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SUMMARY

In the first part of the dissertation, we count tilings of narrow strips in the hexagonal grid
with a given number and type of tiles and investigate identities involving the obtained
enumerating sequences. On the same substrate, we also study the number of tilings in
which both the number and the shape of tiles are free. In both cases, the enumerating
sequences satisfy linear recurrences with constant coefficients. In contrast to the first part
where linear recurrences are obtained as a solution to the problem, the central part of
the work uses them as a starting point. Namely, it is dedicated to the family of graphs
that generalize Fibonacci cubes and whose number of vertices satisfies the recursion s, =
asy—1 + s,—2. We determine basic enumerative and metric properties and show that the
family retains many desirable properties of Fibonacci cubes. Canonical decomposition
and distribution of degrees will be investigated, as well as the existence of Hamiltonian
paths and cycles. In the last part, we explore the possibility of extending the family of

graphs to the Horadam recursion s,, = as,,—1 + bs,—>.
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SAZETAK

U prvom dijelu rada prebrojavamo poplocenja uskih traka Sesterokutne mreze s unaprijed
poznatim brojem plocica odredenog tipa i istraZzujemo mogucnost dobivanja identiteta o
nizovima koje tako dobivamo. Preciznije, istrazujemo na koliko se nacina moze poplocati
uska Sesterokutna mreZa koriste¢i samo monomere i dimere, a s unaprijed odredenim
brojem dimera. Nadalje, prou¢avamo sli¢an problem, ali umjesto horizontalnih dimera
koristimo trimere, dobivene od tri uzastopna Sesterokuta na mrezi. Na istom supstratu
promatramo i ukupni broj podjela promatrane Sesterokutne mreze, tj. broj poploCenja
u kojima su 1 broj i oblik plocica proizvoljni. U ovom slucaju dobivamo jednostavan
odgovor, broj nacina na koji moZzemo podjeliti usku Sesterokutnu mrezu odgovara Fi-
bonaccijevim brojevima neparnog indexa. U svim slu¢ajevima dobivaju se nizovi zadani
linearnim rekurzijama.

SrediSnji dio rada posvecen je familiji grafova koja poopcuje Fibonaccijeve kocke.
Broj vrhova s, u grafovima takve familije takoder zadovoljava linearnu rekurziju, s, =
asy—1+ s,—2. Odredujemo njihova osnovna enumerativna i metricka svojstava te pokazu-
jemo da familija zadrZava mnoga poZeljna svojstva Fibonaccijevih kocaka. Odredivanjem
kanonske dekompozicije pokazujemo da se grafovi mogu dekomponirati u viSe grafova
iste vrste, a manje dimenzije. Takoder, dekomponirajuéi ih u reSetke, pronalazimo jos
jednu vezu promatrane familije i Fibonaccijevih kocki. Odredujemo i raspodjelu stupn-
jeva vrhovaidajemo nuzne uvjete za postojanje Hamiltonovih putova i ciklusa. U posljed-
njem dijelu rada istrazujemo mogucnost prosirenja familije grafova na Horadamovu
rekurziju s, = as,—1 + bs,—_2, 1 pokazujemo da se mnoga svojstva Fibonaccijevih i metal-

nih kocaka nasljeduju za grafove te familije.
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INTRODUCTION

Tilings or tessellations appear as natural solutions to many practical problems and their
aesthetic appeal motivates the interest that goes way beyond the limits of their practical
relevance. In mathematics, tiling-related problems appear in almost all areas, ranging
from purely recreational settings of plane geometry all the way to the deep questions of
eigenvalue count asymptotics for boundary-value problems in higher-dimensional spaces
[44,45]. Many of those problems, formulated in simple and intuitive terms and seemingly
innocuous, quickly turn out to be quite intractable in their generality. That motivates
interest in their restricted versions that might be more accessible. In Chapter 1, we look at
several such restricted problems when the tiled area has a given structure and the allowed
tiles belong to a small set of given shapes. In particular, we consider the problems of
tiling a narrow strip of the hexagonal lattice in the plane with several types of tiles made
of regular hexagons. Similar problems for strips in square and triangular lattices have
been considered in several recent papers [3, 14, 15,29]. In the last part of Chapter 1, we
lift all restrictions on the shape of a tile. All these problems can be naturally formulated
in terms of linear recurrences with constant coefficients. Problems considered in Chapter
1 can be formulated as problems of packings in graphs leading to linear recurrences.

In Chapter 2, we reverse the direction. To a given linear second-order linear recur-
rence with constant coefficients we assign a family of graphs whose number of vertices
satisfies the recurrences, while the adjacency pattern is modeled after the Fibonacci and
Lucas cubes. Namely, we define and investigate a family of graphs that generalizes Fi-
bonacci cubes. Here we list some basic definitions. The graph G is an ordered pair
G = (V(G),E(G)) where V(G) denotes the set whose elements are called vertices, and
E(G) is the set whose elements are unordered pairs of elements of V(G). The elements

of the set E(G) are called edges. For vertices vi,v, € E(G) we say they are adjacent



Introduction

if the pair {vi,v2} € E(G). As the number of vertices of the graph obtained at the

n™ step of construction for a fixed value of a satisfies the three-term linear recurrence

a

Sn

= asy_, +s;_,, we call the resulting graphs the metallic cubes. We find the name
informative, reflecting both their partial-cube nature and the asymptotic behavior of the

2 _ax—1=0,

number of vertices, expressed via roots of the characteristic equation x
known as the metallic means [7]. We present a recursive decomposition as well as the
decomposition into grids. We determine the distribution of degrees and provide some
necessary conditions for this family of graphs to be Hamiltonian. Also, recurrence and
formulas for the number of edges are obtained. Furthermore, we determine metric prop-
erties such as radius, diameter, center, and periphery.

In Chapter 3, we explore the possibility of further generalization. We define and
investigate the family of graphs whose number of vertices is given by the sequence that
satisfies the recurrence s%” = asflfl —i—bsﬁ’z, thus going beyond the Fibonacci and metallic
cubes. Although such sequences were studied already at the beginning of the 20th century
[48], and probably even earlier, they got their name after A. F. Horadam, who popularized
them in a series of papers in the early sixties [24-26]. So, we call the new family of graphs
the Horadam cubes. We explore and establish their basic structural and enumerative
properties. In particular, we show that they inherit their recursive decompositions and
decompositions into grids from the metallic cubes. Furthermore, the Horadam cubes
are induced subgraphs of hypercubes and bipartite median graphs. All Horadam cubes
contain a Hamiltonian path, and a Horadam cube is Hamiltonian if the number of vertices

is even. In this chapter, we also explore the cube coefficients, cube numbers, and cube

polynomials, thus, by setting b = 1, extend a portrait of the metallic cubes.



1. TILINGS OF A HONEYCOMB STRIP

1.1. TILINGS OF A HONEYCOMB STRIP AND

TETRANACCI NUMBERS

The substrate (i.e., the area to be tiled) is a honeycomb strip H,, composed of n regular
hexagons arranged in two rows in which the hexagons are numbered starting from the
bottom left corner, as shown in Figure 1.2 for n = 12. The number of hexagons in the
strip will be called its length. The choice of the substrate might seem arbitrary, but it
provides a neat visual model for a linear array of locally interacting units with additional
longer-range connections: the inner dual of a strip of length 7 is, in fact, Pnz, the path on n
vertices with edges between all vertices at a distance less than or equal to 2. Another way
to look at it is as the ladder graph with descending diagonals, another familiar structure.
The graph P? and ladder graph are presented in Figure 1.1. Here it is worth mentioning
that dual graph of a plane graph G is a graph G’ whose vertices are faces of G, and an
edge between two faces x and y in G corresponds to the edge ¢’ between x and y in G’ [49].

Removing the external face in G and all corresponding edges yields the inner dual.

LN

Figure 1.1: The graph P? and ladder graph.

Tilings with monomers and dimers in the strip correspond to matchings in its inner
dual, thus enabling us to transfer known results about matchings directly into our context.

We start by examining the tilings of such strips by monomers (i.e., single hexagons)
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Figure 1.2: A tiling of a honeycomb strip of length 12 using 4 dimers.

and dimers made of two hexagons joined along an edge. Such tilings have been considered
recently by Dresden and Jin [14], who found that the total number of such tilings is
given by the tetranacci numbers. We refine their results in several ways. First, in Section
1.1.1, we obtain the formula for the number of such tilings with a specified number of
dimers. Then we consider tilings with colored monomers and dimers in Section 1.1.2.
Along the way, we obtain combinatorial proofs for generalizations of several identities
involving tetranacci numbers from the paper by Dresden and Jin [14]; we present them in
Section 1.1.3. Section 1.2 is devoted to another type of restricted tilings of the honeycomb
strip. There we prohibit horizontal dimers but allow trimers of consecutive hexagons.
By prohibiting any other type of trimers, we avoid long-range interaction. In terms of
graphs, here we investigate the packings of P? with path graphs P, and P;. The total
number of such tilings (packings) is given in terms of tribonacci numbers, and Padovan
and Narayana’s cow numbers appear as special cases. Combinatorial proofs of some

related identities are presented in Section 1.2.1.

1.1.1. Tiling a honeycomb strip with exactly k dimers

At the beginning, we define the sequences appearing in this section. Fibonacci numbers

are the sequence of integers with initial values Fp = 0 and F7 = 1 satisfying the recurrence
Fo=F1+F .

They appear as the sequence A000045 in The On-Line Encyclopedia of Integer Sequences
[46]. Tetranacci numbers (sequence A000078 in OEIS) have initial values Qg = Q1 =
0> =0 and Q3 = 1 and are defined by recurrence

Qn - Qn—l + Qn—2 + Qn—3 + Qn_4.

In this section, we consider a honeycomb strip of length n and its tilings by hexagonal

monomers and dimers shown in Figure 1.3. We are interested in the number of such tilings

4
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with a given number of dimers. The dimers can be in any position; in Figure 1.3 we see
a descending, a horizontal, and an ascending dimer, from left to right, respectively. The
ascending and descending dimers will be both called slanted when their exact orientation
is not important. We denote the number of all possible tilings of a honeycomb strip of

length 7 using exactly k dimers by ¢, .

Seods

Figure 1.3: Monomer and three possible positions of a dimer tile.

Dresden and Jin [14] proved that the total number of all possible ways to tile a strip

with monomers and dimers /,, satisfies the recurrence
hn=hy1+hy2+hy3+hy 4

with initial values #; = 1, hp = 2, and h3 = 4. It makes sense to define hg = 1, account-
ing for the only possible tiling, the empty one, of the empty honeycomb strip. Their
recurrence is the same as the recurrence for the tetranacci numbers Q,, with shifted initial
values. Hence, h, = Q,13. We wish to determine c, x, the number of such tilings using
exactly k dimers, and hence n — 2k monomers. It is easy to see that ¢, ; = 0 for k > L’%J ,
since the strip with n hexagons can contain at most ng dimers. On the lower end, there is
only one tiling without dimers, so ¢, o = 1 for all n. By stacking k dimers at the beginning
of the strip, it is always possible to tile the remainder by monomers, so it follows that
all ¢, for k between 1 and ng will be strictly positive. Hence the numbers ¢, ; will be
arranged in a triangular array without internal zeros. In Table 1.1 we give the list of initial

values that can be easily verified.

Table 1.1: Initial values of ¢, 4.
coo=1
cro=1
c0=1 c1=1

czo=1 ¢c31=3
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The next theorem gives a recurrence relation for ¢, .

Theorem 1.1.1. Let n > 4 be an integer and c, x be the number of ways to tile a hon-
eycomb strip of a length n by using exactly k£ dimers and n — 2k monomers. Then the

numbers ¢, i satisfy the recurrence relation
Cnk =Cn1k T Cn2k—1FtCn34-1+tCnai2 (1.1)
with the initial conditions given in Table 1.1.

Proof. We consider an arbitrary tiling which uses k dimers and note that the n™ hexagon
can be tiled by a dimer or monomer. The number of all such tilings with the last hexagon
tiled by a monomer is ¢, x, since the number of dimers k remains the same. If the last
hexagon is part of a dimer, then we distinguish two possible situations: either the dimer
is slanted or it is horizontal. The number of tilings ending in a slanted dimer is ¢,_2 x—1
since the last dimer increases the length of a strip by two and the number of dimers by one.
If the dimer is horizontal, it means that it must cover the (n —2)"® and the n'" hexagon.
In that case, we have two subcases: either the (n — 1) hexagon is tiled by monomer, and
the rest of the strip can be tiled in ¢,_3 x—1 ways, or (n— 1)% hexagon forms a dimer with
(n— 3)rd hexagon, and rest of the strip can be tiled in ¢,_4 x> ways. Described cases are

illustrated in Figure 1.4 from left to right, respectively.

Cn—1,k Cn—2k—1 Cn—3k—1 Cn—4 k-2
Figure 1.4: All possible endings of a tiled honeycomb strip of length n.

Since the listed cases and subcases are disjoint and describe all possible situations,
the total number of tilings is the sum of the respective counting numbers i.e., ¢, =

Cpn—1k +Cn—2k—1+Cn—3 -1+ Cy_4 x—2, Wwhich proves our theorem. |

We are now able to list the initial rows of the triangle of ¢, ;, which we do in Table

1.2 below.
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Table 1.2: The initial values of ¢, k.

n/k|0 1 2 3 456 - 0,
0 |1 1
1|1 1
2 |1 1 2
301 3 4
411 5 2 8
501 7 7 15
6|1 9 16 3 29
7 |1 11 29 15 56
8 |1 13 46 43 5 108

The triangle of Table 1.2 appears as the sequence A101350 in [46]. As mentioned be-
fore, the tilings of this kind can be represented as matching in the inner dual. But besides
counting the tilings, the triangle ¢, ; also represents some coefficients in the number of
matchings (Hosoya index) of some triangle chain graphs [11]. Its leftmost column con-
sists of all 1’s, counting the unique tilings without dimers. The second column seems to
be given by ¢, 1 = 2n — 3. Indeed, the only dimer in the tiling can cover either hexagons
iandi+1for1 <i<mn—1,orhexagonsiandi+2forl <i<n-—2,resulting in 2n — 3
possible tilings. As expected, the rows of the triangle sum to the (shifted) tetranacci num-
bers, ):k%g Cnk = Qny3, since by disregarding values k, the recurrence (1.1) becomes the
defining recurrence for the tetranacci numbers. The appearance of the Fibonacci num-
bers as the rightmost diagonal, ¢»,, = F, 1, can be readily explained by looking at the
inner dual of the strip. As mentioned before, it is the ladder graph with the descending
diagonal in each square, as shown in Figure 1.5. Tilings with n dimers correspond to
perfect matchings in the inner dual. A simple parity argument dictates that no diagonal
can participate in such a perfect matching. By omitting the diagonals we are left with a
ladder graph and it is a well-known folklore result that perfect matchings in ladder graphs
are counted by Fibonacci numbers. Somewhat less obvious is the appearance of the con-

volution of Fibonacci numbers and shifted Fibonacci numbers as the first descending

subdiagonal, c2,11, = Yi_o Fit1F+2—k = A023610(n), but it follows by observing that
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H,, Ly

Figure 1.5: Hexagonal strip of a length 2n and its inner dual

the only monomer breaks the strip into two pieces each of which can be tiled by dimers
only, and the number of such tilings is obtained by summing the corresponding products,
hence leading to convolution. There are no formulas in the OEIS for other columns or di-

agonals. In the rest of this section, we determine formulas for all elements of the triangle

ka.
It is well known that for the Fibonacci numbers, one has ¢, = Yoo (*."). By
writing this as ¢, = Yom—o (") (") and by noting that a similar formula cy,41, =

Yoy (") ("]™) can be readily verified by induction, it becomes natural to consider

Yok (") (") as the formula for the elements on descending diagonals. By shifting

the indices n — n — k and k — n — 2k one arrives at expression for ¢, .

Theorem 1.1.2. The number of ways to tile a honeycomb strip of length n using k dimers

and n — 2k monomers is equal to

kofn—k—m\ (n—k—m
w5 ()5

Theorem 1.1.2 can be proven by induction, but we prefer to present a combinatorial
proof. To do that we need some new terms and one lemma.

We say that a tiling of a honeycomb strip is breakable at the position k if a given tiling
can be divided into two tiled strips, the first strip of length k and the second of length
n — k. Note that breaking the strip is only allowed along the edge of the tile. If no such k
exists, we say tiling is unbreakable.

For example, if the first two hexagons form a dimer, the tiling is unbreakable at posi-

tion 1, since it is not allowed to break a tiling through the dimer. As an example, Figure

1.6 illustrates all breakable positions of a given tiling.

Lemma 1.1.3. For n > 4, every tiled strip of length n is breakable into four types of

unbreakable tiled strips: length-one strip tiled with a single monomer, length-two strip

8
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Figure 1.6: Tiling of a honeycomb strip that is breakable at positions 2, 3 and 7.

tiled with a single dimer, length-three strip tiled with a horizontal dimer and a monomer,

and length-four strip tiled with two horizontal dimers.

Proof. Every left or right-slanted dimer forms a strip of length two. When removed, we
are left with smaller strips, each of them tiled with hexagons and horizontal dimers. Every
horizontal dimer occupies positions in the form {i,i+ 2}. If position i+ 1 is occupied by a
monomer, hexagons in positions i,i+ 1 and i 42 form a length-three tiled strip. If position
i+ 1 is occupied by another horizontal dimer, that dimer can occupy positions i — 1 and
i+ 1ori+1andi+ 3. Either way, those two horizontal dimers form a length-four tiled
strip. After they are removed, we are left with only monomers, where each monomer
forms a simple tiled strip of length one. Those are the only four types of unbreakable

tilings. They are illustrated in Figure 1.7. |

0N &

Figure 1.7: All unbreakable types of the tiled strip. The second and the fourth strip can
be left or right-slanted, and the third one can be upside down, depending on the parity of

the position.

Proof of the Theorem 1.1.2. We denote the types of tiled strip from Figure 1.7 by M, D,
T and V, from left to right, respectively. By Lemma 1.1.3, an arbitrary tiling of a strip
H, of length n > 4 can be broken into those four types of unbreakable tilings. Breaking a
given tiled strip into unbreakable strips produces a unique number of tiled strips of each
type. So, let k; denote the number of strips of type D, k, the number of strips of type
T, k3 the number of strips of type V, and since the strip has length n, what remains are

n—2ky — 3ky — 4kz strips of type M. Now we establish 1-1 correspondence between two

9
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sets: the first set, one that contains all tilings of a strip H,, which by breaking produce
ky strips of type D, kj strips of type T, k3 strips of type V and n — 2k; — 3k, — 4k3 strips
of type M, and the second set that contains all permutations with repetition of a set with
n — k1 — 2k, — 3k;3 elements, where there are k; elements d, k, elements ¢, k3 elements
v and n — 2k; — 3k — 4k3 elements m. From an arbitrary permutation, we obtain the
corresponding tiling as follows: we replace elements v, ¢, d, and m with the tiled strips
of type V, T, D, and M, respectively. For example, permutation dmdvt yields the tiling

shown in Figure 1.8. The way to obtain a permutation from a given tiling is obvious.

Figure 1.8: Tiling that corresponds to permutation dmdvt.

The number of all permutations in the second set is

(I’l—kl —2k2 —3k3)!
kl !kz!kg,!(n — 2k1 — 3k2 —4k3)!.

One can easily verify that this expression can be written as

n—ky —2ky —3k;3 n—2k; —2ky — 3k;3 n—2k; —2ky — 4k;
ki k3 ko '

Since we are interested in the number ¢, ; which denotes the number of ways to tile a
length-n strip that contains exactly k dimers, note that k; + k, + 2k3 must be equal to k.

Hence, we have

c o Z n—k1—2k2—3k3 n—2k1—2k2—3k3 n—2k1—2k2—4k3
ok ki k3 k> '

ki +ky+2k3=k
By introducing a new index of summation m = k + k3 and by substitutions ky = m — k3

and k; = k— ky —2k; = k— m — k3 we obtain:

— kem (n—k—m\ (n—2k+k3\ [(n—2k
" m;0k32—0 (k_m_k3) ( k3 ) (m_k3>
B i i (n—k—m)(n—2k+k3> (n—2k)
=0 ks =0 n—2k+k; n—2k m—kz |’

10
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Finally, by using identity (}) (%) ) (3~ on the first two binomial coefficients and

m

Il
S~
N

Vandermonde’s convolution ¥ (3) (,",) = ("!") [21], we arrive to

k
n—k—m o (k—m)\ [(n—2k
cuk= ), )»
m=0 n—2k k=0 k3 m— k3
_ i n—k—m\[{n—k—m
=\ n—2 m ’
which concludes our proof. |

Since the row sums in Table 1.2 are tetranacci numbers, Theorem 1.1.2 gives us iden-

L%J k n—K—m n—K—m
0m=Y 3 (") ()

k=0m=0

tity

1.1.2. Tilings of honeycomb strip with colored dimers and monomers

Katz and Stenson [29] used colored squares and dominos to tile (2 x n)-rectangular board
and obtained a recursive relation for the number of all ways to tile a board. They also
proved some combinatorial identities involving the number of such tilings. In this section,
we do a honeycomb strip analog. We continue to count tilings of a hexagon strip with
dimers and monomers, but we allow a different colors for monomers and b different
colors for dimers. Let 2%" denotes the number of all different tilings of a strip with n
hexagons. It is convenient to define hg’b = 1. We start with initial values illustrated in
Figure 1.9. One can easily see that h?’b = a since we have a colors to choose from for
a monomer. Similarly, hg’b = a® + b, since we can tile a strip with two monomers in a”
ways or with one dimer in b ways. For n = 3, note that if we use only monomers, we
can choose colors in a° ways, and if we use one dimer and one monomer, we can put the
dimer in 3 different positions, and for each of those positions we can choose colors for
tiles in ab ways. Hence, hg’b =a’+3ab.

. . . b
The next theorem gives a recursive relation for hj;,”.

Theorem 1.1.4. For n > 4, the number of all possible tilings of the honeycomb strip

containing n hexagons with a different kinds of monomers and b different kinds of dimers

11
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(O

a colors

o

a® colors b colors

LA Ren 4

—

a3 colors ab colors  ab colors  ab colors

Figure 1.9: All possible tilings forn = 1,2, 3.

satisfies the recursive relation

h? = a-hy? bl ab -l 0

n—1
with the initial conditions /3” = 1, k" = a, % = a® + b, and h8" = a® + 3ab.

Proof. The proof is similar to the proof of Theorem 1.1.1, but here we must also pay
attention to the colors. We consider an arbitrary tiling and note that n" hexagon can
either be tiled by a monomer or a dimer. In the case when n™ hexagon is tiled by a
monomer, the rest of the strip can be tiled in hZfl ways, but the monomer can be colored
in a different ways, which gives us the total of a - hZ’b possible ways. If the last hexagon
is part of a dimer, then we distinguish two possible situations: either the dimer is slanted,
or the dimer is horizontal. The number of tilings ending in a slanted dimer is hZfz, and
the last dimer can be colored in b ways. So there are b - hZfz such tilings. As in the proof
of Theorem 1.1.1, if the dimer is horizontal, it means that it covers the (n — 2)nd and the
n'M hexagon. In that case, the (n — 1)* hexagon can be tiled by monomer, we can choose
colors in ab ways, and the rest of the strip can be tiled in hﬁg ways. This gives us the
ab- hzg possible tiling in this case. The last case is if the (n — 1) hexagon forms a dimer

with (n —3)™ hexagon. There are b* - hﬁ’4 such tilings. All cases are illustrated in Figure

12
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1.10. This gives us a relation /%% = a- hflfl +b- hZf’z +ab- hﬁg +b%. hflﬂ, which proves

a,b a,b
h,”, a colors h,”, b colors

Figure 1.10: All possible endings of a colored tiling of a strip with n hexagons.

our theorem. ]

We can now list some first values of hﬁ’b in Table 1.3. We can notice that the values

Table 1.3: Some first values of £
ab
n|hy

0|1

1|a

a*+b

a® + 3ab

a* +5a%b +2b?

@ +7a’b + Tab?

a® +9a*b + 16a*b> + 3b°

AN L B~ W

¢k from the last section appear in every row as coefficients of a bivariate polynomial.

The connection between these values is given in the next theorem.

Theorem 1.1.5. The number 4%’ of all possible tilings of the honeycomb strip of length

n with monomers of a different colors and dimers of b different colors is given by

15] 5] «
b —2kyk _ n—k—m n—k—m —2kk
h; —kg)cn,ka” b = Z Z ( o )( e m )an b".

k=0m=0
Proof. We could prove the theorem by induction, but again we present a simple combi-
natorial proof. The number hﬁ’b denotes the number of all possible tilings of the strip of
length n. For a fixed 0 < k < [ 5 |, there are ¢, x possible ways to tile a strip with exactly k

dimers, and since this tiling has k dimers and n — 2k monomers, the colors can be selected

13
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ankbk

in a"2kb* ways which gives total of Cn k@ possible tilings. Since every tiling of the

strip can contain 0, 1, ..., 5| —1 or |5 | dimers, the overall number of tilings is the sum

of these cases, that is h%? = Zktzg cn a2 bk, [ |

1.1.3. Some (generalized) combinatorial identities involving tetranacci
numbers

In this section, we generalize several identities obtained by Dresden and Jin [14] to the
case of colored tilings of a honeycomb strip. All of the following identities are reduced to

the mentioned identities by setting a = b = 1.

Theorem 1.1.6. For every m,n >0

h o =HSPHS? + 1l (bhi? ) + abhy® + bPhe"s) +
il s (@bl + 0210 ) + 020 5.

Proof. We consider a tiling of a honeycomb strip containing m + n hexagons. We have

ha,b

m+n

such tilings. On the other hand, there are hz{b . hZ’b tilings that are breakable at

position m, as shown in the Figure 1.11. All other tilings are unbreakable at position m.

ha,b ha,b
m n
Figure 1.11: Breakable tiling at position m.

If that is the case, unbreakability can occur because of the right-inclined, left-inclined or
horizontal dimer crossing the line of the break. Figure 1.12 shows all possible situations
that can occur if tiling is not breakable at position m. Note that any tiling of a honeycomb

strip is breakable if n > 4. Summing all these cases gives us proof of the theorem. |

Our second identity counts tilings of the strip containing at least one dimer.

Theorem 1.1.7. For every integer n > 1,
n n
Wt —a" = b, +20 Y 2+ 0? Y R
k=3 k=3

14
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b b b b
h” bcolors h7, h)”, ab colors h)”,

a,b a,b a,b a,b
k", ab colors h)”, h,"5  b*colors R,

b b b b
h”,  b*colors  hy7, h” b*colors  hy7,
Figure 1.12: Layouts that can occur if tiling is not breakable at position m.

Proof. We prove the result by double-counting all the ways to tile a strip using at least one
dimer. On one hand, there are hZ’b — a”" such tilings, since the only tiling without dimers
uses only monomers, and we can choose colors in a” ways. The other way to count such
tilings is to keep a trace of the position where the first dimer occurs. Since the dimer
covers two positions in the strip, we use the larger number to determine its position. For
example, dimer occupying hexagons 1 (or 2) and 3 has position 3. First, we start with
slanted dimers. If the position of the first dimer is k for k > 2, the first part of the strip
consists of k —2 monomers and the rest of the strip can be tiled in hZf’k ways, which gives
us total of b i ak_zhflfk ways. Now we consider the horizontal dimer case. Note that
the horizonteicl:(zlimer cannot have positions 1 and 2. If the position of the dimer is k for
k > 3, then the dimer occupies hexagons k —2 and k. We have two subcases, depending on
whether the (k — 1) hexagon is tiled by a monomer or by a dimer. In the second case, it
must be paired with (k+ 1) hexagon, since position k is first to occur. In the first subcase,
dimer and monomer can be colored in ab ways, the first part of the strip consisting of k —3

monomers can be colored in a3 ways, and the rest of the strip can be tiled in hZf’k ways,

15
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k—2 ha,b
n

n
which gives us the total of b } a
k=3
the first occupying hexagons k — 2 and k, and the second covering k — 1 and k+ 1. These

« ways. The latter subcase involves two dimers,

dimers can be colored in b ways, the first part of the strip consisting of k —3 monomers
can be colored in af—3 ways, and the rest can be tiled in hkafl ways. Since all the cases
are disjoint, the overall number is the sum of the respective counting numbers, which

proves our theorem. |

We conclude this section with a pair of identities counting tilings of the strip that
contain at least one monomer.

Theorem 1.1.8. For every integer n > 0 we have

n
a,b n _ k avb
hyw —b"Fry1=a Z b oy o1 Fiv2
k=0

and
n
ab kiab
Mony =a Y, Uy Feia.
k=0
Proof. The number of tilings of the 2n-strip by dimers only is b"F;, 1. Hence, the number
of tilings containing at least one monomer is hZ’b — b"F,11. On the other hand, we can
count such tilings based on the position of the first monomer. First, we consider the odd
positions in the strip. If the first monomer occurs at position 2k+ 1, for some 0 <k <n—1,
the first part of the strip is tiled by dimers only, and that can be done in b*F, | ways, the
a,b

monomer can be colored in a ways, and the rest of the strip can be tiled in /5",

ways. Figure 1.13 illustrates this case. Since the monomer can occur at any position

k a,b
b Fiet1 h2n—2k—l

e

a colors

Figure 1.13: The hexagon occurs at position 2k + 1.

2k+ 1 for 0 < k < n— 1, the total number of ways that monomer occurs at odd position is
—1

n
kia,b
a kzob R —ok—1Fiev1-

16
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Now we consider the even positions. The case is similar but with some different
details. If the first monomer occurs at position 2k for 1 < k < n, then all 2k — 1 hexagons
must be tiled with dimers. For this to be possible, the (2k + 1) hexagon must be tiled
by the same dimer as (2k — 1)*. This dimer and monomer can be colored in ab ways.
The first part of the strip containing 2k — 2 hexagons can be tiled by dimers and in b*~ ! F;

ways, and the rest of the strip in hg;zbkafl ways. This case is illustrated in Figure 1.14.

k—1 a,b
b*'F, acolors hy 5

2k

b colors

Figure 1.14: The hexagon occurs at position 2k.

The overall number of ways in which a monomer occurs at an even position is
n—1
ab 'y bk_lhg;f:zklek, and the total number of tilings is the sum of these two cases. Since
k=0
h‘fll’ = 0 and Fp = 0, the first sum can be extended to k = n and the second to k = 0.

n—1 n
ab " _ kpab k—1ya,b
Wy —b"Fopy=a ) bh5) 5 (Fepi4ab Y DS (R
k=0 k=1
=a

k

n
_ kypab
=a Z b hyy, op 1 Frei2
k=0

n
kypab kyab
b hyy, oy 1 Fiev1+a Z by, o1 Fx
0 k=0

n

The proof of the second identity is similar. In the case of the odd length of the strip,
i.e. 2n— 1, the left-hand side is 2% since it cannot be tiled by dimers only, and the proof
for the right-hand side is the same. The theorem follows.

17
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1.2. TILING OF A HONEYCOMB STRIP AND

TRIBONACCI NUMBERS

The tribonacci numbers (sequence A000073 in OEIS [46]) are the sequence of integers

starting with 7o = 0, 71 = 0 and 7> = 1 and defined by recursive relation
I,=T, 1+T, »+T, 3, forn>3.
We list the first few values of the sequence in Table 1.4.

Table 1.4: The first few values of tribonacci numbers.
n‘01234567 g8 9 10

7,/]0 01 1 2 4 7 13 27 44 81

In this section we are interested in counting all tilings of a honeycomb strip of a given
length, but now by using different types of tiles. We still allow monomers and slanted
dimers, but we prohibit horizontal dimers. In addition, we allow trimers that cover con-
secutively numbered hexagons. By prohibiting horizontal dimers we effectively suppress
longer-range connections represented by horizontal edges in the inner dual. Also, by
allowing trimers of the form {i—1,i,i+ 1} we abandon the context of matchings and

instead work with packings in the inner dual. The allowed tiles are illustrated in Figure

LR

Figure 1.15: The allowed types of tiles.

Let g denote the number of ways to tile a hexagonal strip of length n by using only
the allowed tiles. It is convenient to define gg = 1, and it is immediately clear that g; =1,

g2 =2.

Theorem 1.2.1. Let g, denote the number of all ways to tile a honeycomb strip of length

18
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by using only the allowed tiles. Then

8n = Tn+27
where T, denotes n'" tribonacci number.

Proof. We start with an arbitrary tiling of a strip. Three disjoint cases involve the n™
hexagon. If the hexagon is tiled by a monomer, then the rest of the strip can be tiled
in g,—1 ways. If it is covered by a dimer, there are g,_» such tilings, and finally, if the
rightmost hexagon is covered by a trimer, the are g,_3 such tilings. By summing the
respective numbers we obtain a recurrence that is the same as the defining recurrence for

the tribonacci numbers, and the initial values determine the value of the shift. [ ]

In the next part, we refine our result by counting the number of tilings where the
number of trimers, dimers, or monomers is fixed. We denote these numbers by 7, x, u, x
and v, , respectively, and here n, as usual, denotes the length of a strip, and k the number
of tiles of a certain kind. We can also fix the number of all types of tiles. Let g]fl’l denotes
the number of all ways to tile a strip of a length n by using exactly k trimers, / dimers,
and n — 3k — 2/ monomers. We list some first values in Table 1.5. From the definition it
is clear that 7, = 0 for k > | 4], u,x =0 for k > |5| and v, x = 0 for k > n. It is also
convenient to define 790 = 1 o = vo,0 = 1. For these sequences, we can obtain recursive
relations in the obvious way, by considering the state of the last hexagon to see whether

it is covered by a trimer, a dimer, or a monomer. The recursive relations are
Ink =In—1k TIh—2k T1h-3 k-1,

Upk = Up—1k + Up—2 k—1 + Up—3k

and
Vnk = Vn—1k—1+tVn—2k +Vn-3k-

We can now list some first values of the corresponding triangles. The first and the
second triangle of Table 1.5 are not in the OEIS, while the third one appears as entry
A104578, the Padovan convolution triangle. The same arguments as the ones used on
cnk show that the rows of those triangles do not have internal zeros, with the obvious

exception of the zeros appearing in the first descending subdiagonal of v, 4.
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Table 1.5: Initial values for #,, i, u,  and v, .

nfk] 0 1 2 n/k|0 1 2 3 4
0 |1 0 |1
1 1 1 1
2 |2 2 1 1
313 1 312 2
4 |5 2 4 13 3 1
5 18 5 514 6 3
6 [13 10 1 6 |6 11 6 1
7 121 20 3 719 18 13 4
8 |34 38 9 8 |13 30 27 10 1
Ink Un k
nfk|0 1 2 3 4 5678
0 |1
1 10 1
2 |1 0 1
301 2 0 1
4 |1 2 3 0 1
512 3 3 4 0 1
6 |12 6 6 4 5 01
7 13 7 12 10 5 6 0 1
8 |4 12 16 20 15 6 7 0 1

Vi k

Before we go any further, we introduce two closely related sequences defined by

Fibonacci-like recurrences of length three, the Narayana’s cows sequence (A000930) and

the Padovan sequence (A000931). We denote the n'M element of these sequences by N,

and P,, respectively. The initial values are N =Ny =N, =1and Ph=1, P =P, =0,

and for n > 3 we have recursive relations N, =N, 1+ N, 3and P, =P, »+ P, 3. In

particular, there are several other sequences referred to as the Narayana’s numbers, for
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example, A001263, a very important triangle of numbers refining the Catalan numbers
and appearing in many different contexts. In the rest of this section, when we refer to
Narayana’s numbers, we always mean A000930.

We now take a closer look at sequences t,, o, u, o and v, o, 1.e., at the number of tilings
where one type of tile is omitted. The sequence t,, 0 = F;,11, since such tilings contain only
slanted dimers and monomers; since such tilings correspond to matchings in the path on
n vertices, they are counted by Fibonacci numbers.

The sequence u,( counts the number of all ways to tile a length-n strip by us-
ing monomers and trimers, hence its elements satisfy the defining recurrence for the
Narayana’s cow sequence. Similarly, since the elements of the sequence v, ¢ are the num-
bers of all different tilings where monomers are omitted, they satisfy Padovan’s recursion.
Taking into account the initial values, we have u, o = N, and v, o = P,;3. In the next three
theorems, we present connections between the number of tilings and the above-listed se-
quences. It turns out that the elements of the three triangles of Table 1.5 can be expressed
by convolution-like formulas involving the Fibonacci, the Narayana’s, and the Padovan
numbers. Such formulas could have been anticipated from the second column of triangle
tnk Which seems to be the (shifted) self-convolution of Fibonacci numbers and also from

the name of the entry A104578 in OEIS.

Theorem 1.2.2. For n > 0, the number of ways to tile a strip with n hexagons using

exactly k trimers is

T ) Fy- F.
105eensi5 >0
io++ig=n—2k+1
Proof. If there are no trimers in the tiling, one can only use dimers or monomers to tile
a strip and the number of ways to do that is 7,0 = F,41. If we use exactly k trimers,
those trimers divide our strip into k4 1 smaller strips. In this context we allow the strip
to be of length O if two trimers are adjacent. The substrips of length 0 can also appear
at the beginning or the end of a strip. We have a strip with n hexagons which is tiled
with k trimers, so there are n — 3k hexagons left to tile. Since the position of each trimer
is arbitrary, the lengths of strips between and around them can vary from O to n — 3k,

but the sum of the lengths must be constant, that is ig + i1 + --- + iy = n — 3k. Each of

those smaller strips is tiled by dimers or monomers, hence in #;; o ways, where 0 < j <k.
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Summing this over all positions of the trimers we have

Ink = Z lip,0* " " 1i;.,0
10,50k =0
io+-+ig=n—3k
= Y Fig+1- -+ Figt1
00,1k >0
ig+--+ig=n—3k
= Z Fy-Fy.
i0yeenyif >0

ig+--+ig=n—2k+1

Note that Theorem 1.2.2 allows us to express the tribonacci numbers as a double sum

n

n
Ti2= ) tii=), Y, EyFy
k=0 k=0 igyesix>0
i+ +ig=n—2k+1
Theorem 1.2.3. For n > 0, the number of ways to tile a strip with n hexagons using

exactly k dimers is

k= ), NigNi.
i0yereig >0
ig+--+ig=n—2k
Proof. We already know that the number of tilings with no dimers is u,, o = N,,. Now we
look at the tilings of the strip with n hexagons that have exactly k dimers. That leaves us
with n — 2k hexagons to be tiled by monomers and trimers. As in the proof of Theorem
1.2.2, we note that k dimers divide the strip into kK + 1 smaller strips, each of the length
0 <i; <n—2k. Each smaller strip can be tiled in ;; ways, and after summing over all
possible positions of k dimers we have
ung= Y, NN
0y esix >0
iot+ig=n—2k

[ |
The next result gives a new combinatorial interpretation of the sequence A104578.

Theorem 1.2.4. For n > 0, the number of ways to tile a strip with n hexagons using

exactly kK monomers is

Vn,k: Z Pl()Plk

00y, 0 >0
ig+--+ig=n+2k+3
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Proof. The proof will be analogous to the two previous proofs. The number of tilings with
no monomers is v, o = P,13. A monomer does not divide our strip, but if it first appears
in position i, we will consider strips left and right from it. We count the number of tilings
of the strip H,, that have exactly kK monomers. That leaves n — k untiled hexagons. After
omitting k hexagons what remains are k + 1 smaller strips, each of the length 0 <i; <
n— k. Each smaller strip can be tiled in P, 3 ways, and after summing over all possible

positions of kK monomers we have

Vnk = Z })io+3 o 'Pik+3
{05,k >0
g+ +ig=n—k
= Z P,---P,.
0Qyeeesip >0

ig+-++ig=n+2k+3

Similar as before, Theorems 1.2.3 and 1.2.4 allow us to express the tribonacci numbers

as double sums
n

n
Tn+2 = Z Unk = Z Nio . 'Nik-
k=0 k=0 ip,...,i x>0
ip+-+ixy=n—2k

and

n n
Lio=Y vwk=Y, ) By Py
k=0 k=0 iy i >0
io+-Fig=n-+2k+3

Now we turn our attention to the number of tilings of a strip H,, with numbers of all
types of tiles fixed. Recall that the number of tilings consisting of k trimers, / dimers,
and n — 3k — 2/ monomers is denoted by gln(’l. In the next theorem, we give a closed-form

formula for gﬁ’l.

Theorem 1.2.5. For n > 0, the number of ways to tile a strip with n hexagons using

exactly k trimers, / dimers and n — 2k — [ monomers is

e (n=3k=1\ (n—2k—1

Proof. Consider a set consisting of all arbitrary tilings of a strip H, that have exactly k
trimers, [ dimers, and n — 3k — 2/ monomers. To prove this theorem, we establish a 1-1

correspondence between that set and the set of all permutations of n — 2k — [ elements
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where we have k elements ¢, [ elements d and n — 3k — 2/ elements m. From an arbitrary
permutation, we obtain the corresponding tiling as follows: we replace each element ¢
with a trimer, each element d with a dimer, and each element m with a monomer. In this
manner, we obtained a tiling of a strip of length n with the prescribed number of tiles of
each type. For example, the permutation tmdmt corresponds to the tiling shown in the

Figure 1.16. We can also obtain a permutation from a given tiling in an obvious way.

Figure 1.16: Tiling corresponding to the permutation trmdmt.

Since the total number of permutations of this set is (n—2k—1)! :, We arrive to:

K11 (n—3k—21)

. (n=2k=D!  (n=3k—1)!
&' =

T kN (n—3k—20)! (n—23k—1)!
 (n=3k=1)!  (n—2k—1)!
T N(n—=3k—2D)! kl(n—23k—1)!

_(n—=3k—1\(n—-2k-1
— / . .
From Theorem 1.2.5 we arrive to yet another identity for tribonacci numbers:

1) /s N\ o
B E )
k=0 [=0

Specially, if we set kK = 0 in the first equation we have

Since Theorem 1.2.5 gives us the number of all tilings using the prescribed number of
tiles of each type, we can express values #, ; and u,, ; in a new way by summing over / and

k, respectively.
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Corollary 1.2.6. Forn >0,

=] n—3k—1 n—2k—1
we 5 (T,
U sk 1\ =2k —
e x (1) ()

1.2.1. Some combinatorial identities involving tribonacci numbers

and

In this section, we prove, in a combinatorial way, several identities involving the tri-
bonacci, Narayana, Padovan and Fibonacci numbers. We begin with a well-known iden-

tity for tribonacci numbers and we give it a new combinatorial interpretation:

Theorem 1.2.7. Forn >4,

Proof. Let ¢, denotes the set of all tilings of the strip H,, .#,, %, and .7, the tilings
ending with a monomer, dimer or trimer, respectively. As before, the cardinal number
of the set ¥, is g,. It is clear that .7, = .#,U%,U.7,. To prove the theorem we have to
establish 1-1 correspondence between sets 4, > U%, ¢ and ¥4, 3 x {0,1}.

To each tiling from the set %, 3 we add a monomer at the end to obtain an element
of .#,_,. Thus, we obtained bijection between the sets ¥, 3 and ., 5. In this way, we
have used all the tilings of the set ¢, 3 once. Now we take the tilings from the set ¢,_3
again, and if it is an element of .7;,_3, i.e., if it ends with a trimer, we remove it to obtain a
tiling of length n — 6, i.e., an element of a set &, _¢. If it ends with a dimer (an element of
9,_3), we remove it and replace it with a trimer to obtain an element from .7, ;. Finally,
if the tiling is an element of .#,_3, we replace the last monomer with a dimer, to obtain
an element of Z,_,. In this way, we have used every tiling of a length n — 3 twice and
obtained all tilings of a length n — 2 and n — 6 exactly once. A diagram that visualizes 1-1
correspondence between the two sets is shown in Figure 1.17.

It follows that g,,—> + g,—6 = 2g,—3, and since g, = T+, the theorem follows. [ |
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%n—Z gn—')‘
—
gn72 - @an %nfii
S >~
Tn—2 D3 — Y3
—
‘6 Tn—3

Figure 1.17: 1-1 correspondence between sets ¢, > U¥, ¢ and ¢4, _3 x {0,1}.

For the next few identities, it is useful to recall the definition of breakability. We
say that the tiling of a honeycomb strip is breakable at the position & if given tiling can
be divided into two tiled strips, the first one containing the leftmost k hexagons and the
second one containing the rest.

Our next identity differentiates tilings based on their breakability.

Theorem 1.2.8. For any integers m,n > 1 we have the identity
Tm+n =TT, + Tm—H Tn—H + Tm— 1T+ Tan—l .

Proof. We consider an arbitrary tiling of a strip of length m +n — 2. If the tiling is break-
able at position m — 1, we divide it into two strips of a length m — 1 and n — 1. Hence, the
total number of tiling in this case is g,,—1g,—1. If the tiling is not breakable at position
m — 1, that means that either a dimer or a trimer is blocking it. If the dimer is prevent-
ing the tiling from breaking, there are strips of lengths m —2 and n — 2 on each side, so
the total number of tilings in this case is g,,—2g,—>. If the trimer is blocking it, it can
reduce the length of the left or the right strip by two. So the total number of tilings in this
case 1S gm—38n—2 + &m—28n—3. By summing the contributions of all these cases we ob-
tain gm+n—2 = m-18n—1+ &m-28n—2 + &m—38n—2 + §m-28n—3, and by using the equality
gn="Tyowehave T, 1, = T,,T, + Tps1Th+1 + Tn1 T + T Ty 1. [ |

The next identity was proved by Frontczak [20] by using generating functions. Here

we provide a combinatorial interpretation.

Theorem 1.2.9. For any integer n > 0 we have the identity
n+1

T2 = Z Fi Ty .
k=0
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Proof. We prove this theorem by counting all ways to tile a strip by using at least one
trimer. The total number of ways to tile a length-n strip without trimers is #, o = F,1,
hence the number of tilings having at least one trimer is 7,1 — F;,;-1. On the other hand,
we can count the same tilings by observing where the first trimer appears. If the leftmost
trimer occupies hexagons {i,i+ 1,i+2}, we say that the position of the trimer is i. So, all
possible positions range from 1 to n — 2. If a trimer first appears at position k, the leftmost
k — 1 hexagons are tiled only by monomers and dimers, and the number of all ways to do
that is Fy. The rest of the strip, of length n —k — 2, can be tiled in 7,,_; ways. By summing
over all possible positions of the leftmost trimer, we have 7,7, — F,,1 1 = niz FE, T, . By
using 7,,_3 =T, —T,—1 — T;,—>, one can extend the tribonacci numbers to ngg:;tive integers
and obtain 7_1 = 1. Since T1 = Ty = 0, the sum above can be extended to obtain 7;,, =
Zii F; T, 1, which concludes our proof. |

In their recent paper, Dresden and Tulskikh [15] proved a generalized formula for the
collection of convolution formulas involving sequences that satisfy similar recurrences.

Our last two identities can be derived from that formula but again here we present a

combinatorial interpretation.

Theorem 1.2.10. For any integer n > 0 we have the identity
n
Tiy2 =Y NiTyj+ Ny
k=0
Proof. We prove this theorem by counting all ways to tile a strip by using at least one
dimer. The proof is analogous to the previous one. The total number of ways to tile a strip
of length n without dimers is u, o = N,, hence the number of tilings having at least one
dimer is 7;,.2» — N,,. Similarly, as before, we can count the same thing by observing where
the leftmost dimer appears. If the leftmost dimer occupies hexagons {i,i+ 1}, we say that
its position is i. So, all possible positions range from 1 to n — 1. If a dimer first appears
at position k, the leftmost k — 1 hexagons can be tiled in N;_; ways. The rest of the strip
is of length n —k — 1 and it can be tiled in 7,,_;; ways. By summing over all possible

n—1
positions of the leftmost dimer we have 7;,. 2 — N, = Y. Ny_1T,_x+1. Some rearranging
k=1

n
of indexes and the fact that 7y = Ty = 0 bring us to 7,4, — N, = Y, NiT,,_ and our proof
k=0
is over. u
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Theorem 1.2.11. For any integer n > 0 we have the identity

n

Ti2=Y, PeiaTkia+Puys
k=1

Proof. Analogously as in two previous theorems, we prove this theorem by counting all
ways to tile a strip by using at least one monomer. The number of ways to tile a strip of
length n with at least one monomer is g, — v, 0 = 1,42 — P,+3. Now we can count the
same thing by observing the position of the leftmost monomer. All possible positions for
the first monomer range from 1 to n. If it first appears at position k, the first part of the
strip, i.e., the leftmost k£ — 1 hexagons can be tiled in P, ways. The rest of the strip is
of length n — k and can be tiled in 7,,_;,, ways. By summing over all possible positions
of the leftmost monomer we have 7,12 — P13 = {‘, Pry2T, k42, which concludes our

k=1
proof. |

1.2.2. Some (generalized) combinatorial identities involving full-history

Horadam sequences

In this section, we generalize some of the identities from the previous section. But first,
we introduce some new notation. Let m > 0 be an integer and let Fn(m) denote the n™

m-nacci number, i.e., the n'® element of a sequence that satisfies the recursive relation
(1.2)

with initial values Fo(m) =1and Fn(m) =0 for n < 0. From these sequences one can obtain
the usually indexed m-nacci numbers by shifting indices by m — 1, but here we use the
unshifted indices to simplify our expressions.

Now we take a step further and generalize the sequence Fn(m) by defining a new se-

quence §,, with recursive relation
Sp=a1S-1+-+-+a,_151 +anSo (1.3)
with initial values

So=1and Sy =0fork <O,
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where n,ay,ay,...,a, > 0 are non-negative integers. If a, # 0, we say that S, satisfies a
full-history recurrence.

First, we consider a honeycomb strip of length n, and tiles where each tile covers k
consecutive hexagons of the strip and where £ is an integer between 1 and m. We are
interested in tiling the strip using that set of tiles. We denote the number of all possible
such tilings by g,(lm). The next theorem by Benjamin and Quinn [2, Section 3.1] provides

the number of tilings for rectangular strips, but since we consider tiles that cover only

consecutive hexagons, the number of tilings is the same as in the rectangular case.

Theorem 1.2.12. Letay,as,...,a, be non-negative integers, and let A,, be the sequence
of numbers defined by the recurrence A,, = a1A,,—1 + - - - + amA,—m With initial conditions
Ap=1and A, =0 for n < 0. Then the n™ element of this sequence equals the number
of all possible colored tilings of a board of length n, where the tiles are of length k for

1 <k < m and each tile of a length k admits a; colors.

Hence, for a special case of a previous theorem where aj =a; =--- =a,, =1 we
have gflm) = Fn(m). For m = 2, we have the classical Fibonacci numbers, for m = 3, the

tribonacci numbers, and in general the m-nacci numbers.
In this section, we first provide a combinatorial interpretation of the generalization of

Theorem 1.2.7 to all sequences that satisty recurrence (1.2). The identity itself,

follows directly from the defining recurrence. Namely,

FM 4 Fm ) g Fe) R
_ »p(m)
—2F ™

Theorem 1.2.13. Forn > m+ 1, we have E™ + F"™  —op(m)

n—m—1 " n—1-

Proof. Let %, denote the set of all tilings of a strip of length n using tiles where each tile
covers at most m consecutive hexagons. Let .7,!, 72 ..., . 7™ denote the set of all tilings
that end with a monomer, a dimer, ... or an m-mer, respectively. It is easy to see that the

cardinality of the set ¢, is g, = Fn(m). It is clear that ¢, = .7, U.Z2U---U.Z"™, where all
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the sets 7', 1 <i < m are disjoint. To prove the theorem we have to establish a one-to-one
correspondence between the sets 4, U%,_,,—1 and 4,1 x {0,1}.

To each tiling from the set %, _; we add a monomer at the end to obtain an element
of .Z!. Thus, we obtained bijection between the sets &, 1 and .7,!. In this way, we have
used all the tilings of the set ¢,_; once. Now we take the tilings from the set .7'" , and
remove the last m-mer to obtain a tiling from a set ¢,_,,_;. This shows a one-to-one
correspondence between those sets. For an arbitrary 2 < i < m, we consider the sets .7
and Zf:ll. Each tiling from fni can be obtained from a tiling in the set Zf:ll as follows:
remove the last (i — 1)-mer and replace it with an i-mer.

In this way, we have used each tiling of length n — 1 twice and obtained each tiling of
length n and each tiling of length n —m — 1 exactly once. A diagram that visualizes the

described one-to-one correspondence between the two sets is shown in Figure 1.18.

zl gn—l
77 o
4, < 5 \
" I —— G
/
gnfmfl ’?nm—l

Figure 1.18: One-to-one correspondence between sets 4, U%,_,,—1 and ¢4, x {0, 1}.

In the next theorem, we provide a generalization of the Theorem 1.2.8 to all sequences
that satisfy recurrence (1.3). To achieve that, we consider a honeycomb strip of length n
and a set of tiles that covers at most n consecutive hexagons, but in this case, the tiles are
colored. More precisely, if each tile that covers i consecutive hexagons admits a; colors,
then the number of such tilings g, satisfy recurrence (1.3), so we have g, = S,,. Note that
we do not need to use all tiles from the tile set; if we want to consider tilings where some
size of a tile is omitted, say j, we set a; = 0. Let .7 denote the set of all tile lengths

considered in a tiling, i.e., 7 = {i € {1,2,...,n} : a; > 0}. For example if we want to
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consider the Fibonacci sequence then .7 = {1,2}, but if we consider the Pell numbers,
the set .7 is the same because we care only whether the number qay, is O or not.
In our next theorem, we obtain an identity that differentiates tilings based on their

breakability.

Theorem 1.2.14. For any integers n,k > 1 we have the identity

i—1

Sk = SuSk+ Y @i Y, Su—jSii+ - (1.4)
ze?g j=1
l

Proof. There are S, tilings of a honeycomb strip of length n + k. We consider an arbi-
trary tiling from this set. If the tiling is breakable at position n, we divide it into two tiled
strips of lengths n and k, respectively. Hence, the total number of tilings in this case is
SnSk. If the tiling is not breakable at position n, that means that the tile of length i is block-
ing it for some i € .7. Note that there is only one type of tile that can not block breaking,
and that is the tile of length 1. Hence, i > 1. Every such tile occupies j — 1 positions
left of the n'™ hexagon and i — j positions right of the n™ hexagon. The number of such
tilings is a;S,— jSk—i4; since the tile that blocks the breaking can be colored in a; ways,
the strip left of the tile can be colored in S, ; ways, and the strip right in S;_;; ; ways.
The nth hexagon can be first in the tile that blocks breaking but can not be last, otherwise,
the tiling would be breakable at position n. Hence, index j can vary from 1 to i — 1. The
total number of tilings in this case is a; lill Sn—jSk—iyj- Since i can be any tile from a set
j=
of tiles .7 except the tile of length 1, we have the total number . Z. a; lil Sn—jSk—itj-
Now we sum up all the cases to obtain e
i—1

Stk =SSk + Z a; Z Sn—jSk—itj
ze#{ =1

which concludes our proof. |

Although many of the following identities are known, we list them as a corollary of
our main theorem. We obtain sequences from the recursive relation (1.3) by defining

numbers a; and by shifting indices if needed.
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As stated in the book Fibonacci and Lucas Numbers with Applications [35, p. 79, p.
89], the next well-known identities that concern Fibonacci numbers were first proven by
Lucas in 1876 and Mana in 1969, but here we derive them as a corollary of Theorem

1.2.14.

Corollary 1.2.15 (Fibonacci numbers). For the Fibonacci numbers we have the follow-

ing identities: Fy, x = Fy11F; + FuFx_1, Fons1 = F2 + E? and Fo, = (Fy 1 + Fy_1)Fp.

n+l1

Proof. Since the recursive relation for Fibonacci numbersis F,, = F,_ 1+ F,_», we seta; =
ay = 1 and a; = 0 otherwise. Thus we have .7 = {1,2}. Now the recursive relation (1.3)
reduces to the recurrence for Fibonacci numbers; the initial values need some adjusting
which we will do later. By Theorem 1.2.14 we have

i1
Sk =SnSk+ Y, Y Su—jSk—it;
ie{12} j=1
i#1
= SnSk +Sn—15k-1-

Since it is usual to set Fp = 0 for Fibonacci numbers, we shift the index in the array S, by
1 to obtain F;,. Thus, we have F,, 1 = Fy4+1Fr+1 + FoFy and, after replacing k with k — 1,

we obtain a more suitable expression
Foik = Fop1Fe+ FuFr1.
Now by setting n = k, we obtain two famous identities:

Fopy1 = FL +F}

n

and
Fy = (Fn+1 +Fn71)Fn-
|

The next few identities first appeared in the book Proofs that really count [2], but
can also be derived as Corollaries of Theorem 1.2.14. Since all corollaries have similar

proofs, some are omitted.
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The Pell numbers are another well-known sequence defined by recursive relation.
Their defining recurrence is

Pn = 2Pn—1 +Pn—27
with the initial values Py = 0 and P; = 1.

Corollary 1.2.16 (Pell numbers). For the Pell numbers, we have the same identities as

in Corollary 1.2.15.

Proof. Since the Pell numbers satisty the relation P, = 2P, + P,_», we derive new iden-
tities for Pell numbers from recursion (1.3) by setting a; = 2 and a; = 1. Since identity
(1.4) does not depend on number ap, all identities for Fibonacci numbers are also valid

for Pell numbers. Hence,
Povk = Po1 B+ PyPr—q,
P2n—|—l :P;12+1+Pr%7
P2n - (Pn+1 +Pn71>Pn

As mentioned before, since the identity (1.4) does not depend on the number a1, all
Fibonacci and Pell identities from these corollaries can be extended to all sequences S,
that satisfy recursion

Spn=aSp-1+S,2, S=0,8=1
The Jacobsthal numbers J,, are defined by recursion
Jp=Jn1+2J, 2 (1.5)

with the initial values Jo = 0 and J; = 1. The n'" element of this sequence can be expressed

as the nearest integer of %n

Corollary 1.2.17 (Jacobsthal numbers). Jacobsthal numbers satisfy the following iden-
tities: Jyx = Jns 19k + 20ndi—15 Jon = (Jps1 4+ 2u—1)Jp and Jop g = J2, | +2J7 .

The result from Corollary 1.2.17 can be generalized for all Horadam sequences de-
fined with recursion

Sn:aSn—l+bSn—27 SOZOaSl = 17
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for arbitrary integers a and b. One can easily verify that
Sntk = Sn+15k +bSnSk—1-

The identity for tribonacci numbers was established in Theorem 1.2.8, but here we

show how can it be derived from Theorem 1.2.14.

Corollary 1.2.18 (Tribonacci numbers). Tribonacci numbers satisfy the identity
Lk = Thr1 T + Tn T + Ty Tj 1 + Ty 1 1.

Proof. We derive recursive relation for tribonacci numbers from recursion (1.3) by setting
a) = ap = az = 1 and ag; = 0 otherwise. This yields 7 = {1,2,3} and we have
3 -1

Sutk =SSk + Y. Y SujSk—it
i=2 j=1

1 2
= SuSk + Z Sn—jSkyj—2+ Z Sn—jSktj-3
=1 =1

=SuSk+Sn—1Sk—1 +Sp—18k—2 +Su—28—1.

Since S,, = T,, 12, we shift indices by 2 and after replacing n and k withn—1 and k— 1,

respectively, we obtain expression
Tk = Thr1 Ty + Tn T + Ty Tj 1 + Ty 1 1.
that concludes the proof. |

Dresden and Jin already proved several tetranacci identities in their recent paper [14].

Here we provide yet another tetranacci identity.

Corollary 1.2.19 (Tetranacci numbers). The Tetranacci numbers satisfy

Onik = On20k+1+ Ont1(Qkv2 — Ok+1) + On(Qk—1 + Ox) + On—10k-

Proof. We derive recursive relation for tetranacci numbers from recursion (1.3) by setting
a; = ay = a3 = a4 = 1 as the only non-zero coefficients. This yields .7 = {1,2,3,4} and
we have

i—1

4
Sk =SSk + Y. Y Su—jSk—it
i=2 j=1
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1 2 3
= SuSk + Z Sn—jSk—2+j+ Z Sn—jSk—3+j+ Z Sn—jSk—a+j
j=1 Jj=1 J=1

2 3
= SuSk+Sn—1Sk—1+ Y Su—jSk—3+j+ Y, Sn—jSk—d+;
=1 =1

= SnSk+Sn—1 (Sk+1 — Sk) +Sn—2Sk—1 + Sn—28k—2 + Sn—3Sk_1-

By shifting indices by 3 and replacing n with n — 1 and k with k — 2 we arrive at
Ontk = On+2Qk+1 + Cnt1(Qr2 — Qi 1) + On(Qk—1+ Qi) + On—10k- L

Our last example involves a full-history recursion. The result can be also obtained
from Corollary 1.2.15, but here we want to present an application of Theorem 1.2.14 in
the case where .7 = N. We tile a honeycomb strip of length n with tiles of all possible
sizes that vary from 1 to n where each tile of length k covers k consecutive hexagons in
the strip and admits k colors. So, let a; = k for k > 0. We obtain a recursive relation

n—1
Sy =1-8S, 1428y o+-+n-Sp= Z(”—i>5i-
i=0

Thus we have .77 = N. It is not hard to see that S; = 1, S, = 3, S35 = 8 and in fact, it
was shown that S, = F,,, where F,, as before, denotes n Fibonacci number [16]. B

Theorem 1.2.14 we have

—1

Sn+k = Sn Sk—f—z ZS” FSk—itjs
i=2 j=

and since S; = 0 for k < 0, we can restrict our range of summation. Hence,

n+k i—1

Sntk = SnSk+ Y1 Y S jSi—i+j
i=2 j=1

n+k—1 n-+k

j=1 i=j+1

n Jjt+k

= SuSk+ Y Suj Y, iSk—it;.
j=1 i=j+1

Since

Jj+k

ZS” j Z iSk—itj = ZS,, J((G+DSk—1 4+ (j+k)So)
j= i=j+1 Jj=1

1

n k—
Z (ZS+1Sk1+ +kso)

j:
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i=0
1 n—1
Sy Si—i-SkZSj
i=0 j=0
1 n—1
=50 Y, Si+5k Y. Sj+Su+Sk
J=1 j=1

n k—1
= Z Sn—j <j Z Si+Sk)
=1 /
k

~

T

we finally have

k—1 n—1
Snt+k = SnSk + Sn ZSj+Sk Z Sj+Sn+Sk.
=1 =1

All indices above are greater than 0, so we can replace S, with I3, and, after using identity

n
Fj= F,1 — 1, we obtain
j=1

k—1 n—1
Fopiok = FonFor + Fon Z Fyj+ Fy Z Fyj+ Fon+ P
=1 =1

= FonFox + Fopn(Fop—1 — 1) + Fox(Fap—1 — 1) + B2 + Foy
= FouFor + FonFop—1 + Fox by

= FonFop1 + ForFon—1-
Finally, and after setting n = &,

Fip = Fon(Fops1 + Fon—1)

:Fn(FfH-l +Fn—1)(Fn2+l +2Fn2+Fn271)'
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1.3. DIVISIONS OF A HONEYCOMB STRIP

Similar to the previous sections, this section is also devoted to counting the number of all
possible tilings of a honeycomb strip but since here we lift all restrictions on the shape
of a tile, it makes more sense to call it a division of the honeycomb strip. In a recent
paper, Brown [5] showed that the number of divisions of 2 X m rectangular grid satisfies
the recursive relations

r(m+1)=6r(m)+r(m—1).

As an example, Figure 1.19 shows a division of 2 x 5 rectangular grid into 4 parts.

Figure 1.19: One division of 2 X 5 rectangular strip into 4 parts.

Here we consider a honeycomb strip analog. We are interested in finding the number
of divisions into exactly k pieces. Hence we consider k to be any integer between (and
including) 1 and n. Only the divisions along the edges of hexagons are considered. The

hexagons are labeled in the order as it is shown in Figure 1.20.

Figure 1.20: Honeycomb strip with 12 hexagons divided into 4 pieces.

Let Di(n) denote the set of all possible divisions of the honeycomb strip with n
hexagons into k pieces, and di(n) = |Dy(n)| the number of elements of the set Dy (n).
Clearly, d;(n) = 1 for every non-negative integer n, since there is only one way to obtain
one piece, and d,(n) = 1, since there is only one way to obtain n pieces, that is to let each
hexagon form a piece on its own. Furthermore, we assume dj(n) = 0 for k < 1 and for
k > n. It is convenient to set d;(0) = 1. As an example, we list all possible divisions of

the strip containing 4 hexagons as the first non-trivial case.
di(4)=1 {1234}
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dr(4) =6 {1,234} {134,2} {124,3},{123,4} {12,34} ,{13,24}
d3(4) =5 {12,3,4},{13,2,4},{1,23,4} {1,24,3},{1,2,34}
dy(4) =1 {1,2,3,4}

Note that the division {14,23} is not included, since hexagons 1 and 4 are not adjacent,

as shown in Figure 1.21, thus cannot form a part.

>
a0k

Figure 1.21: All possible divisions of the strip with 4 hexagons.

1.3.1. Recurrences and explicit formulas

Recall that Dy (n) denotes the set of all possible divisions of the honeycomb strip with n
hexagons into k pieces and dy(n) = |Di(n)| the number of elements of the set Di(n). To
count the divisions correctly, special attention must be paid to the rightmost two hexagons,
since the new (n+ 1)% cell can interact only with them. Whether these hexagons are in
the same piece or not plays a crucial role in how the new hexagon can be added. We
denote by Si(n) the set of all possible divisions of the honeycomb strip with n hexagons
into k pieces with two last hexagons in different pieces. Similarly, let T (n) denote the set
of all possible divisions of the strip into k pieces with two rightmost hexagons belonging

to the same piece. Let si(n) = |Sk(n)| and 7x(n) = |Ti(n)|. Since the last two hexagons
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can either be together or separated, we have divided the set Dy (n) into two disjoint sets,

Di(n) = Si(n) UTy(n), hence di(n) = tx(n) + si(n).

Figure 1.22: A honeycomb strip with two rightmost hexagons in the same piece.

Figure 1.23: A honeycomb strip with two rightmost hexagons in different pieces.

We first establish an auxiliary result.

Theorem 1.3.1. For n > 1, the sequence si(n) that counts all possible divisions of the
honeycomb strip with n hexagons into k pieces, with the two last hexagons being in dif-

ferent pieces satisfies the recurrence
sp(n+1) = sp_1(n) + 2s¢(n) —sp(n—1). (1.6)

Proof. We start with a strip of length n and add one new hexagon to obtain a strip of
length n+ 1. The new hexagon can either increase the number of parts in the division
by 1 or not increase this number. To obtain a division with k pieces, we can only start
with the division with k — 1 or k pieces. These are two disjoint sets, so the number of all
divisions will be the sum of their cardinalities.

When starting with a division consisting of k — 1 pieces, we can obtain k pieces by
adding the new hexagon as a single piece. Since there is only one way to do that, the
number of divisions that can be obtained this way is dy_1(n). Note that the condition
that the rightmost two hexagons belong to different pieces is satisfied, as shown in Figure
1.24.

It remains to consider the other case. We start with a strip divided into k pieces and

we add the (n+ 1) hexagon. If the last two hexagons in the division are together, we
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Figure 1.24: The element of Si(n + 1) obtained from the element of D;_;(n) by adding

the new hexagon as a separate piece.

cannot add the new hexagon so that the number of pieces remains the same and that the
two rightmost hexagons are in different pieces. So, the last two hexagons in the division
must be separated. There is only one way to add the new hexagon to the existing strip, and
it is to put the (n+ 1) hexagon together with (n — 1) as shown in Figure 1.25. Every
other layout would be in contradiction with either the number of pieces or the fact that
the two last hexagons should be separated, since putting (n+ 1) hexagon together with
n'M hexagon would produce the element of 7j(n). So in this case we have s;(n) ways to

obtain a desired division.

Figure 1.25: The element of S;(n+ 1) obtained from the element of S (n) by joining the

new hexagon with (n — 1)% hexagon.

By summing these two cases, we obtain the recursive relation
sg(n+1) =di_1(n) +sr(n). (1.7)

To eliminate di_1(n) from relation (1.7), we use the fact that dy_(n) = t;_1(n) +
sk—1(n). By removing the last hexagon from the strip, we establish a 1-1 correspon-
dence between all divisions of a strip with n — 1 hexagons and divisions of a strip with n
hexagons where two last hexagons are in the same part. Hence, #;(n) = di(n— 1). Then

we have

sg(n+1) =sp_1(n) +tr_1(n) + s (n)

= sp_1(n) +di_1(n—1) +s¢(n),
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hence dy_1(n—1) = sp(n+1) —s;_1(n) — sg(n), which combined with relation (1.7) and

after shifting some indices yields
sc(n+1) = sp_1(n) +2s¢(n) — sg(n—1),
and we proved the theorem. ]

By disregarding values of & in recursive relation (1.6) we obtain
s(n+1)=3s(n)—s(n—1),

where s(n) represents the number of all divisions of a honeycomb strip of length n with
two last hexagons in different parts. Since we obtained the same recursive relation as for

the bisection of the Fibonacci sequence with s(1) = 0 and 5(2) = 1 we have
S(l’l) = an,Q.

Our main result of this section now follows from much the same reasoning, as dy(n)

satisfy the same recurrence as si(n).

Theorem 1.3.2. For n > 1, the number of all possible divisions dj(n) of n honeycomb

strip into k pieces satisfies the following relation:
dk(l’l—l—l) :dk_l(n)+2dk(n)—dk(n—1). (1.8)

Proof. We start with a strip with n hexagons and add one extra hexagon at the end to
obtain a strip with n+ 1 hexagons. The new hexagon can either increase the number of
parts in the division by 1 or not increase the number at all. Similar as in Theorem 1.3.1,
the division with k pieces can only occur if we start from a division with kK — 1 or k pieces.
The final number of divisions will be the sum of these cases.

First, let us consider division with k — 1 pieces. Obtaining k pieces by adding a new
hexagon can be achieved in only one way, if the new hexagon forms a piece on its own.
There are dj_(n) ways to obtain such division.

We move towards the divisions with k pieces. The added hexagon must be joined with
an existing piece since we cannot increase the number of pieces. If the observed division

is an element of T;(n), the two last added hexagons of the strip belong to the same piece.

41



Tilings of a honeycomb strip Divisions of a honeycomb strip

Figure 1.26: The element of Dy(n+ 1) obtained from the element of Dy(n) by adding a

new hexagon as its own piece.

The Figure 1.27 shows there is only one way to add a new hexagon to the strip, by joining
them all together in one piece. So the number of all divisions involving this situation is
tr(n).

If the division belongs to Si(n), the two last-added hexagons belong to different parts,
and there are two ways to add two new hexagons; by joining (n + 1)*' hexagon with n'
or (n—1)% hexagon. The number of all divisions involving this situation is 2s;(n). This

case is presented in Figure 1.28.

Figure 1.27: The element of Dy(n+ 1) obtained from the element of 7 (n) by joining new

hexagon together with the last two hexagons.

Figure 1.28: The element of D(n+ 1,k) obtained from the element of S(n, k) in two ways.

Finally, by using the fact that #;(n) + sx(n) = di(n), we obtain the recursive relation

di(n+1) = di—1(n) + 1 (n) + 251 (n)

= dk—l (n) —|—dk(l’l) +sk(n).

What is left to complete the proof is to eliminate term s;(n) and we achieve that using

relation (1.6) and the above result which yields a system of recursive relations
se(n+1) = d—1(n) +si(n)
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di(n+1) = di_1(n) +dp(n) + si(n),
and after some re-indexing we have
die(n+1)=di_1(n)+2dp(n) —di(n—1)
which proves our theorem. |

Again, by grouping together terms of recurrence (1.8) with respect to n, we obtain the
recurrence satisfied by the sequence d(n) counting the total number of subdivisions of a

honeycomb strip of length n as
din+1)=3d(n)—d(n-1).

Taking into account the initial conditions d(1) = 1 and d(2) = 2 yields a very simple

answer.

Theorem 1.3.3. The total number of divisions of a honeycomb strip of length 7 is given

by d(n) = F>,_1, where F, denotes the n'" Fibonacci number.

Note that, since di(n) = tx(n — 1), we have also f;(n— 1) = F>,_3. In other words,
Theorem 1.3.2 provides the alternative proof that the numbers F, satisfy the recursive
relation for Fibonacci numbers.

The above theorem yields a nice combinatorial interpretation of the odd-indexed Fi-
bonacci numbers which seems to be absent from the entry AO01519 in the OEIS [46].

Using the results from Theorem 1.3.2, we list some first values of the sequence dj(n)
in Table 1.6.

With the above result at hand, it is not too difficult to guess the explicit formulas for
di(n) and si(n). The following theorem is easily proved by simply verifying that the
proposed expressions satisfy the respective recurrences and initial values, and we present

the details only for dy(n).

Theorem 1.3.4. The number of all divisions di(n) of the honeycomb strip with n

k—2
dy(n) = <":_k ) (1.9)
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Table 1.6: Some first values of dy(n).

n/k|1 2 3 4 5 6 7 8
11

2 |1 1

301 3 1
411 6 5 1
50110 15 7 1

6 |1 15 35 28 9 1
71121 70 84 45 11 1
8 |1 28 126 210 165 66 13 1

The number si(n) of all divisions of the honeycomb strip with n hexagons into k pieces

such that two rightmost hexagons belong to different pieces is equal to zero if n =1 and

si(n) = (n—’:f; 3) .

Proof. 1t is trivial to check that the formula (1.9) satisfies initial values. Now we must

for n > 2 it is given as

show that the formula (1.9) satisfies the recurrence (1.8). To do that we use the identity
n\ (n—1 n n—1
k) \k—1 k
di(n+1) = dy_1(n) +2dy(n) — di(n—1)
n+k—3 n+k—2 n+k—3
= +2 —
n—k+1 n—k n—k—1
. n+k—2 n n+k—3
n—k n—k

repeatedly.
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By double counting the set D(n), we gave a new meaning to the well-known identity
" (n+k—2
Z ( I ) =Fp1.
=t \ "~

1.3.2. Combinatorial approach

In this section, we offer three combinatorial proofs of Theorems 1.3.3 and 1.3.4. The first
one is based on a counting argument, while the other two are bijective. First, we introduce
some terms which will be useful in those proofs.

Any side shared by two hexagons in the strip is called an internal edge. Similarly,
the sides of a hexagon in the strip belonging to one hexagon only will be referred to as
the external edges. Any vertex shared by three hexagons is called an internal vertex. A
vertex shared by exactly two hexagons is called a cut vertex. There are n cut vertices and
we label them with numbers from 1 to n as in Figure 1.29. For each pair of cut vertices n;
and ny, where 1 < nj; < ny < n, we define the cut {nj,n,} as the shortest path from n; to
ny that does not contain any external edge. For example, Figure 1.29 shows the strip with

12 hexagons. The cuts {3,6} and {8, 10} are colored red.

3 5 7 9 11

Figure 1.29: Labeling the cut vertices and cuts {3,6} and {8,10} in the strip with 12

hexagons.
Theorem 1.3.5. The number of all divisions di(n) of the honeycomb strip with n

di(n) = (”:f;z)

Proof. There is only one way to obtain one part, so the theorem holds for k = 1. To

hexagons into exactly k pieces is

obtain two parts, we choose two cut vertices that produce one cut that can be achieved in

(5) ways. As an example, Figure 1.30 shows the cut {2,6} which yields two parts.
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Figure 1.30: Obtaining two parts by choosing two cut vertices and the corresponding cut.

Three parts can be obtained by choosing three cut vertices n; < np < n3 and their
corresponding cuts {n1,n, } and {ny,n3}. But three parts can also be obtained by choosing

four vertices n; < np < n3 < ng and the cuts {ny,n,} and {n3,n4}. This is shown in Figure

1.31.
3 5 -7 3 5 -7
1 1
8 8
27476 27476
Figure 1.31: Obtaining three parts by choosing three or four cut vertices.

Since obtaining k parts in a division requires k — 1 cuts, to divide the strip into four
parts, we need three cuts, and three cuts can be obtained from four, five, or six cut vertices.
But when we choose five or six cut vertices, we have some extra cuts to remove. The left
part of Figure 1.32 shows an example where we choose cut vertices 1,3,5 and 6 that
produce three cuts {1,3}, {3,5} and {5,6}, and hence four parts. In the central part of
Figure 1.32, we choose five cut vertices 1,3,5,6 and 8 which yield four cuts {1, 3}, {3,5},
{5,6}, and {6,8}. This would produce five parts in the division, so we have to remove
one cut, for example, the cut {5,6}. Instead of the cut {5,6}, we could also remove
the cut {3,5}, but not {1,3} or {6,8}, because that would lead to a division with only
four cut vertices, and that was counted elsewhere. Similarly, the right part of Figure 1.32
demonstrates obtaining four parts by choosing six cut vertices 1,2,3,5,6 and 8. In this
case, we have to remove two cuts, and the only cuts that can be removed are {2,3} and
{5,6}. Choosing any other pair of cuts would decrease the number of cut vertices.

More generally, dividing a strip into k parts requires choosing the minimum of k cut

vertices, where each two neighboring cuts share an endpoint, and a maximum of 2k — 2
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3 .5 -7 3 5 -7 3 .5 -7
1 1 1
8 8 8
274776 27476 2 7476

Figure 1.32: Obtaining four parts by choosing four, five, or six cut vertices.

cut vertices, where no two cuts share an endpoint. Since k cut vertices produce k — 1 cuts
and k parts, to obtain a division with exactly k parts by using k+¢ cut vertices, we need to
remove ¢ cuts. Let ny,no,...,ng,—1 and ng,, denote the chosen cut vertices. They gener-
ate k+t— 1 cuts, {ny,m},{no,ns},....{ngssr—2,mcr—1} and {ngy;_1,nx1, }- Removing
the first and the last cut is not an option, since we want to generate a division using ex-
actly k+1 cut vertices. Also, we can not remove any two consecutive cuts {n;_1,n; } and
{ny,n; 41} because it produces a division without cut vertex n;. Hence, from k+¢ — 3 cuts,
we need to remove ¢ cuts where no two cuts are consecutive. Recall that, from p objects
7

arranged in an array, there are ( ways to choose s objects where no two objects are

k+t—3—t+1) _ (k—z)

consecutive. So, there are (,'},) ways to choose k+ cut vertices and ("' .

ways to remove the extra ¢ cuts, where each of the k+¢ cut vertices is an endpoint of at
least one remaining cut. Finally, using the identity (Z) = ( o k) and Vandermonde’s con-

volution [21], for k > 2, the number of divisions of the strip into k parts is

o E ()0
)
)

Note that the above theorem is just the first half of Theorem 1.3.4. The other half of

Theorem 1.3.4, the formula for the numbers sy (n), can be proved combinatorially in the
same manner. The only difference is the following: to obtain a division with the last two
hexagons in separate pieces, choosing the cut vertex n is mandatory. Also, notice that by
summing over all possible values of k, the above counting argument also yields a proof of

Theorem 1.3.3.
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The next theorem presents an alternative proof that the number of divisions satisfies

the recurrence for the odd-indexed Fibonacci number.

Theorem 1.3.6. For n > 2, the number of all possible divisions d(n) of the honeycomb

strip with n hexagons satisfies the following relation:
din+1)=3d(n)—d(n—1). (1.10)

Proof. We use the technique of Benjamin and Quinn [2, Identity 7] to show that 3d(n) =
d(n+1)+d(n—1). To be precise, we establish a one-to-one correspondence between the
three copies of the divisions of a honeycomb strip with n hexagons and the divisions of
honeycomb strips with n+ 1 and n — 1 hexagons, respectively. In total, there are 3d(n)
such divisions on one side, and d(n+ 1) +d(n— 1) divisions on the other side. Recall that
the set of all divisions of the honeycomb strip with n hexagons can be organized into two
disjoint subsets based on the status of the last hexagon. In the first case, the n™ hexagon
is in the same part as the (n — 1) hexagon, and in the second case it is not. In the second
case, we distinguish two more subcases. In the first subcase, we have all divisions in
which the last hexagon forms a part on its own, and the second subcase is one where the
n'M hexagon is in the same part as the (n —2)"! hexagon but not in the same part with the

(n—1)% hexagon. All the cases and subcases are presented in Figure 1.33.

Figure 1.33: All divisions of the honeycomb strip are organized into cases and subcases,

based on the status of the last hexagon.
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For the first copy of the divisions of a honeycomb strip with n hexagons, we add
a single (n+4 1) hexagon in the same part with the n' hexagon. Thus, we obtained all
divisions of a honeycomb strip with n+ 1 hexagons, where the two last hexagons are in the
same part. For the second copy of the divisions of a honeycomb strip with n hexagons, we
add a single (n+ 1) hexagon forming a part on its own. In the third copy, we distinguish
two cases. If the n'" and (n—1)% hexagons are not in the same part, we add on a single
(n+1)% hexagon to the same part with the (n — 1) hexagon. If the n" and (n— 1)%
hexagons are in the same part, we remove the n™ hexagon which yields a honeycomb
strip with n — 1 hexagons. In this case, we obtained all divisions of the honeycomb strip
with n — 1 hexagons. Since the (n+ 1) hexagon can only form a part on its own, be
in the same part with the n' hexagon or be in the same part with the (n — 1) hexagon
but not with the n™ hexagon, we also obtained all division of the honeycomb strip with
n+ 1 hexagons. Figure 1.34 shows the 1-1 correspondence between the three copies of
the divisions of a honeycomb strip with n hexagons on one side, and the divisions of a

honeycomb strip with n — 1 and n+ 1 hexagons, on the other side.

Figure 1.34: 1-1 correspondence between the three copies of divisions of the honeycomb

strip with n hexagons and divisions of the honeycomb strip with n — 1 and n+ 1 hexagons.

In the next part, we want to prove Theorem 1.3.3 by obtaining a bijective correspon-
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dence between the number of divisions of a narrow honeycomb strips and matchings in a
path of a suitable length. Recall that a matching in a graph G is a collection M of edges of
G such that no two edges in M share a vertex. In other words, a matching is a collection
of isolated edges. The study of matchings is an important and well-developed branch of
graph theory [37].

It is a simple exercise to show that matchings in a path P, on n vertices are enumerated
by the Fibonacci numbers F;, 1. Indeed, if we denote by p, the number of matchings in
P,, we can obtain a simple recurrence for p, by taking n > 3 and considering the terminal
edge in P,. Let us denote this edge by e. Now, the matchings in P, which do not contain
e are counted by p,_1, while those containing e are counted by P,_, since the edge that
shares a vertex with e cannot participate. As every matching in P, either contains e or
does not contain it, we obtain that p,, satisfy the recurrence p,, = p,—1 + pn—2. The claim

now follows by taking into account the initial values p; = 1 and p, = 2.

Theorem 1.3.7. Letn > 2 be an integer. Then there is a bijection between the set of all

matchings in P»,,_» and the set of all divisions of a honeycomb strip of length n.

Proof. There are 2n — 3 internal edges in the honeycomb strip containing n hexagons.
They are labeled with numbers from 1 to 2n — 3 using the pattern shown in Figure 1.35.

Every division can be expressed as the set of deleted edges D, but not in a unique way. For

Figure 1.35: Labeling the internal edges in the honeycomb strip.

example, deleting internal edges 3 and 5 yields the same division as deleting the edges 3,4
and 5 or just 3 and 4. To avoid ambiguity, we proceed as follows. If the hexagons i and
i+ 1 are in the same piece, there is only one way to express that information: deleting the
edge 2i — 1. Similarly, if the hexagons i and i + 2 are in the same piece, but not together
with the hexagon i+ 1, there is only one way to indicate that situation: deleting the edge
2i. In the last case, where all three hexagons i, i + 1, and i 4 2 are in the same piece, we

only add the edges 2i — 1 and 2i + 1 to the set D. Since the edges 2i — 1 and 2i+ 1 are
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already deleted, deleting the edge 2i produces no effect, so we do not include it in the
set D. This means that every division has a unique expression as the set of deleted edges
D where no two edges are labeled with consecutive numbers. This gives us clear 1-1
correspondence with the set of all matchings of the path graph with 2n — 3 edges which

concludes the proof. |

Figure 1.36 shows all matchings of the path graph Py and corresponding divisions of
the honeycomb strip of length 4. The edges in the path graph are labeled naturally, and

the edges participating in the matching are red.

3
3

12345 12345 12345 12345 12345

&

&
&
&

12345 12345 12345 12345 12345

12345 12345 12345

Figure 1.36: 1-1 correspondence between the divisions of the honeycomb strip with 4

hexagons and all the matchings in the path with 5 edges.

1 23 45678910111213

Figure 1.37: The honeycomb strip divided into 3 pieces and the corresponding matching

of the path graph Py4.
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Another example with the honeycomb strip of length 8 is given in Figure 1.37. The
division can be uniquely expressed as D = {1,3,7,9, 12} which corresponds to the match-

ing of the path P4 shown below the honeycomb strip.

1.3.3. Transfer matrix method

In this section, we present another approach to obtain an overall number of divisions, the
one based on transfer matrices [47]. It might seem less natural than recurrence relations
and combinatorial approach, but it often turns out to be suitable when recurrence relations
are complicated or unknown.

We again consider a honeycomb strip such as the one shown in the Figure 1.20, and
look at its rightmost column, i.e., at the hexagons labeled by n — 1 and n. There are
two possible situations regarding these hexagons. They can be in the same piece of a
subdivision, or they can belong to two different pieces. We denote a strip with the last
two hexagons together as a type T strip and a strip with the last two hexagons separated as
a type S strip. Adding the (n+ 1) hexagon might result again in a type S strip or a type T
strip. There are altogether four possibilities, each of them producing certain effects on the
number of pieces in the resulting strip. For example, if we start with a strip of type S and
we want to obtain a strip of type S, we can either add the new hexagon to the part which
contains the (n — 1) hexagon, or we can let the (n+ 1) hexagon to form its own part. In
the first case, the number of parts will remain the same, in the second case it will increase

by one. Figure 1.3.3 shows this case. The main idea of the transfer matrix method is

Figure 1.38: Both cases result with a strip of type S.

to arrange the effects of adding a single hexagon into a 2 x 2 matrix whose entries will
keep track of the number of pieces via a formal variable, say, y. The rows and columns
of such a matrix are indexed by possible states, in our case 7" and S, and the element at
the position S, S in our example will be 1+ y. That captures the fact that transfer from §

to S results either in the same number of pieces or the number of pieces increases by one.
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The other three possible transitions, 7 — T, S — T and T — S are described by matrix
elements 1,1, and y, respectively. Indeed, it is clear that adding a hexagon to obtain the
rightmost column together cannot increase the number of pieces, hence the two ones, and
that starting from 7" and arriving at S is possible only by the last hexagon forming a new
piece, hence increasing the number of pieces by one, hence y. If we denote our matrix by

H, we can write it as
1 1

H(y) =
y l+y
By construction, it is clear that adding a new hexagon will be well described by multi-
plying some vector of states by our matrix H(y), and that repeated addition of hexagons
will correspond to multiplication by powers of H(y). It remains to account for the initial
values.

For n = 1, we have a trivial case, one hexagon forms one part. For n =2 we have two
possibilities, hexagons are in the same part or separated. Hence this case is represented
by a vector
y

y2

%
h2 :x2

By introducing another formal variable, say x, to keep track of the length, the above
procedure will produce a sequence of bivariate polynomials whose coefficients are our
numbers di(n). The first few polynomials are shown in Table 1.3.3 after the theorem

which summarizes the described procedure.

Theorem 1.3.8. The number of divisions of a honeycomb strip of a length n into k parts

is the coefficient by x"y* in the expression
n—2

1 1 y
[1 1] S (1.11)
y l+y y

The coefficients by x"y* in expression (1.11) could be determined by studying the

powers of the transfer matrix. By looking at the first few cases,

1+y  2+y 1+3y+y? 3+4y+)?

H(y)* = and H(y)’ =
2 2 2,.3 2.3
2y+y° 143y+y 3y+4y"+y’ 1+6y+5y"+y

we could guess the entries in the general case and then verify them by induction.
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n

1| xy

2| P(y+y)

3| P(y+3y*+y7)

4 | x*(y+6y* +5y° +y%)
5

6

(
(
O (y+10y% +15y° +7y* +°)
x8(y 4 15y 4 35y +28y* +9y° +y9)

Table 1.7: The first few bivariate polynomials from the transfer matrix method.

Lemma 1.3.9. Matrix

Proof. Proof is by induction. For n =1 we have p(1) =s(1) =1 and p(2) = 1+y. To

finish to proof we need to show that

p(n)  s(n) | | p(1) s(1) p(n)+ys(n) p(n)+(1+y)s(n)

ys(n) pn+1)] |ys(1) p(2)]  |ys(n)+yp(n+1) ys(n)+(1+y)p(n+1)
p(n+1) s(n+1)
ys(n+1) pn+2)

We have
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The rest of the proof can be easily done similarly but here we omit that part. |

Lemma 1.3.9 allows us to simplify the expression (1.11) to have

n—2

By Theorem 1.3.8 we have

d(n,k) — (”:f;z)

Now we turn our attention to the number of all possible divisions, i.e. we wish to

determine the number d(n). To do that, we again use a matrix H(y) and Theorem 1.3.8.
: 11 B : : o
By setting y = 1, we have H(1) = = . Again, the following claim is
1 2 B R

easily guessed and verified by induction.

Foy_1 F
Lemma 1.3.10. H(1)" = 2n—1 2n

F2n F2n+1

Finally, by Lemma 1.3.10 we can simplify expression (1.11) to have

Fon-s Fa-4| |1 1
]

= [anfs +Fya Fra+Fy 3
Fy g Fps| |1

1

= [an—3 Fn_n .

:FZn—1~

By Theorem 1.3.8 we have d(n) = F»,,_1.
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1.4. FURTHER POSSIBILITIES OF RESEARCH

In this chapter, we have considered various ways of tiling a narrow honeycomb strip of a
given length with different types of tiles. We have refined some previously known results
for the total number of tilings of a given type by deriving formulas for the number of
such tilings with the prescribed number of tiles of a given type. We have also considered
tilings with colored tiles and obtained the corresponding formulas. Along the way, we
have provided combinatorial interpretations for some known identities and established
several new ones. Also, we have provided closed-form expressions for several triangles
of numbers appearing in the OEIS.

But this work opens a possibility for many directions of further research. In particular,
we have not considered any jamming-related scenarios, i.e., the tilings that are suboptimal
with respect to the number of large(r) tiles. The existence of connections between our
tilings and such problems is indicated by the appearance of Padovan numbers in both
contexts [13]. Further, we have not examined statistical properties such as the expected
number of tiles in a random tiling of a strip of a given length in the way done in ref. [9].
We have not looked at the asymptotic behavior of the counting sequences. Each of the
mentioned omissions could be an interesting topic for further research.

Another interesting direction would be to look in more detail at triangles ¢, k, , k.
Uy i, and v, . We have shown that their rows (with one trivial exception) do not have
internal zeros. By inspection of the first few rows of ¢, k, #, x, and u, ; one can observe
that the rows seem to be also unimodal and even log-concave. It would be interesting
to investigate whether those properties hold for the whole triangles. Both properties are
violated in rows of v, ;, but the violations seem to be restricted to the right end. What
happens if the rightmost three elements are omitted? Also, the position of the maximum
presents an interesting challenge. Finally, more interesting identities could be derived by
looking at ascending and descending diagonals of different slopes in those triangles.

As for the divisions of a honeycomb strip, our results could be further exploited in
several directions. From the recurrences established in Section 1.3.1, one could compute
the bivariate generating functions for the numbers di(n), which could then be used to

compute the expected number of parts in a randomly chosen division. Another possibly
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fruitful direction would be to consider wider strips. Especially, the approach in the proof
of Theorem 1.3.5 could be modified to encompass wider strips. At first glance, it is
obvious that such an approach should include some paths along the internal edges that
are not the shortest. Alternatively, one could keep the strip-width low, but arrange the
hexagons in the zig-zag pattern. Finally, one could consider division problems on other

lattices.
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2. METALLIC CUBES

2.1. DEFINITIONS AND ILLUSTRATIONS

The remaining two chapters of the dissertation justify the second part of the title. Here
we use recurrence as a tool to define graphs. In this chapter, we define and investigate a
family of graphs whose number of vertices satisfies the recurrence sy, = as%_| +s%_,. We
start with the definition of hypercubes and Fibonacci cubes.

The hypercube Q, is defined as follows: the set of vertices V(Q,) consists of all
binary strings of length n and two vertices are adjacent if and only if they differ in a
single bit, i.e., if one vertex can be obtained from the other by replacing 0 with 1 or
vice versa, only once. Let L] operator denote the Cartesian product of graphs. Recall
that for two graphs G and H, their Cartesian product is the graph denoted by GLJH with
V(GOH) =V(G) x V(H) and (uy,vy)(uz,v2) € E(GOH) if u; = u and vy and v, are
adjacent in H, or vi = v, and u; and u, are adjacent in G [23]. Then alternatively, the
hypercubes can be defined as the Cartesian product of K, with itself »n times, so Q, =
K>U---UK,; = K5. Here K, denotes the complete graph with two vertices. Fibonacci
cubes I',, are special subgraphs of hypercubes where the set of vertices .%#, consists of
Fibonacci strings, a binary strings of length n without consecutive ones. The number of
vertices in Fibonacci cubes is counted by the Fibonacci numbers, |.%,| = F,1,. Fibonacci
cubes have attracted much attention and spawned several generalizations, most of them
leading to the graphs with the number of vertices counted by various types of higher-order
Fibonacci numbers [17,27]. The Pell graphs I1,,, introduced by Munarini [40] in 2019, are
graphs whose vertices are strings of length n over the alphabet {0, 1,2} with property that

2 comes only in blocks of even length. Two vertices are adjacent if one can be obtained
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from the other by replacing 0 with 1 or by replacing block 11 with block 22. The vertices
in this family are counted by the Pell numbers. Munarini’s paper inspired us to try to
generalize this idea by obtaining a family of graphs whose numbers of vertices satisfy
recurrence s, = a- s,_1 + §,— for arbitrary non-negative integer a, while preserving the
main properties of Pell graphs.

Let a be a non-negative integer and let .#’“ denote the free monoid containing a + 1
generators {0,1,2,...,a—1,0a}. By a string we mean an element of monoid .77, i.e.,
a word from alphabet {0,1,2,...,a— 1,a} with property that letter a can only appear
in the block Oa. Other letters can appear arbitrarily. For the strings o0 = o -- - o, and
B = By B, we define their concatenation in the usual way, as 8 = ot -+ - 0, By - - - B

If .7 denotes the set of all elements from the monoid .”“ of length n, one can easily
obtain a recurrence for the cardinal number s% = |.#¢|. A string of length n can end with
any of the letters 0,1,...,a — 1, and the rest of the string can be formed in s, ways. If a
string ends with the letter a, that necessarily means that there is at least one zero preceding

a, and the rest of the string can be formed in s§_, ways. Hence, s;, satisfies the recurrence

so=asy_;+55_, (2.1)

with initial values s = 1 and s{ = a.

The metallic cube of dimension n, denoted by II, is a graph whose vertices are ele-
ments of the set .7%, i.e., V (I1¢) = .#% and for any vi,v, € V (I1¢) we have viv, € E (I1%)
if and only if one vertex can be obtained from the other by replacing a single letter k with
k41 for 0 <k <a—1. An alternative definition of adjacency can be given via modified

Hamming distance. For vi = @ --- &, and v, = B; - - - B, we define
_ n
h(vi,v2) =Y log — Byl
k=1

Then v; and v; are adjacent if and only if 7(v{,v2) = 1. As an example, Figure 2.1 shows
graphs I1¢ fora=3andn=1,2,3.

From the definition of I1¢, it is immediately clear that I} = I',,_;. Namely, removing
the first O in vertices of IT! establishes a graph-isomorphism between the metallic cube
I1! and the Fibonacci cube I',_;. However, I12 are not isomorphic to Pell graphs. One

possible generalization could be obtained using the alphabet {0, 1,...,a} where a appears
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Figure 2.1: Graph H,31 for n =1 (lower left), 2 (upper left), 3 (right).

only in the blocks of even length and two vertices are adjacent if one can be obtained from
the other by replacing the single letter i with i+ 1 for 0 <i < a—2 or by replacing a block
(a—1)(a—1) with aa. This was independently done by Irsi¢, Klavzar, and Tan [28].
This family of graphs is a straightforward generalization of Pell graphs as defined by
Munarini and inherits many of their properties. Instead of pursuing this approach, we
opted for a generalization better suited to higher values of a yielding along the way an
alternative definition of Pell graphs and offering numerous possibilities for comparisons.
The difference is illustrated in Figure 2.2, where it can be seen that, although similar, the
graphs obtained under the two generalizations are not isomorphic, for vertex 111 of Pell
graph shown in the left panel of Figure 2.2 has degree 5, while the maximum degree in
H% is 4.

In Table 2.1 we show the number of vertices for a few initial values of a and n. The
Pell numbers appear in the second column, while the (shifted) Fibonacci numbers appear
in the first one. It can be observed that the columns of Table 2.1 grow exponentially, as

the n-th powers of the corresponding metallic means, while the elements in rows grow
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022

Figure 2.2: The Pell graph I13 (left) and the corresponding metallic cube H% (right).

Table 2.1: The number of vertices in IT.

Al T2 03 4 5 6
1l 2 3 4 5 6
212 5 10 17 26 37
303 12 33 72 135 228
415 29 109 305 701 1405
5/8 70 360 1292 3640 8658
6|13 169 1189 5473 18901 53353
7021 408 3927 23184 98145 328776
8|34 985 12970 98209 509626 2026009

polynomially. In fact, the number s¢ of vertices of I is equal to
/2] /0 ke
sp=Fur1(a) =Y, < L )a“", (2.2)
k=0
where F,(x) are the Fibonacci polynomials. So, for a fixed n, we obtain that the growth

of the number of vertices is polynomial with degree n. It is also worth mentioning that

1 <<a+\/az—_}_4>n+l_(a_\/az—_|_4)n+l)

2 2

a

S}’l
Va2+4
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2.2. BASIC STRUCTURAL PROPERTIES

2.2.1. Canonical decompositions and bipartivity

It is well-known that the Fibonacci cubes and the Pell graphs admit recursive decompo-
sition [40,41]. In this section, we show that such decompositions naturally extend to the
metallic cubes.

We start with the observation that the set of vertices . can be divided into disjoint
sets based on the starting letter. One set contains the vertices starting with block Oa, and
the remaining a sets contain the vertices that start with 0,1,...,a —?2 and a — 1, respec-
tively. Assuming @ € . | and 8 € ./ ,, the vertices O, 1«, ..., (a— 1)« generate a
copies of a graph I1?_, and vertices Oaf3 generate the only copy of IT1¢_,. We call this the
canonical decomposition, and we use the @ operator to indicate the decomposition. That

brings us to our first result.

Theorem 2.2.1. For n > 2, the metallic cube IT admits the decomposition
I, =11, &---®II,_ &II;_,

in which the first factor IT?_, is repeated a times.

The decomposition of Theorem 2.2.1 is called the canonical decomposition of IT.

PO

Figure 2.3: Canonical decomposition IT; =117, & --- @I, SII_,.

In Figure 2.3 we show a schematic representation of the described canonical decom-
position. As an example, Figure 2.4 shows the canonical decomposition of graph Hg into

three copies of graph H% and one copy of graph H%.
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It is worth noting that ITY_, ©--- ®II7_| = B,UIT}_,, where F, is the path graph on
a vertices. Here the [] operator denotes the Cartesian product of graphs.

A map x : V(G) — {0,1} is a proper 2-coloring of a graph G if x(vi) # x(v2) for
every two adjacent vertices vy, v, € V(G). A graph G is bipartite if its set of vertices V (G)
can be decomposed into two disjoint subsets A and B such that no two vertices of the same

subset are adjacent. Equivalently, a graph G is bipartite if it admits a proper 2-coloring.
Theorem 2.2.2. All metallic cubes are bipartite.

Proof. The proof is by induction on n. We observe that I1{ is isomorphic to a path graph
on a vertices and, thus, bipartite. Since IIf is an a X a grid with one additional vertex
Oa, it is an easy exercise to see that it also admits a proper 2-coloring. Now we suppose
that II{ is bipartite for every k < n. By the inductive hypothesis, it admits a proper 2-
coloring x : 1% , — {0,1}. Consider the map x': I1¢ ;, — {0,1}, where x'(v) =1—
2(v). Then the map x’ is a complementary proper 2-coloring for the graph IT¢_,. Since
I, =117 _, ®---®IId_, ®II;_,, we can choose a coloring x for the subgraph IT¢_, in
I14 if the subgraph is induced by vertices starting with even k, and ¥’ if k is odd. Finally,
for the only copy of IT?_, in the canonical decomposition, we can choose ' restricted to

IT;_,. Thus we obtained a proper 2-coloring of graph ITj. |

Observe that the proof of Theorem 2.2.2 implies that the sets A and B have the same
cardinality whenever the number of vertices is even. Otherwise, the cardinality differs by
one. Figure 2.4 shows a proper 2-coloring of the metallic cube Hg. Since the number of
vertices in that graph is 33, we have 17 vertices in one set and 16 vertices in the other.

We now present another decomposition of the metallic cubes. To this end, recall that
P, denotes a path graph with a vertices, and P¥ denotes the Cartesian product of path
P, with itself k times, that is P,(1---00P,. Also, note that |V (P¥)| = ak. Graphs P¥ are
called grids or lattices. The following theorem illustrates the combinatorial meaning of

the Fibonacci polynomials of identity (2.2).

Theorem 2.2.3. The metallic cube I can be decomposed into F,y; grids, where F;,

denotes n-th Fibonacci number.

Proof. Consider the subset of strings S C ., where each string @ € S has k blocks Oa

in the same position. Then « has n — 2k letters that are not part of a Oa-block. There
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003

i
203 ¢

Figure 2.4: The canonical decomposition and a proper 2-coloring of IT3 = Hg &) Hg P

3 3
I3 @ 1.

are a" 2k such strings and the subset S C .7 induces a subgraph of IT¢ isomorphic to a
grid Pa"*Zk with @"~2¥ vertices. Also, note that different locations of blocks Oa produce
different strings. Hence, for different alignments, the induced grids are vertex-disjoint.
To finish our proof, we just need to determine the number of strings with exactly k£ blocks
Oa. We can identify each such block as a single letter, and reduce our problem to a subset
of n — k positions, where we need to choose k positions for those blocks. Thus, we have
(” ;k) different alignments for k£ blocks Oa, and each alignment induces disjoint subgraphs
P2k 'We obtained a decomposition

= (” . k> Pk,

k>0

Then the number of gridsis ¥ (",*) = F,11, and this completes our proof. [ ]
k>0

To obtain our last result in this subsection, we consider the map p : V(II) — .%,
defined on the alphabet {0, 1,...,a} and extended to V (I1¢) by concatenation, as
0, 0<a<a—1,

p(a) =
1, a=a.
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For a Fibonacci string w, let p~!(w) denote the subgraph of IT¢ induced by vertices

{vevIT)lp(v) =w}.

Theorem 2.2.4. Let I1¢/p be the quotient graph of IT¢ obtained by identifying all ver-
tices which are identified by p, and two vertices w; and wy in I1%/p are adjacent if there
is at least one edge in I1¢ connecting blocks p~!(w;) and p~!(w,). Then I1¢/p is iso-

morphic to the Fibonacci cube I';,_;.

Proof. The map p identifies two vertices v, v, € I14 if they have the same number and
the same positions of the blocks Oa. But all vertices having an equal number of k blocks

Oa in the same positions induce a grid subgraph P"~2, So, each such grid is mapped into

a single vertex in Il /p. By Theorem 2.2.3, |[V(I1%/p)| = F,+1. Two grids have at least
one edge connecting them if the number of the blocks Oa between them differs by exactly
one, with the grid having one block less, having all blocks Oa in the same positions as the
other grid. For example, for a =5 and n =5, one grid P51 is induced by vertices a0505
and another grid P? is induced by vertices 3105,3, where @, B, B2, B3 € {0,1,2,3,4}.
Then those grids must have an edge connecting them. For example, the edge connecting
vertices 00504 and 00505. From the definition of the map p it is clear that p maps two
grids in the neighboring vertices in I1% /p only if their image by p differs in a single bit.

Hence, I1¢/p is isomorphic to I, . [ |

As an example, Figure 2.5 shows the metallic cube Hﬁ decomposed into grids. Ob-

serve that Hﬁ /p is isomorphic to the Fibonacci cube I'3.

2.2.2. Embedding into hypercubes

Since hypercubes Q, have binary strings as vertices, and all binary strings of length n are
vertices in IT§ for a > 2, we have a natural inclusion Q, C II¢. Furthermore, for a > 1,
since .7} C .74, for every a, we have I',_; = I1} C T1%. The following theorem shows

another direction. Every metallic cube is an induced subgraph of some Fibonacci cube.

Theorem 2.2.5. For all @ > 1 and n > 1, the metallic cubes are induced subgraphs of

Fibonacci cubes and, hence, hypercubes.
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P4
s

~ IiHA

Figure 2.5: Decomposition of I13 = Py ® Py ® P; G Py & PY.

Proof. For a =72, we define a map ¢ on the primitive blocks, i.e., on the blocks that every

string from the set .# can be uniquely decomposed into, 0, 1, and 02 as follows

o(0) =001
(1) =000

c(02) =001010.
For a > 2, the primitive blocks, are 0,1,...,a— 1 and Oa. So, we set

5(0) =010101---010101
(1) = 000101 ---010101

c(2) = 000001 ---010101

6(a—2) =000000---000001
o(a—1) =000000---000000

0(0a) =010101---01010100100000 - - - 000000,

where strings o (k) have length 2a — 2, for 0 < k < a— 1 and string 6(0a) has length
4a — 4. The first half of the string 6(0a) contains a — 1 1’s and the second half contains 1

only once.
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In case of a = 2, the map &, defined on the primitive blocks, extends to ¢ : 12 — H%n

1

by concatenation. In case of a > 3, it extends to o : I1§ — H(2a_2

- Since the map is
n
injective and preserves adjacency, we obtain an induced subgraph of the Fibonacci cube

isomorphic to the graph IT¢. ]

Next, we show that metallic cubes are median graphs. A median of three vertices is a
vertex that lies on a shortest path between every two of three vertices. We say that a graph

G is a median graph if every three vertices of G have a unique median.

20

03
Figure 2.6: The median of the vertices 10, 22 and 03 is the vertex 12 .

Figure 2.6 shows that the unique median of the vertices 10, 22 and 03 is vertex 12
because that is the only vertex that lies in a shortest path between every two red vertices.

Klavzar [30] proved that Fibonacci and Lucas cubes are median graphs, and Munarini
[40] proved that Pell graphs are median graphs. They both used the following theorem by
Mulder [39].

Theorem 2.2.6 (Mulder). A graph G is a median graph if and only if G is a connected
induced subgraph of an n-cube such that with any three vertices of G their median in

n-cube is also a vertex of G.
Theorem 2.2.7. For any a > 1 and n > 1, the metallic cube I1¢ is a median graph.

Proof. Itis well-known that the median of the triple in Q,, is obtained by the majority rule.
Soletax=¢---&, B =08, and y=p; ---p, be binary strings, i.e., &, 5;,p; € {0,1}.
Then their median is m = ;- -- {,, where {; is equal to the number that appears at least

twice among the numbers ¢&;, &; and p;.
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Let a > 3 and let o be the map defined in the proof of Theorem 2.2.5. By the same
theorem, I1% is a connected induced subgraph of a (2a — 2)n-cube. To finish our proof,
we just need to verify that the subgraph induced by the set ¢ () is median closed,
i.e., that for every three vertices in o (.), their median is also a vertex in o ().
Every string from the set o (%) can be uniquely decomposed into blocks & (j) with
length 2a — 2, for 0 < j < a—1, and a block ¢ (0a) with length 4a — 4. Note that the
median of three blocks, where two blocks are the same, is that block that appears at least
twice. Hence, we only need to consider cases where all three blocks are different. First
consider three blocks o (i), o (j) and o (k). Without loss of generality, we can assume
that 0 <i < j <k <a—1. Then their median is & (). In the second case, we have o (i)
and o (j) for 0 <i < j <a—1, and the second half of the block & (0a), i.e. of the string
0010---0 with length (2a — 2)n. But, since one comes only in even positions in strings
o (i) and o (), their median is o (). Also, note that we do not have to consider the case
with the first half of the block o (0a) because it is equal to the block ¢ (a—1). So, we
conclude that the subgraph induced by the set o (.) is median closed. The proof for

a = 2 is similar, so we omit the details. [ |
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2.3. THE NUMBER OF EDGES AND

DISTRIBUTION OF DEGREES

Now that we have elucidated the recursive structure of metallic cubes via the canonical
decomposition, the recurrences for the number of edges and the details of degree distribu-
tions can be simply read off from our structural results. We start with counting the edges
of ITj,.

Let ef denote the number of edges in I1, i.e., ¢f = |E(II3)|. Since IT§ is an empty
graph, ej = 0. The graph II{ is the path graph with a vertices, so, we have ¢{ =a— 1.
The graph II5 is an a x a grid with the addition of the vertex Oa being adjacent to the
vertex O(a — 1). Hence, e§ = 2a> —2a+ 1. For larger values of n, the graph I1¢ consists
of a copies of II? | and a single copy of Il ,, and those subgraphs contribute with
a-e,_ | +e,_, edges. Furthermore, there are (a—1) -89 +s¢_, edges connecting a
subgraphs IT¢_, and one subgraph IT%_,. Since s§ —s¢ | = (a—1)s5_, +s¢_,, forn >0,

the overall number of edges is
en=a-€,_;+en_o+sn—sn_;. (2.3)

Hence, the number of edges satisfies a non-homogeneous linear recurrence of order 2
with the same coefficients in the homogeneous part as the recurrence for the number of
vertices. Table 2.2 shows some first few values of ej;. With some care, patterns of the
coefficients of the polynomials appearing there can be analyzed, suggesting the explicit

formula established in our following theorem.
Theorem 2.3.1. The number of edges in the metallic cube II is
n k n+tk
é=Y (-t m : J)a«.
k=0

Proof. We proceed by induction on n. For n = 1 and n = 2, the statement holds. Further-

more, since the number of vertices s¢ satisfy the identity (2.2), we have

—k —k—1
SZ_SZ—I — Z (l’l L )an—Zk_ Z (n L )an—2k—l

k>0 k>0
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Table 2.2: The number of edges in IT§.

n| e,

1la—1

224> —2a+1

3|3a3—3a*>+4a—2

4 | 4a* —4a’ +9a* — 6a+2

5|5a —5a*+16a> — 124> +9a -3

6 | 6a° — 6a° +25a* —20a> 4 244> — 12a+3

k=0 k
— - _1\n—k LnTH(J)ak
Sl ( :

By using the inductive hypothesis, after adjusting indices and expanding the range of

summation, we obtain

n—1

R N (V+]’22‘]J)ak+l+
+g(—1)n k{”“;_ﬂ (L%J)ak
Ee ] ()
L V*}%ZJ>ak
:é(_l)"—k{#w VT:{J)ak

Now, by using expressions for s;, —s¢_, and a-ej, _, +e%_, our claim follows at once. W

For the Fibonacci cubes, Klavzar [30] proved that |E(T,)| = Fy1 + ZZ;%FanH_k.
By plugging in @ = 1 into our result and recalling that I} = I',_;, we have obtained a

combinatorial proof of the following identity.
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Corollary 2.3.2.

n n+k n
Z(—l)n_k V—;]{‘ (L ]2€ J) :k_OFan—k.

k=0
Starting from the recurrence (2.3), it is easy to find the generating function

— 1)t 412
Zeztn: ((1 )+

e (1—at—12)%

Setting a = 1 yields a self-convolution of Fibonacci numbers which appears as the se-
quence A001629 in OEIS [46]. For a = 2 we have the sequence A364553 that corresponds
to the number of vertices in n-Pell graphs [28]. Although the n-Pell graphs and metallic
cubes are not isomorphic, they have the same number of vertices and edges. Sequences
e4 for the higher values of a do not appear in the OEIS.

Now we turn our attention to the degrees of vertices of the metallic cubes and their
distribution. We consider first the case when a > 3. Hence, leta >3 andv=o0 --- oy, € I},
be any vertex. If 0 < o; < a— 1 for all 7, then v has the maximum possible degree, which is
2n. Each Oa-block reduces the degree by 3, each 0(a — 1)-block reduces the degree by 1,
as well as each letter O or @ — 1 which is not part of some 0(a — 1)-block. We are interested
in the number of vertices with degree 2n —m. So, let v be a vertex containing / Oa-blocks, &
0(a— 1)-blocks and k letters 0 or a — 1, where none of k letters 0 and a — 1 are part of 0(a —
1)-block. Then v has degree 2n — 3/ — h — k. Now we want to count the number of such
vertices. There are (""" ("72"~") ("""~} ways to choose the positions of Oa-blocks,
0(a— 1)-blocks and letters 0 or @ — 1. The remaining n — 2h — 21 — k positions can be filled
in (a—2)""2"—21=k ways. If we set that there are 2¥ ways to fill k positions with 0 ora — 1,
we possibly obtained more than [ 0(a — 1)-blocks and counted some vertices more than
once. Let g(n,1,h,k) = q(1,k) = ("71) ("3 1) ("2 2K (a — 2)" 221K denote the
number of vertices where all vertices with exactly / blocks are counted once, and vertices
with more than / blocks are counted more than once. More precisely, beside vertices of
length [, the number ¢(1) counts all vertices with [+ 1,1 +2,...,1+ L%J blocks 0(a — 1),
where each vertex with exactly / + j blocks is counted ("}/) times. If p(n,1,h,k) = p(l,k)

denotes the number of vertices with precisely / blocks 0(a — 1), we have

3] ;
q(l,k) = Z (l—{l—]>p(l+j,k—2j).

j=0

71



Metallic cubes The number of edges and distribution of degrees

Now we retrieve the numbers p(/,k) by direct counting. To obtain the number of ver-
tices with exactly / blocks, we have to subtract the number of vertices with more than
[ blocks. The vertices having [ 4 1 blocks were counted (IH) times in g(/,k) and sub-
tracting q(1,k) —q(l+ 1,k —2) (l“) corrects that error. But then the vertices containing
[ +2 blocks were counted (/%) — (ﬁ[%) ("1) = (*+?) times so far, so we need to add
(Z+2)q(l + 2,k —4) to compensate for that error. Inductively, a vertex with / + j blocks is

(7)-562)(7)-(5)-(7)50)

0 for j odd

counted

-2 (IJ]Tj) for j even

times, and there are g(I/ + j,k —2j) such vertices. So we conclude that the number of

vertices that have exactly / blocks O(a — 1) is

5] :
(4] . .
=) (—U’( . )q(l+17k—21)-
j=0 J
Let A, ,» denote the overall number of vertices in II¢ of degree m. Then we have

Apon-m= Y, plnhlLk). (2.4)

3h+l+k=m
2h+21+k<n
1,h,k>0

The maximum degree is achieved for m = 0. The formula (2.4) reduces to A, o, = (a—2)".
The minimum degree is achieved for the largest possible number of Oa-blocks, which

reduces the degree the most, hence h = 5| and k =n—2|4|. Thus, m =n+ |5|. The

formula for A .7 reduces to
n, [21

8,1 =4 (m[5]-0n-2]3])
:(< —n§ )2"2L3J>(a—2)0
E
for n even;

n+1 fornodd.
Figure 2.7 shows the degree of each vertex in the graphs H?, H% and H%.
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z
o

Figure 2.7: The graph IT> for n = 1,2,3 with the degree of each vertex.

It is now time to consider the cases @ = 1 and a = 2. Their separate treatment is
necessary since, for a = 2, there are no letters beside 0,a — 1 and a, and for a = 1 we only

have 0 and a. For a = 2 we have k = n—2h — 21 and q(n, h,l,k) becomes

n—h—1l\({n—=2h—1\_, o_

and the rest of the argument is the same. The maximum degree is now obtained by setting
I = |4] and h = 0. The minimum degree is obtained by setting » = |5 | and [ = 0. Since

both cases produce the same number of vertices, we have

Ans] =Buni|z] =4 (”’0’ EJ)
_ (”_ ng>2”—2m
5]

1 for n even;

n+1 fornodd.

For a = 1, we would need to modify our approach, but we omit the details since the

distribution of degrees for Fibonacci cubes is already available in the literature [33].
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We conclude this section by computing the bivariate generating functions for two-
indexed sequences A, ; counting the number of vertices in II;; with exactly k neighbors.
We suppress a to simplify the notation. Take a > 2. Recall that .#“ denotes the set of
all words from the alphabet {0,1,2,...,a— 1,a} with the property that the letter a can
only appear immediately after 0. Every letter starts with 0,...,a — 1 or with the block Oa.
Hence, the set .’ can be decomposed into disjoint subsets based on starting letters. We

write

S =405+ 1.9 4+ (a—1).5°+0a.7",

where € denotes the empty word. Let A(x,y) = Y An,kx”yk be the formal power series
n7

where A, ; is the number of vertices in IIj] having k neighbors. Consider the set that

contains all vertices that start with 0, but not with the Oa-block and let A%(x,y) denote the

corresponding formal series. Then we have

A(x,y) = 1+A%(x,y) + (a — 2)xy*A(x,y) +xpA(x,y) +x*yA(x,)

A%(x,y) = xy (14A%(x,y) + (a — D0?Ax,y) +XyA(x,Y) ).

Note that adding 0 at the beginning of a vertex increases the number of neighbors by one,
except when the vertex starts with a — 1, in which case adding 0 increases the number
of neighbors by two. By solving the above system of equations we readily obtain the

generating function:

1
1—(2y+(a—2)y*)x— (y—y>+y3)x*

Ax,y) =

Here we list some first few values of A,, ; in Tables 2.3 and 2.4. Itis interesting to observe

Table 2.3: Some first values of A,, ; for a = 2.

n\k|l 2 3 4 5 6 7
1120 0 0 O 0 O
2113 1 0 0 0 O
3104 4 4 0 0 O
4 101 10 7 10 1 O
5100 6 20 18 20 6

74



Metallic cubes The number of edges and distribution of degrees

Table 2.4: Some first values of A, ; for a = 3.

k|1 2 3 4 5 6 7 8 9 10
11210 0 0 0 0 0 0 0
21135 1 0 0 0 0 0 0
3104 6 14 8 1 0 0 0 0
410110 19 33 34 11 1 0 0
5100 6 23 60 8 108 63 14 1

that their rows are not unimodal for a = 2, but for a = 3 they appear to be unimodal.
Maybe it would be interesting to explore for which values of a unimodal rows occur.

Also, they do not (yet) appear in the On-Line Encyclopedia of Integer Sequences [46].
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2.4. METRIC PROPERTIES

In this section, we look at some metric-related properties of the metallic cubes. In partic-
ular, for a given metallic cube IIj;, we compute its radius and diameter and determine its
center and periphery as functions of a and n.

We recall some basic definitions [6]. A path of length n in a graph is a sequence of n
edges ey, ea,...,e, such that e¢; and e;;; have a common vertex for every 1 <i<n—1.
The distance between any two vertices vi, v, € V(G), denoted by d(vy,V2), is the length of
any shortest path between them. By eccentricity e(v) of a vertex v € V(G), we mean the
distance from v to any vertex farthest from it. More precisely, e(v) = max,,cy () d(v,w).
The radius of G, denoted by r(G), is the minimum eccentricity of the vertices, and diam-
eter of G, denoted by d(G), is the maximum eccentricity over all vertices of G. A vertex v
is central if e(v) = r(G). The subset Z(G) = {v € V(G) : e(v) = r(G)} C V(G) is called
the center of G, while the subset P(G) = {v € V(G) : e(v) =d(G)} C V(G) is called the
periphery of G. In the next few theorems, we determine the radius, center, diameter, and
periphery of the metallic cubes.

Remark 2.4.1. Letv=q;--- o, € V(II%) be an arbitrary vertex. To reach a vertex most

distanced from v, every letter in v greater than L%J must be changed into 0. Any letter

smaller than L%J must be changed into a — 1 or, if the letter before it was changed into 0,

into a. A letter equal to [§ | must be changed into 0 or into a.

Theorem 2.4.2. Fora > 1and n > 1 we have

- 213+ [213)

Proof. Lete = |5 and & = ge---& € V(I12). We want to compute the eccentricity e(&).
It is not hard to see that any longest path from € leads to the vertex 0a0Oa---0a0 if n is
odd, or to 0a0a - --0a if n is even. Note that the most distant vertex of & does not have to

be unique. Single letter € can be changed into 0 in |§] steps, andto aina— [§]| = [§]

steps. Since & has length n, there are [4] odd positions and |5 | even positions. That
brings us to the total of L%J (%W + (%W ng steps. Thus, e(gg---€) = L%J (%W + (%W L%J
As the next step, we want to show that every vertex has the eccentricity at least e(€).

Let v € V(II}) be arbitrary. If v has k blocks Oa, then it has n — 2k letters in the alphabet
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{0,1,...,a—1}. The most distant vertex is obtained if we change every single letter
0,1,...,a— 1in string v at least | § | times, and if we change each block Oa into (a — 1)0.
The latter transition requires k(2a — 1) steps.

a

To prove that e(v) > |4][5] + [5]|5]. we consider cases of even and odd a sepa-

rately. If a is even, then the formula (2.5) becomes r(&€) = n- 5. Hence,

e(v) > (n—2k)~g+k(2a—l) :n-§+k(a—1) >n-—=c¢e(8).

N

For a odd, the formula (2.5) reduces to (&) =n-% — 1 ([4] — |4]). We have to prove
that changing an arbitrary number of letters in € does not decrease the eccentricity. So,
let k denote the number of letters that differ from €. That leaves us with s blocks of € of
lengths hy,hy ..., hg. Note that n = k+ ) h; and s < k+ 1. According to the first part of
the proof, each g€-block contributes to the eccentricity with #; - % — % ( {%’W — L%J ), and
each a # € contributes at least with % Note that block Oa contributes more than any

other two letters, so we can assume v does not contain Oa-blocks. We have

w025 (34 [3)) w25

a 1 hi hl' k
-n5-32([5]-15))+3
ST
- 2 2
>n-6—l—1.

- 2 2

Hence, for n odd, we have e(v) > ¢(€). For n even, we have to show that
Y (|%]—|%|) <k #X([%]-|%]) =k+1, each i is odd, and s and k have dif-
ferent parity. If s is odd, then Y A4; is odd, and since n =} h; +k, k is odd too. It follows

that s is even. Then ) A; is even and k is even too. Thus, we reached a contradiction with

£ (%]~ [%]) = k+1. 1t follows that ¥ ([ %] — | %]) <k, and

w23 3E (4] [4]) 4
2
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Corollary 2.4.3. For a and n odd, the center of I1§ consists of a single vertex, Z(I1?) =
&}

Proof. Let a and n be odd and let € = |4] = %51. By Theorem 2.4.2, we have r(I1%) =
n-%4—1and &€ Z(I1%). Suppose v € Z(T1¢). We want to prove that v = &. As in the
proof of Theorem 2.4.2, let hy, ..., hy denote the lengths of €-blocks in v, and let k denote
the number of letters o # €. Since v € Z(I1¢), the contributions of e-blocks and letters
between them must be minimal. A minimal contribution of each letter @ # € is %, which
can be achieved only by changing €+ 1 into O or € — 1 into a — 1. Hence, @ = € £ 1. The

minimal contribution of each &-block is #; ‘5‘ —1 ( {%_‘ — L%J ) We have:

=533 (4]-[4])) 25
k
2

5 (%]-14)-

It follows that %Z < {%-‘ — L%J) — ’% = %, so we conclude that Z([%l — L%J) =5 =
k4 1. That means that the length of €-blocks must be odd and between every two blocks
there is a single letter ¢; different from €. So v has the form €, - - - & &1 1. The first &-
block must be changed into 0a0 - - - 0a0, hence ¢ must be € + 1, which, by changing into
0 contributes with % Otherwise, oy = € — 1 could be changed into a, and contribution
would be increased by one. But then, to achieve the maximal distance, the block &,
must be changed into a0a0a - - - 0a, which is a contradiction with the minimality of the

contribution. That means k = 0, and v = €. |

Lete = |5| and &€ = ¢---£ € V(I12), as before. We define U7 C V(I1%) to be the set

containing all vertices such that

1. they differ from £ in at most one position, i.e., they have form €---gae - - - €, where

a=€corox=¢€=x1,
2. the letter € 4 1 can only appear in even positions,

3. the letter € — 1 can only appear in odd positions.
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Note that for an even n, every vertex v € U¢ not equal to € has exactly one €-block of odd

length.
Corollary 2.4.4. For a odd and n even, Z(I1%) = Uf.

Proof. By Theorem 2.4.2, &€ € Z(I13), so let v € Uy be arbitrary and different from &. Let
h; denote the length of an odd €-block and, since # is even, the other €-block has even
length h,. If v has one letter € 4 1, then € + 1 is immediately after the €-block of length
hi. So, by the proof of Theorem 2.4.2, the e-block of length 4, by changing into block
0a0- - - 0a0, contributes with i - 5 — %, the letter € 4+ 1 contributes with % by changing
into 0, and the €-block of length &, contributes with /5 - 5 by changing into block a0 - - - a0.
So,

a 1 a+1 a a
e(v)—h1-§—§+ 7 —I—hz-i—n-i,

hence v € Z(I14). In the other case, where v contains a letter € — 1 just before the £-block
of length Ay, we have similar situation. If the letter € — 1 is the first letter, it contributes
with %1 by changing into a — 1. The &-block of length A, contributes with h; - 5 by
changing into Oa---0a. If € — 1 appears after the €-block of length A5, the last € in that
block can be changed into 0 and € — 1 into a, or the last € can be changed into @ and € — 1
into 0. In both cases, the sum of the contribution is the same, A, - % + % The e-block of
length /2 contributes with iy - 4 — 3. Thus, we proved U¢ C Z(I1%).

It remains to prove that Z(I1}) C Uy Let v € Z(I1}). Then e(v) = n- 5. On the other
hand, let k denote the number of letters different from €. Those letters must be € £ 1

since every other letter increases the eccentricity. If k..., hs denote the lengths of the

ao-g(o 23 ([4]-4])) 25
r3-in (- 18] 4

It follows that Y < Pﬂ — L%J) = k, which means that the number of &-blocks of odd

e-blocks, then

length is k. If k =0, then v = €. If k = 1, then there are at most two £-blocks with lengths
hi and hy. Since € + 1 coming before an €-block of odd length increases its eccentricity,

we conclude that € + 1 must come after €-block. In the other case, for the same reason,
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the letter € — 1 must come before an €-block of odd length. Since 7 is even, the other
€-block has an even length. So, ve Uf. If k > 1, then v = & - - - & &1, Where k
blocks have odd lengths and one block has even length. Since k > 1, we have at least one
substring & 0;€; with both e-blocks of odd length. Since ¢; must be € + 1, it increases the

eccentricity of block ;. Hence, k <1 and v € Uy. [ |

Let € = § and let V' C Z(II;}) be the set containing all vertices with letters € or € — 1

such that € — 1 can not appear after an €.
Corollary 2.4.5. For a even, Z(I1%) = V2.

Proof. Let a be even and let € = §. By Theorem 2.4.2, we have r(ILj) =n-5 and &€ €
Z(IL;). Let v € Z(II;;). The minimal contribution of each letter is §. For the minimal
contribution to be achieved, one can only change the letter 5 into O or a, and § — 1 into
a— 1. For the letter § — 1 to be changed into a — 1, the letter just before it must be changed
into a — 1 or a. So, letter % — 1 can be the first one or come after another letter % —1. If
it comes after 5 which can always be changed into 0, the contribution of 5§ — 1 would
increase by one.

Conversely, from the definition of V{, it is easy to see that e(v) = n-§ whenever

v € V!, because every € — 1 contributes with 5 by changing into a — 1, and every letter €

contributes with § by changing either in 0 or a. Hence, Vi C Z(I13). [ |

For example, Z(ITY) = {122222,221222,222212,222222,222223,222322,232222},
Z(I13) = {2222222} and Z(113) = {1111,1112,1122,1222,2222}.

1, for a and n odd,
Remark 2.4.6. |Z(11%)| =

n+1, otherwise.

Our final result in this section is about the diameter of the metallic cubes.

Theorem 2.4.7. Fora > 1 and n > 1 we have
d(IT) =an—1.

The periphery consists of two vertices, 0a0a - --0a(0) and (a — 1)0a- - -a0(a).
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Proof. Consider the vertex v = 0a0a---0a0 if n is odd or v = 0a0a---0a if n is even.
The first letter contributes with a — 1 by changing into a — 1, and every other letter with
a by changing into 0 or a. We have e(v) = an — 1. It is clear that no other vertex has
eccentricity greater than an — 1, because a string can not begin with the letter a. Thus the
maximal contribution of the first letter is also achieved. So for n even we have P(I1%) =

{0a---0a,(a—1)0a---a0}, and for n odd P(IT%) = {0a---a0,(a—1)0a---0a}. [ |

: : »4’:"3‘3\4
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Figure 2.9: The metallic cube Hﬁ with the eccentricity of every vertex.
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2.5. HAMILTONICITY

A Hamiltonian path in a graph G is a path that visits each vertex of G exactly once. A
Hamiltonian cycle in G is a cycle that visits each vertex exactly once. A graph contain-
ing a Hamiltonian cycle is called Hamiltonian graph. In this section, we examine some
Hamiltonicity-related properties of the metallic cubes.

In their paper [36], Liu et al. showed that all (generalized) Fibonacci cubes contain
a Hamiltonian path. In the next theorem, we show that every metallic cube contains a

Hamiltonian path.
Theorem 2.5.1. For all a,n > 1, the metallic cube IT} contains a Hamiltonian path.

Proof. The proof is by induction on n. We first consider the case of a even. We wish
to prove that, not only the graph II{ contains a Hamiltonian path, but it contains a path
starting at Oa---0a(0) and ending at (a—1)---(a—1). For n =1, graph II{ is a path
on a vertices and the claim is valid. For n = 2, graph I1f is an a x a grid with addition
of one vertex Oa being adjacent to the vertex 0(a — 1). So, for even a, a Hamiltonian
pathis 0a - -+ —- 00— 10 —» --- - l(a—1) = -+ = (a—1)(a—1). Figure 2.10
shows a Hamiltonian path in H% and in H%. Now suppose that IT{ contains a Hamiltonian
path for all k < n. By the assumption, let H,_| and H,_, denote the Hamiltonian paths
in IT%_, and II;_,, respectively. The paths H,_; and H,_ start at 0aOa---0a(0) and
end at (a—1)---(a—1). Let 0H,_1,...,(a—1)H,_1 and OaH,_, denote the paths is
IT% obtained from H,_; and H,_, by appending 0, 1,...,a — 1 or Oa on each vertex and
let 0H, 1,...,(a—1)H,_| and OaH,_, denote their reverse paths. The path OaH,
ends at Oa(a —1)---(a— 1) and the path OH,_ begins at 0(a—1)---(a—1). Since the
vertices Oa(a—1)---(a—1) and O(a—1)---(a— 1) are adjacent in IT¢, those two paths
can be concatenated. Hence, by concatenating OaH,,_,0H, 1,1H, 1, --,(a—2)H,_,
and (a — 1)H,_, we obtain a Hamiltonian path in I1¢ that begins at Oa- - - 0a(0) and ends
at (a—1)---(a—1).

Let a now be odd. We wish to prove that Il contains a Hamiltonian path with
endpoints at Oa(a—1)---0a(a—1) and (a—1)0a---(a— 1)0a. For example, if a = 3
and n = 1,2,3,4,5, the endpoints are 0, 2, 03, 20, 032, 203, 0320, 2032, 03203 and

82



Metallic cubes Hamiltonicity

20320, respectively. The rest of the proof is carried out for n where n = 0 (mod 3).
The cases for n =1 (mod 3) or n =2 (mod 3) are similar, so we omit the details.
The base of induction is easy to check, similar to the case of a even. By the inductive
assumption, let H, | and H, , denote Hamiltonian paths in IT]_, and II_,, respec-
tively. The path H,_; has the starting point Oa(a — 1)0a(a — 1)---0a and the ending
point (a — 1)0a(a—1)0a--- (a — 1)0, and the path H,_, starts at Oa(a — 1)0a(a—1)---0
and ends at (a — 1)0a(a—1)0a---(a—1). Let 0H,_y,...,(a—1)H,_; and OaH,_, de-
note the paths in II¢ obtained from H,_; and H,_, by appending 0,1,...,a — 1 and
Oa, respectively, on each vertex, and let OH,_1,...,(a — 1)H,_; and OaH, , denote
their reverse paths. The path OaH, , ends at Oa(a — 1)---0a(a — 1) and the path
0H,_1 begins at 0(a — 1)0a---(a — 1)0. Since the vertices Oa(a —1)---0a(a — 1) and
0(a—1)0a---(a—1)0 are adjacent in IT%, those two paths can be concatenated. Hence,
by concatenating OaH, _»,0H, 1,1H, 1,2H, 1---,(a —2)H,_1 and (a — 1)H,_1, we
obtain a Hamiltonian path in IT¢ that begins at Oa(a — 1)---0a(a — 1) and ends at
(a—1)0a---(a—1)0a. [ |

As an example, Figure 2.11 shows Hamiltonian paths in Hﬁ and in Hi.

02
Figure 2.10: Hamiltonian path of H% and H%.

For a even, the numbers s5, 41 are even and s5, are odd. On the other hand, for a odd,
the numbers 53, | are even, but 55, and 53, , are odd. A simple consequence of Theorem
2.5.1 is the following result on the existence of perfect and semi-perfect matchings in

metallic cubes.
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1021

1002

0030

Figure 2.11: Hamiltonian paths in Hi (above) and in HZ (below).

Corollary 2.5.2. Graph I} admits a perfect matching if the number of vertices is even,

otherwise, it admits a semi-perfect matching.
Now we examine the existence of Hamiltonian cycles in the metallic cubes.
Theorem 2.5.3. For a even and n > 1 odd, the metallic cube I1¢ is Hamiltonian.

Proof. Let a be even. Then IIF is an a x a grid with additional vertex Oa. It is easy to
see that a X a grids contain a Hamiltonian cycle, which implies that graph IS contains a
cycle that visits all vertices but one, namely, the vertex Oa. Now we wish to construct a
Hamiltonian cycle in I15. The graph IT5 can be decomposed into a copies of IT5 and one
copy of I1{. By Theorem 2.5.1, there exists a Hamiltonian path in each subgraph I15 and
I1{. Let OH,,1H,, ..., (a— 1)H, and OaH; denote those paths. Connecting starting points
in 0H, and 1H, as well as the ending points in 0H; and 1H; yields a cycle in OIS & 1115.
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Since the number of copies of graph IIf is even, we can pair up those copies to obtain
5 cycles in the same manner. Now choose the vertices 1v, 1w € 111 so that the edge
(1v)(1w) is in the Hamiltonian cycle in 1I15, and the corresponding vertices 2v and 2w in
IT§. By removing edges (1v)(1w) and (2v)(2w) from the cycles in 1I1§ and 2I1§ and by
adding the edges (1v)(2v) and (1w)(2w), we obtain a Hamiltonian cycle for the subgraph
OIT @ 1115 @ 2115 & 3I15. This method is applicable between every two (neighboring) of
the 5 cycles. Thus, we obtained a Hamiltonian cycle in P,LI15. Since I1{ is a path graph
with an even number of vertices and, by Theorem 2.5.1 and construction so far, the path
0(a—1)H{ C OHY is a part of the Hamiltonian cycle in P,[JIT5. Hence, we can extend a
Hamiltonian cycle in F,LI15 to IT§ by adding a zig-zag shape path to include all vertices
of IT{. Figure 2.12 shows a Hamiltonian cycle for a = 2 and a = 4, but it is clear that

construction can be done whenever a is even.

k1 {0

043

021

004

Figure 2.12: Hamiltonian cycle in H% and in Hg‘.

Now we wish to prove that every metallic cube contains a Hamiltonian cycle when
a is even and n is odd. In the case of both a and n even, it contains a cycle that visits
all vertices but one. The proofs for n even and n odd are similar, so we present just the

proof for n odd. Since II; = B,UIT]_, ®II;_,, by the assumption of induction, there is
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a cycle in each copy II7 | that visits all vertices but one. Let kII7_; denote the copy
of graph IT?_, induced by the vertices that start with k, where 0 <k <a—1. Let o €
< | and let ka denote those vertices omitted by the Hamiltonian cycle in each subgraph

kI1¢

¢ _1» 0 <k <a-—1. Furthermore, by the assumption, there is a Hamiltonian cycle
in IT?_,. Now we choose B,y € .7/* | so that the vertices k& and k3 are adjacent in
kI

For k = 0,2,4,...,a — 2, we remove the edge (kf3)(ky) and add the edges (kf3)(kax),
(ka)((k+1)a), ((k+1)a)(k+1)B and (ky)(k+ 1)y. Thus we obtained a Hamiltonian

and that the edge (kf3)(k7y) is a part of the constructed Hamiltonian cycle in kIT?_,.

cycles in kIT§ | @ (k+ 1)II;_,. To merge those § cycles and one cycle in IT;;_, together,
we can choose any two corresponding edges that are part of the Hamiltonian cycles in the
neighboring subgraphs and apply a similar method to merge all cycles into a Hamiltonian
cycle of the graph II. Choosing corresponding edges is possible, for the construction

of the Hamiltonian cycle in this manner is inductive, hence, if some edge is a part of the

Hamiltonian cycle in one copy of II¢_,, then it is a part of the Hamiltonian cycle in all
copies of IT?_,. Similar observation holds for the subgraphs OIT?_, and Oall?_,. Figure
2.13 schematically shows the described method of the construction of the Hamiltonian

cycles in IT¢.

0alTé_, I, e, AT, 3114

Oa la 2a 3a

Figure 2.13: The construction of a Hamiltonian cycle.
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2.6. WIENER INDEX

A topological index is a graph invariant used in the study of the connection between the
structure and some property. One of the oldest and most investigated topological indices is
the Wiener index [50,51]. The Wiener index attracted a lot of attention and it was studied
extensively not only in the mathematical [8,22,43], but also in the chemical literature [42].
It is defined as the sum of the distances between each unordered pair of vertices. More

precisely, for a graph G = (V(G),E(G)),

WG == ¥ duv).
uveE(G)

| =

In this section, we are interested in computing the Wiener index of metallic cubes.

Recall that the hypercube Q, = K7 is a graph whose vertices are binary strings of
length n, and two vertices are adjacent if they differ in only one position. A subgraph H
of the graph G is said to be isometric subgraph if the distance between each pair of vertices
in H is equal to the distance between the same vertices in G. An isometric subgraph of
a hypercube is called partial cube. In particular, Fibonacci cubes are partial cubes [30].
Let G be a graph isometrically embedded into a hypercube Q,,. By n we denote the
number of vertices in G, and by n; we denote the number of vertices of G that have 1 on
the i-th position. To obtain the Wiener index of the metallic cubes, we use the following

theorem [31]:

Theorem 2.6.1 (Klavzar, Gutman, Mohar). Let G be a graph isometrically embedded
into a hypercube Q,,. Then

W(G) = i ni(n—n;).
k=1

Here it is worth mentioning that, if G is embeddable, its embedding into a hypercube
1s unique up to permutation of coordinates, positions, and unused coordinates [52].

The next theorem provides the Wiener index of the metallic cubes.

Theorem 2.6.2. For any n > 0,

n a
W) = Y st s Y (tsn o +sniy) (sE—1sf ).
=1 =1
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Proof. The metallic cubes are, of course, partial cubes. One such isometrically embed-
ding in the hypercube can be defined on the letters {0,1,2...a} and extended to an em-
bedding o : 1% — Qg as

G(r) =111---111000---000

t a—t

for 0 <t < a. For example, if a = 3 then ¢(0) = 000, o(1) = 100, 6(2) = 110 and
0(3) = 111. Then, for each vertex v in I1%, we have that o(v) is composed of n blocks,
where each block is of length a. Now consider the vertices with O on the first position in
the k-th block. That means that there is O on the k-th position in v. We are interested in the
number of vertices with that property. Since 0 can stand alone or be part of the Oa-block,
first kK — 1 positions can be filled in s{_;, ways and the remaining n — k positions can be
filledins? , | +s7 ., ways. Hence, the number of vertices having 0 on the first position
in k-th block is s¢_; (s¢_, +s9_, ). Similar, the number of vertices having 1 on the first
position in k-th block is (@ —1)s{_,s%_, +s{_,s4_,, since 1 on the first position in k-th
block means that there is 1,2,3,...,(a— 1) or a on k-th position in v. More generally, the
number of vertices having 0 on z-th position in k-th block is zs¢_,s%_, +s¢_;s¢_, | and
the number of vertices having 1 on ¢-th position in k-th block (a —1)s¢_ s% , +s¢ .55 .

So, by Theorem 2.6.1,

=
T
M=
D=

(tsi_ 159k +si_15a_i_1) ((a—1)s{_ 159+ sE_a85_¢)
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which immediately retrieves the result on the Wiener index of the Fibonacci cubes
[32]. For a = 2 we have the sequence 1,16,146,1168,..., and for a = 3 we obtain
4,99,1664,24552, .... None of the sequences for a > 1 appears in OEIS.
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2.7. FURTHER POSSIBILITIES OF RESEARCH

In this chapter, we have introduced and studied a family of graphs that both generalize the
Fibonacci cubes and offer an alternative definition of the Pell graphs introduced recently
by Munarini [40]. Our results, however, are far from presenting a comprehensive portrait
of the new family. For example, we calculated the Wiener index of the metallic cubes, but
our results on degree distribution open the possibility of computing many other degree-
based topological invariants, while our results on distances do the same for some other
distance-based invariants such as, e.g., the Mostar index [10]. Our results on degrees
could be further developed by looking at irregularity, in the way it was done for Fibonacci
and Lucas cubes [1, 18]. Similarly, apart from a short comment about perfect and semi-
perfect matchings, we have not exploited our decomposition results to investigate any
matching-, independence- and dominance-related problems that have been studied for

hypercubes and the Fibonacci and Lucas cubes [38].
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3. HORADAM CUBES

3.1. DEFINITIONS

In this chapter, we define and investigate a family of graphs whose number of vertices is

b ab a,b . .
=as,”, +bs,",, and their adja-

given by the sequence that satisfies the recurrence s’
cency is defined in the same way as for the Fibonacci and metallic cubes. Thus the new
family is a natural generalization of the Fibonacci and metallic cubes.

Let a, b be non-negative integers, and let .#%* denote the free monoid containing a+ b
generators {0,1,2,...,0a,0(a+1),...,0(a+b—1)}. By a string we mean an element
of monoid .%?, i.e., a word from the alphabet {0,1,2,...,a+b— 1} with the property
that letters a,a+1,...,a+ b —2, and a+ b — 1 can appear only immediately after O.
Other letters can appear without any restrictions. For two strings, & = o --- @, and 8 =
B1 -+ - Bm, we define their concatenation as of = &y --- o,y - - - B If &P denotes the set

of all elements from the monoid .#*? of length n, we can easily obtain that the cardinal

b b . s . .
number sj;° = ‘5”,? ’ ‘ satisfies the Horadam’s recursive relation

st = as® | 4 bs™?,, (3.1)
with initial values sg’b =1, scll’b — g and 5" = 0 for n < 0. In fact, the numbers s%” satisfy
the well-known identity

s — F .1 (a,b) = L’%ZJ (” n k) " pk (3.2)
" ’ k=0 k ’

where F,(x,y) are the modified Fibonacci polynomials defined recursively as

Fn(xvy) = XFn—l (xay) +yFn—2(x7y)
with initial values Fy(x,y) = 1 and Fj(x,y) = x.
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Horadam’s recursive relation generalizes many well-known sequences. For example,

by setting a = b = 1, one obtains the recursive relation for the (shifted) Fibonacci numbers
Fo=F, 1+ F.

By setting a = 2 and b = 1, we have a recursive relation for the (shifted) Pell numbers
By =2P 1+ P2,

and a = 1 and b = 2 yields the (shifted) Jacobsthal numbers
Jp=Jn1+202.

Starting from the recursive relation (3.1), one can readily obtain the generating func-
tion S(x) = ¥,i5052"x" for the sequence s&” as

1

S(x) = 1 —ax—bx?

(3.3)

0202 00202

020 0
002 0200 \
0100

N

00 0
00 0
10

20

Figure 3.1: The Jacobsthal cubes for n = 3,4, 5.

Now we move toward the definition of the Horadam cubes. Let HZ"b denote the graph
such that V <Hﬁ’b) — . Z% and for any vi,vp € V (Hﬁ’b), we have that v; and v, are
adjacent, i.e., vivy € E (Hf‘,’b) if and only if one vertex can be obtained from the other by
replacing a single letter kK with K+ 1 for 0 < k < a—+ b — 2. Alternatively, vi = o1 --- &,

and vy = f3; - - - B, are adjacent if and only if

n
Z |OC,'—B,'| =1.
k=1
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The graph Hg’b is trivial, i.e., it contains a single vertex. Note that for b = 1, one obtains
the metallic cubes, and for a = 1 and b = 1, the Fibonacci cubes. As an example, Figure
3.1 shows some small Horadam cubes for a = 1 and b = 2, which can also be referred to
as Jacobsthal cubes, since their vertices are counted by Jacobsthal numbers J,. Another

example for a = 3 and b = 2 is presented in Figure 3.2.

Figure 3.2: The Horadam cubes H,sq’2 forn=1,2,3.
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3.2. CANONICAL DECOMPOSITION AND

BIPARTIVITY

The canonical decomposition of the Fibonacci cubes and metallic cubes [12,41] naturally
extends to the Horadam cubes. Similar to those cases, the set of vertices Yna’b can be
arranged into disjoint subsets based on the starting letter. Namely, there are b subsets that

contain the vertices starting with block 0a,0(a+1),...,0(a+b—2) and O(a+b— 1),

and the remaining a subsets contain the vertices that start with 0,1,...,a—2 and a — 1,
respectively. Assuming o € Yna;bl and B € Ynaibz, the vertices Oc, la, ..., (a— 1)«
a,b

generate a copies of IT ", and vertices 0af3,0(a+1)B,...0(a+b—1)B generate b copies

n—1°

of HZf’z. That yields the following theorem:
Theorem 3.2.1. For n > 2, the Horadam cube Hﬁ’b admits the decomposition
b ab b b b b b
L7 =107 @+ OIL% OIL7 © - 917, = RO, 7y & BOITY,

where P, and P, denote the path graphs of lengths a and b, respectively, and [] operator

denotes the Cartesian product of graphs.

The decomposition of Theorem 3.2.1 is called the canonical decomposition of HZ’b.
A copy of the subgraph HZ{’I induced by vertices in HZ7b starting with the letter kK where
0 <k <a—1isdenoted by kHZf’ 1» and a copy of the subgraph HZfz induced by vertices in
) b starting with the block 0/ where a <[ < a+b— 1is denoted by 0/ Hflfz. This notation
is useful if it is important to distinguish those copies. For example, IHZfI denotes the
induced subgraph of g g isomorphic to HZf’l induced by vertices in 1% that start with
1.

In Figure 3.3 we present a schematic representation of the described canonical decom-
position and Figure 3.4 shows the canonical decomposition of the Horadam cube Hi’z.

Recall that the map x : V(G) — {0, 1} is a proper 2-coloring of a graph G if x(v;) #
X (v2) for every two adjacent vertices vi,v; € V(G). A graph G is bipartite if its set of
vertices V(G) can be decomposed into two disjoint subsets, A and B, such that an edge
connects no two vertices of the same subset. Equivalently, a graph G is bipartite if and

only if it admits a proper 2-coloring.
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Figure 3.3: Canonical decomposition of 13" = P,00I%"| @ PO,

Theorem 3.2.2. All Horadam cubes are bipartite.

Proof. The proof is by induction on n. We observe that H‘f’b is isomorphic to a path graph
on a vertices and, thus, bipartite. Since Hg’b is an a X a grid with the path graph containing
b vertices appended to the vertex O(a — 1), it also admits a proper 2-coloring. Now, we
suppose that HZ’b is bipartite for every k < n. By the inductive hypothesis, graph Hﬁ’l ad-
mits a proper 2-coloring ¥ : HZfl — {0, 1}. Consider the map y’ : Hﬁ’l — {0,1}, where
x'(v) =1—x(v). Then the map ' is a complementary proper 2-coloring for the graph
Hzfl. Since ITY = Hﬁl DD Hﬁ’l D Hﬁz DD Hzfz, we can choose a coloring ¥
for the subgraph kalfl in T1%? if the subgraph is induced by vertices starting with even
k, and x' if k is odd. Finally, for the b copies of Hzfz in the canonical decomposition, we
consider y restricted to the subgraph 0(a — I)Hﬁ’z, and choose complementary coloring

x' restricted to Hﬁz for the graph induced by the block Oa. For the remaining b — 1

copies, we can alternate between ) and ' to obtained a proper 2-coloring for HZ’b. ]

Similar to the case of the metallic cubes, the proof of Theorem 3.2.2 implies that
the sets A and B have the same cardinality whenever the number of vertices is even.
Otherwise, the cardinality differs by one. Figure 3.4 shows a proper 2-coloring of the
Horadam cube Hi’z. Since the graph Hi’z has 44 vertices, we have 22 vertices in each set.

We now present another decomposition of the Horadam cubes. To this end, recall that
Pff denotes the Cartesian product of path P, with itself k times, that is, P,L P, ---[1P,, and
P,0P, denotes the Cartesian product of paths P, and P,. Also, note that [V (PXOP™)| =

a*b™. The Cartesian products of the path graphs are called grids or lattices [23]. The
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| FEY]

1031

(KK

Figure 3.4: The canonical decomposition and a proper 2-coloring of Hi’2 = H%’z D Hg’z )

22 2,2

following theorem illustrates how the combinatorial meaning of the Fibonacci polynomi-
als of the identity (3.2) extends to the Horadam cubes. Before we state the next theorem,
we need to define a map p which will be used as a connection between the Horadam
and Fibonacci cubes. Let .%, be the set that contains all Fibonacci strings of length n
and recall that |.Z,| = F,4,. We define p : V(IT%?) — .%, to be the map on the alphabet
{0,1,...,a+b— 1} and then extended to V(Hﬁ’b) by concatenation, as follows

0, 0<a<a—1,

p(a) =
1, a>a.

For a Fibonacci string w, let p~!(w) denote the subgraph of HZ’b induced by vertices that

a,b
n

p maps into w, i.e, the subgraph induced by vertices {v e VAL )|p(v) = w}.

Theorem 3.2.3. The Horadam cube I1%” can be decomposed into F,;; grids, where
F,, denotes the n'™ Fibonacci number. If Hﬁ’b /p denotes the quotient graph of Hﬁ’b ob-
tained by identifying all vertices which are identified by p, and two vertices wy and w;
in I1%" /p are adjacent if there is at least one edge in %" connecting the blocks p~! (w1)

and p~!(w,). Then e’ /p is isomorphic to the Fibonacci cube I',_;.

Proof. Let w be any Fibonacci string that contains k ones. By definition of the map p,

the induced subgraph p~!(w) of HZ’b is isomorphic to Pg‘_sz,f. Also note that p maps
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V(I14") into Fibonacci strings that start with 0, hence |p (V (IT+?))| = F,,,1. Furthermore,
for every two different w,v € .%,, subgraphs p~!(w) and p~!(v) are vertex disjoint. That
yields a decomposition into F, grids, as for each Fibonacci string w, we have the cor-
responding grid p~!(w). If two Fibonacci strings w; and w differ in only one position,
then there is at least one edge connecting the grids p~!' (w1) and p~! (w). Indeed, without
loss of generality, let w; be the Fibonacci string with 1 on some position /, and w, be the
same string except for O on position /. Now, let v; be the vertex in 1% that has the letter
a at the same positions where w; has ones, and v, be the same string as v; except fora — 1
on position 1. Then p(v{) = wy, p(v2) = wa, and the edge between the grids p~!(w;) and
p~'(w») is the edge connecting v and v,. On the other side, if two grids p~!(w;) and
p~!(w») have an edge connecting them, then it is clear that w; and w, must differ in only

one position. The claim follows. |

Figure 3.5 shows the decomposition of Hg,z and the Jacobsthal cube Hé’z. Note that
I5°/p =Ty and [15° /p =Ty,

040

00202

042 002 102

002;1”‘ ~.\m| D002 Q1002 02002
.xﬁu_luu 0 010 020

OO EY IO (200
# -—

E

(O oaomr 02010
L

"m:q_}zn ;nzo 02020

004

Figure 3.5: The decomposition of Hg’z = P33 ¢ 2P,L1P; and Jacobsthal cube H;’Z = P15 S
4P}0IP, & 3P5.
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3.3. NUMBER OF EDGES

The canonical decomposition from Theorem 3.2.1 is a useful tool to obtain the recursive
relation for the number of edges. Let eﬁ’b denote the number of edges in the Horadam
cube IT3"”. Since T = P, and T14"” is a x a grid with the path P, appended to the vertex
0(a—1), we have ¢{” = a—1 and €4” = 24> — 2a+ b. Since the graph IT3” contains

a copies of the graph HZfl and b copies of the graph HZfz, the contribution of those

a,b

subgraphs to the number of edges is aeﬁl + beﬁ’z. Furthermore, there are (a —1)s, ",

edges between the a copies of the graph Hflfl and bsflfz edges between the b copies of
the graph HZ{’Q. This analysis shows that the recursive relation for the number of edges
of the metallic cubes naturally expands to the number of edges of the Horadam cubes. We

have

ab __ a,b a,b a,b a,b
e’ =ae,” | +be, ,+s,7 —s," . (3.4)

Recurrence (3.4) immediately yields the generating function E(x) = Y,>¢ ef;’bx" for
the number of edges in Horadam cubes as

(a—1)x+bx?

(1 —ax—bx?)? (3-5)

E(x) =
Using recurrence (3.4), we list some first values of the sequence eZ’b in Table 3.1.

Table 3.1: The number of edges in the Horadam cubes.

nies

l1la—1

2 |2a> —2a+b

3 | 3a® —3a® +4ab —2b

4 | 4a* — 4a® 4+ 94ab — 6ab + 2b*

5| 5a° —5a* +16a’b — 12a*b + 9ab* — 3b*

6 | 6a° — 6a° +25a*b — 20a>b + 244ab* — 12ab* + 3b°

Now we can state the theorem that expresses the numbers ef,’b in terms of the number

of vertices in the Horadam cubes.

98



Horadam cubes Number of edges

Theorem 3.3.1. The number of edges in the Horadam cube Hﬁ’b

ab __ ab ( ab a,b
€ = Sk <snfk - sn717k>
k=0

Proof. By using generating functions (3.3) and (3.5, and the fact that
o < ab ab
o Z Z Sk Sn kx
n>0k=0
we have

(a—1)x+bx?
(1 —ax—bx?)?

=((a—1)x+ bxz)Sz(x)

:“Z isab Zbkxn+]+b2 ZSZ"SZbkx e Z ZSZbSZka"“

E(x) =

n>0k=0 n>0k= n>0k=
. a,b ab a,b ab ab ab
—aZZSk Sp_1-k% +b22 S Spa X — ZZ Sk Sui kX
n>1k= n>2 k= n>1k=
" b ab b
—_ a, a, a, n
=) ) s <asn—l k+bn 2k T Spi1- k)
n>0k=0
n—1
_ ab ( ab  ab n
- Z Zsk Sn—k ~ Su—1-k )X -
n>0k=0

1,1
Fora=b =1 wehave s, = F,; and
=TT
:Zsk7 (SnLk_snLlfk)
k=0
n1
. 1,1 1,1
—Z Sk Sp_k—2
_Z S lsn k—1

= Z FrFp_y,
k=0

which immediately retrieves the result on the number of edges in the Fibonacci cubes [30].

Theorem 3.3.1 allows us to extend this result for a = 1 and b > 1 and we obtain
A VY
=b kZ Sk Sp_k—2

99



Horadam cubes Number of edges

In particular, for the Jacobsthal cubes, since s,l,’2 = J,+1, we obtained the sequence

A095977:

n
=2 Jiuk.
k=0

This provides a new combinatorial interpretation for the sequence A095977.
Another way to express the number of edges is by using binomial coefficients. We do

that in the next theorem.

Theorem 3.3.2. The number of edges in the Horadam cube Hﬁ’b is
n n+k
b k| ntk [TJ k| sk
¢ _kg(—w {TW ( > )a bl
Proof. 1t is easy to verify that the statement holds for n = 1 and n = 2. We proceed by

induction. Since the number of vertices sZ’b satisfies the identity (3.2), we have

b b n—k\ . ok n—k—=1\ , o 1%
59 —SZ_I—Z<k)a” b—Z( p a b

k>0

= —1)k n_lrg—‘ an_k L%J
Sl ( 12k

- Y 1>"—'<("‘W1)akw
k=0 k

_ < _ 1\n—k VTHCJ)ak | 25 |
% ( =)t

By using the inductive hypothesis, after adjusting indices and expanding the range of

summation, we obtain

i +beey’ z—ZZl(—U"—k—] {%](L"?J)amlbvél N
+:§<—1>" Jjadat) (szJ)akbm
:k; 1y k[nﬂg_ﬂ L’:ZZJ s
+k§)< Iy ,{Hl;—zw (Vézj)akbt”ﬂ
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v nek | k=2 V—HCJ nk
_kg(_n k{—z K : >a’<bL .

3 M a a a a 3
Now, by using expressions for sy —s% , anda-e; , +b-e;_, our claim follows at once.

|
2+2b
Note that setting a = 2 in the generating function (3.3) yields §'(x) = (1- 2-; — sz)z
and
1

Hence, we can expand the result obtained by Munarini for all b > 1, to obtain

26 _ N op
e, = =5,

2

Here, it is worth mentioning that, although the Pell graphs and Horadam cubes H%’l are

not isomorphic, they share the same number of vertices and edges. In particular, we have

! n nik n
L[] ()t
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3.4. EMBEDDING INTO HYPERCUBES AND

MEDIAN GRAPHS

In this section, we justify the “cube” part of the name by showing that Horadam cubes

are, indeed, induced subgraphs of hypercubes.

Theorem 3.4.1. For any a,b > 1, the Horadam cube Hﬁ’b is an induced subgraph of the
hypercube Q ;15— 1)n-

Proof. We define a map o : Hﬁ’b — Q(a+b—1)n On the primitive blocks, i.e., the blocks
every string from the set yna’b can be uniquely decomposed into. The map p transfers the

vertices of the Horadam cube into binary strings. Those blocks are 0, 1,...,a—1,0a,0(a-+

1),...,0(a+b—2) and O(a+b— 1). We define o as follows:

0(0)=011---111000---000

a b1
(1) =001 ---111000---000
a b1
&(2) = 000--- 111000 -- 000
a b1

G (a—2) = 000---001000- - -000

a b—1
o(a—1)=000---000000---000
a b1
6(0a) = 111---111000---000000---000000- - - 000
ZE gri ?; ét]

6(0(a+1)) = 111---111000---000000- -- 000100 - - 000
a b1 a b1

o(0(a+2))=111---111000---000000---000110---000

-~

a b—1 a b—1

o(0(a+b—1))=111---111000---000000---000111---111

-~

a b1 a b1
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The string o (k) for 0 < k < a— 1 has length a and starts with k4 1 zeros followed by
a—1—k ones. The remaining b — 1 letters are zeroes. On the other hand, the string
6(0(a+1)) for 0 <1 <b—1 has length 2(a+ b — 1) and contains a ones followed by
a+b—1 zeroes, [ ones and b — 1 — [ zeroes. The map o, defined on the primitive blocks,
extends by concatenation to G : HZ’b = Q(atb—1)n-

Since the map o is injective and preserves adjacency, we obtained a subgraph of

_ 1y, isomorphic to the graph IT%’. [ |
Qatb—1)n p grap

Remark 3.4.2. Fora =3 and b =2, we have 6(0) = 0110, o(1) = 0010, (2) = 0000,
c(03) = 11100000 and ¢(04) = 1110001. For the Jacobsthal cube, where @ = 1 and
b =2, we have 6(0) = 00, 6(01) = 1000 and 6(02) = 1001.

Remark 3.4.3. The dimension of the hypercube from Theorem 3.4.1 is not the small-
est possible. For example, the number of vertices in Jacobsthal cubes grows slower than
the number of vertices in hypercubes. More precisely, |V(I'I,£’2)| = %2" + %(—1)” < 2" =
|V(Q,)|- Thus, we can define 6(0) =0, 6(01) = 10, and 6(02) = 11 to obtain an embed-
ding of the Jacobsthal cube into a hypercube of the same dimension. But this embedding
does not yield an induced and median-closed subgraph of the hypercube Q,, so, in The-
orem 3.4.1, we constructed an embedding into a larger hypercube to obtain an induced
and median-closed subgraph. As an example, Figure 3.6 shows an embedding of the Ja-
cobsthal cube H}l’z into the hypercube Q4. But vertices 0001 and 0020, not adjacent in
H}"Z, are mapped into adjacent vertices in Q4. The same situation occurs with the vertices
0200 and 0010. Thus, although we obtained an embedding, we did not obtain an induced
subgraph of Q4. Maybe it would be interesting to determine the smallest dimension of the

hypercube for which the embedding of a Horadam cube is possible.

Recall that a median of three vertices is a vertex that lies on the shortest path between
every two of three vertices. We say that a graph G is a median graph if every three vertices
of G have a unique median. Since the Fibonacci cubes, Pell graphs, and metallic cubes are
median graphs [12,30,40], the next natural step is to check whether the Horadam cubes
are also median graphs. We found the answer positive, and we present that in the next

theorem. To do that, we use Mulder’s theorem 2.2.6.
Theorem 3.4.4. For any a,b > 1 and n > 1, the Horadam cube Hf,’b is a median graph.
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Figure 3.6: Embedding of the Jacobsthal cube Hl’z into the hypercube Q.

Proof. The median of the triple in the hypercube Q,, is obtained by the majority rule. If
o=¢ - &,B =08 06,and y=p;---p, are binary strings, i.e., &, 6;, p; € {0,1}, then
their median is m = ;- -- {,, where ; is equal to the number that appears at least twice
among the numbers &;, d; and p;.

Let o be the map defined as in the proof of Theorem 3.4.1. The graph HZ’b is a
connected induced subgraph of a hypercube. To finish our proof, we just need to verify
that the subgraph induced by the set o (Yna’b> is median closed. Every string from the
set o (ﬂn“’b) can be uniquely decomposed into blocks o (k),0 < k < a— 1 of length
a+b—1,and 6(0(a+1)),0 <I<b—1of length 2(a+b— 1). First we consider three
blocks, o (i), o (j), and o (k). Without loss of generality, we can assume that 0 < i <
J <k <a—1. Then their median is o (j). In the second case, we have & (i) and o (j)
for 0 <i < j <a-—1, and either the first or second half of the block o (0(a+1)). Their
median is now o (). The remaining cases include all combinations of blocks; since they

are done similarly, we omit the details. |

For example, when a =3 and b =2, we have 6(0) = 0110, 6(1) =0010, o(2) = 0000,
o (03) = 11100000, and ¢(04) = 11100001. Then the median of vertices 042, 204 and
1101s 112.
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3.5. DISTRIBUTION OF DEGREES

The distribution of degrees in Fibonacci and Lucas cubes was determined by KlavZzar et
al. [33]. The distribution of degrees in the metallic cubes was determined in Section 2.3
and also in [12]. Here we generalize those results to all Horadam cubes. More precisely,
in this section, we investigate the distribution of degrees by determining the recurrence
relations and by computing the bivariate generating functions for two-indexed sequences
A, x which count the number of vertices in Hﬁ’b of degree k. We suppress a and b to
simplify the notation. The distribution of degrees in Horadam cubes is considered in
two separate cases, for a = 1 and a > 2. The two following theorems provide recursive

relations for A, ;.

Theorem 3.5.1. Leta > 2 and A, ; denote the number of vertices in the Horadam cube

%" with exactly k neighbors. Then the sequence A, ; satisfies the recurrence
Apk =200 141+ (@=2)An 1 )2+ A 21+ (0 —=2)Ay 242+ An 243,
with initial values Agp = 1, A1 =2and Aj, =a—2.

Proof. Since the graph Hg’b is an empty graph, and HT’b is a path graph P,, one can
easily verify the initial values. Let n > 2. By Theorem 3.2.1, the Horadam cube HZ’b
contains a copies of the graph HZfl. Recall that the copy of the subgraph Hﬁl in-
duced by the vertices in Hﬁ’b starting with the letter k for 0 < k < a — 1, is denoted
by kHZfl and the copy of the subgraph Hﬁ]z induced by vertices in TI% starting with
the block 0/ for a <[ < a+b—1, is denoted by 0/ HZ{’Z. Each vertex in subgraphs
KTI%?

a1 Where 1 <k < a—2, has exactly two new neighbors, namely the correspond-

ing vertices in adjacent subgraphs, (k — l)HZfl and (k+ I)HZf’l. Thus the degree of
each vertex in those a — 2 subgraphs is increased by two and they contribute to A, ;
with (a — Z)A,,_Lk_z. Furthermore, the vertices of the copy of Hﬁ] induced by ver-
tices starting with a — 1, denoted by (a — I)HZfl, have exactly one new neighbor, the
corresponding vertex in the graph (a — 2)H3f’1. So, the contribution of this subgraph

is A,_1 k—1. Similar analysis for b copies of the graph Hﬁ’z yields the contribution of

An—2 -1+ (b—1)A,_2 x—>. The subgraph OHZ’E , needs to be treated differently, because
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it is the only copy neighboring two copies of different dimensions. Namely, it neighbors
the copy 1H2f1 and the copy OaHZfz. This implies that some vertices in OHZf1 have
two new neighbors and others have only one. More precisely, subgraph 0(a — I)Hzfz of
the subgraph OHZf’l contains vertices with two new neighbors. The remaining vertices in
OHZfl have one new neighbor. Hence, the contribution of the subgraph OHZ’b to A, i is

An—l,k—l - An—Z,k—Z + An—Z,k—.% and the claim follows. [ |

Figure 3.7 shows the recursive nature of the degrees of vertices in the Horadam cube

2 forn=1,2,3.

Figure 3.7: Recursive nature of the degrees in Horadam cube Hf,’z forn=1,2,3.

Theorem 3.5.2. For a = 1, the sequence A, ; satisfies recursive relation

Ank =AM 11+ 21+ (b—1)Ap_24—2

+A 31+ (0—=2)Ay 352~ (b—1)Ay 343,
with initial conditions Agg =1, A1 =1,Ar 1 =2and Ay, = b —2.

Proof. Since Hé’b and H}’b are empty graphs and Hé’b is a path graph with b+ 1 vertices,

the initial values hold. Let n > 3. By Theorem 3.2.1, the graph H,11’b contains one copy of
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the graph Hrllfl and b copies of the graph H}lfz. Furthermore, by the same theorem, Hifl
can be further decomposed into one copy of Hifz and b copies of H;Z. Some vertices in
the subgraph Hlllfl = H,lifz @ PI,DHif3 have one new neighbor in H,ll’b, while others have
no new neighbors. More precisely, the vertices in a subgraph 00/ Hig C Hrllfl, where 1 <
[ < b, have no new neighbors, while the vertices OOH,llf’2 C H,llfl have one new neighbor.
Vertices in subgraph OObH;f3 C H,l,’b have a degree for one greater than the corresponding
vertices in the graph H,lfy Similarly, vertices in subgraph 00/ H}lfg C H,I;b, for1 <<
b —1, have a degree for two greater than the corresponding vertices in the graph H}lf’s. So,
the contribution to A, x 18 Ay_1 k-1 — A3 k-2 + A 341+ (0 —1)(Ap—3 42— An_34-3).
What remains are b copies of Hrllf’z. Vertices in 0/ H}lfz contribute with (b —1)A,_2 42

for 1 <1 <b—1,and with A,,_; ;_; for / = b. This completes the proof. |

Figure 3.8 shows the recursive nature of the degrees of vertices in the Jacobsthal cube

forn=2,3,4,5.

Figure 3.8: Recursive nature of the degrees in Jacobsthal cube for n = 2,3,4,5.

From Theorems 3.5.1 and 3.5.2, we can readily obtain bivariate generating functions.
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The generating function for the sequence A, when a > 2 is
1

Ay =12 (2y+(a—2)y*)x— (y+ (b —2)y> +y3)x?’ -0
and for a = 1 we have
Alx,y) = L-b-Dr (3.7)

L—xy—(y+ (b= 1)y = (y+(b—2)y* — (b—1)y?)x*

Now we present another way to derive the generating functions. Recall that .#%?
denotes the set of all words from the alphabet {0, 1,...,a+ b — 1} with the property that
the letters greater than or equal to a can only appear immediately after 0. Every word

either starts with 0,...,a — 1, or with the block 0(a + 1) for some 0 </ < b — 1. Hence,
S=e407P 1.7 4 (a— 1S 400 4 +0(a+b—1).77,

where € denotes the empty word. Let A(x,y) = Y. A, XYk be a formal power series, where
n7

A, k 1s the number of vertices of length n having k neighbors, as before. Consider the set

that contains all vertices that start with O, but not with the O/-block fora <! <a+b—1,

and let A%(x,y) denote the corresponding formal power series. Then we have

Ax,y) = 1+A%x,y) + (@ =207 +xy+ (b— 1)a2y? +2%y) Alx,y)
A%(x,y) = xy (14 A%, ) + (@ = 1)0? + (b= 1)y +%y) A(x,y) ).

Note that adding 0 at the beginning of a vertex increases the number of neighbors by one,
except when the vertex starts with a — 1, in which case adding 0 increases the number of
neighbors by two. By solving the above system of equations, we obtain the generating
function (3.6).

In the case of @ = 1, adding O at the beginning of a vertex increases the number of

neighbors only if the vertex does not start with a 0/ block. So we have
Ax,y) = 1+A%(x,y) + (b — 1)x?y* + %) Alx,y)
A%(x,y) = x (14yA%(x,y) + (b= 1)x** +x%y) Alx.))
which yields the generating function (3.7). We list some first few values of A, ; in
Table 3.2.
In Section 2.3, we showed that their rows are not unimodal for a =2 and b = 1, but

for any other values of a and b they appear to be unimodal. They do not (yet) appear in

the On-Line Encyclopedia of Integer Sequences [46].
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Table 3.2: Some first values of A, ; for H,11’2, H%’z and Hf’,’z
a=1,b=2 a=2,b=2
n\k|1 2 3 45 n\k|l1 2 3 4 5 6 738
1 |10 0 0O 1120 0 0 0 0 00O
2121 0 00 21141 0 0 0 00
3123 000 3104 8 4 0 0 00
4 114 5 10 4 (01 12 18 12 1 0 0
5105 10 6 0 510 0 6 32 44 32 6 0
a=3,b=2
n\k|1l 2 3 4 5 6 7 8 9 10
1/21 0 0 0 O 0O 0 0 O
2 (14 5 1 0 O 0O 0 0 O
3 /04 10 16 8 5 1 0 0 O
4 10 1 12 30 47 37 11 1 0 O
510 0 6 35 92 142 138 67 14 1
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3.6. SUBHYPERCUBES

In this section, any subgraph isomorphic to the hypercube is called subhypercube. The
cube coefficient of the graph G, denoted by o4 (G), is the number of induced subhyper-
cubes Q in G. The cube number o/(G) is total number of induced subhypercubes in G,
ie., a(G) = Yu>0%(G). Observe that ag(G) = |V(G)| and a(G) = |E(G)|. Here we

determine the cube coefficients o for the Horadam cube Hﬁ’b.

Theorem 3.6.1. Cube coefficients Ock(HZ’b) for the Horadam cube 14 satisfy recursive

relation

OCk(HZ’b) = aOCk(HZiyl) + bOtk(HZiyz) —+ (a — l)Otk_l (Hai?l) -+ bak_l (HZfZ)

n

with initial values o (I1%7) = s&” and ot (TT3”) = a — 1. Furthermore, if
by 1 k
Alxy)= Y, o7y
n,k>0
denotes their bivariate generating function, we have

1
1 —ax—bx?—(a—1)xy—bx?y

A(X,y) =

Proof. By Theorem 3.2.1, the Horadam cube HZ’b contains a copies of the graph Hflfl
and b copies of the graph HZfz. Then all induced subhypercubes in those copies con-
tribute to the number of hypercubes of dimension k in TT3” with a0y (TT*? ) + boy (TT2,).
Moreover, the hypercube Q;, = P,[1Q;_ can be part of the two adjacent copies of Hflfl.
Let Q1 C HZfl be induced subhypercube. Then, for 0 < m < a —2, appending letters m
and m+ 1 to the vertices of Q;_1 C I'IZf’1 yields a hypercube Qy in Hﬁ’b. Similar construc-
tion can be done for Q; | C Hﬁz. Hypercubes constructed as described contribute with
(a—1)og_q (HZfl )+boy_ (Hﬁz). From the recursive relation, one can easily obtain the

generating function. The claim follows. ]

Disregarding the dimension of the subhypercube, Theorem 3.6.1 gives a simple con-

sequence.

Corollary 3.6.2. Cube numbers Oc(I'IZJ’) for the Horadam cube Hﬁ’b satisfy recursive

relation
a (M%) = (2a—1)a (%)) + 2ba (1147,)
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with initial conditions ot(TT¢") = 1 and ot(T%"") = 2a — 1. If

A(x) = Z oc(HZ’b)x”
n>0
denote the generating function, we have

1
1—(2a—1)x—2bx?*

Ax) =

The cube polynomial was first introduced by Bresar, KlavZar, and Skrekovski [4]. For

a graph G we define the cube polynomial as

c(G,x) = Z oy (G)x".

k>0
The next theorem provides cube polynomials for the Horadam cubes. It follows from a

similar argument as the proof of the Theorem 3.6.1, so we omit the proof.

Theorem 3.6.3. The cube polynomials c(HZ’b,x) satisfy the recursive relation
o(TT8? x) = (a+ (a— 1)x)e(TT32),x) + (b+ bx)c(TT 7, x)

with initial conditions c(TT3” x) = 1 and ¢(IT**, x) = a+ (a— 1)x.

Table 3.3 shows some first values of the cube polynomials for the Jacobsthal cube and

2,

Table 3.3: Cube polynomials c(HZ’b,x) of some Horadam cubes.

n | c(Ily? x) c(IT}? x)

0|1 1

1]1 2x+3

22x+3 4x* 4+ 14x+ 11

3| 4x+5 8x° + 44x? + 74x + 39

4| 4x% +14x+11 | 16x* 4+ 120x3 4 316x2 4 350x + 139

51 12x% +32x+ 21 | 32%° +304x* 4 1096x> + 1884x? + 1554x + 495
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Horadam cubes Horadam cubes are (mostly) Hamiltonian

3.7. HORADAM CUBES ARE (MOSTLY)

HAMILTONIAN

At the beginning of this section, it is convenient to recall that any path that visits all
vertices in the graph is called a Hamiltonian path, while a cycle with the same property
is called a Hamiltonian cycle. A graph that contains a Hamiltonian cycle is Hamiltonian.
In this section, we explore the possibility of extending the results on the existence of the
Hamiltonian paths and Hamiltonian cycles in metallic cubes to the Horadam cubes. The
answer to the question of the existence of Hamiltonian paths turns out to be positive.
In fact, since we obtained the same result as for the Fibonacci cubes [36], the title of
this section is borrowed from that paper. The following theorem extends the established
result regarding the existence of Hamiltonian paths in the metallic cubes to encompass all

Horadam cubes.

Theorem 3.7.1. Let a,b,n > 1. Then the Horadam cube Hﬁ’b contains a Hamiltonian

path.

Proof. Since, by Theorem 3.2.1, Horadam cube admits canonical decomposition, i.e.,
et — PaDHZf] o> PbDHﬁ’Z, it is only natural to construct a Hamiltonian path induc-
tively. First, consider the case of a odd and b even. We claim that HZ7b contains Hamil-
tonian path with endpoints O(a+b—1)0(a+b—1)---0(a+b—1) and (a —1)0(a+b —
1)0(a+b—1)---0(a+b—1) for n even, and 0(a+b—1)0(a+b—1)---0(a+b—1)0
and (a—1)0(a+b—1)0(a+b—1)---0(a+b—1)0 for n odd. Similar to the case
of metallic cubes, for n = 1, graph H?’b is a path on a vertices and the claim is true.
For n = 2, graph Hg’b is an a x a grid with the path that contains b vertices appended
to the vertex O(a — 1). Hence, we can construct a Hamiltonian path from the vertex
O(a+b—1) to the vertex (a —1)0. Suppose that HZ’b contains a Hamiltonian path
with endpoints 0(a+b—1)0(a+b—1)---0(a+b—1)(0) and (a—1)0(a+b—1)(a—
1)0(a+b—1)---(a—1)0(a+b—1) for all k < n. Then we can construct a Hamil-
tonian path in PaDHZf 1 € Hﬁ’b by adding the edges between corresponding endpoints
of the Hamiltonian paths in the neighboring graphs HZfl. Since a is odd, the path in
PaDHZfl C %" has endpoints (a — 1)0(a+b—1)0(a+b—1)---0(a+ b — 1)(0) and
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0(a—1)0(a+b—1)0(a+b—1)---0(a+b—1)(0). In a similar way we construct a path
in P,OIT%", C 11" with endpoints 0a0(a + b — 1)0(a+b —1)---0(a+ b — 1)(0) and
O(a+b—1)0(a+b—1)---0(a+b—1)(0). Since the vertices 0(a — 1)0(a+b—1)0(a+
b—1)---0(a+b—1)(0) and 0aO(a+b—1)0(a+b—1)---0(a+b—1)(0) are adjacent
in HZ’b, we add the edge connecting them to obtain a Hamiltonian path in HZ’b. In the
case of a odd and b odd, TT%” contains Hamiltonian path with endpoints 0(a+b—1)(a —
10(a+b—1)(a—1)---0(a+b—1)(a—1)and (a—1)0(a+b—1)---(a—1)0(a+b—1).
For a and b even endpoints are (a—1)(a—1)---(a—1)and 0(a+b—1)(a—1)---(a—1).
In the last case, where a is even a b is odd we have endpoints (a—1)(a—1)---(a—1) and

O(a+b—1)---0(a+b—1). Since all those cases are similar, we omit the details. [ |

Figure 3.9: The Hamiltonian path in the Horadam cube Hﬁ’3.

Metallic cubes are Hamiltonian when a is even and n is odd. The next few theorems
provide the necessary conditions for the Horadam cube to be Hamiltonian. In particular,
the next theorem improves the results for the metallic cubes, because for some cases of
the Horadam cubes, there is a Hamiltonian cycle for every n > 3, which is not the case

with the metallic cubes.

Theorem 3.7.2. Let a and b be even. Then the Horadam cube Hﬁ7b is Hamiltonian for

every n > 3.
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Proof. By Theorem 3.2.1, the Horadam cube 14" admit canonical decomposition , i.e.,

et — PaDHZf’l D PbDHZfZ. There are even number of copies of the graphs HZfl and

HZ{’Z in HZ’b, and, by Theorem 3.7.1, each copy contains a Hamiltonian path. Consider

the subgraphs OHZf’l and IHZfl. Similar to the case of metallic cubes, we join the end-
points of Hamiltonian cycles in those subgraphs to obtain a Hamiltonian cycle in the
subgraph OHZfI S) IHZfl. A similar construction can be done for the remaining copies

of subgraphs Hzfl as well as for the b copies of the subgraph Hﬁ’z. Note that if some
a,b

edge is part of a Hamiltonian cycle in one copy of the subgraph IT ~,,
a,b

a Hamiltonian cycle in every copy of IL ;.

then it is part of
The same observation holds for the sub-
graphs HZfz. Also, note that if the edge (0ay)(0ad) lies in the cycle in OaHZfz for some
7,8 € " then the edge (0(a—1)y)(0(a — 1)8) belongs to the cycle in OIT*?,. We
construct a Hamiltonian cycle in I1%? in following way: if the edge (la)(1B) is part of a
Hamiltonian cycle of the subgraph IHZfl for some o, 3 € ynaibl, then the edge (2a)(2f3)
is part of a Hamiltonian cycle of the subgraph 2I'IZf1. Removing the edges (1a) (1) and
(2a)(2B), and adding new edges (0Oct)(1a) and (0B)(1B) yields a Hamiltonian cycle in
OHZfI > 1HZ’£’] e ZHZf] D 3H2f1 . Since the numbers @ and b are even, it is clear that this

method can be further extended to obtain a Hamiltonian cycle of the Hﬁ’b. |

As an example, Figure 3.10 shows the Hamiltonian cycle in the Horadam cube Hi’z.

Figure 3.10: The Hamiltonian cycle in the Horadam cube Hi’z.

The next theorem explores the existence of the Hamiltonian cycle in cases of a even

and b odd. Setting b = 1 immediately yields the result for the metallic cubes.
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Theorem 3.7.3. Let a be even, b odd and n > 1 odd. Then the Horadam cube Hﬂ’b is

Hamiltonian.

a,b

w1 DPp DHZZ, we can construct Hamiltonian

Proof. Because a is even and %t — p,Onn
cycle in the subgraph PaDHZfl D P, 1DHZf2 in the same manner as in the proof of
Theorem 3.7.2. Since H?’b = P,, the Hamiltonian cycle in PaDHZ’b @Pb_llilﬂcl”b can
be extended to the cycle in the Horadam cube Hg’b. Furthermore, I'I?b is a X a grid
with a path P, appended to the vertex O(a — 1). More precisely, Hg’b = P2 @ P,. By the
same argument, we can construct a Hamiltonian cycle in Paljﬂg’b &) Pb_lDHg’b and in
PC% C Hg’b. It is easy to verify that those two cycles can be merged into a single cycle
in PaDI‘Ig’b &) Pb,lﬂng’b @ P2. By Theorem 3.7.1, the path subgraph induced by vertices
that start with 0(a + b — 2) is part of that cycle. Since b is odd, we can extend the cycle
to visit all vertices of the neighboring path induced by vertices that start with O(a+b — 1)
but one. Thus, we obtained a cycle that visits all vertices but one in Hj’b.

Now we proceed inductively. Regardless of the parity of n, the subgraph PaDHZfl D
Py DHZfz in 140 always contains a Hamiltonian cycle. If n is odd, then n —2 is odd too,
and the last copy of HZf’Z contains a Hamiltonian cycle which can be merged to obtain a
cycle in Hﬁ’b. If n is even, a similar construction yields a cycle that visits all vertices but

one. This completes the proof. |

Figure 3.11 shows the Hamiltonian cycle in the Horadam cube H§’3, and Figure 3.12
a cycle that visits all vertices but the vertex 0404.

In the next theorem, we consider the last remaining case, where a and b are both odd.

Theorem 3.7.4. If a and b are odd and n = 3k — 1,k > 2, then the Horadam cube Hﬁ’b is

Hamiltonian.

Proof. By Theorem 3.2.1, the Horadam cube Hg’b = a_lDHZ’b @Hi’b @Hg’b @
P;,_IDHg’b. By Theorems 3.7.1 and 3.7.2, whenever the number of copies in the de-
composition of the Horadam cube is even, there is a Hamiltonian cycle in that sub-
graph. Since a —1 and b — 1 are even, there is a cycle that visits all vertices in the
subgraphs Pa_lE]HZ’b and Pb_lDH?b. More precisely, there is a cycle in the subgraph
1HZ7b P (a— 1)Hj7b, and a cycle in the subgraph 0(a + 1)H‘3’7b G®---d0(a+b—

1)Hg’b. Moreover, the remaining copies OHZ’b and OaH?’b can be further decomposed as
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Figure 3.12: A cycle in the Horadam cube Hi’g that visits all vertices but one.

Hj’b D Hg’b = aHDH?’b @ P,O0%?, where a + 1 is even. Thus we have a Hamiltonian
cycle in the subgraph 0(a — II5” @ 0al1y” @ --- ® 0(a + b — 1)I13”. To obtain a Hamil-
tonian cycle in Hg”b we just need to verify that a cycle constructed so far can be extended
to the subgraph PbDHZ’b induced by vertices that start with 00/ fora <! <a+b—1.
Since Hg’b is a x a grid with the path on b vertices appended to the vertex 0(a — 1), the
subgraph P;,I:IH‘zl’b can be decomposed into two grids, P, ,L1P,, induced by vertices 00/0k
forO0<k<a+b—1,anda <l <a+b—1,and P,_LIP,. Both grids have an even num-
ber of vertices. The construction of the cycle so far is inductive, hence the path subgraph

10a0k for 0 < k < a+ b —1 is part of the constructed cycle and it can be extended to
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encompass the grid P, 5L 1P,. A similar argument holds for the grid P,_;[IP,. Thus, the
cycle constructed so far can be extended to the full Hamiltonian cycle in H‘S”b. As an ex-
ample, Figure 3.13 shows an extension of the cycle to the subgraph P3 DH3’3 C H§’3, and
it is clear that the extension can be done whenever a and b are odd. The full line denotes

the constructed Hamiltonian cycle and the dashed line indicates the extension.
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Figure 3.13: A fragment of the Hamiltonian cycle in the Horadam cube Hg’g

Now let n = 3k — 1 and k > 3. Then IS/ | = P, 0% o0y’ 0 o
P,_ 1DH3k ;- Furthermore, H3k ) @H3k 3= Pa+1H3k 3 @PbH3k 4- The numbers a — 1,
b—1, and a+ 1 are even, and, by induction, there is a Hamiltonian cycle in the subgraph
Hg}(b 4~ Since the construction of the cycles is inductive, they can be merged into a single

cycle of the Horadam cube H3k |- |

As an example, Figure 3.14 shows a construction of a Hamiltonian cycle in the Ho-
radam cube Hé’3

In their paper [36], the authors proved that every Fibonacci cube contains a Hamil-
tonian path and that the Fibonacci cube is Hamiltonian whenever the number of vertices
is even. It follows that the generalization of the Fibonacci cubes to the Horadam cubes

preserves all those properties. Namely, summing the results of Theorems 3.7.1, 3.7.2,
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Figure 3.14: The Hamiltonian cycle in the Horadam cube Hé’3.

3.7.3 and 3.7.4, we can state all results in one simple theorem:

Theorem 3.7.5. Every Horadam cube contains a Hamiltonian path. If n > 3 and the

number of vertices in a Horadam cube is even, then the Horadam cube is Hamiltonian.

In particular, for » = 1, Theorem 3.7.4 extends the results for the Hamiltonicity of the

metallic cubes for a odd.
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3.8. FURTHER POSSIBILITIES OF RESEARCH

In this chapter, we defined and investigated the Horadam cubes, a new family of graphs
that generalizes Fibonacci and metallic cubes. While our results offer some insight into
the characteristics of the new graph family, they fall short of presenting a complete
overview. For example, in the context of the edges, one can investigate edge general
position set [34], and in the context of the degree distribution, our results pave the way
for the computation of some degree-based topological invariants. Similarly, our results on
distances provide a framework for the derivation of distance-based invariants, including
notable examples such as the Wiener and Mostar indices [10], computed for the Fibonacci
and Lucas cubes [19,32]. Extending our results on the distribution of degrees, a thorough
exploration of irregularities, modeled after the calculations for the Fibonacci and Lucas
cubes [1, 18], would contribute to a more comprehensive portrait of the Horadam cubes.
Another direction of research would include an investigation of the existence of the per-
fect codes in the Horadam cubes, similar to what was done for the Lucas cubes [38],
or determining the smallest dimension of a hypercube that contains a Horadam cube of

dimension n as a subgraph.
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CONCLUSION

In the first part of the dissertation, we considered three different types of tilings of a
honeycomb strip. In the first case, when we considered the tilings using monomers and
dimers, we obtained a formula for the number of tilings when the number of dimers is
fixed. Thus, we refined the already-known results and determined the number of tilings
where monomers and dimers admit colors. In the second case, where the horizontal dimer
is omitted, but instead, the trimer is introduced, we presented formulas that count the num-
ber of tilings with or without the fixed number of tiles of a certain type. Using those for-
mulas, we were able to obtain several identities including sequences such as Fibonacci,
tribonacci, tetranacci, Narayana, Padovan numbers, and others. Some of the obtained
identities were generalized to the sequences that satisfy full-history linear recurrence with
constant coefficients. Finally, in the last case, where we investigated the number of divi-
sions of a honeycomb strip, we found that the answer is, simply, odd-indexed Fibonacci
numbers. This result was retrieved in several ways, by determining the recurrences, by
counting arguments, and in a combinatorial way.

Chapters 2 and 3 were dedicated to the graphs of recurrences. In Chapter 2, we have
introduced and studied metallic cube, a family of graphs that both, generalizes the Fi-
bonacci cubes, and, offers an alternative definition of the Pell graphs introduced recently
by Munarini [40]. Their name reflects the fact that they are induced subgraphs of hyper-
cubes and that their number of vertices satisfies two-term recurrences whose (larger) char-
acteristic roots are known as the metallic means. We have investigated their basic struc-
tural, enumeration, and metric properties and settled some Hamiltonicity-related ques-
tions. Our results show that the new generalization preserves many interesting properties
of the Fibonacci and Lucas cubes, and the Pell graphs, indicating their potential appli-

cability in all related settings. In Chapter 3, we expand the generalization to encompass
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Conclusion

all graphs that satisfy Horadam’s recurrence. As it turned out, the generalized family of
graphs retains many appealing and useful properties of the Fibonacci and metallic cubes.
In particular, it was shown that they admit recursive decomposition, as well as the de-
composition into grids, similar to the metallic cubes. Furthermore, the Horadam cubes
are induced subgraphs of hypercubes and bipartite median graphs. All Horadam cubes
contain a Hamiltonian path, and a Horadam cube is Hamiltonian if the number of vertices
is even. We obtained recurrent sequences that describe the distribution of the degrees as

well as the number of induced subhypercubes of a given dimension.
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