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Abstract: We report about the properties of the underlying event measured with ALICE
at the LHC in pp and p–Pb collisions at √sNN = 5.02 TeV. The event activity, quantified by
charged-particle number and summed-pT densities, is measured as a function of the leading-
particle transverse momentum (ptrig

T ). These quantities are studied in three azimuthal-
angle regions relative to the leading particle in the event: toward, away, and transverse.
Results are presented for three different pT thresholds (0.15, 0.5 and 1 GeV/c) at mid-
pseudorapidity (|η| < 0.8). The event activity in the transverse region, which is the most
sensitive to the underlying event, exhibits similar behaviour in both pp and p–Pb collisions,
namely, a steep increase with ptrig

T for low ptrig
T , followed by a saturation at ptrig

T ≈ 5GeV/c.
The results from pp collisions are compared with existing measurements at other centre-of-
mass energies. The quantities in the toward and away regions are also analyzed after the
subtraction of the contribution measured in the transverse region. The remaining jet-like
particle densities are consistent in pp and p–Pb collisions for ptrig

T > 10GeV/c, whereas for
lower ptrig

T values the event activity is slightly higher in p–Pb than in pp collisions. The
measurements are compared with predictions from the PYTHIA 8 and EPOS LHC Monte
Carlo event generators.
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1 Introduction

In non-diffractive proton–proton (pp) collisions at high energies, the underlying event (UE)
consists of the set of particles that arise from the proton break-up (beam remnants), and
from other semi-hard scatterings, in a scenario of multiparton interactions (MPI) [1]. The
UE activity accompanies high transverse momentum (pT) particles produced by the main
partonic scattering (jets). Experimental studies aimed at probing the UE component are
commonly performed in azimuthal-angle regions where the contribution from the hard
scattering is expected to be minimal. The present study follows the strategy originally
introduced by the CDF collaboration [2]. Firstly, the leading particle (or trigger particle)
in the event is found, i.e., the charged particle with the highest transverse momentum in
the collision (ptrig

T ). Secondly, the associated particles for three different thresholds of the
transverse momentum, pT > 0.15, 0.5, and 1GeV/c, are grouped in three classes depending
on their relative azimuthal angle with respect to the leading particle, |∆ϕ| = |ϕassoc−ϕtrig|:

• toward: | ∆ϕ |< 60◦,

• transverse: 60◦ <| ∆ϕ |< 120◦, and

• away: | ∆ϕ |> 120◦.

– 1 –
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Figure 1. Illustration of the toward, transverse, and away regions in the azimuthal plane with
respect to the leading particle direction. The figure has been taken from ref. [14].

The three topological regions corresponding to the azimuthal-angle intervals defined above
are illustrated in figure 1. The toward region contains the primary jet of the collision, while
the away region contains the recoiled jet [3]. In contrast, the transverse region is mostly
dominated by the UE dynamics, but it also includes contributions from initial- and final-
state radiation (ISR and FSR) [4]. This strategy [2] has been used by several experiments
at RHIC [5], the Tevatron [2, 6–8], and the LHC [9–14]. The studies include measurements
in events with Drell-Yan [15] and Z-boson [16–18] production.

Experimental results have shown that the event activity, quantified by charged-particle
number or summed-pT densities, in the transverse region rises steeply with increasing ptrig

T
at low ptrig

T (< 5GeV/c), and then it roughly saturates (plateau) for larger ptrig
T [14]. This

saturation is expected in models that include the concept of impact parameter such that
the requirement of the presence of a high-pT particle in a pp collision biases the selection
of collisions towards those with a small impact parameter [19]. Based on UE observables
measured at LHC centre-of-mass energies,

√
s = 0.9, 7, and 13 TeV, the event activity in the

plateau region has been found to increase faster with increasing
√
s than in minimum-bias

pp collisions [11, 14]. An analogous study for p–Pb collisions has never been performed,
although an attempt to determine the correlation between the impact parameter of the
collision and the charged-particle multiplicity has been reported [20].

The measurements performed at RHIC and LHC in pp, p–A, and d–A collisions have
shown for high-particle multiplicities similar phenomena as were originally observed only in
A–A collisions and have been attributed there to collective effects [21]. Thus, investigating
pp and p–Pb collisions has become ever more pertinent in order to understand the origin
of these effects [21–26]. In QCD (quantum chromodynamics)-inspired Monte Carlo (MC)
generators like PYTHIA 8 [27], outgoing partons originating from MPI are allowed to
interact with those from the main partonic scattering. This mechanism, known as colour
reconnection, produces effects resembling collective behaviour in pp collisions [28]. Given
the dynamics encoded in the transverse region, the colour reconnection effects are expected
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to be more relevant in such a topological region [29]. Therefore, beyond the importance of
UE measurements for MC tuning [30, 31], the study of the event activity in the transverse
region is important to contribute to the understanding of the new effects observed in high-
multiplicity pp and p–Pb collisions [32].

In this paper, measurements of the event activity as a function of ptrig
T in pp and

p–Pb collisions at the same centre-of-mass energy per nucleon pair (√sNN = 5.02TeV) are
reported. The event activity for each topological region in p–Pb collisions is compared
with that in pp collisions at the same ptrig

T . In order to search for a possible system
size dependence of the jet-like particle densities, the jet-like signal (in the toward and
away regions) is further isolated by subtracting the UE contribution estimated from the
transverse region. The results from pp collisions are compared to predictions from the
EPOS tune LHC [33] and PYTHIA 8.244 (Monash 2013 tune [30]) Monte Carlo event
generators, hereinafter referred to as EPOS LHC and PYTHIA 8/Monash, respectively.
For p–Pb collisions, data are compared to EPOS LHC and PYTHIA 8/Angantyr [34].

For pp collisions, the modelling of UE in PYTHIA 8/Monash considers an impact-
parameter dependent MPI activity. The partonic configuration is hadronised using string
fragmentation as described by the Lund string model [35], followed by the decays of un-
stable particles. In collisions with several MPI, individual long strings connected to the
remnants are replaced by shorter additional strings connecting partons from different semi-
hard scatterings (colour reconnection). The Monash 2013 tune used minimum-bias, Drell-
Yan, and UE data from the LHC to constrain the initial-state radiation and multiparton
interactions, combined with data from the SPS and the Tevatron to constrain the scaling
with the collision energy. The simulation of p–Pb collisions was performed with the recent
model named Angantyr [34], which is based on an extrapolation of pp dynamics with a
minimum number of free parameters. The model does not assume the formation of a hot
thermalised medium, instead, the generalisation to collisions involving nuclei is inspired
by the Fritiof model [36] and the notion of “wounded” or “participating” nucleons. The
number of wounded nucleons is calculated from the Glauber model in impact parameter
space. With these assumptions, the model is able to give a good description of general final-
state properties such as multiplicity and transverse momentum distributions of particles
produced in interactions involving heavy nuclei.

In EPOS LHC, the description of multiple partonic scatterings is based on a combina-
tion of Gribov-Regge theory and pQCD [37]. An elementary scattering corresponds to a
parton ladder, containing a hard scattering which is calculated based on pQCD, including
initial- and final-state radiation. Parton ladders that are formed in parallel to each other
share the total collision energy leading to consistent treatment of energy conservation in
hadronic collisions. String hadronisation in EPOS is based on the local density of the string
segments per unit volume with respect to a critical-density parameter. Event-by-event,
string segments in low-density regions hadronise normally and independently, creating the
so-called corona, while string segments in high-density regions are used to create a core
with collective expansion resulting in radial and longitudinal flow effects. The EPOS LHC
tune considered here [33] is based on a dedicated parameter set used to describe data from
different centre-of-mass energies and collision systems at the LHC.
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The paper is organised as follows. The ALICE detectors used in the analysis are
described in section 2. Section 3 is dedicated to illustrate the analysis technique, the data
correction procedures, and the evaluation of the systematic uncertainties. The results are
presented and discussed in section 4, and the conclusions are summarised in section 5.

2 Experimental setup

The main ALICE detectors used in the present work are the Inner Tracking System (ITS),
the Time Projection Chamber (TPC), and the V0 detector. The ITS and TPC detectors
are both used for primary vertex and track reconstruction. The V0 detector is used for
triggering and for beam background rejection. More details concerning the ALICE detector
system and its performance can be found in refs. [38, 39].

The ITS and TPC detectors are the main tracking devices covering the pseudorapidity
region |η| < 0.8 for full-length tracks. They are located inside a solenoidal magnet providing
a 0.5T magnetic field, allowing the tracking of particles with pT & 0.15GeV/c. The ITS
is composed of six cylindrical layers of high-resolution silicon tracking detectors. The
innermost layers consist of two arrays of hybrid Silicon Pixel Detectors (SPD) located at
an average radial distance of 3.9 cm and 7.6 cm from the beam axis and covering |η| < 2 and
|η| < 1.4, respectively. The TPC has an active radial range from about 85 to 250 cm, and
an overall length along the beam direction of 500 cm. The TPC readout chambers have 159
tangential pad rows and thus a charged particle can, ideally, produce 159 clusters within
the TPC volume. The readout chambers are mounted into 18 trapezoidal sectors at each
end plate [39]. The V0 detector consists of two sub-detectors placed on each side of the
interaction point covering the full azimuthal acceptance and the pseudorapidity intervals
of 2.8 < η < 5.1 (V0A) and −3.7 < η < −1.7 (V0C).

This analysis is based on the data recorded by the ALICE apparatus during the pp
run at

√
s = 5.02TeV in 2015, and the p–Pb run at √sNN = 5.02TeV in 2016. The data

were collected using a minimum-bias trigger, which required a signal in both V0A and
V0C detectors. Only events with a reconstructed vertex within ±10 cm from the nominal
interaction point along the beam direction are used. Runs with a low number of interac-
tions per bunch crossing (µ) were selected resulting in average µ values of 0.020 and 0.005
for pp and p–Pb collisions, respectively. Therefore, events with multiple collisions (pile-
up) constitute a small fraction of the triggered events. They are identified and rejected
based on the presence of multiple interaction vertices reconstructed using the SPD infor-
mation. The remaining undetected pile-up is negligible for this analysis, while the fraction
of wrongly-tagged events due to SPD vertex splitting from a single interaction is < 10−4

for both collision systems. The offline event selection is optimised to reject beam-induced
background by exploiting the timing signals in the two V0 sub-detectors. The event se-
lection also requires at least one track with a minimum transverse momentum (pT = 0.15,
0.5, and 1.0GeV/c) in the acceptance range |η| < 0.8. The results presented in this article
were obtained from the analysis of about 180 and 332 million minimum-bias pp and p–Pb
collisions, respectively.
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3 Analysis details

3.1 Track reconstruction and selection

The event properties are studied from the number and the momenta of the primary charged
particles in the pseudorapidity interval |η| < 0.8. Primary particles are defined as parti-
cles with a mean proper lifetime larger than 1 cm/c, which are either produced directly
in the interaction or from decays of particles with a mean proper lifetime smaller than
1 cm/c [40]. Charged particles are reconstructed with the ITS and TPC detectors, provid-
ing a measurement of the track transverse momentum pT and azimuthal angle ϕ, which
are used in the analysis. Tracks are required to have at least two hits in the ITS detector,
of which at least one in either of the two innermost layers. The ratio of crossed TPC
pad rows to the number of findable TPC clusters is required to be larger than 0.8, and
the fraction of TPC clusters shared with another track should be less than 0.4. In addi-
tion, tracks are required to have a number of crossed TPC pad rows larger than 0.85× L,
where L (in cm) is the geometrical track length calculated in the TPC readout plane, ex-
cluding the information from the pads at the sector boundaries (≈ 3 cm from the sector
edges). The number of TPC clusters associated to the track is required to be larger than
0.7 × L. The fit quality for the ITS and TPC track points must satisfy χ2

ITS/Nhits < 36
and χ2

TPC/Nclusters < 4, respectively, where Nhits and Nclusters are the number of hits in
the ITS and the number of clusters in the TPC, respectively. To select primary particles,
tracks having a large distance of closest approach (DCA) to the reconstructed vertex in the
longitudinal (dz > 2 cm) and radial (dxy > 0.018 cm +0.035 cm×(GeV/c)×p−1

T ) directions
are rejected. To further reduce the contamination from secondary particles, only tracks
with χ2

TPC−ITS < 36 are included in the analysis, where χ2
TPC−ITS is calculated by compar-

ing the track parameters from the combined ITS and TPC track reconstruction to those
derived only from the TPC and constrained by the interaction point [41]. For this track
selection [42], the momentum resolution is approximately 3-4% at pT = 0.15GeV/c, it has
a minimum of 1.0% at pT = 1.0GeV/c, and increases linearly for larger pT, approaching
3-10% at 50GeV/c, depending on collision energy, and collision system. The measure-
ments presented in this work are not corrected for momentum resolution but the effects
are included by the systematic uncertainties.

3.2 Underlying-event observables

The transverse momentum spectra (pT) as a function of ptrig
T are corrected for all ptrig

T
intervals and are extracted for each topological region. Then, both the primary charged-
particle number and the summed transverse-momentum densities are calculated from the
pT spectra. The event activity in each topological region is measured as a function of ptrig

T .
It is quantified with the primary charged-particle number density:

〈d2Nch
dηdϕ

〉
(ptrig

T ) = 1
∆η∆ϕ

1
Nev(ptrig

T )
Nch(ptrig

T ), (3.1)
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and the summed transverse-momentum density:〈d2∑ pT
dηdϕ

〉
(ptrig

T ) = 1
∆η∆ϕ

1
Nev(ptrig

T )
∑

pT(ptrig
T ), (3.2)

where Nev(ptrig
T ) is the total number of events with the leading particle in a given ptrig

T inter-
val; Nch(ptrig

T ) and ∑ pT(ptrig
T ) stand for multiplicity and sum of the pT of all reconstructed

tracks within a given topological region, respectively. Finally, ∆η is the pseudorapidity
interval used in the analysis.

This paper also reports the charged-particle number and the summed-pT densities in
the toward and away regions after the subtraction of the event activity in the transverse
region. All these quantities are measured as a function of ptrig

T .
The charged-particle number density in the jet-like signal is derived from the difference

between the number density in the toward (or away) region and that in the transverse
region:〈d2Nch

dηdϕ

〉jet toward(away)
(ptrig

T ) =
[〈d2Nch

dηdϕ

〉toward(away)
−
〈d2Nch

dηdϕ

〉transverse]
(ptrig

T ). (3.3)

In the same way, the summed-pT density in the jet-like signal is obtained as follows:〈d2∑ pT
dηdϕ

〉jet toward(away)
(ptrig

T ) =
[〈d2∑ pT

dηdϕ

〉toward(away)
−
〈d2∑ pT

dηdϕ

〉transverse]
(ptrig

T ).

(3.4)
The ratio between these two quantities gives the average transverse momentum in the

jet-like signal:

〈pT〉jet toward(away) =
〈d2∑ pT

dηdϕ

〉jet toward(away)/〈d2Nch
dηdϕ

〉jet toward(away)
. (3.5)

3.3 Corrections

The correction of pT spectra of charged particles follows the standard procedure of the AL-
ICE collaboration [42, 43]. The raw yields are corrected for efficiency and contamination
from secondary particles. The efficiency correction is calculated from Monte Carlo simula-
tions including the propagation of particles through the detector using GEANT 3 [44]. For
pp and p–Pb collisions the PYTHIA 8 and EPOS LHC Monte Carlo event generators are
used for this purpose, respectively. As the relative abundances of different charged particle
species are different in the data and in the simulations, the efficiency obtained from the
simulations is re-weighted considering the primary charged particle composition measured
by ALICE [45], as described in ref. [42]. At pT = 0.15GeV/c the efficiency correction
amounts to ≈ 35%, which is related to the strong track curvature caused by the magnetic
field and to the energy loss in the detector material. It is followed by a maximum value of
78% at pT ≈ 0.4GeV/c, and a minimum (≈ 53%) at around pT of 1GeV/c which is caused
primarily by the track length requirement. At higher pT the efficiency correction reaches
an asymptotic value of 70% which reflects the acceptance limitations (detector boundaries
and active channels) of the measurement [42]. The residual contamination from secondary

– 6 –
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pp
collisions

Number density Summed-pT density
ptrig

T < 2GeV/c ptrig
T > 5GeV/c ptrig

T < 2GeV/c ptrig
T > 5GeV/c

Sec. contamination 0.4% negligible 0.4% negligible
Correction method 3.7%, 3.5%, 3.3% 1.7%, 0.1%, 0.6% 1.8%, 1.5%, 1.6% 2.0%, 0.2%, 0.3%
Track cuts 2.1% 2.8% 2.1% 2.9%
ITS-TPC track matching 0.9% 0.8% 0.9% 0.8%
Misidentification bias 2.3% negligible 2.8% 0.2%
Event selection negligible negligible negligible negligible
Total uncertainty 4.9%, 4.8%, 4.6% 3.4%, 2.9%, 3.0% 4.1%, 3.9%, 4.0% 3.6%, 3.0%, 3.0%

p–Pb
collisions

Number density Summed-pT density
ptrig

T < 2GeV/c ptrig
T > 5GeV/c ptrig

T < 2GeV/c ptrig
T > 5GeV/c

Sec. contamination 0.5% negligible 0.4% negligible
Correction method 2.1%, 2.0%, 2.0% 0.8%, 0.6%, 0.7% 0.8%, 0.6%, 0.7% 0.9%, negl., 0.1%
Track cuts 1.5% 3.1% 1.4% 3.2%
ITS-TPC track matching 1.8% 2.0% 1.9% 2.0%
Misidentification bias 3.9% 0.1% 1.8% 0.2%
Event selection negligible negligible negligible negligible
Total uncertainty 5.0%, 5.0%, 5.0% 3.8%, 3.7%, 3.8% 3.1%, 3.1%, 3.1% 3.9%, 3.8%, 3.8%

Table 1. Main sources and values of the relative systematic uncertainties of the charged-particle
number and summed-pT densities in pp and p–Pb collisions at √sNN = 5.02TeV. The average values
of the uncertainties for the ptrig

T intervals 0.5–2GeV/c and 5–40GeV/c are displayed in the left and
right columns, respectively. These uncertainties correspond to the transverse momentum threshold
pT > 0.5GeV/c. When more than one number is quoted, the values refer to the uncertainty in
toward, transverse, and away regions, respectively; they are independent of the azimuthal region in
all other cases.

particles in the sample of selected tracks is estimated via a fit to the measured dxy distri-
butions by a combination of the dxy distributions (templates) of primary and secondary
particles obtained from the simulations [42].

Due to the finite acceptance and the efficiency of the detection apparatus, the leading
particle may not be detected, and a track with lower pT could be considered as the trigger
particle. If the misidentified leading particle has a different pT but roughly the same
direction as the true leading particle, this leads to a small effect on the UE observables [11].
On the other hand, if the misidentified leading particle has a significantly different direction
than the true one, this will cause a rotation of the event topology and a bias on the UE
observables. Therefore, the particle densities are corrected for these effects using a data-
driven procedure described in detail in ref. [11]. A minor correction due to the finite vertex
reconstruction efficiency is also applied to the UE observables. The statistical uncertainty
from the MC simulations was properly propagated to the final statistical uncertainties on
data, but the analysis was performed in such a way that the correction factors are not
strongly affected by the MC statistical uncertainties.

3.4 Systematic uncertainties

The relative systematic uncertainties on the quantities presented in eqs. (3.1), (3.2), (3.3),

– 7 –
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(3.4), and (3.5) are summarised in table 1 for pp and p–Pb collisions. The details about
the different conditions varied in the analysis to estimate the systematic uncertainties are
described below.

• Secondary contamination: the fits to the dxy distributions with the templates from
the simulations were repeated using different fit intervals, namely −1 < dxy < 1
cm and −2 < dxy < 2 cm, instead of the default interval −3 < dxy < 3 cm. The
maximum deviation with respect to the result obtained with the default fit range was
assigned as systematic uncertainty.

• Correction method: a possible bias introduced by imperfections in the correction
procedure was estimated by performing the analysis on a Monte Carlo sample of pp
collisions simulated with a given event generator. The generated particles were prop-
agated through the detector and the reconstructed quantities were corrected with the
same procedure applied to the real data utilising the correction factors extracted from
simulations performed with the same event generator. The reconstructed quantities
considers all tracks which satisfies the selection criteria, they include tracks from pri-
mary and secondary particles, as well as fake tracks. Momentum resolution effects
are also considered in the reconstructed quantities. With this approach, one expects
to reproduce the generated yields, i.e. the yields obtained from the event generator
without any detector effect, within statistical uncertainty. This consideration holds
only if each correction is evaluated with respect to all the variables to which the given
correction is sensitive. Any statistically significant difference between input and cor-
rected distributions is added in quadrature to the total systematic uncertainty. This
uncertainty is the only one which is different for each topological region.

• Track selection: the systematic uncertainty related to the track selection criteria was
determined by varying the track quality cuts [42, 43]. In particular, the upper limits of
the track fit quality parameters in the ITS (χ2

ITS/Nhits) and the TPC (χ2
TPC/Nclusters)

were varied in the ranges of 25–49 and 3–5, respectively. The minimum ratio of
crossed TPC pad rows to the number of findable TPC clusters was varied within
(0.7–0.9). The maximum fraction of shared TPC clusters was varied between 0.2 and
1, and the maximum dz was varied within 1–5 cm. The impact on the results due
to the hit requirement in the SPD was also evaluated by removing that requirement
from the track selection. The maximum deviation of the results obtained varying the
selections (only a single track cut at a time) with respect to the result obtained using
the default track selection criteria was assigned as systematic uncertainty on each
individual track-quality variable. The total uncertainty is then calculated as the sum
in quadrature of each contribution.

• ITS-TPC track matching efficiency: a systematic uncertainty on the track recon-
struction efficiency originates from possible differences in the probability to match
the TPC tracks to the ITS hits in data and in simulations. It was estimated by
comparing the matching efficiency in data and simulations and propagating their
difference to the underlying-event observables used in the analysis.
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Figure 2. Charged-particle number density as a function of ptrig
T measured in the transverse

region for pp (left) and p–Pb collisions (right) at √sNN = 5.02TeV. Measurements were performed
considering three pT thresholds for associated charged particles: pT > 0.15GeV/c, pT > 0.5GeV/c,
and pT > 1GeV/c. Data are compared with PYTHIA 8 and EPOS LHC predictions. The coloured
boxes and the error bars represent the systematic and statistical uncertainties, respectively.

• Leading-particle misidentification bias: the uncertainty on the leading-track misiden-
tification correction is estimated from the discrepancy between the data-driven cor-
rection used in the analysis and the correction obtained from simulated data where
the true leading particle is known.

• Event-selection bias: the systematic uncertainty due to event selection is obtained
by varying from 5 to 15 cm the cut on the absolute value of the z component of the
vertex position. The maximum deviation of the results obtained varying the vertex
position with respect to the result obtained using the default cut (10 cm) is assigned
as systematic uncertainty. This contribution is found to be negligible.

4 Results and discussion

4.1 Underlying-event observables: pp compared to p–Pb collisions

Figure 2 compares the charged-particle number density as a function of ptrig
T in the trans-

verse region for the three pT thresholds: 0.15GeV/c, 0.5GeV/c, and 1GeV/c. Figure 2 also
shows the predictions of the event generators. For all the figures presented in this paper the
statistical uncertainties in Monte Carlo predictions are not shown to facilitate the visual-
ization of the data. In general the statistical error in MC is up to 2% and 7% for ptrig

T values
of 10 and 20GeV/c, respectively. The results from pp and p–Pb collisions exhibit similar
behaviour: the number density steeply rises for low ptrig

T , and it flattens at ptrig
T ≈ 5GeV/c

(plateau region). In the plateau region, the event activity in p–Pb collisions is ≈ 2 times
larger than the one measured in pp collisions. This increase is smaller than that (about a
factor of 3) observed for the charged-particle multiplicity densities dNch/dη in non-single-
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Figure 3. Charged-particle number density as a function of ptrig
T measured in pp (left) and p–Pb

collisions (right) at √sNN = 5.02TeV. Measurements were performed considering associated charged
particles with pT > 0.5GeV/c. Results for the toward, transverse, and away regions are displayed.
The coloured boxes and the error bars represent the systematic and statistical uncertainties, re-
spectively.

diffractive p–Pb collisions compared to pp collisions at the same nucleon–nucleon centre-
of-mass energy [46]. It should also be noted that for both collision systems increasing the
pT threshold from 0.15GeV/c to 1.0GeV/c reduces the charged-particle number density by
about a factor of 4. For pp collisions, the charged-particle number density shows a slightly
increasing trend with increasing ptrig

T in the plateau region (ptrig
T > 5GeV/c). This increase

is more pronounced for larger values of the pT threshold for associated tracks, indicating an
increased contribution of correlated hard processes (initial- and final-state radiation) to the
transverse region. For example, for the pT threshold pT > 1GeV/c, the charged-particle
number density increases from 0.3 to 0.45 (i.e., by about 50%) when ptrig

T is increased from
5 to 40GeV/c. Whereas for the pT threshold pT > 0.15GeV/c, the increase is less than
10%. In contrast, for p–Pb collisions the charged-particle number density in the plateau
region is flat for all the pT thresholds. This behaviour also suggests that the contamination
from the main partonic scattering in the transverse region is smaller in p–Pb than in pp
collisions. Figure 2 also shows the predictions of the event generators. EPOS LHC better
describes the ptrig

T dependence of the charged-particle multiplicity density for pp collisions
relative to p–Pb collisions. For p–Pb collisions, EPOS LHC significantly underestimates
the charged-particle number density, and it does not reproduce the trend with ptrig

T and the
value at the plateau observed in data. In contrast, PYTHIA 8/Angantyr qualitatively re-
produces the measured trends with ptrig

T in p–Pb collisions, providing a good quantitative
description of the data for the lowest pT threshold (pT > 0.15GeV/c), while it under-
estimates the measured densities in the plateau region for higher pT thresholds. In the
following, measurements with the pT threshold requirement of 0.5GeV/c for associated
particles are reported and discussed. Results for other pT thresholds (pT > 0.15GeV/c and
> 1.0GeV/c) are presented in appendix A.
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Figure 4. The charged-particle number (left) and summed-pT (right) densities as a function of ptrig
T

in pp collisions at
√
s = 5.02TeV are displayed. Results for the transverse (top), away (middle), and

toward (bottom) regions were obtained for the transverse momentum threshold pT > 0.5GeV/c.
The shaded area and the error bars around the data points represent the systematic and statistical
uncertainties, respectively. Data are compared with PYTHIA 8/Monash (solid line) and EPOS LHC
(dashed line) predictions. The data-to-model ratios are displayed in the bottom panel of each plot.
The boxes around unity represent the statistical and systematic uncertainties added in quadrature.
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Figure 5. The charged-particle number (left) and summed-pT (right) densities as a function
of ptrig

T in p–Pb collisions at √sNN = 5.02TeV are displayed. Results for the transverse (top),
away (middle), and toward (bottom) regions were obtained for the transverse momentum threshold
pT > 0.5GeV/c. The shaded area and the error bars around the data points represent the systematic
and statistical uncertainties, respectively. Data are compared with PYTHIA 8/Angantyr (solid line)
and EPOS LHC (dashed line) predictions. The data-to-model ratios are displayed in the bottom
panel of each plot. The boxes around unity represent the statistical and systematic uncertainties
added in quadrature.
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Figure 3 shows the charged-particle number density as a function of ptrig
T measured in pp

and p–Pb collisions at √sNN = 5.02TeV. Results are presented for the toward, transverse,
and away regions. The ptrig

T dependence in all regions is similar for both collision systems.
For ptrig

T & 5GeV/c the charged-particle number density becomes almost independent of
ptrig

T (plateau) in the transverse region, as already pointed out above, while in the toward
and away regions it continues to rise with increasing ptrig

T . The continuous rise observed for
the toward and away regions can be attributed to the fact that produced particles in these
regions do not originate only from the UE, but have also a contribution due to fragments
from hard scatterings, which are mostly collimated in azimuth. The contribution from
fragments increases with increasing ptrig

T causing the rise of event activity. A qualitatively
similar behaviour in pp and p–Pb collisions is observed. However, the event activity in the
toward and away regions in pp collisions increases faster with ptrig

T than in p–Pb collisions,
namely, the increase of the particle density from ptrig

T = 5GeV/c up to ptrig
T = 40GeV/c

amounts to a factor of ≈ 2 and ≈ 1.4 in pp and p–Pb collisions, respectively. Moreover, at
ptrig

T = 35GeV/c the relative level of the event activity in the transverse region with respect
to that in the toward (away) region is ≈ 0.4 and ≈ 0.60 (≈ 0.5 and ≈ 0.65) for pp and
p–Pb collisions, respectively. This indicates that the UE contribution to the toward and
away regions is larger in p–Pb than in pp collisions, which is expected because of multiple
nucleon–nucleon collisions in a single p–Pb collision that give a large additional UE, with
respect to MPI in the same pp collision.

Figure 4 shows comparisons between the data from pp collisions and the predictions of
event generators for both the primary charged-particle number, and the summed-pT densi-
ties in the three considered azimuthal regions (toward, away, and transverse). Although the
modelling of the UE activity in PYTHIA 8/Monash is completely different with respect to
that implemented in EPOS LHC, both models qualitatively describe the measured charged-
particle densities in the three azimuthal regions. In the away region, within uncertainties,
PYTHIA 8/Monash describes the data better than EPOS LHC in the full ptrig

T range of the
measurement. The maximum deviation of EPOS LHC with respect to data is around 10%
and 20% for the number density and summed-pT density, respectively, in the ptrig

T interval
5–15GeV/c. Regarding the toward region, PYTHIA 8/Monash predictions overestimate
the event activity by 10% for ptrig

T < 5GeV/c, whereas for higher ptrig
T PYTHIA 8/Monash

describes the data quite well. The situation is the opposite for EPOS LHC: at low ptrig
T

EPOS LHC describes well the event activity, but it significantly underestimates the particle
densities for higher ptrig

T (> 8GeV/c) by ≈ 30%.
Figure 5 shows data-to-model comparisons for the case of p–Pb collisions. For the

transverse region, as already pointed out above, PYTHIA 8/Angantyr provides a better
qualitative description of the measured trend of the charged-particle number densities as
compared to EPOS LHC. However, both PYTHIA 8/Angantyr and EPOS LHC underesti-
mate the charged-particle summed-pT (number) density for ptrig

T > 5GeV/c by more than
20% (10%). While for PYTHIA 8/Angantyr this discrepancy stays roughly constant up
to pT ≈ 3GeV/c, for EPOS LHC the discrepancy increases up to 50% at pT ≈ 3GeV/c.
For the toward and away regions, as visible from the ratio plots in the bottom panels of
figure 5, PYTHIA 8/Angantyr does not describe the trend with ptrig

T of both the event-
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Figure 6. Upper panels: charged-particle number (left) and summed-pT (right) densities as a
function of ptrig

T in pp (blue) and p–Pb (red) collisions at √sNN = 5.02TeV. Results for data
and comparison with models PYTHIA 8 (green) and EPOS LHC (red) predictions for the away
(upper) and toward (bottom) regions, after the subtraction of the charged-particle number (left) and
summed-pT (right) densities in the transverse region, are shown. Bottom panels: charged-particle
number and summed-pT densities measured in pp collisions divided by those in p–Pb collisions are
displayed for both data and models.

activity variables, in particular in the range 1 < ptrig
T < 5GeV/c, where the event activity

increases more steeply in the data than in the PYTHIA 8/Angantyr predictions. At higher
ptrig

T (5 < ptrig
T < 10GeV/c) the ratio between the data and PYTHIA 8/Angantyr flattens,

however a discrepancy by about 10% (30%) between the data and the model predictions
is observed for the charged-particle number (summed-pT) densities. The description of the
data by EPOS LHC is slightly better that of PYTHIA 8/Angantyr for ptrig

T < 8GeV/c.
However, in that ptrig

T interval EPOS LHC predicts bump structures in the toward and away
regions which are not seen in data. For higher ptrig

T EPOS LHC overestimates the event
activity. The inclusion of these data in future MC tunings would be relevant to improve
the modelling of the UE in p–Pb collisions.
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4.2 Event activity in the jet-like signals

Figure 6 shows the jet-like contribution to the charged-particle number and summed-pT
densities in the toward and away regions as a function of ptrig

T for pp and p–Pb collisions at
√
sNN = 5.02TeV. As discussed earlier, the event activity for the jet-like signals is obtained

from the event activity in the toward and away regions after subtracting the event activity
in the transverse region (see eq. (3.3) and eq. (3.4)). In contrast to the behaviour observed
for the toward and away regions, where at ptrig

T ≈ 5GeV/c the event activity tends to
flatten out, the densities in the jet-like signals rise with increasing ptrig

T in the entire range
of the measurement.

At high ptrig
T (ptrig

T > 10GeV/c), the event activity in the jet-like signals exhibits a
remarkable similarity between measurements in pp and p–Pb collisions for both charged-
particle multiplicity and summed-pT densities. Within 10%, both PYTHIA 8/Angantyr
and EPOS LHC reproduce this feature. At low ptrig

T (ptrig
T < 10GeV/c), the models overes-

timate the event activity in the jet-like signals measured in p–Pb collisions. The disagree-
ment is more remarkable for EPOS LHC than for PYTHIA 8/Angantyr. For pp collisions,
PYTHIA 8 slightly overestimates the event activity, while EPOS LHC underestimates the
particle densities. For ptrig

T < 10GeV/c, the event activity in pp collisions scaled to that
in p–Pb collisions is smaller than unity, reaching a minimum of ≈ 0.8 at ptrig

T ≈ 3GeV/c.
This behaviour is not reproduced by PYTHIA 8/Angantyr, which gives a ratio above unity
for ptrig

T > 1GeV/c. In contrast, EPOS LHC exhibits a similar pattern, but the size of the
effect is much larger than in data. The main difference between PYTHIA 8/Angantyr
and EPOS LHC is that EPOS LHC incorporates collective flow, which is expected to be
significant in the ptrig

T interval (3-4GeV/c [47]) where we observe the differences between
measurements in pp and p–Pb collisions. Given that (radial and elliptic) flow is larger
in p–Pb than in pp collisions [48, 49], its contribution to the toward and away regions is
expected to be higher in p–Pb than in pp collisions. In particular, the elliptic azimuthal
correlations modulate the background according to: B(∆ϕ) = B0

(
1 + 2V2 cos (2∆ϕ)

)
,

where V2 ≈ vtrig
2 vassoc

2 is approximately given by the product of anisotropic flow coefficients
for trigger and associated particles at their respective momenta [47]. From Pb–Pb results
we expect the effect to be the largest at intermediate transverse momenta and to decrease
for high transverse momentum particles [50].

Finally, the average transverse momentum 〈pT〉 of particles in the toward and away
regions after subtracting the UE contribution estimated from the transverse region is shown
in figure 7 as a function of ptrig

T for pp and p–Pb collisions at √sNN = 5.02TeV. Within
uncertainties, the 〈pT〉 values are consistent in pp and p–Pb collisions in the measured ptrig

T
interval. The PYTHIA 8 tunes considered in this paper do not reproduce this behaviour.
They predict that in the away region the average pT for the jet-like signal in pp collisions
is about 20% (10%) larger than in p–Pb collisions for ptrig

T < 2GeV/c (ptrig
T > 5GeV/c).

For the toward region, the situation is similar at high ptrig
T ; however, for ptrig

T < 2GeV/c,
the 〈pT〉 in p–Pb collisions is predicted to be about 20% larger than in pp collisions.
Although the main source of this discrepancy is the underestimation of the measured 〈pT〉
in p–Pb collisions by PYTHIA 8/Angantyr, the prediction for pp collisions is lower than
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the measured 〈pT〉 in the away region. The agreement of PYTHIA 8/Monash with pp
data is better for the toward region. On the other hand, EPOS LHC reproduces the
average pT for the two collision systems better than PYTHIA 8/Angantyr. Although, for
ptrig

T < 10GeV/c, EPOS LHC predicts the 〈pT〉 in the toward region to be larger in pp as
compared to p–Pb collisions, leading to a bump-like structure in the ratio of pp over p–Pb
results, which is not observed in the data.

4.3 Energy dependence of the underlying event in pp collisions

This subsection discusses the collision-energy dependence of the charged-particle number
density in the transverse region. Given that data from experiments at RHIC, the Tevatron
and the LHC, are available for the pT threshold, pT > 0.5GeV/c, our results for this
pT threshold are compared with existing measurements at other centre-of-mass energies.
Figure 8 (left) compares the UE activity obtained in pp collisions at

√
s = 5.02TeV to

those obtained at other LHC energies, namely
√
s = 0.9, 7, and 13TeV [11, 14]. Between

the two higher energies,
√
s = 7 and 13TeV, the number density in the plateau increases

by about 30%. A similar increase was reported considering associated particles with pT >

0.15GeV/c [51]. More information about the
√
s-dependence in the transverse region can

be obtained by comparing the shapes of the number density as a function of ptrig
T . One

attempt using the data provided by the ATLAS collaboration has been reported in ref. [52];
a similar comparison was performed by the ALICE collaboration in ref. [51]. Following the
approach presented in ref. [51], the height of the plateau for different collision energies
is quantified by fitting a constant function in the range 5 < ptrig

T < 10GeV/c (the fit
functions are also shown in the left panel of figure 8). The fitting range was restricted to
that common range in order to be consistent with the procedure used for the measurements
at other centre-of-mass energies. Larger fitting ranges were also considered, and consistent
results were obtained. The shapes of the particle densities as a function of ptrig

T are then
compared after dividing the densities by the level of the plateau, as estimated from the fit
to a constant value. The results are shown in figure 8 (right). For the two higher energies,
the ptrig

T coverage extends beyond the fitting range, i.e. to ptrig
T > 10GeV/c. In this range,

the densities agree within the statistical and systematic uncertainties. In the rise region
( ptrig

T < 5GeV/c), one observes a clear ordering among the four collision energies, the
lowest energy having the highest density relative to the plateau. Moreover, at lower

√
s,

the plateau values seem to be reached at a slightly lower ptrig
T . This feature is also observed

in pp collisions simulated with the PYTHIA 8 event generator [52].
Figure 9 shows the

√
s dependence of the charged-particle number density measured in

the transverse azimuthal interval and in the high ptrig
T interval of the plateau region. Results

from various experiments at RHIC [3], the Tevatron [2, 56], and the LHC [11, 51, 53–
55, 57] are displayed. The ATLAS, CDF, CMS, and STAR data points are taken from the
compilation reported by the STAR collaboration [3]. The event activity shows a modest
increase from

√
s = 0.2 up to 0.9TeV, while for higher energies it exhibits a steeper rise.

This behaviour is described by a function of the form ∝ s0.27 + 0.14 log(s), in which the
power-law term describes the UE contribution, whereas the logarithmic term describes
the contribution from ISR and FSR. The parametrisation was taken from ref. [58]. A
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Figure 9. Centre-of-mass energy dependence of the high ptrig
T plateau value of the charged-particle

number density in the transverse region. The ATLAS [53–55], CDF [2, 56], CMS [57] and STAR [3]
data points were taken from the compilation reported by the STAR collaboration [3]. Error bars
represent statistical and systematic uncertainties summed in quadrature. The data are compared
with a parametrisation of the form s0.27 + 0.14 log(s) [58].

comparison to the charged particle multiplicity at mid-pseudorapidity in minimum-bias
pp data, where 〈dNch/dη〉 can be parameterised as 〈dNch/dη〉 ∝ s0.114 [59], suggests that
the UE contribution increases faster with centre-of-mass energy than the charged particle
multiplicity in minimum-bias pp collisions.

5 Conclusions

In this paper, the measurements of underlying-event observables performed in pp and
p–Pb collisions at a centre-of-mass energy per nucleon–nucleon collisions of 5.02TeV were
reported. The analysis was carried out following the strategy introduced by the CDF
collaboration consisting of the definition of three azimuthal regions relative to the highest
transverse momentum particle in the collision (ptrig

T ). The charged-particle production
is measured within the pseudorapidity interval |η| < 0.8; and it is quantified with the
number and summed-pT densities considering particles above a given pT threshold. Three
pT thresholds are considered: 0.15, 0.5, and 1GeV/c. These quantities are reported as a
function of ptrig

T , and for the toward, away, and transverse azimuthal regions. The transverse
region is the most sensitive to the underlying event; while the toward and away regions
include both the underlying-event and jet fragments from the main partonic scattering. For
the isolation of the jet-like signal, the event activity in the transverse region is subtracted
from those measured in the toward and away regions. Results for pp collisions are compared
with data at other centre-of-mass energies and with MC predictions. In addition, the event
activities measured in pp and p–Pb collisions are compared with each other at the same
ptrig

T value. The main conclusions of the present work are listed below.

– 18 –



J
H
E
P
0
6
(
2
0
2
3
)
0
2
3

• The underlying-event observables in pp collisions follow the same behaviour as ob-
served at lower centre-of-mass energies. In the transverse region the charged-particle
densities measured in the three azimuthal regions exhibit a fast rise for ptrig

T < 5GeV/c
followed by a flattening at higher ptrig

T (plateau). Data for the three azimuthal regions
relative to the leading particle are reproduced by the PYTHIA 8 event generator with
the Monash tune. EPOS LHC predicts a slightly different behaviour in particular
at ptrig

T around 3GeV/c where a bump structure is present in the three azimuthal
regions which is not observed in the data.

• The underlying-event observables in p–Pb collisions qualitatively behave like in pp
interactions. The particle densities in the transverse region exhibit a saturation at
ptrig

T ≈ 5GeV/c. PYTHIA 8/Angantyr qualitatively reproduces this saturation but
underestimates the particle densities. The EPOS LHC model does not describe the
saturation and underestimates the event activity within the measured ptrig

T interval.
For the toward and away regions, above the onset of the plateau, data exhibit a
slower increase of the particle densities with increasing ptrig

T than that observed in pp
collisions. EPOS LHC and PYTHIA 8/Angantyr underestimate the particle densities
at high ptrig

T (> 8GeV/c). At lower ptrig
T , EPOS LHC predicts a bump structure at

ptrig
T ≈ 4GeV/c which is not seen in data. For ptrig

T < 3GeV/c, EPOS LHC describes
the particle densities, whereas PYTHIA 8/Angantyr overestimates those in data by
up to 30%.

• The particle densities in the toward and away regions after subtraction of the UE
contribution as a function of ptrig

T in pp collisions are consistent with those measured
in p–Pb collisions for ptrig

T > 10GeV/c, i.e., no modification of the jet-like yield in
p–Pb collisions relative to pp collisions is found. At lower ptrig

T , the charged-particle
densities are larger in p–Pb collisions relative to pp collisions. This behaviour is
expected given the larger collective flow effects in p–Pb collisions relative to pp col-
lisions. This feature is qualitatively captured by the EPOS LHC generator, which
incorporates collective flow effects in the modelling of the system created in the col-
lision. However, the size of the effect is significantly larger in EPOS LHC than in
data. An opposite trend is instead predicted by simulations with PYTHIA 8/Angan-
tyr, which do not include collective effects. The average pT as a function of ptrig

T was
also measured. The average pT values measured in pp and p–Pb collision are found
to be consistent between each other in the entire ptrig

T interval of the measurement.
Simulations with EPOS LHC predict instead a slightly lower average pT for jet-like
signal in p–Pb collisions as compared to pp collisions for ptrig

T < 10GeV/c, while
PYTHIA 8 with the Monash and Angantyr tunes do not provide a good description
for this observable.

The measurements reported in this article represent important input for the tuning
of some of the parameters of the event generators in order to improve the modelling of
soft particle production in pp and p–Pb collisions. Moreover, they can contribute to the
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understanding of the origin of signals resembling a collective behaviour in pp and p–Pb
collisions.
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A Charged-particle densities as a function of ptrig
T for others pT thresh-

olds

The charged-particle number and summed-pT densities as a function of ptrig
T measured in pp

collisions at
√
s = 5.02TeV, in the transverse, away, and toward regions for the transverse

momentum thresholds pT > 0.15GeV/c and pT > 1GeV/c are shown in figures 10 and 11,
respectively. The charged-particle number and summed-pT densities as a function of ptrig

T
measured in p–Pb collisions at √sNN = 5.02TeV, in the transverse, away, and toward
regions for the transverse momentum thresholds pT > 0.15GeV/c and pT > 1GeV/c are
shown in figures 12 and 13, respectively.
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Figure 10. The charged-particle number (left) and summed-pT (right) densities as a function
of ptrig

T in pp collision at
√
s = 5.02TeV are displayed. Results for the transverse (top), away

(middle), and toward (bottom) regions were obtained for the transverse momentum threshold pT >

0.15GeV/c. The shaded area and the error bars around the data points represent the systematic
and statistical uncertainties, respectively. Data are compared with PYTHIA 8/Monash (solid line)
and EPOS LHC (dashed line) predictions. The data-to-model ratios are displayed in the bottom
panel of each plot. The boxes around unity represent the statistical and systematic uncertainties
added in quadrature.
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Figure 11. The charged-particle number (left) and summed-pT (right) densities as a function of
ptrig

T in pp collision at
√
s = 5.02TeV are displayed. Results for the transverse (top), away (middle),

and toward (bottom) regions were obtained for the transverse momentum threshold pT > 1GeV/c.
The shaded area and the error bars around the data points represent the systematic and statistical
uncertainties, respectively. Data are compared with PYTHIA 8/Monash (solid line) and EPOS LHC
(dashed line) predictions. The data-to-model ratios are displayed in the bottom panel of each plot.
The boxes around unity represent the statistical and systematic uncertainties added in quadrature.
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Figure 12. The charged-particle number (left) and summed-pT (right) densities as a function of
ptrig

T in p–Pb collision at √sNN = 5.02TeV are displayed. Results for the transverse (top), away
(middle), and toward (bottom) regions were obtained for the transverse momentum threshold pT >

0.15GeV/c. The shaded area and the error bars around the data points represent the systematic
and statistical uncertainties, respectively. Data are compared with PYTHIA 8/Angantyr (solid line)
and EPOS LHC (dashed line) predictions. The data-to-model ratios are displayed in the bottom
panel of each plot. The boxes around unity represent the statistical and systematic uncertainties
added in quadrature.
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Figure 13. The charged-particle number (left) and summed-pT (right) densities as a function
of ptrig

T in p–Pb collision at √sNN = 5.02TeV are displayed. Results for the transverse (top),
away (middle), and toward (bottom) regions were obtained for the transverse momentum threshold
pT > 1GeV/c. The shaded area and the error bars around the data points represent the systematic
and statistical uncertainties, respectively. Data are compared with PYTHIA 8/Angantyr (solid line)
and EPOS LHC (dashed line) predictions. The data-to-model ratios are displayed in the bottom
panel of each plot. The boxes around unity represent the statistical and systematic uncertainties
added in quadrature.
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