calculated using different combinations of W, P1P2 and S measurements. The PCA sample 

included DNA-sexed birds from spring 2015, along with the unsampled individuals from all 

six spring seasons covered in this study (2009, 2010, 2012, 2013, 2014, 2015) (Tab. 10).  
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Table 10. Comparison of efficiency of different morphological parameters for sexing of Willow 

Warblers captured during spring of 2015. The combination of measurements used to calculate each 

option of PC1 index is given in the brackets. Sample size of DNA-sexed males (m), DNA-sexed 

females (f), and unsampled birds (u) used in the PCA is provided. 

sexing parameter 
criteria to 
determine 

females 

criteria to 
determine 

males 

% of individuals 
correctly sexed 

with these criteria 

PCA sample size 

m f u 

W  W ≤ 65 mm W ≥ 69 mm 90 % 28 10 - 

PC1 (W+P1P2) PC1 < -0.4 PC1 > -0.2 100 % 28 10 355 

PC1 (W+P1P2+S) PC1 < -0.6 PC1 > -0.4 100 % 28 10 7 

PC1 (W+S) PC1 < -0.6 PC1 > -0.4 92 % 28 10 7 

 

 The most efficient body size coefficient (PC1), the one that combined W and P1P2 

(Tab. 10), was calculated according to the following equation: PC1 = (0.707×W) + 

(0.707×P1P2), coefficient of determination of the equation was R2 = 0.85. Loadings for the 

variables were: W = 0.50, P1P2 = 0.50. I chose the PC1 (W+P1P2) as the best coefficient 

because of fewer measurements involved. The gap in the values, which separated the sexes 

was -0.4 < PC1 (W+P1P2) < -0.2. Based on that, the Willow Warblers with PC1 (W+P1P2) 

< -0.4 would be females, and those with PC1 (W+P1P2) > -0.2 would be males (Fig. 10). 

Figure 10. Distribution of 

PC1 (W+P1P2) values for 

DNA-sexed Willow Warblers 

captured during spring of 

2015. Vertical lines indicate 

derived criteria for separating 

the sexes (as in Fig. 7) 

 

 The second best coefficient PC1 (W+P1P2+S) was calculated according to the 

following equation: PC1 = (0.61×W) + (0.60×P1P2) + (0.52×S), its coefficient of 

determination was R2 = 0.72. Loadings for the two variables were: W = 0.37, P1P2 = 0.36 and 

S = 0.26. Based on the distribution of this PC1 (W+P1P2+S) of DNA-sexed individuals, the 

gap in values that separated the sexes was -0.6 < PC1 < -0.4. Therefore the birds with values 

of PC1 (W+P1P2+S) < -0.6 would be females, the birds with PC1 (W+P1P2+S) > -0.4 would 
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be males (Fig. 11). However, the body size coefficient PC1 (W+P1P2+S) could not be applied 

to sex adult Willow Warblers from the past data, because S measurement was not taken 

during the previous seasons. Therefore, for further analyses of adult Willow Warblers I only 

considered the two sexing criteria described earlier, 1) based on the wing length,  and 2) based 

on PC1 (W+ P1P2). 

Figure 11. Distribution of 

PC1 (W+P1P2+S) values 

for DNA-sexed Willow 

Warblers captured during 

spring of 2015. Vertical 

lines indicate derived 

criteria for separating the 

sexes (as in Fig. 7). 
 

 In immature Willow Warblers captured in autumn 2014, the body size coefficients 

(PC1) were calculated using W, P1P2 and K measurements. The PCA sample included 

DNA-sexed birds from autumn 2014, along with the unsampled individuals from all six 

autumn seasons covered in this study (2007, 2008, 2009, 2012, 2013, 2014) (Tab. 11). 

Table 11. Comparison of efficiency of different morphological parameters for sexing of immature 

Willow Warblers captured during autumn migration season of 2014. The combination of 

measurements used to calculate each option of PC1 index is given in the brackets. Sample size of 

DNA-sexed males (m), DNA-sexed females (f), and unsampled birds (u) used in the PCA is provided. 

sexing parameter 
criteria to 
determine 

females 

criteria to 
determine 

males 

% of individuals 
correctly sexed 

with these criteria 

PCA sample size 

m f u 

W  W ≤ 65 mm W ≥ 69 mm 64 % 37 29 - 

PC1 (W+P1P2) PC1 < -0.4 PC1 > 0.4 68 % 36 29 875 

PC1 (W+K) PC1 < -0.2 PC1 > 0.4 68 % 37 29 360 

PC1 (W+P1P2+K) PC1 < -0.4 PC1 > 0.4 65 % 36 29 358 

  

 The best coefficient PC1 (W+P1P2) was calculated according to the following equation: 

PC1 = (0.707×W) + (0.707×P1P2), its coefficient of determination was R2 = 0.85. Loadings 

for the two variables were: W = 0.50 and P1P2 = 0.50. Based on the distribution of this PC1 
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(W+P1P2) of DNA-sexed individuals, the range of values separating the sexes 

was -0.4 < PC1 < 0.4, and therefore the birds with values of PC1 (W+P1P2) < -0.4 would be 

females, the birds with PC1 (W+P1P2+S) > 0.4 would be males (Fig. 12). 

Figure 12. Distribution 

of PC1 (W+P1P2) values 

for DNA-sexed immature 

Willow Warblers 

captured during autumn 

of 2014. Vertical lines 

indicate derived criteria 

for separating the sexes 

(as in Fig. 7). 

 The second best body size coefficient for sexing immature Willow Warblers from 

autumn 2014 was PC1 that combined W and K measurements. This PC1 was calculated 

according to the following equation: PC1 = (0.707×W) + (0.707×K), coefficient of 

determination of the equation was R2 = 0.62. The loadings for the two variables were: 

W = 0.50, K = 0.50. Based on the distribution of this best PC1 (W+K) of DNA-sexed 

individuals, the range of the PC1 values sexes overlap was -0.2 < PC1 < 0.4, and therefore 

birds with PC1 < -0.2 would be females, and the birds with PC1 > 0.4 would be males 

(Fig. 13).  

Figure 13. Distribution of 

PC1 (W+K) values for 

DNA-sexed immature 

Willow Warblers captured 

during autumn of 2014. 

Vertical lines indicate 

derived criteria for 

separating sexes (as in 

Fig. 7).  

 

4.2.2.2 Sexing criteria based on body size coefficients (PC1) for Chiffchaff 

 For analysis of Chiffchaffs captured during spring 2015, body size coefficients (PC1) 

were calculated using W, P1P2 and S measurements. The sample for PCA included 
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DNA-sexed birds from spring 2015, along with the unsampled individuals from all six spring 

seasons covered in this study (2009, 2010, 2012, 2013, 2014, 2015) (Tab. 12). 

Table 12. Comparison of efficiency of different combinations of morphological parameters for sexing 

of Chiffchaffs captured during spring migration season of 2015. The combination of measurements 

used to calculate each option of PC1 index is given in the brackets. Sample size of DNA-sexed males 

(m), DNA-sexed females (f), and unsampled birds (u) used in the PCA is provided. 

sexing parameter 
criteria to 
determine 

females 

criteria to 
determine 

males 

% of individuals 
correctly sexed 

with these criteria 

PCA sample size 

m f u 

W  W ≤ 57 mm W ≥ 61 mm 78 % 33 17 - 

PC1 (W+S) PC1 < -0.6 PC1 > -0.2 96 % 33 15 17 

PC1 (W+P1P2+S) PC1 > 0.4 PC1 < 0.2  87 % 31 14 16 

PC1 (W+P1P2) PC1 < -0.6 PC1 > 0.2 78 % 31 15 387 

 

 The most efficient body size coefficient for sexing Chiffchaffs was PC1 that combined 

W and S measurements. It was calculated according to the following equation: 

PC1 = (0.707×W) + (0.707×S), its coefficient of determination was R2 = 0.87. The loadings 

for the two variables were: W = 0.50, S = 0.50. Based on the distribution of this best 

PC1 (W+S) of DNA-sexed individuals, the PC1 values of the sexes overlapped in the 

range -0.6 < PC1 < -0.2 (Fig. 14). 

Figure 14. Distribution of 

PC1 (W+S) values for 

DNA-sexed Chiffchaffs 

captured during spring of 

2015. Vertical lines 

indicate derived criteria for 

separating the sexes (as in 

Fig. 7). 
 

 However, this body size coefficient PC1 (W+S) could not be applied to sex 

Chiffchaffs from the past data, because S measurement was not taken during the previous 

seasons. Therefore, in further analyses I used the sexing criteria based on the wing length and 

based on PC1 (W+ P1P2), described previously. 
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4.2.3 Efficiency of sexing birds caught in past spring seasons using proposed criteria 

4.2.3.1 Efficiency of sexing Willow Warblers using proposed criteria 

 The most efficient sexing parameter for both adult Willow Warblers caught in spring 

2015 and immature Willow Warblers caught in autumn 2014, was PC1 combining W and 

P1P2 measurements (Tab. 10 and 11). This best PC1 was then calculated for 355 unsampled 

Willow Warblers captured during six spring migration seasons (Fig. 15). Based on obtained 

PC1 (W+P1P2) values and the criteria for adult birds captured during spring season (proposed 

in the previous paragraph), I was able to sex 91 % of Willow Warblers. 

 

Figure 15. Distribution of PC1 (W+P1P2) values for Willow Warblers captured during six spring 

migration seasons (2009, 2010, 2012, 2013, 2014, 2015). Blue line – DNA-sexed males captured 

during spring 2015; red line – DNA-sexed females captured during spring 2015; green line – 

unsampled individuals captured during all six spring seasons, combined. Vertical lines indicate 

derived criteria for separating the sexes: females would be birds smaller than the left line value, males 

are birds larger than the right line value. 

 W and P1P2 measurements were also combined for 1108 unsampled Willow Warblers 

captured during six autumn migration seasons (Fig. 16). Using the PC1 factor obtained for 

each individual with the previously proposed criteria for sexing immatures caught in autumn, 

I was able to sex 66 % of Willow Warblers. 
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Figure 16. Distribution of PC1 (W+P1P2) values for Willow Warblers captured during six autumn 

migration seasons (2007, 2008, 2009, 2012, 2013, 2014). Blue line – DNA-sexed males captured 

during spring 2015; red line – DNA-sexed females captured during spring 2015; green line – 

unsampled individuals captured during all six autumn migration seasons, combined. Vertical lines 

indicate derived criteria for separating the sexes (as in Fig. 15). 

 The criteria based only on wing length described earlier were also applied for 

comparison to sex Willow Warblers captured during six spring (Fig. 17) and autumn (Fig. 18) 

migration seasons. Willow Warblers captured during spring seasons were sexed with 80 % 

efficiency, and birds captured during autumn seasons were sexed with 62 % efficiency. 

 

Figure 17. Distribution of wing lengths for adult Willow Warblers captured during six spring 

migration seasons (2009, 2010, 2012, 2013, 2014, 2015). Blue line – DNA-sexed males captured 

during spring 2015; red line – DNA-sexed females captured during spring 2015; green line – 

unsampled individuals captured during all six spring seasons, combined. Vertical lines indicate 

derived criteria for separating the sexes (as in Fig. 15). 
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Figure 18. Distribution of wing lengths for immature Willow Warblers captured during six autumn 

migration seasons (2007, 2008, 2009, 2012, 2013, 2014). Blue line – DNA-sexed males captured 

during spring 2015; red line – DNA-sexed females captured during spring 2015; green line – 

individuals of undetermined sex captured during all six autumn migration seasons, combined. Vertical 

lines indicate derived criteria for separating the sexes (as in Fig. 15). 

 PC1 combining W and P1P2 measurements was the most efficient parameter for sexing 

of adult and immature Willow Warblers captured during past migration seasons analysed. 

However, the sample size of birds with both W and P1P2 measurement was considerably 

smaller compared to the sample of birds with W measurement alone. Therefore I was able to 

sex more individuals with the use of wing length based criteria (Tab. 13).  Combining the use 

of both these criteria, I was able to sex 651 unsampled immature and 436 unsampled adults 

Willow Warblers, which I used later to analyse the migration timing of the sexes.   

Table 13. Efficiencies of proposed sexing parameters in sexing of previously DNA-sexed and 

unsampled adult and immature individuals of Willow Warbler from six spring (2009, 2010, 2012, 

2013, 2014, 2015) and six autumn migration seasons (2007, 2008, 2009, 2012, 2013, 2014). Symbols 

as in Tab. 10. 

 sexing parameter 
efficiency in 

sexing 
DNA-sexed birds 

efficiency in 
sexing 

unsampled birds 

total number of 
birds sexed 

Adults 
PC1 (W+P1P2) 100 % 91 % 326 

W 90 % 80 % 382 

PC1 (W+P1P2) and W 100 % 90 % 475 

Immatures 
PC1 (W+P1P2) 68 % 66 % 576 

W 64 % 61 % 633 

PC1 (W+P1P2) and W 71 % 76 % 790 
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4.2.3.2 Efficiency of sexing Chiffchaffs using proposed criteria 

 Wing length and PC1 that combined W and P1P2 measurements, described earlier, 

were the two most efficient parameters for sexing Chiffchaffs caught in spring 2015 

(Tab. 12). PC1 (W+P1P2) was calculated for 384 unsampled Chiffchaffs captured during six 

spring migration seasons (Fig. 19). Based on the criteria proposed in the previous paragraph I 

was able to sex 85 % of unsampled Chiffchaffs according to their PC1 (W+P1P2) values.  

 

Figure 19. Distribution of PC1 (W+P1P2) values for Chiffchaffs captured during six spring migration 

seasons (2009, 2010, 2012, 2013, 2014, 2015). Blue line – DNA-sexed males captured during spring 

2015; red line – DNA-sexed females captured during spring 2015; green line – unsampled individuals 

captured during all six autumn migration seasons, combined. Vertical lines indicate derived criteria for 

separating the sexes (as in Fig. 15). 

 The criteria based a single measurement (the wing length) were the simpler option 

which could be applied to a larger sample of birds (N=515). With the use of wing length 

based criteria I was able to sex 78 % of Chiffchaffs captured during six spring migration 

seasons (Fig. 20). 
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Figure 20. Distribution of wing lengths for Chiffchaffs captured during six spring migration seasons 

(2009, 2010, 2012, 2013, 2014, 2015). Blue lines – DNA-sexed males captured during spring 2015; 

red lines – DNA-sexed females captured during spring 2015; green lines – individuals of 

undetermined sex captured during all six spring seasons, combined. Vertical lines indicate derived 

criteria for separating the sexes (as in Fig. 15). 

 Both parameters were equally adequate while I tested their sexing efficiency on the 

sample of the previously DNA-sexed birds, which allowed me to verify sexing according to 

the proposed criteria based on measurements against sexing by DNA. But PC1 (W+P1P2) was 

more efficient than wing length (W) in overall sexing the unsampled individuals (Tab. 14). 

However, bigger sample size of birds with only the wing measurement (but not P1P2) allowed 

me to sex more individuals using the simpler method based on the wing length. Combining 

the use of both these criteria, I was able to sex 481 unsampled Chiffchaffs, which I used later 

to analyse the migration timing of the sexes.   

Table 14. Efficiencies of proposed parameters in sexing of previously DNA-sexed and unsampled 

Chiffchaffs from six spring migration seasons (2009, 2010, 2012, 2013, 2014, 2015). Symbols as in 

Tab. 10.  

sexing parameter 
efficiency in 

sexing 
DNA-sexed birds 

efficiency in 
sexing 

unsampled birds 

total number of 
birds sexed 

W 78 % 78 % 400 

PC1 (W+P1P2) 78 % 85 % 327 

PC1 (W+P1P2) and W 78 % 88 % 481 
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4.3 Spring migration timing of males and females 

4.3.1 Spring migration timing of Willow Warbler  

 The sexing criteria developed and evaluated in the previous chapters were used to 

analyse the timing of spring migration for 475 morphologically and genetically sexed adult 

Willow Warblers, which were 92 % of all individuals captured and measured during six 

spring migration seasons (Appendix p. I, Tab. A1). In all six spring seasons combined the 

earliest migrants were the males, which were arriving from the 6 April, while the earliest 

females occurred 5 days later (Figs. 21, 22). The second highest peak of male's migration 

occurred on 19 April, while the second highest peak of females' migration occurred on 23 

April. Males had the main peak of migration on 27 April, and the main, second, peak of 

females' migration occurred on 12 May. The latest migrants (both males and females) were 

recorded after 24 May (Fig. 21). 

 

Figure 21. Spring migration dynamics of adult male and female Willow Warblers during six spring 

migration seasons (2009, 2010, 2012, 2013, 2014, 2015) combined.  
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 In all six seasons combined the median date of migration was 12 days earlier for the 

males than for the females (Fig. 22), and the difference was highly significant (Mann-Whitney 

U-test, U = 12956, P < 0.0001).  

 

Figure 22. Spring migration phenology of adult male and female Willow Warblers during six spring 

migration seasons (2009, 2010, 2012, 2013, 2014, 2015), combined. Red boxes – 25-75 % of females, 

blue boxes – 25-75 % of males, vertical lines and dates – median dates of migration, horizontal lines – 

first and last occurrence, N – sample size.   

 I also compared migration timing of males and females in different spring seasons 

(Fig. 23). In each season the first recorded migrants were the males. The median dates of 

migration of the males were in different seasons 1 to 21 days earlier than those of the females. 

Migration timing of females did not differ significantly among seasons (Kruskal-Wallis test, 

H5 = 13.5, P = 0.142). Migration timing of males differed between some seasons (Kruskal-

Wallis test, H5 = 28.7, P = 0.048): in spring 2009 males migrated earlier than in 2010 and 

2015 (results of post-hoc tests at Fig. 23). 



35 

 

Figure 23. Migration timing of adult Willow Warblers for six spring migration seasons (2009, 2010, 

2012, 2013, 2014, 2015). Red boxes – 25-75 % of females, blue boxes – 25-75 % of males, vertical 

lines and dates – median dates of migration, horizontal lines – first and last occurrence, N – sample 

size, grey arrows – significant difference between the marked groups (P < 0.05) by Mann-Whitney U 

test.  

4.3.2 Spring migration timing of Chiffchaff  

 I analysed timing of spring migration for 481 morphologically and genetically sexed 

Chiffchaffs, which were 85 % of all individuals captured during the six spring migration 

seasons (Appendix p. II, Tab. A2). In six seasons combined the earliest male occurred on 25 

March, and the first female occurred 3 days later (Fig. 24).  The first small peak of males' 

migration occurred on 26 March, and the second, main and extended peak occurred between 

31 March and 24 April. The first small peak of females' migration occurred on 11 April, and 

the main extended peak from 15 April to 1 May. The latest males and females were recorded 

on 24 and 25 May, respectively (Fig. 23). 



36 

 

 

Figure 24. Spring migration dynamics of male and female Chiffchaffs during six spring migration 

seasons (2009, 2010, 2012, 2013, 2014, 2015), combined.  

 In all six seasons combined, the males migrated in spring on average 12 days earlier 

than females (Fig. 25), and the difference between the median dates of migration was highly 

significant (Mann-Whitney U-test, U = 13038, P < 0.0001).  

 

Figure 25. Spring migration phenology of adult male and female Chiffchaffs during six spring 

migration seasons (2009, 2010, 2012, 2013, 2014, 2015), combined. Red boxes – 25-75 % of females, 

blue boxes – 25-75 % of males, vertical lines and dates – median dates of migration, horizontal lines – 

first and last occurrence, N – sample size. 
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 I also compared migration timing of males and females among the different spring 

seasons (Fig. 26). The first recorded migrants in each season were the males. The median 

dates of arrival of males were earlier than those of females, and differences between the sexes 

were significant. In spring 2015 females migrated significantly later than in 2014, 2013, 2010 

and 2009 (Kruskal-Wallis test, H5 = 28.9, P < 0.0001; results of post-hoc tests at Fig. 26). 

Migration timing of males differed among most seasons (Kruskal-Wallis test, H5 = 28.9, 

P = 0.00002; results of post-hoc tests at Fig. 26). The males migrated earliest in 2010 and the 

latest in 2015, on average.  

 

Figure 26. Migration timing of male and female Chiffchaffs for six spring migration seasons (2009, 

2010, 2012, 2013, 2014, 2015). Red boxes – 25-75 % of females, blue boxes – 25-75 % of males, 

vertical lines and dates – median dates of migration, horizontal lines – first and last occurrence, N – 

sample size, grey arrows – significant difference between the marked groups (P < 0.05) by Mann-

Whitney U test. 
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4.3.3 Relationship of spring migration timing of Chiffchaffs with average daily 

temperatures 

 To explain some of the differences in migration timing between seasons and sexes, I 

compared changes in daily ringing numbers of Chiffchaffs with changes of average daily 

temperature measured at the weather station in Łeba, close to the ringing site, during six 

spring migration seasons (2009, 2010, 2012, 2013, 2014, 2015). I did not conduct a similar 

analysis for Willow Warblers because their arrival dates differed significantly only for one 

extreme season (spring of 2009) from all the other years (Fig. 23).  

 In spring 2009 temperatures in second half of March mostly fluctuated between 0 °C 

and 5 °C (Fig 27). The first longer period of temperatures above 5 °C (2–5 April) coincided 

with the highest peak of arriving males, which continued to be abundant until 20 April. 

Females started appearing on the days when average temperature stabilised above 5 °C (8–18 

April), disappeared again during a short drop of temperature below 5 °C (19–22 April), and 

then continued arriving until 9 May, when temperatures were above 5 °C. 

 

Figure 27. Average daily temperature (black line) and migration dynamics of male (blue line) and 

female (red line) Chiffchaffs during spring 2009. Thin horizontal line indicates treshold temperature of 

5 °C. Box and whisker plots: red boxes – 25-75 % of females, blue boxes – 25-75 % of males, vertical 

lines and dates – median dates of migration, horizontal whiskers – first and last occurrence, N – 

sample size.  
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 Spring of 2010 was marked by an early peak of high average temperatures around 

15 °C on 25–27 March (Fig. 28). The highest peak in numbers of arriving males and 

occurrence of a single early female coincided with this early rise in temperatures. The second 

highest peak of captured males coincided with the next, somewhat lower rise in temperature 

(29–31 March), after which males continued arriving until 16 May. Median date of males' 

arrival was earliest of all seasons. In the first half of April temperature rarely went above 5 °C. 

Females arrived in small numbers after 6 April, with two higher peaks (5 individuals) 

occurring near the days with temperatures well above 5 °C (18 and 25 April). 

 

Figure 28. Average daily temperature (black line) and migration dynamics of male (blue line) and 

female (red line) Chiffchaffs during spring 2010. Thin horizontal line indicates treshold temperature of 

5 °C. Box and whisker plots: red boxes – 25-75 % of females, blue boxes – 25-75 % of males, vertical 

lines and dates – median dates of migration, horizontal whiskers – first and last occurrence, N – 

sample size.  
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 In spring 2012 males appeared late in the season, and their first and the highest peak 

occurred during a prolonged period of low average temperature of around 2 °C (2 – 8 April, 

Fig. 29). The second highest peak in arrival of males coincided with a sudden rise in 

temperature above 10 °C (9 – 12 April), after which the increases in numbers of captured 

males followed peaks in temperature. Females started arriving constantly after average 

temperature stabilised above 5 °C. 

 

Figure 29. Average daily temperature (black line) and migration dynamics of male (blue line) and 

female (red line) Chiffchaffs during spring 2012. Thin horizontal line indicates treshold temperature of 

5 °C. Box and whisker plots: red boxes – 25-75 % of females, blue boxes – 25-75 % of males, vertical 

lines and dates – median dates of migration, horizontal whiskers – first and last occurrence, N – 

sample size.  
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 Beginning of spring 2013 was marked by unusually long period of low average 

temperatures (0-2 °C) which lasted until 10 April (Fig. 30). First male arrived on 7 April, 2-14 

days later than in the other five seasons, and the median date of males' arrival was also later 

than in most seasons (Fig. 26). The highest peaks in arrivals of both males and females (11–

19 April) coincided with first peaks in temperature above 5 °C. Later occurrence of both sexes 

followed peaks in average temperature.  

 

Figure 30. Average daily temperature (black line) and migration dynamics of male (blue line) and 

female (red line) Chiffchaffs during spring 2013. Thin horizontal line indicates treshold temperature of 

5 °C. Box and whisker plots: red boxes – 25-75 % of females, blue boxes – 25-75 % of males, vertical 

lines and dates – median dates of migration, horizontal whiskers – first and last occurrence, N – 

sample size.  
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 The start of migration season of 2014 was warm, with average daily temperatures in 

the second half of March between 3 °C  and 10 °C (Fig. 31). The first male arrived on 24 

March, which is 2-14 days earlier than in the other five seasons. The first two higher peaks in 

arrivals of males coincided with days with temperature of 5 °C (28–31 March and 1–4 April). 

The highest peaks in arrivals of both males and females coincided with the first higher peak in 

teperature in April (8-12 °C, 5–9 April). Later smaller peaks in numbers of both sexes 

followed peaks in temperature.  

 

Figure 31. Average daily temperature (black line) and migration dynamics of male (blue line) and 

female (red line) Chiffchaffs during spring 2014. Thin horizontal line indicates treshold temperature of 

5 °C. Box and whisker plots: red boxes – 25-75 % of females, blue boxes – 25-75 % of males, vertical 

lines and dates – median dates of migration, horizontal whiskers – first and last occurrence, N – 

sample size.  
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 Temperature trends in spring 2015 were intermediate among all the seasons (Fig. 32). 

The first peak in arrivals of males coincided with the first higher peak in temperature in April 

reaching 13 °C (9–12 April). First female arrived on 18 April, 3-24 days later than in the other 

seasons. The main peak in arrivals of females coincided with the second April peak in 

temperatures over 10 °C (24–28 April). The median dates of arrival for both sexes were 2-14 

days later than in the other seasons.  

 

Figure 32. Average daily temperature (black line) and migration dynamics of male (blue line) and 

female (red line) Chiffchaffs during spring 2015. Thin horizontal line indicates treshold temperature of 

5 °C. Box and whisker plots: red boxes – 25-75 % of females, blue boxes – 25-75 % of males, vertical 

lines and dates – median dates of migration, horizontal whiskers – first and last occurrence, N – 

sample size. 
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5. DISCUSSION 

5.1 DNA sexing of Willow Warbler and Chiffchaff  

 Isolation of DNA from blood samples (obtained concentration averaged 

35.5 ± 0.2 µg/mL) was more efficient than isolation from feather samples (obtained 

concentration averaged 7.1 ± 0.4 µg/mL), which confirms the literature comparisons of these 

two DNA isolation methods (Harvey et al. 2006). I would advocate for continued use of blood 

samples as a preferred source of DNA for sexing, even though blood sampling requires more 

equipment, trained personnel and is potentially more stressful for the bird (Bello et al. 2001, 

Smith et al. 2003, Harvey et al. 2006). Isolation from blood is considerably more reliable, 

more efficient, simpler and faster way of obtaining ample amounts of DNA material 

(McDonald & Griffith 2011). While collecting blood samples in the field, I had an 

opportunity to re-capture several individuals whose blood was collected earlier the same day 

or several days before. None of the birds appeared to be in bad condition, and had no visible 

signs of punctuation on the wing or brachial vein. This observation is supported by a number 

of more extended studies which found no negative effects of blood collection on overall 

fitness of the sampled birds (Dufty 1988, Hoysak & Wheatherhead 1991, Sheldon et al. 

2008).  However, I would still advise to sample feathers instead of blood in special cases in 

which individuals should be released upon capture as soon as possible, e.g. birds in a visibly 

bad condition, or with an incubation patch, or caught on days with especially cold and/or 

rainy weather. 

 Molecular sexing with the use of primers P2/P8 (Griffiths et al. 1998) failed to 

produce results for 8 % (N=10) of samples from Willow Warblers and 16 % (N=9) of samples 

from Chiffchaffs. Several studies have reported both neutral and evolutionary favourable 

genetic variation present in intron regions of chromo-helicase-DNA gene (CHD), to which 

P2/P8 primers are designed to bind (Dawson et al. 2001, Jarvi and Farias 2006, Toms et al. 

2012). Given that the samples used in this study originate from birds that belong to a number 

of different populations, it is possible that sampled individuals exhibit polymorphisms in 

intron regions of CHD gene, which makes the P2/P8 primer binding and overall DNA 

amplification vary in efficiency. The remaining 10 samples from Willow Warblers and 4 of 

the samples from Chiffchaffs were successfully amplified with the use of more specific F2/R1 

primer pair (Bantock et al. 2008). F2/R1 primer pair binds to the intron region of the gene for 

avian mitochondrial ATP-synthase α-subunit (ATP5A1), and was initially designed for 
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analysis of damaged and old DNA samples, as a more efficient alternative to P2/P8 primer 

pair (Bantock et al. 2008). Although amplification by F2/R1 primer pair produced results for 

most of the samples which could not be amplified by P2/P8 primer pair, I would still not 

recommend primarily using F2/R1 primer pair if the intended amplicon separation method is 

agarose gel electrophoresis. F2/R1 primer pair produces shorter amplicons (250-300 bp) than 

P2/P8 primer pair (300-400 bp), and there is less difference in molecular weight between 

female-specific and male-specific amplicons. Amplicons produced with the use of F2/R1 

primer pair are therefore more difficult to separate by agarose gel electrophoresis. Using a 

denser agarose gel and higher voltage during electrophoresis improved the separation and 

enabled me to successfully analyse the amplicons. However, amplicons produced with the use 

of P2/P8 primer pair were still easier to separate and analyse by agarose gel electrophoresis. I 

would therefore suggest using F2/R1 primer pair for the analysis of difficult samples for 

which standard primer pair P2/P8 did not produce results. Alternatively, a more sensitive 

separation method (e.g. polyacrylamide gel electrophoresis) should be used to separate F2/R1 

primer pair amplicons.  

 Five Chiffchaff DNA samples could not be amplified regardless of the primers used. 

Four of those samples contained considerably lower concentrations of DNA than others 

(possibly due to a mistake in isolation process), which is the most probable reason for 

unsuccessful PCR amplification.  

 

5.2 Morphological sexing of Willow Warbler and Chiffchaff  

5.2.1 Sexual size dimorphism in Willow Warbler and Chiffchaff 

 The present study revealed significant differences in body size between the sexes in 

Willow Warbler and Chiffchaff, with males being the larger sex in both species. Wing length 

was the most pronounced sexually dimorphic feature, which confirms the previous research 

on morphology of these species (Williamson 1967, Norman 1983, Tiainen & Hanski 1985, 

Svensson 1992, Ellrich et al. 2010). Adult and immature males of Willow Warbler were 

significantly larger than females in three measurements and males of Chiffchaff were 

significantly larger than females in almost all of the considered morphological features. 

According to Tiainen (1982), size dimorphism is most likely a result of Darwinian sexual 

selection favouring larger males, which are more successful at defending a good quality 

territory and obtaining a mate than smaller ones. Studies by Tiainen (1982) and Ebenman and 



46 

 

Nilsson (1981) imply that territorial system of both species follows an ideal despotic 

distribution model, meaning that stronger residents of more suitable habitat force newcomers 

to choose a less favourable one. During such conflicts larger size provides an advantage, and 

it might be one of the reasons why both species evolved to be sexually dimorphic. 

 Differences in wing length are often interpreted together with other features of flight 

apparatus, most commonly wing shape. There were no sex differences in the indices that 

reflect the wing shape observed in either of the age groups of Willow Warbler. In immatures, 

these results correspond with observation by Tiainen & Hanski (1985). The results for adults, 

however, are opposite to those of all of the previous studies, which consistently report 

significantly more rounded wing shape in adult females of Willow Warbler than in males 

(Tiainen & Hanski 1985, Hedenström & Pettersson 1986, Nystörm 1990). According to 

Hedenström & Pettersson (1986), longer, more pointed wing enables males to fly faster and 

reach the breeding sites earlier than females, to establish their territory. Dimorphism in wing 

shape was also correlated with differential parental roles (Blondel et al. 2002). As females do 

most of the nest building and offspring care, they profit from the increased manoeuvrability 

provided by a shorter, more rounded wing (Nystörm 1990). A lack of significant difference in 

wing shape between sexes in Willow Warbler in my study is therefore unusual, and probably 

should be attributed to the insufficient sample size of adult females used in the analysis.  

 Significant sex differences in wing shape indices IE (increasing with higher wing 

asymmetry, Busse 1967) and IH (increasing with higher wing asymmetry and pointedness, 

Hołyński 1965) were observed in Chiffchaff, and indicated more asymmetrical and pointed 

wing in males. This result is in contrast with the study by Tiainen & Hanski (1985), who 

found no significant difference between wing shapes in male and female Chiffchaffs. The 

mentioned study, however, describes significant differences in the wing shape between the 

two subspecies of Chiffchaff, where P. c. collybita has more symmetrical and less pointed 

wings than P. c. abietinus. The difference is explained by P. c. abietinus being a long-distance 

migrant, as opposed to P. c. collybita, and therefore having pointed wing more suitable for 

long distance migration (Gaston 1974, Hansson et al. 2000). The subspecies of Chiffchaff 

were not noted during fieldwork conducted for this study, but both of these subspecies are 

known to migrate through Poland. Furthermore, values for wing asymmetry index IE recorded 

in my study for both sexes of Chiffchaff had unusually large standard deviation from the 

mean, which suggests that the sample might include two populations (even subspecies) with 

different distributions of IE values. The observed difference in the wing shape between sexes 
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might therefore be a result of uneven ratio of the two subspecies of Chiffchaff among the 

samples of males and females. Study by Catry et al. (2005), however, might support the lack 

of difference in wing shape between sexes observed by Tiainen & Hanski (1985). Catry et al. 

(2005) proved the differential migration in Chiffchaffs, with females wintering further south 

and starting spring migration later than males. It is possible that the potential evolution of a 

more pointed wing in females, which would be beneficial because they migrate further, was 

counteracted by the advantages of a more rounded wing in female parental care (Piotrowska 

& Wesołowski 1989).  

 Differences in size between the age groups in Willow Warbler were much more 

prominent in males than in females. Adult females showed only a significantly larger mean 

value of P1P2 distance, when compared to immature females. This observation is also in 

conflict with the other studies that showed highly significant difference in wing length 

between adult and immature females (Tiainen 1982, Norman 1983, Tiainen & Hanski 1985). 

This is probably, again, a result of small sample of adult females used in the comparison. 

Immature males were significantly different from the adults in five out of seven compared 

morphological features. Lower value of wing pointedness index IB (Busse 1967) observed in 

immatures indicated less pointed wing shape when compared to adult birds, while shorter 

P1P2 and longer P1GC measurement implied that the first primary is longer in immatures, 

which was then confirmed by an additional comparison of the relative length of the first 

primary between those two age groups. Shorter, more rounded wing with the longer first 

primary in immatures than in adults is common in passerines which do not change primary 

feathers in post-juvenile moult (Alatalo et al. 1984, Peréz-Tris & Tellería 2001). Widely 

accepted explanation for this difference is that wing shaped this way enables bird to achieve 

better manoeuvrability, helping young, inexperienced individuals to avoid predators and 

collect food (Alatalo et al. 1984). By moulting later into the longer and more pointed wing, 

birds lose some of their manoeuvrability, but are in turn able to fly faster and more efficiently, 

which is a highly favourable trait for a long-distance migrant such is Willow Warbler 

(Peréz-Tris & Tellería 2001). Longer Kipp's distance (distance between wing tip and the first 

secondary) in immature Willow Warblers than in adults is probably not an adaptation, but 

possibly a result of immatures' secondary feathers still growing during the time that the 

measurements were taken during the post-breeding season.  

 Males of Chiffchaff differed from females in seven out of eight morphological features 

analysed, which suggested more pronounced morphological sexual dimorphism when 
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compared to Willow Warblers. This is additionally supported by values of Storer's 

dimorphism index, which were higher in Chiffchaff than in Willow Warbler for all of the 

morphological features observed. This might reflect a real difference between the species 

(Tiainen 1982). However, this could also be explained by a possibility that the male and 

female samples of Chiffchaffs contained unequal ratio of two morphologically distinct 

subspecies P. c. collybita and P. c. abietinus (Tiainen & Hanski 1985, Hanski & Tiainen 

1991, Hasson et al. 2000), which might increase the apparent differences between sexes. The 

ratio of Willow Warbler subspecies (P. t. trochilus and P. t. acredula) in the analysed sample 

might also affect the morphological comparison between the sexes, but probably to a lower 

extent. These subspecies, both long-distance migrants, are not as morphologically different as 

subspecies of Chiffchaff (Tiainen & Hanski 1985, Hanski & Tiainen 1991, Bensch et al. 

1999, Hasson et al. 2000). Additionally, the extent of the sexual dimorphism in Willow 

Warbler might be limited by some factors which are not affecting Chiffchaff. Nyström (1997) 

argues that the body condition of the bird may be as important as the size, and smaller males 

tend to have higher feeding efficiency due to better manoeuvrability. Smaller individuals with 

better body condition were observed successfully defending their territories against larger, but 

undernourished newcomers. Tiainen (1982) suggests another factor limiting selection for 

larger males of Willow Warbler – the current size of Phylloscopus warblers seems to be 

relatively safe from predation, because they are small and they offer low energetic 

profitability to a predator. This would probably change if they were to evolve to a larger size, 

so it might be one of the limits to their size increase. 

5.2.2 Sexing of Willow Warbler and Chiffchaff based on wing length 

 The present study revealed the wing length as the best single measurement to separate 

sexes of both species, which corresponds with the previous studies using morphological 

features to sex Willow Warblers and Chiffchaffs (Tab. 8, Tab. 9).  

 Willow Warblers caught in spring 2015 were the most uniform group observed, as 

they consisted of fully grown individuals which all went through complete moult at the winter 

quarters, and had fresh feathers when caught while migrating to their breeding grounds 

(Svensson 1992, Jenni & Winkler 2011). In adult Willow Warblers wing length did not 

overlap between sexes. Females of immature Willow Warblers caught in autumn 2014 had 

wider ranges of wing lengths when compared to adults, while the range of wing lengths in 

immature males was shifted towards shorter wings when compared to adults. This could be 

explained by wings of immatures still growing, and thus shorter than in adults, but this pattern 
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should then occur in both sexes. My findings partially oppose previous comparisons of age 

groups in Willow Warbler, which showed a shift in range toward shorter wing lengths in 

immatures in both sexes, rather than only in males (Norman 1983, Tiainen & Hanski 1985). 

One of the reasons for this observation might be the small sample sizes of adult females, 

which inadequately represent the diversity of the studied group of populations. Another 

reason might be inaccurate ageing of individuals, which results in a mixed sample of adults 

and immatures. This study showed that adult males had on average 1.2 mm longer wing 

compared to immatures, while other studies reported the average of 2 mm difference in favour 

of adults in both sexes (Norman 1983, Tiainen & Hanski 1985). I therefore suspect that the 

single immature female with recorded wing length of 68 mm is a mis-aged adult, or a mistake 

was made during measuring. When this individual is excluded, the overlap between sexes in 

immatures shifts to wing lengths of 66-67 mm. Because of the small available sample size of 

adults caught in spring, I was not able to develop as fully fitting sexing criteria as for 

immature Willow Warblers. In a bigger sample of adults the observed range of overlap 

between sexes would probably span wing lengths of 67-68 mm, since the wing length of the 

smallest immature males would probably increase from 66 to 67 mm after their first winter 

moult.  

 The analysed group of Chiffchaffs caught in spring was not as uniform as Willow 

Warblers, as it included both birds that retained their natal primary feathers (immatures) and 

the ones that moulted primaries (adults). Although there are reported morphometric 

differences between the age groups in Chiffchaff (Tiainen & Hanski 1985), combining adults 

and immatures did not seem to have a great effect on my results, as the observed zone of 

overlap between the sexes was still narrow (wing length of 59 mm). A bigger sample is 

needed to confirm whether the cautious widening of overlap zone to wing lengths of 

58-60 mm was justified.  

 Sexing criteria based on the wing length I suggested to sex both age groups of Willow 

Warbler are less efficient, but more accurate, when compared to the criteria from the literature 

(Tab. 15). None of the sexing methods found in literature were 100 % accurate when applied 

to Willow Warbler data from this study. Interestingly, all of the previous studies recorded 

smaller minimal wing lengths for both sexes when compared to present study data. Literature 

criteria which achieved highest accuracy was the most recent study by Ellrich et al. (2010), 

which also reports higher minimal values of wing length in both sexes when compared to 

earlier studies (Williamson 1967, Norman 1983, Tiainen & Hanski 1985).  
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Table 15. Literature overview of sexing criteria based on wing length for adult and immature Willow 

Warblers. Source, study location, sexing method used and the proposed wing length-based criteria for 

identifying females and males (expressed in millimetres), are provided. Efficiency (percentage of birds 

sexed) and accuracy (percentage of correctly sexed birds) of each criteria was calculated for the 

sample of DNA-sexed Willow Warblers from the present study.  

ADULTS      

Source Location Sexing method Females Males Efficiency (Accuracy) 

 
present study 

 
N Poland DNA-sexing ≤ 65 ≥ 69 90 % (100 %) 

Norman  
(1983) 

NE 
England 

cloacal protuberance, brood 
patch, behaviour 

≤ 65 ≥ 67 97 % (97 %) 

Tiainen & 
Hanski (1985) 

S Finland 
cloacal protuberance, brood 

patch, behaviour 
≤ 65 ≥ 67 97 % (97 %) 

 
IMMATURES 

     

Source Location Sexing method Females Males Efficiency (Accuracy) 

 
present study 

 
N Poland DNA-sexing ≤ 65 ≥ 69 61 % (100 %) 

Norman  
(1983) 

NE 
England 

cloacal protuberance, brood 
patch, behaviour 

≤ 63 ≥ 65 92 % (82 %) 

Tiainen & 
Hanski (1985) 

S Finland 
approximation based on 

data distribution 
≤ 63 ≥ 65 92 % (82 %) 

Williamson 
(1967) 

England not listed ≤ 63 ≥ 67 82 % (94 %) 

Ellrich et al. 
(2010) 

SW 
Germany 

DNA-sexing ≤ 64 ≥ 68 75 % (98 %) 

 

 Sexing criteria for Chiffchaffs based on wing length suggested by Williamson (1967), 

Ticehurst (1938) and Svensson (1992), although 100 % accurate, are apparently too imprecise 

to be efficiently used for sexing (Tab. 16). Two sets of criteria were more efficient in sexing 

Chiffchaffs than those from present study (Lövei 1983, Geen 1988), and both were developed 

as an approximation based on wing length distribution in studied populations. The bimodal 

distribution of wing lengths of Chiffchaffs from six spring seasons covered in this study, 

however, seems to support my choice of the criteria for this species (Fig. 20). 
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Table 16. Literature overview of sexing criteria based on wing length for Chiffchaff. Source, study 

location, sexing method used and the proposed wing length-based criteria for identifying females and 

males (expressed in millimetres), are provided. Efficiency (percentage of birds sexed) and accuracy 

(percentage of correctly sexed birds) of each criteria was calculated for the sample of DNA-sexed 

Chiffchaffs from the present study.  

Source Location Sexing method Females Males Efficiency (Accuracy) 

 
present study 

 
N Poland DNA-sexing ≤ 57 ≥ 61 78 % (100 %) 

Geen 
(1988) 

SE England 
approximation based on 

data distribution 
≤ 59 ≥ 60 100 % (100 %) 

Lövei 
(1983) 

N Hungary 
approximation based on 

data distribution 
≤ 58 ≥ 61 86 % (100 %) 

Tiainen & 
Hanski 
(1985) 

S Finland 

cloacal protuberance, 
brood patch, behaviour, 
approximation based on 

data distribution 

≤ 61 ≥ 63 86 % (73 %) 

Ticehurst 
(1938) 

C and W 
Europe 

not available ≤ 56 ≥ 62 59 % (100 %) 

Svensson  
(1992) 

N and NE 
Europe 

not listed ≤ 58 ≥ 64 53 % (100 %) 

Williamson 
(1967) 

C and W 
Europe 

not listed ≤ 56 ≥ 63 25 % (100 %) 

 

 This comparison shows the importance of re-evaluation of the old criteria and 

developing of new criteria, for accurate and efficient morphological sexing of specific 

populations of both Willow Warbler and Chiffchaff. Approximation based on distributions of 

wing lengths might provide satisfactory results in studies which do not aim to sex individual 

birds (Catry et al. 2005), but in studies where higher precision is required approximations are 

not acceptable (Nyström 1997). Although there is a potential for improving the criteria 

proposed in this study by analysis of a larger sample of DNA-sexed birds, they still have 

numerous advantages over the criteria found in literature, in their current form.  

5.2.3 Sexing of Willow Warbler and Chiffchaff based on body size coefficient (PC1) 

 Sexing criteria based on best body size coefficients (PC1) obtained by Principal 

Component Analysis (PCA) were more efficient in sexing of both Willow Warblers and 

Chiffchaffs, when compared to criteria based only on the wing length.  

 In PCA, larger samples tend to minimize probability of errors, maximize the accuracy 

of population estimates and increase the generalizability of results (Osborne & Costello 

2004). Samples of size N > 300 are considered acceptable for PCA (Comrey & Lee 1992), 
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and therefore I calculated PC1 for Chiffchaffs (N=355), immature (N=1031) and adult 

(N=875) Willow Warblers from all of the analysed seasons combined. The criteria for sexing 

was determined based on PC1 values of the DNA-sexed birds, which makes it not only 

population specific, but also sample specific. In order for the PCA method of sexing to be 

applicable, a sample of measurements of already sexed birds must be available to be analysed 

along with the data for the birds of unknown sex. The sizes of combined samples of sexed and 

unsexed birds used in this study are most probably large and diverse enough so that if 

additional measurements of individuals from the same mixture of populations were added, the 

PC1 based criteria for sexing remain the same.  

 One of the problems of PCA is that, when used for calculating PC1 from W and P1P2, 

it attributes equal importance to both of these variables. Normally, wing length should be 

given an advantage over P1P2 distance in determining sex of the bird, as it more significantly 

differs between sexes. Because of these equal weights attributed to both W and P1P2 in PC1, a 

proportion of birds which could easily be sexed using the wing length-based criteria fell into 

the overlap range between the sexes when PC1-based criteria was used. Another effect of this 

equal treatment of variables by PCA occurred in these few birds in which application of the 

PC1-based criteria and the wing length-based criteria gave different results. This resulted in 

individuals of the female-sized wings and disproportionately large P1P2 distances being 

allocated as males by PC1. This, however, occurred only for 0.004 % of the total analysed 

sample and is most probably result of an error in one of the measurements.  

 PC1-based criteria for sexing Willow Warblers and Chiffchaffs improved the sample 

size of sexed individuals when used together with the wing length-based criteria. Given that 

the quality of PC1 sexing criteria relies heavily on the distribution of the sample of 

DNA-sexed individuals, it would be advisable to increase the sample size of DNA-sexed birds 

from spring to confirm and/or improve the proposed criteria.  Distributions of PC1 values of 

DNA-sexed Chiffchaffs and adult Willow Warblers follow the distributions of the large 

samples of unsexed birds, suggesting that the proposed criteria is probably justified. 

 Measurement-based sexing of Chiffchaffs and Willow Warblers is most successful 

when both criteria based on PC1 and criteria based on wing length are used together. I would 

therefore conclude that PCA does not provide the most efficient criteria for sexing of these 

species, since its results need to be improved with the use of a measurement that was already 

included in the analysis. Better results could be achieved using a statistical method which 

categorizes measurements by their contribution in separation of sexes. Ellrich et al. (2010), 
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for example, succeeded in sexing 89 % of immature Willow Warblers applying a forward 

logistic regression with sex determined by molecular analysis as the dependent variable. I 

have only succeeded in sexing 66 % of immature Willow Warblers with the use of criteria 

based on PC1, which is a considerably lower efficiency. Use of PCA, however, is more 

justified when an additional, third measurement is included into PC1 calculation.  Criteria 

based on PC1 (W+P1P2+S) showed highly promising results in sexing both Willow Warbler 

and Chiffchaff, but could not be assessed further because tarsus measurement (S) was not 

taken in the past and thus the sample was too small. I would therefore suggest further 

evaluation of these criteria, after increasing the sample of measurements of tarsus length in 

both species. 

 

5.3 Spring migration timing of Chiffchaffs and Willow Warblers 

5.3.1  Effect of subspecies mixture on seasonal differences in migration timing   

 Combined data from six spring migration seasons showed that the passage of Willow 

Warblers at Bukowo-Kopań station typically lasts from beginning of April till the end of May. 

The passage of Chiffchaffs lasts from the end of March till the end of May. Reason for the 

migration passage of Chiffchaff to start earlier but end at the same time as in Willow Warbler 

might be the occurrence of two subspecies of Chiffchaff, which cover different distances 

during migration (Hansson et al. 2000). Although long-distance migrants often leave their 

wintering quarters earlier and fly faster than the short-distance ones, the short-distance 

migrants still mostly reach the same breeding grounds earlier (Newton 2010). Short-distance 

migrant Chiffchaff of the subspecies P. c. collybita might therefore be passing Europe in 

spring earlier than long-distance migrant subspecies P. c. abietinus. Lövei (1983) found 

different ''migratory waves'' when studying autumn passage of Chiffchaffs in Hungary, which 

contained different ratios of these subspecies. The population mixture of Chiffchaffs might 

show a similar pattern in the northern Poland, but revealing this requires more detailed 

research than the current study. Both subspecies of Willow Warblers represented in this study 

are long-distance migrants and probably therefore their arrival dates are not spanned as much 

as in Chiffchaff. The long-distance migration is also the reason why during spring passage 

Willow Warbler occurs in the study area, and elsewhere in Europe, later than Chiffchaff 

(Operation Baltic, unpublished data, Bakken et al. 2003, Frasson and Hall-Karlsson 2008, 

Kralj et al. 2013).  Some differences in arrival timing, however, still might occur between the 
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subspecies of Willow Warblers, because the subspecies P. t. acredula migrate to more 

northern breeding grounds and thus probably pass through Europe earlier than P. t. trochilus 

(Berthold 2001). The two high migration peaks in both sexes of Willow Warbler might 

support this, although additional research is required for reliable conclusions.   

 The males of both Chiffchaff and Willow Warbler arrived significantly earlier than 

females. These results agree with the previous studies on breeding ecology and migration of 

these species (Geen 1988, Carty et al. 2005, Hedlund et al. 2015). The only exception in our 

study was spring of 2015, unusual in many regards, when the dates of capture did not differ 

significantly between male and female Willow Warblers. Protandry (earlier arrival of males) 

in migrant birds is observed often, but its reasons may differ between species (Morbey and 

Ydenberg 2001, Møller 2004, Kokko et al. 2006). Willow Warblers that arrive at their 

breeding grounds earlier in the season have an advantage in choosing a better quality habitat, 

or finding their territory from previous year(s) unoccupied (Tiainen 1983, Jakobsson 1988, 

Frostmeier 2002). They are also more likely to protect it successfully against the newcomers 

due to the ''previous ownership'' effect – the more time individual spends on a certain territory 

the more successful it is at defending it, regardless of other factors (Jakobsson 1988). 

Furthermore, as most of the territorial conflicts occur at the day of the arrival, newcomers are 

at the considerable energetic disadvantage compared to early settlers (Nystörm 1997).  Early 

arrival of males in Chiffchaff is probably also a result of strong inter-male competition for 

territories (Tiainen 1982, Piotrowska & Wesołowski 1989, Tiainen & Hanski 1985, Hanski & 

Tiainen 1991). However, advantages of protandry in terms of breeding biology in Chiffchaff 

have been studied less than in Willow Warbler. Despite migration timing of male Chiffchaffs 

varied between seasons and the timing of females did not, males still always arrived earlier 

than females. Catry et al. (2005) provided strong evidence of sex-differential migration in 

Chiffchaffs and showed that males winter closer to breeding grounds and begin spring 

migration earlier than females. Combination of these two factors, departing earlier and 

wintering closer, might enable male Chiffchaffs to arrive at the breeding grounds before 

females, even in the years of adverse weather when the start of their migration gets delayed.  

 The timing of males' passage varied considerably from year to year in Chiffchaff, but 

less so in Willow Warbler, in which only migration in 2009 was significantly earlier than in 

two other seasons. Dorka (1966) also observed differences in arrival dates of Chiffchaffs in 

relation to weather conditions, but found no such differences in Willow Warblers. This could 

be explained by short-distance migrants being more responsive to the year to year variation in 
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weather conditions near their breeding grounds than long-distance migrants. Conditions at the 

wintering grounds near the departure time experienced by short-distance migrants are likely to 

resemble those at the breeding grounds, enabling birds to adjust their migration timing to the 

current weather (Berthold 2001, Bridge et al. 2010, Newton 2010). Kokko (1999) suggests 

that the long-distance migrants evolved a rigid migration timing to achieve the optimal 

migration schedule, depending on the location and condition at their winter quarters. This is in 

contrast to the short-distance migrants which need shorter time for return journey and thus 

might be more flexible and adjust passage to weather within certain time window. Long-

distance migrant Willow Warblers are therefore less prone to postpone migration than short-

distance migrant fraction of Chiffchaffs, during seasons of adverse weather on route and near 

the breeding grounds. In spite of the seasonal differences in the first and the mean dates of 

arrival, Chiffchaffs were captured until the end of activity of the ringing stations each year in 

the second half of May. The short-distance migrant subspecies P. c. collybita might therefore 

be responsible for the variation in the start and peak of migration each year. The P. c. 

abietinus subspecies, as a long-distance migrant with a more stable migration schedule, could 

have contributed to the migration dynamics in a similar way each year, and thus affect the 

observed year-to-year variation less than P. c. collybita. This might explain why the observed 

population of Chiffchaffs, composed of two subspecies that cross different migration 

distances, manifested migration timing typical of short-distance migrants. However, 

individuals captured at the end of spring migration season are sometimes local breeders, 

which did not get captured immediately upon their arrival. This can lead to wrong conclusions 

about duration of migration passage in different seasons.  

5.3.2 Effect of weather on seasonal differences in spring migration timing  

 To explain some of the differences in migration phenology between the seasons and 

the sexes in Chiffchaffs, I compared changes in their daily ringing numbers with changes of 

the average daily temperature. Based on the similarities in arrival dates, I divided the seasons 

into two groups: 1) years of early arrival, when the median arrival dates of males fell before 

10 April, and 2) years of late arrival, when median arrival dates of males fell after 10 April. 

Within these groups median dates of arrival did not differ significantly, but did differ from the 

seasons in the other group. I included spring migration seasons 2009, 2010 and 2014 to the 

''early arrival'' group. All these seasons were characterized by stable temperatures of around 

5 °C in early spring (second half of March). Spring migration seasons 2012, 2013 and 2015 

formed the ''late arrival'' group. These seasons do not have one common characteristic in 
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terms of average spring temperatures. Considering that early arrival at the breeding grounds 

has multiple positive effects on fitness in males (Kokko 1999, Morbey and Ydenberg 2001, 

Møller 2004), I examined closely the ''late arrival'' seasons to determine the probable reasons 

for delayed arrival of Chiffchaffs. Early spring in 2012 was warm, with temperatures over 

5 °C, but despite these potentially favourable conditions Chiffchaffs started appearing late in 

the season (on 5 April). This delay in 2012 might have been caused by conditions in the 

wintering grounds. Several studies have shown how shortage of food supplies at the wintering 

sites, in the effect of low temperatures or lack of rainfall, can significantly delay onset of 

birds' spring migration (Bridge et al. 2010, Studds and Marra 2011, Rockwell et al. 2012). 

Additionally, low temperatures can affect the rate of pre-migratory fattening due to elevated 

energy demands associated with living in cold (McWilliamson and Karasov 2005). According 

to the ringing recoveries (Operation Baltic, unpublished data, Bakken et al. 2003, Frasson and 

Hall-Karlsson 2008), most of Chiffchaffs of the P. c. collybita subspecies passing through 

northern Poland probably winter in the south-eastern Spain. Average daily temperatures at 

several meteorological stations in south-east of Spain (Seville, Granada, Valencia, Albacete; 

https://weatherspark.com) during winters preceding the spring migration seasons covered in 

this study showed a prolonged period of unusually low temperatures during the first half of 

February 2012, which did not occur during other winters. Chiffchaffs need approximately 6 

weeks to cross the distance from south-east Spain to the Polish coast (Operation Baltic, 

unpublished data, Bakken et al. 2003, Frasson and Hall-Karlsson 2008). This means they 

probably start their pre-migratory hyperphagia in early February (McWilliamson and Karasov 

2005, Berthold 2001, Newton 2010). Therefore prolonged colds in February 2012 in Spain 

might have had negative effect on Chiffchaffs’ pre-migratory fattening and delayed onset of 

their migration in 2012. Additionally, winter of 2011-2012 in Spain was exceptionally dry 

(Guerrero 2012), which also might have had negative influence on food availability at 

Chiffchaffs’ wintering sites. Explaining Chiffchaffs migration delay in 2012, however, 

includes many assumptions, confirmation of which goes beyond the scope of this study. Early 

spring of 2013 was characterized by a long period of exceptionally low temperature on the 

Baltic coast, and first males started arriving late in the season. Soon after the passage started, 

50 % of all males recorded that season were captured within 5 days, as soon as the 

temperature exceeded 5 °C. Since arrival at the breeding site before the increase in 

temperature and spring green-up usually results in starvation and death, males are prompted to 

adjust timing of their migration to external weather conditions and spring phenology of the 

breeding area (Alerstam et al. 2003, Emmenegger et al. 2014, Hahn et al. 2016). Male 
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Chiffchaffs probably delayed their migration in 2013 until weather conditions, and thus food 

availability, improved at their stopover locations and breeding sites (Balboltín et al. 2009, 

Emmenegger et al. 2014, Kölzsch et al. 2015).  In spring 2015 temperature was high and 

stable on the Baltic coast, and there were no prominent periods of low temperatures during 

winter 2014/2015 in south-east Spain. However, median dates of arrival of both males and 

females were later in 2015 than in all other seasons. Spring of 2015 was unusual in terms of 

migrants occurrence as compared to previous seasons at Bukowo-Kopań ringing station, with 

delay in passage and smaller numbers of ringed long-distance and short-distance migrants 

alike (Operation Baltic, unpublished data). This major shift in migration phenology of 

Chiffchaffs and other migrants in 2015 could be an effect of a combined influence of other 

weather conditions, e.g. temperature, wind and precipitation, at both the wintering site and on 

their migration route, which requires further analysis. 

 Although peaks in occurrence of both males and females mostly followed peaks in 

temperature, females seem to be more selective than males, as they almost never appeared in 

bigger numbers (N ≥ 3) on the days when the mean temperature is below 5 °C (Figs. 27-32). 

This tendency highlights the importance of Bukowo-Kopań as a stopover site. Spring 

migration occurs under bigger time pressure than autumn migration as there are numerous 

benefits of early arrival to breeding site (Kokko 1999, Moore et al. 2005, Nilsson et al. 2013). 

Chiffchaffs migrate mostly during the night, and use daytime to replenish their energy 

reserves at stopover sites (Ciach 2009). Successful migration involves a trade-off between the 

number of stopovers and their duration (Alerstam 2011). High quality stopover sites which 

ensure fast recovery of energy supplies are therefore especially important to birds during 

spring migration race (Nilsson et al. 2013, Arlt et al. 2015). As discussed earlier, temperature 

has a direct influence on food availability and metabolism rate of individuals (McWilliamson 

and Karasov 2005, Newton 2010), and higher temperature usually means higher quality of 

stopover sites and abundance of insects (Elkins 2004, Marra et al. 2005, Månsson and 

Hämäläinen 2011). Therefore, bird numbers present at Bukowo-Kopań probably at least 

partially reflect food condition at the site at the time (Newton 2010). Since the males face 

higher pressure of early arrival to breeding site (Kokko 1999, Morbey and Ydenberg 2001, 

Møller 2004) and migrate earlier in the season than the females, when the temperatures are 

lower and more unstable than later, they are more prone to be forced to use a stopover site 

during suboptimal temperatures. Females migrate later in the season, when their coinciding 

stopovers with optimal temperature is probably easier. We can also look at differential 

migration timing of males and females from the perspective of selective pressures sexes face 
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at the beginning of the breeding period. Since females are expected to produce eggs soon after 

their arrival to breeding site, it is highly advantageous for them to arrive in good physiological 

condition (Sandberg and Moore 1996, Moore et al. 2003). Females are therefore more likely 

to make a trade-off in favour of good physiological condition over early arrival, and rather 

arrive later but with more residual nutrient supplies than males (Newton 2010). Sandberg and 

Moore (1996) hypothesise that females which arrive with greater nutrient reserves are able to 

start breeding earlier and produce higher quality eggs than those in worse condition. Thus, the 

preference of females to use stopover sites only in periods of optimal temperature, observed in 

this study, might be due to expected energy requirements at the breeding site (Sandberg and 

Moore 1996, Moore et al. 2003).  

 I did not conduct analogous analysis of migration phenology of Willow Warblers 

against temperature at the ringing site, because their timing of passage did not vary much 

among the seasons, as I discussed earlier. Additionally, Willow Warblers arrive at the ringing 

site later in spring than Chiffchaffs, when the temperature is already high and has less effect 

on their migration speed and choice of stopover. However, there is potential for long-term 

study of change in arrival timing of Willow Warblers. Although long distance migrants have 

been perceived to mostly rely on intrinsic cues to start their migration (Newton 2010), Saino 

et al. (2007) showed clear connection between amount of rainfall in wintering areas in Africa 

and subsequent spring arrival dates of nine long-distance migrants, Willow Warbler included. 

It is possible that the present study did not compare enough seasons to observe such 

differences. In a later study, Saino and Ambrosini (2010) argue that weather conditions in 

sub-Saharan western Africa during late winter co-vary with those in Europe during spring, 

thus allowing long-distance migrants to predict weather conditions at the breeding sites before 

they start migration. However, the strength of this correlation of weather in western Africa 

and Europe has declined during the past 25 years, making it harder for migrants to adjust their 

migration schedules to conditions at the breeding grounds. Therefore, the arrival dates of 

Willow Warblers might have been more flexible in the past. Climate change seems to be an 

important factor in changing trends in bird migration (Marra et al. 2005, Møller et al. 2008, 

Newton 2010, Hüppop & Hüppop 2011). Heldlund et al. (2015) noted long-term phenological 

shifts in Willow Warblers, with both sexes arriving and breeding approximately 5 days earlier 

than 22 years ago. Hence, a more long-term study of trends in migration timing might reveal 

greater differences in migration timing in populations of Willow Warbler that migrate through 

northern Poland.  
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6. CONCLUSIONS 

 The results presented in this study can be summarised as follows:  

1. Most Chiffchaffs (84 % of sampled individuals) and Willow Warblers (92 %) were 

successfully DNA-sexed using the standard primer pair P2/P8. For the problem 

samples, F2/R1 primer pair and an adjusted separation protocol can improve the 

results. In total, 100 % of sampled Willow Warblers and 92 % of sampled Chiffchaffs 

were DNA-sexed using the combination of these two pairs of primers.  

2. Both species show distinct sexual dimorphism, with males being the larger sex. Wing 

length was the most pronounced sexually dimorphic feature. Size dimorphism in these 

species is probably a result of Darwinian sexual selection favouring larger males, and 

might also be related to differential migration strategies and parental roles in sexes. 

3. The most efficient morphological sexing criteria were based on PC1 combining wing 

length and P1P2 measurement. The most widely applicable criteria for both species 

were based on wing length, since the P1P2 measurement was not available for some of 

the past data. With the combined use of both of these criteria I was able to sex 90 % of 

adult Willow Warblers, unsampled for DNA, and 88 % of unsampled Chiffchaffs 

captured during spring migration seasons 2009-2015.  

4. Differential migration in the form of protandry was observed in both species. Males 

arrived earlier than females in most seasons, except spring 2015, when the dates of 

arrival of Willow Warblers did not differ between the sexes. Early arrival probably 

gives males an advantage in competition for mates and better quality territories. 

5. The timing of males' spring arrival varied considerably among years in Chiffchaff, but 

less so in Willow Warbler, pointing to a more rigid migration schedule in the latter 

species. There were no notable year-to-year differences in timing of passage in 

females in either species. Literature data suggest that low temperature at the wintering 

sites or on the migration route may delay spring passage of male Chiffchaffs. 

6. The  rise in temperature at the stopover site often coincided with the peaks in arrivals 

in both male and female Chiffchaffs. Higher temperature seems to have a positive  

influence on the quality of a stopover site, in terms of feeding conditions and food 

abundance. 
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APPENDIX  

Table A1. Sample sizes of morphological measurements of Willow Warblers used in the study. 

Willow Warblers were caught during six autumn (A: 2014, 2013, 2012, 2009, 2008, 2007) and six 

spring (S: 2015, 2014, 2013, 2012, 2010, 2009) migration seasons, and were divided into three age 

groups: A – adults caught in autumn or spring, I – immatures, L – birds of unknown age. The 

measurements included are: W – wing length, P1P2 – distance between the first and the second primary 

feather, K – distance between the longest primary feather and the first secondary feather, P1GC – 

distance between the first primary and the longest greater covert, WF – wing formula and S – tarsus 

length. 

Measurement Age 
2014 

A 
2013 

A 
2012 

A 
2009 

A 
2008 

A 
2007 

A 
2015 

S 
2014 

S 
2013 

S 
2012 

S 
2010 

S 
2009 

S 

W 

A 16 8 3 25 4 66 45 75 73 131 85 109 
I 480 153 43 330 143 184 - - - - - - 
L 133 7 2 15 146 106 - - - - - - 

total 692 168 48 370 293 356 45 75 73 131 85 109 

 P1P2 

A 16 8 3 19 3 13 45 73 70 130 85 108 

I 469 152 38 284 119 101 - - - - - - 

L 132 7 2 14 104 16 - - - - - - 

total 617 167 43 329 226 130 45 73 70 130 85 108 

K 

A 16 8 3 - - - 45 75 70 129 85 109 

I 468 151 35 - - - - - - - - - 

L 131 7 2 - - - - - - - - - 

total 615 166 40 - - - 45 75 70 129 85 109 

P1GC 

A 16 8 3 19 3 14 45 72 49 89 64 89 

I 472 150 36 295 93 101 - - - - - - 

L 131 7 2 14 110 16 - - - - - - 

total 619 165 41 328 206 131 45 72 49 89 64 89 

WF 

A 16 8 3 25 4 57 45 65 58 97 78 101 

I 470 149 39 318 134 175 - - - - - - 

L 131 7 2 14 135 97 - - - - - - 

total 617 164 44 357 273 329 45 65 58 97 78 101 

S 

A - - - - - - 45 - - - - - 

I - - - - - - - - - - - - 

L - - - - - - - - - - - - 

total - - - - - - 45 - - - - - 
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Table A2. Sample sizes of morphological measurements of Chiffchaffs used in the study. Chiffchaffs 

were caught during six spring migration seasons (2015, 2014, 2013, 2012, 2010, 2009), and were 

divided into three age groups: A – adults from autumn or spring, I – immatures, L – birds of unknown 

age. Measurements included are: W – wing length, P1P2 – distance between the first and the second 

primary feather, K – distance between the longest primary feather and the first secondary feather, 

P1GC – distance between the first primary and the longest greater covert, WF – wing formula and S – 

tarsus length. 

Measurement Age 2015  2014  2013  2012  2010  2009  

W 

A 22 12 3 4 10 1 

I 38 81 58 36 98 55 

L 13 23 12 29 28 42 

total 73 116 73 69 136 98 

 P1P2 

A 22 12 3 3 7 1 

I 32 77 39 10 87 36 

L 10 23 9 7 25 30 

total 64 112 51 20 119 67 

K 

A 21 11 3 4 - - 

I 26 56 33 8 - - 

L 9 19 8 10 - - 

total 56 86 44 22 - - 

P1GC 

A 22 12 3 4 8 1 

I 32 77 34 7 87 36 

L 8 22 10 11 25 30 

total 62 111 47 22 120 67 

WF 

A 20 10 1 4 8 1 

I 26 56 28 8 74 38 

L 9 19 8 10 24 27 

total 55 85 37 22 106 66 

S 

A 22 - - - - - 

I 30 - - - - - 

L 13 - - - - - 

total 65 - - - - - 
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