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Abstract: Production of inclusive charmonia in pp collisions at center-of-mass energy of√
s = 13TeV and p–Pb collisions at center-of-mass energy per nucleon pair of √sNN =
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collisions, and 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96 for p–Pb collisions. The
charged-particle pseudorapidity density is measured around midrapidity (|η| < 1.0). In pp
collisions, the measured charged-particle multiplicity extends to about six times the average
value, while in p-Pb collisions at forward (backward) rapidity a multiplicity corresponding
to about three (four) times the average is reached. The ψ(2S) yield increases with the
charged-particle pseudorapidity density. The ratio of ψ(2S) over J/ψ yield does not show a
significant multiplicity dependence in either colliding system, suggesting a similar behavior
of J/ψ and ψ(2S) yields with respect to charged-particle pseudorapidity density. Results
for the ψ(2S) yield and its ratio with respect to J/ψ agree with available model calculations.
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1 Introduction

Quarkonium production in hadronic collisions is a complex mechanism involving hard-scale
processes, i.e., the creation of the quark–antiquark pair in the initial hard scattering, as well
as the subsequent soft-scale process of the binding of the pair into a colorless final state [1].
The production mechanism is sensitive to the gluon content of the colliding hadrons and
thus to the parton distributions of the incoming proton (PDF) or nucleus (nPDF) [2, 3].
In collisions involving heavy nuclei, modification to the production with respect to that in
pp collisions may also arise from, e.g., energy loss that the heavy quarks experience while
traversing the nucleus [4] or from subsequent interactions of the final states with comoving
matter [5], both of which are expected to lead to a suppression of the quarkonium yield.
Good understanding of these phenomena is imperative in order to correctly interpret the
data from nucleus–nucleus collisions, where quarkonia are expected to be suppressed due
to a deconfined partonic medium, i.e., the quark–gluon plasma (QGP) [6]. At the energies
reached by the Large Hadron Collider (LHC), the suppression is partially compensated by
a regeneration of the bound states in the medium [7].

Measurements of quarkonium production at the LHC in small collision systems, i.e.,
proton–proton (pp) and proton–nucleus (p–Pb) collisions, shed more light onto these pro-
cesses. While measurements in pp collisions allow one to study the baseline production
mechanisms of the quark–antiquark pair, the minimum-bias p–Pb data serve to probe the
nuclear effects in conditions at which a formation of an extended QGP phase is not ex-
pected. In nuclear collisions, the initial-state nuclear effects impact the quark–antiquark
pair created in the hard scattering. These effects manifest in the form of an enhancement
and/or suppression of quarkonium production with respect to that in collisions of protons.
Various initial-state effects are able to reproduce the measured nuclear modification of the
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J/ψ and Υ(1S) yields in p–Pb collisions at the LHC (see refs. [8–13] and references therein).
On the other hand, the excited charmonia (ψ(2S)) and bottomonia (Υ(2S), Υ(3S)) display
a suppression pattern different from that of their respective tighter bound states J/ψ and
Υ(1S) [12, 14, 15]. Namely, the excited states were found to be more suppressed than the
ground states. Such behavior cannot be explained with initial-state effects only and sug-
gests that additional, final-state effects, which act on a bound quarkonium state, need to be
considered. Furthermore, the nuclear effects have been found to depend on the multiplicity
of particles produced in the p–Pb collision [16–19]. ALICE Collaboration has previously
published a measurement, complementary to the one presented in hereby work, of J/ψ and
ψ(2S) production as a function of centrality in p–Pb collisions at √sNN = 8.16 TeV [19].
The study revealed that, except for the events in the lowest and highest event activity
class, in which the nuclear modification between the two states is compatible, the ψ(2S)
yield is more suppressed than the J/ψ one. This result is consistent with the picture of the
excited ψ(2S) being more sensitive to final-state interactions.

It is also interesting to note that the ψ(2S) is rather unique among other quarkonia as
it has negligible contribution to its production from decays of heavier states [20]. These so
called feed-down contributions are accounted for in calculations used to model the suppres-
sion of J/ψ in the nuclear medium, namely contributions from χc(1P) and ψ(2S). However,
these models are impacted by the scarcity of available data on production of the excited
charmonia in nuclear collisions, or lack thereof in the case of the P-wave states.

Previous measurements of J/ψ production at forward rapidity as a function of mul-
tiplicity have revealed that the normalized yields increase linearly with the normalized
charged-particle pseudorapidity density at midrapidity in pp collisions [21, 22] (both quan-
tities being normalized to their corresponding averages in minimum-bias events), while for
J/ψ production at midrapidity, the increase of the normalized yields has been found to be
stronger than linear [23]. In p–Pb collisions, the trend also depends on the J/ψ rapidity
and hints at a deviation from a linear trend, suggesting slower- and stronger-than-linear
increase for forward- and backward-rapidity J/ψ, respectively [18, 24]. The measured
multiplicity-dependent behavior of hidden-charm hadrons is compatible with that of open-
charm and beauty hadrons, suggesting a common origin of these phenomena independent
of hadronization [25, 26].

Moreover, measurements in high-multiplicity pp and p–Pb collisions have revealed the
presence of phenomena typically attributed to creation of QGP, e.g., long-range near- and
away-side ridges in two-particle azimuthal correlations [27–30], collective motion of charged
particles [31] and charmed hadrons [32–34]. Therefore, multiplicity-dependent studies in
small systems provide a testing ground for examining the onset of QGP-like effects in
collisions of energetic hadrons.

In this Letter, measurements of inclusive ψ(2S) production at forward rapidity as a
function of charged-particle pseudorapidity density at midrapidity in pp and p–Pb col-
lisions are presented. The inclusive yield contains a prompt component, which consists
of states produced directly via hadronization of the quark–antiquark pair, and the non-
prompt component originating from decays of b-hadrons. The ψ(2S) is compared with the
J/ψ state, by measuring the ratio of ψ(2S) to J/ψ yields as a function of multiplicity. The
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data samples used in this study were collected with the ALICE detector at center-of-mass
energies per nucleon pair of

√
s = 13 TeV for pp and √sNN = 8.16 TeV for p–Pb

collisions.

2 Detector and data samples

The ALICE apparatus design and performance are documented in refs. [35, 36]. The
following section only describes those detector subsystems which are relevant for the
present analyses.

The ALICE detector is instrumented at both central and forward rapidity. The
ALICE forward muon spectrometer [37] detects muons in the pseudorapidity range
−4 < η < −2.5 in the laboratory frame. It consists of five tracking stations (each of them
consisting of two chambers of Cathode Pad Chamber detectors), followed by two triggering
stations (two planes of Resistive Plate Chamber detectors each). A ten-interaction-length-
thick absorber, made of carbon, concrete, and steel, is positioned in front of the tracking
system to filter out most of the hadrons produced in the collisions. Remaining hadrons
and low-momentum muons are absorbed by a second iron absorber positioned between the
muon tracking chambers (MCH) and the muon trigger chambers (MTR). A 3 T·m dipole
magnet, surrounding the third tracking station, provides the track bending for momentum
evaluation. The Silicon Pixel Detector (SPD) is part of the ALICE central barrel [38]. It
is used to reconstruct the primary vertex, reject events with collision pile-up, and estimate
the charged-particle multiplicity of the collision. It corresponds to the two innermost layers
of the Inner Tracking System (ITS) [38], which are positioned around the beam pipe and
cover the pseudorapidity intervals |η| < 2 and |η| < 1.4, respectively.

The Minimum Bias (MB) trigger is provided by the V0 detector [39], two scintillator
arrays covering the pseudorapidity ranges 2.8 < η < 5.1 and −3.7 < η < −1.7. The
timing information from the V0 is used to remove beam-induced background. Finally, the
luminosity determination is obtained from the V0 information and, independently, using the
T0 Cherenkov detectors [40], which cover 4.6 < η < 4.9 and −3.3 < η < −3.0 [41, 42].

The pp data sample was collected at the center-of-mass energy of
√
s = 13 TeV

between 2016 and 2018. Concerning the p–Pb sample, the hereby presented data were col-
lected in 2016 at the center-of-mass energy per nucleon pair of √sNN = 8.16 TeV. In these
asymmetric collisions, the energy of the proton (Pb) beams is of EN = 6.5 (2.56) TeV per
nucleon, and the center of mass of the nucleon–nucleon system is positioned at ∆y = −0.465
in the laboratory frame. The p–Pb data samples were recorded in two beam configurations:
the forward configuration, in which the proton moves toward the spectrometer and quarko-
nia are measured in the proton-going direction, i.e., 2.03 < ycms < 3.53, and the backward
configuration, in which the proton moves away from the spectrometer and quarkonia are
measured in the lead-going direction, i.e., −4.46 < ycms < −2.96. Events selected for these
analyses were collected using a dimuon trigger which requires that two muons of opposite-
sign charge are detected in the MTR in coincidence with the MB trigger, i.e., the detection
of a signal in each side of the V0. The muons were required to have a transverse momen-
tum ptrig

T , evaluated with the MTR, larger than about 0.5 GeV/c. In these data-taking
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periods, the maximum pile-up probability was about 0.5% for pp collisions, and about 4%
for p–Pb collisions. Pile-up was further reduced to a negligible contribution by a dedicated
event-selection strategy. An algorithm to tag events with multiple vertices reconstructed
with the SPD was used for both collision systems. Additional selection criteria have been
considered for p–Pb data, i.e., the correlation between the number of clusters in SPD and
the number of track segments in SPD, the correlation between the signal amplitude in the
V0 and the number of track segments in SPD, a timing criterion on the signal from V0,
and the correlation of timing signals from the two sides of the ZDC system. The integrated
luminosity of the collected samples amounts to 24.38 ± 0.87 pb−1 in pp collisions and to
7.2± 0.2 nb−1 (10.6± 0.3 nb−1) in forward (backward) p–Pb collisions.

3 Charged-particle multiplicity measurement

The number of track segments, tracklets, (Ntracklet) formed by combining hits in both
SPD [38] layers pointing to the primary vertex was used as the estimator of the charged-
particle pseudorapidity density (dNch/dη) at midrapidity. The information provided by
the SPD was also used to compute the position of the primary vertex. In order to reduce
the potential effects of the detector non-uniformities at its acceptance limits, the position
of the primary vertex along the beam axis (z) was restricted to |zvtx| < 10 cm and only
tracklets within the pseudorapidity range |η| < 1 were considered.

To account for the limited acceptance of the SPD and the variation of its conditions over
time, a data-driven event-by-event correction [21, 23–25] was applied to the raw number of
tracklets. The dependence of the SPD acceptance on the vertex position was corrected for
by dividing the raw number of tracklets in each event by a zvtx-dependent renormalization
factor, which was defined for each data-taking period as the average value of the Ntracklet
distribution in the corresponding zvtx interval, 〈Ntracklet〉(zvtx), normalized to a reference
value. The reference value was chosen as the maximum value of 〈Ntracklet〉 over all zvtx
intervals and all data-taking periods. In order to account for event-by-event fluctuations,
the renormalization factor was randomly smeared for each event using a Poisson distri-
bution. Given the variations of the SPD conditions with time, the dataset was split into
groups of sub-periods with a similar SPD status. In particular, for the three-year-long
pp data-taking period, 12 groups were considered. The 〈Ntracklet〉(zvtx) distributions were
separately renormalized to the same reference value in each group. Once the correction
was applied, events from all groups were merged and sorted into 9 intervals of corrected
number of tracklets (N corr

tracklet). Considering the smaller p–Pb data samples, 6 (8) N corr
tracklet

intervals were defined for the forward (backward) p–Pb configuration in view of the ψ(2S)
signal extraction.

The estimation of dNch/dη from N corr
tracklet was performed using Monte Carlo (MC)

simulations. DPMJET [43] and PYTHIA 8.2 [44] event generators were used to generate
p–Pb and pp events respectively. In both cases, the transport of the generated particles
through the detector was simulated using GEANT3 [45]. The correlation between the
generated dNch/dη and the reconstructed N corr

tracklet was parameterized with a second order
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pp p–Pb
vertex equalisation


0.9–
5.3%

3%
dNch/dη from N corr

tracklet 0.3–4.0%
MC influence 2%
〈dNch/dη〉 1.4% 4.1%
dNch/dη /〈dNch/dη〉 1.7–5.5% 5.4–6.5%

Table 1. Summary of systematic uncertainties on the charged-particle pseudorapidity density mea-
surements in |η| < 1 for pp collisions at

√
s = 13 TeV and p–Pb collisions at √sNN = 8.16 TeV.

In the case of pp collisions, the contribution from the first three listed uncertainty sources was
determined together as a single contribution, and listed in the middle. Whenever a range of values
is quoted, it refers to the variation as a function of multiplicity.

polynomial function. Other types of functional form were also tested to take into account
potential deviations from the assumed second order polynomial function.

In the analysis of p–Pb collisions, these deviations from the assumed quadratic pa-
rameterization were taken as one source of systematic uncertainty, ranging from 0.3% at
intermediate multiplicity to 4% in the lowest multiplicity interval. Another considered
source of systematic uncertainty related to the MC sample was the uncertainty on the
residual zvtx dependence of N corr

tracklet originating from the differences between data and sim-
ulations, and the value of uncertainty was found to be close to 3%. In addition, events
generated with EPOS LHC [46] were also analyzed to evaluate the generator influence on
the dNch/dη determination, resulting in a 2% systematic uncertainty in all multiplicity
intervals. The process to determine the two latter sources of uncertainty is identical to the
work described in ref. [24].

In the case of pp collisions, all three potential contributions to systematic uncertainty,
described in the previous paragraph, were evaluated together as a single contribution. As
in the p–Pb case, EPOS LHC was considered to account for possible dependence on the
choice of the event generator. The overall systematic uncertainty on dNch/dη computed in
each N corr

tracklet interval was found to range between 0.9% (at intermediate multiplicity) and
5.3% (lowest multiplicity interval).

Finally, the average charged-particle pseudorapidity density in the non-single diffrac-
tive (NSD) p–Pb collisions, 〈dNch/dη〉NSD, was evaluated in an independent analysis. The
NSD event class includes non- and double-diffractive events. The measurement, whose
value in a narrower pseudorapidity range can be found in ref. [47], gives 〈dNch/dη〉NSD =
20.33 ± 0.83 (20.32 ± 0.83) for the forward (backward) configuration. The corresponding
value for pp collisions was measured for inelastic events with at least one charged particle
at midrapidity (this class of events being commonly denoted as INEL>0) and amounts to
〈dNch/dη〉INEL>0 = 7.07+0.10

−0.08, computed from ref. [48]. The total systematic uncertainties
for both pp and p–Pb multiplicity measurements are reported in table 1.
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4 Charmonium yield determination

The normalized charmoniun yields were defined as the corrected yields in a given charged-
particle pseudorapidity density interval i, dN i/dy, divided by their multiplicity-integrated
values , 〈dN/dy〉, according to

dN i/dy
〈dN/dy〉 =

N i
ψ(2S)

Nψ(2S)

N eq
MB

N i,eq
MB

(Aε)ψ(2S)

(Aε)iψ(2S)

εiMB
εMB

, (4.1)

where Nψ(2S) is the raw number of ψ(2S) signals, N eq
MB is the number of equivalent

minimum-bias (MB) events (whose calculation is described later in this section), Aεψ(2S) is
the average acceptance-times-reconstruction efficiency for ψ(2S), and εMB is the selection
efficiency for minimum-bias events. Here the terms denoted with superscript i refer to
quantities measured for the multiplicity interval i while terms with no superscript corre-
spond to multiplicity-integrated quantities.

J/ψ and ψ(2S) candidates were reconstructed by forming pairs of opposite-sign-charge
muon tracks and computing their invariant mass. Muons were identified by requiring that
each track candidate in the MCH matches with a track segment in the MTR. In addition,
tracks were required to be reconstructed within −4.0 < ηµ < −2.5, with their radial
distance from the beam axis at the end of the front absorber, Rabs, being limited within
17.6 < Rabs < 89.5 cm, to ensure that only the tracks within detector acceptance were
selected for further analysis.

Raw charmonium yields were extracted by fitting the invariant-mass distribution with
a superposition of J/ψ and ψ(2S) signal functions and a background function. Different
combinations of functional forms were used to determine the raw yields and their uncer-
tainties. The J/ψ and ψ(2S) signal peaks were parametrized either with a Crystal Ball
(CB) function or a pseudo-Gaussian function with power-law tails (as implemented first
by the NA60 Collaboration [49, 50]). The two functions differ in their parametrization
including a Gaussian core and two asymmetric exponential tails. The J/ψ mass, width,
and normalization were left free in the fit procedure, while the ψ(2S) function parameters,
apart from the normalization, were bound to those of J/ψ as explained in ref. [51]. The
ψ(2S) mass was constrained by requiring that the difference with respect to the J/ψ mass
was the one reported by the Particle Data Group in ref. [20]. The ψ(2S) width was taken
as proportional to the J/ψ width. The ratio of ψ(2S) and J/ψ peak widths was determined
from Monte Carlo or data, as explained in ref. [52], combining the values obtained with
these two alternative options to define the raw charmonium yields. Tail parameters were
obtained from data or Monte Carlo and fixed in the fits. In both the pp and p–Pb anal-
yses, the tail parameters extracted from the respective multiplicity-integrated data and
MC samples were used in the fit with CB signal function. For the NA60 function, the tail
parametrization could only be extracted from MC for both collision systems. Additionally,
the tails extracted from pp data and MC were also considered in the p–Pb analysis as
well as those used in analysis described in ref. [8]. The use of pp tails in p–Pb analy-
sis was motivated by the better determination of the tails in the larger pp data sample,
given the similar experimental conditions for these data-taking periods. To summarize,
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in the analysis of pp collisions, two sets of tail parameters were used in the fit of the CB
function and one in the fit with the NA60 function. In the p–Pb analysis, a total of five
parametrizations of the CB tails and one of the NA60 tails were considered. Different func-
tional forms were considered to describe the combinatorial background. For pp collisions,
either a sum of two exponentials or a pseudo-Gaussian function whose width varies linearly
with the invariant mass were used. Whereas for p–Pb collisions, the functions considered
were either the product of an exponential and a fourth-order polynomial, or the sum of
two exponential functions. The invariant-mass distribution was fitted multiple times per
each multiplicity interval, each iteration varying the parametrizations of the signal and
background components and varying the fit range. The number of candidates and their
statistical uncertainties were evaluated from the average of the values over all trials, while
their standard deviation was used to determine the systematic uncertainty. When com-
puting the normalized charmonium yields or the normalized excited-to-ground state ratio,
the systematic uncertainty due to the signal parametrization was considered as correlated
across charged-particle multiplicity intervals, while the one due to the background descrip-
tion in the fit was treated as uncorrelated. Example of a fit to the multiplicity-integrated
invariant-mass distribution in each dataset is depicted in figure 1.

The equivalent number of MB events, N eq
MB, was obtained from the number of dimuon-

triggered events, Nµ+µ− , as N eq
MB = Fnorm ×Nµ+µ− , where the normalization factor Fnorm

represents the probability of a dimuon trigger to occur in a MB-triggered event. Fnorm was
evaluated either by computing the probability of a coincidence of these two triggers in data
or by exploiting an intermediate single-muon trigger [47].

The acceptance-times-efficiency Aε of charmonia was determined via simulations with
the PYTHIA 6 event generator coupled with GEANT3 to transport the particles through
the detector. The simulations take into account the variation of the experimental conditions
with time. As can be derived from eq. 4.1, the normalized yield is only sensitive to the
variation of Aε with charged-particle multiplicity. No variation of the Aε due to the detector
occupancy was observed. However, it is sensitive to the possible variation of the y and pT
distributions with multiplicity. The J/ψ analyses have shown a variation of 〈pT〉 with
charged-particle multiplicity [23, 24]. Therefore, the influence of the MC input y and pT
distributions was studied. The exercise was done using an iterative procedure to describe
the data for each multiplicity interval. Due to the limited size of the ψ(2S) signal, the
procedure was performed for J/ψ. Three iterations were sufficient to converge, as verified by
comparing the simulated pT and y distributions to those obtained from data and corrected
for Aε. For pp data, a 4% variation of Aε was found from the lowest to the highest
multiplicity interval, and used to correct the normalized yield measurement. No dependence
of Aε with charged-particle multiplicity was observed for p–Pb collisions, therefore no
correction was applied. The different behavior of Aε with charged-particle multiplicity in
pp and p–Pb collisions is understood as a consequence of the higher 〈pT〉 values in pp
collisions at

√
s = 13TeV [52], and the steep increase of the acceptance-times-efficiency

with pT above 3 GeV/c.
The extracted yields needed to be corrected for the efficiency of the MB trigger to

select the INEL> 0 (NSD) events, εINEL>0 (εNSD). The εINEL>0 (εNSD) was evaluated for
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Figure 1. Invariant-mass distribution of opposite-sign muon pairs in (a) forward p–Pb, (b) back-
ward p–Pb, and (c) pp data, integrated in multiplicity. Superimposed is a typical fit function,
shown as a solid blue line (see text on details regarding the fit components). The J/ψ and ψ(2S)
contributions are shown as red and yellow shaded areas, respectively. Finally the background is
depicted as a dashed gray line. The inset shows the region of the ψ(2S) mass.

each multiplicity interval, as described in refs. [47, 48], and found to be equal to unity
in all the intervals apart from the one with the least multiplicity. A 1% correction was
determined and applied to the first multiplicity interval.

The following sources of systematic uncertainty on normalized ψ(2S) yields were con-
sidered: (i) the signal extraction, (ii) the normalization factor, (iii) the event-by-event
Ntracklet to N corr

tracklet correction, (iv) effects of the resolution and of the pile-up on the
multiplicity classification, (v) the acceptance-times-efficiency correction, and (vi) the even-
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Source pp p–Pb
2.5 < ycms < 4.0 2.03 < ycms < 3.53 −4.46 < ycms < −2.96

Signal extraction 4–5% � 4–8% � 5–13% �
Event-by-event N corr

tracklet 1–2% 2% 2%
Resolution and pile-up – 2% 2%
Acceptance-times-efficiency 0-4% � – –
Event-class normalization 1%* 1%* 1%*

Table 2. Sources of systematic uncertainty on the normalized ψ(2S) yields. The values marked
with asterisk (diamond) are (partly) correlated in multiplicity.

t-selection efficiency. Except for the correlated uncertainty on event-selection efficiency and
the partly correlated uncertainty on signal extraction, all sources of systematic uncertainty
have been considered as uncorrelated in multiplicity. The systematic uncertainties on the
charmonium yields in each multiplicity interval, normalized to their multiplicity-integrated
values, were determined directly for the ratios. Likewise, the uncertainties on the nor-
malized excited-to-ground state ratios were determined for the ratio directly rather than
propagated from individual state yields. The details on the signal extraction have been ex-
plained previously in this section. The central values were determined averaging the results
of the fits by varying the signal and background functions, as well as the invariant-mass
fit interval. The systematic uncertainty was evaluated as the standard deviation between
the values for all individual trials, ranging from 4% to 5% for pp data, and 4% to 8% (5%
to 13%) for p–Pb data at forward (backward) rapidity. The influence of the normalization
factor was evaluated by computing Fnorm with different methods and studying its variation
with time (see ref. [24]). The effect on the result was found to be negligible in the measured
multiplicity intervals. The impact of the chosen method for the event-by-event Ntracklet to
N corr

tracklet correction was studied in refs. [21, 24, 25]. Both the reference value used to scale
the Ntracklet distribution as well as the randomization function considered to introduce a
Poissonian fluctuation of the values were varied. The influence of these variations on the
normalized yields ranges around 1–2% (2%) for pp (p–Pb) collisions. The influence of
the resolution on the multiplicity axis and the possible remaining pile-up were evaluated
as a single contribution by repeating the analysis multiple times by varying the pile-up
rejection criteria or introducing a small shift of the N corr

tracklet intervals. The estimated un-
certainty amounts to 2% in p–Pb results and was found to be negligible for pp data. The
determination of the acceptance-times-efficiency correction has been described previously
in this section. The Aε of J/ψ and ψ(2S) were compared as a function of pT, and found
to have a similar behavior around their 〈pT〉 values. To account for possible remaining
differences between the variation of the J/ψ and ψ(2S) Aε, a conservative uncertainty was
assigned to each point, which is as large as the correction (up to 4% for pp, negligible
for p–Pb). The uncertainty on event-class normalization, originating from the INEL> 0 or
NSD event-selection efficiency, was evaluated as in ref. [47]. A 1% uncertainty was assigned
to both pp and p–Pb measurements, correlated in multiplicity. The contributions to the
systematic uncertainty of the normalized ψ(2S) yields are summarized in table 2.
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Figure 2. The normalized ψ(2S) yield as a function of the normalized charged-particle pseudo-
rapidity density in pp collisions at

√
s = 13 TeV and p–Pb collisions at √sNN = 8.16 TeV.

Quoted is the correlated event-class normalization uncertainty. The pp results are normalized to
the INEL>0 event class, whereas the p–Pb ones refer to the NSD one.

The same sources of systematic uncertainty were studied for the normalized
ψ(2S)-over-J/ψ ratios. In this case, the influence of the event-by-event N corr

tracklet correction,
as well as that of the resolution and pile-up were found to be negligible. The uncertainty
originating from the normalization to the INEL> 0 (NSD) event class in pp (p–Pb) colli-
sions cancels out in the ratio. Signal extraction is the sole contributor to the systematic
uncertainty on the normalized ψ(2S)-over-J/ψ ratio, and amounts to 4–5% for pp results,
and to 4–8% (5–12%) for forward (backward) rapidity p–Pb measurements.

5 Results

In pp collisions, the measured charged-particle multiplicity spans up to about six times
the average value. In p–Pb collisions at forward (backward) rapidity, the yields have been
measured up to about three (four) times the average multiplicity. The normalized ψ(2S)
yield increases with increasing multiplicity, presenting a similar trend in pp collisions at√
s = 13 TeV and p–Pb collisions at √sNN = 8.16 TeV. The p–Pb results at forward

and backward rapidity are compatible between each other within uncertainties.
The ratio of normalized ψ(2S)-over-J/ψ yields is evaluated to outline possible dif-

ferences between multiplicity dependence of the production of the excited ψ(2S) and
ground-state J/ψ with reduced uncertainties. The double ratios, obtained by dividing the
ψ(2S)-over-J/ψ yield ratios in multiplicity intervals by the multiplicity-integrated ratios,
are shown in figure 3. The measurements are compatible with unity within uncertainties for
both colliding systems. The double ratio in pp collisions, which is more precise than that
in p–Pb, is consistent with a linear trend, either with a null (χ2/ndf = 2.1) or a negative
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Figure 3. Ratio of normalized ψ(2S)-over-J/ψ yield as a function of the normalized charged-particle
pseudorapidity density in pp collisions at

√
s = 13 TeV and p–Pb collisions at √sNN = 8.16 TeV.

The pp results are normalized to the INEL>0 event class, whereas the p–Pb ones refer to the
NSD one.

slope (χ2/ndf = 1.5, free value of slope −0.05 ± 0.02). The measurements are compared
with theoretical calculations in figure 4, 5, and 6.

The results from the PYTHIA 8.2 event generator [44] for pp collisions at
√
s = 13TeV

are shown in figure 4. In contrast to PYTHIA 6, PYTHIA 8.2 allows charm and beauty
quarks to be involved in secondary hard processes, i.e., in multiparton interactions (MPI).
From the implementation of the MPI mechanism a simple scaling is expected, in which the
multiplicity of charged particles is proportional to the number of MPI and to the amount of
hard processes taking place in a collision. At first order, this results in an increasing trend
of the normalized quarkonium yields as a function of the normalized charged-particle multi-
plicity, with a slope close to unity. The ψ(2S) yield measurement is described within uncer-
tainties by the PYTHIA 8.2 event generator, both with and without the color-reconnection
(CR) contribution. No significant difference is observed between the two configurations of
PYTHIA 8.2, even though the naive expectation is that of a steeper trend in the simula-
tion with CR, caused by the effective reduction of the charged-particle multiplicity at large
multiplicities in the CR scenario. A tension appears on the comparison of the measurement
and the calculation of the ψ(2S)-over-J/ψ ratio as a function of the charged-particle multi-
plicity, as can be seen in figure 4(b). For values of normalized charged-particle multiplicity
below unity, the simulations yield values of the ψ(2S)-over-J/ψ ratio lower than unity, while
the measured values in the same multiplicity range reach above unity. A different event
activity bias could be the explanation for the discrepancy found at low multiplicity. For
instance, in PYTHIA 8.2, events with ψ(2S) are, on average, biased towards a larger event
activity as a consequence of its larger mass. This interpretation can not be confirmed, nor
refuted, with the current measurement precision.
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High-energy hadronic collisions can also be simulated in the percolation framework [53].
This paper shows calculations from this model only for p–Pb collisions. The key ingredient
of this model are the color ropes or flux tubes (strings), that are formed in each parton–
parton interaction and constitute the main source of particle production. The strings have
non-negligible transverse size and can interact among each other. In particular, they can
overlap, reducing their effective number and, consequently, the particle production. In this
string model [54], the number of quarkonia is assumed to be proportional to the number
of partonic scatterings, which corresponds to the number of produced strings. Instead, the
charged-particle multiplicity scales with the number of participants due to the influence
of shadowing [55], parton saturation [56], or percolation [53]. For p–Pb collisions, the
percolation calculations shown in this paper are coupled to the comover model [5, 57] and
to EPS09 nPDFs [58], the latter having been added to account for nuclear effects. In the
comover model [5, 57], quarkonia can be dissociated by interacting with the surrounding
comoving particles in the final state. The probability for this to happen depends on the
binding energy of each quarkonium state and on the density of comoving particles. The
latter determines the uncertainties of the model. The rapidity distribution of the density of
hadrons is parametrized taking into account the geometry of the collision [59]. The EPS09
uncertainties have a sizable influence on the model estimate of the yields but cancel in the
ψ(2S)-over-J/ψ ratio. Feed-down contributions from decays of other charmonium states
are taken into account in the calculation. The normalized ψ(2S) yields in p–Pb collisions
are described within uncertainties by the percolation + comover + EPS09 calculation (see
figure 5(a) and 6(a)). The model expects a nearly linear increase of the yield at backward
rapidity, compatible with the measured one. The model calculation at forward rapidity
also describes the measurement, within the large EPS09 uncertainties. It is to be noted
that the measured values are on the upper edge of the uncertainty band of the prediction.

In the comover scenario [5, 57], the probability of ψ(2S) to dissociate due to interactions
in the final state is larger than that of J/ψ due to its lower binding energy. The effect
increases with charged-particle multiplicity, i.e., with the comover density. This results
in a decreasing trend of the double ratio with increasing charged-particle multiplicity, in
contrast to PYTHIA 8.2 simulations for pp collisions, which do not include final-state
effects. The uncertainties shown in the comover calculation for the double ratio in pp
collisions represent the influence of varying by 15% the density of comoving particles. The
double ratios for pp collisions are described by the comover calculation within uncertainties,
see figure 4(b). The data-to-model comparison suggests a steeper decrease in the model
calculation than in the measured data points, albeit no firm conclusion can be drawn with
the current precision of the measurement. The double ratios measured in p–Pb collisions are
shown in figures 5(b) and 6(b). The measurements, while weighted by a large uncertainty,
are consistent with the comover calculation, which predicts a stronger suppression of the
excited states at backward rapidity. Previous studies of the relative suppression between
the two charmonium states indeed revealed a stronger suppression at backward rapidity,
largely independent of multiplicity [16, 19].

To better contextualize the results presented in this paper, one needs to consider previ-
ously published results on multiplicity-dependent quarkonium production. The normalized
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yields of charmonium and bottomonium ground and excited states at large rapidity increase
with the normalized charged-particle multiplicity at midrapidity with a similar approxi-
mately linear trend (with gradient equal to unity) in pp collisions [22, 24, 60]. A steeper
increase is observed for J/ψ production at midrapidity [23, 25]. All models for J/ψ produc-
tion in pp collisions at midrapidity (PYTHIA 8.2, model with coherent particle production
(CPP) [61], EPOS3 [62], Color Glass Condensate effective theory (CGC) [63], 3-pomeron
CGC [64], and percolation [54]) predict a faster-than-linear increase of the yields with
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Figure 6. The normalized ψ(2S) yield and the ratio of normalized ψ(2S)-over-J/ψ yields at
−4.46 < ycms < −2.96 as a function of the normalized charged-particle pseudorapidity density in
p–Pb collisions at √sNN = 8.16 TeV. Measurements are compared with the percolation calcula-
tion [53] coupled with comover model [5] and EPS09 nPDF [58]. Quoted is the correlated event-class
normalization uncertainty.

charged-particle pseudorapidity density at midrapidity [23]. All these models predict an
effective reduction of the charged-particle multiplicity at high multiplicities due to differ-
ent physics mechanisms (color reconnection, coherent particle production, 3-gluon fusion,
saturation, or percolation). The percolation model slightly overestimates the yield at high
multiplicity, while PYTHIA 8.2 and EPOS3 underpredict the data. The CPP, CGC, and
3-pomeron CGC models give a good description of the measurements. To interpret these
results, one should keep in mind that in all models, except PYTHIA, only the prompt
component is considered, and the non-prompt contribution exhibits a stronger increase
than the prompt one with multiplicity in PYTHIA 8.2 [23]. Model calculations predict a
slightly smaller increase for J/ψ yields at large rapidity than at midrapidity with respect to
charged-particle pseudorapidity density at midrapidity, consistent with the measurements.
This suggests that the influence of the physics mechanisms at play differs for large and
midrapidity J/ψ. The measurements presented in this paper for ψ(2S) and in ref. [60]
for bottomonium ground and excited states at large rapidity are in agreement with this
picture. It should be noted that, despite the recent progress, there are not many pre-
dictions available for excited charmonium states or bottomonium states as a function of
charged-particle multiplicity.

6 Summary

The first measurements of ψ(2S) production and of the ψ(2S)-over-J/ψ production ratio
as a function of charged-particle multiplicity in pp and p–Pb collisions at the LHC are
presented. Charmonium yields were measured at large rapidity, whereas charged-particle
multiplicity was measured at central rapidity. Both charmonium yields and the charged-
particle multiplicity have been normalized to their respective multiplicity-integrated val-
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ues. The normalized ψ(2S) yield increases with the normalized charged-particle density
in both collision systems with an approximately linear trend with slope close to unity.
The normalized ψ(2S)-over-J/ψ yield ratio is compatible with unity independently of the
charged-particle multiplicity within uncertainties, suggesting a similar multiplicity depen-
dence for excited and ground state charmonium states. The results can be described by
models (PYTHIA 8.2 , percolation + comover + EPS09) within uncertainties.

The measurements of the charged-particle multiplicity dependence of excited-to-ground
state ratios provide additional constraints to models. The results for charmonium and bot-
tomonium states at large rapidity in pp and p–Pb collisions provide a coherent picture,
with ratios compatible with unity. The precision of the measurements does not allow one
to rule out neither the decrease with increasing charged-particle multiplicity predicted by
the comover model, nor the nearly flat trend of PYTHIA 8.2 calculations. Bottomonium
excited-to-ground state ratios at midrapidity show a smooth decreasing trend with increas-
ing charged-particle pseudorapidity density at midrapidity from pp to p–Pb and to Pb–Pb
collisions [65, 66]. A data-to-model comparison is unfortunately missing for the latter.
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