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SUMMARY

This work is concerned with the classification of boundary conditions for the classical
Friedrichs systems by developing new results on abstract Friedrichs operators. The con-
cept of the classical Friedrichs system was introduced by Friedrichs in 1958 as a symmet-
ric positive system of first-order linear partial differential equations. The main motivation
was to treat the equations that change their type, like the Tricomi equation (which ap-
pears in the transonic flow). Moreover, it allows a unified treatment of a wide variety of
elliptic, parabolic, hyperbolic and mixed-type equations. On the other hand, the theory
of abstract Friedrichs operators was introduced in 2007, which is formulated in terms of
Hilbert space theory. Further development of this theory on a purely operator-theoretic
approach allows us to work beyond the realm of partial differential operators.

We derive a von Neumann decomposition-type formula for the graph space of abstract
Friedrichs operators. This decomposition ensures that the classification of all boundary
conditions depends (only) on the kernels of the adjoint operators. We recognise the po-
tential connection between the theory of abstract Friedrichs operators and symmetric op-
erators. By representing an abstract Friedrichs operator as the sum of a skew-symmetric
and a bounded self-adjoint operator with a strictly positive bottom, we introduce a von-
Neumann extension theory for abstract Friedrichs operators, enabling a comprehensive
classification of boundary conditions—a distinct approach from the general Grubb exten-
sion theory.

Furthermore, we present a complete classification of boundary conditions for classical
Friedrichs operators in the one-dimensional case. This classification involves an explicit
formulation of the boundary operator, depending on the coefficient matrix. We argue
using total projections and prove a result that relates the dimensions of the kernels to the

rank of the coefficient matrix at the endpoints of the interval. We illustrate the theory on
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Summary

a second order ordinary differential equation.

Non-stationary theory for Friedrichs operators using semigroup theory is studied at
the end. It turns out that a wide class of boundary conditions for a given pair of ab-
stract Friedrichs operators gives rise to the generators of contractive Cp—semigroups. A
subclass of these boundary conditions is related to the skew-selfadjoint extensions of the
skew-symmetric operators. The boundary quadruple approach is used to give another
classification of these special types of boundary conditions.

Keywords: symmetric positive first-order systems of partial differential equations,
non-selfadjoint operators, extension theory of closed operators, dual pairs, indefinite inner

product space, perturbation of matrices, Cp—semigroup.
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SAZETAK

Ovaj rad proucava klasifikaciju rubnih uvjeta za klasi¢ne Friedrichsove sustave razvijajuci
nove rezultate o apstraktnim Friedrichsovim operatorima. Pojam klasi¢nog Friedrich-
sovog sustava uveo je Friedrichs 1958. godine kao simetri¢ni pozitivan sustav linearnih
parcijalnih diferencijalnih jednadzbi prvog reda. Glavna motivacija bila je tretirati jed-
nadzbe koje mijenjaju svoj tip, poput Tricomijeve jednadzbe (koja se pojavljuje pri opisu
toka kod prijelaza brzine zvuka). To omogucuje objedinjeni pristup Sirokom rasponu
eliptiCnih, paraboli¢nih, hiperboli¢nih i jednadZbi mjeSovitog tipa. Teorija apstraktnih
Friedrichsovih operatora uvedena je 2007. godine, a formulirana je u terminima teorije
Hilbertovih prostora. Daljnji razvoj ove teorije Cisto operatorskim pristupom omoguéuje
nam istraZivanje izvan podrucja parcijalnih diferencijalnih operatora.

U radu je prepoznata povezanost teorije apstraktnih Friedrichsovih operatora i simetri-
¢nih operatora. Naime, reprezentiranjem apstraktnih Friedrichsovih operatora kao zbroja
antisimetri¢nog i ograni¢enog pozitivnog hermitskog operatora, dobivamo formulu za ras-
tav prostor grafa apstraktnih Friedrichsovih operatora von-Neumannovog tipa. Ovaj ras-
tav osigurava da klasifikacija svih rubnih uvjeta ovisi (samo) o jezgrama adjunigiranih
operatora. Uvodenjem teorije von-Neumannovog proSirenja za apstraktne Friedrichsove
operatore, omogucujuje se sveobuhvatna klasifikacija rubnih uvjeta — pristup koji se raz-
likuje od opcée Grubbine teorije prosirenja.

Nadalje, prezentiramo potpunu klasifikaciju rubnih uvjeta za klasi¢ne Friedrichsove
operatore u jednodimenzionalnom slucaju. Ova klasifikacija ukljucuje eksplicitnu formu-
laciju rubnog operatora, ovisno o matricnom koeficijentu. Dokaz se temelji na koriStenju
ukupne projekcije (u terminu projekcije na svojstvene potprostore) i dokazujemo rezultat
koji povezuje dimenzije jezgara s rangom matricnog koeficijenta na rubovima intervala.

Tu teoriju ilustriramo na obi¢nim diferencijalnim jednadZbama drugog reda.

v



Sazetak

Na kraju se proucava nestacionarna teorija za Friedrichsove operatore koristeci teoriju
polugrupa. Pokazuje se da Sirok spektar rubnih uvjeta za dani par apstraktnih Friedrichso-
vih operatora dovodi do generatora kontrakcijske Cp—polugrupe. Stovise, pokazana je
povezanost tih rubnih uvjeta s antihermitskim proSirenjima antisimetir¢nih operatora. Re-
centni pristup s rubnim ¢etvorkama koristi se za alternativnu klasifikacije ovog posebnog
tipa rubnih uvjeta.

Rad je organiziran kako slijedi.

Citatelja se upoznaje u Uvodu s teorijom Friedrichsovih sustava, gdje je dan i kratki
pregled rezultata koji su obradeni u ostatku Rada.

Poglavlje 1 sadrzi osnove teorije klasicnih Friedrichsovih operatora. Sazeti su os-
novni rezultati teorije dobre postavljenosti zajedno s primjerima klasi¢nih Friedrichsovih
operatora. Nadalje, raspravljaju se razli€iti nacini zadavanja rubnih uvjeta.

Poglavlje 2 uvodi apstraktne Friedrichsove operatore zajedno s njihovom formulac-
ijom u terminima teorije Hilbertovih prostora. Naglasak je stavljen na teoriju dobre
postavljenosti koristeci tzv. konusni formalizam koji je uveden u [39]. Takoder se diskuti-
raju rezultati o viSestrukosti i klasifikaciji koristeci teoriju Kreinovih prostora (vidi 3, 9]).
Na kraju ovog poglavlja proucavaju se odabrani primjeri od interesa.

Poglavlje 3 uvodi novu karakterizaciju apstraktnih Friedrichsovih operatora u termin-
ima zbroja antisimetri¢nog i pozitivhog hermitskog operatora. Izvodi se dekompozicija
prostora grafa apstraktnih Friedrichsovih operatora von Neumannovog tipa. Poglavlje
se zakljuCuje proucavanjem klasifikacije rubnih uvjeta u duhu teorije von Neumanna o
proSirenjima, te pripadnom poveznicom s teorijom za simetri¢ne operatore.

U poglavlje 4 se primjenjuju dobiveni rezultati prethodnog poglavlja na Friedrichsove
sustave na intervalu. Pretpostavke u vezi s koeficijentima prilicno su opcenite i obuh-
vacaju situacije koje ukljuCuju singularne jednadzbe (ili sustave). Pruza se potpuna klasi-
fikacija rubnih uvjeta za skalarni slu€aj. Analizira se 1 vektorski slucaj, gdje se dokazuje
rezultat koji povezuje jezgre pripadnih maksimalnih operatora sa svojstvenim vrijednos-
tima matri¢nih koeficijenata na rubovima intervala.

Poglavlje 5 se fokusira na nestacionarnu teoriju apstraktnih Friedrichsovih operatora.
Preciznije, dokazuje se da bijektivne realizacije apstraktnih Friedrichsovih operatora s

rubnim preslikavanjem s predznakom, kao i odgovarajuce realizacije antisimetri¢nih di-
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jelova, daju generatore kontrakcijskih Co—polugrupa, te da su to jedine realizacije s
takvim svojstvom. Rezultati su povezani s novouvedenom teorijom rubnih Cetvorki za
antisimetri¢ne opratore [10].

Kljucne rijeci: simetri¢ni pozitivni sustav parcijalnih diferencijalnih jednadzbi prvog
reda, nehermitski operator, teorija proSirenja zatvorenih operatora, dualni par, prostor

indefinitnog skalarnog produkta, perturbacija matrice, Co—polugrupa.
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INTRODUCTION

Friedrichs introduced the concept of the positive symmetric system [41] (following his
research on symmetric hyperbolic systems [40]), which is today customarily referred to
as the Friedrichs system. It was a historical effort to provide a unified framework that
incorporates the study of a wide range of differential equations. Although it represents
a class of (initial-)boundary value problems consisting of first-order linear partial dif-
ferential equations, the casting of second-order elliptic, parabolic, and hyperbolic equa-
tions into Friedrichs systems is well-studied. Also, many other equations, such as dif-
fusion equations, advection-diffusion-reaction equations, div-grad problems, linear elas-
ticity problems, the Klein-Gordon equation, Maxwell’s equations, and magnetohydrody-
namics equations, can be analysed within this framework. Friedrichs’ primary motivation
was to study partial differential equations (appearing in a number of physical phenomena)
that change their type, such as the Tricomi equation appearing in transonic fluid flow:

%u  d%u

yWJra—yz:O. (1)

Regions of subsonic flow correspond to a local model of elliptic type y > 0, while regions
of supersonic flow are represented by a hyperbolic equation y < 0.

When it comes to providing a unified treatment for such a diverse class of equations,
it is inevitable that the solutions to Friedrichs systems incorporate the mathematical char-
acteristics of solutions of the individual differential equations. To elaborate: considering
the characteristics of hyperbolic equations, the solution to a Friedrichs system may be
discontinuous. On the other hand, a solution may exhibit poles at corners of the domain,
which is not unusual considering the nature of solutions of elliptic equations. Referring
to many other familiar features such as holomorphy, boundary and interior layers, the list

could be further extended. Clearly, trying to capture all of these characteristics simultane-
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ously is a major challenge, and it is still of great interest to study such problems. One of
the main difficulties is the correct implementation of the boundary conditions. Friedrichs
introduced a very clever technique to characterise admissible boundary conditions. This
technique involves a non-uniquely defined, positive matrix boundary field having pecu-
liar algebraic properties. One difficulty of the theory developed by Friedrichs is that it
is not intrinsic, due to the nonuniqueness of the boundary field used to enforce boundary
conditions. Moreover, the theory involves boundary values of the solution to the PDE
whose meaning is not clear i.e. due to lack of regularity, it is subtle how to define and
integrate these values. Finally, he was only able to prove the existence of weak solutions
and uniqueness of strong ones, leaving the general question open on the joint existence
and uniqueness.

In the following years, a number of improvements were made to this theory (par-
ticularly to clarify the meaning of traces in Friedrichs systems), mostly by Friedrichs’
collaborators and former students. In [42], another equivalent way to impose boundary
conditions was introduced by Friedrichs and Lax, and a third equivalent way to impose
boundary conditions was introduced by Phillips and Sarason in [52]. Each of these meth-
ods of imposing boundary conditions provides a different perspective to the Friedrichs
theory and, along with an improvement, also governs the strength of the theory in a given
direction. Although there was some progress in very specific points, the topic appeared
to be less active from the mid-1960s to the late-1990s.

New interest in Friedrichs systems arose from numerical analysis, thanks to their fea-
ture of providing a convenient unified framework for numerical solvers to partial differ-
ential equations of different types, together with the fact that the structure of first-order
equations is beneficial for developing numerical schemes (see e.g. [35, 46]). A compre-
hensive overview of the theory from this perspective can be found in [47]. This interest
derived from numerical analysis motivated the introduction of abstract theory at the be-
ginning of 2000s. While we continue our focus on abstract theory from now on, here
we mention the following references for the development of different numerical schemes
[19, 24, 25, 26, 37, 38].

Ern, Guermond, Caplain introduced the theory of abstract Friedrichs operators [39,

2007] for real Hilbert spaces (in [5], the theory is interpreted for complex Hilbert spaces).
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They reformulated the theory in terms of operators acting on Hilbert spaces and were
able to avoid invoking traces at the boundary. To impose the boundary conditions, they
introduced a set of geometric conditions, the so-called cone formalism. In this framework,
the main problem of well-posedness can be understood as follows: To find a subspace *

of a Hilbert space .7, for any abstract Friedrichs operator 7', such that the problem:
For a given f € 7, find u € ¥ such that Tu = f (2)

is well-posed i.e., T'|y is bijective (this operator-theoretic reformulation of partial differ-
ential equations could be traced back to works of VisSik [54, 55]). The way of imposing
boundary conditions could be seen as the quest for such subspaces #'. The first well-
posedness result was proved in the aforementioned reference under the assumption of the
existence of subspaces satisfying the condition given by the cone formalism. The abstract
theory not only encompasses the classical theory; it goes beyond the realm of PDEs.
Analogously to the three ways of imposing boundary conditions in the classical theory,
we have three ways in the abstract theory as well. In fact, the cone-formalism is analogous
to the one introduced by Phillips and Sarason in [52], and the boundary operator formal-
ism is analogous to Friedrichs’ condition. Equivalence among these three conditions has
been investigated in the following references [3, 39]. This new development attracted the
community for further theoretical and numerical investigations. For example, studies of
different representations of boundary conditions and the relation with the classical theory
[3,4,5,6, 8,9, 12], applications to various (initial-)boundary value problems of elliptic,
hyperbolic, and parabolic type [7, 12, 23, 29, 31, 36, 49], and the development of different
numerical schemes [18, 19, 24, 36, 37, 38].

A characterisation of the cone formalism in terms of an indefinite inner product is
studied in [3], which, in a quotient by its isotropic part, gives a Krein space. In the same
reference, the authors proved the equivalence among the three boundary conditions in the
abstract setting in full generality, where the existence of the required subspaces is evident
by the Krein space theory. The use of the indefinite inner product structure plays a key

role in answering the following generalised well-posedness problem:
For a given Friedrichs system Tu = f | 3)

(1) Existence: the existence of boundary conditions for which the problem is well-
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posed.

(2) Multiplicity: the possibility that there exist infinitely many different boundary con-

ditions of well-posedness.

(3) Classification: an efficient classification of such boundary conditions for which the

problem is well-posed.

In 2017, Antoni¢, Erceg, and Michelangeli presented a purely operator-theoretic descrip-
tion of abstract Friedrichs systems, and using the Krein space theory, they proved the
existence of boundary conditions for which the problem (3) is well-posed (note that in
[39], the well-posedness result was obtained under the assumption that such boundary
conditions exist). Moreover, they provided the multiplicity result, i.e., necessary and suf-
ficient conditions for the existence of infinitely many such boundary conditions. The
operator-theoretic approach allowed an application of the universal extension theory (see
e.g., [43] and [44, Chapter 13]), and this answers the problem of classification, i.e. we get
a complete classification of all such boundary conditions.

Let us elaborate in more details on the organisation and context of the dissertation,
while at the same time emphasising the main novelty of this work.

In Chapter 1 we recall the calssical theory of Friedrichs systems, presenting the clas-
sical theory along with the three ways to impose the boundary conditions in Section 1.1.
We elaborate on the casting of some well-known examples (stationary diffusion equation
and Maxwell’s equation in the elliptic regime) as classical Friedrichs operators in Section
1.2, and we conclude Chapter 1 with a summary of well-posedness results of the classical
theory.

In Section 2.1, we introduce the theory of abstract Friedrichs operators and provide a
complete description in terms of an operator-theoretic approach. The boundary operator
and the connection to the indefinite inner product space and the Krein space theory are
covered in Section 2.2. A discussion about classical Friedrichs operators being encom-
passed by the abstract Friedrichs operators is presented as well. A brief review of the
Krein space theory in the context of the abstract theory of Friedrichs systems is provided
in Appendix. A rigorous discussion on the cone-formalism and its operator-theoretic for-

mulation is provided in Section 2.3, while proof of well-posedness result along with the
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multiplicity result is covered in 2.4. In Section 2.5, we discuss the equivalence among
the three ways to impose boundary conditions in the abstract setting. We briefly recall the
general extension theory in Section 3.1.

From Section 3.2 onwards, most of the material is a novel contribution, so we will be
more detailed in describing the context. It turns out that the classification of boundary
conditions using the general extension theory is not the only way to approach this theory.
The well-known von-Neumann extension theory for symmetric operators is also applica-
ble to the abstract Friedrichs operators. However, we present a different approach for the
proofs which allows us to go in the direction of symmetric operator theory via abstract
Friedrichs operators. We start by proving a decomposition of the graph space in terms
of the so-called minimal space and kernels of the adjoint operators in Section 3.2. As a
consequence, a pair of boundary conditions is explicitly obtained. To establish the decom-
position formula of the graph space, we obtain an alternate decomposition in terms of the
reference operator of the abstract Friedrichs operator and then achieve the equality of both
decompositions using the Hilbert space theory. This decomposition reveals that the room
for choosing any boundary condition for the abstract Friedrichs operators is completely
dependent on the study of kernels of the adjoint operators. In Section 3.3, we present a
characterisation of the abstract Friedrichs operators in terms of a skew-symmetric oper-
ator and a bounded self-adjoint operator with strictly positive bottom. Let us emphasise
the fact that the entire theory is equivalently applicable to the formal adjoint operator of
a Friedrichs operator. In fact, we call them together a pair of abstract Friedrichs opera-
tors. In the same section, we discuss the deficiency indices (defect numbers) and prove
that the kernels of the adjoints being isomorphic is equivalent to the existence of the same
admissible boundary condition (the cone formalism) for the Friedrichs operator and its
formal adjoint. In Section 3.4, we develop the von-Neumann extension theory for ab-
stract Friedrichs operators and provide a complete classification of boundary conditions
(even the closed ones) for abstract Friedrichs operators. When compared to the universal
Grubb’s extension theory (3.1), this approach turns out to be more suitable when studying
an important class of bijective realisations with signed boundary maps. In Section 3.5, we
provide an application of the developed theory in the case of symmetric operators.

One of our main concerns is the application of abstract theory to classical Friedrichs
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systems, including the classification of the boundary conditions of interest. In Section 3.6,
we provide a more straightforward proof of the equivalence between the cone formalism
and the boundary operator formalism for abstract Friedrichs operators. This allows us to
construct a boundary operator for each boundary condition given by the cone formalism
more directly. Then, we turn our attention to the classical Friedrichs systems on an in-
terval (one-dimensional case). For the scalar case, dealing with some difficulty related
to the singularity of the coefficients, we provide a complete analysis and classification of
boundary conditions in Section 4.1. In the vectorial case, the problem becomes particu-
larly challenging because of the non-smoothness of eigenvectors of the coefficient matrix.
We develop some preliminary results using the concept of total projections, which enables
us to define the boundary operator and the minimal space explicitly. The main result of
this part is in connecting the dimensions of the kernels to the coefficient matrix evaluated
at the end-points of the interval. We elaborate the results of this part in two examples,
one is a 2 X 2 system of ordinary differential equations and another is a second order ordi-
nary differential equation. This approach can be more helpful in dealing with the singular
coefficients.

Finally, we turn our attention to the non stationary theory for Friedrichs systems. More
precisely, we prove that the bijective realisations of abstract Friedrichs operators with
signed boundary maps as well as the corresponding realisations of the skew-symmetric
parts give rise to the generators of contractive Cyp—semigroup. Moreover, some spe-
cial bijective realisations, which are related to the skew-selfadjoint realisations of the
skew-symmetric parts generate Cp—group and the skew-selfadjoint parts generate unitary
Co—group. For skew-symmetric operators the theory has been developed ([10]). How-
ever, our approach gives an alternate approach for the same theory and extends the theory
to non skew-symmetric operators, which is again a demonstration of the strength of the
von Neumann classification theory developed in Chapter 3. We illustrate the theory on
some some examples.

Notation. Most of our notations are standard, let us only emphasise the following. For
the sake of generality, in this dissertation we work on complex vector spaces. Thus, by
A we denote a complex Hilbert space with scalar product (- | -), which we take to be

linear in the first and anti-linear in the second entry. The corresponding norm is given by
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|-l := +/{-]+). For s = C" we shall often use an alternative notation: (x |y) =x-vy,
x,y € C". The topological (anti)dual 7" will be identified with .7 by means of the usual
duality (the Riesz representation theorem). For any Banach space 2" by 5(-,-) 2 we
denote the corresponding dual product between 2" and its (anti)dual .2"". The annihilator
of S C 27, denoted by S, is a closed subspace of .2 given by S* = {f € 2 : (Vu €
S) 9(f,u)9 =0}. For a subspace & C 2" we denote by cl o~ % its closure within 2.

For a densely defined linear operator A : .77 — 7 we denote by domA, kerA, ranA,
A, A* its domain, kernel, range (or image), closure (if it exists), and adjoint, respectively.
For S C JZ, the restriction of A to S is denoted by A|s. For two linear operators A, B in 7
by A C B we mean that domA C domB and Blgoma =A. By (- |- )a:={(-]-)+(A-|A"-)
we denote the graph scalar product, while the corresponding norm || - |4 := m is
called the graph norm. If A = A*, then A is said to be self-adjoint, while the infimum
of its spectrum is called the bottom. The identity operator is denoted by I. For a direct
sum between two vector spaces we use the symbol . We write © for the orthogonal
difference in order to express in which Hilbert space the orthogonal complement is taken.

For any complex number z € C we denote by Rz and 3z the real and the imaginary

part of z, respectively.






1. CLASSICAL FRIEDRICHS SYSTEMS

This chapter contains a brief overview of the theory of classical Friedrichs systems. Most
of the content is from the paper by Friedrichs [41]. Generalisation of some results and

more details on the theory can be found also in [42] and [52].

1.1. DEFINITION AND BOUNDARY CONDITIONS

Definition 1.1.1 (Classical Friedrichs systems). For an open and bounded set Q C R4
with Lipschitz boundary T, let the quadratic matrix functions Ay € W= (Q:M,(C)), k =
1,2,...,d,and B € L (Q;M,(C)) satisfy

A=A onQ (F1)
and
d
(3uo>0) B+B*+ ) A >2ul  ae.onQ. (F2)
k=1
Then the first-order differential operator L : L?>(Q)" — 2'(Q)" defined by
d
Lu = Ok (Agu) +Bu (CFO)
k=1

(here derivatives are taken in the distributional sense) is called the (classical) Friedrichs
operator or the symmetric positive operator, while (for a given f € LZ(Q)’ ) the first-order
system of partial differential equations Lu = f is called the (classical) Friedrichs system

or the symmetric positive system.

Condition (F1) is the symmetry condition and (F2) is the positivity condition. The

formal adjoint L : L2(Q)" — 2'(Q)" of operator L is given by

_ d d
Lu = =Y a(Au)+ (B + Y dee)u.
k=1 k=1



Classical Friedrichs systems Definition and boundary conditions

Definition 1.1.2 (Matrix-valued boundary conditions). Under the assumptions in the
definition of classical Friedrichs system, let v = (vy, ..., v;) be the outward unit normal on
the boundary I'and M : I' — M, be given matrix-valued boundary field, then the boundary
condition is given by

(Ay —M)u|r =0,
where,

d
Ay = Z ViA, € L7 (T;M,) .
k=1

Not all matrix-valued boundary fields M would lead to the well-posedness problem.
Friedrichs proposed a concrete definition of the admissible boundary condition with re-

spect to the matrix-valued boundary field.

Definition 1.1.3 (Admissible boundary condition (FM)). Let M be a matrix-valued bou-

ndary field. For a.e. x € C” we introduce two conditions:
(FM1) Positivity condition:
(V6 eC) M(x)+M'(x))§-§ >0,
(FM2) Maximality condition:
C" =ker(Ay(x) —M(x)) + ker(Ay(x) + M(x)) .
If both conditions are satisfied, then the boundary condition
(Ay —M)ulr =0,
is called an admissible boundary condition.
Remark 1.1.4. (FM1) condition implies
(V6 eC) RM(x)§-§) >0,
and (VéeC') RM*(x)§-&)>0.
Remark 1.1.5. If § € ker(Ay(x) —M(x)) Nker(Ay(x)+M(x)), then
Av(x)§-§ =M(x)§-§ =-M(x)§-§ =0,
thus we have

ker(Ay(x) —M(x)) Nker(Ay(x) +M(x)) ={& € C": Ay(x)§-E=M(x)§-& =0} .
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The sole condition (FM1) is the criterion for semi-admissibility. If both conditions
(FM1) and (FM2) hold for M, then they also hold for M*. As a consequence, we have the

following:

Remark 1.1.6. The boundary condition (Ay —M)u|r = 0 is (semi-)admissible if and
only if the boundary condition (Ay — M*)u|r = 0 is (semi-)admissible. Where (by (F1))
we have

At:AV

Another, but equivalent concept for imposing boundary condition was introduced by

Friedrichs and Lax in [42].

Definition 1.1.7. (Admissible boundary condition (FX)) Let N = {N(x) :x €'} be a
family of subspaces of C" of constant dimensions depending on the boundary I". For

a.e. x € I', we define two conditions:
(FX1) (Positivity condition): N(x) is non-negative with respect to Ay (x), i.e.
(VE EN(x)) Av(x)§-§ >0,
(FX2) (Maximality condition): There is no subspace of C” which contains N(x) properly,
and non-negative with respect to Ay (X).
If both conditions are satisfied, then the admissible boundary condition is given by
u(x) € N(x), forae.xel.

Finally, the third set of boundary conditions (still equivalent to the previous ones)
was introduced by Phillips and Sarason in [52]. In this setup, a dual subspace of N(x) is
introduced as N(x) := (Ay(x)N(x))L.

Definition 1.1.8. (Admissible boundary condition (FV)) For a.e. x € I', we define two

conditions:

(FV1) (Sign condition): The subspace N(x) is non-negative and the dual subspace N(x)
non-positive with respect to Ay (x), i.e.
(VEEN(x)) Av(x)§-§ >0,
(VE eN(x)) Av(x)§-&<0,

10



Classical Friedrichs systems Definition and boundary conditions

(FV2) (Maximality condition): Maximality condition is equivalent to the following con-
dition:
~ 1 ~ i
N(x) = (Ay(x)N(x))" and N(x)= (Ay(x)N(x))" .

If both conditions are satisfied, then the admissible boundary condition is given by
u(x) € N(x), forae.xel.

The equivalence between (FX) and (FV) boundary conditions is straightforward. The
sets N(x) and N(x) are non-negative and non-positive with respect to Ay (x), respectively.
The condition of being mutually orthogonal with respect to Ay (x) is equivalent to both
sets being maximal non-negative and maximal non-positive with respect to Ay(x), re-
spectively. If we set N(x) := ker(Ay(x) — M(x)), then (FM) and (FX) conditions are also
equivalent. The part that (FX) implies (FM) requires existence of non-unique projectors
to construct the operator M(x), which was proved by Friedrichs himself in [41]. We refer
to aforementioned paper for the details. However, a proof of equivalence of the corre-
sponding boundary conditions in the case of abstract Friedrichs operators is discussed in

chapters 2 and 3.

11
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1.2. EXAMPLES OF CLASSICAL FRIEDRICHS

SYSTEM

The concept of Friedrichs systems is a historical effort to provide one general model
for various differential equations. An analysis for the Tricomi equation appearing in the
transonic fluid flow can be found in the paper by Friedrichs [41]. Here we mention some
well known examples, which can be cast into this framework. To elaborate the strength
of the theory we picked one mixed type example (the Tricomi equation), one elliptic

equation and one hyperbolic equation. For an example of a parabolic equation we refer to

[7].

1.2.1. Tricomi’s equation
The Tricomi equation (on a bounded domain Q C R?) is given by
yoZu+ju=0. (1.1

It is a second order linear partial differential equation of mixed type. For y > 0 the equa-
tion is elliptic, and for y < 0 it becomes hyperbolic. Interchanging the roles of positive

and negative y—axes, we can rewrite the equation as
yoZu—dju=0. (1.2)
Let us represent this equation as a classical Friedrichs system. Define, v; := e **d,u and

vy = e"l’@yu, v:=[v1,v2] ", the equation (1.2) can be written as the following system.

y 0 0 -1 y 0
< Ox + dy+ 7L>v:0. (1.3)
0 1 -1 0 0 1

The system is symmetric, but not positive. Let us multiply it from the left by the matrix

(which is a regular matrix for y £ 1) to get

—y —1
( yr ox+ Y dy+ yr 7L>v=0. (1.4)
y 1 -1 -1 y 1

12
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For
-y - I1+Ay A
Al_yy,Azz y and _ yy,
y 1 -1 —1 Ay A
the operator
d
Lv := ) 0Ji(Arv)+Bv
k=1

is a classical Friedrichs operator. Indeed, (F1) condition is satisfied due to the symmetry

of A; and A,, and (F2) is satisfied because,

1+24y 2Ay
B‘i‘I;>’< +axA] +ayA2 == 9
20y 21

is positive definite for sufficiently small A > 0.

1.2.2. Stationary diffusion equation

Let Q@ C R? be an open and bounded set with Lipschitz boundary I". Consider the follow-
ing equation

—div(AVu)+cu=f, (1.5)
where, A € W!*(Q) is a bounded and uniformly positive symmetric matrix, f € L*(Q)

and ¢ € L*(Q) is bounded and uniformly positive. Equation 1.5 can be written as a system

of first order PDEs in the form

p=—AVu
(1.6)
divp+cu=f.

Let us define the coefficient matrices Ay = e; ® egy1 + €411 Qex € Mgy (R) for k =
1,...,d, where (ey,...,e4, 1) is the standard basis for R*!, and the block-diagonal matrix-

valued function

Here, B becomes uniformly positive. Let us define the operator

Lu =

d
ak(Aku> +Bu )

k=1

13
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p —AVu f
where, u = . Note that for u := and f = , (1.6) reads as
u u
Lu=f.

Let us check that L is a classical Friedrichs operator. Since, each Ay (k = 1,...,d) is
symmetric, (F1) condition holds, while
d
B+B*+ ) JA;=2B>2al,
k=1

implying that (F2) holds as well.

1.2.3. Maxwell’s equation in the elliptic regime

Let, Q C R? be open, bounded with Lipschitz boundary I'. &, i € L*(Q) are two positive
functions uniformly bounded away from zero. For fi, f> € L*(Q;RR?)) and two unknown

functions H,E : Q — R3, consider the following system of PDE’s

HH+V XE = fi,
GE—VXH:fz.

(1.7

For k = 1,2,3 let us define the coefficient matrices Ay € Mg(R) by

0 | Ry
Ac=| — ;
Rl |0
where, Ry = [gy],1 <1, j,k <3, & being Levi-Civita permutations, making each Ay a

symmetric matrix. The matrix B is given by

0
B=

0 o

For
u=[H.E", f=[fi.fa]'
the operator L : L?(Q;R%) — L?(Q;R®) defined by

Lu =

d
8k(Aku) + Bu

k=1

14
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is a classical Friedrichs operator. Indeed, (F1) condition holds due to symmetry of each

Ay and since

B+B*+) JA; = 2B =2 ,
k=1 0 o

where both 1, o are uniformly bounded away from zero, condition (F2) also holds.

15
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1.3. WELL-POSEDNESS

Under a semi-admissible boundary condition, the following uniqueness result was ob-
tained for the strong solutions in [41], and later the results were slightly strengthened in
[42] and [52]. Here we present the most general form of the corresponding results, while

we still refer to the original results given in [41] (cf. [47]).

Theorem 1.3.1. [41, Theorem 3.1] If the classical Friedrichs system Lu = f admits a
strong solution u € C' ()" under the semi-admissible boundary condition (Ay —M)u|r =

0, then the solution is unique.

On the other hand, existence results are available for weak solutions only. Suppose
f€L*(Q), then u € L>(Q)" is a weak solution of Lu = f with the boundary condition
Mu =0 if

(v f)={(LV[u),
for all v € C!(Q)" satisfying M*v =0 at T.
Theorem 1.3.2. [41, Theorem 4.1] If Ay(x) is of constant rank and the boundary I" is of

class C?, then for any f € L?>(Q)" the classical Friedrichs system Lu = f equipped with

semi-admissible boundary condition (Ay — M)u|r = 0 admits a weak solution.

Finally, we have the following result regarding existence of (semi-)admissible bound-

ary conditions.

Theorem 1.3.3. [41, Section 5] If Ay (x) is of constant rank near boundary I" (I" being
of class C?) and L : L*(Q)" — 2'(Q)" is a classical Friedrichs operator, then there exists

an admissible boundary condition associated with L.

Remark 1.3.4. It was not clear that any given boundary condition associated with the
classical Friedrichs operator can be realised as an admissible boundary condition in the

given sense of admissibility.

To elaborate the admissibility criteria, let us consider the stationary diffusion equation

in the form of a system given in (1.6) (for a detailed analysis on the same, we refer to

16
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[20]). The classical Friedrichs operator L : L?(Q;R*1) — 2/(Q;R*1) is defined as

d
Lu := Ok (Aru) +Bu,
k=1
while
[0 0 v
4 0 0 wv
Ay = ) ViA; =
k=1
0 ... 0 v
_V] .. Vg 0_

The choice of matrices M gives different boundary conditions. For example, Dirichlet

boundary condition can be imposed by choosing

(0 ... 0 —v]

0O ... 0 —wv
M =

0O ... 0 —vy

Vi .. Vg 0

The boundary condition corresponding to the above choice is given by

(Av —M) =0, (1.8)
which holds if and only if
Vk=1,....d Viulr =0,

which is equivalent to u|r = 0. With this information let us check the criteria for admissi-

bility. For such M, it is straightforward that we have
VEcRIx {0} ME-E=0,
hence (FM1) condition is satisfied. Moreover,

ker(Ay —M) = {(§d7§d+1)T eRM gy = 0},

ker(Ay +M) = {(§,,6411) " €R™:v-§,=0}.

17
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Clearly, R*! = ker(Ay — M) +ker(Ay + M), which is the condition (FM2). Hence, the

boundary condition
(AV —M)Ulr‘ = 0,
is admissible and for each f € Lz(Q; Rd“), the problem

Lu=f,
(Ay —M)u|r=0.

is well-posed.

Remark 1.3.5. The choice of matrix M is generally not unique. Indeed, if we take

_O ... 0 —vl_
o ... 0 —w»v
M = :
0 ... 0 —v
Vi Vg a |

where o« > 0 is a constant, then the condition
(Ay —M) =0, (1.9)

is fulfilled if and only if
Vk=1,...,d Vku|r=0 and (Xu|r=0,

which in turn is equivalent to u|r = 0. Hence, this choice of M again corresponds to the

Dirichlet boundary condition.

Obviously —M is admissible as well. In particular, it is easy to see that this choice
leads to the homogeneous Neumann boundary condition (v -p)|r =0.

The Robin boundary condition can be imposed by choosing

o ... 0 wv
o ... O \%)
M = )
0 0 vy
Vi ... —Va 2a_

18
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where o > 0 is a constant. The boundary condition
(Ay —M) =0, (1.10)

is satisfied if and only if (v-p— au)|r = 0. In terms of the original equation (1.5), it
corresponds to the Robin boundary condition
(Vv-Vu+ou)r=0. (1.11)

In this case

ker(Ay —M) = {(‘Edaéd-kl)—r e R v-§,— a1 =0},
ker(Ay +M) ={(§,6441) " € R &1 =0}

19



2. ABSTRACT FRIEDRICHS OPERATOS

In the theory of classical Friedrichs operators the matrix-valued boundary field that en-
forces the boundary conditions is not uniquely defined, hence the theory is not intrinsic.
Moreover, the boundary values (traces) of the solutions are involved whose meaning are
not clear. In 2007, Ern, Guermond and Caplain revisited the theory of Friedrichs opera-
tors to avoid invoking the traces at the boundary. They introduced the theory of abstract
Friedrichs operators as acting on Hilbert spaces in [39] for real vector spaces, while it has
been studied over complex vector spaces in [5]. We elaborate the theory in the complex
setting and provide proofs of the results to supplement some technical things and make

the material self contained.

2.1. DEFINITION AND HILBERT SPACE

FORMULATION

Let us start with the definition of abstract Friedrichs operators (relation to the classical

Framework is disscused in Subsection 2.6.1).

Definition 2.1.1. A (densely defined) linear operator 7' on a complex Hilbert space .77’
is called an abstract Friedrichs operator if it admits another (densely defined) linear op-

erator T on . with the following properties:

(T1) T and T have a common domain 2, which is dense in /7, satisfying
(Telw) = (e|Ty), o ye;
(T2) there is a constant ¢ > 0 for which

(T+T)el < cloll, ¢@€2;
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(T3) there exists a constant Ly > 0 such that
(T+T)o| o) > 2umllel*, ¢€2.

The pair (T, T) is referred to as a joint pair of abstract Friedrichs operators (the definition

is indeed symmetric in 7" and 7).

By (T1), T C T*and T C T*. Which means both 7* and T* are densely defined and
thus 7 and T are closable. (T,2(T)) and (?,@(?)) are their closures respectively in
(A,(-|-)). The completion of Z with respect to the graph norm || - ||r defined by the
graph inner product (- | -)r:=(-|-)+(T-|T-) is denoted by #p, by (T2), the graph

norms | - ||7 and || - ||7 are equivalent and thus the completion of & with respect to the

|7

graph norm || - ||7 is again #). We also call the space (#p,(- | -)r) (or equivalently,

17
(#0,(- | -)7)) as the minimal domain of the abstract Friedrichs operators T and T. Before
we discuss the adjoint operators, let us observe that the minimal space %4 is continuously
embedded in 7 (since T is closable) and the image (of the embedding) is precisely

9(T) = 9(T). Let us consider the following construction for a given pair of abstract

Friedrichs operators (T, T), introduced in [39]:

* The operators T and T extend uniquely to bounded linear operators from % to
HC, say Tp and To respectively. In fact, these extensions coincide with 7 and T

respectively.
* We have the Gel’fand triplet
Wo— H=H" W,
where ¢ and %) are the (anti-)duals of /¢ and % respectively. Due to the Reisz
representation theorem we identify .# = J#”’. The operators T, To : W — H are
continuous linear operators, where %) is equipped with the graph-norm topology
and 27 is with its usual topology. Let
Ty, To: A — V2%

be the Banach adjoints of Ty and To, respectively, i.e.

(Vue )Y € W)y (Tou, @) w = (u| Tog),

and i (Tou, @)y = (u| To@),

2.1)
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where Wo’< - ), represents the pairing between % and its dual #{. We clearly
have Ty = T‘O’WO Therefore, Ty : #o — S — ¥, is a continuous linear operator
from (#0, || - ||#) to #;, whose unique extension to the whole ¢ is the operator

7"0’ (the same holds for T and Ty).

 Graph Space: Since, 57 C %/, it makes sense to define the following:

The space
Wo={uc H: Tyuc #}y={ucH: Tuec #}C H, (2.2)

(the equality is due to condition (T2)) equipped with the graph inner product is a
Hilbert space and called the graph space. Let us note that 77 := YN“O’W = YN})* =T*
and T} := Tylw =Ty = T* by Lemma 2.1.3 below. Since #p C #/, by Tp = T()/l%
we have Tp C T; and Tb C T"l Since, # = domT; = dom Tb*’ it is clear that it
is a Hilbert space when equipped with the graph inner product. The graph space
(#,(-|-)r,) is also called the maximal domain related to the abstract Friedrichs

operators and it contains %#.

* In particular, the restriction of Banach adjoints to & are TO’ g = f,

2 =T and T}

and hence (7‘0’ +T)|lg =T+ T. The operator T +T is everywhere defined on
2 and from the condition (7°2) it is bounded, while on the dense subsapce &, it

coincides with T + T and so with T(; + T35 Due to continuous embedding of .7 into

o> both maps are continuous. Thus on /7, T({ +Ty =T+ T. The continuity of
the operator also gives the equivalence of the norms || - [|7 and [[- ||z;. Moreover,
0

due to density of # = dom(T* 4 T*) on ¢ = dom(T + T, we obtain T* +T* C

(T + f)*. Since, T + T CTi+ ﬁ =T*+ f*, we conclude the symmetry of 7 + T.

Therefore, T + T is an everywhere defined, bounded and symmetric operator and

hence it is selfadjoint. By part (i), T+ 7|y = (T} + T})|y = T* +T* and the

strictly positive bottom part is due to boundedness and condition (T3).

For an illustration, for # = L*(Q) and a certain choice of operators we can achieve that
# and # are Sobolev spaces H'(Q) and Hj (Q) respectively.
The preceding construction is rephrased as Hilbert space construction of Friedrichs

operators. Here we summarise some properties related to the construction. The argu-
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ments are already given above, while for a more detailed proof we refer to [9, Theorem

7].

Theorem 2.1.2. Let (7, f) be a joint pair of abstract Friedrichs operators on Hilbert

space ¢ and (Ty, Tp) and (T7,Ty) are as in the preceding construction.

() To=T and Ty = T. The pair (T,?) satisfies condition (T1)—(T3) on #{ and the

corresponding graph norms || - ||7 and || - ||? are equivalent.

(ii) TO/WO =T, Ty, = T and To/ + Ty = T +T is a (everywhere defined) bounded

operator in .7”. The graph norms | - || and || - ||7; are equivalent in %"
0

(i) T} =T* and T} = T*. T +T is a bounded selfadjoint operator in .77 with strictly

positive bottom and T 4 T'|, = T* 4 T*.

Lemma 2.1.3. LetA :domA C JZ — ¢ be a closed densely defined operators on 7.
If we denote by A’ : 5# — (domA)’, the Banach adjoint of A, then the domain of the
(Hilbert) adjoint of A is given by domA* ={u € 7 : Alu € H}.

Proof. Let Ay = A'|(,c sw.arue wy- For any u € S such that A'u € J# and v € domA, we

have
(Avu | v) = o (Au,v) o = (] Av) |
which means A; C A*. Conversely, for any u € domA* and v € domA, we have
(domAY (A" 1,V ) doma = (u | Av) = (A*u|v)

thus A'u = A*u € 77, implying A* C A;. Hence, domA* = {u € 77 : A'lu € H°}.
|

It is worth noting that in all the previous discussions the condition (T3) is used only

to obtain the strictly positive bottom result for the operator 7 + T. We establish most of
the results with only conditions (T1)—(T2) and so going forward we shall be specific with
the use of condition (T3).

By previous analysis of the construction, the concept of abstract Friedrichs operators
can be entirely formulated in the language of Hilbert spaces. Indeed, (T1) can be seen as
a symmetry condition and together with (T2), we get an everywhere defined selfadjoint

bounded operator. The following characterisation is given in [9, Theorem 8§].
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Theorem 2.1.4. A pair of operators (7, f) on a Hilbert space .7 is a joint pair of abstract

Friedrichs operators if and only if 7 C T*, TCT*and T +T is an everywhere defined,

bounded, selfadjoint operator with strictly positive bottom.

Remark 2.1.5. Note that we can formulate the definition of abstract Friedrichs operators
only in terms of a single operator. Indeed, for a densely defined operator 7 on 7, let us
define T = T*|gom7- Then we can say that T is an abstract Friedrichs operator if and
only if the pair (7,T) is a joint pair of abstract Friedrichs operators. A more explicit

description is given in Theorem 3.3.1 below.

Operators A, B on a Hilbert space .7 with the property that A C B* and B C A* are
called dual pairs or symmertic pairs. Thus, by the previous theorem the operators forming
a pair of abstract Friedrichs operators are dual pairs (in fact it is equivalent to condition
(T1)). Since, a given pair of abstract Friedrichs operators (7, Tv) on 7 are closable, we
can start with the assumption that the operators (7, f) are closed, which will often be the
case in the rest of the dissertation.

The boundary value problem in this abstract setting can be interpreted as follows. For
any abstract Friedrichs operator T in a Hilbert space .7 find a domain ¥ (i.e. boundary

conditions), such that the abstract problem:
for a given f € J find u € ¥ such that Tu = f,

is well-posed. After the reformulation in the sense of Hilbert space theory, we can be

more precise. The well-posedness problem can be formulated in the following way:

to find restrictions of T\ to a suitable subspace V', with Wy C ¥V C W', such that

I4

vy V — J is an isomorphism, namely a continuous bijection, when equipped with

the graph-norm topology.

In the above we used that the restriction of 7} to any closed subspace of % is continuous
when the domain 7 is equipped with the graph norm. Let us emphasise that 71 |y is called
the realisation or extension of T (on ¥). So, the main goal is to obtain the bijectivity
condition. It turns out that the above question for 77 is immediately related to the same

question for Ti.
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In the next section we discuss about the boundary operators, which in the case of

classical Friedrichs operators carry the information about the boundary conditions.
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2.2. THE BOUNDARY OPERATOR

In this section and the rest of the chapter, we shall use the revised notation 7' = 7j and

T =Tp.

Definition 2.2.1. Let (%, (- | -)r1,) be the graph space related to a joint pair of abstract
Friedrichs operators (7,T) in a Hilbert space .. The operator D : (#,(- | -)1,) —
(#,(-|-)1,) defined by

NVu,ve W) y{Duv)y = (T | v) — (u| Tyv),
is called the boundary operator associated with the pair (71, T}).

Both 7} and 7} are bounded linear operators in £ (# ;) and so the operator D is
well-defined and D € Z(# ;7).

Remark 2.2.2. The boundary operator in the case of differential operators can be com-

pared to the integral over boundary in the Green’s identity.

Here we summarise some properties of the boundary operator D (see [5, Lemma 1]

and [39, Lemma 2.4].

Lemma 2.2.3. Let (7, f) satisfies conditions (T1)—(T2), then the boundary operator D

satisfies the following:
@) (Vu,ve )y Duv)y = y(Dvu)y
(ii) kerD = %4,
(iii) ranD = %,
where © stands for the annihilator.

Proof. (i) Letu,v € #, then

w{Duv)y —y{Dvayy = ((Tru | v) = (u | T1v)) = ((Tiue | v) = (v| Tyu))
= (T +T)u|v) —(u| (Ti +Ti)v) =0,
in the last equality we used part (iii) of Theorem 2.1.2.
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(ii)

(111)

Let ¢ € #j, then for any v € #/, we have

i DQv)y = (Tig|v)—(@ | Tiv)=(Te|v)— (¢ |Tv)
=(@|Tiv)— (9| Tiv)=0,

where in the second equality we used 71|y, = T and the third equality is due to
T = T"] Thus, #; C ker D. Conversely, due to the relation ker D = (ranD)O, which
holds by part (i), it is enough to prove that 7/00 CranD. Let u € #7, by the Riesz

representation theorem, there exists some x € # such that for any v € #
p{u,v)yy = (x|v)+(Tix | Tiv) .

For any ¢ € % we have

w(T'Tix, @)y, = (Tix | To) = (Tix | Ti@) = yr{u, @)y — (x| @) = —(x| @),

where T’ : 7 — ¥ is the Banach adjoint of T and in the penultimate inequality
we used the identity above. Therefore, T'Tix = —x € 7 implying w :=Tix € #'.

Hence, we have Tjw = T'w = —x. Moreover, for any z € # we get

w(Dw,2)y = y(Dz,w)y = (Tiz| w) — (z| Tiw)

= (Nz| Tix) +(z|x) = p(u,2)p -
This gives us u = Dw € ran D and thus 7/00 CranD.
From the proof in part (i1), we have
7/00 CranD C (kerD)O C 7/00.

Hence, ranD = 7/00.

Remark 2.2.4. Forany u € #, y(Du,u)y and ((T +T)u | u) are real numbers.

In the context of this theory, the boundary operator plays a vital role. The structure

given by the boundary operator, namely

[ ]:= (D), ) w (2.3)
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defines an indefinite inner product on % . Indeed, the linearity follows from the linearity
of the map D, while conjugate symmetry is due to Lemma 2.2.3(i). Moreover, by Lemma
2.2.3(ii) we have that all vectors from #} are neutral, i.e. for any u € # we have [u |
u] = 0. Therefore, (#,[ | -]) is indeed an indefinite inner product space and also it is

degenerate (see Definition 5.4.7).

Lemma 2.2.5. Let # be the graph space related to a joint pair of abstract Friedrichs
operators (T, T) in a Hilbert space 5 and [- | -] = «(D(-),- )y is the indefinite inner

product defined by the boundary operator. Then,
() (#,[-]-]) is an indefinite inner product space.
(ii) Orthogonal complement of a subset S of % with respect to |- | -| is defined by
S=Jfuew : (wes)u|v] =0}
Moreover, S+ is a closed subspace of # with respect to the graph norm.
(iii) For LCSCw/, s c L, w1 = wp and ! = w.
Proof. The proof of part (i) is already argued before the lemma, so let us discuss the

remaining two parts.

(ii) Let (u,) be a sequence in S [1]

and u be the limit in % (with respect to the graph
norm). This means (u,), (Tu,) converge to u and Tu in .7, respectively (as 7T is
closed). We have for any v e Sandn € N, [u, | v] = 0. Hence,

0= lim [uy, | v] = lim ((Tun | v) — (up | Tv)) = (Tu | v) = (u | Tv) = [u|v],

n—yoo n—oo
which means u € SH) and thus S is closed with respect the graph norm.
(iii) Let u € SIJ, which means for any v € S we have [u | v] = 0. In particular, for any

v € L we have [u | v] = 0. So, u € LI and hence SMH C L. From parts (i) and

(ii) of Lemma 2.2.3 we have %[ = % and V/OM =W.
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As a consequence of 2.2.5(iii), the quotient space %/ #{ equipped with the indefinite
inner product [ | #]7- := [u | v], becomes non-degenerate. In particular, it was recog-
nised in [3] that this quotient space is a Krein space (not all non-degenerate spaces are
Krein spaces). While we refer to Appendix for a brief review of the Krein space theory,

here we present a proof of the above statement.

Proposition 2.2.6. [3, Lemma 8] The quotient space W =W /% is a Krein space and
the corresponding inner product on W is defined as
[ ] 9]

7= v,

where i = u+ #y, V =v+ #p and u,v € # are representatives of i, ¥, respectively.

Proof. In order to prove that # is a Krein space, we show that it admits a Gramm operator
G (see Definition 5.4.13) with closed range and ker G = %#4.
Since # equipped with the graph inner product is a Hilbert space, by the Riesz rep-

resentation theorem, we have the isomorphism J : #” — #  such that

(Ve YueW) ydfou)y =) u)y .

Let us define G :=JoD. G is obviously continuous on # (equipped with the graph norm)

and ker G = ker D = #. For any u,v € #, we have

(Gu|v)y ={J(DW) | v)y =y (Duv)y =lu|v].

Thus, G is a Gramm operator on # (it is selfadjoint, since D is symmetric). Since ranG =
J(ranD) = J(#’) and J is an isomorphism, ranG is closed. Hence, by Theorem 5.4.14,
W = W | #p is a Krein space. [ |

Remark 2.2.7. There exists a canonical (fundamental) decomposition of the Krein space

(7/\, [-]-]7)- That s there exist subspaces X, X_ C W with X, NX_ = {0} such that

—~

Vo= X [HX,

where (X4,[-|-];7) and (X_,—[- | -] are Hilbert spaces and [+] denotes [- | -] >

orthogonal direct sum.
Using the operator-theoretic approach in Hilbert spaces, our goal is to obtain well-
posedness and classification results for abstract Friedrichs operators and apply them to

classical Friedrichs operators.

29



Abstract Friedrichs operatos The cone formalism

2.3. THE CONE FORMALISM

Any vector u € # can be characterised as positive, negative or neutral with respect to the
indefinite inner product [- | -] depending on the sign of [u | u]. We can decompose the

indefinite inner product space (#/,[- | -]) in the following two sets (cones)
Wt ={ueW: [ulul>0} and ¥ ={ucW :[ulu]<0}. (24
Let us introduce two assumptions on which the cone formalism is based.

Definition 2.3.1 ((V)-boundary conditions). Let (7, f) be a joint pair of closed abstract
Friedrichs operators on a Hilbert space 5. A pair of subspaces (7, ”7) of the graph space
W is said to allow (V)-boundary conditions related to (T,T) if the following conditions

are satisfied:

(V1) The boundary operator has opposite signs on these spaces. More precisely, 7 C
Wrand ¥ CH . ie.

(Vue?y) [ulu] >0,

(Wwe¥?) [v|v] <o0.

(V2) The subspaces 7/, ¥ are [ - ]-orthogonal complement to each other, i.e.

v =y and v =y,

Remark 2.3.2. Condition (V2) has two immediate consequences. Taking complement
[L] produces closed subspaces (see Lemma 2.2.5(ii)), which means ¥ and ¥ are closed

subspaces of # in the graph norm. Another consequence is that (recall that L =)
kerD = #, C 7N ”/7,
which is interesting in the sense that 7" and ¥ are not presumed to contain #j.

Despite that 7" and ¥ are closed subspaces of # the closedness of 7 + ¥ is not
guaranteed (see [3, Theorem 5]). In particular, we can not claim that ¥ + ”/7: W . Butif
we assume that ¥ + ”/7 = W holds, then we have a refinement on the intersection of the

spaces ¥ and V.
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Lemma 2.3.3. [3, Lemma 13] If (7, % ) satisfies (V2)-condition and 7" + Y = W, then
Wy = kerD = oy .

Proof. The part #5 C 7' N ¥ follows from Remark 2.3.2. To prove the other inclusion,
letuc¥NY =% andv e #. Since ”V+”/7we can write v = Vv + Vv, where v € ¥ and

\76”/7,then
[ulv]=Tlu|v]+[u]|V].

Using ¥ = ¥4 and that u € ¥ , Ve ¥, we get [u | V] =0. Similarly, from other part
of (V2) condition we have [u | v] = 0. Therefore, by the arbitrariness of v, [u | v] =0

implies ¥ N v C il = #p. Which completes the proof. |

We can characterise (V)-conditions (particularly (V2)) in the purely Hilbert space

language.

Theorem 2.3.4. [9, Theorem 9] Let (7, f) be a pair of closed operators on 7 satisfy-
ing conditions (T1)—(T2), and let (#/,]- | -]) be the indefinite inner product space as in
Lemma 2.2.5. Let (Ti| 4, Tj| ) be a pair of realisations related to (7, T),ie. ¥ and ¥ are

subspaces of # that contain #(. Then

and

(i) = Tily < ¥ =71,

In particular, if 7 is closed in %, then condition ¥ = w4 is sufficient to have that the

operators T | and Tj| 7 are mutually adjoint.
Remark 2.3.5. (V2)-condition can also be referred to as mutually adjoint-condition.

Proof. Let us first prove that (T1]y)* = T |11y and (Tq |7)* = Ti|, 1. We prove the first
claim only since the second claim is analogous to it. Since #( C ¥ we have T C Ti|y,
which implies (Tj|y)* C T* = Tj. Thus, it is sufficient to prove that dom(77|5)* = ¥1.

Let v € ¥4, then for any u € ¥, we have
(Tilp)u | v) = (Tiu|v) = [u|v]+(u| Tiv) = (u] (Ti]y)*v),
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implying v € dom(Tj|4)* and thus ¥ C dom(T7|5)*. To prove the other inclusion, let

v € dom(T1|y)*. Then for any u € ¥, we have

(Tily)u | v) = (u| (Tily)*v) = (u| Tiv) = {(Tily)u | v) = [u|v],

implying [u | v] = 0. Since u € ¥ is arbitrary, we have dom(7} |y )* € . which proves
the claim.

To conclude, if ¥ is a closed subspace of % containing #{ and Y=y 1, by Lemma
5.4.20 (see also Proposition 2.2.6) we have 1 — L = ¥, which enables us to use
the identities we obtained above, completing the proof.

As already mentioned, our goal is to find and classify all such closed subspaces ¥ of
# such that for any f € JZ the abstract problem (77 |y )u = f is well-posed. This means
that 77| is a closed, densely defined, bijective, linear operator on 7. Here we list some

properties of the corresponding adjoint problem and the inverses.

Remark 2.3.6. Let (7, f) be a joint pair of closed abstract Friedrichs operators on 7’
and let 7" be a closed subspace of # containing #4. If for any f € S the abstract

problem Ti|y = f has a unique solution, i.e. T | is bijective, then

(i) Since Ti|y : (¥, |- |lr;) — € is bounded (note that in the domain now we consider
the graph norm) and bijective, the inverse operator (Ti|y)~' : 2 — (¥, - ||I1;)
is everywhere defined and bounded. Of course, the latter holds if we consider
the weaker norm of the Hilbert space .7# in the codomain of the inverse operator.
Hence, (T1]) " is bounded on 2. The adjoint of the inverse operator ((Ti|y)~") .
is then also bounded on .77 and injective (cf. [44, Theorem 12.7]).

(i) If we define 7 := dom(Ty|y)*, then ¥ is closed in #, contains #{ and (Th|y)* =
T \ 7 (see Theorem 2.3.4). Moreover, T \ 7 Y A is bijective as well. Indeed,

by [44, Theorem 12.7] we know that T] |77 is injective and

(Tilp) ™ = ((mly)) ™ = (@)™

Hence, by part (i), dom(T |7,7)’1 = . Since ran T} 7= dom(T |77)*1, the claim
holds.
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As a consequence of Theorem 2.3.4 and Remark 2.3.6, we have the following: if Ti |y
is a closed bijective realisation of Ty, then (Ti|y)* = Ti | 7 is a closed bijective realisation
of To. Therefore, without any loss of generality we can simultaneously study both the
original problem Tiu = f and the associated adjoint problem Tiv = g. This means that
our main goal can be reformulated: we seek for pairs (7j|y, T | 7) of mutually adjoint
bijective realisations relative to (7p, Tp).

Before we proceed to the well-posedness results, let us address the following question:

Proposition 2.3.7. [9, Proposition 14] For any joint pair of closed abstract Friedrichs
operators (7,T) in a Hilbert space %, there exists a pair of closed subspaces (¥, % ) of

the graph space # satisfying (V)-boundary conditions.

Proof. From Remark 2.2.7, we have the following canonical (fundamental) decomposi-

tion of the Krein space %',

—~

W = X [+HX_ . (2.5)

We claim that the pair of subspaces (7', 7") defined by
Vo ={ueW: deX}, V= {veW: :veX_},

is a pair of closed subspaces of the graph space # satisfying (V)-boundary conditions.

Proof of the claim:

* (V1)-condition: For any u € ', we have i € X, . From the canonical decomposition

[ulu) = [d]d]7 > 0.

Similarly, for any v € ¥, we have that [v|v] <0. Thus (V1)-condition is satisfied.
e (V2)-condition: Let v € VN then ¥ € X_. For any u € 7 we have ii € X and

[ulv] = [a|v]7 =0,

[L]

second equality is due to the decomposition (2.5). Therefore, v € #'|--] which means

v c yHl, Conversely, if v e ¥ L cw.ieve VZ\, then there exist ¥ € X, and

v_€X_ suchthatvV=79,+7V_.Foranyu e ¥, i.e.ﬁeX,,wehave[ﬁ|\L]WA:0,
0=[ulv]=1T[alv]=[alv] .
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) 1s a Hilbert

space, we conclude that ¥, = 0. Hence, ¥ = 7_ € X_, implying that v € V. Thus,

vyl cy.

In particular, for # = ¥, we have [V | 9] >=0. Since, (X1, [- | -]

From Remark 2.3.2 both # and ¥ are closed subspace of the graph space # containing
0. |

Remark 2.3.8. In the previous proposition, the subspaces ¥ and 77satisfy W="+Y,
which is a direct consequence of the canonical decomposition W = X+ [+]X_. A concrete
pair satisfying that the sum is the whole graph space will be given in Corollary 3.2.6. The
property that the sum of two domains is closed is beneficial in studying the relation of

different abstract concepts of imposing boundary conditions (see Section 2.5).
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2.4. WELL-POSEDNESS RESULT

Let us start this section with our focus on the role of (T3)-condition. That is, there exists

a constant g > 0 such that

(T+T)o | o) > 2uwlel>, ¢c2.

Since T + T is bounded on 7 (see theorems 2.1.2 and 2.5.11), the above can be extended
to .

Lemma 2.4.1. [39, Lemma 3.2] and [5, Lemma 2] Let (7, T) be a joint pair of closed

abstract Friedrichs operators in a Hilbert space ¢ and (¥, 7") be a pair of subspaces of

the graph space # satisfying (V1)-condition. Then, 7; |y and Ti |y~ are J¢-coercive, i.e.

(Vue?)  (Tuulu)| > polul?,

(we?)  KTv|v)l = polvl?.
Proof. Foranyu e %W

(| ] = (Tyae [ ) = (u| Tyu) = ((Tyu | ) + Cu | True)) = Q| (T +T3 )

= 2R(Tyu|u)— (Ty+T7)u|u) .

Here we used that (u | (T; 4 T;)u) is real (note that 7 + T is selfadjoint). Thus we have

forany u € #

(T ) — 5 | ] = 3 ((To+ T )

Due to (V1) and (T3) conditions the above implies
R(Tu|u) > R(Tiu|u)— %[w | ] > ptolfu® -
Since [(Thu | u)| > R(Tiu|u), we conclude
(Vue?)  [(Tu|u)| = pollul®.
A similar calculation leads to the other identity. |

~

Corollary 2.4.2. If a pair of closed subspace of (¥,7") of # containing # satisfies

(V1) condition, the we have the following:
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(i) T1|y is injective;
(ii) ranTy|y is closed;
(iii)) The following decomposition holds

S = ranTi|y @ ker(Tq|y)" .

The same statements hold for 7} \17

Proof. Due to coercivity in Lemma 2.4.1, if for some v € 7" we have T;v = 0, then
2
0=[(Tiv|v)| = tollv[|”,
implying v = 0. Hence, 7| is injective. For any v € ¥, we also have

ITav]| = polvl] -

Since T1|y is injective, inserting Tv = w € ranTi |y = dom(T|y )~ we get

I(Til) " wl =1l < g lwll-

The operator Ti |y is closed, implying that T~! is a closed and bounded operator. Hence,
dom(T|y)~! =ranT|y is closed. Finally, from Part (ii) and the standard result for linear

operators, we get
(ker(Tt|y)*)* =ranTi|y =ranTi|y,
which leads to part (iii). ]

Remark 2.4.3. A trivial pair satisfying condition (V1) is (#p, #5) since kerD = #.
This implies that closed operators Ty = Ti|y, and To = ﬁ|% are ¢ —coercive, hence
injective. In particular, their ranges ran7; and ran7y are closed in .#. Therefore, the

following orthogonal decompositions of .77 hold:

A = ranTy D kerT
(2.6)

= ranf“o dkerT .

Theorem 2.4.4 (Banach-Nacas-Babuska (BNB)). Let # and 2" be complex Banach

spaces. The following statements are equivalent:
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() T € L(x;Z) is bijective.

(i) There exists a constant & > 0 such that

ay~! T 2
(Vue %) sp 12T 2.7)
veangoy  |vIl2
and
(Ve 27) (Vue ) g(vTu)y =0 = v =0). (2.8)

The well-posedness result was proved in [39, Theorem 3.1] under the condition that

there exists a pair of subspaces (7, %) satisfying (V)-condition.

Theorem 2.4.5. [39, Theorem 3.1] Let (7, T) be a joint pair of closed abstract Friedrichs
operators in a Hilbert space .7 and the (7, vV ) satisfies (V)-condition. Then, (Ti|y, T} | 7)

is a pair of mutually adjoint bijective realisations related to (7, T)

o~

Remark 2.4.6. Proposition 2.3.7 ensures the existence of a pair of subspaces (7, 7)
satisfying (V)-condition is ensured in . Moreover, (Ti |y, T} | ) is called a pair of mutually
adjoint bijective realisations with signed boundary map related to (T,T) if (¥, 77) satisfy
(V)-condition. There are other bijective realisations without signed boundary maps (see

Example 3.3.4).

—~

Proof. Consider the pair of subspaces (¥, 7") satisfying (V)-condition as in Proposition
2.3.7. We only prove the bijectivity here, as mutual adjointness is ensured from Theorem
2.3.4. It is enough to prove that 71|y : ¥ — S is bijective (¥ is equipped with the graph
norm), since the other part is analogous to it. We shall use Theorem 2.4.4. Let us check

that the operator satisfies the requirements.

(a) Foru € ¥ withu # 0,
T T
[(Thu | u)| < sup [(Thu | v)]
[Ju] verfoy V]

Using Lemma 2.4.1, the left-hand side is greater or equal to po||u||. Thus, we get

lall + T <~ sup LTIV [(Tiu|v)|
~ Hoverrioy VI verrfoy IVl
1 T
:(1+—) sup w

Ho” vervioy VIl

which satisfies equation (2.7).
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(b) Letv € S such that for any u € ¥ we have (T1|yu | v) = 0. By Corollary 2.4.2(iii),
v € ker(T1|y)*. By Theorem 2.3.4, v € kerf]‘f, implying 7 | 7v = 0. In particular,

we get v € # . For any u € ', we have
[u|v] = (Tiu|v)—(u| T1v) =0-0=0,
implying v € ¥ = ¥ and due to coercivity in Lemma 2.4.1, we have
0=[{Tiv|v)| = Hollv|?.

Which implies v = 0, thus (2.8) is satisfied. Hence by Theorem 2.4.4, Ty|y : ¥ —

J is bijective, completing the proof.
|

Remark 2.4.7. By Theorem 2.4.5 and Proposition 2.3.7 we know that there exists a
closed subspace ¥ C # containing #{ such that Tj|y is bijective. This in particular

implies that 77 is surjective. The same holds for Ti.

By Proposition 2.3.7 and Theorem 2.4.5 we know that there is always at least one
bijective realisation of each 7" and T, which are in fact wirth signed boundary map. In
the following we study the question of the number of such bijective realisations. Before

coming to that point, let us establish the following results on ker 77 and kerﬁ.

—

Lemma 2.4.8. (lgl-'?l, —[-1-],) and (kerTy,[- | ];7) are Hilbert spaces.

Proof. Let v € kerTj, then

—[VIVI==(nv|v)=(vITiv)) = (v (T +T1)v) = 2u0|v]* .

Which implies that —[- | -] is a definite inner product on ker7j. Since ker7; is a closed
subspace of the graph space, @ is a closed subspace of # . Hence, (1&?1, =117
is a Hilbert space. The proof of the other part is similar. |

Remark 2.4.9. (#(+ker Ty, %o +ker Tp) satisfies (V1)-condition.

Remark 2.4.10. The subspaces #), ker T} and ker T; are pairwise [ L ]-orthogonal to each
other. Indeed, let ug € #4, vi € kerT; and V; € kerﬁ be arbitrary. Since #( = kerD,

ie Wl = #o, we have

[Mo’\/l]:[u(ﬂf/l]zo.
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Moreover,
(Vi [ "] =(Tivi | 1) — (v | T1#)=0—-0=0.
Hence, %, ker T and ker T} are mutually [ ]-orthogonal.

Remark 2.4.11. From [14, Theorems V.3.4 and V.3.5] it is evident that Vz\allows a

canonical decomposition W = X+[/—i—\]X, such that k/er71 € X_ and kerT € X.+. Which

means there exists a pair of subspaces (¥,7") of the graph space # satisfying (V)-

boundary conditions such that
%+kerT1§”/7 and Wo+kerTy CV .
The multiplicity result can be characterised in terms of the kernels.

Theorem 2.4.12. [9, Theorem 13] Let (7, T) be a joint pair of closed abstract Friedrichs

operators in a Hilbert space .7 and (77, ﬁ) be the pair of corresponding adjoint operators.

(i) If kerTj # {0} and kerT} # {0}, then there exists uncoultably many mutually ad-

joint pair of bijective realisations related to the pair (7, T)

(i) If kerTy = {0} or kerT; = {0}, then there is exactly one mutually adjoint pair of
bijective realisations related to (7, T). More precisely, if ker T} = {0}, then (T}, T)
and if ker 7} = {0}, then (7, T}) are the mutually adjoint pair of bijective realisa-

tions. When ker 7} = ker T = {0}, then (T, T) is the desired pair.

o~ ———

Proof. From Remark 2.4.11, there exists a canonical decomposition of (#/,[-|-]), say

—

W = X+ [/4—\]X_ such that kerﬁ CX,andkerT; C X_.

(i) Since both kernels are non-trivial, so are X and X~ and thus by Lemma 5.4.12,
there are uncountably many canonical decompositions of # . Bach canonical de-
composition produces a pair of subspaces (7, 77) of # each containing #(, which
satisfies (V)-conditions (by Proposition 2.3.7) and thus by Theorem 2.4.5, there are

uncoultably many mutually adjoint pair of bijective realisations related to the pair

(T,T).
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(ii) Letker7y ={0} and (7;,T.") be a pair of mutually adjoint bijective realisations with
signed boundary map related to (7,T). We have T C T; C Ty. Suppose, T; # 11,
then there exits u € # \ domT;, u # 0. Due to bijectivity of T;, there exists unique
v € domT;, such that Tyv = Tyu. We have Ty (u—v) = Tiu—Tyv=Tu—Tiv=0,
implying u —v € ker T} = {0}. Thus, u = v € dom T}, which is a contradiction to the
choice of u. Therefore, T; = Tj and T, = T} = T. Hence, (Tj,T) is the only pair
of mutually adjoint bijective realisations related to (7, T) The case ker T} = {0} is

completely analogous.

40



Abstract Friedrichs operatos Boundary conditions

2.5. BOUNDARY CONDITIONS

In this section we discuss about different ways to pose boundary conditions for abstract
Friedrichs operators, analogous to the set of boundary conditions in the case of classical
Friedrichs operators (see Section 1.1). It turns out that these conditions are also equiv-
alent. (V)-boundary conditions (the cone formalism) are analogous to (FV)-boundary
conditions for classical Friedrichs operators. We extend the ideas to analogous boundary
conditions (X) and (M) that are related to (FX) and (FM) conditions respectively in the
classical theory. First, let us discuss about the maximality of the subspaces #" and ¥ in-
troduced in (V)-boundary conditions. These subspaces can not be extended further in the
cones in which they are contained. For a discussion on different ways to pose boundary
conditions in the abstract setting, we refer [3, 39].

We introduce the set of boundary conditions corresponding to (FX)-boundary condi-

tions in the classical setting.

Definition 2.5.1 ((X)-boundary conditions). A subspace ¥ of (#/,[- | -]) is called max-

imal non-negative if it satisfies the following conditions:
(X1) ¥ is non-negative with respect to the indefinite inner product [- | -],i.e. ¥ C #*.

(X2) There is no non-negative subspace of (#/,[- | -|) containing ¥ properly.

Theorem 2.5.2. [39, Theorem 3.3] Let (¥, %) satisfies (V)-boundary conditions. Then,

¥ is maximal in 7+ and ¥ is maximal in % —.

Proof. From (V1) condition ¥ is non-negative in % and then ¥ is non-negative in .
Similarly, ¥ is non-positive in #. From (V2) condition we have ¥ = 4] and by

Lemma 5.4.21 we get

From Theorem 5.4.15, the closure of ¥ is maximal non-negative in # . Since ¥ is closed
subspace of % containing #), from Lemma 5.4.19 ”17 is closed in VZ\ Therefore, ”/A 18
maximal non-negative in # and thus by Lemma 5.4.22(ii), ¥ is maximal non-negative

subspace of 7. The proof of the other part is similar. |
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The equivalence between (V) and (X) conditions is fairly straightforward. Theorem
2.5.2 gives (V) = (X), as the subspace 7 is maximal non-negative. The following

theorem covers the part (X) = (V) and the proof follows form Lemma 5.4.10.

Theorem 2.5.3. [3, Theorem 2] Let ¥ be a maximal non-negative subspace in (#/, |- |
-]), then ¥ := ¥ is maximal non-positive and (v Y ) satisfies (V)-boundary condi-

tions.

Proof. From Lemma 5.4.10, [- | -]—orthogonal complement of maximal non-negative
subspace is non-positive, which proves (V1). From Lemma 5.4.22(1), ¥ is maximal non-
negative in W and by theorems 5.4.15(ii) and 5.4.16 it is closed and equal to (;?[H)[H.

From Lemma 5.4.21 we get

—

o~

Py 1
7 = (PN = (0 = (v

Since ¥ is maximal non-negative, by Lemma 5.4.9 it contains %/, while we trivially have

#o C v Hence, v = y I = 14, Which proves (V2). [ |

Corollary 2.5.4. Let (7, T) be a joint pair of closed abstract Friedrichs operators in a
Hilbert space .7 and let ¥ be a maximal non-negative subspace of (#/,[- | -]). Define
¥ = ¥4, then (T|y, T|77) is a pair of mutually adjoint bijective realisations related to
(T,T).

Proof. By Theorem 2.5.3, (¥, %) satisfies (V)-conditions and by Theorem 2.4.5, pair

(T|y,T)| ) is a pair of mutually adjoint bijective realisations related to (7, T). |

Remark 2.5.5. For a given pair of abstract Friedrichs operators (T, T) on a Hilbert space
J, the existence of a pair of subspaces (7, v ) satisfying (V)-conditions can be guaran-
teed using Corollary 2.5.4, which provides an alternate proof of Proposition 2.3.7. Indeed,
from Remark 2.4.9, we know that #{ + ker T is a non-negative subspace. Consider the
maximal non-negative subspace ¥ such that #{ + ker Ty C ¥ (it exists by Zorn’s lemma;

cf. [14, Section 1.6]). Hence, for ¥ = 14, the pair (7, % ) satisfies (V)-boundary con-

ditions.

Here we introduce a set of boundary conditions corresponding to the original idea of

Friedrichs in the classical sense, i.e. (FM)-boundary conditions.
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Definition 2.5.6 ((M)-boundary conditions). Let M € Z(# ;#"). (M)-boundary con-

ditions are given by:
(M1) Non-negativity:

NueW) Ry (Mu,u)y >0,

(M2) D is the boundary operator. Then

W =ker(D—M)+ker(D+M) .

The operator M* € L(# ;%) is the adjoint operator of M defined as follows:
(VM,VGW) W’<M*u7v>7/ = W/<MV,M>7/ .

The idea is to define a pair of subspaces ¥ :=ker(D — M) and V= ker(D + M*) satis-
fying (V)-boundary conditions. In fact the part (M) = (V) is given by this construc-
tion. The challenging part is the converse, i.e. the following question: For a given pair
of subspaces (”//,”/7) satisfying (V)-boundary conditions, does there exists an operator
M e LW ;W) satisfying (M)-boundary conditions? Which is similar to the concern
pointed out in Remark 1.3.4 in the classical sense. In some cases, this question boils
down to closedness of the subspace ¥ + ¥ in the graph space # (see Remark 2.3.8).

Before we address this question, let us see some properties of the operator M, when (M)-

conditions are satisfied.

Lemma 2.5.7. [39, Lemma4.1] Let M € Z(#"'; W) satisfies (M)-boundary conditions.
Then,

kerD = kerM = kerM* and ranD = ranM = ranM™ .

Proof. First we prove that kerM = kerM* and second ranD = ran M. Using selfadjoint-
ness of D we have (ranD)? = ker D* = ker D and the second claim implies ker D = ker M*.
Moreover, ranD = (kerD)? as in Lemma 2.2.3(iii), and the first claim imply ranD =

ran M*. Let us prove both claims.

(i) Let u € kerM, then for any v € #  and for any A € C, we have

0 <Ry (Mv+Au),(v+Au) )y = Rypr(Mv,v)y +5K(/_1¢//<Mv,u)/%) )
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Since A € Cis arbitrary, we have »( Mv,u) 40, implying »( M*u,v), = 0. Which

means u € kerM™* and thus ker M C ker M*. Proof of ker M* C ker M is similar.

(i1) Let u € ranD, which means there exists v € # such that Dv = u. Using (M2), we

can write v = v| 4+ v, where v| € ker(D — M) and v; € ker(D + M), then
0=(D—-M)(vi)+(D+M)v; =D(vi+v2) =M —vy) =u—M(vi —v3),

thus u = M(v; —v;) € ranM. Hence, ran D C ran M. Proof of the other inclusion is

similar.
[ ]

Remark 2.5.8. Since #( = ker D = ker M, the operator M is also called boundary oper-

ator.

Theorem 2.5.9. [39, Theorem 4.2] Let M € £ (# ;#") be an operator satisfying (M)-
conditions and define the subspace ¥ := ker(D — M) and Y = ker(D + M*). Then,

~

(7, 7) satisfies (V)-conditions.

Proof. (V1) Letu € ¥ =ker(D — M), then Du = Mu and using (M1) condition, we have
Ry (Mu,u)y >0 and thus [u | u] >0. If v e ¥ = ker(D + M*), then we have
M*v = —Dwv. Since

0 <Ry {Mv,v)y =Ry {(M*vv)y

implying [v | v] < 0. Hence (¥, %) satisfies (V1) condition.
(V2) Letv e ”/7, for any u € 7', we have

w(Du,v)y = y1((D—M)u,v)y +p{((D+M)u,v)y

— A (D+ M)}y =0,

in the second equality we used that D is symmetric. Thus, v € ¥ 1. Proof of the

other inclusion is similar.
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Corollary 2.5.10. Let (7, T) be a pair of closed abstract Friedrichs operators. If M €
LW, W' satisfies (M)-conditions, then (7|, T|77) is a mutually adjoint pair of bijec-
tive realisations related to (T, T), where ¥ := ker(D — M) and V= ker(D + M*).

~

Proof. By Theorem 2.5.9, (¥, 7) satisfies (V)-boundary condition and due to Theorem

2.4.5,(T|y,T)| 7) is a mutually adjoint pair of bijective realisations related to (7, 7). m

Let us return to the question of (V) = (M). The construction of operator M requires
some additional assumptions on the subspaces ¥ and 77 In [39, Lemma 4.4], the authors
proved the construction under the assumption that ¥ + ¥ is closed. Later, using the
theory of indefinite inner products in [3, Theorem 8] another construction is presented
which always holds. More precisely, the existence of operator M is equivalent to the
existence of a non-positive subspace that together with 7" spans the whole graph space,

which is known to exist [3, Theorem 9].

Theorem 2.5.11. [3, Theorem 8] Let " and D be the graph space and the boundary
operator, respectively.

—~

(i) Let (7, 7) satisfies (V)-conditions.
Existence: If there exists a closed subspace #5 C #~ of # suchthat V' +#5> =¥,
then there exists an operator M € Z(# ;%) satisfying (M)-conditions and ¥ =
ker(D—M).
Construction: Let # is the orthogonal complement of #{ in ¥, so that # =
Wo+W1+#5 and po, p1, pa are corresponding non-orthogonal projectors, then one

such operator M is given by M = D(p; — p3).

(i) LetM € L (W ;#") is an operator satisfying (M)-conditions and ¥ = ker(D — M).
Then the subspace # is given by the orthogonal complement of #} in ker(D+M).
Moreover, #> C # ~ is closed subspace of the graph space # and ¥ +#5 =¥ .

While in [3], the existence of such %, is confirmed using Krein space theory, in the
next chapter, we present that %5 can be taken as ker 7} regardless of the choice of (7, ”/7)
satisfying (V)-conditions under (T3) condition, i.e. if (7, f) is a pair of closed abstract

Friedrichs operators.
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Remark 2.5.12. For a given subspace 7 the operator M is unique in the sense that
it depends on the decomposition led by 7. However, the room for non-uniqueness is

determined by possible choices of subspaces of #5.
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2.6. EXAMPLES

2.6.1. Classical 1s abstract

Example 2.6.1 (Classical Friedrichs operators). Let d,r € N and Q@ C R be an open
and bounded set with Lipschitz boundary I'. Here we present how the theory of abstract
Friedrichs operators can encompass classical Friedrichs differential operators, while for
details we refer to [39, Subsection 5.1].

We consider the restriction of operator L (CFO) to C;°(Q;C") and denote it by T, i.e.

d
Tu=Y h(Agu)+Bu, ueC’(C)
k=1

(here the derivatives can be understood in the classical sense as derivatives of smooth
functions are equal to their distributional derivatives). Since B € L*(Q;M,(C)) and Ay €
W!=(Q;M,(C)) (for any k), it is obvious that T : C*(Q;C") — L?(Q;C").

For the second operator we take 7' : C°(Q; C") — L?(Q;C") given by

d d
Tu=—Y a(Aw)+ (B* +y (9kAk)u, e CT(Q;Ch).
k=1 k=1

Then one can easily see that (7, T) is a joint pair of abstract Friedrichs operators, where
H =1*(Q;C") and 2 = C7(Q;C"). Indeed, (T1) is obtained by integration by parts and
using (F1), the boundedness of coefficients implies (T2), while (T3) follows from (F2) (a
more general case where .77 is taken to be a closed subspace of L?(Q;C") can be found
in [5, Example 2]).

The domain of adjoint operators 77 = T*and T = T* (the graph space) reads

M=~

W = {u e L2907 : Y dp(Agu) +Bue L2<Q;C’)}

~
I
—_

Ik (Aru) € LZ(.Q;(Cr)}.

M=

= {u e L*(Q;C"):

~
I
—_

The action of 77 and Tl is (formally) the same as the action of T and T respectively (we
have just that the classical derivatives are replaced by the distributional ones). It is known

that C°(R?;C") is dense in # [1, Theorem 4] (cf. [47, Chapter 1]) and that the boundary
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operator, for u,v € C° (R?;C), is given by

y(Duv)y = /F Ay (x)ule(%) -v|e(x) dS(x) | 2.9)

where Ay ;= Zgzl ViAg and v = (v1,vs,...,Vy) € L®(I';R?) is the unit outward normal
on I'. In the one-dimensional case (d = 1) for Q = (a,b), a < b, the above formula
simplifies to

(Du,v)y = A(b)u(b) - v(b) — Ala)u(a) - v(a). (2.10)

By the definition, we have that the domain of closures Ty = T and To = T is given by

Wo = cly C2(Q;C"), while by Lemma 2.2.3(ii) and the identity above we have
WonC=(RECT) = {u e C*(RY T : (W € C2(RY;CT))
/FAV(x)u|r(x) Vir(x)dS(x) =0}

A more specific characterisation involving the trace operator on the graph space can be

found in [1, 47].

Let us illustrate the theory of abstract Friedrichs operators on some classical Friedrichs

operators discussed in Section 1.3.

2.6.2. Stationary diffusion equation

Consider the classical Friedrichs system given in Subsection 1.2.2. This fits into the
abstract framework as explained in Subsection 2.6.1. The graph space and the minimal

space are identified as

W= L3, (Q:CY) x H'(Q;C)

and #p:= Lﬁiv’O(Q;Cd) x H} (€;C),

respectively. We also have

0 0 v
0 0 w
Ay =
0 0 vy
Vi Va 0 |
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For any u € C2(R%;C9*1), we have

viu(x)

Ay(x)u(x)|r = .
Vau(x) | I

|V p(x)

Since H'(Q;C) have traces in H'/?(T") and the vector fields in L% (Q;C?) have traces in
HY 2(I'), the boundary operator (2.9) can be characterised more explicitly. Let T¢ and

Ty be the corresponding trace maps, then the boundary can be characterised as,

([°1 % 7)) wtpuvin= (Tya Tou)y, 21D

u 1%

|

1 L= _1
2 2 2

where, 1 () 1 denotes the duality pairing between the space H'/2(T") and its dual
H2(I).

Homogeneous Dirichlet boundary condition can be imposed by the choice ¥ = YV =
L%, (Q;CY) x HY(Q;C) = {(p,u) € # : Tou = 0}.

~

Lemma 2.6.2. The pair (¥,7%) = (L3, (Q;C?) x H} (€;C), L3, (Q;CY) x H}(Q;C))

satisfies (V)-boundary condition.

Proof. Letu,v € ¥, then Tou = Tyv = 0, which implies

W/(DU,V>7/ =0.
Thus, (V1) condition is satisfied and ¥ C ¥ 1. For the second inclusion, let u = P €

v M, then for any v = 4 € ¥, we have
0

<Tvp,V> +

_1 L= _1
2 2 2

w(Du,v)y = (Tyq,u) (Tvq,u)%:O.

1 —=_1
2 2

For any 8 € H~'/2(T), there exists q € L2, (Q;C¥) such that Tyq = #. Which means
arbitrariness of a is enough is conclude that u = 0, implying u € ¥. Hence, ¥ C

0
|
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By Theorem 2.4.5, the operator (T1|y,Ti|y) is a pair of mutually adjoint bijective
realisations related to the Friedrichs operator (T, T), where T = L and L is defined as in
Subsection (1.2.2).

Similarly, homogeneous Neumann boundary condition can be imposed by the choice

of

”//:”/7::{ P

u

GW:TVpZO},

and Robin boundary conditions are imposed by

”//::{ P EW:TVp:aTou}

and “/7::{ P EW:TVp:—aTou}

(compare with (1.11)).

2.6.3. Maxwell’s equation in the elliptic regime

Consider the example from Subsection 1.2.3, in particular the system 1.7, which is a clas-
sical Friedrichs system. The graph space % consists of the vectors (H,E) € L?(Q;R?) x
L?(Q:;R3) such that (V x H,V x E) € L*>(Q;R3) x L?(Q;R3). That is the graph space is
given by

W= L2

Tot

(QR?) x L2

Tot

(RY),
and the minimal space is given by
% = L%ot,O (Q’R3) X erot,O (Q’R3) ’

The domain Q has Lipschitz boundary T, so H!(€;RR?) is dense in L2

2 (Q:R3) and the
tangential traces of vector fields in L2 (Q;R?) are characterised in H —-1/2 (T) (see [17]).
For outward normal vector v the following formula holds for all 7 € H'(Q;RR?) and e €
Ly (@R,

(Vxe|h)—(e|Vxh)=_1(vxeh):. (2.12)

|
|

By density argument (2.12) can be extended to L2 (Q;R?) instead of H!(Q;R?).
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The boundary operator can be characterised as

(V(H,E),(h,e) W)  yiDH,E),(he))y =(VXE|h)—(E|Vxh) .
H(H|Vxe)—(VxH]e).

When H and E are smooth functions, the right side of the above equation can be inter-

preted as the boundary integral
/(v><E)-h+(v><e)-H
r
One acceptable boundary condition can be imposed by the choice of

Y=y =12

rot

(URY) x L3y o (R = {(H,E) e # : (ExV)[r=0},  (2.14)

where the formula appearing in the last description should be understood in terms of the

tangential normal trace.
Lemma 2.6.3. LetV and 7 be defined by (2.14). Then, (V)-condition holds.

Proof. Let (H,E) € ¥. The extension of (2.12) to L2 (Q) implies

7/’<D(H7E)a(HﬂE)>W =0,

which means (V1) holds and # C ¥4, For the second inclusion, let (h,e) € 1], Let

(H,E) € H'(Q) x L% ,(Q), then

rot,0

0= y(D(H,E),(H,E) )y = (H |V xe)—(VxH|e)

= _1(exV,H); .

N]
NT]

Since, H € H'(Q) is arbitrary and traces of vector fields in H'(Q) span H'/?(I), we
conclude that e x v = 0, that is, (h,e) € 7. Hence, vy cy.
|
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3. THE VON NEUMANN EXTENSION

THEORY

The theme of this chapter is to develop results for the classification of all boundary con-
ditions for a given pair of abstract Friedrichs operators. To elaborate on the term classi-
fication of boundary conditions: Let (T, f) be a pair of abstract Friedrichs operators on
a Hilbert space 77, with #(, # being the minimal space and the maximal/graph space
respectively. We wish to find all pairs of closed subspaces (7, ”7) of the graph space #
with # C ¥, # C ¥, such that (Th |y, f|77) is a pair of bijective realisations/extensions
of (7, f). Moreover, we are also interested in the classification of all bijective realisations
with signed boundary map.

The operator theoretic approach of the abstract Friedrichs operators is useful in the
application of the general extension theory (see [43] and [44, Chapter 13]). An adaption
of this theory for abstract Friedrichs operators is studied in [9], which we recall in Section
3.1. In the rest of the chapter we focus on developing the von Neumann extension theory
for abstract Friedrichs operators. The theory is well studied for symmetric operators and

it is useful in the classification of all selfadjoint (even closed) extensions of symmetric

operators.

3.1. GENERAL EXTENSION THEORY

Hilbert space formulation of the theory of abstract Friedrichs operators allows an applica-
tion of the general extension theory ([43] and [44, Chapter 13.1]) of (closed and) densely
defined operators on Hilbert spaces. While we refer to [44, Chapter 13.1] for details and

proofs, here we briefly recall the theory.
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Let (Ao,go) be a pair densely defined closed operators in a Hilbert space .77 satisfying
(T1)-condition. That is for (Avo)* =14y, (Ag)* =: A the following is satisfied

Ao CA; and AygCA,. (3.1)

Let (A;, AY) be a pair of reference operators that are closed, satisfy Ag C A; C A}, equiv-
alently Ay C A C Ay, and are invertible with everywhere defined bounded inverses A, !
and (AX)~! with (A71)* = (A*)~!. The domains of the reference operators domA; and
domA; are closed with respect to the graph norms || - ||4, and || - || i, With regard to the

reference operators the following decompositions of dom(A1) and dom(g 1) hold.

Lemma 3.1.1. There are decompositions
domA; = domA;+kerA; and domA; = domA? +kerA;,
the corresponding (non-orthogonal) projections

pr:domA; — domA;, : domAv] — domA;,

3

px - domA; — kerAq, pi: domgl — kergl ,

=

satisfy
Pr = Ar—lAla Pr = (A;k)ilgla
Pk:]l—Pm Pﬁzﬂ_Pfa

and are continuous with respect to the graph norms.

Let Py denotes the orthogonal projector from 57 to #". Using the previous decompo-

sitions we have the following.
Lemma 3.1.2. Foru € domA; andv € domA 1, we have
(Aju|v) = (u| Ayv) = (A | ppy) — (pu | Ap)
= <Pker;{1A1u | pl}") - <pku | H(erAlAlv>

Let (A,A*) be a pair of mutually adjoint operators such that A C A C A and equiv-
alently AVO C A* C A, Any pair of such operators can be parameterised by a pair of
densely defined mutually adjoint operators through the closed subspaces of kerA; and

kerA 1. More precisely we have the following (cf. [9, Theorem 17]).
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Theorem 3.1.3. There is a one-to-one correspondence between all pairs of mutually
adjoint operators (A,A*) with A9 C A C Ay, equivalently ZO CA* C Avl, and all pairs of
densely defined mutually adjoint operators B : 2 — % and B* : # — %, with domains
domB C % and domB* C EZ where % and 2 run through all closed subspaces of kerA

and kerA. The correspondence is given by

domA = {u € domA; : pxu € domB, szp{Alu) = B(pku)},
~ _ (3.2)
domA* = {v € domA; : ppv € domB*, Py (Av) = B*(pf(v)} ,

and conversely, by

domB = pydomA, % = domB, B(pxu) = Pz(Awu),

domB* = pydomA*, ¥ = domB*, B*(pyv) = Px(Av),

where Py and P-are the orthogonal projections from .7 onto 2 and 2.
Moreover, in the correspondence above, A is injective, resp. surjective, resp. bijective,

if and only if so is B.

Remark 3.1.4. The formulation is completely symmetric in A and A*, and in B and B*.
The pair (A,A*) is completely determined by the closed operator A. So it is sufficient to

mention only the operator A (and similarly B).

If Ap and A}, correspond to the operators B and B* respectively, then the following is

a useful description of the domains.

Theorem 3.1.5. When Ap corresponds to B as in (3.1.3), then

wo € domAg
domAg = { wo+(A) '(Bv+¥)+Vv| vedomB )
Ve kerg1 o 3
Ag(wo+ (Ar) "' (BV+ V) +V) = Agwo+ BV + 7V
and

Wwo € domgo

dom(Ag)* = { wo+ (A}) "B i+ u)+f| [ €domB* :
uekerA| 0%

(AB)*(WoJr(Af)_l(B*[fL+u)+ﬁ) = AgWo+B L+ 1,
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and, moreover

(Ap)* = Ap-.

For the trivial choice 2 = & = {0} one has Ap = A;.

Here kerA| © 2 denotes the orthogonal complement of % in kerA;.

For a pair of closed abstract Friedrichs operator (7p, T"o) on a Hilbert space 7, the
existence of a pair of reference operators (73, YN}) is guaranteed by Proposition 2.3.7 and
Theorem 2.4.5 (see also Remark 2.3.6). Since (T1) condition is satisfied by (To,f“o),
this general extension theory is applicable in the case of abstract Friedrichs operators

(cf. Theorem 2.1.4).
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3.2. DECOMPOSITION OF THE GRAPH SPACE

The graph space #  (maximal domain) can be written as a direct sum of the minimal
domain %} and the kernels of the adjoint operators i.e. ker 77 and ker T;. Before we prove
this result, let us establish some preliminary results. In the rest of the section we proceed

with the assumption that (7, T) is a joint pair of closed abstract Friedrichs operators.

Theorem 3.2.1. Let (7T, T) be a joint pair of closed abstract Friedrichs operators in a

Hilbert space 7. For any bijective realisation 7; of T, we have

dom7; = #,+ T, '(kerT}) and domT) := #y+ (T7) (kerTy) (3.3)
Proof. We prove only the first identity in (3.3), as the second one in completely analogous
to it.

* Let us first prove that the sum is direct. Let u € #HN Tr’l(kerﬁ), then for some
Ve kerﬁ,
u=T"1V = Tu="v.
Since, T;|y, = T and ranT Nker Ti = {0}, we get that Tu = ¥ = 0. Injectivity of T

gives u = 0 (injectivity of 7 holds since T C T; and T is injective).

* Since T C T;, we have #{y C dom7;, while inclusion Tr_l(kerﬁ) C domT7; is triv-
ial. Hence, #)+ T, '(kerT}) C domT;. Now let u be an arbitrary element in
dom7;. Since Tru € 7 =ranT @kerﬁ (see Remark 2.4.3), there exist ug € #5
and V € kerf’] such that Tru = Tug + V = Trup + V. Thus, using that 77 |gomz, = T; 18

a bijection, we have
u=T,"Tu=T1"Tuo+V) =uo+ ;' (¥),

implying u € #o+ T, (ker T} ), which completes the proof.

[ |

Corollary 3.2.2. Let 7; be a bijective realisation of 7', then
W = Wy + T (kerTy) + ker Ty (3.4)
= W+ (T7) (kerT}) + kerT; . (3.5)

56



The von Neumann extension theory Decomposition of the graph space

Proof. We prove the first identity, as the second one is completely analogous to it. From

Grubb’s decomposition given by Lemma 3.1.1, we have

W = domT; + kerT; .
Using Theorem 3.2.1 it holds

domT; = #o + T, ' (kerTy) .
Hence, # = o+ T, '(kerT}) + kerTj. [ ]
Let us prove that #y-+ ker T; + ker T is a closed subspace of 7.

Lemma 3.2.3. The sum % - ker T} -+ kerTj is direct and closed in .
Proof. Let us prove this result in two steps. First we prove that the sum is direct.

* Lemma 2.4.8 implies that (% + ker Ty, %o +ker Ty) satisfies (V1)-condition and by

Lemma 2.4.1, T} |W0 ke, and T |y 1kerr; are €-coercive. More precisely,

(Vu€ #o+kerTy) (T |u)| = polul?,

(Wve#o+kerTr)  [(Tiv[v)| = pollvll? .

In particular, 7T; |% ker 7 and ﬁ | #,+ker; are injective operators. Which means,
WonkerT; = {0} and #pNkerT; = {0}. Letu € ker Ty Nker Ty, then u € #4+ker T
and T u = 0. Thus, injectivity implies u = 0 and hence #( +ker T} 4—kerﬁ is a direct

sum.

* To prove that %+ ker T + ker7; is a closed subspace of the graph space #/, let the
sequence u, = u) + v, +V, € #o+ker T} ikerT U € #y, va Eker Ty, ¥, € kerT})
converges to u € % with respect to the graph norm. Ti (uQ + v, + V) = Ty (10 + ¥,)
is a Cauchy sequence in .7#” and due to coercivity of T} |7//o ker ) (ud+ ,) is also a
Cauchy sequence in 7. Let us define w := lim,, (u) 4 V,) € S and v :=u—w €

7. We have,

1V = VI = 1l Gty + Vi V) = 10— (4 V= w)|

<N + Vi + Y — || + (|l + Y — W,
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implying (v,,) converges to v in # . Since, ker T} is closed in ¢, we get v € ker Tj
and that (v,) converges to v in the graph norm. Therefore, u0 + ¥, converges to
u—V in the graph norm. Which means, T} (u® + ¥,) = T1 (u%) = T (u?) is a Cauchy
sequence in 7 and due to the coercivity as above, ! is also a Cauchy sequence
in 7. Closedness of T implies that in fact («0) is convergent in # (in the graph
norm) and let us denote its limit by uy € #). Finally, let us define V :=u —uy— v.
Analogously as for (v,), we get that V, LAy € ker7;. Thus, U+ v, + v, LN uy +

v + V. Uniqueness of the limit implies that u = ug+ Vv +V € #{ +ker T} + ker T.
]

Theorem 3.2.4. [32, Theorem 3.1] Let (7, f) be a joint pair of closed abstract Friedrichs

operators in a Hilbert space .77. Then the following decomposition holds:
W = Wy+kerT| +kerT . (3.6)

Proof. Lemma 5.4.20 (see also Proposition 2.2.6) together with Lemma (3.2.3) implies
that
(#o+kerT, —errﬁ)mm = W, +kerT, +kerT; . (3.7)

By Lemma 2.2.5, # = V/OM. Hence, it is sufficient to prove that
(W +ker Ty +ker T = #4 . (3.8)

Since ¥+ ker Ty +kerTy € # and 71 = %, we have %, C (#y+kerTy + ﬁ)m. To
prove the other inclusion, let u € (# - kerTj + 7)) and let T; be a bijective realisation
of T (existence is ensured due to Theorem 2.4.5 and Proposition 2.3.7). Since u € #/,
by Corollary 3.2.2 there exist unique uy € #p, v € kerT; and v € ker Tl such that u =

up+ T, (V) + v. For arbitrary vo € #p, v; € ker Ty and ¥; € ker 7] we have

0= [ulvo+vi+W]=[u+T ' (V)+V]|vo+vi+¥]
=[5 (V) + v vi+¥]
=[T7' V) In]+ L' @) [ ]+ v Ivi]+ v #]

=T V) I+ L @) [ ]+ [vvi].
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In the third equality we used kerD = #4 (i.e. #o = w4y and in the last equality we used

ker 77 [ L] ker 7} (see Remark 2.4.10). If we choose v; = 0 and ¥ = ¥, then we get

0=[T'(¥) | V] =(TT, ' (V)| V) = (V| ¥) = |¥|,

r

where in the second equality we used the definition of [- | -] (see (2.3)) and V € ker Ti,
while in the third equality we used the fact that 7. C 77. Thus, ¥ =0 and we have 0 = | v |

vi]. But, we can choose v; = v and apply the /#-coercivity of T} | #4-ikerT; » tO gEL
7 2
0=[[vIv]l=Knv|v)=polvl®.

Therefore, v = 0 as well. Thus u = uy € #p and hence (#( +ker T} + ﬁ)m C #,. This

completes the proof. |

Remark 3.2.5. The above decomposition (3.6) of the graph space implies that %/ # ==
kerTj + kerTj, which reveals that the room for choosing different boundary conditions
for abstract problem Tju = f is given by ker T} + ker T;. Thus, the knowledge of adjoint

operators completely describes the problem.

Another consequence of the decomposition (3.6) is that (T} |Wo SkerT)? Ti | Wy kerr;) 18 @

pair of mutually adjoint bijective realisations relative to (7p, Tp).

Corollary 3.2.6. The pair of subspaces (#y+ker T}, #o-+kerT}) satisfies (V)-boundary

conditions.

Proof. By Lemma 2.4.8, the pair satisfies (V1)-condition. It is sufficient to prove (V2)-

condition. More precisely, we need to prove
o + kerT; = (%+kerﬁ)m and Wy + kerT) = (%+kerTl)m .

Here, we present the proof of the first equality only, as the proof of the second one is
completely analogous to it. Let ug + V| € #(+ker T}, then for any vy + ¥, € #+kerTj,

we have
[uo—l—Vl ‘Vo—l—f/l] = [V1|\~/1] =0.

We used that kerD = #{ and ker Ty [ L | ker T} (see Remark 2.4.10). This means, uy + V| €
(# + kerTy)H. To prove the other inclusion, let u € (#)+kerT;)]. Then by the
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decomposition (3.6) there exist ug € #p, v € kerT; and v € kerﬁ suchthatu =ug+v+V.

For any vy € #j and V| € ker7; we have

0:[\;0-{—\71 |u]:[v0+\~/1 |u0—|—V+V]
=[Vi|v]+[" | V]

= [V | V],

here we again used kerD = # and kerT7[L]ker 7. By choosing, ¥; = ¥, we get [V |

V] = 0. Further,
[V V]=(TiV | V) = (T +T1)V | V) = 20 7|,

implies V = 0. In the last inequality we used (T3)-condition. Therefore, u = ug+v €

#, +kerTq, completing the proof. [ |

Remark 3.2.7. We have a concrete pair (7} |//0 txer Dl #g 1 kerr;) of mutually adjoint
bijective realisations for a given pair of Friedrichs operators. Moreover, for this pair we

have that the sum of the domains is equal to % . In particular, the sum is closed.

Remark 3.2.8. In the case of finite dimensional kernels, i.e. when dimker7; < o and
dimker7; < oo, the statement of Theorem 3.2.4 is a direct consequence of Corollary 3.2.2.
Here, we have that %/ /#, = T, ' (ker T} )  ker T} and since, T} : dom 7, — . is a bijec-

tion, we get
dim(# /#p) = dim (T, (ker 1) + ker T} )

— dim(ker ;) +dim(kerT}) < oo,

hence the codimension is finite.
On the other hand, obviously (#( -+ ker T} + ker Tl) /"o C W | #y and (since the sum
is direct)
dim ((#o+kerT1 + kerﬁ)/%) = dim(ker T} ) + dim(ker T} )
=dim(¥ /H) .

Therefore, we get (#( +kerT; + kerﬁ)/% =W /¥y, and hence # = Wy +kerT| +
kerﬁ.
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Lemma 3.2.9. The non-orthogonal projections
px: W —kerTy and pp: W — ker Ty,

corresponding to the decomposition # = #,+ker T} +ker Ty, are continuous with respect

to the graph norm. Moreover,

(Yuve?)  [u|v]=[pul|pv]+[pgu|ppv].

Proof. On the kernels the graph norm and the standard norm of ¢ are the same, so we
can assume kernels are equipped with the 7" norm. Let u, :=ug,, + Vi, + Vi, € # be
a sequence that converges to u := up+ v + V| € #. Following the argument in the proof
of Lemma 3.2.3, we get that ug ,, Vi, and V;, converge to ugp, Vi and V; respectively.
This means pyu, and pgu, converge to pyu and pgu respectively, therefore py and py are

continuous. Finally, for any u,v € #', we have

[u | v] = [pu+ pgu | pev+ppv] = [pxu | pev]+ [ pru | ppv] .

In the first equality we used #( = ker D and the second equality is due to the fact that
ker 77 [ L] ker 7} (see Remark 2.4.10). [ |

Theorem 3.2.10. Let ¥ be a closed subspace of % such that # C ¥". Then Ti|y is
bijective if and only if ¥ kerT; = #'.

Proof. The first implication is followed from the decomposition given in Lemma 3.1.1.
For the converse, ¥ NkerT; = {0} implies that T}|y is injective. Now let f € 7.
Since Ty : W — 7 is surjective (see Remark 2.4.7), there exists u € # such that Tju = f.

We also have for some v e ¥ and v € kerTy, u = v+ v. Thus,
f=Tiu=Ti(v+v)=Tiv=(Tq|y)v
implies that 77| is surjective. Hence, 71|y is a bijective realisation. ]

Remark 3.2.11. For any closed subspace ¥ of # such that #( C ¥ and T} | is bijective
we have ¥/ # = kerTj.

Remark 3.2.12. Not all bijective realisations, characterised in Theorem 3.2.10, are bi-

jective realisations with signed boundary map (e.g. see Example 3.3.4 below), i.e. 7 C
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#+ and ¥ C # ~ is only a sufficient condition. However, we have the following equiv-
alence: Tj |y is bijective with ¥ C #/* if and only if Tj |, is bijective with ¥ C %/~
Thus, there is no need in considering pairs of bijective realisations with signed boundary

map, but we can denote (in this case) each of 77|y and Ti |411) as a bijective realisation

with signed boundary map of 77 and Ti, respectively. Let us comment on this.

By Remark 2.3.6 we have equivalence on the level of bijectivity. Let us assume that
¥ C # " and let us denote by ¥| a maximal subspace of # such that ¥ C ¥; C # 7 (it
exists by Zorn’s lemma; cf. [14, Section 1.6]). Then ”I/lm C W~ (cf. [14, Lemma 6.3] or
[3, Theorem 2(b)] for a perspective in the context of abstract Friedrichs operators), hence
T |7/1 is bijective as well. Since ¥ C 71, it must be 7" = 7. Hence, yll] — ”I/IM Cw.
The opposite implication can be proved analogously.

The previous argument actually shows that a subspace ¥ C #* with the property of
Ti1|y being bijective is maximal nonnegative subspace, i.e. if for a subspace #; C # we
have ¥ C ¥; C # ", then it must be ¥ = ¥]. Then it is known that such ¥’ defines a pair

of bijective realisations with signed boundary map (see [3, Theorem 2]). An argument on

the existence of such subspaces using (X)-condition is made in Remark 2.5.5.
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3.3. CHARACTERISATION OF ABSTRACT

FRIEDRICHS OPERATORS

The von Neumann theory is well studied for the symmetric operators (classification of
all self-adjoint extensions). We derive a simple and explicit characterisation of abstract
Friedrichs operators (see Definition 2.1.1 and the previous characterisation given by The-
orem 2.1.2) that allows us to connect the theory of abstract Friedrichs operators with the
well-established theory of symmetric operators. We also present the von Neumann the-
ory for abstract Friedrichs operators. The results of this and the following section are

available in [33].

3.3.1. Characterisation

Theorem 3.3.1. [33, Theorem 3.1] A pair of densely defined operators (7p, 7‘0) on
satisfies (T1) and (T2) if and only if there exist a densely defined skew-symmetric operator

Ly and a bounded self-adjoint operator S, both on .7, such that
To=Lo+S and To=—Lo+S. (3.9)

For a given pair, the decomposition (3.9) is unique.
If in the above we include condition (T3), then the same holds with S being strictly
positive, 1.e.

(Sulu) > pollul®, wue s,

where Ly > 0 is the constant appearing in (T3).

Proof. Let (TO,TO) satisfies (T1) and (T2). Then we define S := %To-i-YN"o, which is a
bounded and self-adjoint operator by Theorem 2.1.2(iii). Moreover, if condition (T3) is

satisfied as well, it has a positive lower bound. Therefore, by

Th-Ty T+ =~ Ty—To  To+To
Ip = d Ty = —
=T T a 0 2 T2
it is left to prove that Lo := @ is skew-symmetric. Since dom Ly = dom Ty N domfo =

9, Ly is densely defined. Furthermore, using Ly = S — T"O and the boundedness of S we
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get _ ~
'+ T I, —-T
112L R

where in addition we used the second part of Theorem 2.1.2(iii). The uniqueness of

Li=S" T =S—Ti =S|y T =

operators Lo and S follows by a standard argument.

The converse follows easily by direct inspection. |

Remark 3.3.2. From the proof of the previous lemma it is easy to see that for general

mutually adjoint closed realisations (73 |y, T | y111) (see Theorem 2.3.4) we have
(T =T)|y)" = —(T1 = T)|y1).
Note that for 7" = #() we have the identity obtained in the proof of the previous theorem.

By Theorem 3.3.1, the study of (pairs of) abstract Friedrichs operators is reduced to
the study of operators of the form (3.9), which, in our opinion, makes the situation much
more explicit (cf. [25, Remark 4.3]). Let us illustrate some straightforward conclusions.
For a pair of abstract Friedrichs operators (To,fo), let Ly and S be operators given in

Theorem 3.3.1. If we denote L := —Lj 2 Lo, then we have

Toy=Lo+S, To=—-Lo+S,
h=L1+S, ’f]:—Ll—FS.

In particular, #) = domL( and # = domL,, i.e. spaces #; and # are independent of
S. This is also clear by noting that the graph norms || - ||z, and || - ||z, are equivalent, due
to the boundedness of S. The same holds for the sesquilinear map [- | -] := »(D(")," )y
(see (2.3) and Lemma 2.2.5(i)) since

(u|vl=(Liu|v)+(u|Lv), uvew. (3.10)

Thus, all conditions on subspaces #» C #  given in Theorem 2.4.5 depend only on L;

(i.e. Lp). In particular, we can formulate the following corollary.

Corollary 3.3.3. Let (Tp, To) be a joint pair of abstract Friedrichs operators on .7 and
let ¥ C # be a closed subspace containing # such that ¥ C %+ and ¥ C %~ (with
respect to (7, fo)). For any joint pair of abstract Friedrichs operators (AO,XO) on .7 such
that

(A0 —Ag)* = (T — To)*
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we have that ((ZO)* 7, (A0)*|111) is a pair of bijective realisations with signed boundary

map.

Not all domains of bijective realisations have the feature described in the previous
corollary, i.e. there are subspaces ¥ C # such that realisations T = L;|4 + S are bijective
for some admissible S, but not all. Furthermore, if a subspace ¥ C # defines bijective
realisations for any admissible S, that does not imply that ¥ C #* and ¥ C %/~ All

this can be illustrated by the following simple example.

Example 3.3.4. Leta < b, # = L*((a,b);R) (for simplicity we consider only real func-
tions) and ¥ = C;’(a,b). For u > 0 and B € L”(a,b) such that B > p a.e. on (a,b), we

consider operators Tp, To: D — H given by
Tou=u'+Bu, Tou=—u+Bu.

Then it is easy to see that (Tp, TO) 1s a joint pair of abstract Friedrichs operators, while
W = H'(a,b) (which is embedded into C([a,b]); see [16, Theorem 8.2] or [44, Theorem
4.13]) and #y = H& (a,b). Of course, in the notation of Theorem 3.3.1, here we have
Lou = u’ and Su = Bu. Then Lju := —Liu = u’ (here the derivative is in the weak sense),

Ty=L+S,Ti=—L; +S, and
[u|v]=u(b)v(b) —u(a)v(a), u,veWw.

Let us comment on all bijective realisations of operators 7y and To, i.e. all bijective re-
strictions of 77 and T"]
We define closed subspaces ¥, C #/, oo € RU{oo} (here we identify —oo and +o0),
by
Yo={ue ulb)=oua)}, ack,

and ¥ := {u € # :u(a) = 0}. Since (L1|y,)* = —Li|y, (this can be verified by direct

[

calculations), we have (Ti |y, )" = Ti |, , where we use the convention: 1 = 0 and §="co.
o

Thus, we want to see for which values of o,

(Til e Til7,)) (3.11)

is a pair of mutually adjoint bijective realisations (with signed boundary map).
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By Theorem 3.2.10 (see also Remark 4.2.3 below) we have that all mutually adjoint
bijective realisations are given for o € RU {eo} \ {ag }, where otg := e~ JiBO)AY | Indeed,
since ker7} = span{e_f; B(y)dy } we have kerT; C ”I/aﬁ. Note that for o € {—1,1} we
have Yo =V s hence L1 |y, is skew-selfadjoint.

By direct inspection we get that only for a € (—1,1) bijective realisations are not
with signed boundary map (one can also consider B = p by Corollary 3.3.3 and read the
result from [2, Example 1]). This is in the correspondence with the above result since
ag € (—1,1). More precisely, we have ag € (0,1) and by varying y and B one can get
any number in that interval for ogg.

Therefore, for & € RU{eo}\ (—1,1) the corresponding domains, i.e. boundary con-
ditions, give rise to bijective realisations independent of the choice of admissible 3 (see
Corollary 3.3.3). The same holds for o € (—1,0] although these bijective realisations are
not with signed boundary map. Here the reason lies in the fact that ¥ Nker7} = {0}
(Theorem 3.2.10) for any a € (—1,0] and any choice of admissible . Finally, there is
no ¢ in (0,1) with this property. However, for fixed 8, all o € (0, 1) but one (@ = og)
correspond to mutually adjoint bijective realisations (3.11).

We will return to this example to consider general symmetric parts.

Remark 3.3.5. If we consider Ty = Ly + C where L is skew-symmetric and C bounded,
then it is easy to see that the discussion preceding Corollary 3.3.3 still holds. More pre-
cisely, spaces #p, # and indefinite inner product [- | -] are independent of C ((3.10)
holds precisely as it is; recall that L; = —L;)) and the graph norm is equivalent with || - ||,
(cf. [22, Subsection 2.2]). Thus, these objects depend only on unbounded part of the

skew-symmetric part of 7.

3.3.2. Deficiency indices

The previous example illustrates that in order to get all bijective realisations (not only
with signed boundary map) it is not enough to consider Ly alone, we must also bring
the symmetric part S into play. In particular, information on kernels ker7; and kerTj is

essential. By Theorem 3.2.4 we have

W = WytkerT| +kerT; .
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Hence, the sum of dimensions of the kernels is constant and equals the codimension of
#o in W . However, from here we cannot conclude that (cardinal) numbers dimkerT;
and dimkerﬁ are independent of S, where T} = L; +S. If so, this would be beneficial
in the analysis (see Example 3.3.8 below). Let us motivate why one should expect such
a result. Since Lo is skew-symmetric, we have that —iLg is symmetric. Thus, for any

positive constant 3 > 0 we have
dimker(L; + 1) = dimker(iLy — if1) = dimker((—iLo)" —ip1) = d;(—iLo),

where 1 denotes the identity operator and on the right we have the deficiency index (or
the defect number) of —iLy (note that dy := dimker(A —i1) and d. := dimker(A +i1)
are called the deficiency indices of the operator A), which is known to be independent of
B > 0 (see [53, Section 3.1]). Analogously, dimker(L; — 1) = d_(—iLp). Therefore, all
that we need is to show that instead of S1 we can put an arbitrary bounded self-adjoint

strictly positive operator. Below is a slightly more general statement.

Lemma 3.3.6. Let Lo be a densely defined skew-symmetric operator and let us denote
L := —L;. For a bounded linear operator C with strictly positive symmetric part %(C +

C*), we define
d$ (L) :=dimker(L; +C) and d(Lo):=dimker(L; —C).
Then d$ (Lo) and d€ (L) are independent of C, i.e. d$ (Lo) = d(—iLo).

Proof. Since Ly is closable and d$ (Lo) = d$ (L), we can assume that Lg is closed. We
shall prove the claim for a’JCr (Ly), while the same argument applies on d< (Ly).

Let us take arbitrary bounded operators C and C" with strictly positive symmetric
parts, and let us denote by p and p’ the greatest lower bounds of their symmetric parts,
respectively. We shall first argue in a specific situation when ||C — C’|| < min{u, '},
where here || - | denotes the operator norm. Before we start, let us note that according to
Theorem 3.3.1, both operators Ly + C and Lo + C’ define a (pair of) abstract Friedrichs
operators (the skew-symmetric part is equal to the sum of Ly (unbounded part) and the
skew-symmetric part of C (bounded part)). Hence, all results related to abstract Friedrichs

operators are applicable.
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If dS(Lo) > dS (Ly), then there exists 0 # v € ker(L; + C) Nker(L; +C')* ([53,
Lemma 2.3]). Since Lg is closed, we have ker(L; +C')* = ran(—Lo + C’). Thus, we
also have v € ran(—Lo+ C)* Nran(—Ly+C’). Let 0 # u € domLg be such that v =
(—Lo+C")u. Then it holds

((=Lo+CHu| (Lo +C)u) =0. (3.12)

Since the identity (3.12) is symmetric with respect to C and C’, the same holds even if
we start with the assumption d< (Lg) < dg (Lo). However, then we have (—Lo+C)u # 0.
Repeating the last calculations with C’ and C swapping places, we come to the analogous
conclusion: p < [|C—C'|| < u. Therefore, it must be d$ (Lg) = dJCr/ (Lo).

Finally, it is left to prove the statement without the additional assumption ||C —C'|| <
min{y,u'}. This easily follows by noting that the set of all bounded operators on 7
with strictly positive symmetric part is convex. More precisely, for each A € [0,1] we
have that Cy := AC+ (1 — A)C’ is bounded and the greatest lower bound of its symmetric
partis A+ (1 —A)u" >min{u, u'}. Moreover, ||Cy, —Cy, || = |41 — A2|||C—C'||. Thus,
we can pick finitely many values 0 = Ay <A, <+ <A, = lsuch that [|C;, — ;|| <
min{y,u'}, j=1,2,...,,m— 1. Therefore, by applying the previously obtained result,
we get

Cy

/ C
di (Lo) =d &

(Lo) = d[2(Lo) = -~ = d (Lo) = dS (Lo),

concluding the proof. ]

Remark 3.3.7. For a densely defined skew-symmetric operator Ly we will refer to the
cardinal numbers d (—iLg) as the deficiency indices (or the defect numbers) of Ly, and
we introduce the notation d4 (Lg) := d4(—iLg). The definition is not ambiguous because
depending on whether the operator is symmetric or skew-symmetric the corresponding

definition applies.
Let us return to the analysis of Example 3.3.4.

Example 3.3.8. In Example 3.3.4 we studied specific (multiplicative) symmetric parts.

Let us now consider a general situation where
Tou=u+Cu, Tou=—u+Cu,
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for an arbitrary bounded linear operator C with strictly positive symmetric part %(C +C¥).

First note that by Example 3.3.4 (cf. [9, Subsection 6.1]) and Lemma 3.3.6 we have
dimkerT] = dimf’l = 1 (for any admissible C).

The conclusion of Example 3.3.4 for the range RU {eo} \ (—1,1) remains the same
(cf. Corollary 3.3.3), i.e. for these values of @ we get for any admissible C bijective
realisations (even with signed boundary map).

Let us take & € (—1,0). Since the codimension of ¥4 in # equals 1, and dimker 7} =
1, by Theorem 3.2.10 it is sufficient to prove that ¥, and ker 7} = span{¢@c¢} have a trivial
intersection to get that the corresponding realisations are bijective. Let us assume on
the contrary that @¢c € #4. Since o < 0, we have @¢c(a)@c(b) < 0. Thus, recalling that
W — C(la,b)), there exists ¢ € (a,b) such that ¢¢c(c) = 0. Moreover, ¢¢ € ker T} implies
that ¢+ Cec = 0 in (c,b) as well. This together with @¢c(c) = 0 implies that ¢c = 0
in (c,b). Indeed, just recall that 7., defines a bijective realisation. In particular, we have
¢c(b) =0, implying o = 0, which is a contradiction. Therefore, for any o € (—1,0) we
get bijective realisations independently of the choice of C. Note that here we were not
able to capture the value a = 0.

The argument given in Example 3.3.4 is sufficient to conclude that in general there is
no « in (0, 1) with the property that the pair of domains (¥, 7 il ) gives rise to (mutually
adjoint) bijective realisations (3.11) for any choice of admissible C. On the other hand,
since dimker7; = 1, for fixed C all o € [0, 1) but one corresponds to mutually adjoint

bijective realisations.

A particularly interesting case of bijective realisations with signed boundary map is
when ¥ = ¥4 (see Introduction). By Remark 3.3.2 this occurs if and only if the asso-
ciated realisation of the skew-symmetric part L is skew-selfadjoint. Thus, such subspace
¥ exists if and only if d; (Lg) = d_(Lo) (see [53, Theorem 13.10]). Applying Lemma

3.3.6 we can formulate the following corollary.

Corollary 3.3.9. Let (7, T"o) be a joint pair of abstract Friedrichs operators on 7. There
exists a closed subspace ¥ of # with #) C ¥ and such that (Ti|y,Ti|y) is a pair of
mutually adjoint bijective realisations related to (7, fo) if and only if ker 7} and ker T, are

isomorphic.
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Remark 3.3.10. The notion of isomorphism of Hilbert spaces used in the previous corol-
lary is the standard (and natural) one (cf. [28, 1.5.1. Definition]): two Hilbert spaces are
isomorphic if there exists a linear surjective isometry (isomorphism or unitary transfor-
mation) between them.

One can find several characterisations, e.g. two Hilbert spaces are isomorphic if and

only if
i) they have the same dimension.
ii) there exists a linear bounded bijection between them.

For the first claim we refer to [28, 1.5.4. Theorem], while in the latter one needs to discuss
only the converse. This can be done in a straigtforward constructive way. Indeed, if
we denote by A a linear bounded bijection between two given Hilbert spaces, then U :=

A(A*A)_% 1s an isomorphism (in the above sense).

Remark 3.3.11. For Vv € kerﬁ we have

Thus, by the boundedness of T} + 7} on ¢ the norms /[- | -] and || - || are equivalent on
ker T}, implying that ker T} is a Hilbert space when both equipped with [ | -] and (- | -).
Moreover, the identity map i : (kerTy, (- | -)) — (kerTy,[- | -]) is continuous (due to the

boundedness of 77 + Tl on J7), it is irrelevant which Hilbert space structure we consider
on kerT} in Corollary 3.3.9. The same applies on ker 77 as well, with the only difference

that [- | -] should be replaced by —[- | -].
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3.4. CLASSIFICATION OF THE VON NEUMANN

TYPE

Applying von Neumann’s extension theory of symmetric operators (cf. [53, Theorem
13.9]) on —iLg, we can classify all skew-selfadjoint (even closed skew-symmetric) realisa-
tions of Ly in terms of unitary transformations between (closed subspaces of) ker(L; + 1)
and ker(L; —1). Of course, by Lemma 3.3.6 (see also Remark 3.3.10) this can also be
done when ker(L; + 1) and ker(L; — 1) are replaced by ker 7} and kerT;. We are about
to focus on this situation since, as it was demonstrated in examples 3.3.4 and 3.3.8, of-
ten it is desirable to keep abstract Friedrichs operators 7Ty and Tp as a whole (e.g. not all
bijective realisations of 7o = Ly + S correspond to skew-symmetric realisations of Lg).
Also, in terms of partial differential operators (especially with variable coefficients), it is
sometimes easier to work with the operator Lo+ C, for some C, than with skew-symmetric
operator Ly itself. However, we will not make use of [53, Theorem 13.9], but develop an
independent constructive proof. This will allow for an explicit classification and at the
same time provide an alternative proof in the symmetric setting (for even more general

situations).

3.4.1. Preliminaries.

Lemma 3.4.1. Let (7, T‘o) be a joint pair of abstract Friedrichs operators on 7. Let
¥ C W be a closed subspace containing %4 and let us define ¢4 := py(7') and G =
pi(7), where py and py are given by Lemma 3.2.9. Then, we have the following.

i) T1|y is a bijective realisation of Tj if and only if ¥ NkerT} = {0} and G = kerT;.
ii) Let # NkerT, = {0}. Then U : 4 — ¢ defined by
U(pi(u)) = px(u), ue?, (3.13)

is a well-defined closed linear map. Moreover, U is bounded if and only if 9 is

closed in ker Tl (cf. Remark 3.3.11).
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iii) If ¥ C #* (see (2.4)), then ¢ is closed and U : (fg,[ |-]) = (kerTy,—[- | -]) has

norm (with respect to the indicated norms) less than or equal to 1.

V) If 7/ C # W~ (see (2.4)), then both & and ¢ are closed and U : (52,[ |-]) —

(¢,—[-|-]) is a unitary transformation (cf. Remark 3.3.10).
v) Let 7 NkerT; = {0}. Then ¥ coincides with #;; given by

Yy = {ug+UV+V :ug € #,V €Y}, (3.14)

where U is defined by (3.13), and T |y (o + UV + V) = Touo + (To + Tp) V.

Moreover, such U is unique, i.e. if for a subspace g C # and a closed operator
U:9 — ker T; we have ¥ = Yy, where 7y is defined by the formula above, then
U is given by (3.13).

Remark 3.4.2. The assumption of part iv) is equivalent to ¥ C ¥, The part ¥ C
W+~ implies ¥ C ¥ is trivial, while the converse is a consequence of the polar-
isation formula [14, (2.3)].

Note that ¥ C %" implies that ¥ NkerT; = {0}. indeed, if that were not the case

then for v € ¥ NkerT; we have
[VIv]=—=(v[(Ti+T)v <0)),
contradicting ¥ C #' .

Remark 3.4.3. It is clear that for any given U : 4G — Ker Ty, 7y defined by (3.14) is a
subspace of # which contains #(. Moreover, if U is closed, then 7 is closed as well.
Indeed, from ug + UV, +V,, — up+v + vV € # it follows (see the proof of Lemma 3.2.3)
that UV, — v and V,, — V. Hence, for closed U we have V € domU and v = UV, implying

that ug+v+v=ug+UV+VE Y.

Proof of Lemma 3.4.1. i) Let us assume that 71|y is a bijective realisation. Injectivity
implies that ¥ NkerT; = {0}, while pg(#) C kerTj is trivial. Let us prove the
opposite inclusion. By Theorem 3.2.10, we have # = ¥ +kerT;. Thus, for any
¥ € ker Ty (recall that kerT; C #) there exist unique # € ¥ and v € kerTj, such

that V = u+ v. This implies u = —v +V, so V = pi(u) € pg(¥).
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For the converse, we shall make use of Theorem 3.2.10 again. Let us take an ar-
bitrary w € #'. By Theorem 3.2.4 there exist unique wy € #p, v € kerT; and
Ve kerﬁ such that w = wo 4+ v + V. The assumption ensures existence of u € ¥
such that u = ug + u + v, for some ug € #; and u € kerT;. By subtracting v from

the second equation and inserting it into the first, we get
w=(wo—up+u)+(v—pu).

Since the first term on the right hand side belongs to 7" (note that # C ¥") and the

second one to ker 71, Theorem 3.2.10 is applicable. In conclusion, 77|y is bijective.

ii) Let us start by showing that U is a well-defined function. Let u,v € " be such that
pi(u) = pg(v). By the decomposition given in Theorem 3.2.4, there exist ug, vy €
#0, such that

u=uo+px(u)+pg(u), v=vo+px(v)+p(v).

Thus,

u—v=(up—vo)+ (px(u) — px(v)) -

Since (u—v) — (up —vo) € ¥, we get px(u) — px(v) € ¥ NkerT1 = {0}. Hence, U

1s well-defined.

Linearity follows from the linearity of projections py and p;. Let us show that U is
closed. Take (u,) in ¥ such that pg(u,) — ¥ in ker Ty and U pg () = pic(un) — v
in ker 77 (as n tends to infinity). This implies that (pf((un) + pk(un)) converges to
V+vin#. Since #, C ¥, for each n € N we have pg(u,) + px(un) € 7. Thus,
by the closedness of ¥/, we obtain u := V +Vv € ¥, implying V = pg(u) € pg(7)
and UV = Upg(u) = px(u) = v.

Similarly as with the closedness of U, in the last part the goal is to exploit the fact

that ¥ is closed. Indeed, let us assume that U is bounded, i.e. there exists ¢ > 0 such

that || pi ()| < ¢l pg ()

kerTy, as n tends to infinity. Using the boundedness of U we get that the sequence

,u € V. Let us take (u,) in ¥ such that pg(u,) = V in

(px(un)) is a Cauchy sequence in ker 77, hence convergent. Now we get V € pi (7))
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1i1)

v)

following the previous reasoning. On the other hand, if p(7') is closed, then U
is a closed linear map between two Hilbert spaces p;(?7') and ker7;. Thus, U is

bounded by the closed graph theorem.

Letuc ¥ C#. Using u = up+ px(u) + pg (), #'H = #4 (see Theorem 2.2.5(ii))
and ¥ C #', we get

0< [u|u] =[px(u) | px(u)]+ [pg(u) | pr(u)], (3.15)

which in terms of the operator U reads

—[Upg(u) | Upg(u)] < [pi(u) | pr(u)]-

Thus, U : 4 — ker T} is bounded (hence ¥ is closed by part ii)) and |U|| <1 (with
respect to the norms /[ | -] and y/—[- | -], respectively).

When ¥ C #/ N, then in (3.15) we have equality. This allows us to follow
the last part of the proof of part ii) to conclude that ¢ is closed as well. Further-

more, U is obviously a unitary transformation between Hilbert spaces (¢, | -])

and (¢, —[- [ ]).

Since for any u € ¥ there exists ug € #p such that u = ug + px(u) + pg(u) = uo +

U pi(u) + pi(u), it is clear that " = ¥, For arbitrary ug € #( and v € 4 we have
T1|ﬂ//(u0—|—Uf/+\~/)=T1(MQ+U\~/+V) :Tluo—}-T]f/:Touo—i—(Tl—l—'fl)f/,

where we have used ¥ C #/, Ty (UV) = 0, T |y, = To and T; 7 = 0.

Let us take two subspaces %N, - kerf’l, i €{1,2}, and two closed operators U, : f;,/ —
kerTy, i € {1,2}, such that ¥y, = #y,. This means that for an arbitrary V; € E% there

exist ug € #p and v, € % such that
Uvi+Vi=uy+U Vo +V, .

Applying Theorem 3.2.4 (the fact that it is a direct sum) we get uy =0, V; = ¥, and
U,Vi = UV,. Hence, U; C U,. By the symmetry we can conclude that in fact we
have U; = U,. This proves that such U is unique, and by the first part we have that
U is necessarily given by (3.13).

|
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Remark 3.4.4. For 7y given by (3.14) we can explicitly write ”//JH (i.e. the domain of
(T1|y;,)*; see Theorem 2.3.4) in terms of the adjoint operator U*. For simplicity, let us
elaborate on this only in the case of bounded U : 4G — ker 13, i.e. G = pi(7) is closed
(see Lemma 3.4.1(ii)). Then U* : kerT} — ¢ is also bounded and (Vv M) = kerT.
Moreover,

U*p(v) = U*Pgpi(v) = Pypi(v), ve v,

where P; and égdenote the orthogonal projections on ¢ and ¢ within spaces (ker Ty, —| - |
-]) and (ker Ty, |- | -]), respectively (¢ is the closure of & = pi(¥) inker T}). Furthermore,
”//JL] is then given by

VUM = {vo+ i +U W + o+ fip s vo € #o, 1 €,

€ G NkerTy, in € L] ﬂkerfl}.

Note that 4[] Nker T} is the orthogonal complement of ¢ within the space (ker T}, — [
-]), and analogously for @14 NkerT,.

As an example, let us consider ¥ = #j + kerT;. Clearly, we have pp(7) = ker T}
and ¥ C #*. Itis also easy to check that ¥ = %4+ ker Ty (see Corollary 3.2.6). For
this 7" we get G = kerT} and 4 = {0}, hence both U and U* are zero operators. Since
@ NkerT; = ker Ty and glln kerT| = {0}, it is easy to read that the above expression
for ”//Um gives the right space %+ kerT;.

Remark 3.4.5. Of course, in part iv) it is implicitly required that 4 and & are isomor-
phic.
A trivial situation when the assumption ¥ C # " N# ~ is satisfied occurs for ¥ = #.

Then ¥ =& = {0}, hence they are obviously isomorphic.

Remark 3.4.6. By Remark 3.3.10, in the regime ¥ C # " N # ~ of part iv) of the pre-
vious lemma from the mapping U, given by (3.13), we can construct an isomorphism
between spaces 4 and ¢4 when both are equipped with the standard inner product (- | -).
Indeed, if we denote by 1 : &G < A and 1: 9 — A canonical embeddings (note that
then 7* and 1* are orthogonal projections in Z onto 4 and ¢ , respectively), then a uni-

tary transformation is given by

_1
2

U(i* To+ ToU™t* (To + ﬁ))’lU>
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A trivial situation is when T + fo = a1, for some a € C, since then the expression above

equals U.

3.4.2. Classification.

In this subsection we formulate and prove the result concerning a classification of reali-

sations of abstract Friedrichs operators in the spirit of von Neumann’s theory.

Theorem 3.4.7. Let (T, T’o) be a joint pair of abstract Friedrichs operators on .7 and let
T be a closed realisation of Ty, i.e. Ty C T C T;. In what follows we use ¥ to denote the

space (3.14) for a given U.

1) T is bijective if and only if there exists a bounded operator U : ker Ti — kerTj such

that dom7 = 7.

ii) domT C # 7 if and only if there exist a closed subspace 547 - kerﬁ and a contin-
uous linear operator U : (52,[ | -]) = (kerTy,—[- | -]) with the norm (with respect
to the indicated norms) less than or equal to 1 (i.e. U is a non-expansive map) such

that dom7T = 7.

iii) T is a bijective realisation with signed boundary map if and only if there exists a
continuous linear operator U : (ker Ty, [- | -]) — (ker Ty, —[- | -]) with the norm (with

respect to the indicated norms) less than or equal to 1 such that dom7T = 7.

iv) dom7 C domT* if and only if there exist closed subspaces g CkerT} and &4 C
ker 7} and a unitary transformation U : (?,[ |-]) = (¢4,—[|]) (.e. the norm of

U is equal to 1) such that dom7T = %y.

v) domT = domT* if and only if there exists a unitary transformation U : (ker T}, [- |

-]) = (kerTy,—[- | -]) such that domT = ¥.

vi) In each of the above cases there is one-to-one correspondence between realisations
T, i.e. domT, and classifying operators U. A correspondence is given by U

I | Y+
Proof. Existence of such U in all parts is a direct consequence of Lemma 3.4.1. Thus, it

remains to comment only the converse of each claim.
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Since in all parts U is bounded, by Remark 3.4.3 we have that 77, is a closed subspace
of # containing #p. This means that Ti |y, is indeed a closed realisation of Tp.

In part i) it is evident that py(7y) = ker 7}, hence we just apply Lemma 3.4.1(1) to
conclude.

For parts ii) and iii) we need to show that ¥y C # " (bijectivity in part iii) is again
consequence of Lemma 3.4.1(i); see also Remark 3.2.12). For an arbitrary u = ug+UV +

V € ¥ we have
[ulul=[UV|UV]+[V|V]>—[V|V]+[V|V]=0,

where we have used that the norm of U is less than or equal to 1.

Let us recall that by Theorem 2.3.4 we have dom(7i|y;, )" = ”VJH. Thus, for parts iv)
and v) we need to show that 7 C 7/UM and (only for part v)) ”//UM C Y. This can be done
using Remark 3.4.4, but let us present here a direct proof. For arbitrary u = ug+UV + V

and v =vo+ U1 + fi from 7y, similarly as in the previous calculations, we have

[u|v]=[UV|UR]+[V[A]=—[V[&]+[V]|&]=0,

where we have used that U is an isometry. Thus, 7y C ”//JL].

Let us prove now the opposite inclusion for U given in part v). Let v € "//UM Cw.By
Theorem 3.2.4, there exist vo € #y, U € kerTy, fi € kerf’l, such that v =vo+ u + fi. For

any u =ug+UV+V € ¥, we have

O=lulv]=[UV|u]+[V|Q]
=[UV|u]-[UV|UR]=[UV|u—-UL],

where we have used that U is a unitary transformation. The identity above holds for any
¥ € kerT;. Since U is surjective and (kerTy,—|- | -]) is a Hilbert space, we get u = U/i.
Thus, v € ¥y and hence, V[[]L] CYy.

Surjectivity of the map U — T follows from parts 1)-v), while injectivity holds by

Lemma 3.4.1(v). |

Remark 3.4.8. In[9, Section 4] Grubb’s classification was applied on abstract Friedrichs
operators, which differs significantly from the method of the previous theorem. For in-

stance, in the result just developed a realisation is bijective if and only if the classifying
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operator is defined on the whole kernel (Theorem 3.4.7(i)), while in the theory of [44,
Chapter 13] (see also [9, Theorem 17]) the same holds for bijective classifying operators.
Another difference is that Grubb’s classification is developed around the reference oper-
ator, while such distinguished operator is not needed here. One can notice the same also
in the symmetric case (see e.g. [25]) when comparing von Neumann’s (absolute) theory
(cf. [53, Section 13.2]) and the (relative) theory developed by Krein, Visik and Birman
(cf. [44, Section 13.2]).

If we focus on bijective realisations with signed boundary map, then the result of part
iii) of the previous theorem (see also part vi)) offers a full and explicit characterisation
contrast to [9, Theorem 18] where the result 1s optimal only when kernels are isomorphic

(cf. Corollary 3.3.9).

By Theorem 3.4.7 we know that the number of certain type of realisations agrees with
the number of corresponding classifying operators U. For instance, it is easy to deduce
the number of isomorphisms between Hilbert spaces. Hence, having this point of view at
our hands, we can formulate the following straightforward quantitative generalisation of

Corollary 3.3.9.

Corollary 3.4.9. Let (Tp, TO) be a joint pair of abstract Friedrichs operators on .7 and
let us denote by m the cardinality of the set of all subspaces ¥ of # such that ¥ = ¥4,

i.e. such that (Tj|y,Ti|y) is a pair of mutually adjoint bijective realisations related to
(T07 ’Tb) .
i) If dimker7; # dimker T}, then m = 0.

i) If dimker7; = dimker Tl =0, thenm = 1.

i) If dimker7; = dimker fl =1, then m = 2 in the real case, and m = oo in the complex

case.
iv) If dimker7; = dim kerﬁ > 2, then m = oo,

Example 3.4.10. a) In Example 3.3.8, it is commented that dimker 77 = dimker T, =
1. Thus, since the problem was addressed in the real setting, by Corollary 3.4.9
there are two closed subspaces with the property that ¥ = ¥ [, They are precisely
Ya, @ € {—1,1} (see Example 3.3.4).
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b)

Let us consider operators from examples 3.3.4 and 3.3.8 on (0,), instead of the
bounded interval (a,b), i.e. Lou = u’ and ¢ = L*((0,%);R). Then (see [53, Ex-
ample 3.2]) we have d; (Ly) = d(—iLyp) =1 and d_(Ly) = d—(—iLy) = 0. Thus,
there is no closed subspace 7" C # such that ¥ = ¥ [L], or in other words there is

no skew-selfadjoint realisation of the operator —iLy.

The previous example is very specific since there is also only one bijective realisa-
tion. This can be justified by Theorem 3.4.7(i) (note that the zero operator is the
only bounded operator between kerﬁ and ker 77), but we also refer to [9, Theorem

13].

Let us now present an example where still there is no closed subspace ¥ C #
such that ¥ = ¥4, but for which there are infinitely many bijective realisations.
More precisely, we need min{dimker77,dim ker7; } > 1 (see Theorem 2.4.12) and
dimker 7| # dimkerﬁ (see Corollary 3.3.9).

Let s = L?((0,1);C?) (all conclusions are also valid for the real case) and 2 =
C>((0,1);C?). Foru € 2 and

1 0
A(x) =

0 1—x
we define Tou := (Au)’ +u and Tou := —(Au) +A’u+u. It is easy to see that
(To, fo) is a joint pair of abstract Friedrichs operators (just apply Theorem 3.3.1 or
notice that Ty satisfies Definition 1.1.1, i.e. it is a classical Friedrichs operator). As
usual, we put 77 := To* and T"l := Ty Since both 7 and fl are of a block structure,
calculations of the kernels can be done by studying each component separately.

More precisely, u = (uy,uy) € kerTj if and only if
uy+ur =0 and (aoup) +upy =0,

where a;(x) := 1 —x. Thus, we can apply the available results for scalar ordinary

differential equations (see e.g. the second example of Subsection 4.2.6).

Informally speaking, the equation above for the first component «; contributes with

1 for both dimker7; and dim kerﬁ. On the other hand, the second equation con-
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tributes with 1 for dimker 77 and O for dimker ﬁ. The overall result then reads
dimker7; =2 and dimker7} =1 ,

which corresponds to what we wanted to get.
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3.5. THE SYMMETRIC CASE

In this section we focus on symmetric operators and present several results that can be

directly extracted from the theory developed in the previous section.

Corollary 3.5.1. Let A be a densely defined symmetric operator on .7#” and let Sy, S, be
bounded self-adjoint linear operators such that S, is in addition strictly positive. Define

an indefinite inner product on domA* by
[ | v]a = i((A*u V) — (u| A*v>> . u,v € domA* . (3.16)
Then we have the following.
1) It holds
dimker(A* —S; —iS>) =d(A) and dimker(A* — S| +iSy) =d_(A),
where dy (A) denote deficiency indices of A (cf. [53, Section 3.1]).

ii) domA* =domA +ker(A* —S; —iSy) +ker(A* —S; +iS,), where the sums are direct

and all spaces on the right-hand side are pairwise |- | - |4-orthogonal.

iii) There is one-to-one correspondence between all closed symmetric realisations of
A and all unitary transformations U between any closed isomorphic subspaces of

(ker(A* — 81 +iS2),[- | -]a) and (ker(A* — Sy —iS»),—[- | - ]a), respectively.

iv) There is one-to-one correspondence between all self-adjoint realisations of A and all
unitary transformations U : (ker(A* — S; +1iS2),[- | -]a) — (ker(A* —S; —iS»), —[ |
1a)-

v) Correspondences of parts iii) and iv) can be expressed by U — Ay = A*|d0mAU,
where

domAy = {ug+UV+V :up € domA, ¥ € domU },

and Ay (up+UV + V) = Aup+ (S14+i$2)V+ (8] —iS,)UV.
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Proof. If we define Ty := iA — iS; + S» and Ty := —iA +iS| + S, then the pair (To,fo) is
a joint pair of abstract Friedirchs operators by Theorem 3.3.1. Moreover, corresponding
indefinite inner product (see (2.3) and (3.10)) agrees with [- | -]4 (see Remark 3.3.5).
Therefore, the statements of the corollary follow from Lemma 3.3.6, Theorem 3.2.4
(see also Remark 2.4.10) and Theorem 3.4.7 (note that dom Ay agrees with (3.14) for the
above choice of (7Tp, T"o)). [ |

IfS;=o1,i=1,2, where ; € R and o, > 0, then the statement of the previous the-
orem is well-known and can be found in many textbooks on unbounded linear operators.
For instance, in [53] part 1) is present in Section 3.1, part i1) in Proposition 3.7 (von Neu-
mann’s formula) and parts iii)-v) are studied in Section 13.2 as part of the von Neumann
extension theory (see also [28, Chapter X]). Moreover, the correspondence given in part
v) completely agrees with the one of [53, Theorem 13.9] since for this choice of bounded
operators S;, i = 1,2, the same U represents a unitary transformation when the standard
inner product of the Hilbert space .77 is considered (see Remark 3.4.6).

Let us just remark that the geometrical point of view provided in part ii), i.e. orthogo-
nality with respect to [ | -]4, is something that is not commonly present, although [- | -4 is
(up to a multiplicative constant). More precisely, in [53, Definition 3.4] (see also Lemma
3.5 there) the indefinite inner product —i[- | - |4 is referred to as the boundary form and
it is an important part of the extension theory of boundary triplets ([53, Chapter 14]; see
also [44, Section 13.4]). A more advanced study of boundary forms for Hilbert complexes
can be found in a recent work [45].

Of course, in the standard theory of symmetric operators it is usually satisfactory to
observe only the case S; = 0 and S| = 1. Thus, the preceding corollary may seem like an
excessive technical complication. Here we want to stress one more time that our primary
focus was in developing a classification result for abstract Friedrichs operators where
such approach can be justified, e.g., by perceiving that not all bijective realisations of
To = Lo + S correspond to skew-symmetric realisations of Ly (see Section 3.4). Therefore,
our intention is to see the last corollary principally as a way to connect two theories, while

an additional abstraction can sometimes offer a better sense of the underlying structure.
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3.6. ON (M)-BOUNDARY CONDITIONS

Let us conclude this chapter with some recent insights on (M)-boundary conditions. The
equivalence between the abstract formulation of Friedrichs’ boundary conditions, i.e. (M)-
boundary conditions, and the boundary conditions given via the cone-formalism, i.e. (V)
boundary conditions, has been studied under different conditions. In [3] authors proved
the equivalence in the most general sense, which requires no further assumption (see The-
orem 2.5.11). In this section, we use (T3)-condition of the abstract Friedrichs operators
more effectively. We expect to reproduce more direct proof of the equivalence for a pair
of abstract Friedrichs operators. Moreover, we present a concrete operator satisfying (M)-

conditions and hence admissible boundary conditions.

Theorem 3.6.1. Let (7, T’o) be a joint pair of closed abstract Friedrichs operators in a
Hilbert space 7 and (7, 77) be a pair of subspaces satisfying (V)-conditions. With re-
spect to the decomposition # = ¥ + kerTj, let py, p> are corresponding non-orthogonal

projectors, then the operator M := D(1 —2p;) satisfies (M)-conditions.

Proof. (M1)-condition: Let u € # then,

w{Mu,u)y = [(1=2p2)uful = [(p1 = p2)u| (p1+p2)u].
Since, [piu | pou] —[pou | p1u] has no real partand ¥ C # " ker Ty C # —, we conclude

that Ry Mu,u )y > 0. Hence, M satisfies (M 1) condition.

(M2)-condition: Let us first prove that 7" =ker(D — M). Let u € 7, then
(D—M)u= (D—D(p—p2))u=Du—Dpju=Du—Du=0.

Which implies u € ker(D —M). Hence, ¥ C ker(D —M). Conversely, let u € ker(D—M).
That is (D — M) = 0, which further implies Dpou = 0 and so, pou € #; (since, # =
ker D). Moreover, pou € kerTj. Since kerT) N #y = {0}, we conclude that pou = 0,
implying u = pju € ¥. Hence, ker(D—M) C 7.

To obtain # = ker(D — M) +ker(D + M) it is sufficient (due to the decomposition
given in Corollary 3.2.2; see also Theorem 3.2.10) to prove that ker 77 C ker(D+M). Let

u € kerTy, then pju = 0. For any v € #', we have

(D+M)u=2Dpju=0,
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thus, u € ker(D + M). Which completes the proof. ]

Remark 3.6.2. i) In the proof of the previous theorem we showed that ker(D —M) =

iif)

¥ and ker(D + M) D kerT;. The latter can be improved to ker(D + M) = # +
kerTy. In fact, the analogous identity holds for a more general construction given

in Theorem 2.5.11(i), i.e. ker(D+ M) = #y + #5.

Indeed, since ker(D+ M) is a subspace, from #{ C ker(D+ M) (which is a straight-
forward consequence of lemmata 2.2.3 and 2.5.7) and #; C ker(D + M) (by the
definition and already proved in Theorem 2.5.11), we have #)+ #> C ker(D+M).
Let us take an arbitrary u € ker(D+ M). Since D+ M = 2Dp;, (D+M)u =0
implies pju € #y. Hence, u = piu+ pu C %o+ #5.

From the identity ker(D + M) = #o + #5 it is clear that the mapping #5 — M,
where M is given by Theorem 2.5.11(1), is injective, while surjecitvity follows from

the second part of the same theorem.

Let us elaborate on injectivity in a more detail. Let us take two closed subspaces
Wa, Wy C W, Wa # W5, both satisfying the assumption of Theorem 2.5.11(i) and
let M and M’ be the corresponding operators. Take u € #5 such that u ¢ #5. Then
by the previous part of this remark u € ker(D + M), but u & ker(D + M’). Hence,
Mu = —Du # M'u, implying M # M.

~

For the fixed (7, %) satisfying (V)-conditions, by the previous part we have that
we have as many operators M satisfying (M)-conditions and corresponding to the
pair (7, v ) as we have closed subspaces #,; C # such that ¥ + #> = #'. Fur-
thermore, the number of subspaces #5 one can be explicitly obtain using e.g. the

representation of the subspace 7 given by (3.14) (see Theorem 3.4.7).

On the other hand, Theorem 3.6.1 guarantees that for each pair (7, 77) we can find
a suitable M by the choice #5 = kerT;. In other words, the mapping (7, ”7) —
M given by Theorem 3.6.1 (i.e. the construction of Theorem 2.5.11(i) for #5 =
kerTy) is well defined and injective. Of course, this mapping is not surjective,
i.e. there are operators M satisfying (M)-conditions that cannot be obtained with

this construction.
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iv) In principle with this remark we closed the question on the multiplicity of M’s.
Now the interesting question is to see how this reflects to the classical theory. For
example, do different operators M necessarily correspond to different classical rep-

resentations M? We leave this question as the subject of future investigation.
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INTERVAL

The classification results discussed in the previous chapter are now the subject of applica-
tion on the classical Friedrichs operators treated as abstract Friedrichs operators. In this
chapter we study the classical Friedrichs systems on an interval (one dimensional case)
in full generality. We start with the scalar case (Section 4.1) following [32] and then con-
sider systems of ordinary differential equations in the rest of the chapter, which is studied

in [34].

4.1. 1-D SCALAR CASE

Our goal is to present a classification of boundary conditions of classical Friedrichs op-
erators in one dimensional (d = 1) scalar case (r = 1) in full generality. In this section
we develop some preliminary results in this direction. The domain Q = (a,b) is an open
interval @ < b and the spaces are 4 = C(a,b) and ¢ = L*(a,b). We adjust the notation

of .T: 9 — A given in Example 2.6.1 in the following way:

To:=(ap)+Be and  To:=—(ap)+(f+a)p, 4.1

where o« € W!>((a,b);C), B € L((a,b);C), & = & and for some gy > 0 we have 2R +
o’ > 21y > 0 (Rz denotes the real part of complex number z and ’ the derivative).

It is already realised in Example 2.6.1 that the pair (7, f) is a joint pair of abstract
Friedrichs operators. In addition, without loss of generality we take these operators to be

closed.
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Friedrichs systems on an interval 1-d scalar case

Graph Space: Let u € 7 and € L*(a,b), then ||Bu|| < ||B]|e|/u|| < co. Which
means Tu € 7 if and only if (au)’ € 7. Therefore, the graph space # is given by

W ={ue: (au) € H}.
and the graph norm is (equivalent to)
lell = leell + 1 (ccat)']] -

We also denote the graph norm as || - ||z or || - ||

Here, u € # if and only if au € H'(a,b). By the Sobolev embedding theorem (see
e.g. [16, Theorem 8.2] or [44, Theorem 4.13]) for any u € #  we have ou € C([a,b)).
This in particular implies that for any u € # and x € [a,b], the evaluation map (ocu)(x)
is well-defined. However, in general u ¢ C(|a,b]) implying the evaluation u(x) and thus
o (x)u(x) is not defined. This evaluation is important in the description of the boundary

operator. The following result gives a better description of the graph space.

Lemma 4.1.1. Let /7 := [a,b]\ &' ({0}). Then # C H] (I), i.e. for any u € # and

[c,d] C 1, c <d, wehave ul. 4 € H'(c,d).

Proof. Here a € W'*((a,b);R) and due to Sobolev embedding o € C([a,b];R). Which
means I = [a,b]\ &' ({0}) is relatively open set in [a,b]. Let [c,d] C I, (c < d) (if such
subinterval does not exist, then o« = 0 and I = 0). The subinterval [c,d] is compact, due
to continuity of o we define g = min,¢[. 4 |0t(x)[. Obviously o > 0.

Let u € CZ(R), then

1 1
HulHLz(qd) = HEOWIHLZ(M) < %HO‘“/HH(QCJ)
1
< — (@)l 2eay + Noull 2
Qo
1
< o (0w 1+ 10 )

T P -
< LA
O

The space C2°(R) is dense in #". We conclude that

Vue?)  ullgicall < Cllully -

Tty

Here,C =1+ o ) thus Ul(c.q) c H'(c,d). [ |
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Friedrichs systems on an interval 1-d scalar case

Remark 4.1.2. The set o~ !({0}) can have some peculiar behavior, in any case, the set
I is relatively open in [a,b]. Hence, the meaning of H]. (), as elaborated in the statement
of the previous lemma, makes sense. To illustrate one such case, we consider the function
x?sin(1/x) , x€(0,1],
o(x) =
0 , x=0,
which is a Lipschitz continuous function on [0, 1]. The set {x € [0,1] : a(x) = 0} is not
well-behaved near the end-point x = 0, i.e. O is an accumulation point. However, the set

is still closed and hence [ is relatively open in [0, 1].
Remark 4.1.3. Here we list some immediate consequences of the previous lemma.

i) If x € I, where [ is defined in the statement of the previous lemma, then there
exists a subinterval [c,d] C I such that x € [c,d] and ul. 4 € H'(c,d). Again by
the Sobolev embedding we get u|(. 4 € C([c,d]) and since ¢ is already in C({c,d]),
we have (au)(x) = o(x)u(x). Then it is natural to expect that (au)(x) =0ifx &€ I,
i.e. (au)(x) = 0 whenever a(x) = 0. Let us elaborate more on this: Let u € #
and (u,) be a sequence in C’(R) such that u, 7w (cf. [1, Theorem 4]). This
implies that u, — u and (ou,)’ — (o)’ in L2. Since o € W' (a,b), we also have
o, — au in L2, Thus, ouw, H—]> au. Now, using the Sobolev embedding, for any
x € [a,b] we have ot(x)up(x) = (otuy,)(x) — (au)(x). Hence, forx ¢ 1, i.e. a(x) # 0,

we have (au)(x) = 0.

i1) From the proof of the previous lemma we can deduce that 7 is continuously em-

bedded in H}

loc(I), which we write as 7 — H}

loc

(I). The embedding is strict, an
argument being that 7 a Hilbert space, in particular it is a Fréchet space, while
H.L _(I) is not.

On the other hand, it follows easily from Lemma 4.1.1 that H'(a,b) < # and

H'(a,b) = # if and only if & has no zeros on [a, b).

The boundary operator in the case of classical Friedrichs operators understood as ab-
stract Friedrichs operators is defined explicitly on the dense subspace C2°(R) as mentioned
in (2.10). Using previous lemma we can extend it uniquely on % by density argument, as
follows,

[u| v] =y (Du,v)y = (owv)(b) — (auv)(a), wu,yve# 4.2)
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Friedrichs systems on an interval 1-d scalar case

where we have (see Remark 4.1.3(i))

0 ;

(ov) (x) := o ew=0 x € [a,b]. 4.3)
a 0

(x)

The minimal space i.e. the closures of 7" and T is # = cly C*(R). Using (4.2) kerD =

T

# can be characterised more explicitly.

Lemma 4.1.4. The space #{ can be characterised as
Wo = {u e W : (ow)(a) = (au)(b) = o} ,
where (ou)(x) is to be understood as in (4.3).

Proof. Let us define the set S := {u eW :(ou)(a) = (au)(b) = O}. Since, kerD = %),
we prove that S = kerD. Let u € S, then (au)(a) = (au)(b) = 0. Forany v € #/,

[u|v] = (o) (b) — (uv)(a) =0—-0=0,

according to (4.3) (of course we deal with this in cases depending on the value of o at
boundary points, but in each case the result is 0). Hence, S C kerD. To prove the other

inclusion, let u € ker D. Then, for any v € CZ*(R) C #/, we have

0= [ v] = (curm)(b) — (curm)(a) = (cun) (b)v(B) — (eur) (a)v(a)

If we choose v(x) = x — a, then(au)(b) = 0, while for v(x) =x—b we get (au)(a) =0,

implying u € S, thus kerD C S. Which completes the proof. ]

From the decomposition of the graph space (3.6) we see that ker 77 + ker 7T}, or equiv-
alently %/ #}, plays an important role in studying boundary conditions associated to T
(or T). In fact, in the case of finite dimensional kernels, it is enough to know their dimen-
sions or codimension of the space #/ #(. We realise that in this situation the codimension

completely depends on sign of « at the end-points of the interval (a,b).

Lemma 4.1.5.

2, ala)o(b)#0,
dim(# /%) = ¢ 1 , (a(a) =0Aa(b) #0) V (a(a) Z0Aa(b) =0),
0 , ala)=a(b)=0.
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Friedrichs systems on an interval 1-d scalar case

Proof. Since CZ(R) C #, we choose ¢,y € C°(R) such that ¢(a) =1, ¢(b) =0 and
y(a) =0, y(b) = 1. Define ¢ := @+ # and Y := y + #j.

* Consider the case a(a)o(b) # 0. and let B := {®, ¥}. It is enough to prove that the
set B forms a basis of #'/#} and hence it has dimension 2. Contrarily, let us first
check that B is linearly independent. Let r be a scalar, such that { = r. Which
means, ¥ —r@ = 0 and then ¥ — r@ € #. From the characterisation of #{ in

Lemma 4.1.4, we have that
(a(y—r@))(a) = (a(y —re))(b) =0.
However,
(a(y—r9))(a) = a(a)y(a) —ra(a)p(a) = —rafa) #0,

here we used that a(a) # 0. This contradiction proves that B is indeed linearly

independent. Also any & € # /#( can be written as @i = u(a)® + u(b) |, because
u—u(a)p—u(b)y €%,

(of course u(a) and u(b) here make sense due to the condition ot (a)c(b) # 0) which

implies that B spans %/ #,. Hence, dim(# | #) = 2.

» If a(a) =0 and a(b) # 0, then we have

(ag)(a) = a(a)p(a) =0 and (a@)(b) = a(b)(b) =0,

implying @ € #, so # /| #y = span{ ¥} and dim(# "/ #y) = 1.
Similarly, if o(a) # 0 and ¢ (b) = 0, we also have dim(# /#) = 1.

e If a(a) = o(b) = 0, then the boundary operator D = 0, which means # =ker(D) =
#o. Hence, dim(# / #p) = 0.

This result is interesting in the sense that the nature of o € W'*((a,b),R) in the

interior of the interval [a, ] does not affect the codimension.
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Friedrichs systems on an interval 1-d scalar case

Remark 4.1.6. i) If min,c(, 5 | (x)| > 09 > O1i.e. o is uniformly away from O in the
interval (a,b), then the statement of the previous lemma reveals a well known fact

that dim(H'(a,b) /H} (a,b)) = 2.
ii) By the decomposition (3.6) we have
dim(ker7}) +dim(kerT7) = dim %/ #4 .

Thus, by the previous lemma and Theorem 2.4.12 (about multiplicity) we can im-
mediately conclude that in the case a(a)c(b) = 0 there is only one bijective reali-
sation of Tp. Moreover, in the opposite case o/(a)o(b) # 0 there are infinitely many

bijective realisations if and only if dim(ker7;) = dim(ker7}).
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Friedrichs systems on an interval 1-d scalar case-classification

4.2. 1-D SCALAR CASE-CLASSIFICATION

For abstract Friedrichs operators, the classification schemes mentioned in Chapter 2 us-
ing operator-theoretic approach can be applied to classical Friedrichs operators. In this
section we achieve a classification of one dimensional (d = 1) scalar (r = 1) classical
Friedrichs operators in full generality. The classification is divided into three cases de-
pending on the sign(a(a)a(b)). Somehow all the cases are trivial except ot(a)o(b) > 0,
where we achieve infinitely many pairs of mutually adjoint bijective realisations and we
provide an explicit classification for all. Let us recall that we want to find " C # con-

taining %4 such that (71 |y, T | ;7) is a pair of bijective realisations, of course ¥ =yl

4.2.1. Case 1: a(a)a(b) =0.

Since the boundary map is given by the values at end-points of the interval (a,b), let us

investigate the effect of this case on the boundary map.

(i) If a(a) = a(b) = 0, then the boundary map is trivial D = 0 and we have kerD =

#y =W . There is only one pair of mutually adjoint bijective realisations given by

(V)= W).

(ii) If a(a) =0and a(b) > 0, then the boundary map is given by

(Vv €W) yDuv)y = a(bu(b)v(b), uve
and by Lemma 4.1.4, the space %} is
Wo={ueW :(au)(b)=0}.

For any u € %, we have [u | u] = o(b)|u(b)|*> > 0. Which means (#, #) satisfies
(V1)-condition. By Lemma 2.2.5 #{ and # are [ L]—orthogonal to each other and
hence by the well-posedness result 2.4.5, (T |, T 1) = (T1, Tp) is a pair of mutu-
ally adjoint bijective realisations. Since this implies that ker 7; = {0}, by Theorem
2.4.12(i), (T, TO) is the only pair of mutually adjoint bijective realisations relative

to (T,T).
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Friedrichs systems on an interval 1-d scalar case-classification

(ii1)) The analysis for other subcases is completely analogous to the previous one. Here
we list the pair of mutually adjoint bijective realisations depending on the other

three subcases.

~

o at end-points (7, 7)
o(a) =0,a(b) <0 | (#, W)
o(a) > 0,a(b) =0 | (#, W)
o(a) <0,a(b)=0 | (¥, W)

Overall conclusion for this case can be given as follows,

Lemma 4.2.1. For a(a)a(b) =0, all pairs of mutually adjoint bijective realisations can

be classified as

(%,%: 7 ) , (a(a)=0A«
a

(5)20) s
Ho,7) , (ala)=0A 0 L

V
)V (a(a) > 0Aa(b) =0)

i.e we always have only one pair of bijective realisations. In the above we also included

the first case a(a) = a(b) = 0 as then (¥, #o) = (W0, W )= (W, W).

This agrees with Remark 4.1.6(ii) (note that Lemma 4.1.5 is not used). Although we
have fully characterised bijective realisations, let us say a little more about kernels of 77
and 7’1

In the case o(a) = a(b) = 0 it is clear that kerT; = kerT; = {0}. This means that

both equations

(0@)+Be=0 and —(a@)+(B+a)p=0
do not have any non-trivial solution in 7#".

If exactly one of numbers a(a) and o/(b) is equal to zero, from Remark 4.1.6(ii) we
have dim(kerT}) 4 dim(kerT7) = 1, while the analysis above implies that one of dimen-
sions equals O (the one associated to the operator for which we took the whole graph space
W as the domain of the bijective realisation — see (4.4)). To be more specific, let us stick
to the case &¢(a) = 0 and a(b) > 0. Then, dim(ker ;) = 0, hence dim(ker7;) = 1. Let us

denote by ¢ € # a function that forms a basis of ker Ti.
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If o does not have any zeros in the open interval (a,b), then @ is just a non-trivial

solution of

in (a,b).
On the other hand, if a~!({0}) N (a,b) # 0, let us define

K= min(oc’%{O})ﬂ(a,b)), x?nax::max((x*l({O})ﬂ(a,b)> 4.5)

0

(one should note that in this case x_, might not exist, however in the following analysis

only x0 __ is required). Since in particular ¢ should satisfy the differential equation above

in (a,x%.,), where we have a(a) = a(x),,) = 0, by the conclusion of the first subcase

(a(a) = ou(b) = 0) we have that a.e. ¢[(, 0 y=0. Thus, suppp C (X0, b] (see Figure
4.1).
a(x)
o(b) > 01

0

min

Figure 4.1: For a satisfying a(a) = 0 and o/(b) > 0 we denoted on the graph points x

and x0 . The bold blue line segment contains the support of .

In other cases the only differences are whether dim(ker7;) = 1 or dim(ker7}) = 1,

and whether a function forming a basis is supported in [a,x2. | or [x9,.,b]. Here we

summarise the subcases with dimensions.
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o(a)a(b) =0 (”V,”VN) (dimker T}, dimker 7})
a(a) =0,a(b) =0 | (Yo, %) (0,0)
o(a) >0oro(b) <0 | (#o,#) (1,0)
o(a) <0oroa(b)>0| (¥, %) (0,1)

42.2. Case2: a(a)a(b) <0.

This case is divided further in two subcases. However, the boundary map and the minimal

subspace remain the same i.e. %) ={u € # : (au)(a) = (au)(b) = 0}.
(i) When a(a) > 0,a(b) < 0, we have
(Yue ) [ulu]=a®)u®)’ - ala)u(a) <0,

here again the evaluations u(a) and u(b) are well-defined due to Lemma 4.1.1.
Hence, by Theorem 2.4.5 and with similar reasoning as in the previous case we get
that (To, Th) = (Ti |y, T | ) is the only pair of mutually adjoint bijective realisations

relative to (T, T).

(ii) When a(a) < 0,a(b) > 0, this subcase is completely analogous to the previous
subcase. Here, (77, T‘o) is the only pair of mutually adjoint bijective realisations

relative to (T, 7).

Although (the codimension) Lemma 4.1.5 suggests that dimker 7] + kerT} = 2, we
have only one pair of bijective realisations. Hence, this analysis together with Theorem

2.4.12 suggests the following:

~

o at end-points (¥,%) | (dimkerTy,dimkerT})
a(a) > 0,a(b) <0 | (#o,7') (2,0)
a(a) <0,a(b) >0 | (7', %) (0,2)

Let us focus on the case a(a) < 0 and let us study kerT;. We define xomin and x0 _ as

in (4.5). They are well-defined since a(a)a(bh) < 0 and « is continuous, hence a~!({0})

is not empty. With the same argument as in the previous case we can conclude that for
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any @ € ker T} we have that a.e. (Z)|[xom T 0. Moreover, on both subintervals (a,x°. )
and (x_ . b) we are in the same case regarding (4.4), and this is precisely the reason why
we have that one kernel is trivial, while the other being two-dimensional.
Thus, if we take @1, @, € # such that @ =0 on [a,x) ] and in (x,,,,b) to be a non-
trivial solution to the corresponding differential equation, while ¢ = 0 on [x?nin, b] and in
0

(a,x

in) to be a non-trivial solution to the corresponding differential equation (see Figure

4.2), then { @y, P, } is a basis for kerT;.

o (x)

o(b) > 01

Figure 4.2: For « satisfying o¢(a) < 0 and o(b) > 0 we denoted on the graph points x°

min

and x?__. The bold red and blue line segments contain supports of @ and ¢, respectively.

4.2.3. Case 3: a(a)a(b) > 0.

Similar to the previous case, here we have #y = {u € # : u(a) = u(b) = 0}, and the

boundary operator reads (see (4.2)):

[u|v] = a(b)u(bW®) — ala)u(a)v(@), wyveW .

Let us define a subspace ¥ of #  as

Vo= {u eW :ulbb)= o(a) u(a)} : (4.6)
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Here again the evaluations u(a),u(b) are well defined due to Lemma 4.1.1. We prove that
the pair (7, ¥V ) satisfies (V)-conditions, then by Theorem 2.4.5 we have that operators 7,
and T.*, where T; := T} |y, form a mutually adjoint pair of bijective realisations relative to

(T,T).
Lemma 4.2.2. Let ¥ be defined as above in (4.6), then (7, 7') satisfies (V)-conditions.

Proof. Forany u € ¥ and v € # we have

[u|v] = a(b)u(b)v(b) — a(a)u(a)v(a)

= au(b) (b)) - \/ ZEZ)”@\/ ")

In particular, for any u € 7 we have [u | u] = 0. Which means (7,7) satisfies (V1)-
condition and ¥ C ¥ L, To prove (V2)-condition, it is left to show 7" [L] C Y. Let

ve ¥ then following the previous calculation, for any u € ¥* we have

o(a)

o(b)u(b) <v(b) — OC<b)v(a)> =0.

Since o (b) # 0 and there exists u € ¥ such that u(b) # 0 (e.g. just consider the linear

function u(x) = ( gg‘b’; —1) (5=2) +1), this implies v(b) = ggzgv(a), i.e.vE Y. Which

completes the proof. ]

Therefore, (T, T;*) is indeed a mutually adjoint pair of bijective realisations relative
to (7, T) It is evident that %, ;Ct V4 ; W , hence by Theorem 2.4.12(ii) there are infinitely
many bijective realisations. In particular, using the same theorem, we can conclude that
both dim(ker7}) and dim(ker 7} ) are greater or equal to 1. Now Remark 4.1.6(ii) implies
that in fact we have dim(ker77) = dim(ker 7} ) = 1. Let us emphasise that this conclusion
1s in accordance with Corollary 3.3.9. Let ¢ and ¢ span ker 77 and ker Ti respectively. We
shall discuss more about the explicit form of these vectors later. First, let us determine all
bijective realisations in this case (in terms of ¢ and @) using classification schemes from
Chapter 2.

We are looking for bijective realisations, and thus the classifying operator B, densely

defined over a closed non-trivial subspace 2 of ker 7} an mapping to closed subspace 73
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of kerﬁ, in Theorem 3.1.3 should be bijective as well. Both kernels of 77 and fl are one-
dimensional, hence the only (non-trivial) choice is domB = % = ker T} and % — dom 7“1
(then also domB* = kerT}). Then there exists (¢ +id) € C such that Bo = (¢ +id).
Therefore, all bijective realisations are indexed by ¢ +id € C\ {0} (for these values B is
an isomorphism). The operator corresponding to B we denote by T, 4 = Tp. Recall that

To C T. 4 € T1. From (3.2) we have, u € % belongs to dom7, ;4 if and only if

Pier7 (Tiu) = B(pxu), 4.7)

where Pkerﬁ is the orthogonal projection from .Z onto ker T; and Pk 1s the non-orthogonal
projector corresponding to the decomposition % = ¥ + kerT; which is due to Theorem
3.2.10. For any u € # there exist unique u, € 7" and uy € kerT) such that u = u; + uy.

Moreover, uy is just a scalar multiple of ¢, i.e of the form C, ¢, so we get

Since, u; € ¥, we have u,(D)

u(b) — 1/ 49y (q
¢y = "0Vl 4.8)
o(b)— /e o(a)

here ¢ € kerT; and since ker 71 NY = {0}, we have ¢ ¢ ¥ implying that the denominator
is non-zero and C, is well defined. Thus, the corresponding non-orthogonal projection py :

W —kerT is given by py(u) = C,¢. Similarly, p; : # — ker T} is given by pi(u) =C,0,

where
o u(b)— /D u(a)
¢, = “Ebi .
~ ala) ~
¢(b) - () P(a)

Now, let u € #/, since the orthogonal projection of Tju onto ker T; is same as the orthog-

onal projection onto ¢, we have

Pkerﬁ (Tlu) =

H2<Tlu | (p>(p

Hz[Tlu ’ (p](p
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in the second equality we used Ti ¢ = 0. Substituting the values in the equation (4.7), we

get

1ol

We reorganise this equation to get in more desirable form

aB)pb)  (ctid) )
A2
1215 o) /2 pa)
4.9)
_(e@i@ Ve
A2
1215 () — /48 g(a)

Hence, u € # is in dom Tp if and only if it satisfies the above condition (4.9). The adjoint

operator B* : keri’l — kerTj reads

B'(§) =
Indeed, we have
(Bo | @)= ((c+id)® | )= (C+id)H(PH2,
and
HgHz Hﬁlﬁ@wm | 0) = (c+id) | ol

satisfying (B | @) = (@ | B*@). Following a similar calculation as above we obtain that

* ~

(| BQ)=(0|

(c—id)g) =

u € W isindomT, if and only if

— D|2(c—i
ab)p®) - — P )
o(b) — a(;,)‘f’(“)
(4.10)
19]12(c—id)\/ &%)
= | a@o@) - u(a) .

Therefore, the set of all pairs of mutually adjoint bijective realisations relative to (7, f)

in this case is given by

(T, T e,d € R\ 0,0} (T 7)) @.11)
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All bijective realisations are parameterised by one complex parameter (¢ + id), which is
in parallel to the fact that the dimension of both kernels ker 77 and kerfl 1s one.

Note that dom7,. 4, = %} +kerT; (see Corollary 3.2.6) if and only if ¢ € domT, 4.
Indeed, then % + kerﬁ C domT. 4 and the inclusion cannot be strict as in that case
it would be impossible that both operators 7;. ; and T; |% ker7; Ar€ bijective. From the

above it can be easily seen that ¢ € domT, 4 is achieved if and only if

Let us go back to kernels of 77 and Ti, so that we can derive some properties of
functions ¢ and .

If min, |, ) [0t(x)[ > O, then we get ¢ and ¢ simply by taking non-trivial solutions of

(ag) +Bp=0 and  —(ap)+(B+a)p=0 (4.12)

on (a,b). Thus, a possible choice is (x € [a,b]):

p(x) = ﬁexp(—/%aﬁc) and O (x) :exp</ gg; dx) . (4.13)
o(x)
o(b) >0+
Xonin /
a’ Q X

0
min

Figure 4.3: For «a satisfying a(a) > 0 and o/(b) > 0 we denoted on the graph points x

and x°

max- T'he bold red and blue line segments contain supports of ¢ and @, respectively.
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If o~ 1({0}) N (a,b) is not empty, we define x°. and x9

min max as in (4.5). Here we can

apply the same inference as in Case 1 to conclude that functions ¢ and @ are supported on
[a,x%. ] or [x,.y,b], while on the supports we just use (4.13) (one needs to be aware that
now integrals are improper, but for sure convergent as we know that such non-trivial ¢
and @ should exist in #). To be more specific, let us assume that o(a) > 0 and a(b) > 0.
Then any solution in % of the first equation in (4.12) must satisfy (P|[x31 " 0, while

for the second equation we have (I)|[ ] = 0 (see Figure 4.3). In particular, under this

avx?nax
assumption we have @(b) = @(a) = 0, which could be used to simplify (4.9) and (4.10).
Moreover, #o+kerT; = {u € # : u(a) = 0}. This should hold since r@(b) = 5@ (a)
implies ¢(b) = 0 or r = 0. The first option is not possible since ¢ = 0 (solution of ODE

on (x?nax ?

b) with 0 for both boundary conditions), implying r = 0 thus the condition reads
u(a) = 0 (8 # 0 since in contrary we would have #(+ker T} = #, which is not possible
since ker Ty # {0}). Also, #y+kerTy = {u € # : u(b) = 0} holds following a similar

argument as above.

Remark 4.2.3. Equation (4.10) covers all (linear) boundary conditions which are of the
form yu(b) = Su(a), where (y,8) € C?\ {(0,0)}, except the one that is satisfied by all
functions from ker7; (and then also ¢). To justify this claim let us just study the case

¢ =d = 0 (the only case which does not lead to a bijective realisation). We get

a(b)p(b)u(b) = a(a)p(a)u(a) ,

implying [u | ¢] = 0, which concludes to u € #y+kerT; using (3.6). Thus, the above
boundary condition is satisfied by functions from ker7j. It is straightforward to justify
the remaining part, that is the fact that all other boundary conditions are attained.

The approach using the universal classification theory has some additional advantages
when studying, e.g. the spectrum and the resolvent of realisations. Moreover, once the
classification is established, choosing the desired properties for realisations comes down

to choosing the same properties for operator B, which is often easier to control.
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4.2.4. The von Neumann approach

Using Theorem 3.2.10, all bijective realisations can be characterised in a more concise

way. Indeed, all possible domains of the bijective realisations are given by
V =Wo+ span{@+ALep}, AeC. (4.14)

This can serve as another evidence to the discussion of Remark 4.2.3. In fact, von Neu-
mann’s approach leads to the classification of the boundary conditions of the type (4.14).
In addition, we are able to distinguish the boundary conditions with signed boundary map.

Let us elaborate on this in more details.

« If a(a)ou(b) = 0, then dimker 7} = dimker7} = 0. In this case # = #{, and we
have only one realisation ¥ =7 = #.

~

e If a(a)o(b) < 0, then either (¥, #y) or (#o, W) serve as (¥, 7).

« If a(a)o(b) > 0, then dimker7; = dimker7; = 1. Let kerT; = span{¢} and
ker T} = span{ @ }. We can parameterise all bijective extensions/realisations in this
case using Theorem 3.4.7. Let U : (kerTy,[- | -]) — (kerTy,—[- | -]) be a contrac-
tion, i.e. ||[U]| < 1. The structure of U is completely given by the multiplication

U(Q) = Cyoe, where Cy € C. The operator U is contractive if and only if

o 1818] a®)e®) - @)
U= 1o Tol = a®) o) P —a@le@P .13

Moreover, the boundary conditions with ¥ = ¥ are given by

a(b)|p(b)* — a(a)|p(a)?
a(b)|e(b)|> = a(b)|¢(a)l?’

All the boundary conditions with signed boundary map are described in (4.15). On

'7/2%+{CU(P+([~)Z|CU|2=— CUE(C}.

the other hand, the bijective extensions without signed boundary map correspond

to |U]| > 1, which leads to

G > 19101 _ a®)Iow)? - ala)o() wi6)

[olo]  ad)|e®)]>—ala)le(a)*

The von Neumann extension theory is useful in the classification of boundary con-

ditions with signed boundary map, which are important from the perspective of semi-

group theory for abstract Friedrichs operators (see Chapter 5). In contrast to the general
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extension theory, this theory makes a bridge between the theories of (skew-)symmetric

operators and abstract Friedrichs operators.

4.2.5. Summary

Depending on the values of o at end-points, the pairs of subspaces (¥',%") for which
we obtain bijective realisations, i.e. such that (71|, T | 7) is a pair of mutually adjoint

bijective realisations relative to (7, f), where T and T are given by (4.1), are:

~

o at end-points | No. of bij. realisations (V,7)
>0 b) <0 | (M, W
sl <0 1 ala) > 0na(b) <0 | (4, )
o(a) <OAa(b) >0 | (¥, %)
a(a)a(b) >0 00 (4.11) (see (4.9)(4.10))

Thus, a classification of bijective realisations is needed only in the case when « has the

same sign at both end-points.

4.2.6. Examples

Let us see some examples related to the cases discussed previously and investigate the

information about kernels e.g dimensions and supports.

1. We take the interval (0,2) and coefficients a(x) = 1 —x and = 1. Then, the

corresponding pair of operators (7 f) are given by

To=((1-x)9)+¢

and

To=—((1-x)9) .
Both o and f are smooth functions and that 2R + o' =2—1=1 >0 on (0,2),
which meaning that (7, f) is a pair of classical and thus abstract Friedrichs oper-
ators in the interval (0,2). Here, o(0) = 1 and a(2) = —1, giving o(0)(2) < 0,

which means this example belongs to Case 2. Furthermore, (0) > 0,(2) < 0
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means (#p,#') gives the domains of only pair of mutually adjoint bijective reali-
sations and that dimker7; = 2,dimker7‘1 = 0. Let us calculate the kernels. Using

(4.13) on (0,1) and (1,2) separately we get

o(x) = ﬁexp(—/%dx) = %_xexp (— ld_xx> =c

Here, c is an arbitrary constant. Which implies, for ¢ € ker 77 necessarily

c1 , in(0,1)
c o, in(1,2),

(p:

for some constants c1,co € C. We have ¢ € #. Indeed, it is evident that ¢ €
1%(0,2), while for ¥ € C(0,2) we have

2

[a-veevma=e [ —oy@acte [ -y @
1 2
:cl/o l;l()c)a’x—l—cz/1 y(x)dx
= [ otwwax.

This means ((1 —x)@)' = —¢ € L*(0,2), thus @ € # . Therefore, dimker T} = 2

(since we have two parameters in the definition of @).

On the other hand, ¢ € ker T} implies

&
=
m
—~
L
p—

P(x) =

1Bl
=
=
m
—~~
p—
\S]
~—

|
=

for some constants d;,d, € C. But, the integrals

/ I dx and /2 dx

_— n S —

0 (1—-x)? 1 (1—x)?

are unbounded, implying ¢ € L?(0,2) if and only if d; = d» = 0. Hence, ker T, =

{0} and dimker7; = 0, justifying the results obtained in Case 2.

It is interesting to note that for ¢ # c; we have ¢’ ¢ L*(0,2), because ¢’ = (¢ —

c1)8; (here 8y is the Dirac measure at 1) and so ¢ ¢ H'(0,2). Thus, H'(0,2) S #'.

Moreover, it is evident that ¢ € H] ([0,2]\ {1}) for any choice of parameters
dy,dp. Indeed, for any subinterval [c,d] C [0,2]\ {1} we have §|.q) € H!(c,d).

104



Friedrichs systems on an interval 1-d scalar case-classification

Since ¢ &€ #/, this shows that the graph space # is indeed a proper subspace of
Hyoo([0,2)\{1}). i.e. #" G Hyo ((0,2]\ {1}).

2. Take the same example as above, but now on the interval (0,1). Here, (0) =1 >0
and a(1) = 0. Using (4.13) again we get that @ € ker T} implies that ¢ = ¢, for
some constant ¢ € C. Since ¢ € H'(0,1), it is contained in the graph space # .
Hence ker 7} = span{1} and dimker7; = 1.

Furthermore, for ¢ € kerﬁ necessarily

o) = oy ¥EO),

for some constant d € C. But ¢ € L2(0, 1) if and only if d = 0. Hence, ker 7; = {0}
and dimkerﬁ =0.

This coincides with the results obtained in Case 1.
3. Let us consider another example that fits into the setting of Case 1. Take a(x) =

x(x—1) and B = 1 on the interval (0,1). Here o’(x) = 2x— 1, so we have 2R +
o =2x4+1>1>0in(0,1). By (4.13), ¢ € kerT; and § € ker T} imply

o) = e oW =d(*7).

X

for some constants ¢,d € C. But ¢, @ € L>(0,1) if and only if ¢ = d = 0. Hence,
ker T = ker T} = {0}.

4. Take ot(x) = (x—1)(x—2) and B = 2 on the interval (0,3). Then & has two zeroes
on the interval (0,3). Here o(x) = 2x — 3, hence we have 2RB +a’ > 1 >0 in
(0,3). Again using (4.13) on subintervals (0,1), (1,2) and (2,3) separately we get

that ¢ € ker 7} implies

o) =1 e (=4) , xe(1,2)
1
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for some constants cy,c2,c3 € C. But ¢ € L2(0,3) if and only if ¢; = c3 =0.
Moreover, for ¢; = ¢3 = 0 we have ¢ € #/, implying dimker7; = 1 and that ¢ has

support in (0, 1).

On the other hand, ¢ € ker Ty implies

for some constants dy,d,,d3 € C. But ¢ € L>(0,3) if and only if d| = d» = 0, and
for dy = d» = 0 we have ¢ € #. So, dimkerT; = 1 and ¢ has support in (0,3),

which is in accordance with Case 3.
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4.3. 1-D VECTORIAL CASE

The previous section covers one dimensional (d = 1) scalar (r = 1) Friedrichs systems in
full generality. Non-smoothness of functions from the graph space posts a challenge in
defining boundary operator explicitly. Moreover, the coefficient matrix A(x) has eigen-
vectors of peculiar properties, which makes it difficult than the case of (r = 1) (see Re-
mark 4.3.2 below). Let us see this situation more explicitly.

For the domain we take an open interval Q = (a,b), a < b. Then ¥ = C((a,b),C")
and # = L*((a,b),C"). We adjust the notation of 7,T : 2 — . given in Subsection

2.6.1 in the following way:

Tu:= (Au)' +Bu and Tu:=—(Au) +(B*+A")u, 4.17)

where A = A* € WI*((a,b);M,(C)), B € L((a,b);M,(C)) and for some py > 0 we have
B*+B+A’ >2uyl > 0 (1 is the identity matrix and " the derivative). It is commented in
Example 2.6.1 that (7, T) is a joint pair of abstract Friedrichs operators. Let us recall that

in the one-dimensional case (d = 1) for Q = (a,b), a < b, the graph space simplifies to
W = {ues:(Au) e}, (4.18)
while the graph norm is (equivalent to)
Il = 11+ A (4.19)
The boundary operator D is given by,
[u|v] = (Au-v)(b) — (Au-v)(a), u,veCI(R;C"), (4.20)
and the minimal domain is described as
Wy = {ue W :(Au)(a) = (Au)(b) =0}, (4.21)

(here || - || stands, as usual, for the norm on .7 induced by the standard inner product,
i.e. the L? norm on (a,b)). In fact, u € 7 belongs to # if and only if Au € H'((a,b);C").
Thus, by the standard Sobolev embedding theorem (see e.g. [16, Theorem 8.2]) for any

u € # we have Au € C([a,b];C"). This in particular implies that for any u € # and
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X € [a,b] evaluation (Au)(x) is well defined. Here, A (x)u(x) is not necessarily meaningful
as u itself is not necessarily continuous. We dealt with this situation in scalar case by
developing a smoothness result in Lemma 4.1.1. Natural generalisation of this result
requires a different strategy. In this section we proceed in the direction of total projections
to get a generalised smoothness result. Further, we can connect dimensions of the kernels
with the ranks of coefficient matrices at end-points of the interval.

We divide this section into several parts. First we recall some properties related to
the eigenvalues and some results on codimensions. Then, we prove a smoothness result
involving total projections. Next we discuss about explicit forms of the boundary operator
and the minimal space and in the last part we obtain the result of the dimensions of the

kernels.

4.3.1. Preliminaries

In our setting, the eigenvalues and eigenprojections of a Lipschitz continuous matrix func-
tion A(x) in the definition of Friedrichs operators (e.g. see Example 2.6.1) are required to
be Lipschitz continuous functions in some neighborhood of the end-points a and b of the

interval [a,b]. The following theorem gives us the smoothness of the eigenvalues.

Theorem 4.3.1 (Hoffman-Wielandt Inequality [13]). Let A and B be Herimitian matri-
ces of order n and A;(A) > ... > 4,(A) and A;(B) > ... > A4,,(B) be their eigenvalues,
respectively. Then we have

Y [4i(A) — A(B)|” < |A-B[.

i=1

Where, p > 1 and |- |, is p—norm.

Using Theorem 4.3.1 we get that all eigenvalues of A(x),x € [a,b], are Lipschitz con-
tinuous functions of A(x) and A is Lipschitz continuous in the interval [a,b]. Thus, all
the eigenvalues are Lipschitz continuous on [a,b]. A similar result on eigenvectors is not
expected. Here we present an argument on eigenprojections which resolves our specific
situation.

We adapt our definitions and notations from [48].
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(i) For the definition and details of A —group, we refer to [48, Chapter II, Section 1.2].
Let A = A(xp) be an eigenvalue of A(xp). In general there are several cycles with
the same center A and all the eigenvalues of A(x) belonging to the cycles with the
center A are said to depart from the unperturbed eigenvalue A by splitting at x = x.
The set of these eigenvalues is called the A —group, since they cluster around A for
small |x — x|
Let A;(x) > A(x) >,...,> A.(x) be the eigenvalues of A(x) (which are Lipschitz
continuous). Note that we repeat eigenvalues with higher multiplicity (so-called
repeated eigenvalues). Also, let /(x) denotes the set of indices such that for any
x (close to xp) {Ai(x) : i € I(x)} is the set of all eigenvalues of A(x) forming the
A—group, where we are not repeating eigenvalues of higher multiplicity. Thus,

I(x) really depends on x.

The total projection corresponding to the A —group is given by
Pi(x) = ) Pi(x), (4.22)
i€l(x)
where P;(x) denotes the eigenprojection corresponding to A;(x). For any x € [a, D]

it holds P?(x) = P;(x) = P} (x), while since A(x) is Hermitian we have in addition
P,-(x)Pj(x) = 51'7ij()€), i,j € {1,2,...,1’}

and

Z PA(X)Z]I.

Aec(A(x))
Let us consider the following example to elaborate on the definitions that we just

introduced. Consider the following function on [0, 1]

x?sin(1/x) x>0,

0 x=0.

fx) =

x 0

Let A(x) = , which is a continuous function on [0, 1]. The eigenvalues
0 f(x)

for x # 0 are A1 (x) = x, A»(x) = xsin(1/x). At x =0, we have A;(0) = 1,(0) =0
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(the multiplicity is 2), while for € > 0 (sufficiently small) and any x € (0,€) we

have

{1}, (FkeN)x=4Z,
{1,2}, otherwise .

(i1) The resolvent definition of the fotal projection can be found in [48, Chapter II,
Section 1.4]. Let xq € [a,b] and A be an eigenvalue of A = A(xg) with multiplicity
m. Let I" be a positively oriented curve, say a circle, in the resolvent set p(A) of
A enclosing A but no other eigenvalues of A. The second Neumann series is then
convergent for x sufficiently close to xg, uniformly for & € I'. The existence of
the resolvent R(&,x) := (A(x) — 1&)~! of A(x) for & € T implies that there are no
eigenvalues of A(x) on I'. The operator

P(x) = —— /r R(E, x)dE | (4.23)

2
is a projection and is equal to the sum of the eigenprojections of all the eigenvalues
of A(x) lying inside I". The eigenvalues of A(x) lying inside I" form exactly the
A—group and P(x) defined in (4.23) is called the fotal projection corresponding
to the A —group. Here P(xg) is precisely the eigenprojection corresponding to the

eigenvalue A of A and the following holds
rank Py (x) = rank P, (xo) = m,
for x sufficiently close to x.

Let x,y be sufficiently close to xq as previously. More precisely, let € > 0 be small and

X,y € (xo — €,x0+€). For a fixed & € T, using the resolvent identity

R(E,y) —R(G,x) = R(G,y)(A(x) —A(y))R(G, x) (4.24)
we get

IR(E,y) =R(G,x)[| < [R(S,»)|[R(S,x)[|A(y) — A(x)|
<(,  max R(E,2)1°)|AG) A,

Eel ze(xg—€,x0+€)

(4.25)

A

where, (&,x) — R(&,x) is continuous [48, Sec. I1.5.1]. Hence, from (4.25), we conclude

that R(&,x) is Lipschitz continuous in x variable on (xo — €,x0 + €). Therefore, from the
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resolvent definition of total projection (4.23), we get that P, (x) is Lipschitz continuous
on (xo — €,x0+ €).

As mentioned in [48, Chapter II, Section 5.3], in general, the eigenprojections do not
have these continuity results, thus total projections can not be replaced by eigenprojec-

tions. Let us consider the following example to elaborate on this.

cos(2/x) sin(2/x
Al) = 1/ | SNSRIy g
sin(2/x) —cos(2/x)
The matrix A(x) is infinitely differentiable on R. It has eigenvalues
te X #0,
0 x=0,

Alx) =

which are also infinitely differentiable. The corresponding eigenprojection for x = 0 are
cos?(1/x) cos(1/x)sin(1/x) sin”(1/x) —cos(1/x)sin(1/x)
cos(1/x)sin(1/x) sin”(1/x) ’ —cos(1/x)sin(1/x) cos?(1/x)
These matrix functions are infinitely differentiable on any interval which does not contain

x = 0, but they can not be continued to x = 0 as continuous functions. Furthermore, the

eigenvectors are

cos(1/x) and sin(1/x)
sin(1/x) —cos(1/x)

and at x = 0, the eigenvectors are

1 0
and

0 1

Hence, there does not exist any eigenvector of A(x) that is continuous in the neighborhood

of x =0.

Remark 4.3.2. In our case, the matrix A is Lipschitz continuous Hermitian matrix. One
can think of diagonalising the matrix A = QDQ™! and transform the given Friedrichs
system accordingly, so that we work with the diagonal matrix D instead of A. However,
the matrix Q consists of eigenvectors of matrix A, and, as evident in the previous exam-

ple, the eigenvectors may not be continuous (even measurability is not expected in some
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cases). In conclusion, the transformed system, using the diagonalisation of A, can have
some peculiar properties, very different from the original Friedrichs system. The role of
total projections is vital in dealing with the smoothness results (see Lemma 4.3.5 below),

which can not be obtained using eigenprojections only.

4.3.2. Codimension

In order to obtain the result of Lemma 4.3.8 below, we make use of the following elemen-

tary identities.

Lemma 4.3.3. [15, Sec. 1.7, Proposition 6] If M and N are two subspaces of a vector

space V of finite codimensions, then both M + N and M NN have finite codimensions and
codim(M + N) 4 codim(M NN) = codim(M) 4 codim(N) . (4.26)
Lemma 4.3.3 can be generalised as follows:

Lemma4.3.4. If {M}—; 2., are subspaces of a vector space V of finite codimensions,

then
j—1
codlmﬂMk = Z codimM;, + Z ”+j_]codim( ﬂ M +Mj) ) 4.27)
k=1 k=1 k=1

Proof. For n = 2 the result follows from Lemma 4.3.3. Suppose for some n >2 andn € N

that (4.27) is true. Let us define M := (;_; M;. By Lemma 4.3.3, we have
codim(M NM,,1) = codim(M) + codim(M,,;1) — codim(M + M, ;1) . (4.28)

Using the hypothesis, we get

-1
codim(M N M, 1) Z codimM;, + Z 1) codim ( () Mi+M,)
k=1
+ codim(M, 1) — codim(M + M, 1),

n+l1 n+1 . j—1
=Y codimM;+ Y (—1)""/codim( () My +M;) .
k=1 j=2 k=1

The result follows by the induction. |
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4.3.3. Total projections.

Let us return to the study of (4.17). Let P (xo) denotes the total projection corresponding
to the eigenvalue A = A (xp) of A(xp). As mentioned in Subsection 4.3.1, for any xq € |a, b]
there exists € =: €(xp) > 0, such that the operator P, (x) is Lipschitz continuous in the
interval [a,b] N [xo — €,x0 + €] =: I} ,,,. Which means P, € lew(I;L,XO;C’X’).

Also, eigenvalues A (x) of the matrix A (x) are in W' ((a,b),R).
Lemma 4.3.5. Let A(x) be an eigenvalue of A(x) and x¢ € [a,b], such that A := A (xg) #

0. Then there exists € > 0 such that for any u € %/,

(Pau)l,,, € H'(In4:C"),
where I ., = [a,b] N [xo — &,x0 + €].

Proof. Let € > 0 such that Py € W'=(I; . ;C"™") and for any x € I ,,, eigenvalues of
A(x) forming the A —group (see Appendix) are A /2 close to A (for simplicity, we assumed

A > 0). Hence, for any x € I ,, and i € I(x), it holds
Ai(x) — A <A/2 <= Ai(x) € [A/2,31/2],

where by I(x), x € I ,,, we denote the index set of eigenvalues forming the A —group.

Let x € I ,,. For an arbitrary v € C", we have

[P (x)v[* = (Po(x)v)- (P/l (x)Vv)
=( L Pi@v)-( L Pi(0v)

i€l(x) JEI(x)
= Y (Pix)Pi(x)v)-v.
i,j€l(x)

Here, P;(x) is the eigenprojection corresponding to the eigenvalue A;(x). Applying,
P%(x) = P;(x) and P;(x)P;(x) = &; ;P;(x) (the latter holds since A(x) is Hermitian), we
get

Py (x)v]* = Z IP;(x)v|*. (4.29)

i€l(x
Since, A /2 < A;(x), and P;(x) and A(x) commute (note that A(x) is Hermitian), i € I(x),

we have

[Pi(x)v|* < %I/%()C)Pi(X)VI2 = 5 [AX)Pi(x)V|* = ﬁ\Pi(x)A(X)Vlz :
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Replacing v by A(x)V in the previous calculation, we obtain

_Z(‘,) [Pi(x)A(x)V[* = [Py (x)A(x)V|* < |A(x)u(x)?,

where we used that Py (x) is an orthogonal projection. Thus, for any x € I; , we have
2_ 4 2
P20V < S IAG V.

Now, let us take u € C°(R;C"). Then, the above inequality holds for u(x) as well as u’(x)

in place of v. Integrating over I ,, and taking the square root, we get

2 20+ A =y, ))
”PAUIHLZ(],M()) < IHAU,HLZ(IMO) < 2 —lully -

Hence,

12 ) 22z, ) < Clullw -

Where, C = 2max{\|Pi1HLW(,“O),ZA_I(l + A=, )} Since, CZ(R:C") is dense in

W , we conclude that for any u € %, we have
(Pau)l,,, €H' (I 4:C") .
|
Remark 4.3.6. We have the following immediate consequences of the previous result:

(i) Using Sobolev embedding, we get (P, u) € C(I), x,>C") and so pointwise eval-

|I7L,x0

uation is well-defined. Of course, if for x € I ,, the evaluation u(x) is well-defined,

then
(Pau)(x) =Pz (x)u(x),

where we used that P, is continuous.
(ii) For A(xp) = 0 it is natural to take (P, u)(xg) = 0.

With the result of Lemma 4.3.5, we can write the boundary map and the space %}

explicitly.

Lemma 4.3.7. Let, 6(A(x)) denotes the spectrum of matrix A(x).
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1. For any u,v € #, the boundary operator can be characterised as

[ulvl=" Y A@Pu)®B) - (Pv)(b)— Y,  A(Pyu)(a)- (Pyv)(a).
Aea(A(b)) reo(A(a))
A0 A0

2. The minimal domain % is characterised as

Wo={uc W : (Vxe {ab}) (VA € o(A(x))\{0}) (Pu)(x) =0} .

Proof. (i) Letu,v € CZ(R,C"), then (see (4.20))

[uv]=A(b)u(b)-v(b) —Ala)u(a) - v(a)

= Y  A@uwG)ve) - Y APu)(a)v(a).
Aea(A(D)\{0} Ae0(A(a)\{0}

Using P; (x) =Py (x)? and P} (x) = Py (x) (see also Remark 4.3.6(i)), we get

ulvl=" Y ARu)B)-Pv)(b)— Y A(Pu)(a)- (Prv)(a).
Aea(A®))\ (0} Aeo(Af)\ {0}

Now, let u,v € #, then there exist sequences u,,v, € Co°(R,C") such that u,,v,
converge in # to u,v, respectively. By Remark 4.1.3, (P, u,)(a) — (Pju)(a) and
(Pyu,)(b) — (Pyu)(b). Hence, for any u,v € #/,

ulvi=" Y A@®u)®)-Pv)(B)— Y A(Pru)(a)- (Prv)(a).

Area(A(b)\{0} A€o (A(a))\{0}

(ii) The form of # is described in (4.21). Let u € C((a,b);C"), then

A(a)u(a) = Z AP (a)u(a) =0.
Aeo(A(a)\{0}

Since A(a) is Hermitian, the eigenprojections are orthogonal to each other. Which

implies that {P, (a)u(a) : L € 6(A(a))\ {0}} is an orthogonal set. Thus, we have

Aa)u(a) =0 < (VA € 0(A(a))\{0}) (Pyu)(a)=P;(a)u(a)=0.

Now, let u € #} and take the sequence u, € C°((a,b),C") such that u, converges
to u in #. By Remark 4.3.6, (P, u,)(a) — (P, u)(a). Hence, we have

(VA € 6(A(a))\{0}) (Pru)(a)=0.
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Similarly,
(VA € o(A(b))\{0}) (Ppu)(b) =0,
which completes the first inclusion. For the converse, assume that for some u € 7/,
(Vx € {a,b},VA € 6(A(x))\{0}) (Ppu)(x)=0.

Here, the evaluations are well defined by Remark 4.3.6(i). Due to the density of
CZ(R,C") in # ([1, Theorem 4]), there exist u, € Cz°(R,C") such that u, — u in
W . For x € {a,b} we have
(Aun) () =A@ua(x) = ) APaua(x) =} A(Paua)(x).
Aeo(A(x))\{0} Aeo(A(x))\{0}
By the Sobolev embedding theorem (see Lemma 4.3.5 and Remark 4.3.6(i)), by
letting n — o we get
Au)x) = ), A(Pau)(x)=0.
Aeo(A(x))\{0}

Hence,
(Au)(a) = (Au)(b) =0,

implying u € % by (4.21).

4.3.4. Dimension of kernels

~

In this section we shall see how to construct a pair of subspaces (¥, %) of #/, i.e. how to
impose suitable boundary conditions, in order to get bijective realisations of (4.17). The
strategy is to reduce the problem to the one-dimensional setting and use the approach of
Section 4.2. Of course, in the diagonal case it is easy to proceed with this plan (Subection
4.3.5 below), while in the general case we shall make use of the results on total projec-
tions just developed (as the system obtained after diagonalisation can have some peculiar
behavior).

Depending on the sign of the eigenvalues at the end-points, we can construct a pair of

~

subspaces (7, 7') of #, forming a pair of mutually adjoint bijective realisations of (4.1).
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We first define the subspaces {7 a,”//A atres(A()\{oy and {7}, b77//1 blaes(Ap)\{oy Of
W as follows:
For A € 6(A(a))\ {0}

Sign of A Pna Na
A=0 W W
A>0 |{ue? :(Pyu)(a)=0} W
A <0 W {ue# : (Pyu)(a) =0}

and for A € o(A(b))\ {0}

Sign of A Yo ”17”,
A=0 W W
A>0 V4 {ue? : (Pyu)(b) =0}
A<0 |{ue? :(Pyu)(b)=0} W

Now we shall see that the subspaces
YV =4,n0% and ¥ =7,NY, (4.30)

satisfy the condition (V), where

Vo = m 7/2,,(1 ) Vp = ﬂ n//l,b7
| reolh@nor | Reoen© 431
V= m ,%L,a7 Vp = ﬂ /V/'l,b .

Arec(A(a)\{0} A€o (A(b)\{0}

Lemma 4.3.8. The pair of subspaces (¥ ,”/7 ) of #, defined as above, satisfies (V)-

conditions.

Proof. By construction (4.30),

(Vue?) Y AMPuwe)P- Y AP >0.
rec(A(b)\{0} A€o (A(a))\{0}
Similarly,
(Yue7) Y A@uwGP- Y APu)(a)*<o0.
rea(A(b))\{0} A€o (A(a))\{0}

Hence, by Lemma 4.3.7(1), (V1) condition is satisfied.
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Letv e ”/7, then for any u € ¥/, we have
[ulvl=" ) A@u)®)-Puv)(b)— Y, A(Pru)(a)- (Pav)(a).
Aeo(A(b)\{0} Aco(A(a))\{0}
For A € 6(A(a))\ {0},
, ifA>0
L ifA<0.

(Pyv)(b) =0, ifA >0
0, ifA<0.

Which gives [u | v] = 0. Thus, vyl

For the converse, let v € ¥ 1, then for anyu € 7,
[ulv]=0.

If all the eigenvalues of A(b) are nonpositive and all the eigenvalues of A(a) are non-
negative i.e. ¥ = %, then v =y, Hence, the inclusion ¥ C ¥ is trivial. Let
us assume that there exists a strictly positive eigenvalue of A(b) (the left end-point is
treated in an analogous manner). Let us denote by A > 0, an arbitrary such eigen-
value. We choose u € H!((a,b);C") such that u(a) = 0,(P,u)(b) # 0, and for any
A e o(A(b))\ {A}) we have (P;/u)(b) =0 (e.g. for e € C" such that Py (b)e # 0, we
can take u(x) = (£=%)P, (b)e). It is evident that u € . By inserting this u in the identity

above, we get
A(PLU)(B)(Pyv)(B) =0 = vE ¥4,

Since, 2 € 6(A(b))\ {0}, A > 0, was arbitrary, we get v € (1cq(a b))\ {0} ”/7,{717. Similarly,
V € Mreo(Aa)\{0} %,a- Hence, v € 77, concluding the proof.
]

An immediate consequence of the previous lemma (see Theorem 2.4.5) is that the pair
(Ti|y,Ti | 7) is a pair of mutually adjoint bijective realisations. Having this information
available, we can by means of Theorem 3.2.10 get some information on the kernels, which
is fundamental in describing all bijective realisations. Before we state and prove the main

result of this Section, let us prove the following useful result.
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Lemma 4.3.9. Let ¥ and ¥ be given by (4.30). Then,

dim(7 /)= Y dm(# /) + Y, dm(# V),
reo(A@)\{0} A€o (A(b)\{0}

and dim(#/¥)= Y dm(#/%)+ Y dim(#/Vh,).
A€o (A@)\{0} A€o (A(b)\{0}

Proof. We shall prove the first equality only, as the second one is completely analogous
to it. Let us first show that # = ¥, + ¥}, where ¥, and ¥}, are given by (4.31). The

subspaces 7, and ¥}, can be rewritten as,

Yy ={ue ¥ : (VA € 6(A(a)),A > 0) (Pu)(a) = 0}
and ¥, ={uec# : (VA € 6(A(b)),A > 0) (P,u)(b) =0} .

Let ¢ be a smooth function on [a,b] such that ¢(a) =1 and @(b) =0. Foru € #, we
have u = (1 — @)u+ ¢u. It is clear that (1 — @)u, ou € # and (see Remark 4.3.6(i))

(VA c o(A(b)) AL <0)  (Pr(@u))(b) = @(b)(Pyu)(b) =0,
(VA € 0(A(a)) AL >0)  (Pi(1—9@)u)(a) = (1—-9(a))(Pru)(a) =0

(in fact the above holds regardless of the sign of A). This implies that u € ¥}, and
(1—@)u € ¥,. Since u € # was arbitrary, #* C ¥, + ¥}. From the construction, ¥, ¥}, C
W ,hence # = ¥, + Vp. Thus, dim(# /(Y2 + 7)) = 0. Using Lemma 4.3.3, we get

dim(% /V) = dim(# /¥,) + dim(# [ 1}) .
It is enough to prove that
dim(# /7,) = Y  dm(# /) -
Aea(A(a)\{0}
Let A, Ai,, ..., Ai, (n <r) be distinct positive eigenvalues of A(a) and 7} := %ikv“’
P, = Plik fork € {1,2,...,n}. We claim that for each k € {2,3,...,n},

k—1
() Vi+ V=W . (4.32)
i=1

Let € > 0 be such thatall P;, k=1,2,...,n, are well-defined and Lipschitz continuous

on [a,a+ 2¢€] (see Subsection 4.3.1). Let ¥ be a smooth function on [a, b] such that

1, x€la,a+e¢
B(x) = | | .
0, x¢€la+2¢,b]
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For an arbitrary v € # we have (1 — ¥)v € ¥#. Thus, it is sufficient to study u := Ov.

Since Py is well-defined on the support of ¥, we can write
u=Pu+ (1-Pyu,

where both functions on the right-hand side belongs to the graph space #'. From the

following simple series of equalities

(Pr(1 —Py)u)(a) = (Pru)(a) — (PiPru)(a) = (Pru)(a) — (Pru)(a) =0,
we get (1 —Py)u € 7. Also, (PPru)(a) = (Pru)(a). If (Pru)(a) =0, then u € ¥;. Let
us assume that (Piu)(a) # 0. Then, for any 1 <i <k,

(P;Pru)(a) =0,

implying Pu € ﬂf:ll ;. Since, v € # was arbitrary, # C ﬂi.‘;ll Vi + Vi, which proves
the claim (4.32). Hence,

k—1
(Vke {2,3,....n}) dim(W\ N %+ %) =0.
i=1

Using Lemma 4.3.4, finally we obtain

dim(¥ ) Y,) = Y  dim(# /7).
Aeo(Ala)\{0}

which should have been shown. ]
Here we present the main result of this section.

Theorem 4.3.10. Let n,n; denote the number of positive and negative eigenvalues of

the matrix A(x) respectively. Then,
dimker T} = n} + n, and dimker Ty = n, + nzr .

Proof. For any closed subsapce ¥ C %', #y C ¥, such that T |y is bijective, we have by
Theorem 3.2.10

dimker Ty =dim(# / V) .
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By Lemma 4.3.8 one such ¥ is given by (4.30). Applying Lemma 4.3.9, we have

dimker 7} = Y dm(# /) + ), dim(#/V5,) .
Aea(A(a))\{0} Aea(A(b))\{0}
Hence, it is left to determine dim (% / ¥} ,) and dim (% /¥},;,) for any A.
From the construction, for any A € 6(A(a))\ {0},

rank P, (a), A >0,

dim(¥'/Y3.4) =
0, A<O0.

Similarly, for any A € o(A(b)) \ {0},

rankP, (b), A <O,

dim(#' /3 p) =
0, A>0.
This implies
dim(# /3,) =ngand Y dim(#/V,) =n,,
Aea(A(a))\{0} Aea(A(b))\{0}
Therefore,

dimker T} = n} + n, .
In a completely analogous way, one obtains
dimker 7} = ng, +n; .
]

Having the result of Theorem 4.3.10 at our hands, we can formulte the following

corollary.

Corollary 4.3.11. Codimension of the graph space % over minimal space %) is given

by,

dim (% /#5) = rankA(a) + rankA(b) .
Proof. By the decomposition (3.6) we have

dim(ker7) +dim(ker 77) = dim (% / #4) .
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So, by the previous theorem, we have
dim (% /#)) = n} +n, +n, +n} =rankA(a)+ rankA(b)
|

Remark 4.3.12. The triplet (n;],n%,n;) is called the inertia of the Hermitian matrix
A(x) which is relevant in Sylvester’s law of inertia, where 10 denotes the multiplicity of

zero eigenvalues of A(x).

Remark 4.3.13. When n} +n, =n, +n;, then ker7j = kerTj. Thus, by Corollary
3.3.9 there exists a subspace ¥ of # with #, C ¥, such that (Ti|y,Ti|y) is a pair of
mutually adjoint bijective realisations related to (T, T). Another point of view is to say
that in this case the skew-symmetric operator 7" — T (see (4.1)) admits skew-selfadjoint

extensions (see Section 3.4).

Remark 4.3.14. If all the eigenvalues of A(x) are strictly positive or strictly negative
in [a,b], then the graph space is # = H'((a,b);C") and the minimal space is % =
H}((a,b);C"). Using Theorem 4.3.10, dimker 7} + dimker 7j = r 4 r = 2r, which reveals
a well-known fact that H'((a,b);C")/HJ ((a,b);C") = 2r.

Remark 4.3.15. The result of Theorem 4.3.10 is valid even if A(x) is singular in some
(or even all) points of the interval [a,b]. Thus we cover what might be called singular
systems of differential equations of the first order. These problems have a long history
where often the problem of well-posedness was studied by obtaining the explicit formula

in terms of (formal) series [27, Chapter 4]

4.3.5. Example 1

Let us consider one-dimensional (d = 1) vectorial (r = 2) Friedrichs operator defined as

follows

20
Here, B(x) + B*(x) + A’(x) = , hence conditions (F1) and (F2) are satisfied (see

Example 2.6.1).

122



Friedrichs systems on an interval 1-d vectorial case

Due to the diagonal structure of this system, we can use the information obtained in
(r=1) case (see Section 4.1), to evaluate the dimensions of the kernels. Indeed, it is easy

to see that (@1, )" € kerTj if and only if for any x € (0, 1) we have
Q1(x) +@1(x) =0 and  ((1-x)92)'(x) + ¢2(x) = 0.
Both equations contribute by 1 in the dimension of ker 77, 1.e.
dimker7; =2 . (4.33)

Analogously, for ker 7} we need to study (x € (0,1))

—o1(x) +1(x) =0 and  —((1-x)¢2)'(x) + ¢2(x) =0,

which leads to

dimker7; = 1. (4.34)
Now we shall test the result of Theorem 4.3.10 by investigating the ranks of matrices

1 0 1 0
A(0) = and A(l) =
01 00

Obviously, ny =2,n, =0,n] =1,n] = 0. By Theorem 4.3.10, we have
dimker7; =2 and dimker7} =1 ,
which is in accordance with the information obtained in (4.33) and (4.34).

Remark 4.3.16. The choice of B in this example is irrelevant. More precisely, by The-
orem 4.3.10, for any bounded B such that the condition (F2) is satisfied (i.e. the corre-
sponding operators are Friedrichs operators) we have the same conclusion on the kernels.

Moreover, the same holds for general operators (see Section 3.3).

4.3.6. Second order linear ODE

Let I = (a,b) be an open interval. For f € L>(I;C), p € W*(I;R), g € L*(I;C), such

that p > tp > 0, Rg > pop > 0, consider the following ordinary differential equation on 1,

—(p(x)d (x)) + q(x)u(x) = f(x). (4.35)
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Let u = (uy,uy) and consider the following system, for f € L?(I;C?),

Tu:=(Au) +Bu=f,

where
0 —
A= P and B= 1
-p 0 pop
Here
, . 2Rg O
A'+B+B" = >2uol.
0 2p

For Tu := —(Au)’ + (A’ +B*)u, the pair (T, T) forms a joint pair of abstract Friedrichs
operators on .7 = L?(I;C?) with domain & := C(I;C?). For u; = u, up = ' and f =
(f,0)7, the above system represents (4.35). Therefore, one can easily transfer all well-
posedness results for the system developed above to the original second-order equation
(4.35).

The graph space is # = H'(I;C?), which by the Sobolev embedding theorem means
that for any u € # and x € [a,b], the evaluation u(x) is well-defined. The boundary

operator is given by

(Yu,ve ) [u|v]=—p(b)ua(b)vi(b) — p(b)ui(b)v2(b)

+p(a)uz(a)vi(a) + pla)ui(a)va(a),

and the minimal space % is given by
Wo={uec W :ui(a) =uy(b) =us(a) = us(b) =0} = Hi (I,C?) .

Here the number of positive and negative eigenvalues are equal to 1 for both A(b) and
A(a), ie. nf =n; = n;; =n, = 1 (hence we are in the regime discussed in Remark

4.3.14). Using Theorem 4.3.10, the dimensions of the kernels are equal to
dimker7; =2 and dimkerTj =2.

Since both kernels are non-trivial, Theorem 2.4.12 guarantees the existence of infinitely

many bijective realisations related to (7, f) The kernels are also isomorphic, thus by
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Corollary 3.3.9, there exists a subspace ¥ with # C ¥ C % such that (T1|y, T |y)isa

pair of bijective realisations related to (7, f). In fact one such subspace is given by
Y={ueW 1ui(a)=u(b) =0} =H}(I,C) x H\(I;C) .

Due to Theorem 2.4.5 it is enough to check that (71, 7]) satisfies (V)-boundary con-

ditions. For any u,v € ] we clearly have [u | v] = 0, which in particular gives (V1)-

[L] [L]

boundary condition and #; C 7#]"". Now for v € ¥ and for any u € 7] the expression

[u|v]=0reads

—p(b)uz(b)vi (D) + p(a)uz(a)vi(a) = 0.

Choice of u € 71, such that uy(a) # 0, up(b) = 0, gives vi(a) = 0, and analogously for
v1(b). Thus, v € #1, implying ”I/lm C 71 and hence (V2)-boundary condition also holds.
Note that the previous choice gives the homogeneous Dirichlet boundary condition

for (4.35). On the other hand the choice
V= ={u€W :u(a) = ur(b) =0} = H' (I;C) x HL(I;C),

gives the homogeneous Neumann boundary condition.

The restriction on the coefficient ¢ seems to be very strict, but thanks to the non-
uniqueness of the representation of the equations as Friedrichs systems, we can ease this
condition. For the choice u = (u,us)" = (e P*u/, e P*u) T, for B € R, the equation (4.35)

can be rewritten as
(Au) +Bu=f,

with

0 — —Bx
A |? 7B:ﬁp q,f:ef

0 p -p Bp—7r' 0

Here

A B4 B — 2Bp+p" —(p+q)

—(p+q) 2Bp—p

is positive for p > gy > 0, for any bounded ¢ and sufficiently large 8 € R.
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The graph space and the minimal space of the corresponding Friedrichs operator are
again given by % = H!(I;C?) and %, = H}(I;C?), but the boundary operator differs:
u,vew,

[u|v] = p(B)ui(b)vi(b) + p(b)ua(b)v2(b) — p(a)ui(a)vi(a) — p(b)uz(a)va(a).

A(a) and A(b) both have two positive eigenvalues and no negative eigenvalues. Hence,
by Theorem 4.3.10, dimker 7} = 2 and dimker 7} = 2.

In this representation both the homogeneous Dirichlet and the homogeneous Neumann
boundary conditions are still admissible (the realisations are bijective). However, here we
cannot take the same boundary conditions for both operators 7 and T, as it was the case
in the previous representation. Namely, both pairs (71, %3) and (73, 71) define bijective
realisations, i.e. if we take the homogeneous Dirichelt boundary condition for 7', then the

homogeneous Neumann boundary condition should be imposed for T.
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In this chapter we shall consider an (initial-)boundary value problem for a non-stationary
Friedrichs system. To be specific we shall consider the abstract Cauchy problem:

Lu(t)+Au(t) = f, (5.1

u(0) = ug,
where u : [0,T) — 5, T > 0, is the unknown function, while f : [0,T) — J, the ini-
tial data uy € 7 and the abstract (Friedrichs) operator A are given. Our goal is to show
that all bijective realisations of a given pair of Friedrichs operators with signed bound-
ary map give rise to the operators which generate a contractive Cy—semigroup. More-
over, this family of realisations, i.e. bijective realisations with signed boundary map (see
Remark 2.4.6) contains all the realisations with such property of generating a contrac-
tive Co—semigroup. The study of the same has been done in [21], however we adapt a
slightly different approach and extend the theory. More precisely, in [21], it was proved
that all bijective realisations with signed boundary map related to a joint pair of abstract
Friedrichs operator (7p, f“o) on ¢ give rise to the operators which generate contraction
Co—semigroups. Here we prove that the converse is also true, i.e. the bijective realisa-
tions which give rise to the generators of contractive Cy—semigroups, are precisely the
ones with signed boundary maps. In parallel, we show a nice entanglement between the
theory of abstract Friedrichs operators and skew symmetric operators in the same sense.

This illustrates the strength of the characterisation from Section 3.3.
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5.1. PRELIMINARIES

In this section we recall the theory of strongly continuous semigroups which will be ap-
plicable in our case. Most of the material from this section can be found in [30, Chapter

1]
Definition 5.1.1. A family (7'(¢));>0 of mappings on a vector space 2~ satisfying

T(t+s)=T()T(s) Vt,s>0, 52
T(0)=1.
is called a (one-parameter) operator semigroup.
strongly continuous semigroup (or Co—semigroup) on a Banach space 2~ is a family
(T(t))s>0 of bounded linear operators that satisfies (5.2) and for every x € 2" the map-
pings ¢ — T (¢)x are continuous from R into 2.

Finally, if these properties hold for ¢ € R, then (7'(¢));>o is called Co—group of

bounded operators.

The following equivalent characterisation of strongly continuous semigroup can be

found in [30, Chapter I, Proposition 1.3].

Proposition 5.1.2. For a semigroup (7'(¢)),>0 on a Banach space 2", the following as-

sertions are equivalent.
(@) (T(t))s>0 is strongly continuous;
(b) lim, o7 (t)x =xforallx e 27;
(¢) 36 > 0,M > 1, and a dense subset 2 C 2 such that
() ||T(2)|| <M forallz € [0,0],
(i) lim, o T(¢)x =xforallx € 2.

Proposition 5.1.3. [30, Chapter I, Proposition 1.4] For every Co—semigroup (7'(¢));>0,

there exist @ € R and M > 1 such that
IT(2)]| < Me™,
forall + > 0.
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We shall call such semigroup of type (M, ®). The semigroup is called bounded if we
can take w = 0 and contractive if we can take M =1, w = 0.
Another equivalent characterisation of strongly continuous semigroups which is more

useful in the Hilbert space setting is the following.

Theorem 5.1.4. [30, Chapter I, Theorem 1.6] A semigroup (7(¢)),;>0 on a Banach space

Z is strongly continuous if and only if it is weakly continuous, i.e. if the mappings
t = (X, T(0)x) 2
from R to C are continuous for eachx € 2", x' € 2.

In general, the adjoint semigroup (T (t)');>0 consisting of all Banach adjoint operators
T(t) on the dual space 2" is not strongly continuous (even though 7'(¢) is a strongly
continuous semigroup). This is due to the difference between weak and weak™ topology.
But, in the case of reflexive spaces (in particular on Hilbert spaces) these two topologies

coincide, and hence by Theorem 5.1.4 the adjoint semigroup is also strongly continuous.

Definition 5.1.5. The generator A : domA C & — 2  of a strongly continuous semi-

group (7'(¢));>0 on a Banach space 2 is the operator

1
Ax:=lim~ (T (h)x—
X ;}folh(()x x)

defined for every x € domA := {x € X : limy, %(T(h)x — X) exists}.

The generator of a strongly continuous semigroup is a closed and densely defined

linear operator that determines the semigroup uniquely.

Lemma 5.1.6. [30, Chapter II, Lemma 1.3] For the generator A of a strongly continuous

semigroup (7'(¢));>0 in a Banach space .2, the following properties hold.

(i) A:domA C 2" — Z is a linear operator.

(ii) If x € domA, then T'(¢)x € domA and

%T(;)x = T(t)Ax = AT(t)x  Vt>0. (5.3)

(iii) Forevery t >0 and x € 2, one has

t
/ T(s)xds € domA .
0
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(iv) Forevery ¢t > 0, one has
t
T(t)x—x= A/ T(s)xds ifxe 2,

0

t
= / T(s)Axds if x € domA .
0
Theorem 5.1.7. [30, Chapter II, Theorem 1.10] Let (7'(¢)),>0 be a strongly continuous

semigroup on a Banach space 2. Let @ € R, M > 1 be the constants given by Proposition
5.1.3. Then the following hold.

(i) If 2 € C such that R(A)x := [5°e T (s)x ds, then A € p(A) and R(1,A) = R(1).
(ii)) If RA > o, then A € p(A) and the resolvent is given by the previous integral.

(iii) For any RA > o,

M

< .
IR(A,A)| < g

Definition 5.1.8. A linear operator A on a Banach space 2 is called dissipative if
(AT = A)x]| > Allx]], (5.4)

for all A > 0 and x € domA. If 2" is a Hilbert space, then an equivalent condition for A
being dissipative is

R(Ax|x) <0, (5.5)

for all x € Z". An operator A is called maximal dissipative if A C B and both A and
B are dissipative, then A = B. Furthermore, an operator A is called m—dissipative if
A 1s dissipative and 1 — A is surjective. The operator A is called accretive, m—accretive,
maximal accretive if and only if —A is dissipative, m—dissipative and maximal dissipative,

respectively.

Theorem 5.1.9. [51, Corollary of Theorem 1.1.1][Phillips] Let 2" be a Banach space
and A an operator on 7Z°. Then A is m—dissipative if and only if A is maximal dissipative

and domA is dense.

Theorem 5.1.10. [30, Chapter 1I, Theorem 3.15][Lumer Phillips] An operator A on a

Banach space 2~ generates a contractive Cp—semigroup if and only if A is m—dissipative.
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Theorem 5.1.11. [30, Chapter III, Theorem 1.3] If A generates a semigroup of type
(M,®) in a Banach space 2" and B € .Z(Z), then A + B with dom(A + B) = domA

generates a semigroup of type (M, ® + ||B]|).
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5.2. SEMIGROUP THEORY FOR ABSTRACT

FRIEDRICHS OPERATORS

Let us recall the characterisation from Theorem 3.3.1. Let (7o, T‘o) be a joint pair of
abstract Friedrichs operators on .77. The characterisation in terms of a skew-symmetric

and a bounded selfadjoint operator with strictly positive bottom, is
To=Lp+S and T() =—Lyp+S.

If we denote Lj := —L; 2 Lo, then we have

Ti:=(Tp)" =Li+S and T;:=Tj=—L+S.

For an extension T such that 7o C T C 77 we denote the corresponding extension of L

by L and thus we have Ly C L C L.

Lemma 5.2.1. Let T be an extension of Ty such that 7o C T C T;. T is an accretive

realisation of Ty if and only if L is an accretive realisation of Ly.
Proof. Letu € domT, then (see the proof of Lemma 2.4.1 and (3.10))

R(Tu|u)=~(((T\+T1)u|u)+[u|u]), (5.6)

| =

and

Since ( (T +T7)u | u) > 24 ||ul|?, it is easy to see that if L is accretive then so is T'.

For the converse, suppose T is accretive. Take an arbitrary u € dom7. By Theorem
3.2.4 there exist ug € #y, v € kerT; and v € kerﬁ such that u = ugp+ v+ V. Since
domTy C domT, for any vy € #; we also have that v=vyg+ Vv +V € domT. Since

[ulu]=1[v|Vv]+[V| V] (see2.4.10), we have (using (T2) condition)

R(Tu|u)>0 = [ulul=[v|v]>—c|vo+v+7|>.
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Since domTj is dense in 7, we can take v arbitrary close to —v — V (with respect to

norm || - ||). Hence,
R(Lu|u)=1[u|u]>0,
implying L is accretive. |

Theorem 5.2.2. Let (7p, f’o) be a joint pair of abstract Friedrichs operators on .7 and let

T be a closed realisation of 7y, 1. e. Ty C T C T;. The following assertions are equivalent:
(1) T is m—accretive;
(i1) L is m—accretive;
(ii1) T is a bijective realisation with signed boundary map.

Proof. Let us first prove the equivalence between (i) and (iii). Let 7 be an accretive

extension of 7y. Since for any u € domT,
0 <2R(Tu|u)=((T\+T))u|u)+uul,

and ((Ty +T;)u | u) > 0, one has [u | u] > —c||u|®>. Now like in the proof of Lemma
5.2.1 one can get [u | u] > 0. Since u € domT is arbitrary, we get that dom7 C #'+.
Assume that dom T is not maximal non-negative and let dom7 C ¥ (C #) . But then
Ti|y is again accretive (see the proof of Lemma 2.4.1 and (5.6)), which contradicts that
T is m—accretive. Hence, dom T is maximal non-negative and by Corollary 2.5.4, T is a
bijective realisation with signed boundary map.

For the converse, if T is a bijective realisation with signed boundary map then for
any u € domT, [u | u] > 0, which by (5.6) and (T3) condition implies T is accretive.
Following the approach discussed in Section 3.3, we get that 1 47 is also an abstract
Friedrichs operator and from Corollary 3.3.3, 1 + 7 is a bijective realisation with signed
boundary map. In particular 1 + 7 is surjective. Since dom T is dense in ¢, we conclude
that 7" is m—accretive.

For the equivalence between (1) and (i1), from Lemma 5.2.1 we have that 7 is accretive
if and only if L is accretive. Since dom7 = domL and it is easy to to see that if one is

maximal accretive then so is the other, the equivalence follows. |
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Remark 5.2.3. Recall that (by Theorem 3.4.7) (iii) is equivalent to the fact that there
exists a linear contraction U : (kerTy,[- | -]) = (kerTy,—[- | -])i. e. ||U]| <1 such that
dom7T = #y+{V+ UV : ¥ € kerT}. Hence, all m—accertive realisations of T can be

parameterised by such contractive mappings U between the kernels.

Now we state the main result of this section which is now a direct consequence of the

Lumer Phillips Theorem 5.1.10.
Corollary 5.2.4. The following are equivalent:
(1) T is a bijective realisation with signed boundary map;
(i) —T is a generator of a contractive Cp—semigroup;
(iii)) —L is a generator of a contractive Cy—semigroup.

In [21, Theorem 2], (i) implies (ii) was proved. Here in Corollary 5.2.4, we proved
that the converse is also true, i.e. the bijective realisations which give rise to the generators
of contractive Cp—semigroups, are precisely the ones with signed boundary maps.

There are bijective realisations without signed boundary maps. The question about
generation of semigroups related to these bijective realisations remains open. How-
ever, we give an example (see Remark 5.3.8) where a bijective realisation without signed

boundary maps does not give rise to a generator of strongly continuous semigroup.

Remark 5.2.5. Let (T, T‘o) be a joint pair of abstract Friedrichs operators on .77 and
let T be a closed realisation (extension) of Ty, i.e. To C T C Ty. If (T,T*) satisfies the
(V)-conditions, then both 7" and T* are m—accretive. In addition, —7, —T*, L |qom and

—Ly1| 4,7 are generators of Co—semigroup.
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5.3. DISSIPATIVE EXTENSIONS OF

SKEW-SYMMETRIC OPERATORS

In the previous section we proved, using the theory developed on Chapter 3, that all bijec-
tive realisations with signed boundary map related to a joint pair of abstract Friedrichs op-
erator (T, fo) on 77 give rise to the operators which generate contractive Cp—semigroups,
and vice-versa. It turns out that the characterisation from Section 3.3 allows us to use the
well-developed theory of boundary quadruple for skew-symmetric operators on abstract
Friedrichs operators. As a consequence, we have another way to classify all the bound-
ary conditions which give rise to the generators of contractive Cy—semigroups. Thus, we
obtain an alternate approach to classify all the bijective realisations with signed boundary
maps.

The classification of all m—dissipative realisations of skew-symmetric operators has
been studied in [10]. Here we recall the theory about the skew-symmetric operators, while

for the details and proofs we refer to the paper [10].

Definition 5.3.1. Let Ag be a densely defined skew-symmetric operator on .7 and A| =
—Aj. A boundary quadruple (¢, %, ,G_,G) consists of pre-Hilbert spaces .#_, %

and surjective linear mappings G_ : domA; — #_ and G : domA; — J#} such that
(Aru|v) +(ulAw) = (Gou|Gv)p, —(G-u|G_v)y , (5.7)
for all u,v € domA, with the additional condition
kerG_ +kerG; = domA; . (5.8)

We shall see (in Proposition 5.3.2) that the assumptions (5.7) and (5.8) are enough to
guarantee that the mappings G_ and G are continuous and the images .#_ and % are

Hilbert spaces.

Proposition 5.3.2. [10, Section 3] Let Ly be a densely defined skew-symmetric operator

on .7 and Ay = —A;. Then,

(i) There exists a boundary quadruple (#_, . #,,G_,G+);
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(i1) The operators G_ : domA; — #_, G4 : domA; — J# + are continuous;
(iii) The spaces #_ and .# are Hilbert spaces;

(iv) One has domA( = kerG, NkerG_ and Aou C A; for all u € domA,.

Lemma 5.3.3. [10, Lemma 3.2] Let x_ € #_ and xy € . Then there exists u €
domA; such that G_u = x_ and G1u = x;. In fact, this interpolation property is equiva-
lent to

kerG_ +kerG; = domA; . 5.9

Now we can state the main result of this section. For ® € £ (.#_, %, ) i.e. a bounded

linear operator for #_ to %, we define the operator Ag on .77 by
domAg = {u €domA; : ®G_u = Gyu} and Agu := Aju, (5.10)
for all u € domAg. Clearly, Ag C Ap C A (see Proposition 5.3.2(iv)).

Theorem 5.3.4. [10, Theorem 3.10] Let A be an extension of the operator Ay on 7,

then the following assertions are equivalent:
(1) A is m—dissipative;
(i) There exists a linear contraction ® : #_ — %, such that A = Ag.

Theorem 5.3.5. [10, Theorem 4.2] Let A be an extension of the operator Ay on 57, then

the following assertions are equivalent:
(i) A is skew-selfadjoint;
(i1) There exists a unitary operator @ : #_ — J#, such that A = Ag.
Remark 5.3.6. The previous theorem holds even without the assumption that A C A;.

Let us elaborate, how this theory relates to our situation. Consider the characterisation
of abstract Friedrichs operators presented in Section 3.3. That is, a joint pair of densely
defined operators (To,i"o) on s is a pair of abstract Friedrichs operators if and only
if there exist a densely defined skew-symmetric operator Ly and a bounded self-adjoint

operator S with strictly positive bottom, both on .7#°, such that
To=Lo+S and Ty=—Lo+S. (5.11)
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If we denote Ly := —L; D Ly, then we have

i =L1+S and f’l:: —L1+S.

If we set A9 = —Lg, then A; = —L1 and by Theorem 5.2.2, the search of all m—diss-
ipative realisations of Ag is equivalent to the quest of all bijective realisations of (7p, YN"O)
with signed boundary map.

Let us illustrate the theory on the following example (see [10, Example 6.3]).

Example 5.3.7. Consider the first derivative operator Agu = u’ on L?>((0,1);R) with
domAp = C((0,1);R). The minimal space is #p = HZ((0,1);R) and the graph space is
W =H'((0,1);R). A boundary quadruple (.#_,.#,,G_,G, ) related to the Ag is given
by #_ =G_H'((a,b);R) and ¥, = G, H'((0,1);R), where:

Giu=u(l) and G_u=u(0).

By Theorem 5.3.4, a realisation A such that A C A C A is m—dissipative if and only if

there exists a linear contraction ® : #_ — . such that
domA = {uc H'((0,1),R) : ®u(0) = u(1)} .

Note that #_, %, = R and so, ® can be characterised as a multiplicative operator (by

constant).

Our results are related to those bijective realisations of the abstract Friedrichs opera-
tors (analogously, skew-symmetric operators) which correspond to the signed boundary
maps (see Theorem 5.2.2 and Corollary 5.2.4). There are bijective realisations without
signed boundary maps, which are also classified in Theorem 3.4.7. For sure, if these
realisations produce a generator of a Cp—semigroup, then it will not be contractive (see
theorem 5.1.10 and 5.2.2), still it will be interesting to investigate the semigroup proper-
ties of these realisations in future. Here we explain by an example that it might happen

that at least some of these realisations do not give rise to generators of a Cy—semigroups.

Remark 5.3.8. Consider the first derivative operator Lou = u’' on L*((0,1);R) with
domZy = C2((0,1); R). The minimal space is #y = H((0,1);R) and the graph space
is # = H'((0,1);R), while the boundary map is given by (see also Remark 4.1.3)

(Vu,ve¥) [u|v]=u(1)v(1) —u(0)v(0) .
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The operator Ty = Ly + 1 is an abstract Friedrichs operator (see Example 3.3.4) and the

realisations T with Tp C T C T such that
domT ={ue? :u(l)=ou(0)}, ack,

are bijective realisations (except for one o € (—1,1), see Example 3.3.4). By Theorem
5.2.2, the search of m—accretive realisations of Ty and Ly are equivalent. The bijective
realisations corresponding to o ¢ (—1, 1) are with signed boundary maps and hence, they
are m—accretive (see Theorem 5.2.2).

Since it is equivalent to study the operator To = —Lo+ 1, instead of Tp and it is also
compatible with the analysis of Example 5.3.7, for Ag = —L, we focus on the realisations

T with 7~“0 - T - ﬁ such that
domT = {ue? Pu(l)=u0)}, ack.

A direct inspection on the resolvent operator corresposding to the operator L with dom L =
{u eW :u(0) = O} (i.e. B = 0), confirms that L does not generate a Cp—semigroup,
although T for B = 0 is a bijective realisation (see Example 3.3.4). We shall use the
(general) Hille-Yosida Theorem for the same (see [50, Chapter I, Theorem 5.2]).

The resolvent operator can be characterised as follows. For any f € L?((0,1);R),
T A
R(LLf () =~ [ ) f)dy.
0
For constant function f = 1, the resolvent becomes
R(A,L) f(x) = -2~ (M —1).
Thus, we have
IR(A, L) > [R(A,L)f|* = 272 (e** —4de* —5),

implying that it is not O(A~!) (here, O is the big-O notation). Hence, by the Hille-Yosida
Theorem, L and —7 (see Theorem 5.2.2) with dom7 = {u € H'((0,1);R) : u(0) = 0} do

not generate a Cy—semigroup.
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5.4. STATIONARY DIFFUSION EQUATION

Let us consider 7y to be the abstract Firedrichs operator given by the stationary diffusion
equation defined in sections 1.2.2 and 2.6.2. Here we are working in the real setting, but
one can easily generalised it to complex setting. The closed skew-symmetric part is given

by

Vu
LO P - P
u divp

for all P € Ldlv o(Q) x Hj (Q). Then A := (—Ag)* is given by

u
p d ! p Vu
\ eW = Lle(Q;R ) x H (Q;R) A =— ) (5.12)
u u divp
The boundary map is given by (see (2.11))
p q
v ’ e W'<DU’V>7/ %(TVPaT0v>§+—%<Tvq7T0u>%7 (513)

u 1%

which in terms of A can be written as
(Vu,v e #) [u]v]=—=((Au|v)+(u|Av)).
Letp € L3 (Q;R?). Then

/divpv+/p~Vv:0
Q Q

for all v € H} (Q;R). Thus there exists a unique functional Typ € H~'/2(T") = H'/>(T)’
defined by

Tvp,Tv /dlvpv—l—/p Vv, ve HY (Q:R) .

If u € H'(Q : R) such that Au € L*(Q;R), then Vu € L} (Q;R?) and we let dyu :=
TyVu € H /(). Thus

avu Tov /Auv+/ VuVy

139



Semigroup theory

Stationary diffusion equation
forallv € H'(Q;R).

Denote by R : H~'/2(I") — H'/?(I') the Riesz isomorphism defined by

_1(@,Tov)1 = (R@ | Tov)1 2,
for all @ € H~/2(I'), v € H'(I). It is well known that the linear mapping
ue L3, (Q) — R(Tyu) € H'/2(I) (5.14)
is continuous and surjective.

Now let us construct a boundary quadruple.
Theorem 5.4.1. Let #_ = %, := H'/2(I') and define

G_,G, W = L% (QRY) x H'(Q;R) — H'/2(I")
by

1
G+U = _ETOM + R(Tvp)

1
and G_u = _ETOM — R(Typ),
where u =

. Then (#_, #,,G_,G) is a boundary quadruple for Ay.
u
Proof. For u,v € L} (Q;R?) x H'(Q;R), we have

(Aufv)+(ufAv) = —[u]v]

_—%<TVp7T0v>% - <Tvq,T()Ll>

= —(R(Tvp) | Tov)1 /2 — (R(Tvq) | Tou)1 2
=(Gu|Gv)1p—(G-u|G-v)y).
It remains to show the surjectivity. Let A, h, € H'/?(T'). Using (5.14) we find u € H' (Q:

R) such that Tou = —(h_ + hy), and p € L%, (Q;RY) such that R(Typ) = J(hy —h_)
Thus

1 1
Gy (pu) = —5Tou + R(Typ) = S (hy +h-) + 5 (hy —h-) = hy
and

G (pou) = —5Tou — R(Typ) = 5(h +h )~ 3(h —h ) =h-

The surjectivity of (G,G_): # x # — H'/*(") x H'/?(T") follows from Lemma 5.3.3.
Hence, (#_,. %1 ,G_,G ) is a boundary quadruple.
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We apply Theorem 5.3.4 on the boundary quadruple constructed in Theorem 5.4.1 to
classify all m—dissipative realisations of Ag.
Now that we have the classification of all m—dissipative realisations of the skew-

symmetric operator Ayg = —Lg, we can formulate the main result of this section.
Corollary 5.4.2. The following assertions are equivalent:

(i) A is m—dissipative;

(ii) There exists a contraction ® € .Z(H'/2(I")) such that A = Ag;

(iii) Tep = T1|qoma is a bijective realisation with signed boundary map, where

1 1
domA := { P € domA; : CIJ(—iTou — R(Typ)) = _ETOM +R(Tvp)} :
u
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In this dissertation we developed the von-Neumann’s extension theory for a joint pair of
abstract Friedrichs operators which provides an alternate way to classify all boundary con-
ditions of interest, for a pair of abstract Friedrichs operators. This method differs signifi-
cantly from the universal extension theory. Both methods have their own advantages. The
development of von-Neumann’s theory for abstract Friedrichs operators relies on the fact
that the abstract Friedrichs operators can be characterised as a sum of a skew-symmetric
operator and a bounded selfadjoint operator with strictly positive bottom. This charac-
terisation works both ways, thus allowing us to connect the theory of abstract Friedrichs
operators to the theory of skew-symmetric and selfadjoint operators and vice-versa. We
demonstrate this fact by applying our theory on symmetric operators.

The key was to obtain a decomposition of the graph space (maximal domain) of an ab-
stract Friedrichs operator in terms of the minimal domain and the kernels of the adjoint op-
erators. This is similar to the von-Neumann type decomposition for symmetric operators.
The decomposition reveals that the room for choosing the boundary conditions depends
on the study of kernels of the adjoint operators. We were able to achieve the classifica-
tion of all the realisations of interest in terms of bounded operators acting between the
kernels of the adjoint operators. We made further classifications depending on the norms
of these operators. For example, the boundary conditions corresponding to the contrac-
tive (non-expansive) maps satisfy the (V)-conditions of the cone-formalism. Moreover,
the unitary maps are important from the perspective of skew-selfadjoint realisations of the
skew-symmetric part of the abstract Friedrichs operators. These special types of boundary
conditions are useful for the non-stationary theory of abstract Friedrichs operators. In fact,
we proved that the latter boundary conditions correspond to the m-accretive realisations

of the abstract Friedrichs operators, thus the negative operator generates a contractive
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Co-semigroup of contractions. Moreover, the corresponding skew-symmetric parts of the
corresponding realisations (see the characterisation in Section 3.3) also give rise to the
generators of contractive Cp—semigroups. The bijective realisations with signed bound-
ary maps related to a pair of abstract Friedrichs operators are the only realisations which
give rise to the generators of contractive Cy—semigroups, i.e. we proved a necessary and
sufficient condition for this part. The operators satisfying (V)-boundary conditions seem
to have the properties that lead to the construction of the boundary triplets for dual pairs
[44, Chapter 13.4]. The abstract Friedrichs operators are bounded perturbations of skew-
symmetric operators, so the theory of skew-symmetric operators can be adapted in our
case to some extent. The semigroup theory studied in [10] using the boundary quadruple
approach is discussed and elaborated on some examples in Chapter 5. It will be interesting
to investigate the theory further using boundary quadruple/triplet approach.

We also connected (M)-boundary conditions to (V)-boundary conditions with an ex-
plicit construction of M-operators. More precisely, the M-operators can be constructed us-
ing the boundary operator and the non-orthogonal projectors corresponding to the spaces
satisfying (V)-conditions. The construction of these operators is non-unique; we also
argued about the multiplicity of such constructions.

We studied the Friedrichs systems on an interval, both in the scalar and vectorial case
in full generality. In the scalar case, we used the universal extension theory approach to
write all the boundary conditions that give the bijective realisations of interest. There is
detailed analysis on kernels depending on the coefficient function evaluated at the end-
points. The challenging part was the singularity of the coefficient matrices, which became
even more challenging in the vectorial case. We proved a smoothness result in the scalar
case, but in the vectorial case, the argument is completed using the theory of total pro-
jections. These smoothness results allowed us to define the boundary operator and the
minimal space explicitly. Our main result in this direction is connecting the dimensions
of kernels to the eigenvalues of the coefficient matrix at the end-points of the interval.

We investigated the semigroup theory of abstract Friedrichs operators and proved that
all bijective realisations with signed boundary maps are the only realisations which give
rise to the generators of Co—semigroups and vice-versa. The result is also connected to

the corresponding realisations of the skew-symmetric operators. We illustrate the results
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on stationary diffusion equation.
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APPENDIX

In the Hilbert operator theoretic framework of abstract Friedrichs operators, the theories
of indefinite inner products and the Krein spaces play an important role. The boundary
operator (2.3) gives an indefinite inner product on the graph space (see Lemma 2.2.5),
while the existence of subspaces in the cone formalism is a consequence of the canonical
decomposition of a Krein space (see Remark 2.2.7 and Proposition 2.3.7). In this section,
we briefly recall this theory that we use directly in chapters 2 and 3. For more details on

this topic we refer to [11] and [14], and also [3] for a systematic overview of the material.

Krein spaces

Definition 5.4.3. Let %/ is a complex vector space equipped with a sesquilinear func-

tional [- | -]: # x # — C i.e. it satisfies the following.

(V/'Ll,ll € (C)(‘v’ul,uz,v € 7/) [llul + Aup | v] = /11[1/!1 ’ v] +12[u2 ’ v]
NVuyve ) [u|lv]l=I[v|u].

Such a functional is called indefinite inner product on #'.

From the second condition for any u € #', [u | u] is a real number and that any element
u of # has three possibilities with respect to the indefinite inner product, [u | u] > 0,
[u|u] <Oor|u|u]=0. Accordingly u is called a positive, negative or neutral vector in
W with respect to |- | -|. Every indefinite inner product space is also an indefinite inner
product space, we shall call them trivial, so by a non-trivial indefinite inner product we

refer to the ones which contain at least one positive and one negative vectors.

Lemma 5.4.4. [14, Chapter 1, Corollary 2.7] If # is a non-trivial indefinite inner prod-

uct space, then none of the positive, negative, non-positive or non-negative sets is a vector
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subspace of 7.

Lemma 5.4.5. [14, Chapter 1, Lemma 2.1] Every non-trivial indefinite inner product

contains non-zero neutral vectors.

Definition 5.4.6 (Orthogonality). Vectors u,v € # are [- | -]—orthogonal if [u | v] =0
and we denote it as u[ L |v. Two subsets V;,V, C # are |- | - | —orthogonal if for any v; € V;
and vy € V, vi[L]vp. [+ | -]—orthogonal complement of a subset V C # is defined as

v = fuew : (weV)u|v]=0}.

Using the first condition in (5.4.3), v is vector subspace of #'. Moreover, if V| C

Vo C# then Vit C vIH,

Definition 5.4.7. [Isotropic vectors] Let 7" be a subspace of #'. A vector v € ¥ is
called isotropicin ¥ if ve ¥ L], In particular, an isotropic vector is a neutral vector. The

collection of all isotropic vectors of ¥ is ¥ N ¥,
If 7 N = {0}, then V is called non-degenerate, otherwise it is called degenerate.

Lemma 5.4.8. The quotient space W =W /(¥ N1 is an indefinite inner product

space and the corresponding inner product on % is defined as

[a] 0]z = [ulv],

where i = u+ (¥ N ¥, v =v+ (¥ Ny ) and u,v € # are the representatives of
u,vin # correspondingly. Moreover, # with corresponding indefinite inner product is a

non-degenerate space.

A subspaces 7 C # is maximal positive if ¥ is positive and there is no other positive
subspace 7] such that 7 # 7] and ¥ C #,. Similarly, we define maximal negative,
maximal neutral, maximal non-positive and maximal non-negative subspaces. Moreover,
we call maximal positive or maximal negative subspaces as maximal definite and maximal

non-negative or maximal non-positive subspaces as maximal semi-definite.

Lemma 5.4.9. [11, p. 7] Each maximal semi-definite subspace of #  contains all the

isotropic vectors.
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Lemma 5.4.10. [14, p. 13] The orthogonal complement of each maximal non-negative

subspace with respect to [- | -] is a maximal non-positive subspace and vice-versa.

If #1,7> are two subspaces of #  which are mutually [- | -]—orthogonal and such
that ¥; N ¥, = {0}, then we denote their direct sum as #;[+]%;. The decomposition
W =W T[+|# "~ is called a canonical decomposition of W if #' " is a positive and %~
a negative subspace. Moreover, if # is a direct sum of a positive and a negative subspace

then it is non-degenerate.

Definition 5.4.11 (Kerin space). An indefinite inner product space (#/, - | -]) that admits
a canonical decomposition # = #*[+|# ~ such that (#*,[-|-]) and (#—,—[-|-]) are

Hilbert spaces, is called a Krein space.

Lemma 5.4.12. [9, Lemma 15] Let # = # *[+]# ~ be a canonical decomposition of a
given Krein space #. If both #/* %~ # {0}, then there are uncountably many distinct
canonical decompositions, whereas if #+* = {0} or #~ = {0}, then there is only one

canonical decomposition.

Definition 5.4.13 (Gramm operator). Let (#/,(-|-)) be a Hilbert space. A linear opera-
tor G: % — W is called a Gramm operator if it is bounded and symmetric (i.e. G = G*),

and the corresponding indefinite inner product on % is defined by:
NVuyve?) [u|v]:=p{(Guv)y .
The isotropic part # N # L of # (with respect to [ | -]) is equal to kerG.

It is a well known fact that the indefinite inner product on any Krein space can be
expressed by a Gramm operator in some Hilbert scalar product on that space. As this
topology does not depend on the choice of the Gramm operator and the Hilbert scalar

product, it is usually considered as the standard topology on the Krein space.

Theorem 5.4.14. [11, p. 40] Let G be a Gramm operator on a Hilbert space (#,(- | -))
and (#,[- | -]) is the corresponding indefinite inner product space. The quotient space

W=w /kerG is a Krein space if and only if ran G is closed.

Theorem 5.4.15. [14, p. 106] Let ¥ denotes the closure of ¥ in #'.
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(i) If 7 is a non-negative (non-positive) subspace of a Krein space such that L s

non-positive (non-negative), then # is maximal non-negative (non-positive).

(i) Each maximal semi-definite subspace of a Krein space is closed.

Theorem 5.4.16. [14, p. 69, 101-102] A subspace ¥ of a Krein space is closed if and
only if ¥ = I,

Theorem 5.4.17. [11, p. 44] A subspace 7 of a Krein space # is non-degenerate
(i.e. VNV = {0}) if and only if ¥ + ¥ =%

Theorem 5.4.18. [14, p. 112] For each maximal non-negative (non-positive) 7] of a
Krein space # there is a non-positive (non-negative) subspace %5 such that #; + % = #'.

One of the possible choices of %5 is # ~(# ) from the canonical decomposition of #'.

For the rest of the section, let (#/,(- | - )4 ) be a Hilbert space and let (#/,[- | -]) be
an indefinite inner product space given by a Gramm operator such that W= /W is a
Krein space, where % is the kernel the corresponding Gramm operator, i.e. the isotropic

part of #'.

Lemma 5.4.19. [3, Lemma 7] A subspace 7" of # containing % is closed in # if and

only if ¥ is closed in the quotient space .
All the closed subspaces of # in the graph norm can be characterised as follows.

Lemma 5.4.20. Let 7 be a subspace of # such that #, C ¥ C #'. Then ¥ is closed
in # (with respect to graph norm) if and only if ¥ = ¥ [LI[L],
Properties of orthogonality and maximality transfer from # to # and vice-versa.
Lemma 5.4.21. [3, Lemma 9] For any subspace 7" of #” we have
(P =71
Lemma 5.4.22. [3, Lemma 10] For any subspace ¥ of #:
(i) If 7 is maximal non-negative (non-positive) in #, then ¥ is maximal non-negative

(non-positive) in #'.

(i) If #y C ¥ and ¥ is maximal non-negative (non-positive) is 72\, then 7 is maximal

non-negative (non-positive) in #'.
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